Smallest enclosing circles and more

Computational Geometry

Lecture 6: Smallest enclosing circles and more

Facility location

Given a set of houses and farms in an isolated area. Can we place a helicopter ambulance post so that each house and farm can be reached within 15 minutes?

Where should we place an antenna so that a number of locations have maximum reception? Facility location Properties of the smallest enclosing circle

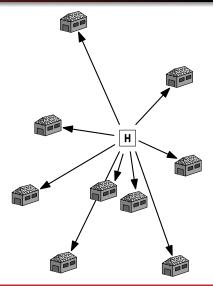
н

Facility location Properties of the smallest enclosing circle

Facility location in geometric terms

Given a set of points in the plane. Is there any point that is within a certain distance of these points?

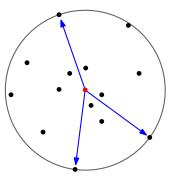
Where do we place a point that minimizes the maximum distance to a set of points?



Facility location Properties of the smallest enclosing circle

Facility location in geometric terms

Given a set of points in the plane, compute the smallest enclosing circle

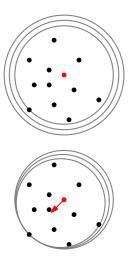


Facility location Properties of the smallest enclosing circle

Smallest enclosing circle

Observation: It must pass through some points, or else it cannot be smallest

- Take any circle that encloses the points, and reduce its radius until it contains a point *p*
- Move center towards p while reducing the radius further, until the circle contains another point q



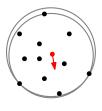
Facility location Properties of the smallest enclosing circle

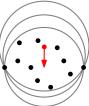
Smallest enclosing circle

 Move center on the bisector of p and q towards their midpoint, until:

(i) the circle contains a third point, or

(ii) the center reaches the midpoint of $p \mbox{ and } q$

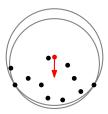




Facility location Properties of the smallest enclosing circle

Smallest enclosing circle

Question: Does the "algorithm" of the previous slide work?

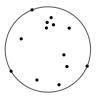


Facility location Properties of the smallest enclosing circle

Smallest enclosing circle

Observe: A smallest enclosing circle has (at least) three points on its boundary, or only two in which case they are diametrally opposite

Question: What is the extra property when there are three points on the boundary?



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Randomized incremental construction

Construction by randomized incremental construction

incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points

Adding a point

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

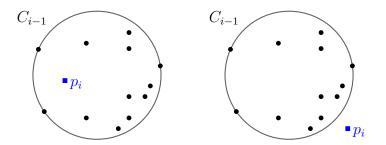
- Let p_1, \ldots, p_n be the points in random order
- Let C_i be the smallest enclosing circle for p_1, \ldots, p_i

Suppose we know C_{i-1} and we want to add p_i

- If p_i is inside C_{i-1} , then $C_i = C_{i-1}$
- If p_i is outside C_{i-1} , then C_i will have p_i on its boundary

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Adding a point



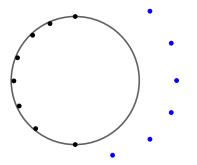
Adding a point

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Question: Suppose we remembered not only C_{i-1} , but also the two or three points defining it. It looks like if p_i is outside C_{i-1} , the new circle C_i is defined by p_i and some points that defined C_{i-1} . Why is this false?

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Adding a point

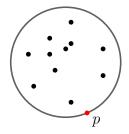


Adding a point

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

How do we find the smallest enclosing circle of $p_1 \dots, p_{i-1}$ with p_i on the boundary?

We study the *new(!)* geometric problem of computing the smallest enclosing circle with a given point *p* on its boundary

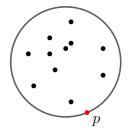


Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Smallest enclosing circle with point

Given a set P of points and one special point p, determine the smallest enclosing circle of P that must have p on the boundary

Question: How do we solve it?



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Randomized incremental construction

Construction by randomized incremental construction

incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points

Adding a point

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Let p_1, \ldots, p_{i-1} be the points in random order

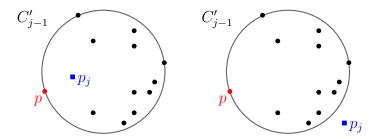
Let C'_{j} be the smallest enclosing circle for p_{1}, \ldots, p_{j} $(j \le i-1)$ and with p on the boundary

Suppose we know C'_{j-1} and we want to add p_j

- If p_j is inside C'_{j-1} , then $C'_j = C'_{j-1}$
- If p_j is outside C'_{j-1}, then C'_j will have p_j on its boundary (and also p of course!)

Adding a point

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

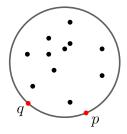


Adding a point

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

How do we find the smallest enclosing circle of $p_1 \dots, p_{j-1}$ with pand p_j on the boundary?

We study the *new(!)* geometric problem of computing the smallest enclosing circle with two given points on its boundary

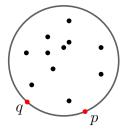


Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Smallest enclosing circle with two points

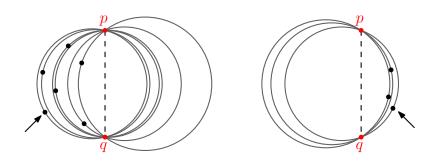
Given a set P of points and two special points p and q, determine the smallest enclosing circle of P that must have p and q on the boundary

Question: How do we solve it?



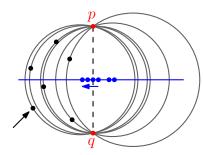
Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

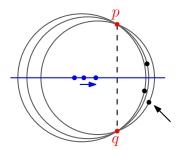
Two points known



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Two points known





Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Algorithm: two points known

Assume w.lo.g. that p and q lie on a vertical line. Let ℓ be the line through p and q and let ℓ' be their bisector

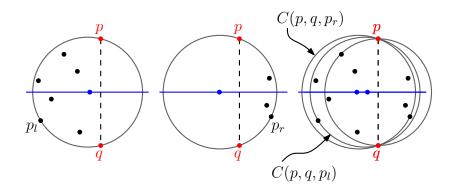
For all points left of $\ell,$ find the one that, together with p and q, defines a circle whose center is leftmost $\to p_l$

For all points right of ℓ , find the one that, together with p and q, defines a circle whose center is rightmost $\rightarrow p_r$

Decide if $C(p,q,p_l)$ or $C(p,q,p_r)$ or C(p,q) is the smallest enclosing circle

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

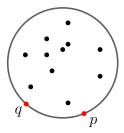
Two points known



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: two points known

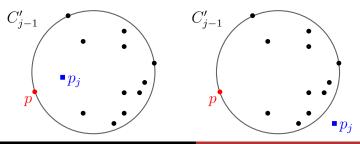
Smallest enclosing circle for n points with two points already known takes O(n) time, worst case



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Algorithm: one point known

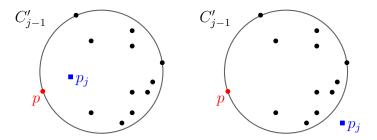
- Use a random order for p_1, \ldots, p_n ; start with $C_1 = C(p, p_1)$
- for j ← 2 to n do
 If p_j in or on C_{j-1} then C_j = C_{j-1}; otherwise, solve
 smallest enclosing circle for p₁,...,p_{j-1} with two points
 known (p and p_j)



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: one point known

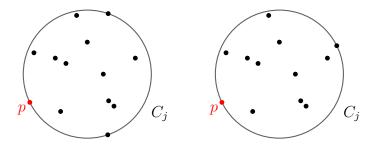
If only one point is known, we used randomized incremental construction, so we need an *expected time analysis*



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: one point known

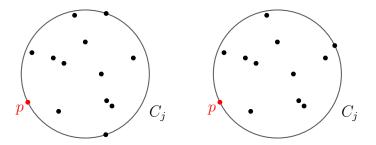
Backwards analysis: Consider the situation *after* adding p_j , so we have computed C_j



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: one point known

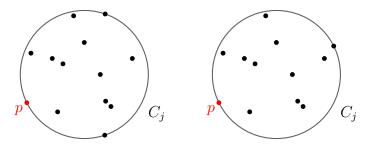
The probability that the *j*-th addition was expensive is the same as the probability that the smallest enclosing circle changes (decreases in size) if we remove a random point from the j points



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: one point known

This probability is 2/j in the left situation and 1/j in the right situation



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: one point known

The expected time for the *j*-th addition of a point is

$$\frac{j-2}{j} \cdot \Theta(1) + \frac{2}{j} \cdot \Theta(j) = O(1)$$

or

$$\frac{j-1}{j}\cdot \Theta(1) + \frac{1}{j}\cdot \Theta(j) = O(1)$$

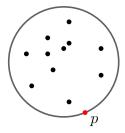
The expected running time of the algorithm for n points is:

$$\Theta(n) + \sum_{j=2}^{n} \Theta(1) = \Theta(n)$$

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: one point known

Smallest enclosing circle for n points with one point already known takes $\Theta(n)$ time, expected

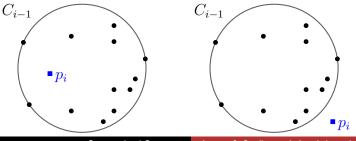


Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Algorithm: smallest enclosing circle

- Use a random order for p_1, \ldots, p_n ; start with $C_2 = C(p_1, p_2)$
- for $i \leftarrow 3$ to n do

If p_i in or on C_{i-1} then $C_i = C_{i-1}$; otherwise, solve smallest enclosing circle for p_1, \ldots, p_{i-1} with one point known (p_i)

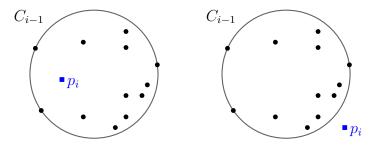


Computational Geometry Lecture 6: Smallest enclosing circles and more

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: smallest enclosing circle

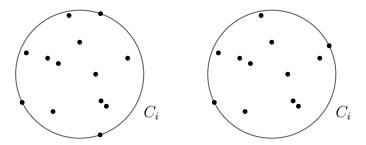
For smallest enclosing circle, we used randomized incremental construction, so we need an *expected time analysis*



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: smallest enclosing circle

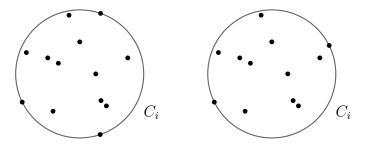
Backwards analysis: Consider the situation *after* adding p_i , so we have computed C_i



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: smallest enclosing circle

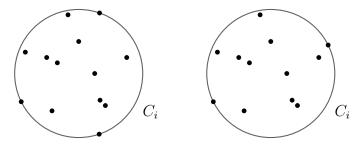
The probability that the *i*-th addition was expensive is the same as the probability that the smallest enclosing circle changes (decreases in size) if we remove a random point from the i points



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: smallest enclosing circle

This probability is 3/i in the left situation and 2/i in the right situation



Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Analysis: smallest enclosing circle

The expected time for the *i*-th addition of a point is

$$\frac{i-3}{i} \cdot \Theta(1) + \frac{3}{i} \cdot \Theta(i) = O(1)$$

or

$$\frac{i-2}{i}\cdot \Theta(1) + \frac{2}{i}\cdot \Theta(i) = O(1)$$

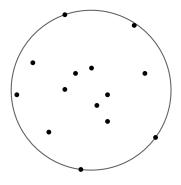
The expected running time of the algorithm for n points is:

$$\Theta(n) + \sum_{i=3}^{n} \Theta(1) = \Theta(n)$$

Randomized incremental construction A more restricted problem A yet more restricted problem Efficiency analysis

Result: smallest enclosing circle

Theorem The smallest enclosing circle for n points in plane can be computed in O(n) expected time



Conditions Diameter and closest pair Width More examples

When does it work?

Randomized incremental construction algorithms of this sort (compute an 'optimal' thing) work if:

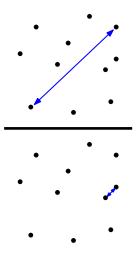
- The test whether the next input object violates the current optimum must be possible and fast
- If the next input object violates the current optimum, finding the new optimum must be an *easier* problem than the general problem
- The thing must already be defined by O(1) of the input objects
- Ultimately: the analysis must work out

Conditions Diameter and closest pair Width More examples

Diameter, closest pair

Diameter: Given a set of *n* points in the plane, compute the two points furthest apart

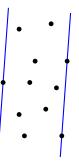
Closest pair: Given a set of *n* points in the plane, compute the two points closest together



Conditions Diameter and closest pair Width More examples

Width

Width: Given a set of *n* points in the plane, compute the smallest distance between two parallel lines that contain the points (narrowest strip)



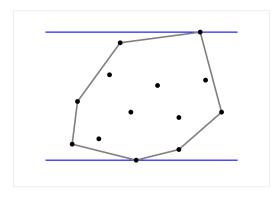
Conditions Diameter and closest pair Width More examples

Rotating callipers

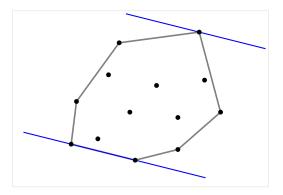
The width can be computed using the rotating callipers algorithm

- Compute the convex hull
- Find the highest and lowest point on it; they define two horizontal lines that enclose the points
- Rotate the lines together while proceeding along the convex hull

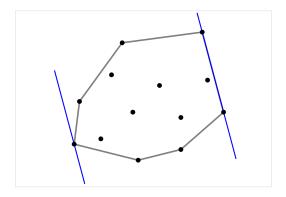
Conditions Diameter and closest pair Width More examples



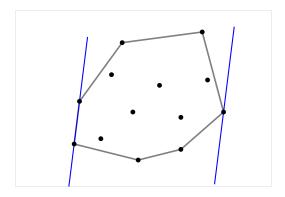
Conditions Diameter and closest pair Width More examples



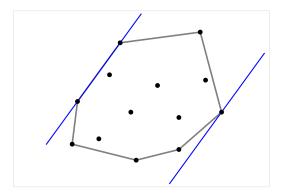
Conditions Diameter and closest pair Width More examples



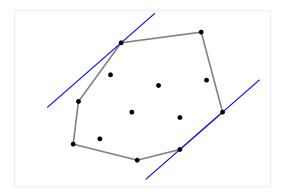
Conditions Diameter and closest pair Width More examples



Conditions Diameter and closest pair Width More examples



Conditions Diameter and closest pair Width More examples

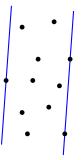


Width

Conditions Diameter and closest pair Width More examples

Property: The width is always determined by three points of the set

Theorem: The rotating callipers algorithm determines the width (and the diameter) in $O(n \log n)$ time

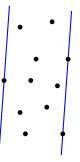


Width by RIC?

Conditions Diameter and closest pair Width More examples

Property: The width is always determined by three points of the set

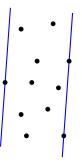
We can maintain the two lines defining the width to have a fast test for violation



Adding a point

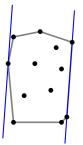
Conditions Diameter and closest pair Width More examples

Question: How about adding a point? If the new point lies inside the narrowest strip we are fine, but what if it lies outside?



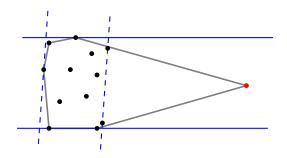
Conditions Diameter and closest pair Width More examples

Adding a point



Conditions Diameter and closest pair Width More examples

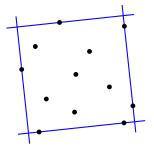
Adding a point



Conditions Diameter and closest pair Width More examples

Width

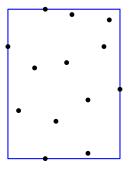
A good reason to be very suspicious of randomized incremental construction as a working approach is *non-uniqueness* of a solution



Conditions Diameter and closest pair Width More examples

Minimum bounding box

Question: Can we compute the minimum axis-parallel bounding box by randomized incremental construction?

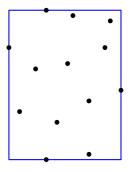


Conditions Diameter and closest pair Width More examples

Minimum bounding box

Yes, in O(n) expected time

 \ldots but a normal incremental algorithm does it in O(n) worst case time

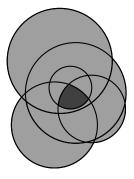


Conditions Diameter and closest pair Width More examples

Lowest point in circles

Problem 1: Given *n* disks in the plane, can we compute the lowest point in their common intersection efficiently by randomized incremental construction?

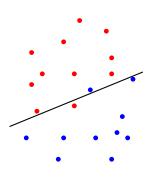
Problem 2: Given *n* disks in the plane, can we compute the lowest point in their union efficiently by randomized incremental construction?



Conditions Diameter and closest pair Width More examples

Red-blue separation

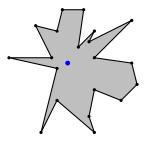
Problem: Given a set of *n* red and blue points in the plane, can we decide efficiently if they have a separating line?



Conditions Diameter and closest pair Width More examples

One-guardable polygons

Problem: Given a simple polygon with *n* vertices, can we decide efficiently if one guard is enough?



Conditions Diameter and closest pair Width More examples

One-guardable polygons

It can easily happen that a problem is an instance of linear programming

Then don't devise a new algorithm, just explain how to transform it, and show that it is correct (that your problem is really solved that way)

