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a  b  s  t  r  a  c  t

Image  compression  is  an  application  of data  compression  on  digital  images.  Several  lossy/lossless  trans-
form  coding  techniques  are  used  for  image  compression.  Discrete  cosine  transform  (DCT)  is  one  such
widely  used  technique.  A  variation  of  DCT,  known  as warped  discrete  cosine  transform  (WDCT),  is  used
for  2-D  image  compression  and  it is  shown  to  perform  better  than  the DCT  at high  bit-rates.  We  extend
this  concept  and  develop  the  3-D  WDCT,  a transform  that  has  not  been  previously  investigated.  We out-
line some  of  its important  properties,  which  make  it  especially  suitable  for image  compression.  We  then
propose  a complete  image  coding  scheme  for volumetric  data  sets  based  on  the  3-D  WDCT  scheme.  It is
shown  that  the  3-D WDCT-based  compression  scheme  performs  better  than  a similar  3-D  DCT scheme
for volumetric  data  sets  at  high  bit-rates.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of image compression is to reduce the redundancy
of an image data in order to store or transmit data in an efficient
manner. There are two basic types of image compression schemes:
lossless compression and lossy compression [1–4]. A lossless
compression scheme encodes and decodes the data perfectly,
and the resulting image matches exactly with the original image.
Therefore, there is no degradation or loss of data. Lossless coding
techniques include run length encoding, Huffman encoding,
entropy coding (Lempel/Ziv), and area coding. Lossy compression
schemes, on the other hand, remove redundant and non-essential
information that the human eye cannot observe. Typically, with
lossy compression schemes, there is a trade-off between com-
pression and image quality. Usually, lossy compression techniques
are more complex and require more computations [1,3,4].  The
ultimate goal of lossy compression is that the final decompressed
image must be visually lossless. The primary focus of this paper
is on transform-based coding techniques. More specifically, we
are interested in coding schemes which use the discrete cosine
transform (DCT) or related transforms [5].  One of the motivations
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for defining the warped discrete cosine transform (WDCT) is that
the DCT fails to compress, if the block of image contains mostly
high frequencies [6,7]. The warped discrete Fourier transform
(WDFT) computes the frequency samples of the discrete-time
Fourier transform (DTFT) at unequally spaced frequency points [8].

In this paper, we extend this concept to an adaptive discrete
cosine transform referred to as WDCT, which computes the DCT
samples by warping the frequency axis by means of an all-pass
transform [6].  The WDCT can be implemented as a cascade of DCT
and an infinite impulse response (IIR) all-pass filter whose param-
eter is used to adjust the transform according to the frequency
contents of the input signal [5,6,9].  More precisely, the input sig-
nal is warped by an all-pass function in such a way  that it has a
frequency distribution which is suitable for coding. We  can repre-
sent the WDCT by a single matrix, similar to the DCT. For example,
when there are only eight samples in a block, the output of an
IIR filter can be represented by a linear combination of the first
eight samples of the impulse response of the IIR filter transfer func-
tion. Thus, the outputs of all-pass filters can be represented by
the multiplication of a known matrix with the input vector. Yet
another way  of implementing WDCT is by interpreting DCT  as a
filter bank [6].  In this paper we  have used the filter bank approach
to implement WDCT. This approach is explained in Section 3 of the
paper.

This paper is organized as follows. In Section 2, we  discuss
the DCT-based coding schemes. In Section 3, we  briefly intro-
duce the 1-D version of the WDCT and extend this concept to
2-D and 3-D versions. The properties of WDCT are outlined and a
detailed explanation concerning encoder complexity is discussed.
Section 4 explains the encoding and decoding schemes used in the

1746-8094/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
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Fig. 1. (a) DCT Filter bank and (b) WDCT Filter bank.

algorithm. The results are analyzed in Sections 5 and 6 presents the
conclusions.

2. DCT-based coding schemes

The essential steps involved in typical transform-based encod-
ing and decoding schemes include transformation, quantization
and entropy coding at the encoder and the corresponding inverse
operations at the decoder.

The DCT is a popular transform used for image compression due
to its energy compaction property. The most commonly used DCT
in image coding is the Type-II DCT [6],  which is defined as follows:

Ck = U(k)
N−1∑
n=0

xn cos
(

(2n  + 1)k�

2N

)
, k = 0, 1, . . . , N − 1 (1)

with Cks and xns being the DCT coefficients and input samples,
respectively. U(k) is defined in Section 3.

In this paper, we are interested in the compression of magnetic
resonance imaging (MRI) data. Though medical images are usu-
ally compressed using lossless coding techniques, there are several
applications where lossy compression is acceptable as long as the
image quality is not degraded [10]. The DCT-based schemes make
use of the fact that there is a high correlation between adjacent
pixels, in order to compress the data. DCT de-correlates this cor-
relation between adjacent pixels, which results in a considerable
number of coefficients becoming zero. After quantization, we can
code these coefficients very efficiently using entropy coding.

However, there are several other transforms like the DCT which
also have similar energy compaction properties [11]. The warped
discrete cosine transform (WDCT) is one such transform [8].  It has
been shown that WDCT outperforms DCT for high bit-rate opera-
tions [6].  In this paper, we extend this concept to three dimensions.
It has been shown that 3-D DCT performs better than all the other
coding schemes (especially for MRI  data) for high bit-rate opera-
tions [3].  We  also know that the 2-D WDCT performs better than
2-D DCT for high bit-rates [6,7]. Therefore, we have combined these
two ideas to improve the coding performance of MRI  images at high
bit-rate operations, by proposing a new technique that uses the 3-
D version of the WDCT. In this paper we define the 3-D WDCT and
propose a complete image encoding and decoding scheme based on
this. The performance of this algorithm is compared with a scheme
that uses the 3-D DCT.

The DCT basis functions for an 8 × 8 image can be represented as
a matrix of basis functions [12]. The higher frequency components
tend to have lower values when the DCT is performed, while the
lower frequency components have higher values.

Fig. 2. (a) Histogram of original image (log scale). (b) Histogram of encoded data
(log  scale).
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3. Warped discrete cosine transform (WDCT)

In this section we briefly explain the implementation of WDCT
using the filter bank approach. In this approach the DCT matrix can
be considered as a filter bank consisting of eight FIR filters, with
eight taps each. We  define an 8-point 1-D DCT of the input vector
[x0 x1 x2 x3 x4 x5 x6 x7]T as

Ck = U(k)
7∑

n=0

xn cos
(

(2n  + 1)k�

16

)
, for k = 0, 1, 2, . . . , 7 (2)

where

U(k) =

⎧⎨⎩
1

2
√

2
,  k = 0

1
2

, otherwise
.

The DCT of the input vector is computed using a filter bank as
indicated in Fig. 1(a). The block referred to as DCT filter bank com-
putes the DCT for every input block and the DCT filter coefficients
can be represented as follows:

Fk(z−1) = U(k)
{

cos
k�

16
+ cos

3k�

16
z−1 + · · · + cos

15k�

16
z−7

}
. (3)

Fig. 4. (a) 3-D DCT reconstructed image (PSNR = 54.38, bpp = 2.57), (b) 3-D WDCT reconstructed image (PSNR = 56.36, bpp = 2.70), (c) original image and (d) PSNR vs. bpp plot.
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Fig. 5. (a) 3-D DCT reconstructed image (PSNR = 53.17, bpp = 4.70), (b) 3-D WDCT reconstructed image (PSNR = 55.72, bpp = 4.74), (c) original image and (d) PSNR vs. bpp plot.

The conventional DCT filter bank works well for inputs with mostly
low frequency components. However, for inputs with high fre-
quency components, the magnitudes of the outputs from Fk(z−1)
for higher values of k is large, which degrades the coding efficiency.
However, higher magnitudes will increase the sample values. As
a result, a larger Huffman code table must be used. This in turn
increases average code length per symbol, due to which there is
degradation in its efficiency. Therefore, in WDCT we use a filter
bank whose frequency response can be adjusted according to the
frequency content of the inputs.

The combination of all-pass IIR filter and the DCT can be consid-
ered as another filter bank with eight IIR filters. This is obtained by
warping the frequency response of the FIR filters. For warping the
frequency response of the filter bank given in Fig. 1(a), a suitable
transform is obtained by replacing z−1 by an all-pass filter, A(z) (as
shown in Fig. 1(b)).

A(z) = −  ̨ + z−1

1 − ˛z−1
. (4)

Here  ̨ is used as the control parameter for warping the frequency
response. A(z) is known as the Laguerre filter and is widely used
in other applications [13]. The resulting warped DCT filter bank is
shown in Fig. 1(b), where Fk(z−1) have been now replaced with IIR
filters given by

Fk(A(z)) =
7∑

n=0

U(k) cos
(2n + 1)k�

16
(A(z))n, (5)

that is,

Fk(A(z)) = U(k)
{

cos
k�

16
+ cos

3k�

16
A(z) + · · · + cos

15k�

16
(A(z))7

}
.

(6)

By finding the truncated or approximated FIR filter coefficients for
these IIR filters, the WDCT filter bank can be represented by a single
matrix. The approximate 8 tap FIR filter is obtained by taking the
inverse discrete Fourier transform (IDFT) of the sampled values of
Fk(A(ejω)), at ω = 0, (2�/8), (4�/8), . . .,  (14�/8). The WDCT  is similar
to the DCT, except that the primary focus in WDCT is on finding
an all-pass function that minimizes the mean square error (MSE).
The filter bank using this all-pass function is the basis for the WDCT
algorithm. Although this would lead to additional computations on
the encoder block, the WDCT coefficients thus obtained provide
better encoding.

3.1. 3-D DCT and WDCT

We define the 3-D DCT of the three dimensional matrix x as
follows:

C(k1, k2, k3)

= U(k1)U(k2)U(k3)
N−1∑
n1=0

N−1∑
n2=0

N−1∑
n3=0

x(n1, n2, n3)Dk1,n1
Dk2,n2

Dk3,n3
,(7)
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Fig. 6. (a) 3-D DCT coded and reconstructed image (PSNR = 52.40, bpp = 3.86), (b) 3-D WDCT coded and reconstructed image (PSNR = 53.84, bpp = 3.87), (c) original image and
(d)  PSNR vs. bpp plot.

where a general Dki,ni
is defined as

Dki,ni
= cos

(
(2ki + 1)ni�

2N

)
, for i = 0 to N − 1

and

U(ki) =

⎧⎪⎨⎪⎩
1√
N

, k = 0√
2
N

, otherwise
, for i = 1, 2, 3.

Eq. (7) is an extension of the existing 2-D DCT to the 3-D DCT
domain. The 3-D DCT is explained in [5].  Similarly, 3-D WDCT can
also be expressed as in Eq. (7),  which is given below

W(k1, k2, k3) =
N−1∑
n1=0

N−1∑
n2=0

N−1∑
n3=0

x(n1, n2, n3)Mk1,n1
Mk2,n2

Mk3,n3
. (8)

Here Mki,ni
does not have closed-form expression as in the case of

DCT, and the kth row of M represents the filter coefficients of the 8-
tap FIR filter approximation of Fk(A(z)). The properties of 3-D WDCT
discussed in the next section fructify our evaluation of 3-D WDCT
as an algorithm superior to the 3-D DCT.

3.2. 3-D WDCT properties

The principal advantage of image transformation is the removal
of redundancy in between the neighboring pixels. This leads
to uncorrelated transform coefficients which can be encoded

independently. The 3-D DCT and 3-D WDCT have excellent de-
correlation properties, due to which a large number of coefficients
become zero.

(1) Energy compaction: The efficacy of a transform scheme can
be directly evaluated by its ability to pack the data into as few
coefficients as possible. This allows the quantizer to discard
coefficients with relatively small amplitudes, without introduc-
ing visual distortion in the reconstructed image. The 3-D WDCT
exhibits excellent energy compaction properties for highly cor-
related images. In order to understand the energy compaction
property of the 3-D WDCT, the histograms of the image and that
of the transformed coefficients are considered. The histogram
of the original image and that of the transformed coefficients
using WDCT are shown in Fig. 2(a) and (b), respectively. From
these figures, it can be observed that all the values in the range
[0, 255] occur almost uniformly in the original image (Fig. 2(a)),
and therefore the energy is spread out across all the pixel values.
However, for the encoded (transformed) data, many coeffi-
cients are zero as shown in Fig. 2(b), and therefore most of
the energy is packed only in few coefficients [11]. This pro-
vides a strong support to our claim that 3-D WDCT has good
de-correlation and energy compaction properties.

(2) Separability: Eq. (8),  which is the representation of WDCT, can
also be written as

W(k1, k2, k3)
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Fig. 7. (a) 3-D DCT reconstructed image (PSNR = 54.48, bpp = 2.51), (b) 3-D WDCT reconstructed image (PSNR = 56.43, bpp = 2.61), (c) original image and (d) PSNR vs. bpp plot.

=
7∑

n1=0

Mk3,n3

⎡⎣ 7∑
n2=0

Mk2,n2

⎧⎨⎩
7∑

n3=0

Mk1,n1
x(n1,n2, n3)

⎫⎬⎭
⎤⎦ . (9)

Therefore, the 3-D WDCT equation is separable and we  can com-
pute the 3-D WDCT as a cascade of three 1-D WDCT computations.
This involves the following four steps:

• The 8-point row wise WDCT of the image is computed.
• The 8-point column wise WDCT of the image is computed.
• Eight such matrices are stacked.
• The WDCT is performed in the third dimension.

4. 3-D WDCT encoding and decoding

The complete encoding and decoding schemes are shown in
Fig. 3.

The input volumetric data consists of a set of MRI  grayscale
images. First, we form stacks of 8 images from the data. In fact,
for MRI  images that are acquired by a standard 1.5 T scanner, 8
samples correspond typically to a physical distance between 1 and
2 cm,  depending on the specific MRI  setting. Each of these stacks is
then further divided into blocks of 8 × 8 × 8. We  have three reasons
for choosing such a block size:

(a) It is more convenient to compute the 8-point WDCT, since 8 is
a power of 2.

(b) If the block size is very small, it under-utilizes correlation
between adjacent pixels, whereas if the block size is very large
correlation is small and consequently the energy compaction
would be poor. Therefore, a block size of 8 × 8 × 8 turns out to
be a good compromise.

(c) We can choose a single all-pass parameter for the entire block.
The correlation properties of the MRI  image set are similar in
the x, y and z-directions (unlike in the case of 3-D data sets like
video). Hence, choosing a symmetrical block such as 8 × 8 × 8
makes sense. If we  had chosen only an un-symmetrical block
such as 6 × 8 × 10, we would have to choose different all-pass
parameters for each direction and they will have to be transmit-
ted separately. This would result in considerable overhead in the
number of transmitted bits, without any significant improve-
ment in the image quality.

4.1. Encoder

The 3-D WDCT encoder uses the separability property of the 3-
D WDCT (discussed in Section 3). The 3-D WDCT is implemented
as a sequence of three 1-D WDCT computations. We  first take an
8 × 8 (x–y plane) image out of the 8 × 8 × 8 block, and compute
the 2-D WDCT by pre-multiplying and post-multiplying the 2-D
image matrix by the WWDCT matrix and its transpose, respectively,
i.e., W2-D WDCT = MWDCT X MT

WDCT, where MWDCT is the 1-D WDCT
matrix and X is the 8 × 8 image. We  perform this matrix multipli-
cation for each of the eight 8 × 8 images. We  then compute 1-D
WDCT along the z-direction by taking 8-element vectors and pre-
multiplying them by the WDCT matrix.
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Fig. 8. (a) 3-D DCT coded and reconstructed image (PSNR = 53.94, bpp = 3.85), (b) 3-WDCT coded and reconstructed image (PSNR = 55.85, bpp = 3.92), (c) original image and
(f)  PSNR vs. bpp plot.

The 3-D WDCT encoder not only performs the 3-D WDCT
computation, but also finds the optimal  ̨ which minimizes the
reconstruction error after quantization. The mean square error
(MSE) is given by

MSE = 1
83

7∑
n1=0

7∑
n2=0

7∑
n3=0

[X(n1, n2, n3) − XR(n1, n2, n3)]
2
. (10)

The algorithm used by the 3-D WDCT encoder is summarized in
the following six steps:

1. Quantize  ̨ into L steps in the range [−0.1, 0.1].
2. Form n WDCT matrices, denoted by WDCTn for n = 1 to L.
3. For each block, perform WDCTn, quantization and inverse WDCT

for n = 1 to L.
4. Choose WDCTn that minimizes the reconstruction error and

store the index n.
5. Quantize the block transformed by WDCTn, encode by Huffman

coding and transmit.
6. Repeat steps 3–5 for each block.

4.1.1. Quantization and Huffman coding
The 3-D WDCT increases the dynamic range of the input data

from its original range. It is desirable to perform quantization by
dividing the transformed coefficients by a quantization value. In
JPEG algorithm, different quantization values are used: the low-
frequency coefficients are divided by smaller values while the
high-frequency coefficients are divided by larger values. In this
paper, we have used only two quantization values, one for the DC

coefficients and the other for all the AC coefficients. The DC quan-
tization value is kept fixed and the bpp is varied by varying the
AC quantization values. A higher quantization value will result in
high compression, i.e., lower bpp, but that would result in a poorer
image quality. Therefore, quantization value is a trade-off between
image quality and the bit-rate. De-quantization can be simply done
by multiplying the quantized coefficient by the quantization value.

After the quantization process, we  code the data using an
entropy coding scheme, such as Huffman coding. In order to take
advantage of the sparsity of the transformed data, the encoded 3-D
block is converted back to 1-D by doing a 3-D zigzag scan, which
creates a long sequence of zeros at the end. This large sequence of
continuous zeros is formed by the higher frequency components.
Run length encoding is performed on this sequence, as it is done in
a standard JPEG compression. Huffman encoding is performed sep-
arately on DC and AC coefficients. In the case of DC coefficients, the
difference between the two is encoded rather than using the actual
value. However, for AC coefficients, no such differential encoding is
necessary. Huffman encoding is performed using standard Huffman
table in baseline sequential encoding mode, as in the JPEG standard.
At the decoder end, we  perform Huffman decoding to obtain quan-
tized coefficients. Then, the de-quantization is done and finally the
8 × 8 × 8 (3-D) image block is reconstructed by taking the inverse
3-D WDCT transform.

4.1.2. Inverse 3-D WDCT
In order to find the inverse 3-D WDCT from the 8 × 8 × 8 encoded

block, we  do the following.
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Fig. 9. (a) 3-D DCT reconstructed image (PSNR = 51.22, bpp = 4.20), (b) 3-D WDCT reconstructed image (PSNR = 52.33, bpp = 4.25), (c) original image and (d) PSNR vs. bpp plot.

1. We  compute the inverse WDCT (IWDCT) matrices corresponding
to different values of ˛.

2. We  then pick that IWDCT matrix which corresponds to the value
of  ̨ received from the encoder and multiply all the 8-element
vectors in the z-direction by this matrix. We  then divide the block
into eight sets of 8 × 8 (x–y plane) images.

3. We  pre-multiply and post-multiply each of these images by
IWDCT and its transpose, respectively, to obtain the recon-
structed images, i.e., find X2-D IWDCT = WIWDCT Y WT

IWDCT, where
WIWDCT is the IWDCT matrix, Y is the encoded data and X2-D IWDCT
is the 8 × 8 decoded image.

It is important to note that the complexity of the decoder is
much less than that of the encoder. In the decoder, there is only
a single 3-D IWDCT computation. The complexity of a 3-D WDCT
decoder is comparable to that of DCT-based decoders. However, we
have an increased complexity at the encoder end when compared
to the DCT-based encoders, where there is only one set of matrix
multiplications. The improved performance by using 3-D WDCT
comes at the expense of increased computational complexity at
the encoding end.

5. Results and discussion

The input to the 3-D WDCT coding scheme is a set of grayscale
MRI  images. The output of the encoder end is a stream of bits, which
is fed back to the decoder. The output of the decoder is the recon-
structed image set. For simplicity, we assume that the data sets are
in multiples of 8. The values of the different parameters used are:
(i) number of levels of  ̨ is 16, (ii) range of  ̨ = [−0.1, 0.1], (iii) size

of the individual images = 512 × 512 or 256 × 256 and (iv) range of
input data: [0, 255].

We  use the peak signal-to-noise ratio (PSNR) as a measure of
the image quality [14]:

PSNR = 10 log10

(
MAXI

2

MSE

)
= 20 log10

(
MAXI√

MSE

)
, (11)

where MAXI is the maximum pixel value of the input image.
In the rest of this section, we  present several results obtained of

applying our algorithm for compression of real MRI  images. The MRI
images presented in Figs. 4(a) and 5(a) are projections of the human
brain at various rotations [15]. Fig. 6(a) shows the MRI  image set
of cardiopulmonary vasculature [16]. The MRI images presented
in Figs. 7(a) and 8(a) are projections of human head at various
rotations [17].

Fig. 4 shows an original MRI  scan of the brain and the results
when we  apply the 3-D DCT and 3-D WDCT algorithms on this
image set.

In Fig. 5, at a bpp of 4, the PSNR for the 3-D WDCT reconstructed
image is 52.17 dB, whereas the PSNR for the 3-D DCT reconstructed
image is 51.37 dB. Therefore, there is an improvement of about
0.8 dB in the PSNR level, which makes the 3-D WDCT superior to
the 3-D DCT algorithm.

The original image set in Fig. 6 is an MRI  image set of the short
axis of the heart. Several planes are taken and for each plane, a
cardiac cycle is imaged.

In Fig. 7, at a bpp of 2.6, the PSNR for the 3-D DCT reconstructed
image is 54.5 dB, while the corresponding PSNR for the 3-D WDCT
is 56.4 dB. Therefore, there is an improvement of about 2 dB.
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Fig. 10. PSND (difference in dB) between 3-D WDCT and 3-D DCT as a function of
bpp.

Fig. 8 shows an original MRI  image set of size 256 × 256 and the
results when we apply the 3-D DCT and 3-D WDCT algorithms on
this image set.

Fig. 9(a) gives an MRI  angiography which shows coronal slices
acquired from consecutive anteroposterior positions within the
torso. The study was performed on a 1.5 T General Electric (GE)
Signa imaging system with gadolinium-contrast-enhancement
for visualization of the cardiopulmonary vasculature. The pulse
sequence used was a 3-D time-of-flight fast spoiled gradient
recalled acquisition in steady state (FSPGR, TR = 6.3, TE = 1.4,
NEX = 1, FOV = 40 cm,  slice thickness = 1.2 mm)  [16].

The plot in Fig. 10 summarizes the results for the complete
adopted dataset, comprising 13 different image sets. The difference
between the PSNR values obtained using 3-D WDCT and 3-D DCT
is called as PSND, which is expressed in dB. We  have plotted PSND
as a function of bpp (average of WDCT and DCT). Average of bpp
is taken because for a given quantization value, there will be slight
differences between the bpp of 3-D WDCT and the bpp of 3-D DCT.
On an average, it can be noticed how 3-D WDCT outperforms 3-D
DCT for higher bpp.

6. Conclusions and future directions

In this paper, we have defined and developed the 3-D WDCT,
a transform that has not been previously investigated in the liter-
ature. Although the 3-D WDCT is based on the properties of 2-D
WDCT, this work is the first attempt in exploring the efficacy of the
3-D WDCT algorithm. The important properties of this transform,
which make it especially suitable for image compression, have been
discussed. We  have proposed a complete image coding scheme for
volumetric data sets based on the 3-D WDCT. The algorithms used
by each of the blocks of the encoder and decoder have also been
presented.

The performance of this scheme is compared with that of a sim-
ilar 3-D DCT scheme, using ‘PSNR vs. bpp’ plots. From the results
obtained, which are summarized in Fig. 10,  we observe that the 3-D
WDCT performs better than the 3-D DCT for high bit-rate operations
(above 2 bpp for majority of the examples).

The all-pass filter that we have used in the WDCT algorithm is
the key to the performance enhancement. Although this adds to the
complexity on the encoder side, our results are assertive enough to

compensate for this additional overhead. It is imperative that we
use high bit-rates for such images, so that there is no serious degra-
dation of image quality. Since it has been already established that
the performance of 3-D DCT on MRI  images is better than all the
other algorithms for high bit-rates, our findings therefore validate
the claim that the proposed 3-D WDCT method yields a better per-
formance among all the coding schemes. We  hope our work will
generate enough interest in probing further for more efficient algo-
rithms to compress MRI  images. In our algorithm, we have explored
only one way  of finding an efficient all-pass filter that minimizes the
MSE. Further research can be carried out in finding more effective
constraints which could improve the performance. The results pre-
sented in this paper provide enough evidence to conclude that 3-D
WDCT is an efficient algorithm in compressing MRI  images (when
compared to the 3-D DCT) at higher bit-rates. Eventually, we hope
that there is a possibility of 3-D WDCT replacing 3-D DCT as the
most widely used compression algorithm for MRI  images in the
future.

Acknowledgments

The authors wish to thank Mr.  Rohit K. Reddy for initiating the
work presented here. The authors also profusely thank the two
anonymous reviewers for their critical comments and suggestions
which have greatly improved the quality and presentation of the
paper.

References

[1] A.K. Jain, Image data compression: a review, Proceedings of the IEEE 69 (3)
(1981) 349–389.

[2] G.P. Abousleman, M.W.  Marcellin, B.R. Hunt, Compression of hyperspectral
imagery using the 3-D DCT and hybrid DPCMDCT, IEEE Transactions on Geo-
science and Remote Sensing 33 (1995) 26–34.

[3] Z. Xiong, X. Wu,  S. Cheng, J. Hua, Lossy-to-lossless compression of medi-
cal  volumetric data using three-dimensional integer wavelet transforms, IEEE
Transactions on Medical Imaging 22 (2003) 459–470.

[4] P. Schelkens, A. Munteanu, J. Barbarien, M.  Galca, X.G. Nieto, J. Cornelis, Wavelet
coding of volumetric medical datasets, IEEE Transactions on Medical Imaging
22  (2003) 441–458.

[5] S.C. Tai, Y.G. Wu,  C.W. Lin, An adaptive 3-D discrete cosine transform coder for
medical image compression, IEEE Transactions on Information Technology and
Biomedicine 4 (2000) 259–263.

[6] N.I. Cho, S.K. Mitra, Warped discrete cosine transform and its application in
image compression, IEEE Transactions on Circuits and Systems for Video Tech-
nology 10 (2000) 1364–1373.

[7] I.K. Kim, N.I. Cho, S.K. Mitra, Rate-distortion optimization of the image com-
pression algorithm based on the warped discrete cosine transform, Signal
Processing 83 (9) (2003) 1919–1928.

[8] A. Makur, S.K. Mitra, Warped discrete-Fourier transform: theory and appli-
cations, circuits and systems I: fundamental theory and applications, IEEE
Transactions on 48 (September (9)) (2001) 1086–1093.

[9]  O. Urhan, S. Ertürk, Parameter embedding mode and optimal post-process fil-
tering for improved WDCT image compression, IEEE Transactions on Circuits
and Systems for Video Technology 18 (2008) 528–532.

[10] G. Menegaz, J.P. Thiran, Lossy to lossless object-based coding of 3-D MRI  data,
IEEE Transactions on Image Processing 11 (2003) 1053–1062.

[11] J.H. Chang, Warped discrete cosine transform-based noisy speech enhance-
ment, IEEE Transactions on Circuits and systems 52 (2005) 535–539.

[12] D. Marshall, The Discrete Cosine Transform (DCT), http://www.cs.cf.ac.uk/
Dave/Multimedia/node231.html (last accessed on 24.05.11).

[13] G. Evangelista, S. Cavaliere, Discrete frequency warped wavelets: theory and
applications, IEEE Transactions on Signal Processing 46 (1998) 874–884.

[14] T.H. Oh, R. Besar, Image quality measures of compressed medical images, in:
4th  National Conference on Telecommunication Technology Proceedings, Shah
Alam, Malaysia, 2003.

[15] Advanced Magnetic Imaging Centre, AMI  Centre, Aalto University,
http://ami.tkk.fi/en/facilities/example images/brain/t2 fse-xl/ (last accessed
on  20.01.12).

[16] G. Holmvang, PhysioBank: Samples of MR Images, http://physionet.
cps.unizar.es/physiobank/database/images/ (last accessed on 20.01.12).

[17]  John Hall’s Home Page, http://overcode.yak.net/15 (last accessed on 20.01.12).


