

Reducibility

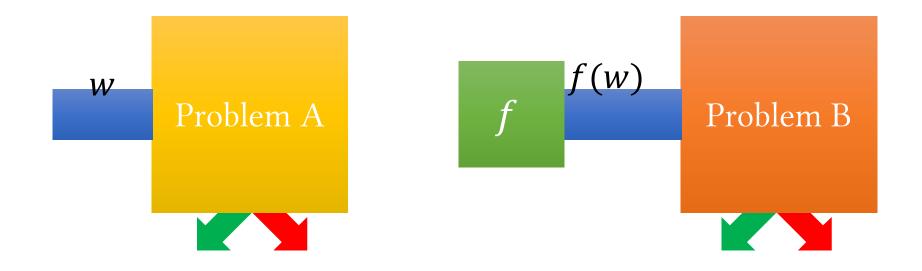
Ali Shakiba ali.shakiba@vru.ac.ir Vali-e-Asr University of Rafsanjan

What we are going to discuss?

- Undecidable problems from language theory
 - Reductions via computation histories
- Mapping reducibility
 - Computable functions
 - Formal definition of mapping reducibility
- Post correspondence problem, or PCP

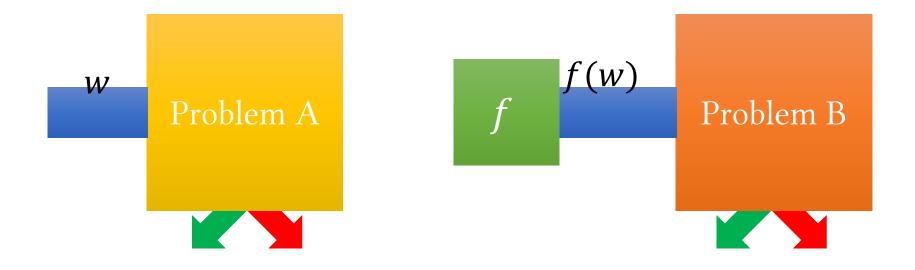
Reduction

A way of converting one problem to another problem in such a way that a solution to the second problem can be used to solve the first problem.



Reducing language A to language B means

- Using **decider**s of language *B* to **decide** language *A*.
- Using **recognizer**s of language *B* to **recognize** language *A*.

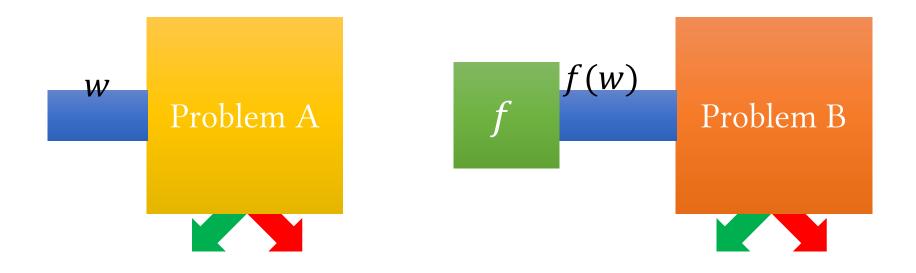


Critical Point to Consider

Reducibility say nothing about solving A or B alone, but only about the solvability of A in the presence of a solution to B

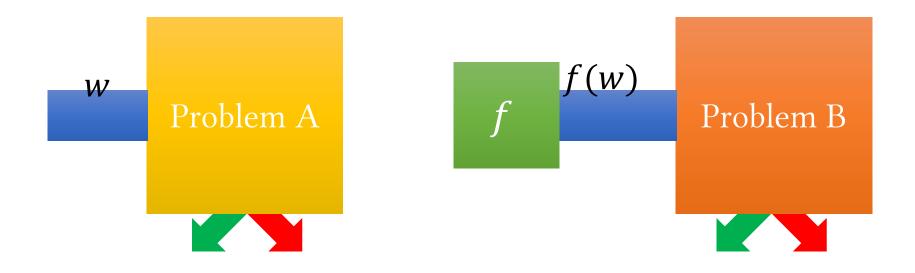
Reduction of A to B

- Problem B is decidable
 - Then, problem A is also decidable.



Reduction of A to B

- Problem A is undecidable
 - Then, problem B is also undecidable.



So, to show that a problem is undecidable:

Reduce an undecidable problem to it

- The proof is by contradiction.
 - Assume that $HALT_{TM}$ is decidable
 - Then, we reduce A_{TM} to $HALT_{TM}$
 - So, A_{TM} is decidable, too.
 - This is a contradiction.

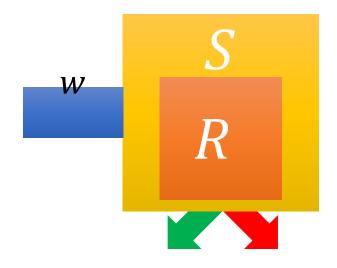
- Assume that there exists a TM R which decides $HALT_{TM}$
- We will construct a new TM S which decides A_{TM}
- What's halt?
 - Given an input $\langle M, w \rangle$, we need to print accept if M accepts w and print reject if M rejects w or loops.
- Reduce A_{TM} to $HALT_{TM}$
 - How?
- So, $HALT_{TM}$ is undecidable.

Assume that there exists a TM R which decides HALT.
We will construct a non-fine.
We will construct a non-fine.
S = "On input ⟨M, w⟩, an encoding of a TM M and a string w:
S = "On input ⟨M, w⟩.
I. Run TM R on input ⟨M, w⟩.

$$E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

$$E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

- We will do that by reducing A_{TM} to E_{TM} .
 - Assume that *R* is a TM which decides E_{TM} .
 - Now, we construct a TM *S* which decides A_{TM} using R.



$E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

- S takes $\langle M, w \rangle$ as input,
- So, it creates a description of a new TM M_1 which is identical to M, except it checks if the input to M is w,
 - If the input is not w, then M_1 should reject.
 - If the input is w, then M_1 runs M on input w and accept if M does.

• Now, we have *S* as follows:

- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - 1. Use the description of M and w to construct the TM M_1 just described.
 - **2.** Run R on input $\langle M_1 \rangle$.
 - 3. If R accepts, reject; if R rejects, accept."

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Regular_{*TM*} = { $\langle M \rangle$ | *M* is a TM and *L*(*M*) is regular}

