

Service-Oriented Architecture:
An Integration Blueprint
A real-world SOA strategy for the integration
of heterogeneous Enterprise systems

Successfully implement your own enterprise
integration architecture using the Trivadis Integration
Architecture Blueprint

Guido Schmutz

Daniel Liebhart

Peter Welkenbach

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

Service-Oriented Architecture: An Integration Blueprint
A real-world SOA strategy for the integration of heterogeneous
Enterprise systems

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2010

Production Reference: 1160610

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849681-04-9

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

Credits

Authors
Guido Schmutz

Daniel Liebhart

Peter Welkenbach

Reviewers
Albert Blarer

Tony Fräfel

Christoph Pletz

Patrick Blaser

Karsten Krösch

Acquisition Editor
James Lumsden

Development Editor
Stephanie Moss

Technical Editor
Ishita Dhabalia

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Sneha Harkut

Proofreader
Sandra Hopper

Graphics
Nilesh Mohite

Geetanjali Sawant

Alwin Roy

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

Foreword

Developing integration solutions is not a simple task, despite the fact that the
integration of individual databases, applications, and complete systems is
increasingly becoming part of software engineers’ day-to-day work. In addition,
developers of Enterprise Service Buses (ESBs); Enterprise Information Integration
(EII) infrastructures; messaging systems; service-oriented architecture (SOA)
frameworks; Extract, Transform, and Load (ETL) tools; and software for data
integration, all take very different approaches, and many organizations already
have one or more different integration solutions in place. The Trivadis Integration
Architecture Blueprint is the result of work on a large number of projects (not all
of them successful), of detailed discussions with customers and specialists, and of
careful study of the technical literature.

The development of the integration blueprint took several months, as the main
objective was to structure the integration solution in such a way that standardized,
tried-and-tested basic components could be combined to form a functioning whole,
with the help of tools and other products. It was also important that the solution met
customers’ requirements, and could be implemented without the excessive use
of resources.

We believe that by structuring the integration layer into different, clearly defined
levels and layers, and by assigning best practice patterns to these layers, we can
make the process of developing integration solutions significantly simpler in
practice.

The concept behind the Trivadis Integration Architecture Blueprint was developed
by the authors, together with Fernand Hänggi and Albert Blarer, and formulated
by Daniel Liebhart, Guido Schmutz, and Peter Welkenbach. Large parts of the book
have been revised several times by the authors, and have also been the subject of
intense debates in workshops. We would like to thank the reviewers Albert Blarer,
Patrick Blaser, Christoph Pletz, and Karsten Krösch and, in particular, Tony Fräfel
for his detailed input.

Further technical information is available on our website (www.trivadis.com) in the
download area and the blog (under Know-How Community).

We would like to thank everyone who has contributed to this book in any way. This
includes, in particular, the reviewers and our patient colleagues who were always
prepared to discuss things in detail, and clarify any number of aspects of the book. We
would also like to thank our customers and business partners, with whom we have
worked on a variety of projects that have given us many interesting and enriching
experiences. Finally, we would like to thank our colleagues, friends, families, the
proofreaders, and the publishers for their patience.

About the Authors

Guido Schmutz has worked as a software developer, IT consultant, lead architect,
trainer, and coach for more than 20 years. As head of the Application Development
area of the Trivadis Technology Center, he has written numerous technical
publications, developed IT strategies, courses, and technocircles and spoken at
international conferences. Guido Schmutz is responsible for innovating, designing,
and implementing many data warehouse, customer relationship management
(CRM), customer satisfaction measurement (CSM), management information system
(MIS), and Enterprise Application Architecture (EAI) solutions for international
banks, pharmaceutical companies, public authorities, and logistics companies.
He specializes in enterprise architecture, bi-temporal data management, Java
Persistence, and the Spring framework. You can contact him at
guido.schmutz@trivadis.com.

Daniel Liebhart has more than 20 years experience of IT, and 10 years experience
of managing IT services and product development. His industry and technical
knowledge covers the design, architecture, implementation, and operation of
complex, international systems in telecommunications, financial services, logistics,
and the manufacturing industry. Daniel Liebhart is passionate about IT. He has
received a number of awards and he gives lectures on software architecture and
business informatics at the Hochschule für Technik in Zurich. You can reach him
at daniel.liebhart@trivadis.com.

Peter Welkenbach works as a consultant, senior architect, and trainer in the fields
of requirement engineering, object-oriented methodologies, software engineering,
and quality management. He has more than 20 years experience of designing and
implementing complex information systems for banks, automotive manufacturers,
and pharmaceutical companies. For 10 years he has been a technology evangelist for
Java technology and the use of the corresponding frameworks in customer projects.
His current technical focus is model-driven software development, the Unified
Modeling Language (UML), aspect-oriented programming, Java Server Faces (JSF),
asynchronous Java Script, and XML (AJAX) and architecture design methodology.
Peter Welkenbach is a course developer, author of numerous publications, and
speaker at JAX and international Oracle conferences. He has been using Spring in
numerous customer projects since it first appeared in summer 2003. You can get in
touch with Welkenbach at peter.welkenbach@trivadis.com.

Table of Contents
Preface	 1
Chapter 1: Basic Principles	 7

Integration	 7
Concepts	 9

A2A, B2B, and B2C	 10
Integration types	 11

Information portals	 11
Shared data	 11
Shared business functions 	 12
Differences between EAI and SOA	 12

Semantic integration and the role of data	 13
Enterprise Application Integration (EAI)	 14

Levels of integration	 16
Messaging	 16
Publish/subscribe	 17
Message brokers	 18
Messaging infrastructure	 20
Enterprise Service Bus	 21

The core functions of an ESB	 21
The structure of an ESB	 22

Middleware	 23
Middleware communication methods	 23
Middleware base technologies	 24
Routing schemes	 25

Integration architecture variants	 26
Point-to-point architecture	 27
Hub-and-spoke architecture	 28
Pipeline architecture	 29
Service-oriented architecture	 30

Patterns for EAI/EII	 31
Direct connection	 32

Uses	 33
Broker	 33

Uses	 34
Router	 35

Uses	 36
Patterns for data integration	 37

Federation	 37
Uses	 38

Population	 38
Uses	 39

Synchronization	 40
Uses	 41
Multi-step synchronization	 41

Patterns for service-oriented integration	 42
Process integration	 42

Uses	 43
Variants	 43

Workflow integration	 44
Variants	 44

Event-driven architecture	 45
Introducing EDA	 45
Event processing	 47

Simple Event Processing (SEP)	 48
Event Stream Processing (ESP)	 48
Complex Event Processing (CEP)	 48

Grid computing/Extreme Transaction Processing (XTP)	 49
Grid computing	 49

Data grids 	 51
Distribution topologies	 52
Agents	 54
Execution patterns	 54

Uses	 55
XTP (Extreme Transaction Processing)	 57
XTP and CEP	 58
Solid State Disks and grids	 59

Summary	 59
Chapter 2: Base Technologies	 61

Transactions	 63
Transactional systems 	 63
Isolation levels	 66

Serializable	 66
Repeatable read	 67

Table of Contents

[iii]

Read committed	 67
Read uncommitted	 68

Phantom reads	 68
Two-Phase Commit protocol (2PC)	 69
XA transactions	 70

OSGi	 72
OSGi architecture	 74
OSGi bundles	 75
Collaborative model	 76

Java Connector Architecture (JCA)	 76
Uses	 76
JCA components	 77
Contracts	 78

Java Business Integration (JBI)	 79
JBI components	 80

Service Component Architecture (SCA)	 81
SCA specification	 82
SCA elements	 83
Composites	 84

Service Data Objects (SDO)	 84
SDO architecture	 85
Implemented patterns	 86

Process modeling	 86
Event-driven Process Chain (EPC)	 87
Business Process Modeling Notation (BPMN)	 88
Business Process Execution Language (BPEL) 	 89
The application of process modeling	 90

Summary	 90
Chapter 3: Integration Architecture Blueprint	 91

Dissecting the Trivadis Integration Architecture Blueprint	 91
Standards, components, and patterns used	 92
Structuring the integration blueprint	 94
The road to the integration blueprint	 97
Applications and integration	 98
Layers in the integration solution 	 100
Information flow and roles	 101
Information flow and building blocks	 103
Combining the collection and distribution layer	 104
Change of direction in the information flow	 104
Adding the process layer	 105
The role of the process layer 	 106

Table of Contents

[iv]

The building blocks of the process layer	 107
Information flow in more complex integrations	 108

The target becomes the source in a more complex integration	 108
Routing to different target systems in the mediation layer	 109
Routing to different target systems in the communication layer	 110
Task sharing in the mediation layer	 110
Management using a workflow building block	 111

Allocating layers to levels	 111
Transport level: Communication layer	 113

Responsibility	 113
Concepts and methods	 114
Building blocks 	 114

Transport protocols	 115
Transport formats	 117

Integration domain level: Collection/distribution layer	 118
Responsibility	 118
Concepts and methods	 118
Building blocks	 119

Integration domain level: Mediation layer	 120
Responsibility	 120
Concepts and methods	 121
Building blocks	 121

Canonical data model 	 122
Message construction	 124
Messaging channel	 125
Message routing	 126
Message transformation	 126

Application level: Process layer	 127
Responsibility	 127
Concepts and methods	 127
Building blocks	 128

Job scheduler	 128
Portal	 128
Workflow	 129
Event processing pattern	 131

Notation and visualization	 134
Representing the scenarios and the notation used	 134
Visualizing different levels of granularity	 135
Representing transaction boundaries	 136
Configuration parameters as additional artifacts	 136
Extension for capacity planning	 137

Summary	 138

Table of Contents

[v]

Chapter 4: Implementation scenarios	 139
EAI/EII scenarios	 140

Implementing the direct connection business pattern	 140
Variant with synchronous call over asynchronous protocol	 141

Implementing the broker business pattern	 142
Implementing the router business pattern	 143

Service-oriented integration scenarios	 144
Implementing the process integration business pattern	 144

Variant with externalized business rules in a rule engine	 146
Variant with batch-driven integration process	 146

Implementing the workflow business pattern	 147
Data integration scenarios	 148

Implementing the federation business pattern	 148
Variant of the federation pattern using mashup technology	 149

Implementing the population business pattern	 151
Variant involving encapsulation of the population pattern as a web service	 152
Variant of the population pattern started by a change event from Change
Data Capture (CDC)	 153
Variant with SOA-based population pattern triggered by a Change Data Capture event	 154

Implementing the synchronization tbusiness pattern	 155
EDA scenario	 157

Implementing the event processing business pattern	 157
Variant with two levels of complex event processing	 158

Grid computing/XTP scenario	 159
Implementing the grid computing business pattern	 160

Variant with ESB wrapping a data grid to cache service results	 160
Connecting to an SAP system	 161
Modernizing an integration solution	 162

Initial situation	 163
Sending new orders	 164
Receiving the confirmation	 165
Evaluation of the existing solution	 165

Modernizing — integration with SOA	 166
Evaluation of the new solution	 169

Trivadis Architecture Blueprints and integration	 169
Summary	 171

Chapter 5: Vendor Products for Implementing the
Trivadis Blueprint	 173

Oracle Fusion Middleware product line	 173
Oracle Application Integration Architecture (AIA)	 178

Oracle Data Integrator	 180
IBM WebSphere product line	 182
IBM Information Management software	 186

Table of Contents

[vi]

Microsoft BizTalk and .NET 3.0	 188
Microsoft SQL Server Integration Services	 192
Spring framework combined with other open source software	 195
Summary	 200

Appendix: References	 201
Index	 207

Preface
With the widespread use of service-oriented architecture (SOA), the integration
of different IT systems has gained a new relevance. The era of isolated business
information systems—so-called silos or stove-pipe architectures—is finally over. It
is increasingly rare to find applications developed for a specific purpose that do not
need to exchange information with other systems. Furthermore, SOA is becoming
more and more widely accepted as a standard architecture. Nearly all organizations
and vendors are designing or implementing applications with SOA capability.
SOA represents an end-to-end approach to the IT system landscape as the support
function for business processes. Because of SOA, functions provided by individual
systems are now available in a single standardized form throughout organizations,
and even outside their corporate boundaries. In addition, SOA is finally offering
mechanisms that put the focus on existing systems, and make it possible to continue
to use them. Smart integration mechanisms are needed to allow existing systems, as
well as the functionality provided by individual applications, to be brought together
into a new fully functioning whole. For this reason, it is essential to transform
the abstract concept of integration into concrete, clearly structured, and practical
implementation variants.

The Trivadis Integration Architecture Blueprint indicates how integration
architectures can be implemented in practice. It achieves this by representing
common integration approaches, such as Enterprise Application Integration (EAI);
Extract, Transform, and Load (ETL); event-driven architecture (EDA); and others,
in a clearly and simply structured blueprint. It creates transparency in the confused
world of product developers and theoretical concepts.

The Trivadis Integration Architecture Blueprint shows how to structure, describe,
and understand existing application landscapes from the perspective of integration.
The process of developing new systems is significantly simplified by dividing the
integration architecture into process, mediation, collection and distribution, and
communication layers. The blueprint makes it possible to implement application
systems correctly without losing sight of the bigger picture: a high performance,
flexible, scalable, and affordable enterprise architecture.

Preface

[2]

The background: Integration instead of
isolation
Many enterprises are converting their operational structure from a functional
hierarchy to a process-oriented, flexible organizational form. A characteristic feature
of function-oriented organizations is a vertical division into independent functions.
As a result, process chains are typically interrupted at departmental boundaries. This
leads to the creation of so-called process islands, which often fall under different
areas of responsibility and administration. If the departments in question are also
geographically separated, the potential for communication problems increases. In
general, the formation of these islands also has an impact on the IT landscape. In
such companies, there are usually large numbers of redundant applications and
data islands, and integrating them represents challenges from technical, social, and
organizational perspectives.

Information transparency is normally not one of the strengths of this type of
organization. Instead, the necessary knowledge about implemented process logic,
and the accompanying data, is stored at a departmental level in a non-transparent
and incomplete form. Redundant and inconsistent data is a common challenge/
problem for these companies, and the process of integrating this data is time
consuming as well as costly.

As a result, function-oriented organizations have difficulties in reacting in an
appropriate, agile fashion to rapidly changing markets, customer requirements, and
technologies. Process-oriented organizations, on the other hand, are considerably
more flexible and, from an IT perspective, have the support of corresponding
process-oriented concepts, such as SOA and EDA.

Process-oriented organizations need to be supported by process-oriented IT systems.
Nowadays, the close links between operational processes and the underlying
IT systems, make it necessary for the IT landscape to be closely tailored to the
enterprise's technical requirements, and not to be regarded simply as an end in itself.
In recent years, the term "Service-Oriented Architecture" has been widely used to
describe a concept that puts process-oriented, technical services at the heart of the
technical perspective, with the aim of offering reusable service components which
allow for the implementation of business processes in a quick, cost-effective, and
easily traceable way.

Preface

[3]

If the IT landscape of a process-oriented organization is considered as a whole,
strategic aspects such as the implementation of an enterprise architecture (Bernus
et al. 2003), a business motivation model (Hall et al. 2005), the Open Group
Architecture Framework (Haren 2007), the Zachman Framework (Zachman 2007),
or process architectures, come into play. Although this approach has a very small
role in the concrete implementation of applications, there is, nevertheless, a common
denominator here: the integration architecture. Putting an integrated solution (based
on a blueprint) in place supports the systematic and strategic implementation of an
enterprise architecture.

What this book covers
Despite the wide variety of useful and comprehensive books and other publications
on the subject of integration, the approaches that they describe often lack practical
relevance. The basic issue involves, on the one hand, deciding how to divide an
integration solution into individual areas so that it meets the customer requirements,
and on the other hand, how it can be implemented with a reasonable amount of
effort. In this case, this means structuring it in such a way that standardized, tried-
and-tested basic components can be combined to form a functioning whole, with
the help of tools and products. For this reason, the Trivadis Integration Architecture
Blueprint subdivides the integration layer into further layers. This kind of layering
is not common in technical literature, but it has been proven to be very useful in
practice. It allows any type of integration problem to be represented, including
traditional ETL (Extract, Transform, and Load), classic EAI (Enterprise Application
Integration), EDA (event-driven architecture), and grid computing. This idea is
reflected in the structure of the book.

Chapter 1, Basic Principles, covers the fundamental integration concepts. This chapter
is intended as an introduction for specialists who have not yet dealt with the subject
of integration.

Chapter 2, Base Technologies, describes a selection of base technologies. By far the most
important of these are transaction strategies and their implementation, as well as
process modeling. In addition, Java EE Connector Architecture (JCA), Java Business
Integration (JBI), Service Component Architecture (SCA), and Service Data Objects
(SDO) are explained. Many other base technologies are used in real-life integration
projects, but these go beyond the scope of this book.

Chapter 3, Integration Architecture Blueprint, describes the Trivadis Integration
Architecture Blueprint. The process of layering integration solutions is fully
substantiated, and each step is explained on the basis of the division of work between
the individual layers. After this, each of the layers and their components are described.

Preface

[4]

Chapter 4, Implementation Scenarios, demonstrates how the Trivadis Integration
Architecture Blueprint represents the fundamental integration concepts that
have been described in Chapter 1. We will use the blueprint with its notation and
visualization to understand some common integration scenarios in a mostly
product-neutral form. We will cover traditional, as well as modern, SOA-driven
integration solutions.

Chapter 5, Vendor Products for Implementing the Trivadis Blueprint, completes the
book with a mapping of some vendor platforms to the Trivadis Integration
Architecture Blueprint.

Appendix, References holds a list of all the referenced books and articles. It's a
collection of additional important and interesting material covering modern
SOA-driven as well as traditional integration solution.

What you need for this book
The book assumes a comprehensive understanding of SOA; however, previous
knowledge of the Trivadis Blueprint is not necessary. Those less experienced
in integration will benefit from the explanation of integration concepts and
terminology, while the more advanced can move straight onto getting to grips
with the Blueprint's structure.

Who this book is for
This book is intended for IT professionals, architects, managers, and project
managers who are responsible for planning, designing, providing, and
operating integration solutions.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[5]

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Basic Principles
This chapter describes the fundamental concepts of integration, and is intended as an
introduction to integration technology and terminology. You will:

•	 Learn the basic concepts, which are often used in the context of
integration architecture

•	 Grasp an overview of the different architecture variants, such as point-to-point,
hub-and-spoke, pipeline, and service-oriented architecture (SOA)

•	 Learn about service-oriented integration with an explanation of both the
process and the workflow integration patterns

•	 Understand the different types of data integration and the
accompanying patterns

•	 Gain an understanding of Enterprise Application Integration (EAI) and
Enterprise Information Integration (EII), and an indication of how direct
connection, broker, and router patterns should be used

•	 Understand developments in SOA resulting from the introduction of
enterprise-wide events

•	 Understand the integration technologies of the future: grid computing and
extreme transaction processing (XTP)

Integration
The term integration has a number of different meanings. A fundamental knowledge
of the terms and concepts of integration is an essential part of an integration architect's
toolkit. There are many ways of classifying the different types of integration. From an
enterprise-wide perspective, a distinction is made between application-to-application
(A2A), business-to-business (B2B), and business-to-consumer (B2C) integration.
Portal, function, and data integration can be classified on the basis of tiers. Another
possible grouping consists of integration based on semantics.

Basic Principles

[8]

Fundamental integration concepts include Enterprise Application Integration (EAI),
Enterprise Service Bus (ESB), middleware, and messaging. These were used to define
the subject before the introduction of SOA, and still form the basis of many integration
projects today. EAI is, in fact, a synonym of integration. In David Linthicum's original
definition of EAI, it means the unrestricted sharing of data and business processes among
any connected applications. The technological implementation of EAI systems is, in
most cases, based on middleware. The main base technology of EAI is messaging,
giving the option of implementing an integration architecture through asynchronous
communication, using messages which are exchanged across a distributed
infrastructure and a central message broker.

The fundamental integration architecture variants are:

•	 point-to-point
•	 hub-and-spoke
•	 pipeline
•	 service-oriented architecture

A point-to-point architecture is a collection of independent systems, which are
connected through a network.

Hub-and-spoke architecture represents a further stage in the evolution of application
and system integration, in which a central hub takes over responsibility
for communications.

In pipeline architecture, independent systems along the value-added chain are
integrated using a message bus. The bus capability is the result of interfaces to the
central bus being installed in a distributed manner through the communication
network, which gives applications local access to a bus interface. Different applications
are integrated to form a functioning whole by means of distributed and independent
service calls that are orchestrated through an ESB and, if necessary, a process engine.

A fundamental technique for integration is the usage of design patterns. These
include process and workflow patterns in a service-oriented integration, federation,
population, and synchronization of patterns in a data integration, and direct
connection, broker, and router patterns, which form part of EAI and EII. It is important
to be familiar with all of these patterns, in order to be able to use them correctly.

The most recent integration architectures are based on concepts such as event-driven
architecture, grid computing, or extreme transaction processing (XTP). These
technologies have yet to be tested in practice, but they are highly promising and
of great interest for a number of applications, in particular, for corporate companies
and large organizations.

Chapter 1

[9]

Concepts
The Trivadis Integration Architecture Blueprint applies a clear and simple naming to
each of the individual layers. However, in the context of integration, a wide range of
different definitions and terms are used, which we will explain in this chapter.

•	 Application to Application (A2A): A2A refers to the integration of
applications and systems with each another.

•	 Business to Business (B2B): B2B means the external integration of business
partners', customers', and suppliers' processes and applications.

•	 Business to Consumer (B2C): B2C describes the direct integration of end
customers into internal corporate processes, for example, by means of
Internet technologies.

•	 Integration types: Integration projects are generally broken down into
integration portals, shared data integration, and shared function integration.
Portals integrate applications at a user interface level. Shared data integration
involves implementing integration architectures at a data level, and shared
function integration at a function level.

•	 Semantic integration: One example of a semantic integration approach is the
use of model-based semantic repositories for integrating data, using different
types of contextual information.

•	 Enterprise Application Integration (EAI): EAI allows for the unrestricted
sharing of data and business processes among any connected applications.

•	 Messaging, publish/subscribe, message brokers, and messaging
infrastructures: These are integration mechanisms involving asynchronous
communication using messages, which are exchanged across a
distributed infrastructure and a central message broker.

•	 Enterprise Service Bus (ESB): An ESB is an integration infrastructure used
to implement an EAI. The role of the ESB is to decouple client applications
from services.

•	 Middleware: The technological implementation of EAI systems is, in
most cases, based on middleware. Middleware is also described as
communication infrastructure.

•	 Routing schemes: Information can be routed in different ways within a
network. Depending on the type of routing used, routing schemes can be
broken down into unicast (1:1 relationship), broadcast (all destinations),
multicast (1:N), and anycast (1:N—most accessible).

Basic Principles

[10]

A2A, B2B, and B2C
Nowadays, business information systems in the majority of organizations consist
of an application and system landscape, which has grown gradually over time. The
increasing use of standard software (packaged applications) means that information
silos will continue to exist. IT, however, should provide end-to-end support for
business processes. This support cannot, and must not, stop at the boundaries of
new or existing applications. For this reason, integration mechanisms are needed,
which bring together individual island solutions to form a functioning whole. This
happens not only at the level of an individual enterprise or organization, but also
across different enterprises, and between enterprises and their customers. At an
organizational level, a distinction is made between A2A, B2B, and B2C integration
(Pape 2006). This distinction is shown in the image below. Each type of integration
places specific requirements on the methods, technologies, products, and tools used
to carry out the integration tasks. For example, the security requirements of B2B and
B2C integrations are different from those of an A2A integration.

Modern concepts such as the Extended Enterprise integration across organizational
boundaries, (Konsynski 1993) and the Virtual Enterprise (Hardwick, Bolton 1997)
can be described using a combination of the different integration terms.

Chapter 1

[11]

Integration types
Integration projects are generally broken down into information portals, shared data
integration, and shared function integration. Portals integrate applications at a user
interface level. Shared data integration involves implementing integration architectures
at a data level, and shared function integration at a function level.

Information portals
The majority of business users need access to a range of systems in order to be able to
run their business processes. They may need to be able to answer specific questions
(that is, a call center taking incoming customer calls must be able to access the latest
customer data) or to initiate or implement certain business functions (that is, updating
customer data). In these circumstances, employees often have to use several business
systems at the same time. An employee may need to access an order system (on a host)
in order to verify the status of a customer order and, at the same time, may also have
to open a web-based order system to see the data entered by the customer. Information
portals bring together information from multiple sources. They display it in one place
so that users do not have to access several different systems (which might also require
separate authentication) and can work as efficiently as possible (Kirchhof et al. 2003).
Simple information portals divide the user's screen into individual areas, each of
which displays the data from one backend system independently, without interacting
with the others. More sophisticated systems allow for limited interaction between
the individual areas, which makes it possible to synchronize the different areas. For
example, if the user selects a record in one area, the other areas are updated. Other
portals use such advanced integration technology that the boundaries between the
portal application and the integrated application become blurred (Nussdorfer,
Martin 2006).

Shared data
Shared databases, file replication, and data transfers fall in the category of integration
using shared data (Gorton 2006).

•	 Shared databases: Many different business systems need to access the same
data. For example, customer addresses may be required in an order system, a
CRM system, and a sales system. This kind of data can be stored in a shared
database in order to reduce redundancy and synchronization problems.

•	 File replication: Systems often have their own local data storage. This means
that any centrally managed data (in a top-level system) has to be replicated in
the relevant target databases, and updated and synchronized regularly.

•	 Data transfers: Data transfers are a special form of data replication in which
the data is transferred in files.

Basic Principles

[12]

Shared business functions
In the same way that different business systems store redundant data, they also have
a tendency to implement redundant business logic. This makes maintenance and
adapting to new situations both difficult and costly. For example, different systems
must be able to validate data using predefined, centrally managed business rules. It
makes sense to manage such logic in a central place.

•	 EAI: The term EAI is generally used to describe all the methods which attempt
to simplify the process of making a connection between different systems, in
order to avoid a type of "spaghetti architecture" which results from the
uncontrolled use of proprietary point-to-point connections. The systems are
linked together with EAI solutions, instead of a single proprietary application
programming interface (API).

•	 SOA: Service-oriented architecture is a term used to describe one way of
implementing an enterprise architecture. SOA begins with an analysis of
the business, in order to identify and structure the individual business areas
and processes. This allows for the definition of services, which implement
individual areas of business functionality. In an SOA, technical services
are the equivalent of the specialist business areas, or functionality, in the
business processes. This represents a major conceptual difference when
compared with classic EAI solutions, which have a quite different focus.
Their approach involves the simple exchange of data between systems,
regardless of the technical semantics, and independently of any technical
analysis of the processes.

Differences between EAI and SOA
In many cases, EAI solutions have only been able to fulfill the expectations placed
on them to either a limited extent, or in an unsatisfactory way. This is, among other
things, due to the following factors (Rotem-Gal-Oz 2007):

•	 EAI solutions are generally data oriented and not process oriented.
•	 EAI solutions do not address business processes. Instead, they are

defined independently.
•	 EAI solutions are highly complex, and because of their use of proprietary

technologies, do not allow for long-term protection of investments, which
is possible when using open standards.

•	 EAI solutions need product-specific knowledge, which is only relevant in an
EAI context, and cannot be reused in other projects.

•	 In the long term, EAI solutions are almost as costly to operate as the
previously mentioned "home-made" spaghetti architectures.

Chapter 1

[13]

If EAI solutions are used in combination with web services to link systems together,
this is still not the equivalent of an SOA. Although the number of proprietary
connection components between the systems being linked are reduced by the use of
open WS-* standards, a "real" SOA involves a more extensive architectural approach,
based on a (business) process-oriented perspective on integration problems.

While EAI is data driven and puts the emphasis on application interface integration,
SOA is a (business) process-driven concept, which focuses on integrating service
interfaces in compliance with open standards encapsulating the differences in
individual integration approaches. As a result, it removes the barrier between the data
integration and application integration approaches. However, SOA has one significant
problem, which is that of semantic integration. Existing web services do not provide
a satisfactory answer to this problem, but they do allow us to formulate the right
questions in order to identify future solutions.

Semantic integration and the role of data
The challenge represented by semantic integration is based on the following problem:

•	 The representation of the data and the information contained in the data are
often closely interlinked, and not separated into user data and metadata.

•	 The information suffers from the missing data context; there is no meta
information defining how the data needs to be interpreted.

This means that the data structure and data information (its meaning) are often
not the same thing and, therefore, have to be interpreted (Inmon, Nesavich 2008).

The following example will help to make this clearer:

A date, such as "7 August 1973," forms part of the data. It is not clear whether this
information is a text string or in a date format. It may even be in another format
and will have to be calculated on the basis of reference data before runtime. This
information is of no relevance to the user.

However, it might be important to know what this date refers to, in other words, its
semantic meaning in its reference context. Is it a customer's birthday, or the date on
which a record was created? This example can even be more complex.

Another example that can be interpreted differently in different contexts is the term
Caesar, for instance. Depending on the context, it could be the name of a pet or
the name of pet food, a well-known salad, a gambling casino, or the name of a
Roman emperor.

Basic Principles

[14]

It is clear that data without a frame of reference is lacking any semantic information,
causing the data to be ambiguous and possibly useless. Ontologically-oriented
interfaces, as well as adaptive interfaces, can help to create such semantic reference
and will become increasingly important in the field of autonomous B2B or B2C
marketplaces in the future.

One semantic integration approach is, for example, the use of model-based semantic
repositories (Casanave 2007). These repositories store and maintain implementation
and integration designs for applications and processes (Yuan et al. 2006). They access
existing vocabularies and reference models, which enable a standardized modeling
process to be used. Vocabularies create a semantic coupling between data and
specific business processes, and it is through these vocabularies that the services and
applications involved are supplied with semantic information in the surrounding
technical context. The primary objective of future architectures must be to maintain the
glossary and the vocabularies, in order to create a common language and, therefore, a
common understanding of all the systems and partners involved. Semantic gaps must
be avoided or bridged wherever possible, for example transforming input and output
data by using canonical models and standardized formats for business documents.
These models and formats can be predefined for different industries as reference
models [EDI (FIPS 1993), RosettaNet (Damodaran 2004), and so on]. Transformation
rules can be generated and stored on the basis of reference models, in the form of
data cards and transformation cards. In the future, there will be a greater focus on
the declarative description (what?) and less emphasis on describing the concrete
software logic (how?) when defining integration architectures. In other words, the
work involved in integration projects will move away from implementation, and
towards a conceptual description in the form of a generative approach, where the
necessary runtime logic is generated automatically.

Enterprise Application Integration (EAI)
The term Enterprise Application Integration (EAI) has become popular with the
increased importance of integration, and with more extensive integration projects.
EAI is not a product or a specific integration framework, but can be defined as a
combination of processes, software, standards, and hardware that allow for the
end-to-end integration of several enterprise systems, and enable them to appear
as a single system (Lam, Shankararaman 2007).

Definition of EAI
The use of EAI means the unrestricted sharing of data and business
processes among any connected applications (Linthicum 2000).

user1
Highlight

user1
Highlight

Chapter 1

[15]

From a business perspective, EAI can be seen as the competitive advantage that
a company acquires when all its applications are integrated into one consistent
information system. From a technical perspective, EAI is a process in which
heterogeneous applications, functions, and data are integrated, in order to allow the
shared use of data and the integration of business processes across all applications.
The aim is to achieve this level of integration without major changes to the existing
applications and databases, by using efficient methods that are cost and
time effective.

In EAI, the focus is primarily on the technical integration of an application and
system landscape. Middleware products are used as the integration tools, but,
wherever possible, the design and implementation of the applications are left
unchanged. Adapters enable information and data to be moved across the
technologically heterogeneous structures and boundaries. The service concept is
lacking, as well as the reduction of complexity and avoidance of redundancy
offered by open standards. The service concept and the standardization only came
later with the emergence of service-oriented architectures (SOA), which highlighted
the importance of focusing on the functional levels within a company, and its
business processes.

Nowadays, software products which support EAI are often capable of providing the
technical basis for infrastructure components within an SOA. As they also support
the relevant interfaces of an SOA, they can be used as the controlling instance for the
orchestration, and help to bring heterogeneous subsystems together to form a whole.
Depending on its strategic definition, EAI can be seen as a preliminary stage of SOA,
or as a concept that competes with SOA.

SOA is now moving the concept of integration into a new dimension. Alongside the
classic "horizontal" integration, involving the integration of applications and systems
in the context of an EAI, which is also of importance in an SOA, SOA also focuses
more closely on a "vertical" integration of the representation of business processes
at an IT level (Fröschle, Reinheimer 2007).

SOAs are already a characteristic feature of the application landscape. It is advisable
when implementing new solutions to ensure that they are SOA-compliant, even
if there are no immediate plans to introduce an integration architecture, or an
orchestration layer. This allows the transition to an SOA to be made in small,
controllable steps, in parallel with the existing architecture and on the basis of
the existing integration infrastructure.

user1
Highlight

user1
Underline

user1
Underline

user1
Highlight

user1
Underline

user1
Underline

user1
Squiggly

user1
Squiggly

Basic Principles

[16]

Levels of integration
Integration architectures are based on at least three or four integration levels (after
Puschmann, Alt 2004 and Ring, Ward-Dutton 1999):

•	 Integration on data level: Data is exchanged between different systems.
The technology most frequently used for integration at data level is File
Transfer Protocol (FTP). Another widespread form of data exchange is the
direct connection of two databases. Oracle databases, for example, exchange
data via database links or external tables.

•	 Integration on object level: Integration on object level is based on data-level
integration. It allows systems to communicate by calling objects from outside
the applications involved.

•	 Integration on process level: Integration on process level uses workflow
management systems. At this level, communication between the different
applications takes place through the workflows, which make up a
business process.

Messaging
Message queues were introduced in the 1970s as a mechanism for synchronizing
processes (Brinch Hansen 1970). Message queues allow for persistent messages
and, therefore, for asynchronous communication and the guaranteed delivery of
messages. Messaging decouples the producer and the consumer with the only
common denominator being the queue.

The most important properties of messaging, quality attributes of messaging, are
shown in the following table:

Attribute Comment
Availability Physical queues with the same logical name can be

replicated across several server instances. In the case of a
failure of one server, the clients can send the message
to another.

Failure handling If communication between a client and a server fails, the
client can send the message via failover mechanisms to
another server instance.

user1
Highlight

user1
Highlight

user1
Highlight

Chapter 1

[17]

Attribute Comment
Modifiability Clients and servers are loosely coupled by the messaging

concept, which means that they do not know each other.
This makes it possible for both clients and servers to be
modified without influencing the system as a whole.
Another dependency between producer and consumer is
the message format. This dependency can be reduced or
removed altogether by introducing a self-descriptive
general message format (canonical message format).

Performance Messaging can handle several thousands of messages
per second, depending on the size of the messages and
the complexity of the necessary transformations. The
quality of service also has a major influence on the overall
performance. Non-reliable messaging, which involves
no buffering provides better performance than reliable
messaging, where the messages are stored (persisted) in the
filesystem or in databases (local or remote), to ensure that
they are not lost if a server fails.

Scalability Replication and clustering make messaging a highly
scalable solution.

Publish/subscribe
Publish/subscribe represents an evolution of messaging (Quema et al. 2002). A
subscriber indicates, in a suitable form, its interest in a specific message or message
type. The persistent queue guarantees secure delivery. The publisher simply puts
its message in the message queue, and the queue distributes the message itself.
This allows for many-to-many messaging:

Basic Principles

[18]

The most important properties of publish/subscribe, quality attributes of
publish/subscribe, are listed in the following table:

Attribute Comment
Availability Physical topics with the same logical name can be

replicated across several server instances. In the case of the
failure of one server, the clients can send the message
to another.

Failure handling In the case of the failure of one server, the clients can send
the message to another replicated server.

Modifiability The publisher and the subscriber are loosely coupled by
the messaging concept, which means that they do not
know each other. This makes it possible for both publisher
and subscriber to be modified without influencing the
system as a whole. Another dependency is the message
format. This can be reduced or removed altogether by
introducing a self-descriptive, general message format
(canonical message format).

Performance Publish/subscribe can process thousands of messages
per second. Non-reliable messaging is faster than reliable
messaging, because reliable messages have to be stored
locally. If a publish/subscribe broker supports multicast/
broadcast protocols, several messages can be transmitted
to the subscriber simultaneously, but not serially.

Scalability Topics can be replicated across server clusters. This
provides the necessary scalability for very large message
throughputs. Multicast/broadcast protocols can also be
scaled more effectively than point-to-point protocols.

Message brokers
A message broker is a central component, which is responsible for the secure delivery
of messages (Linthicum 1999). The broker has logical ports for receiving and sending
messages. It transports messages between the sender and the subscriber, and
transforms them where necessary.

Chapter 1

[19]

The most important tasks of a message broker, as shown in the preceding diagram,
are implementing a hub-and-spoke architecture, the routing, and the transformation
of messages.

•	 Hub-and-spoke architecture: The broker acts as a central message hub with
the senders and receivers arranged like spokes around it. Connections to
the broker are done through adapter ports that support the relevant
message format.

•	 Message routing: The broker uses processing logic to route the messages.
Routing decisions can be hardcoded, or can be specified in a declarative way.
They are often based on the content of the message (content-based routing) or
on specific values or attributes in the message header (attribute-based routing).

•	 Message transformation: The broker logic transforms the message input
format into the necessary message output format.

The most important properties of a message broker, quality attributes of a message
broker, are listed in the following table:

Attribute Comment
Availability To provide high availability, brokers must be replicated

and operate in a clusters.
Failure handling Brokers have different types of input ports that validate

incoming messages to ensure that they have the correct
format, and reject those with the wrong format. If one
broker fails, the clients can send the message to another
replicated broker.

Modifiability Brokers separate transformation logic and routing logic
from one another and from senders and receivers. This
improves modifiability, as the logic has no influence on
senders and receivers.

Performance Because of the hub-and-spoke approach, brokers can
potentially be a bottleneck. This applies in particular in
the case of a high volume of messages, large messages
and complex transformations. The throughput is typically
lower than with simple reliable messaging.

Scalability Broker clusters allow for high levels of scalability.

Basic Principles

[20]

Messaging infrastructure
A messaging infrastructure provides mechanisms for sending, routing, and converting
data, between different applications running on different operating systems with
different technologies, as shown in the following diagram (Eugster et al. 2003):

A messaging infrastructure involves the following parties/components:

•	 Producer: An application which sends messages to a local queue.
•	 Consumer: An application which is interested in specific messages.
•	 Local queue: The local interface of the messaging infrastructure. Each

message sent to a local queue is received by the infrastructure and routed to
one or more receivers.

•	 Intermediate queue: In order to ensure that messages are delivered, the
infrastructure uses intermediate queues, in case a message cannot be
delivered, or has to be copied for several receivers.

•	 Message management: Message management includes sending, routing, and
converting data, together with special functions, such as guaranteed delivery,
message monitoring, tracing individual messages, and error management.

•	 Event management: The subscription mechanism is controlled through
special events.

Chapter 1

[21]

Enterprise Service Bus
An Enterprise Service Bus is an infrastructure that can be used to implement an EAI.
The primary role of the ESB is to decouple client applications from services, as shown
in the following diagram (Chappell 2004):

The encapsulation of services by the ESB means that the client application does
not need to know anything about the location of the services, or the different
communication protocols used to call them. The ESB enables the shared,
enterprise-wide, and even intra-enterprise use of services and separate
business processes from the relevant service implementations (Lee et al. 2003).

The core functions of an ESB
The major SOA vendors now offer specific Enterprise Service Bus products,
which provide a series of core functions in one or another form, shown in
the following diagram:

Basic Principles

[22]

The structure of an ESB
The following diagram shows the basic structure of an ESB in a vendor-neutral way:

The naming for the single components used by the different vendors of SOA
products will vary from those shown in the above diagram, but the products
provide the following functions as a minimum (Craggs 2003):

•	 Routing and messaging as base services
•	 A communication bus, which enables a wide variety of systems to be

integrated using predefined adapters
•	 Transformation and mapping services for a range of different conversions

and transformations
•	 Mechanisms for executing processes and rules
•	 Monitoring functions for a selection of components
•	 Development tools for modeling processes, mapping rules, and

message transfers
•	 A series of standardized interfaces, such as JMS (Java Messaging Specification

(Hapner et al. 2002)), JCA (Java Connector Architecture (JCASpec 2003)),
and SOAP/HTTP

Chapter 1

[23]

Middleware
In most cases the technological realization of EAI systems is done through what is
commonly termed middleware. Middleware is also described as a communication
infrastructure. It allows communication between software components, regardless
of the programming language in which the components were created, the protocols
used for communication, and the platform on which the components are running
(Thomson 1997). A distinction is made between the different types of middleware
according to the methods of communication used, and the base technology.

Middleware communication methods
Communication methods for middleware can be broken down into five categories:

•	 Conversational (Dialog-Oriented): The components interact synchronously
with one another. They always react instantly to the information being
exchanged. This type of communication is generally used in real-time systems.

•	 Request/reply: This is used when an application needs to call functions
from another application. It corresponds to a call to a subroutine, with the
important difference that the communication can take place over a network.

•	 Message passing: This enables information to be exchanged in a simple
and well-directed way using messages. Communication takes place in one
direction only. If an application wants to react to an incoming message, its
response must be placed in another message.

•	 Message queuing: Information is exchanged in the form of messages which
are sent through a queue, in other words, indirectly. Queuing allows the
secure, planned, and prioritized delivery of messages. It is often used for the
near real-time exchange of information between loosely coupled systems.

•	 Publish/subscribe: Two roles are involved in non-directed communication:
the publisher of a message sends the message only to the middleware. The
subscriber subscribes to all the types of message that are of interest to him or
her. The middleware ensures that all subscribers receive the corresponding
messages from a publisher.

Basic Principles

[24]

Middleware
type

Communication Relationship Synchronous/
asynchronous

Interaction

Peer-to-peer,
API

Conversational 1:1 Synchronous Blocking

Database
gateways

Request/reply 1:1 Synchronous Blocking

Database
replication

Request/reply/

Message queue

1:N

1:N

Synchronous

Asynchronous

Blocking

Non-
blocking

Remote
procedure
calls

Request/reply 1:1 Mostly
synchronous

Mostly
blocking

Object request
brokers

Request/reply 1:1 Mostly
synchronous

Mostly
blocking

Direct
messaging

Message passing 1:1 Asynchronous Non-
blocking

Message
queue
systems

Message queue M:N Asynchronous Non-
blocking

Message
infrastructure

Publish/
subscribe

M:N Asynchronous Non-
blocking

Middleware base technologies
Middleware can be broken down into the following base technologies:

•	 Data-oriented middleware: The integration or distribution of data to
different RDBMS using the appropriate synchronization mechanisms.

•	 Remote procedure call: The implementation of the classic
client/server approach.

•	 Transaction-oriented middleware: The transaction concept
(ACID—Atomicity, Consistency, Isolation, Durability) is put into effect
using this type of middleware. A transaction is a finite series of atomic
operations which have either read or write access to a database.

•	 Message-oriented middleware: The information is exchanged by means of
messages, which are transported by the middleware from one application to
the next. Message queues are used in most cases.

•	 Component-oriented middleware: This represents different applications
and their components as a complete system.

Chapter 1

[25]

Routing schemes
Information can be routed in different ways within a network. Depending on the
type of routing used, routing schemes can be broken down into the following
four categories:

•	 Unicast (1:1 relationship)
•	 Broadcast (all destinations)
•	 Multicast (1:N)
•	 Anycast (1:N, most accessible)

Unicast
The unicast routing scheme sends data packages to a single destination. There is a 1:1
relationship between the network address and the network end point:

Broadcast
The broadcast routing scheme sends data packets in parallel to all the possible
destinations in the network. If there is no support for this process, the data packets
can be sent serially to all possible destinations. This produces the same results, but
the performance is reduced. There is a 1:N relationship between the network
address and the network end point.

Basic Principles

[26]

Multicast
The multicast routing scheme sends data packets to a specific selection of destinations.
The destination set is a subset of all the possible destinations. There is a 1:N
relationship between the network address and the network end point:

Anycast
The anycast routing scheme distributes information to the destination computer which
is nearest, or most accessible. There is a 1:N relationship between the network address
and the network end point, but only one end point is addressed at any given time for
the purpose of routing the information.

Integration architecture variants
The fundamental integration architecture variants are:

•	 Point-to-point architecture: A collection of independent systems which are
connected through a network.

•	 Hub-and-spoke architecture: A further stage in the evolution of application
and system integration, in which a central hub takes over responsibility
for communications.

Chapter 1

[27]

•	 Pipeline architecture: In pipeline architecture, independent systems along
the value-added chain are integrated using a message bus. The bus capability
results in the distribution of the interfaces to the central bus throughout the
communication network, which gives applications a local access to a
bus interface.

•	 Service-oriented architecture: The integration of different applications to form
a functioning whole by means of distributed and independent service calls,
which are orchestrated through an ESB and, if necessary, a Process Engine.

Point-to-point architecture
A point-to-point architecture is a collection of independent systems which are
connected through a network. All the systems have equal rights, and can both use
and provide services (Lublinsky 2002). This architecture can be found in many
organizations, where application islands that have grown through time have
been connected directly to each other.

As shown in the above diagram, in this architecture, there is no central
database—each system has its own data storage.

New systems are connected directly with the existing ones, which over time leads to
a highly complex set of interfaces. A point-to-point architecture with n applications
can in theory have n*(n-1)/2 interfaces.

Basic Principles

[28]

It is easy to imagine how complex, error-prone, and difficult it can be to maintain such
an architecture as more and more applications are added. Expanding the system is
costly and, as the number of interfaces grows, operation becomes increasingly time
consuming and expensive. A SWOT analysis is shown in the following table:

Strengths Weaknesses
•	 Low startup and

infrastructure costs
•	 Autonomous systems

•	 Only practical if there are a few systems
and a few connections

•	 Replacing individual systems is a
highly laborious and costly process

•	 Very inflexible, not the base for an SOA
and, therefore, it is difficult to represent
business processes

•	 No overview of data
•	 Limited reusability of components
•	 Time consuming and costly operation

Opportunities Threats
•	 Functions within the systems

can be rapidly adapted to
meet new requirements

•	 High follow-up costs
•	 Lack of standardization

Hub-and-spoke architecture
Hub-and-spoke architecture represents a further stage in the evolution of application
and system integration, as shown in the following diagram (Gilfix 2003):

Chapter 1

[29]

Its objective is to minimize the growing interface complexity by using a central
integration platform to exchange messages between the systems. The central
integration platform can transform messages, route them from one application to
the next, and change the content of the messages. This architecture is often used
for complex data distribution mechanisms. A SWOT analysis is shown in the
following table:

Strengths Weaknesses

•	 Reduction of the interface problem
•	 Low follow-up costs
•	 Compliance with standards
•	 Autonomous systems
•	 Simplified monitoring

•	 High startup and
infrastructure costs

Opportunities Threats

•	 Individual systems can be integrated/
replaced easily

•	 With high transfer
volumes, the central
hub could become a
performance bottleneck

•	 Single point of failure

Pipeline architecture
In a pipeline architecture, independent systems along the value-added chain are
integrated using a message bus, as in the following figure. The implementation
of this architecture corresponds to that of the hub-and-spoke architecture, as the
corresponding middleware products are normally installed and operated on central
servers. The bus capability results in the distribution of the interfaces to the central
bus throughout the communication network, which generally also gives applications
local access to a bus interface (Ambriola, Tortora 1993).

Basic Principles

[30]

Similarly to the hub-and-spoke architecture, this architecture also keeps interface
problems to a minimum. The use of appropriate middleware components allows
the communication between the systems to be standardized. The bus system is
responsible for message distribution. The transformation and routing rules are
stored in a central repository. Depending on the middleware product in use,
business functions and rules can also be represented. A SWOT analysis is shown
in the following table:

Strengths Weaknesses
•	 Low follow-up costs
•	 Very flexible architecture
•	 Compliance with standards
•	 Autonomous systems

•	 High startup and
infrastructure costs

Opportunities Threats
•	 Individual systems can be

integrated/replaced easily
•	 With high transfer volumes,

there is the risk of a
performance bottleneck, if it
is not separated from normal
traffic (for example, separate
bulk channel)

This form of architecture is ideal for:

•	 Very high performance requirements (event-driven architecture)
•	 1:N data distribution (for example, broadcasting)
•	 N:1 database (for example, data warehouse)

Service-oriented architecture
The core of a service-oriented architecture, and the main distinction between this
form of architecture and those described earlier, is the fact that business processes
and applications are no longer coded as complex program structures, but are
orchestrated as independent, distributed service calls.

Chapter 1

[31]

An ESB is used as the central integration component for service calls. It has similar
properties to those of the integration platform in hub-and-spoke architecture, or of
the bus in pipeline architecture. A SWOT analysis is shown in the following table

Strengths Weaknesses

•	 Low follow-up costs
•	 Very flexible architecture
•	 Compliance with standards
•	 Supported by all major software

houses

•	 High startup and
infrastructure costs

•	 Requires a comprehensive
SOA strategy and
governance

Opportunities Threats

•	 Individual systems can be
implemented and orchestrated easily

•	 Lack of focus on relevant
business processes

Patterns for EAI/EII
Three basic patterns are used for the implementation of EAI and EII platforms:

•	 Direct connection
•	 Broker
•	 Router

Basic Principles

[32]

Direct connection
Direct connection represents the simplest type of interaction between two applications
and is based on a 1: N topology, in other words, an individual point-to-point
connection. It allows a pair of applications within an organization to communicate
directly. Interactions between the source and the target applications can be as complex
as necessary. Additional connection rules are defined for more complex point-to-point
connections. Examples of connection rules include data mapping rules, security rules,
and availability rules.

The direct connection pattern can be broken down into the following
logical components:

•	 The source applications consist of one or more applications, which want to
initiate interaction with the target applications.

•	 The connection is the line between the source and the target application, and
represents a point-to-point connection between the two applications.

•	 Connection rules are the business rules which relate to the connection, such
as data mapping and security rules.

•	 The target application is a new or existing (modified or unmodified)
application, which provides the necessary business services.

The advantages and disadvantages of the direct connection pattern are shown in the
following table:

Advantages Disadvantages
•	 Functions well in the case

of applications with simple
integration requirements
and only a few backend
applications

•	 Loose coupling
•	 Receivers do not need to be

online

•	 Results in several point-to-point
connections between each pair of
applications, and therefore, to spaghetti
configurations

•	 Does not support the intelligent routing
of queries

•	 Does not support the decomposition/
re-composition of queries

Chapter 1

[33]

Uses
Direct connection is used for the following purposes:

•	 Reducing the latency of business events
•	 Supporting the structured exchange of information within an organization
•	 Supporting real-time one-way message flows
•	 Supporting real-time request/reply message flows
•	 Continued use of legacy investments

Broker
The broker pattern is based on the direct connection pattern, and extends it to a 1: N
topology. It allows an individual request from a source application to be routed to
several target applications, which reduces the number of 1:1 connections required.
The connection rules take the form of broker rules. This allows the distribution rules
to be kept separate from the application logic (Separation of Concerns principle
or SoC). The broker is also responsible for the composition and decomposition of
interactions. The broker pattern uses the direct connection pattern for the
connection between the applications. The broker pattern forms the base for
the publish/subscribe message flow:

The broker pattern can be broken down into the following logical components:

•	 The source applications consist of one or more applications which want to
interact with the target applications.

•	 The broker component keeps the number of direct connections to a
minimum. It also supports message routing, message enhancement, and
the transformation, decomposition, and re-composition of messages.

•	 The target applications consist of both new and existing (modified or
unmodified) applications. These applications are responsible for
implementing the necessary business services.

Basic Principles

[34]

The advantages and disadvantages of the broker pattern are shown in the
following table:

Advantages Disadvantages
•	 Allows for the interaction of several

different applications.
•	 Minimizes the impact on existing

applications.
•	 Makes routing services available, so

that the source application no longer
needs to know the target applications.

•	 Provides transformation services,
which enable the source and
target applications to use different
communication protocols.

•	 Decomposition/re-composition
services are available to allow a single
request to be sent from one source to
several target applications.

•	 The use of the router keeps the
number of necessary modifications to
a minimum when the location of the
target application is changed.

•	 Logic has to be
implemented on the
broker for routing and
decomposition/
re-composition tasks.

Uses
Broker is used for the following purposes:

•	 An individual application should be able to interact with one or more
target applications.

•	 A hub-and-spoke architecture reduces complexity when compared with a
point-to-point architecture.

•	 The externalization of the routing, decomposition, and re-composition rules
increases maintainability and flexibility.

•	 Broker pattern is important when a request is processed from a source
application and results in several interactions with the target systems.

•	 The source system is decoupled from the target applications, and there is
no dependency on the interfaces of these target applications.

Chapter 1

[35]

Router
The router pattern is a variant of the broker pattern with several potential target
applications, in which the message is always routed to only one target application.
The router decides which target application will receive the interaction. While
the broker pattern supports 1:N connections, the router pattern only allows 1:1
connections, as the router rules determine the target application in each case.

The router pattern as shown in the diagram can be broken down into the following
logical components:

•	 The source applications consist of one or more applications that want to
interact with the target applications.

•	 The router component provides all the business rules needed for processing
the message, such as routing and transformation. It receives requests from
several source applications, and routes them intelligently to the correct target
application. The resulting integration is, in fact, a point-to-point connection
between the source and the target.

•	 The target applications consist of both new and existing (modified
or unmodified) applications. These applications are responsible for
implementing the necessary business services.

Basic Principles

[36]

The advantages and disadvantages of the router pattern are shown in the
following table:

Advantages Disadvantages
•	 Allows for the interaction of several

different applications.
•	 Minimizes the impact on

existing applications.
•	 Makes routing services available,

so that the source application no
longer needs to recognize the
target applications.

•	 Provides transformation services
which enable the source and
target applications to use different
communication protocols.

•	 The use of the router keeps the
number of necessary modifications
to a minimum when the location of
the target application is changed.

•	 No decomposition
and re-composition
of messages.

•	 No possibility of sending
several simultaneous
requests to the target
applications on the basis
of the incoming request.

Uses
Router is used for the following purposes:

•	 An individual application should be able to interact with one of several
target applications

•	 A hub-and-spoke architecture reduces complexity when compared with a
point-to-point architecture

•	 The externalization of the routing, decomposition, and re-composition rules
increases maintainability and flexibility

•	 Router pattern is important when a request is processed from a source
application and results in an interaction with only one of several potential
target systems

•	 As with the Broker pattern, the source system is also decoupled from
the target applications, and has no dependency on the interfaces of
these applications

Chapter 1

[37]

Patterns for data integration
Data integration is implemented using three fundamental patterns:

•	 Federation
•	 Population
•	 Synchronization

Federation
The federation pattern is a simple data integration pattern that provides access to
different data sources, and gives the calling application the impression that these
sources are a single, logical data source. This is achieved as follows:

1.	 Expose a single consistent interface to the application.
2.	 Translate the interface to whatever interface is needed for the underlying data.
3.	 Compensate for any differences in function between the different data sources.
4.	 Allow data from different sources to be combined into a single result set that

is returned to the user.

This is illustrated in the following diagram:

The federation pattern as shown in this diagram can be broken down into the
following logical building blocks:

•	 The calling applications have the need for information, but they don't
possess the information.

Basic Principles

[38]

•	 The federation building block uses metadata to determine where the data
required is stored, and in what format. The metadata repository allows the
decomposition of a single query executed against the federation building
block, into individual requests to different data sources. To the user (the calling
application), the information model appears to be a single virtual repository.
The data is accessed via suitable adapters for each target repository. The
federation component sends an individual result to the calling application,
and integrates several different formats into a shared federated schema.

•	 The source applications have the information that is important for the
calling applications.

The federation pattern supports structured and unstructured data, together with
read-only and read/write accesses to the underlying data sources. Read/write
accesses should be limited, wherever possible, to a single data source, as otherwise
a two-phase commit is needed, which can be difficult in distributed databases.

Uses
Federation is used for the following purposes:

•	 The data needed by an application is distributed across different databases
(for historic, technical, or organizational reasons)

•	 Federation is more effective than other data integration technologies, when:
°° Near real-time access is needed for rapidly changing data
°° Making a consolidated copy of the data is not possible for

technical, legal, or other reasons
°° Read/write access must be possible
°° Reducing or limiting the number of copies of the data is a goal

•	 It is possible to continue to make use of existing investments

Population
The population pattern has a very simple model. It gathers data from one or more data
sources, processes the data in an appropriate way, and applies it to a target database.
In its simplest form, the population pattern is based on the read dataset-process
data-write dataset model. This corresponds to the classic ETL (Extract, Transform,
and Load process.

Chapter 1

[39]

This is illustrated in the following diagram:

The population pattern can be broken down into the following logical components:

•	 The target applications have a need for information, which they do not
possess. Therefore, a copy from another data source in a source
application is required.

•	 The population component reads one or more data sources in the source
application, and writes the data to a data source in the target application.
The rules for extracting data from the source application can be as complex as
necessary. They range from simple rules, such as read all data, to more complex
rules where only specific fields in specific records can be read under certain
conditions. The loading rules for the target database can vary from a simple
overwrite of the data, to a more complex process of inserting new records
and updating existing ones. The metadata is used to describe these rules.

•	 The source applications have the important information needed by the
target applications.

Uses
Population is used for the following purposes:

•	 A specialized copy of existing data (derived data) is needed:
°° Subsets of existing data sources
°° A modified version of an existing data source
°° Combinations of existing data sources

•	 Only read access to the derived data in the target application is possible
(or only a few write accesses).

•	 In the case of a significant number of write accesses, the two-way
synchronization pattern should be used.

Basic Principles

[40]

•	 The user must be provided with quick access to the information required,
instead of being bombarded with too much, irrelevant, incorrect, or
otherwise useless misinformation.

•	 However, IT drivers often dictate the use of the population pattern. In other
words, the copies of data are made for technical reasons. These drivers include:

°° Improved performance of user access
°° Load distribution across systems

Synchronization
The synchronization pattern (also known as the replication pattern) enables
bidirectional update flows of data in a multi-copy database environment. The
"two-way" synchronization aspect of this pattern is what distinguishes it from
the "one-way" capabilities provided by the population pattern.

This is illustrated in the following diagram:

The synchronization pattern shown in this diagram can be broken down into the
following logical components:

•	 The target applications have a need for information, which they do not
possess. Therefore, a copy from another data source in a source
application is required.

•	 At a simplistic level, the synchronization component can be compared to
the population pattern, with the only difference being that the data flows
in both directions. If the data elements flowing in both directions are fully
independent, then two-way synchronization is no more than two separate
instances of the population pattern. However, it is more common to find
some overlap between the datasets flowing in either direction. In this case,
conflict detection and resolution are needed.

Chapter 1

[41]

•	 The source applications have information which is relevant to the
target applications.

Uses
Synchronization is used for the following purpose:

•	 A specialized copy of existing data (derived data) is needed. This copy can
take different forms:

°° Subsets of existing data sources
°° A modified version of an existing data source
°° Combinations of existing data sources

Multi-step synchronization
There is one variant of the synchronization pattern: the multi-step variant. The
multi-step variant of the two-way synchronization pattern makes use of one instance
of the population pattern, with its gather, process, and apply functions, for each
of the two synchronization directions. An additional "reconcile" function is placed
between the two data flows, and guarantees that there are no conflicts in the updates.
If the opportunities for conflicts are minimal, this pattern can be constructed from
existing population components. However, a specialized solution should be used
for more complex situations.

The following diagram illustrates the "reuse" of the population pattern, once for each
direction with the additional "reconcile" component in the middle.

Basic Principles

[42]

Patterns for service-oriented integration
Service-oriented integration is based on two fundamental patterns:

•	 Process integration: The process integration pattern extends the 1: N topology
of the broker pattern. It simplifies the serial execution of business services,
which are provided by the target applications.

•	 Workflow integration: This is basically a variant of the serial process pattern. It
extends the capability of simple serial process orchestration to include support
for user interaction during the execution of individual process steps.

Process integration
The process integration pattern extends the 1: N topology of the broker pattern seen in
EAI. It simplifies the serial execution of business services, which are provided by the
target applications, and therefore enables the orchestration of serial business processes,
based on the interaction of the source application. The serial sequence is defined using
process rules, which allows for decoupling from the process logic (flow logic and the
domain logic) of the individual application. The rules define not only the control and
data flow, but also the permitted call rules for each target application. Interim results
(process data) are stored in individual results databases.

The process integration pattern can be broken down into three building blocks:

•	 The source applications consist of one or more applications that want to
interact with the target applications.

•	 The serial process rules support the same services as the broker in the broker
pattern, including routing queries, protocol conversion, message broadcasting,
and message decomposition and re-composition. In addition, externalization
of the process flow logic from the individual applications is also supported.
The process logic is determined by serial process rules which, together with
the control and data flow rules, define the execution rules for each target
application. These rules are stored in a process rules database.

Chapter 1

[43]

•	 The target applications consist of both new and existing (modified
or unmodified) applications. These applications are responsible for
implementing the necessary business services.

The advantages and disadvantages of the process integration pattern are shown in
the following table:

Advantages Disadvantages
•	 Improves the flexibility

and responsiveness of an
organization by implementing
end-to-end process flows and
externalizing process logic from
individual applications.

•	 Provides a foundation for
Business Process Management
that enables the effectiveness
of business processes to be
monitored and measured.

•	 Only direct, automatic
processing supported. No user
interaction is possible (refer to
the workflow variant).

•	 No parallel processing possible.

Uses
Process integration is used for the following reasons:

•	 Support for end-to-end process flows which use the services provided by
the target applications

•	 Improves the flexibility and responsiveness of IT by externalizing process
logic from individual applications

Variants
There are two variants of this pattern:

The parallel process pattern extends the simple serial process orchestration provided
by the serial process patterns, by supporting concurrent execution and orchestration of
business service calls. The concurrent execution of sub-processes requires the sub-steps
to be split up and brought together, so that they can be executed in parallel. Different
patterns are available for this purpose at an implementation level (for example,
patterns for parallel computing and different architecture styles (for example,
pipes-and-filters architectures). The interim results of a sub-step may or may not
influence the overall results. It is also possible for the interim results of a sub-step
to influence the execution of other sub-steps.

Basic Principles

[44]

The external business rules variant adds the option of externalizing business rules
from the serial process, into a business rule engine, where they can be evaluated. The
process only reacts to the responses of the rule engine. The complex rule evaluations
are carried out by the specialized rule engine. Externalizing the rules improves
flexibility and responsiveness, because the business rules can be adapted much
more easily and quickly.

Workflow integration
The workflow integration pattern represents an extension of the process integration
pattern, as illustrated in the following diagram:

It extends the capability of simple serial process orchestration to include support
for user interaction during the execution of individual process steps. As a result,
it supports a classic workflow.

Variants
The parallel workflow integration pattern is a variant of the workflow integration
pattern, and corresponds to the parallel process integration pattern which forms
part of the process integration pattern. It extends the capability of parallel process
orchestration to include support for user interaction during the execution of
individual process steps. As a result, it supports a parallel workflow.

Chapter 1

[45]

Event-driven architecture
Event-driven architecture (EDA) is one of the hot topics of the industry. These
architectures are often wrongly referred to as the successors to SOAs (Mühl et al.
2006). In fact, the concepts involved in EDA are as old as IT itself. In addition, EDAs
are growing rapidly in popularity, together with the integration architectures of
SOA. However, both types of architecture can be used completely independently of
one another, and can be combined orthogonally. From the perspective of integration,
two aspects of EDA are of particular interest:

•	 The symbiosis between EDA and SOA that has already been referred to,
which allows SOA domains to be linked/integrated together on an
event-driven basis.

•	 The technology offered by EDA which enables events from one or more
event streams on the data integration level to be consolidated into
new information.

Introducing EDA
According to a study by Gartner (Gartner 2006), the success of companies such
as Dell and Google is due to the fact that these organizations are able to identify
market factors or market events in the global marketplace at an early stage, and
follow them up consistently and quickly. Both examples are very close to the picture
drawn by Gartner of an ideal organization: the real-time enterprise (RTE). An RTE
is characterized by its highly-automated business processes and the shortest possible
process runtimes (Nussdorfer, Martin 2003).

Basic Principles

[46]

While SOA concepts within IT structures form the basis for the automation of
business processes, the second step, which relates to the ideal image of the RTE,
involves processing more fine-grained information about changes in the state
of these business processes. The complexity of these state changes is increasing
noticeably, in the same way that the number of reaction interfaces in the business
processes is. This is where the significance of EDA lies, because the observable
changes in the state of the business processes can be modeled as events. Classic
integration architectures, such as OLTP (Online Transaction Processing)) or
OLAP (Online Analytical Processing) are no longer able to meet the requirements
for rapid and consistent action on the basis of event analyses (Zeidler 2007).

The above diagram illustrates the symbiosis between EDA and SOA, which is often
referred to as SOA 2.0 (Carter 2007) or Next Generation SOA (Luckham 2002). An
SOA or an SOA domain provides the technical services, independently of consumers.
These services can be combined or orchestrated, and they form the building blocks
for the business processes. If a service of this kind triggers an event, for example
because of a change in its state, an orthogonal EDA extension can activate a new
SOA domain. As a result, a service becomes an event-producing building block in
an EDA. In contrast to the typical producer/consumer patterns of an SOA, the EDA
largely uses a publish/subscribe mechanism. An event processor processes the

Chapter 1

[47]

events as they occur, and publishes the processed results via an event channel, which
triggers the services of other SOA domains. Various types of event processor are
used depending on the type of event processing required. These include Complex
Event Processors (CEP), for example, which are described later in this chapter.

The SOA domains (to be integrated) should ideally be defined in such a way that
they represent reusable services which can be used several times in business
process chains of any length. The principle of loose coupling for the formation of
such flexible business process chains is of decisive importance in the EDA, in the
same way as it is in the SOA.

Event processing
The second aspect of integration that we want to highlight is of a more technical
nature. It concerns the possibilities for event processing within an EDA concept,
as shown in the following figure:

Event-processing technologies have been in day-to-day use in many industries for
several years. Examples include algorithmic trading in stock markets and Radio
Frequency Identification (RFID) in road charging systems.

There are three fundamental types of event processing:

•	 Simple Event Processing (SEP)
•	 Event Stream Processing (ESP)
•	 Complex Event Processing (CEP)

Basic Principles

[48]

Simple Event Processing (SEP)
Events occur either individually, or in streams. Single events can be regarded as
an important change in state in a message source and, in particular, in a business
event. Events of this kind typically trigger processes in the systems which receive the
message. This form of event processing corresponds exactly with the specification of
the Java Messaging Service (JMS). Therefore, a typical example of SEP is JMS.

Event Stream Processing (ESP)
ESP involves processing streams of incoming messages or events. Typical ESP systems
have sensors which channel a large number of events, and use filters and other
processing methods to influence the stream of messages or events. Individual events
are less important, and instead the focus is on the event stream. Well-known examples
include the systems which track stock market prices: one single fluctuation in prices
is generally not particularly significant. A more informative overall trend can only be
determined from several events.

Complex Event Processing (CEP)
The third form of event processing is Complex Event Processing, which is part of ESP.
In CEP there is a strong focus on identifying patterns in a large number of events and
their (message) contents, which may be distributed across different data streams.

The CEP funnel model is illustrated in the following figure:

Chapter 1

[49]

The CEP funnel model illustrates the process of compressing (large) volumes of events
to produce compressed information. The source of the events includes business events
(Viehmann 2008). One of the classic uses of CEP is in tracing credit card fraud. In
the case of two transactions using the same credit card, which were made within a
short period of time, in locations a long distance apart, this type of geographical and
chronological pattern indicating the possibility of fraud, can easily be applied to the
model. Systems of this kind, which correlate thousands of events in order to filter out
the few cases of fraud or misbehavior, are more and more frequently in use.

Grid computing/Extreme Transaction
Processing (XTP)
Grid computing and XTP are the new integration technologies, which are likely to
become increasingly popular over the next few years.

•	 Grid computing: An infrastructure for the integrated, collaborative use
of resources. Grids can be broken down into Data Grids, In-Memory Data
Grids, Domain Entity Grids, and Domain Object Grids on the basis of their
primary functionality, and are used in a wide range of applications.

•	 XTP: This is a distributed storage architecture, which allows for parallel
application access. It is designed for distributed access to large, and very
large, volumes of data.

Grid computing
Grid computing is the term used to describe all the methods that combine the
computing power of a number of computers in a network, in a way that enables
the (parallel) solution of compute-intensive problems (distributed computing), in
addition to the simple exchange of data. Every computer in the grid is equal to all
the others. Grids can exceed the capacity and the computing power of today's super
computers at considerably lower cost, and are also highly scalable. The computing
power of the grid can be increased by adding computers to the grid network, or
combining grids to create meta grids.

Definition of a grid
A grid is an infrastructure enabling the integrated, collaborative
use of resources which are owned and managed by different
organizations (Foster, Kesselmann 1999).

Basic Principles

[50]

The following diagram illustrates the basic model of grid computing, with the
network of computers forming the grid in the middle:

The main tasks of grids are:

•	 Distributed caching and processing: Data is distributed across all the nodes
in a grid. Different distribution topologies and strategies are available for this
purpose. A data grid can be divided into separate sub-caches, which allows
for the use of more effective access mechanisms involving pre-filtering.
The distribution of the data across different physical nodes guarantees the
long-term availability and integrity of the data, even if individual nodes fail.
Automatic failover behavior and load balancing functionality are part of the
grid infrastructure. Transaction security is also guaranteed throughout the
entire grid.

•	 Event-driven processing: The functionality of computational grids.
Computing operations and transactions can take place in parallel across
all the nodes in a grid. Simple event processing, similar to the trigger
mechanism of databases, ensures that it is possible for the system to react
to data changes. Individual pieces of data in the grid can be joined together
to form more complex data constructs using the "in-memory views" and
"in-memory materialized views" concepts.

Grids have the following features which allow more sophisticated Service Level
Agreements (SLA) to be set up:

•	 Predictable scalability
•	 Continuous availability
•	 Provision of a replacement connection in the case of a server failure (failover)
•	 Reliability

Grids can be broken down into data grids, in-memory data grids, domain entity
grids, and domain object grids on the basis of their primary functionality.

Chapter 1

[51]

Data grids
A data grid is a system made up of several distributed servers which work together
as a unit to access shared information and run shared, distributed operations on
the data.

In-memory data grids
In-memory data grids are a variant of data grids in which the shared information is
stored locally in memory in a distributed (often transactional) cache. A distributed
cache is a collection of data or, more accurately, a collection of objects that is
distributed (or partitioned) across any number of cluster nodes, in such a way that
exactly one node in the cluster is responsible for each piece of data in the cache, and
the responsibility is distributed among the cluster nodes.

Competitive data accesses are handled cluster-wide by the grid infrastructure, if a
specific transactional behavior is required. The advantages include the high levels
of performance possible as a result of low latency memory access. Today's 64-bit
architectures and low memory prices allow larger volumes of data to be stored in
memory where they are available for low latency access.

However, if the memory requirements exceed the memory available, "overflow"
strategies can be used to store data on a hard disk (for example, in the local filesystem
or local databases). This will result in a drop in performance caused by higher
latency. The latest developments, such as solid state disks, will in future allow a
reasonable and cost-effective compromise in this area, and will be an ideal solution
in scenarios of this kind.

Data loss caused by a server failing and, therefore, its area of the memory being lost,
can be avoided by the redundant distribution of the information. Depending on the
product, different distribution topologies and strategies can be selected or enhanced.

In the simplest case, the information is distributed evenly across all the
available servers.

An in-memory data grid helps the application to achieve shorter response times
by storing the user data in memory in formats which are directly usable by the
application. This ensures that storage accesses with low latency and complex,
time-consuming transformations and aggregations when the consumer accesses the
data can be avoided. Because the data in the grid is replicated, buffering can be used
to accommodate database failures, and the availability of the system is improved. If a
cluster node in the data grid fails, the data is still available on at least one other node,
which also increases availability. Data will only be lost in the case of a total failure,
and this can be counteracted by regular buffering to persistent storage (hard disk,
solid state disk, and so on).

Basic Principles

[52]

Domain entity grids
Domain entity grids distribute the domain data of the system (the applications)
across several servers. As these are often coarse granular modules with a hierarchical
structure, their data may have to be extracted from several different data sources
before being made available on the grid across the entire cluster. The data grid takes
on the role of an aggregator/assembler which gives the consumers cluster-wide,
high-performance access to the aggregated entities. The performance can be
further improved by the grid by initializing the domain data before it is actually
used (pre-population).

Domain object grids
A domain object grid distributes the runtime components of the system (the
applications) and their status (process data) across a number of servers. This may
be necessary for reasons of fail-safety, and also because of the parallel execution of
program logic. By adding additional servers, applications can be scaled horizontally.
The necessary information (data) for the parallelized functions can be taken from
shared data storage, (although this central access can become a bottleneck, which
reduces the scalability of the system as a whole) or directly from the same grid or
a different grid. It is important to take into account the possibilities of individual
products or, for example, to combine several products (data grid and computing grid).

Distribution topologies
Different distribution topologies and strategies are available, such as replicated
caches and partitioned caches (Misek, Purdy 2006).

Replicated caches
Data and objects are distributed evenly across all the nodes in the cluster. However,
this means that the available memory of the smallest server acts as the limiting
factor. This node determines how large the available data volume can be.

Advantages:

•	 The maximum access performance is the same across all the nodes, as all the
nodes access local memory, which is referred to as zero latency access.

Disadvantages:

•	 Data distribution across all the nodes involves high levels of network traffic,
and is time consuming. The same applies to data updates, which must be
propagated across all the nodes.

•	 The available memory of the smallest server determines the capacity limit.
This node places a limit on the size of the available data volume.

Chapter 1

[53]

•	 In the case of transactionality, if a node is locked, every node must agree.
•	 In the case of a cluster error, all the stored information (data and locks)

can be lost.

The disadvantages must be compensated for as far as possible by the grid
infrastructure, and circumvented by taking appropriate measures. This should
be made transparent to the programmer by using an API which is as simple as
possible. The implementation could take the form of local read-only accesses without
notification to the other cluster nodes. Operations with supervised competitive access
require communication with at least one other node. All the cluster nodes must be
notified about update operations. An implementation of this kind results in very high
performance and scalability, together with transparent failover and failback.

However, it is important to take into consideration that replicated caches requiring
a large number of data updates do not scale linearly in the case of potential cluster
growth (adding nodes), which involves additional communication activities for
each node.

Partitioned caches
Partitioned caches resolve the disadvantages of replicated caches, relating to memory
and communications.

If this distribution strategy is used, several factors must be taken into account:

•	 Partitioned: The data is distributed across the cluster in such a way that
there are no overlaps of responsibility with regard to data ownership. One
node is solely responsible for a specific part of the data, and holds it as a
master dataset. Among other things, this brings the benefit that the size of
the available memory and computing power increases linearly as the cluster
grows. In addition, compared with replicated caches, it has the advantage
that all the operations which are carried out on the stored objects require only
a single network hop. In other words, in addition to the server that manages
the master data, only one other server needs to be involved, and this stores
the accompanying backup data in the case of a failover. This type of access to
master and backup data is highly scalable, because it makes the best possible
use of point-to-point connections in a switched network.

Basic Principles

[54]

•	 Load-balanced: Distribution algorithms ensure that the information in the
cache is distributed in the best possible way across the available resources
in the cluster, and therefore provide transparent load balancing (for the
developer). In many products, the algorithms can be configured or replaced
by in-house strategy modules. However, depending on the distribution and
optimization strategy, this approach also has disadvantages. The dynamic
nature of data distribution may cause data to be redistributed when the
optimization strategy is activated, if another member is added to the cluster.
In particular, in environments where temporary cluster members are highly
volatile, frequent recalculations of the optimum distribution characteristics,
and physical data redistribution with its accompanying network traffic,
should be avoided. This can be achieved by identifying volatile cluster nodes
within the grid infrastructure, and ensuring that they are not integrated into
distribution strategies.

•	 Location transparency: Although the information about the nodes in the
cluster is distributed, the same API is used to access it. In other words, the
programmer's access to the information is transparent. He does not need to
know where the information is physically located in the cluster. The grid
infrastructure is responsible for adapting the data distribution as effectively
as possible to access behavior. Heuristics, configurations, and exchangeable
strategies are used for this purpose. As long as no specific distribution
strategy needs to be created, the way in which the strategy functions in the
background is unimportant.

Agents
Agents are autonomous programs that are triggered by an application, and
are executed on the information stored in the grid under the control of the grid
infrastructure. Depending on the product, specific classes of programming APIs
may need to be extended or implemented for this purpose. Alternatively, declarative
options allow agent functionality of this kind to be established (for example, using
aspect-oriented methods or pre-compilation steps). Predefined agents are often
provided with particular products.

Execution patterns
Let's take a brief look at these execution patterns:

•	 Targeted execution: Agents can be executed on one specific set of information
in the data grid. The information set is identified using a unique key. It is
the responsibility of the grid infrastructure to identify the best location in
the cluster for the execution, on the basis of the runtime data available (for
example, load ratios, node usage, network loads).

Chapter 1

[55]

•	 Parallel execution: Agents can be executed on a specific group of information
sets, which are identifiable by means of a number of unique keys. As with the
target execution, it's the responsibility of the grid infrastructure to identify
the best location in the cluster for the execution, on the basis of the runtime
data available (for example, load ratios, node usage, network loads).

•	 Query-based execution: This is an extension of the parallel execution pattern.
The number of information sets involved is not specified by means of the
unique keys, but by formulating one or more filter functions in the form of a
query object.

•	 Data-grid-wide execution: Agents are executed in parallel on all the
available information sets in the grid. This is a specialized form of the
query-based execution pattern in which a NULL query object is passed,
in other words, a non-exclusive filter condition.

•	 Data grid aggregation: In addition to the scalar agents, cluster-wide
aggregations can be run on the target data, so that computations can be carried
out in (near) real-time. Products often provide predefined functionality for this
purpose, including count, average, max, min, and so on.

•	 Node-based execution: Agents can be executed on specific nodes in the grid.
An individual node can be specified. However, agents can also be run on a
defined subset of the available nodes, or on all the nodes in the grid.

Uses
Grid technology can be used in a variety of different ways in architectures:

•	 Distributed, transactional data cache (domain entities): Application data
can be stored in a distributed cache in a linear scalable form, and with
transactional access.

•	 Distributed, transactional object cache (domain objects): Application
objects (business objects) can be stored in a distributed cache in a linear
scalable form and with transaction security.

•	 Distributed, transactional process cache (process status): Process objects
and their status can be stored in a distributed cache in a linear scalable form,
and with transaction security.

•	 SOA grid: This is a specialized form of the previous scenario. Business
Process Execution Language (BPEL) processes are distributed in serialized
form (hydration) throughout the cluster, and can be processed further on
another server following de-serialization (dehydration). This results in highly
scalable BPEL processes.

Basic Principles

[56]

•	 Data access virtualization: Grids allow virtualized access to distributed
information in a cluster. As already mentioned, the location of the data is
transparent during the access, regardless of the size of the cluster, which
can also change dynamically.

•	 Storage access virtualization: Information is stored in a distributed cache
in the format appropriate for the application, regardless of the type of
source system and its access protocols or access APIs. This is particularly
advantageous in cases where the information has to be obtained from
distributed, heterogeneous source systems.

•	 Data format virtualization: Information is stored in a distributed cache in the
format appropriate for the application, regardless of the formats in the source
system. This is particularly advantageous in cases where the information has
to be obtained from distributed, heterogeneous source systems.

•	 Data access buffers: The access to data storage systems (such as RDBMSs) is
encapsulated and buffered so that it is transparent for the application. This
allows any failover actions by the target system (for example, Oracle RAC)
and the necessary reactions of the application to be decoupled. As a result,
applications no longer need to be able to react to failover events on different
target systems, as this takes place at grid level.

•	 Maintenance window virtualization: As already described, data grids
support dynamic cluster sizing. Servers can be added to and removed
from the cluster at runtime. This makes it possible to migrate distributed
applications gradually, without significant downtimes for the application,
or even the entire grid. A server can be removed from the cluster, the
application can be migrated to this server, and the server can then be
returned to the cluster. This process can be repeated with every other server.
Applications developed in future on the basis of open standards will reduce
this problem.

•	 Distributed master data management: In high-load environments,
unacceptable bottlenecks may occur in central master data applications.
Classic data replication can help to resolve this problem. However, it
does involve the use of resources, and is not suitable for (near) real-time
environments. Another solution is to distribute the master data across a
data grid, provided that there is enough storage.

•	 High performance backup and recovery: It is possible to perform
long-running backups in several stages in order to improve performance.
The data can be written in stages to an in-memory cache, and then at
delayed intervals to persistent storage.

•	 Notification service in an ESB: Grid technology replaces the message-based
system used for notification in a service bus.

Chapter 1

[57]

•	 Complex real-time intelligence: This combines the functionality of CEP and
data grids, and therefore enables highly scalable analysis applications which
provide complex pattern recognition functions in real-time scenarios, to be
made available to the business. In its simplest form, this is an event-driven
architecture with CEP engines as consumers, in which the message transport
and the pre-analysis and pre-filtering of fine granular individual events is
based on grid technology. The infrastructure components of the grid are also
responsible for load balancing, fail-safety, and the availability of historic data
from data marts in the in-memory cache. The combination of a grid and CEP
makes it possible to provide highly scalable, but easily maintained, analysis
architectures for (near) real-time business information.

XTP (Extreme Transaction Processing)
As a result of the need for complex processing of large and very large volumes of data
(for example, in the field of XML, importing large files with format transformations,
and so on.), new distributed storage architectures with parallel application access
functions have been developed in recent years.

A range of different cross-platform products and solutions is available, also known as
"extreme transaction processing" or XTP. The term was coined by the Gartner Group,
and describes a style of architecture which aims to allow for secure, highly scalable
and high-performance transactions across distributed environments on commodity
hardware and software.

Solutions of this kind are likely to play an increasingly important role in
service-oriented and event-driven architectures in the future. Interoperability
is a driving force behind XTP.

Distributed caching mechanisms and grid technologies with simple access APIs
form the basis for easy, successful implementation (in contrast to the complex
products widely used in scientific environments in the past). Although distributed
cache products already play a major role in "high-end transaction processing"
(an expression coined by Forrester Research), their position in the emerging
Information-as-a-Service (IaaS) market is expected to become more prominent.

New strategies for business priority have been introduced by financial service
providers in recent years. Banks are attempting to go beyond the limits of
their existing hardware resources and develop increasingly high-performance
applications, without having to invest in an exponential increase of their
hardware and energy costs.

Basic Principles

[58]

The growth of XTP in areas such as fraud detection, risk computation, and stock trade
resolution is pushing existing systems to their performance limits. New systems which
should implement this challenging functionality require new architecture paradigms.

It is clear that SOA, coupled with EDA and XTP, represents the future for financial
service infrastructures as a means of achieving the goal of running complex
computations with very large volumes of data, under real-time conditions. XTP
belongs to a special class of applications (extreme transaction processing platforms)
that need to process, aggregate, and correlate large volumes of data while providing
high performance and high throughput. Typically, these processes produce large
numbers of individual events that must be processed in the form of highly volatile
data. XTP-style applications ensure that transactions and computations take place in
the application's memory, and do not rely on complex remote accesses to backend
services, in order to avoid communication latency (low latency computation). This
allows for extremely fast response rates while still maintaining the transactional
integrity of the data.

The SOA grid (next generation, grid-enabled SOA) is a conceptual variant of the
XTPP (Extreme Transaction Processing Platform). It provides state-aware, continuous
availability for service infrastructures, application data, and process logic. It is based
on an architecture that combines horizontally scalable, database-independent,
middle-tier data caching with intelligent parallelization, and brings together process
logic and cache data for low latency (data and process affinity). This enables the
implementation of newer, simpler, and more efficient models for highly scalable,
service-oriented applications that can take full advantage of the possibilities of
event-driven architectures.

XTP and CEP
XTP and CEP are comparable, in that they both consume and correlate large amounts
of event data to produce meaningful results.

Often, however, the amount of event data that needs to be captured and processed
far exceeds the capacity of conventional storage mechanisms ("there just isn't a disk
that can spin fast enough"). In these cases, the data can be stored in a grid. CEP
engines can be distributed across this data and can access it in parallel. Analyses
can be carried out, and business event patterns can be identified and analyzed in
real-time. These patterns can then be processed further and evaluated using
Business Activity Monitoring (BAM).

Chapter 1

[59]

Solid State Disks and grids
Solid State Disk (SSD) technology is developing at high speed. Data capacities
are increasing rapidly and compared with conventional drives, the I/O rates are
phenomenal. Until now, the price/performance ratio per gigabyte of storage has
been the major obstacle to widespread use. It is currently a factor of 12 of the cost
of a normal server disk, per gigabyte of storage. The major benefit for data centers
is the very low energy consumption, which is significantly less than that of
conventional disks.

Because of their low energy requirements, high performance, low latency, and the
expectation of falling costs, SSDs are an attractive solution in blades or dense racks.
One interesting question concerns the influence which SSDs may have on data
grid technology.

Disk-based XTP systems can benefit from the introduction of an SSD drive However,
SSDs currently have a much lower storage capacity (128 GB versus 1 TB) than
conventional disks. Nevertheless, this is more than the capacity of standard main
memory, and SSDs are also less costly per gigabyte than memory. The capacity of
SSDs is lower than that of conventional disks by a factor of 10, and higher than the
capacity of memory by a factor of 8.

SSDs bridge the gap between memory-based and disk-based XTP architectures.
SSD-based architectures are slightly slower than memory-based systems, but
significantly faster than the fastest disk-based systems. The obvious solution is,
therefore, to provide a hierarchical storage architecture in XTP systems, where the
most volatile data is stored in memory, data accessed less often is stored on SSDs,
and conventional disk-based storage is used for long-term persistent data. It also
seems reasonable to store memory overflows from memory-based caching on SSDs.

Summary
At this point in time, you should have a basic understanding of the fundamental
concepts of integration, and the terminology used with it. You should
now understand:

•	 The basic concepts used in the context of integration architecture
•	 The different architecture variants, such as point-to-point, hub-and-spoke,

pipeline, and SOA
•	 What service-oriented integration is and why it is important
•	 The different types of data integration and the accompanying patterns

Basic Principles

[60]

•	 The difference between Enterprise Application Integration (EAI) and
Enterprise Information Integration (EII)

•	 The concept of Event Drive Architecture (EDA) and the different types of
Event Processing and why they play an important role in integration

•	 The integration technologies of the future: grid computing and extreme
transaction processing (XTP)

In the next chapter, you will learn about the base technologies related to the
implementation of solutions based on the Trivadis Integration Architecture Blueprint.

Base Technologies
This chapter describes a selection of the base technologies related to the
implementation of solutions based on the Trivadis Integration Architecture
Blueprint. It will:

•	 Cover transactions and transaction strategies
•	 Contain a description of Open Grid Services infrastructure (OGSi), a

dynamic, hardware-independent software platform
•	 Consider Java Connector Architecture (JCA), which is a general architecture

for connecting heterogeneous systems
•	 Explain Java Business Integration (JBI) as a standardized description of the

functions of an Enterprise Service Bus (ESB)
•	 Describe Service Component Architecture (SCA) in terms of a model

for developing applications and systems based on a Service-Oriented
Architecture (SOA)

•	 Present Service Data Objects (SDO) as a Disconnected Data Architecture
•	 Cover process modeling, including a description of the most important

standards for modeling business processes

The base technologies that currently play a role in the implementation of integration
solutions include transactions and standards such as OGSi, JCA, JBI, SCA, and SDO,
all of which we will cover in this chapter.

Transactions and transaction strategies have a central function in every type of
architecture. Knowledge of the options available, and the differences between the
options, is essential when choosing suitable data access strategies. Important aspects
include transactional systems, isolation levels, two-phase commit, and global (XA)
transactions (a transaction that may span multiple resources, also known as a
Distributed Transaction).

Base Technologies

[62]

Open Grid Services infrastructure (OGSi) is a hardware-independent, dynamic
software platform which simplifies the process of modularizing distributed
applications and their services, and managing them throughout their entire life
cycle. The OSGi platform requires a Java Virtual Machine (JVM) and provides a
framework on the basis of the JVM. The most important features of OSGi are the
OSGi architecture, the component model (the bundles), and the collaborative model.

Java Connector Architecture (JCA) is a general architecture in the Java Enterprise
Edition (JEE) environment used to connect heterogeneous systems, such as legacy
applications, through a standardized interface in the form of a resource adapter. Other
standardized interfaces defined by the JCA specification allow for collaboration with
other system components.

The Java Business Integration (JBI) specification describes the functionality of a
standardized ESB. JBI can also be regarded as a service-oriented meta-container
that implements a component architecture. JBI uses two types of containers: service
engines and binding components. The service engines contain the business logic,
while the binding components merely act as a proxy for the service users.

Service Component Architecture (SCA) is a collection of specifications that describe
a model for developing applications and systems on the basis of an SOA. SCA
models solutions as groups of service components that provide services and include
references to other services. Functionality is made available externally as a service in
the form of interfaces. Service components have properties that describe the specific
characteristics of the components and are used to configure them.

Service Data Objects (SDO) offer a consistent model for managing data, regardless
of its source system and source format. SDO makes use of a Disconnected Data
Architecture. Although SCA and SDO can be used independently of one another,
a combination of the two specifications represents a powerful and flexible tool for
developing distributed applications.

One important base technology used in the majority of integration projects consists
of business process modeling tools. The modeling process is always done using
graphical tools. The Trivadis Integration Architecture Blueprint envisions the usage
of graphical tools that support a clearly defined modeling notation. A number
of these notations are available. The most important ones are Business Process
Modeling Notation (BPMN), Event-Driven Process Chain (EPC), and Business
Process Execution Language (BPEL).

Chapter 2

[63]

Transactions
Transactions and transaction strategies play a central role in every architecture. A
knowledge of the options available and the differences between them is essential
when choosing suitable data access strategies. This section covers the aspects
relating to integration. These include transactional systems, isolation levels,
two-phase commit, and XA transactions.

•	 Transactional systems: These allow for controlled "all-or-nothing"
data manipulation.

•	 Isolation levels: These levels coordinate data access by parallel transactions
and, depending on the level, determine the visibility of the manipulated data.
There are four different isolation levels:

°° serializable
°° repeatable read
°° read committed
°° read uncommitted

•	 Two-phase commit: The two-phase commit is the algorithm on which
transactions are based. It requires all the systems participating in a
transaction to commit to the successful completion of the transaction.

•	 XA transactions: An XA transaction is a standardized, global transaction that
can span several (heterogeneous) resources. XA uses a two-phase commit
to ensure that all resources either commit, or rollback, any particular
transaction simultaneously.

Transactional systems
Transaction processing systems and the theoretical concepts that lie behind them
have existed in one form or another since the 1970s and were developed by database
guru Jim Gray (Lindsay 2008).

The purpose of transactions and of the infrastructure components that support them
is "all-or-nothing" data manipulation within a unit of work (Gray, Reuter 1993).

The following brief example will help to make this clearer:

Base Technologies

[64]

Say you want to make a bank transfer. This involves debiting the amount from your
account and crediting it to another account. The bank transfer process, its sub-activities
(debiting and crediting), and the data manipulation involved (deducting the amount
from the first account, adding it to the second account) represent a unit of work. This
takes place within one transaction to ensure that none of the sub-activities are carried
out individually, for example, a debit without a credit or vice versa. The two processes
are only valid in combination, even if system errors occur. This consistency is made
possible by the use of transactions.

All the operations in a transaction are enclosed within a transaction boundary, as
shown in the following figure. It contains all the individual operations, which make
up the transaction.

Transactions can be completed in one of two ways:

•	 Successful—commit
•	 Unsuccessful—rollback

In the case of a commit, all the changes made during the transaction are reflected
in the system. As transactional systems are generally databases or other persistent
components, the state changes made in a commit are saved permanently. In the event
of a rollback, all the state changes are reversed. Atomic transactions can be nested, but
many systems do not support this. In this case, sub-transactions (nested transactions)
are provisional, and are only completed when the top-level transaction is completed
(commit or abort).

Chapter 2

[65]

A transaction coordinator is always associated with transactions, as shown in this
figure. This infrastructure component manages, monitors, and coordinates the
transactions. A coordinator can take the form of an independent component or, for
performance reasons, can be part of the application. The coordinator communicates
with participants assigned to the transaction (for example, a database and the
application which is accessing it) and controls the necessary termination actions, in
other words, the commit or the rollback. Different transaction types and mechanisms
have different forms of communication and participants (local, remote, distributed,
homogeneous, heterogeneous, and so on). The XA protocol for global transactions
is often used in distributed environments with several heterogeneous transactional
resources (for example, an RDBMS and an XML database).

In many systems, a transaction manager is responsible for managing the transaction
coordinators, which coordinate large numbers of transactions. The initiating resource
starts the transaction in the transaction manager, and a coordination manager is
assigned to the transaction.

Atomic transactions have the following properties, which are also known by the
acronym ACID:

•	 Atomicity: The transaction can be successfully completed (commit) or can be
unsuccessful as a result of system errors or program crashes (abort). In the first
case, all the changes to the data are implemented as if the changes had taken
place in one single (atomic) step. In the event of an abort, all the changes made
up to this point in the transaction are reversed (rollback), and the system is
returned to its status before the transaction started. Atomic transactions cannot
be broken down. If an abort occurs, the system is unchanged. Otherwise, all
the changes (not just part of them) are implemented.

•	 Consistency: Transactions produce consistent results. As a result, they
guarantee that the application and the business logic have a
well-defined status.

•	 Isolation: When concurrent transactions are processed, the interim results
that occur during the transaction are not visible to other transactions, as long
as this transaction is not yet completed. If several transactions are executed
simultaneously, they must not influence each other.

•	 Durability: The system status created by a successful transaction completion
(commit) is guaranteed to be durable.

Base Technologies

[66]

Isolation levels
There are four different transaction isolation levels, or, in other words, states that
are recognized separately by different parallel transactions. A partial breakup of
strict isolation is permitted in many scenarios to improve performance. In order to
provide the highest level of process isolation (serializable), data must be blocked. The
process that initiates the transaction puts locks on the data. The result is a reduction
in the possible process concurrency, in other words, the possible parallelization.
Transactions represent a processing bottleneck. The aim of the additional, more
relaxed isolation levels is to improve performance compared to strict serialization,
by making optimistic assumptions.

In descending order of isolation properties, that is, with increasing visibility and the
related possibility of data inconsistencies, the four isolation levels of the ANSI/ISO
SQL standard are:

•	 Serializable
•	 Repeatable read
•	 Read committed
•	 Read uncommitted

Serializable
All the transactions are completely isolated from each other. They appear to take
place serially, one after another. So-called phantom reads, which will be explained
later in the chapter, cannot occur, as shown in the following diagram:

Chapter 2

[67]

Repeatable read
Data that has been read (in an RDBMS with a SELECT, for example) cannot be
changed. On this isolation level, read locks are required on all data that has been
read. However, range locks are not needed, as shown in the following diagram:

Read committed
Data that has been read (for example with a SELECT) can be changed by other
transactions in the background. Read locks are released immediately after the read
process has been completed. In contrast, write locks are only released at the end of
the transaction, as shown in the following diagram:

Base Technologies

[68]

Read uncommitted
On this isolation level, so-called dirty reads are possible. Data in transaction 1
is visible to transaction 2, although transaction 1 has not yet been successfully
completed (committed).

Phantom reads
A phantom read occurs when transaction 2 can read data created by transaction 1, but
transaction 1 has not yet been completed with a commit. Phantom reads can take place
in the following ANSI/ISO SQL standard isolation levels:

•	 Repeatable read
•	 Read committed
•	 Read uncommitted

Phantom reads are not possible in the serializable isolation level. The following table
gives an overview of this:

Isolation level Behavior
Dirty read Non-repeatable read Phantom read

Serializable No No No
Repeatable Read No No Yes
Read Committed No Yes Yes
Read
Uncommitted

Yes Yes Yes

Different products use the possible isolation levels and the standardized versions in
very different ways. In many cases, only a subset of the four options is supported.
In some products, additional product-specific syntax must be added to a SELECT to
enforce a read lock.

Chapter 2

[69]

Two-Phase Commit protocol (2PC)
The Two-Phase Commit is the basic mechanism for implementing global transactions.
The Two-Phase Commit protocol is a distributed algorithm, which requires all the
resources in a distributed system that are participating in a transaction to complete
the transaction successfully (commit). The result is that all the resources complete
the transaction with a commit, or reverse it with an abort. This is also guaranteed in
the event of network errors and/or server failures. A server node takes on the role
of coordinator. On each of the participating nodes, there must be the possibility of
buffering the local transaction status in order to ensure that, if a server crashes, the
transaction can be canceled and the log data is never lost or corrupted (except, of
course, in the case of total failures). In addition, the participating nodes must be able to
communicate with one another. In particular, where there is a heavy transaction load,
the communication latency of the network can be a significant performance factor.

The concept of Two-Phase Commit is the result of implementing the algorithm,
which can be divided into the commit request and the commit phases, as shown
in this diagram.

•	 Commit request: The transaction coordinator asks the participating resources
if they are prepared to commit. Depending on the local transaction results
(commit or abort), the individual resources send a corresponding reply.

•	 Commit: On the basis of the result of the commit request phase, the
transaction coordinator instructs the participating resources to implement
a commit or abort locally.

Base Technologies

[70]

This protocol is shown in the following diagram:

It is initiated by the transaction coordinator when the final step in the transaction is
reached. A Two-Phase Commit is made possible by the bidirectional communication
of the XA protocol. The Two-Phase Commit is not possible in non-XA transactions,
as these protocols are unidirectional and the transaction manager cannot receive
any responses from the resource manager. The majority of transaction managers
communicate with the resource managers in phase 1 and 2 in parallel in multiple
threads, in order to improve performance. By parallelizing communication, the
resources can be released at the earliest possible point.

XA transactions
An XA transaction is a global (top-level) transaction, which can span several
(heterogeneous) resources, as shown in the next diagram. A non-XA transaction
only ever involves a single resource.

The X/Open XA specification describes a bidirectional interface at system level for
a communication bridge between several local resource managers on the one hand,
and a global transaction manager on the other (OpenGroup 1991). The transaction
manager controls the transaction, manages the lifecycle of the transaction, and
coordinates one or more resources. The resource manager is responsible for
controlling and managing its assigned resource (for example, a database or a
message queue).

Chapter 2

[71]

Because of its bi-directionality, XA uses the Two-Phase Commit protocol. In
comparison with atomic transactions, XA has a certain coordination overhead,
which can have a negative impact on performance. For this reason, XA should
only be chosen when multiple resources are being used simultaneously (in the
same transaction context).

XA is only needed if different resources (for example, two databases,
not two tables) are accessed in the same transaction. This includes
those scenarios where really only one single transaction is needed. As
a result, read-only accesses that need no locks can be implemented
without XA. (See also the information about transaction isolation
levels.) However, XA supports read-only scenarios of this kind by
means of optimizations and, therefore, in these cases the use of XA
does not normally result in reductions in performance.

The most common scenario in which XA is used is the simultaneous update of a
relational database and a message queue (or message topic) in one transaction, as
shown in the preceding image. Other prevalent scenarios of this kind include
accesses to two or more databases, or several messaging systems (Rahm 1994).

An XA transaction must coordinate all the participating resource types in the
event of a rollback, and must isolate the updates from other transactions (see the
information on transaction isolation). Without XA, messages that are sent to a queue
or a topic may be read before the transaction is completed. If XA is used, the queue
(or the topic) is only released when the transaction has been successfully completed,
which means that other transactions do not have access to the message.

Base Technologies

[72]

OSGi
OSGi is a hardware-independent, dynamic software platform that simplifies the
process of modularizing distributed applications and their services, and managing
them throughout their entire life cycle (Wütherich et al. 2008). The OSGi platform
requires a Java Virtual Machine (JVM) and provides a framework on the basis of the
JVM. The OSGi alliance (Open Service Gateway initiative) is an industry consortium
consisting of a number of manufacturers from different sectors, which originally
developed the platform for use in embedded systems. The most important features
of OSGi are as follows:

•	 OSGi architecture: OSGi defines the following layers as its base architecture:
°° Execution environment
°° Module
°° Life cycle
°° Services
°° Security
°° Applications

•	 Component model: The fundamental component model consists of a bundle.
In OSGi, bundles are also referred to as services, which are managed in a
service registry. However, the concept of a service in OSGi has nothing in
common with the concept of a service in an SOA. The specification of the
OSGi service platform defines a runtime environment (container) based
on a Java Virtual Machine and Java base architecture. OSGi focuses on the
component, which is packaged as a bundle, and which can publish its
interface through the service registry, making it available for use. A
monitored life cycle is defined for such components.

•	 Collaborative Software Environment: OSGi bundles can collaborate
through the OSGi service registry, in which the services a bundle
provides are registered.

The specification of the OSGi service platform defines a runtime environment
(container) based on a Java Virtual Machine (JVM). One of the important
enhancements is the option of equipping the software bundles with independent class
loaders and, therefore, running different versions of the same software in parallel on
the same JVM. In addition, the OSGi container gives the bundles their own service
life cycle, which enables services to be installed, started, stopped, removed, and
updated at runtime. Both these factors—versioning and life cycle—are of particular
interest in productive environments where high levels of availability are needed.
OSGi is therefore ideal for integrating embedded systems, for example, as there is no
maintenance window needed for upgrading components.

Chapter 2

[73]

OSGi has published 4 specifications. The majority of OSGi implementations are based
on the release 3 specification from 2003 (OGSi 2003). Well-known implementations
include the Eclipse 3.0 platform (Gruber et al. 2005) and the "software in the car"
platform developed by BMW (Saad 2003) and Daimler (Heinisch, Simons 2004).
As of October 2009, there are five certified OSGi implementations for release 4.

The architecture of the OSGi service platform enables a range of independent service
modules to be run in parallel on the same JVM and allows them to be monitored,
managed, and updated throughout the entire software life cycle, as shown in the
preceding diagram. Remote maintenance is also possible. The interdependencies of
bundles are resolved and managed by the OSGi container. The implementations and
products that are currently available consist of the OSGi framework and a number
of existing software bundles, which, because of their modular structure, can be
dynamically added to or removed from a runtime environment.

The current OSGi specification focuses on the component, which is packaged as a
bundle. A compoment can publish its interface using the service registry and make it
available for use. Components of this kind have a monitored life cycle with options
for (re)deployment.

The OSGi framework covers the following points:

•	 Applications can share one individual virtual machine
•	 Class loader problems
•	 The isolation and security of individual applications and services
•	 Controlled communication and collaboration between applications
•	 The use of shared resources (such as libraries)

Base Technologies

[74]

•	 Life cycle management of applications and services (for example, versioning
applications and services)

•	 Policies are offered by bundles

OSGi architecture
The most important layers of the OSGi architecture are the execution environment,
modules, life cycle management, and service registry, as shown in the
following diagram:

Let's have a look at these layers one by one:

•	 Execution environment: A Java environment, such as J2SE.
•	 Modules: All the classes and resources grouped together as bundles. A bundle

can include entire applications, parts of applications, individual service
components, and entire libraries. The starting point at runtime is the OSGi
system bundle, which makes the OSGi software infrastructure available.

•	 Life cycle management: A defined life cycle for each bundle in the form of
an API. This API has the following life cycle statuses, as shown in the
following diagram:

°° install
°° resolve
°° start
°° stop
°° refresh
°° update
°° uninstall

Chapter 2

[75]

•	 Service registry: The management of all services. This includes identifying
services on the basis of their interface definition or properties, and sending
notifications between services. It also involves binding to one or more
services using program controls, pre-defined standard behavior rules, and
distribution configurations.

OSGi bundles
The OSGi component model consists of bundles. These are services, which are
managed in a service registry. However, the OSGi service is nothing more than the
general interface concept of a software component. It defines a decoupled component
model that supports the reusability and the use of small components.

A bundle represents an application deliverable, which is similar to an application
executable, in the form of a JAR file. A bundle registers one or more services. A service
is specified in a Java interface and can be implemented by several bundles. Services
are bound to the bundle life cycle. A query language can be used to search for
services registered by other bundles.

Base Technologies

[76]

A bundle contains program code, additional resources (optional), and a manifest file
that defines the bundle context. The OSGi framework reads the manifest and installs
the code and resources in the OSGi runtime environment on this basis. Dependencies
with other bundles and services are also resolved using the information in the
manifest. At runtime, the framework starts the bundle via the bundle activator
and manages the class path and the dependencies (references to other bundles and
services). The framework can also stop a bundle by means of the bundle activator.

Collaborative model
Bundles can collaborate in two ways:

•	 Through service objects
•	 As shared bundles/packages (package sharing)

A dynamic registry allows a bundle to find other service objects. The framework
manages the dependencies between the bundles and services transparently.

Java Connector Architecture (JCA)
JCA is a general architecture in the Java Enterprise Edition (JEE) environment used
to connect heterogeneous systems, such as legacy applications, using a standardized
interface in the form of a resource adapter. Agreements (contracts) laid down
in the JCA specification guarantee collaboration with other system components
(JCASpec 2003).

Uses
Java Connector Architecture (JCA) defines standards for connecting the Java
Enterprise Edition platform with heterogeneous, distributed Enterprise Information
Systems (EIS). JCA enables EIS to be integrated with application servers and business
applications as a result of its developer API and manufacturer API specifications.
This guarantees that resource adapters are reusable. The manufacturer of a business
application can be certain that the application will communicate in a uniform way with
a different EIS. In the same way, the manufacturer of an EIS, which is supplied with a
JCA adapter can be sure that the EIS can be addressed by all the applications on a Java
EE application server, and that the EIS can be integrated into a Java EE architecture in
compliance with Java standards. JCA adapters can also be used to integrate an EIS into
an ESB or into a BPEL process server.

Chapter 2

[77]

JCA supports the request/response model with transactions that are more or less
short-lived, for example, those from a database environment. JCA does not support
more complex, long-lasting transactions, such as those required in workflows and
integration scenarios. Java Business Integration (JBI), covered later, which has a
communication concept based on the mediated message exchange pattern, is
intended to close this gap in the Java EE standard.

JCA components
Each of the components of JCA are detailed in the following figure:

Let's take a look at these components one by one:

•	 Resource adapter: This is the core of the JCA functionality and contains
the Java interfaces/classes in the form of the resource adapter archive.
The resource adapter runs in an application server.

•	 Common Client Interface (CCI): The CCI is the API for the resource adapter.
It is used to implement the application contract. This is the API applications
use to access the EIS.

•	 Container-Component Contracts: These link the application that uses a JCA
adapter and the application server. They define the services provided by
the component.

•	 System-Level Contracts: These link the application server and the EIS.
They also extend the application server with regard to the EIS, so that
connection pooling, transaction management, and security management can
be used when accessing an EIS. They add connection pooling, transaction
management, and security management functionality to the application server.

•	 Enterprise Information System: This is the system with which the
connection is to be created using JCA.

Base Technologies

[78]

Contracts
JCA defines a series of different system-level contracts (agreements), which determine
the way in which the application server, JCA, EIS, and application work together:

•	 Connection management: This concerns managing the connection pool with
the EIS. The application is provided with connections from this pool, and the
application server is responsible for making valid connections available. The
functionality for putting in place and testing the connection to the EIS must
be in place.

•	 Transaction management: This allows the application server to use a
transaction manager to support transactions across several resource
managers. The contract also enables internal EIS transaction mechanisms
to be used without the need for an external transaction manager.

•	 Security management: This supports a secure environment on the application
server in order to protect valuable information provided by the EIS.

Optional system contracts are available covering life cycle management, work
management, transaction inflow, and message inflow management, as detailed next:

•	 Life cycle management: This contract enables the application server to
manage the life cycle of the resource adapter. It provides a mechanism for the
application server to bootstrap a resource adapter during application server
startup, or during the installation of the adapter. It also provides a means
for the application server to notify the resource adapter instance when it is
uninstalled, or when an orderly shutdown of the application server takes place.

•	 Work management: This contract ensures that the application manager is
responsible for thread management and the thread pool. Resource adapters
can transfer their activities (monitoring network end points, calling application
components, and so on) as individual instances to the application server for
execution. The adapter is no longer responsible for managing threads itself.
Instead, the application server must create new threads for execution or take
them from a pre-configured pool. However, the resource adapter continues
to control the transaction context where the threads are executed under the
control of the application server.

•	 Transaction inflow management: This contract enables the resource adapter
to propagate a transaction imported from the EIS to the application server. It
also ensures that the resource adapter transfers calls for transaction completion
initiated by the EIS, or calls for crash recovery, to the application server to
guarantee that the ACID properties of the transaction behavior are not lost.

Chapter 2

[79]

•	 Message inflow management: This contract allows the resource adapter to
provide asynchronous delivery of messages to the message end points of
the application server, regardless of the specific message style, semantics,
and infrastructure. The contract also describes an option for expanding the
application server in order to integrate different message providers [Java
Messaging Service (JMS), Java API for XML Messaging (JAXM)] using the
concept of a resource adapter.

Java Business Integration (JBI)
The functionality of an ESB is described in general terms in the Java Business
Integration (JBI) specification (Ten-Hove, Walker 2005). JBI implements a component
architecture. JBI is based primarily on two constructs: service engines and binding
components. The service engines contain the business logic, while the binding
components merely act as a proxy for the service users (Wallrab 2005).

The tasks of a JBI component are as follows:

•	 Receiving and sending messages. In JBI this is carried out by the
binding components.

•	 Providing interfaces for format conversions. The converter and the business
logic needed to transform messages are referred to as the service engine in JBI.

•	 Installing components (binding component or service engine).
•	 Deploying components (binding component or service engine).
•	 Providing mechanisms for managing the life cycle of a component.
•	 Controlling and monitoring components.

Requests from one component to another are decoupled, and take the form of
messages, which the JBI infrastructure passes to the recipients. JBI supports
different message exchange patterns:

•	 One-way: The service consumer issues a request to the service provider.
No path for reporting error messages is provided.

•	 Reliable one-way: Similar to the one-way pattern, but the provider can
inform the consumer of a fault through a response path.

•	 Request/response: The service consumer issues a request to the service
provider and waits for a response. In this case, the provider can also inform
the consumer of a fault.

•	 Request/optional response: The service consumer issues a request to the
service provider. A response is optional. Both the consumer and the provider
can inform each other of faults.

Base Technologies

[80]

JBI components
The most important JBI components are detailed in the following diagram:

Let's take a look at these components one by one:

•	 JBI environment: A JBI environment is represented by an individual
Java Virtual Machine. Therefore, JBI can take the form of an independent
ESB, or can be integrated into an application server and its JVM. Where
the environment is integrated into an application server, the Enterprise
JavaBean (EJB) components installed on the server can function as
service providers, or as consumers of the ESB.

•	 JBI container: This is comparable to the EJB container of a Java EE
application server. The JBI environment itself is a container, which
provides service engines and binding components.

•	 Pluggable components: Service engines (SEs) and binding components (BCs)
are pluggable components. They are connected to the normalized message
router through delivery channels, which allows them to communicate
with one another.

•	 Service engine (SE): These are service providers or consumers that are
installed locally in a JBI environment. They represent the business components
or the essential functionality that supports the business logic, such as
Extensible Stylesheet Language (XSL) transformations or database accesses.

•	 Binding components (BCs): These encapsulate the communications and
decouple the communication functionality from the business components
(SEs). Binding components allow remote access to distributed services, and
also enable distributed services to access the JBI environment.

•	 Normalized Message Router (NMR): This is the backbone of the JBI
architecture. All communications between providers and consumers
pass through this router. The NMR uses a canonical format.

Chapter 2

[81]

•	 Normalized message: This type of message has two parts. There is the
header, which contains the metadata (metadata in this context is also
referred to as message context data), and the payload, in the form of an
XML structure that contains the normalized message. The structure
of the normalized message is comparable to that of XML messages
from Java Message Service (JMS).

•	 Delivery channel (DC): This connects a message source with a message
target. A channel is a virtual construct that conceals the communication
details from the providers and consumers and decouples them from the
NMR. Delivery channels connect components (providers and consumers) to
the NMR, which is responsible for coordinating communications. Channels
are logical addresses in the ESB that encapsulate the physical addresses.

Service Component Architecture (SCA)
Service Component Architecture (SCA) is a collection of OASIS (a non-profit
consortium driving the adoption of open standards for the global information
society) specifications, which describe a model for developing applications and
systems on the basis of an SOA (Edwards 2007). SCA models solutions as groups of
service components that provide services and include references to other services.
Functionality is made available externally as a service in the form of interfaces.
Service components have properties that describe the specific characteristics of the
components, and are used to configure them.

Services can be combined to form composites. A composite is a composition of SCA
components that belong together. These components represent a coarse granular
business function and form a separate, functional, reusable unit. Composite services
can also contain components that are only used within these composites. The
functionality of these internal components is not, however, made available
externally as a service in the form of interfaces.

Bindings describe how a service can be accessed. SCA has declarative mechanisms
for this purpose, which are based on open specifications. The specifications not only
determine how the defined bindings that are currently available can be described,
but also how extensions for new protocols should be implemented.

Base Technologies

[82]

SCA specification
The SCA specification is made up of four parts, as detailed in the following diagram:

Let's discuss these four parts further:

•	 SCA assembly model: This describes how SOA applications are created with
SCA. It also defines how individual modules, in the form of components, can
be combined and integrated to produce more complex modules, and how
these modules communicate.

•	 SCA policy framework: This defines how security, transaction behavior,
message exchange, and reliable messaging can be specified declaratively
for a service.

•	 SCA client and implementation: This defines how SCA components can
be implemented in different programming languages and on different
platforms (for example Java, .NET, C++).

•	 SCA binding specification: This describes how various access technologies
and protocols (such as SOAP, JMS, RMI-IIOP, REST, HTTP) can be used.

Chapter 2

[83]

SCA elements
SCA and SCA components include the elements detailed in the following diagram:

Here's a brief description of these elements:

•	 Service: A service represents the starting point for access to an SCA
component or composite.

•	 Reference: A reference is a pointer to an external service.
•	 Binding: This is both an interface and a binding. In this case, an interface is

an external declaration of the service, represented by a Java interface, a Web
Service Definition Language (WSDL) port type, a Business Process Execution
Language (BPEL) partner link, a C++ class, and so on. An interface binding
can be bound to a service or a reference.

•	 Property: This is a type/value pair used to describe and configure specific
characteristics of the component.

•	 Implementation: This defines the way in which an SCA component
is implemented or, in other words, the form that the logic takes. The
implementation types can be some Java code, for example, but can
also be a human interaction.

•	 Wire: This is the mechanism that links two SCA components together.
Normally, one component's reference is bound to the service offered by
another component.

Base Technologies

[84]

Composites
A composite component is a logical construct that consists of SCA components that can
form part of a single process on a single computer, or can be distributed across several
processes on several computers. An application can be created with a single composite.
The individual SCA components that make up the composite can be implemented
using the same or different technologies. SCA applications can be called by a non-SCA
technology, such as a web service client or a servlet. They can also access external data
sources and other applications.

An SCA composite is described by a configuration file. This uses an XML format,
Service Component Definition Language (SCDL, or Skiddle), to describe the
components and the details of their relationships with one another, and with
other external components.

Composites and components are the core elements of every SCA application.

Service Data Objects (SDO)
Service Data Objects (SDO) offer a consistent model for managing data, regardless
of its source system and source format (Beatty et al. 2003). SDO makes use of a
Disconnected Data Architecture. SDO supports the management of data that has
been decoupled from its source and transported across different systems and tiers,
by subsequently synchronizing it with its source again. SCA and SDO can be used
independently of one another, and their specifications have nothing in common.
However, a combination of the two specifications represents a powerful and flexible
tool for developing distributed applications.

The SDO specification was published jointly by BEA and IBM, standardized as
JSR 235, and transferred to the Open Service-Oriented Architecture (OSOA). The
current version of the specification is version 2.1 for Java, COBOL, C++, and C
(Barber, Edwards 2007).

Chapter 2

[85]

SDO architecture
SDO consists of data objects, data graphs, and data access services, as shown in the
following diagram:

Now let's take a look at these three components:

•	 Data object: This is the object-oriented representation of the fundamental
data. It encapsulates the data attributes in the form of simple values, as a
reference to other objects and the descriptive metadata.

•	 Data graph: This represents a Data Transfer Object (DTO), which is
transferred between the different tiers of an architecture. It can be made up
of several individual data objects by using object graphs. These can include,
for example, a master data set consisting of several detail data sets and their
relationships to one another. In addition to the user data, changes to the
object are included, or in other words, all the data objects that have been
added, modified, and deleted are included.

•	 Data access service: This is the interface between the client and the data
sources. The data access service is responsible for decoupling the applications
from the physical accesses to the source systems, which hold the data. This
service uses the data access object pattern.

SDO also provides metadata for describing data objects, including data types,
relationships between data objects, and constraints. The metadata API is used by
tools and other frameworks to simplify the development of applications that
make use of SDO.

Base Technologies

[86]

Implemented patterns
SDO implements a series of patterns, including:

•	 Data Access Object (DAO): The DAO encapsulates the calls to the
data access layer.

•	 Data Transfer Object (DTO): The DTO is a transport container for data objects
moving between different layers, tiers, or systems, and it reduces the number
of method calls from remote interfaces.

•	 Entity object (EO): The EO is an object from the application domain. It
represents entities from the business domain.

•	 Disconnected data usage: Data objects can be generated by data system
accesses. The connection to the data system can be broken and recreated
later, and changes to the data object can be propagated to the data system.

•	 Optimistic concurrency semantics data access: As a result of disconnected
data usage, after the connection to the data system has been broken, the
resources must be released for further accesses as part of the resource
management process. An optimistic access strategy is put in place in order
to maintain data consistency, despite competing accesses. When changes to
data are propagated back to the data system once the connection has been
re-established, the data in question is checked to determine whether it has
been modified by another process in the meantime (after the initial query).
This involves, for example, comparing the time stamps or counters. The
original data set (the data that was read initially) may also be included with
the modified data, and compared with the current data in the data system.

Process modeling
One important base technology used in the majority of integration projects consists of
business process modeling tools. The modeling process is always done using graphical
tools. The Trivadis Integration Architecture Blueprint envisages the usage of graphical
tools that support a clearly defined modeling notation. A number of these notations
are available. The most important are Event-Driven Process Chain (EPC), Business
Process Modeling Notation (BPMN), and Business Process Execution Language
(BPEL), which are all explained next:

Chapter 2

[87]

Event-driven Process Chain (EPC)
The Event-driven Process Chain (EPC) is a model used to represent business processes
in an organization, as part of business process modeling (Scheer, Werth 2005). The
notation was developed as a part of the Architecture of Integrated Information
Systems (ARIS) for modeling business processes, and is a central element of the ARIS
concept (Scheer et al. 2006). An example of an EPC is shown in the following diagram:

EPCs represent work processes in graphical form using semi-formal modeling
language with syntax rules. This allows business processes to be systematized and
parallelized, which saves time and money. As decisions are made within the process
on the basis of conditions and rules, logical operators are used in the EPC (AND, OR,
EXCLUSIVE OR). In addition to these operators, the basic model of the Event-Driven
Process Chain includes events and functions. Objects are joined together in directional
diagrams with lines and arrows in a 1:1 mapping (with the exception of logical links).
In a chain of this kind, events and functions are alternate objects. This means that they
form an alternating sequence, which results in a diagram being created. An important
feature of the EPC is the representation of the functions that make up a process in a
chronological and logical sequence.

Base Technologies

[88]

Business Process Modeling Notation (BPMN)
The Business Process Modeling Notation (BPMN) is an OMG standard (OMG 2008). It
provides symbols that enable technical and IT specialists to model business processes
and workflows (White 2004). A BPMN example is shown in the following diagram:

The BPMN is designed to represent business processes in graphical form. The BPMN
standards document also defines the semantics, in other words, the meaning of the
symbols, but it places less emphasis on this aspect and does not focus on formal
definitions. BPMN diagrams are referred to as Business Process Diagrams (BPD),
and are intended to provide support for experts who are representing or developing
processes. The specification does not include a standardized format for storing and
exchanging diagrams that are created using BPMN.

The BPMN standard defines how a BPMN diagram can be converted to BPEL, so
that the processes described can be run by a software package. However, BPMN
and BPEL are not able to express the same types of concepts.

It is worth noting that BPMN models are generally underspecified, and
lack some of the details required for execution.

The graphical elements of the BPMN can be broken down into:

•	 Flow objects: These are nodes in the business process diagram.
Flow objects represent either an activity (a task to be completed),
a gateway (decision point), or an event.

•	 Connecting objects: These are the links in the business process diagram.
Connecting objects are either sequence flows, which link activities, gateways,
and events, or message flows, which illustrate the movement of messages
between different objects.

•	 Swimlanes: These are the objects used to represent participants and systems.
•	 Artifacts: Other elements such as data objects (the artifacts processed by a

business process), groups (the option of creating groups to represent
sub-processes), and annotations (comments) are referred to as artifacts.

Chapter 2

[89]

Business Process Execution Language
(BPEL)
The first versions of Business Process Execution Language (BPEL) and BPEL4WS
for web services were developed by IBM, Microsoft, Siebel, BEA, SAP, and Oracle
in 2002 (version 1.1 was issued in April 2003). XLANG (from Microsoft) and WSFL
(from IBM) were integrated into BPEL (Andrews et al. 2003). The most recent version
(version 2.0) was published in the form of a committee draft on January 31, 2007
(Alves et al. 2006).

BPEL allows a process to be described and represented. The description takes a
graphical form and is created in a BPEL editor. However, other workflow modeling
techniques can also be used. In contrast to the other methods, the modeled business
process can directly generate the controls for the workflow engine (BPEL engine).
BPEL enables various different services to be linked together to form a
complete application.

BPEL distinguishes between two different types of business processes: business
protocols and executable business processes. Business protocols are abstract process
descriptions that act as interaction patterns for the executable business processes.

A BPEL process consists of a process interface and a process diagram. The process
interface is formulated in WSDL, as every BPEL process is a web service. The process
diagram defines the process flow (actions), the instancing method (correlation sets),
the partners (partner link), and the fault management mechanisms (fault manager).

The process is structured using a combination of hierarchical blocks and diagrams.
The blocks can be nested. In BPEL they take the form of structured activities,
which are similar to the constructions of a structured programming language. One
typical feature is the <switch> structured activity, which defines a conditional
implementation. Structured activities control the flow of atomic activities and form
the nodes of an execution tree. The atomic activities control the individual steps in a
BPEL process, for example, <invoke> calls a web service.

Base Technologies

[90]

The application of process modeling
Almost every integration project needs business processes and other workflows to
be modeled. A service-oriented integration would be almost impossible without
the use of BPEL. Data integrations are usually accompanied by modeling of Extract,
Transform, and Load (ETL) processes. In addition, the majority of commercial ESB
and middleware infrastructures use graphical tools to model the routing of messages,
or have their own process modeling tools. This means that it is advisable for every
integration architect to be familiar with the use of these tools. Currently, the most
important process modeling notation is BPEL.

Summary
Having read this chapter, you should now have a better understanding of the
base technologies related to the implementation of solutions based on the
Trivadis Integration Architecture Blueprint. You should now be familiar with:

•	 Transactions and transaction strategies
•	 Open Grid Services infrastructure (OGSi)—the dynamic,

hardware-independent software platform
•	 Java Connector Architecture (JCA)—the general architecture for connecting

heterogeneous systems in the Java EE world
•	 Java Business Integration (JBI)—a standardization of the functions of an

Enterprise Service Bus (ESB)
•	 Service Component Architecture (SCA)—a component model for developing

applications and systems based on a SOA
•	 Service Data Objects (SDO)—supporting a Disconnected Data Architecture
•	 Process modeling and the most important standards for modeling

business processes

We have now covered the fundamental concepts and technologies related to the
implementation of integration solutions. In the next chapter, you will finally learn
what the Trivadis Integration Architecture Blueprint is, how it is structured into
different layers, and why it has been defined this way.

Integration Architecture
Blueprint

This chapter describes the Trivadis Integration Architecture Blueprint and its
components. It will:

•	 Cover the information flow and the mutual dependencies between the
components of the blueprint

•	 Define the communication layer, which is part of the integration
domain level

•	 Contain a description of the collection/distribution layer, which forms part
of the integration domain level

•	 Explain the mediation layer, which belongs to the integration domain level
•	 Describe the process layer, which is a component of the application level
•	 Cover notation and visualization, which contains information about tools for

integration architects

Dissecting the Trivadis Integration
Architecture Blueprint
The Trivadis Integration Architecture Blueprint specifies the building blocks
needed for the effective implementation of integration solutions. It ensures
consistent quality in the implementation of integration strategies as a result
of a simple, tried-and-tested structure, and the use of familiar integration
patterns (Hohpe, Wolf 2004).

Integration Architecture Blueprint

[92]

Standards, components, and patterns used
The Trivadis Integration Architecture Blueprint uses common standardized
techniques, components, and patterns, and is based on the layered
architecture principle.

A layered architecture divides the overall architecture into different layers with
different responsibilities. Depending on the size of the system and the problem
involved, each layer can be broken down into further layers. Layers represent a logical
construct, and can be distributed across one or more physical tiers. In contrast to
levels, layers are organized hierarchically, and different layers can be located on the
same level. Within the individual layers, the building blocks can be strongly cohesive.
Extensive decoupling is needed between the layers. The rule is that higher-level layers
can only be dependent on the layers beneath them and not vice versa. Each building
block in a layer is only dependent on building blocks in the same layer, or the layers
beneath. It is essential to create a layer structure that isolates the most important
cohesive design aspects from one another, so that the building blocks within the layers
are decoupled.

The blueprint is process oriented, and its notation and structure are determined by
the blueprint's dependencies and information flow in the integration process. An
explanation of how the individual layers, their building blocks, and tasks can be
identified from the requirements of the information flow is given on the basis of a
simple scenario. In this scenario, the information is transported from one source to
another target system using an integration solution.

In the blueprint, the building blocks and scenarios are described using familiar
design patterns from different sources:

•	 (Hohpe, Wolf 2004)
•	 (Adams et al. 2001)
•	 (Coral8 2007)
•	 (Russel et al. 2006)

These patterns are used in a shared context on different layers. The Trivadis
Integration Architecture Blueprint includes only the integration-related parts of
the overall architecture, and describes the specific view of the technical integration
domain in an overall architecture. It focuses on the information flow between
systems in the context of domain-driven design.

Chapter 3

[93]

Domain-driven design is a means of communication, which is based on a profound
understanding of the relevant business domain. This is subsequently modeled
specifically for the application in question. Domain models contain no technical
considerations and are restricted exclusively to business aspects. Domain models
represent an abstraction of a business domain, which aims to capture the exemplary
aspects of a specific implementation for this domain. The objectives are:

•	 To significantly simplify communication between domain experts and
developers by using a common language (the domain model)

•	 To enable the requirements placed on the software to be defined more
accurately and in a more targeted way

•	 It must be possible to describe, specify, and document the software more
precisely and more comprehensibly, using a clearly defined language,
which will make it easier to maintain

The technical aspects of architecture can be grouped into domains in order to create
specific views of the overall system. These domains cover security, performance, and
other areas. The integration of systems and information also represents a specific
view of the overall system, and can be turned into a domain.

Integration domain is used to mean different things in different contexts. One widely
used meaning is "application domain," in other words, a clearly defined, everyday
problem area where computer systems and software are used. Enterprise architectures
are often divided into business and technical domains:

•	 Business domains may include training, resource management, purchasing,
sales or marketing, for example.

•	 Technical domains are generally areas such as applications, integration,
network, security, platforms, systems, data, and information management.

The blueprint, however, sees integration as a technical domain, which supports
business domains, and has its own views that can be regarded as complementary
to the views of other architecture descriptions.

Integration Architecture Blueprint

[94]

In accordance with Evans (Evans, 2004), the Trivadis Integration Architecture
Blueprint is a ubiquitous language for describing integration systems. This and the
structure of the integration domain on which it is based, have been tried and tested
in a variety of integration projects using different technologies and products. The
blueprint has demonstrated that it offers an easy-to-use method for structuring and
documenting implementation solutions. As domain models for integration can be
formulated differently depending on the target platform (for example, an object-
oriented system or a classic ETL solution), the domain model is not described in
terms of object orientation. Instead, the necessary functionality takes the form of
building blocks (which are often identical with familiar design patterns) on a higher
level of abstraction. This makes it possible to use the blueprint in a heterogeneous
development environment with profitable results.

An architecture blueprint is based on widely used, tried-and-tested techniques,
components, and patterns, which are grouped into a suitable structure to meet the
requirements of the target domain.

The concepts, the functionality, and the building blocks to be implemented are
described in an abstract form in blueprints. These are then replaced or fine-tuned
by product-specific building blocks in the implementation project. Therefore,
the Trivadis Integration Architecture Blueprint has been deliberately designed
to be independent of individual vendors, products, and technologies. It includes
integration scenarios and proposals that apply to specific problems, and can be used
as aids during the project implementation process. The standardized view of the
integration domain and the standardized means of representation enable strategies,
concepts, solutions, and products to be compared with one another more easily in
evaluations of architectures.

The specifications of the blueprint act as guidelines. Differences between this model
and reality may well occur when the blueprint is implemented in a specific project.
Individual building blocks and the relationships between them may not be needed, or
may be grouped together. For example, the adapter and mapper building blocks may
be joined together to form one component in implementation processes or products.

Structuring the integration blueprint
The following diagram is an overview of the Trivadis Integration Architecture
Blueprint. It makes a distinction between the application and information view
and the integration view.

Chapter 3

[95]

The application and information view consists of external systems, which are to
be connected together by an integration solution. These are source or target entities
in the information flow of an integration solution. Generally one physical system
can also take on both roles. The building blocks belonging to the view, and the view
itself, must be regarded as external to the integration system that is being described
and, therefore, not the subject of the integration blueprint. The external systems can
be divided into three main categories:

•	 Transactional information storage: This includes classic relational database
management systems (RDBMS) and messaging systems (queues, topics). The
focus is on data integration.

•	 Non-transactional information storage: This is primarily file-based systems
and non-relational data stores (NoSQL) with a focus on data integration.

•	 Applications: Applications include transactional or non-transactional
systems that are being integrated (ERP—Enterprise Resource Planning,
CMS—Content Management System, and so on) and can be accessed through
a standardized API (web service, RMI/IIOP, DCOM, and so on). The focus is
on application and process integration.

Integration Architecture Blueprint

[96]

The integration view lies at the heart of the integration blueprint and is
divided (on the basis of the principle of divide and conquer) into the
following levels:

•	 Transport level: The transport level encapsulates the technical details of
communication protocols and formats for the external systems. It contains:

°° Communication layer: The communication layer is part
of the transport level, and is responsible for transporting
information. This layer links the integration solution with
external systems, and represents a type of gateway to the
infrastructure at an architectural level. It consists of transport
protocols and formats.

•	 Integration domain level: The integration domain level covers the classic
areas of integration, including typical elements of the integration domain,
such as adapters, routers, and filters. It is divided into:

°° Collection/distribution layer: This layer is responsible
for connecting components. It is completely separate from
the main part of the integration domain (mediation). The
building blocks in this layer connect the mediation layer
above with the communication layer below. The layer is
responsible for encapsulating external protocols and their
technical details from the integration application, and
transforming external technical formats into familiar internal
technical formats.

°° Mediation layer: This layer is responsible for forwarding
information. Its main task is to ensure the reliable forwarding
of information to business components in the process
layer, or directly to output channels that are assigned to
the collection/distribution layer, and that distribute data to
the target systems. This is the most important functionality
of the integration domain. In more complex scenarios,
the information forwarding process can be enhanced by
information transformation, filtering, and so on.

•	 Application level: The application level encapsulates the integration
management and process logic. It is an optional level and contains:

°° Process layer: The process layer is part of the application
level, and is responsible for orchestrating component
and service calls. It manages the integration processes by
controlling the building blocks in the mediation layer (if they
cannot act autonomously).

Chapter 3

[97]

The integration view contains additional functionality that cannot be
assigned to any of the levels and layers referred to above. This functionality
consists of so-called cross-cutting concerns that can be used by building
blocks from several other layers. Cross-cutting concerns include:

•	 Assembly/deployment: Contains configurations (often declarative or
scripted) of the components and services. For example, this is where the
versioning of Open Service Gateway initiative (OSGi) services is specified.

•	 Transaction: Provides the transaction infrastructure used by the building
blocks in the integration domain.

•	 Security/management: This is the security and management infrastructure
used by the building blocks in the integration domain. It includes, for
example, libraries with security functionality, JMX agents, and
similar entities.

•	 Monitoring, BAM, QoS: These components are used for monitoring
operations. This includes ensuring compliance with the defined Service
Level Agreements (SLA) and Quality of Service (QoS). Business Activity
Monitoring (BAM) products can be used for monitoring purposes.

•	 Governance: These components and artifacts form the basis for SLAs and
QoS. The artifacts include business regulations, for example. In addition, this
is where responsibilities, functional and non-functional requirements, and
accounting rules for the services/capacities used are defined.

The road to the integration blueprint
The Trivadis Integration Architecture Blueprint connects applications and systems
together with its levels and layers. From an integration perspective, the application/
system is responsible for providing and storing information (application and
information view). The tasks of the integration solution include transporting
information from the source systems, together with collecting, transforming, filtering,
forwarding, and distributing information, and transporting it to the target systems.
These tasks can only be performed efficiently if the integration view has a logical
structure. It must be possible for the tasks to be distributed across different layers
in order to give improved decoupling.

The fundamental tasks are:

•	 Transporting
•	 Connecting
•	 Forwarding

Integration Architecture Blueprint

[98]

These tasks result in the creation of communication, collection, mediation, and
distribution layers. Each layer has a specific role to ensure that it covers the
responsibilities and related tasks. These roles are that of a transporter, collector,
mediator, and distributor. The information flow in an integration solution determines
the call sequence for the building blocks. It is advisable to combine the collection and
distribution layers to form a single layer, as both of these layers perform their
tasks—collecting and distributing data—using the same building blocks. In the
architecture blueprint this layer is referred to as the collection/distribution layer. The
result of introducing this layer is that the source and target systems are on the same
level from the perspective of the integration solution. As a consequence, the direction
of the information flow changes.

The integration solution consists of the mediation (forwarding), collection/distribution
(connecting), and communication (transporting) layers. The mediation layer requires
additional building blocks that control the integration process, as it can seldom act
independently or passively. The orchestrator manages the information flow,
working together with the job scheduler or workflow building blocks.

The integration blueprint is therefore divided into the following four layers:

•	 Process
•	 Mediation
•	 Collection/distribution
•	 Communication

The allocation of the various layers of the Trivadis Integration Architecture Blueprint
to the three levels application, integration domain, and transport enables an
integration solution to be embedded in an overall architecture. From an application
perspective, the management of the information flow as a business process is essential,
while standardized and reliable communication is important for the technical
infrastructure. In contrast to other common approaches to integration, the integration
blueprint is the central component of an overall solution. As a result, the integration
architecture is always considered, designed, specified, implemented, and operated as
part of the design process for applications and systems.

Applications and integration
In simple cases, a single integration process consists of a source system, which reads
information from an integration solution and a target system, to which information
from the integration solution is written, as shown in the following diagram:

Chapter 3

[99]

A distinction is made between two different views as follows:

•	 The application and information view consists of external systems, which
are to be connected together using an integration solution. These are source
or target entities in the information flow. Generally one physical system can
also take on both roles. The external systems can be divided into three main
categories: transactional information storage, non-transactional information
storage, and applications.

•	 The integration view lies at the heart of the integration architecture blueprint.

The tasks and the building blocks of the two views are described in the
following table:

View Building block Task
Application and
Information

Source system
Target system

Providing information Storing information

Integration Integration
solution

Collecting information from the sources,
transporting data using external
infrastructure components, transforming and
forwarding information, and distributing it
to target systems

Source and target systems frequently use different information formats. As a result,
the integration solution must be able to process both formats and transform data
from one format to another. In the preceding diagram, the information is converted
from the S (source) into the T (target) format, or from the diamond to the circle
format. The more systems and formats that are involved in an integration process,
the more comprehensive and complex the transformation logic is. Adaptations to
other systems at a later stage are often complicated and costly.

Integration Architecture Blueprint

[100]

Layers in the integration solution
The tasks of the integration view include:

•	 Transporting information (communication layer) from the source systems
•	 Assembling information (collection layer)
•	 Transforming, filtering, and forwarding (mediation layer)
•	 Distributing information (distribution layer),
•	 Transporting information (communication layer) to the target systems.

This results in the creation of layers, as shown the following diagram:

The diagram shows the layers without the optional process layer. In the case of
simple information flows, this layer can be omitted. It will be described in a
later section.

The division of the integration view into different layers allows for improved
decoupling through the Separation of Concerns (SoC) and the break down
into the following three goals:

•	 Transporting: The communication layer transports the information using
the appropriate communication protocols.

•	 Connecting: The collection layer collects the data from the transport building
blocks and forwards it to the building blocks of the mediation layer. The
distribution layer distributes the data to the transport building blocks and
collects it from the mediation layer.

•	 Forwarding: The mediation layer has the goal of forwarding information to
the correct building block in the distribution layer. It receives the information
from the collection layer.

Each layer has a specific role to ensure that the target systems and the related tasks
are covered. The resulting roles are transporter, collector, mediator, and distributor.

Chapter 3

[101]

Defining a mediator pattern
A mediator is a software design pattern which belongs to the group
of behavioral patterns, because it can influence the running behavior
of a program. The pattern is used to manage the cooperative behavior
of objects. However, the objects do not cooperate directly with one
another, but using a mediator.
The mediator provides a standardized interface to replace a series of
interfaces belonging to a subsystem.

The use of a mediator brings the following range of benefits:

•	 The cooperative behavior can be centrally managed.
•	 Changes in the cooperative behavior can take place independently of

the components involved.
•	 The communication protocol used between the components can be simplified.

Information flow and roles
The addition of roles to the layer diagram enables the identification of the building
blocks which achieve the goals and objectives of the integration layers.

The information flow between the source and the target system, the roles of the
individual layers, and the formats used are shown in the next diagram:

Integration Architecture Blueprint

[102]

The following table describes the roles in detail

Layer Role Description
Communication Transporter Transports the information from the source

systems to the integration solution or to the
adapter building block in the collection layer.
The information format is that of the source
system. In other words, if a table is accessed,
as in this example, through Java Database
Connectivity (JDBC) API and SQL, the format is
that of an SQL result set.

Collection Collector The collector connects the integration
solution to the network building block in the
communication layer, and can convert the data
from the transport format to an internal technical
format. In the example, the SQL result set is
converted into a Java object.

Mediation Mediator The mediator waits actively (polling) or
passively (event-driven) for information and
forwards it to one or more potential distributors.
The source format can first be transformed into
a canonical data format (corresponding to the
canonical data model pattern) in order for the
forwarding to remain independent of the source
system. In the example, before the routing, the
data is converted from the source format (S
diamond) to the canonical format (C rhombus).
After the routing process, but before the data is
forwarded to the distributor, it is converted into
the target format (T circle).

Distribution Distributor The distributor connects the integration
solution to the network building block in the
communication layer for the target solution. It
converts the data from the internal technical
format to the transport format. If the target
system format is a file, as in the example, the Java
object is transformed into a file.

Communication Transporter Transports the information from the integration
solution to the target systems. In this example, a
file is sent using the File Transfer Protocol (FTP).

Chapter 3

[103]

Information flow and building blocks
The roles of collector, mediator, and distributor describe the tasks involved in a
very general form. In practice, it is advisable to break down the roles even further
and assign appropriate building blocks to them. The following diagram shows the
allocation of different building blocks to the mediation, collection, and distribution
layers and their roles:

These building blocks are run through one after another, corresponding to the
information flow.

The collector role in the collection layer is performed by the following building blocks:

•	 Adapter: connects the collection layer to the building block in the
communication layer in order to ensure that there is a connection to the source.

•	 Mapper: converts the data from the transport format to the internal format.

The mediator role in the mediation layer is performed by the following
building blocks:

•	 Message translator: converts the internal format into the canonical format
on the basis of the canonical data model.

•	 Router: determines the target, in other words, the system that the data will
be forwarded to, possibly using the information in the canonical format.

•	 Message translator: converts the canonical format into an internal
target format.

The distributor role in the distribution layer is allocated to the following
building blocks:

•	 Mapper: converts the internal source format into the transport format.
•	 Adapter: connects the distribution layer to the building block in the

communication layer of the corresponding target system.

Integration Architecture Blueprint

[104]

Combining the collection and distribution
layer
It is advisable to combine the collection and distribution layers to form a single
layer, as both of these layers perform their tasks—collecting and distributing
data—using the same building blocks. In the architecture blueprint, this layer
is referred to as the collection/distribution layer.

This changes the representation of the layers and the information flow, as shown
in the following diagram:

Collection and distribution have been combined to form one layer. There is only one
occurrence of the communication layer and of the Application and Information
View. The direction of the information flow also changes. It no longer passes through
the layers from left to right. Instead it moves from top right via the mediation layer,
and back to bottom right.

Change of direction in the information flow
The representation of the roles in the image below shows the change in the
information flow, which now moves from the source system in the top-right corner,
through the mediation layer to the target systems in the bottom-right corner.

Chapter 3

[105]

However, the sequence and the functionality of the building blocks and formats
remain the same. Only the number of layers and the direction of the
information flow change.

Adding the process layer
The integration solution consists of the mediation (forwarding), collection/
distribution (connecting), and communication (transporting) layers. The mediation
layer requires additional building blocks that control the integration process, as it
can seldom act independently or passively. This is only the case when it is driven
by external events or functions as a polling consumer. In all other cases it must be
managed, and this role is fulfilled by the orchestrator in the process layer.

Integration Architecture Blueprint

[106]

The most important purpose of the process layer is to orchestrate the information
flow, as shown in the following diagram:

Orchestrating
Orchestrating involves controlling and managing the building blocks in the
mediation layer below. In a simple case, this task can be performed by a
job-scheduling building block that triggers an integration process. In an
SOA environment, BPEL (Business Process Execution Language) can be
used to implement entire integration processes which are also allocated to
this layer, and which orchestrate building blocks from the mediation layer.

The role of the process layer
Adding the process layer to the information flow, as shown in the following image,
results in an additional orchestrator role which must be performed by a specific
building block:

Chapter 3

[107]

In this case, the orchestrator controls the mediation layer and can therefore start the
integration or the information flow, for example. The mediator and the building
blocks which implement the mediator functionality become passive entities
that are initiated by the process layer.

The building blocks of the process layer
In practice, the role of the orchestrator is, of course, further concretized by using
specific building blocks. For example, the tasks of the orchestrator can be carried
out by a job-scheduler building block, as shown in this modified diagram:

Integration Architecture Blueprint

[108]

However, the orchestrator in the process layer can also be activated or triggered
by a source system, as demonstrated in the following diagram. In this case, the
orchestrator role is fulfilled by a workflow or BPEL building block, and by that,
implements an integration process.

A query or message from an information source initiates the integration process via
protocol and format, and through filter and router building blocks. The process is
executed autonomously and uses an additional filter and router building block to
initiate the target systems.

Information flow in more complex integrations
All the previous examples show a single information flow in a simple integration.
However, the layer structure must also function in more complex information
flows. The following examples illustrate this.

The target becomes the source in a more
complex integration
The target system in the first information flow becomes the source system of the
subsequent information flow, as shown in the following diagram:

Chapter 3

[109]

Routing to different target systems in the
mediation layer
More complex information flows may have several information target systems. In the
example in the following diagram, the information is distributed in the mediation
layer using the router building block.

Integration Architecture Blueprint

[110]

Routing to different target systems in the
communication layer
The routing to different target systems can also take place in the communication
layer. In the example shown in the following diagram, the information is distributed
in the communication layer using publish/subscribe or multicast protocols.

Task sharing in the mediation layer
A layer can share its tasks among several building blocks, which run one after another,
as demonstrated in the following diagram. The mediation layer first uses a translator
building block to convert the message to a canonical format, then enhances the
information using an enrichment building block, and finally forwards the
information to the correct target system.

Chapter 3

[111]

Management using a workflow building block
The process layer can be used to manage more complex integration solutions, by
implementing a process-driven integration. One example of the use of a workflow
building block is shown in the following diagram:

The workflow building block implements an integration process in a flexible way,
and is started by a source system. The individual steps in the workflow integrate
further systems. In step 1 the information is fetched from one source system, and in
step 2 a direct link is established to a target system without using a building block
in the mediation layer. Step 3 links in another target system, but in this case the
distribution process is delegated to the mediation layer and a router building block.

Allocating layers to levels
A glance at the previous examples shows that the integration process and its
implementation take place on three different levels:

•	 The communication layer: This layer encapsulates building blocks made
available by the infrastructure.

•	 The mediation and collection/distribution layers: These layers are
responsible for integrating two or more systems. They are concerned solely
with integration, and the implemented logic can be assigned completely to
the integration domain.

Integration Architecture Blueprint

[112]

•	 The process layer: This layer is optional and is used when an additional
external component is needed for managing and controlling the integration
process. The implemented logic cannot be assigned exclusively to the
integration domain. Application-specific business logic may also be used in
implementing business processes.

The blueprint allows for this by assigning the four layers shown above to the
following three levels:

•	 Transport level: This level contains the building blocks made available by
the relevant infrastructure.

•	 Integration domain level: This level contains building blocks that implement
the integration.

•	 Application level: This level contains building blocks that implement both
integration and application tasks.

This last addition of the levels completes the integration blueprint and leads to the
overview diagram, which is repeated here:

Chapter 3

[113]

The allocation of the various layers of the Trivadis Integration Architecture Blueprint
to the application, integration domain, and transport levels, enables an integration
solution to be embedded in an overall architecture. From an application perspective,
the management of the information flow as a business process is essential,
while standardized and reliable communication is important for the
technical infrastructure.

Transport level: Communication layer
The communication layer is part of the transport level and is responsible for
transporting information. This layer links the internal integration solution with
external systems. It represents a type of gateway to the infrastructure at an
architectural level, and consists of transport protocols and transport formats.

Responsibility
The responsibility of the communication layer is to transport information using
standardized protocols and formats.

Integration Architecture Blueprint

[114]

Concepts and methods
The basic requirements for the implementation of the communication layer are listed
in the table below, along with where in the book to find more information.

Requirement Section of chapter 1
Routing schemes Routing schemes

The base technologies needed for the implementation of the communication layer are
listed in the following table.

Base technology Section of chapter 2
Transactions and their
isolation levels and protocols

Transactions

Building blocks
Transport protocols and transport formats are the building blocks in the
communication layer. The information formats of the external systems (source and
target systems) and their interface definitions can be regarded as message formats,
which are described in this layer as artifacts. The terms message protocol and
message format have deliberately been generalized, as the blueprint is also intended
for use with traditional file-based data transmission processes (for example, in ETL
systems). The term "message," which is generally used in the context of message
systems, does not seem appropriate here.

Additional information is needed in the implementation process to evaluate and
describe the architecture. The following aspects of the information transmission
process must be taken into consideration:

•	 Performance: Indicates how much data can be transmitted reliably per unit
of time and which configuration is used.

•	 Reliability: Describes how reliable data can be transmitted without losses,
and which methods are used.

•	 Resiliency: Explains how flexible errors in the connection topology are
handled and which methods are used. This also includes failover protocols
(for example, for clusters).

•	 Security: Indicates how securely data is transmitted, without unauthorized
system components or external components having access to the information,
and which methods are used.

Chapter 3

[115]

Transport protocols
The following table gives an overview of the most important transport protocols
which are used as building blocks in the communication layer.

Protocol Description
TCP The Transmission Control Protocol is the most widely used transport

protocol. It also forms the basis for other protocols. TCP establishes a
failsafe, direct, connection-based communication channel over IP between
two endpoints, which are known as sockets.

UDP The User Datagram Protocol is a connectionless, non-reliable
communication channel between endpoints. In contrast to TCP, the receiver
does not notice when data packets go missing. The transmission speed is
higher than that of TCP.

FTP The File Transfer Protocol is used to transmit character-based or binary
files over TCP/IP.

HTTP The Hypertext Transfer Protocol is a stateless, point-to-point protocol.
In addition to being used to call web pages, it also forms the basis for a
number of protocols for addressing web services.

IIOP The Internet Inter-ORB protocol is defined in the CORBA standard and
is used by distributed Object Request Brokers (ORBs) to communicate
with one another across the network. This involves methods being called
by remote components or objects. IIOP is a specialized version of the
abstract GIOP (General Inter-ORB Protocol) based on TCP/IP. ORBs from
different manufacturers can communicate with one another using IIOP.
IIOP is also an alternative communication protocol for RMI.

RMI The Java Remote Method Invocation describes RPCs (Remote Procedure
Calls) for Java applications, which are the method calls made by an object
running in one JVM (Java Virtual Machine) to an object running in
another. This JVM may also be on a different physical machine.
RMI is also the communication protocol for remote calls to Java objects.
As an alternative, IIOP can be used, in which case the complete protocol is
referred to as RMI over IIOP.

ODBC Open Database Connectivity is a standardized API used as a database
interface for applications. Product-specific ODBC drivers are required.

JDBC Java Database Connectivity is a Java EE API specification which gives
Java applications standardized access to databases. A JDBC-ODBC bridge
allows ODBC databases to be addressed via JDBC. Product-specific JDBC
drivers are used to access databases.

JMS Java Message Service is a Java EE API specification for exchanging
messages between Java applications. Point-to-point communication is
defined on the basis of queues, while publish/subscribe communication
is based on topics.

Integration Architecture Blueprint

[116]

Protocol Description
SQL*NET/

Net8

This is Oracle client/server middleware, which establishes connections
between the client and the database, or between two databases. It is based
on TNS (Transparent Network Substrate). This is Oracle's network
architecture, which provides a standardized API, giving applications
transparent access to the lower-level network protocols.

SOAP SOAP is a protocol specification for exchanging structured information in
the implementation of Web Services in computer networks. The transport
formats are based on XML, and HTTP is generally used as the transport
protocol. SOAP forms the foundation layer of a web services protocol stack.

XML-RPC In historical terms, the XML Remote Procedure Call is the predecessor of
SOAP. The protocol defines simple XML data containers for transporting
information from service providers to service consumers. It is used for
synchronous calls from remote service interfaces. It is generally based on
HTTP, but JMS and XMPP (Jabber-RPC) can also be used.

MSMQ Microsoft Message Queuing is a queue-based message protocol
from Microsoft.

SMTP The Simple Mail Transmission Protocol is used to exchange e-mails.
IMAP The Internet Message Access Protocol is used to download e-mails from a

mail server. The mails remain physically on the server.
POP3 The Post Office Protocol 3 is used to physically download e-mails from a

mail server.
XMPP The Extensible Messaging and Presence Protocol allows for real-time

communication through XML protocols (referred to as instant messaging).
XMPP forms the basis for the widely used Jabber protocol for
instant messaging.

NFS The Network File System protocol, originally developed by SUN
Microsystems, gives access to files over a network. The files are not
transferred in the same way as with FTP, but instead they remain a shared
resource on the server. NFS is based on TCP/IP.

SMB The Service Message Block is the Microsoft Windows equivalent of NFS,
which comes originally from the Unix world.

iSCSI The Internet Small Computer System Interface (iSCSI) protocol enables
clients (referred to here as initiators) to send SCSI commands (known
as CDBs) to an SCSI storage device on a remote computer. This is a
distributed SAN (Storage Area Network) protocol, which creates virtual
disk space. iSCSI can be used over longer distances on an existing network
infrastructure. In contrast, fiber channel protocols require special cabling.

Chapter 3

[117]

Protocol Description
DCOM The Distributed Component Object Model is an object-oriented RPC

system, based on the DCEstandard. It was defined by Microsoft to allow
COM technology to communicate over a network. Although DCOM was
developed by, and is largely used, by Microsoft (for example, ActiveX),
there are a range of adapters which make it possible to communicate
through DCOM without using DCOM directly.

ADO.NET ADO.NET is part of the Microsoft .NET platform. It consists of a collection
of classes which allow access to relational databases.
ADO.NET is the successor to ActiveX Data Objects (ADO).

Transport formats
The following table gives an overview of the most important transport formats,
which are used as building blocks in the communication layer:

Format Description
ebXML ebXML stands for Electronic Business using XML. It is not an individual

standard, but a family of different standards from UN/CEFACT and
OASIS. The ebXML standards include the ebXML Technical Architecture
Specification, an XML Business Process Specification Schema, a Registry
Services Specification with Registry Information Model (ebRIM), and a
Message Service Specification (Patil, Newcomer 2003).

EdiFact United Nations Electronic Data Interchange for Administration,
Commerce and Transport (EDI, UN/Edifact) is a global standard which
allows the traceable processing of business transactions among companies,
or between companies and public authorities using the standardized
electronic exchange of data (Grangard et al. 2001).

SWIFT The Society for Worldwide Interbank Financial Telecommunications is
a society which supplies telecommunications services between banks all
over the world. The term SWIFT is also used to refer to the network that
the society provides. SWIFT is used to exchange messages between banks
(CSSWIFT 2005).

HL7 Health Level 7 is an international standard for exchanging data between
applications and systems in the healthcare sector. It (HL7V3 1998) describes
communication at an application level on the basis of level 7 of the ISO/OSI
reference model for communication (ISO7498-1).

BAPI Business Application Programming Interface is a standardized
programming interface for SAP Business Objects. BAPIs enable external
programs to access SAP R/3 data and business processes (Moser 2003).

Integration Architecture Blueprint

[118]

Format Description
IDoc Intermediate Document is a SAP format for exchanging data from a

business transaction. Different IDoc types are available to support different
message types. For example, the IDoc format ORDERS01 can be used for
orders and order confirmations (Krawczyk 2006).

AdsML Accelerating Advertising Processes in the Digital Age is a collection of
e-commerce standards that support the exchange of business messages
using XML in the advertising industry (Brunner 2007).

RosettaNet Within the RosettaNet organization, user groups and members agree
on and standardize open, cross-industry communication and workflow
processes for the electronic exchange of business documents between the
users' IT systems. This enables suppliers and customers to exchange data
with as few media and data conversion problems as possible (B2B). The
focus is primarily on logistics and production, but the exchange of product
and material data and service processes are also included (Damodaran
2004).

Integration domain level:
Collection/distribution layer
The collection/distribution layer is part of the integration domain level and is
responsible for collecting and distributing information. It is completely separate from
the main part of the integration domain (mediation). The building blocks in this layer
connect the mediation layer above with the communication layer below. The layer is
responsible for encapsulating external protocols and their technical details from
the integration application, and transforming external formats into familiar
internal formats.

Responsibility
The responsibility of the collection/distribution layer is to collect and
distribute information.

Concepts and methods
The basic requirements for the implementation of the collection/distribution layer are
listed in the following table, along with where in the book to find more information:

Requirement Section in Chapter 1
Middleware Middleware

Chapter 3

[119]

The base technologies needed for the implementation of the collection/ distribution
layer are listed in the following table:

Base technology Section in Chapter 2
Java Connector Architecture (JCA) as an
example of an adapter framework

Java Connector Architecture (JCA)

Service Data Objects (SDO) as an
example of a Disconnected Data
Architecture

Service Data Objects (SDO)

Building blocks
The following table gives an overview of the building blocks used in the
collection/distribution layer:

Building block Description
Adapter (or
Connector)

Adapters are components, which connect application-specific
APIs with the access protocols (or access APIs) of the transport
layer components in order to enable them to communicate with
the source and target systems. Adapters decouple the applications
from the APIs specific to the transport layer, and are usually
separated from the application. One example of an adapter is the
Java Connector Architecture (JCA) (see Chapter 2).

Mapper Mappers encapsulate the logic used to align the formats in the
communication infrastructure and the formats in the domain
objects. Domain objects and components belonging to the
communication infrastructure are decoupled from the mapper,
and are unaware of its existence.
Dozer is a JavaBean to JavaBean mapper that recursively copies
data from one bean to another. Typically, these JavaBeans will be
of different complex types. Dozer supports:

•	 Simple property mapping
•	 Complex types and graphs, bi-directional mapping
•	 Implicit-explicit mapping
•	 Recursive mapping

Integration Architecture Blueprint

[120]

Building block Description
Data mapper (or
mapper)

The data mapper is a layer of mappers, which transfers data
between objects and databases, without making the object and the
database dependent on one another, or indeed on the mapper.
The data mapper is a layer of software that separates the in-
memory objects from the database. Its responsibility is to transfer
data between the objects and the database, and also to isolate them
from each other. With the data mapper, the objects do not even
need to know that there is a database present. They do not need
SQL interface code or any knowledge of the database schema.

DAO A Data Access Object (DAO) is a design pattern that
encapsulates the access to different types of data sources (for
example, databases, filesystems, and so on) in such a way that
the data source that is being addressed can be replaced without
changing the calling code. This allows the program logic to be
separated from the technical details of the data storage, and
makes it more flexible. A DAO can also be used as a pattern for
designing programming interfaces (APIs).
When it is implemented, a DAO can make use of a data mapper.

Integration domain level: Mediation layer
The mediation layer is part of the integration domain level and is responsible
for forwarding information. It includes the most important functionality of the
integration domain. Its main task is to ensure the reliable forwarding of information
to business components in the process layer, or directly to building blocks in the
collection/distribution layer. In more complex scenarios, the information forwarding
process can be enhanced by information transformation and filtering, and so on.

Responsibility
The responsibility of the mediation layer is to forward information.

Chapter 3

[121]

Concepts and methods
The basic requirements for the implementation of the mediation layer are listed in
the following table, along with where in the book to find more information.

Requirement Section of Chapter 1
Messaging, publish/subscribe, message
brokers, and messaging infrastructure

Messaging

Publish/subscribe

Message broker

Messaging infrastructure
ESB Enterprise Service Bus (ESB)
Point-to-point, hub-and-spoke, pipeline,
and Service-Oriented Architectures

Integration architecture variants

Federation, population, and
synchronization

Data integration

Direct connections, broker, and router EAI/EII

The base technologies needed for the implementation of the mediation layer are
listed in the following table:

Base technology Section of Chapter 2
OSGi OSGi
Java Business Integration (JBI) as a
sample ESB implementation

Java Business Integration (JBI)

Service Component Architecture (SCA)
as a sample component framework

Service Component Architecture (SCA)

Building blocks
The following building blocks are used in the mediation layer:

Integration Architecture Blueprint

[122]

Canonical data model
One problem that occurs in many integration scenarios, is the need to map external
data formats from several different source systems onto the internal data formats
of many different target applications. In the case of a point-to-point approach,
each combination would have to be mapped individually.

The problem can be resolved by introducing a general format, which is used in the
integration solution and in all new target applications. Only one mapping to this
internal format needs to be maintained for the existing applications. This keeps
maintenance and development costs to a minimum. Internal formats of this kind are
referred to as canonical formats. In the context of ESB, the term normalized message
format is also used.

Chapter 3

[123]

Canonical data models are independent of any specific application. Each application
is decoupled from other formats and only needs to be able to generate and read the
canonical format. Application-specific components that implement the message
translator pattern are used for this purpose.

A canonical data model reduces the number of message translators needed, as only
one is required for each application.

One single canonical data model does not always have to cover the whole enterprise.
It's definitely valid, and often even better, to start small and to only concentrate
on a subset of the data within an enterprise, often on so-called domain levels. The
result of this is to have different and independent canonical data models, each with a
domain specific scope. Such a canonical data model can be seen as a domain-specific
view on the enterprise-wide data model.

In an environment where multiple ESBs are used on different levels (using the
federated ESB pattern), it's also possible to have different canonical models on
each level, that is a federated canonical data model message endpoint.

Integration Architecture Blueprint

[124]

This group of patterns connects applications to messaging systems. The building
blocks are listed in the following table, though only those patterns that are frequently
used in practice are described:

Building Block Description
Message
endpoint

An application is connected to a message channel through a message
endpoint. This is a client of the messaging system and the application
can send and receive messages via this message endpoint.

Polling
consumer

A polling consumer sends a call to the messaging system only when
the application wants to receive a message. This is also referred to as
a synchronous receiver, as the receiver is blocked until the message
is received. The receiver polls for a message, processes it, and then
polls for the next message.

Event-driven
consumer

An event-driven consumer is a component that is called by the
messaging system when a new message arrives on the consumer
channel. Using a callback method in the application API, the event-
driven consumer forwards the message to the application. This is also
referred to as an asynchronous receiver, as the receiver does not have
a running thread until the callback thread delivers a message.

Competing
consumers

Competing consumers are a group of several potential receivers on
a single point-to-point channel. The consumers compete with one
another, but only one can process each specific message. This makes
it possible to process several messages in parallel.

Message
dispatcher

A message dispatcher reads a message from an individual channel
and sends it to the correct receiver, where it is processed. The message
dispatcher can decide which receiver is appropriate for each message.

Selective
consumer

Selective consumers filter the messages arriving in the channel and
receive only those messages which fulfill the selection criteria.

Message construction
This group of patterns is responsible for sending messages using channels, the
details of which are listed in the table below. Note that only those patterns
which are frequently used in practice are described.

Building Block Description
Request/reply Request/reply ensures that an application which sends a message to

the messaging system can receive a reply from the receiver. A message
request/reply pair is used for this purpose, with each message having
its own channel.

Building Block Description

Chapter 3

[125]

Return address In a request/reply scenario, the request message contains the return
address, which specifies where the reply message should be sent.

Correlation
identifier

Each reply message can contain a correlation identifier (a unique ID),
which specifies the request message that the reply refers to.

Messaging channel
This group of patterns relates to different types of channels, and the methods used to
connect them to an application. The building blocks are listed in the following table.
Only those patterns which are frequently used in practice are described.

Building Block Description
Point-to-point channel The use of a point-to-point channel allows the message

system to ensure that a message can only be processed by
one single receiver.

Publish/subscribe
channel

A publish/subscribe channel makes it possible for a message
to have several potential receivers. The messaging system
ensures that every receiver receives the message once.

Invalid message channel If a receiver recognizes that a message is incorrect (for
example, in its format) or seems to not make sense, it can
place the message in an invalid message channel, which is a
special channel for messages that the receiver cannot process.

Dead letter channel If the messaging system recognizes that it is not possible
to deliver a message, it can move the message to a
dead letter channel.
This channel is also referred to as a dead letter queue or dead
message queue.

Channel adapter The channel adapter acts as a client of the messaging system
and calls the application via a specific API. This allows every
application to be connected to a messaging system and to
interact with other applications, providing that a suitable
channel adapter is available.

Integration Architecture Blueprint

[126]

Message routing
This group of patterns enables the sender and the receiver of a message to be more
effectively decoupled. The building blocks are listed in the following table. Only
those patterns which are frequently used in practice are described.

Building Block Description
Pipes and filters Pipes-and-filters is a style of architecture which allows larger

processing tasks to be broken down into a sequence of smaller,
independent steps (filters) connected through channels (pipes).

Content-based
router

A content-based router sends a message to the correct receiver on the
basis of its content. The routing process can be based on a range of
different criteria, such as the existence of fields or field contents.

Message filter The message filter is a special type of router. On the basis of a selection
of criteria, it removes unwanted messages from a channel.
If a message meets the filter criteria, it is forwarded. Otherwise,
it is discarded.

Dynamic router The dynamic router is an additional control channel, which receivers
can use to register and identify the messages that they are interested
in. The dynamic router stores the receivers' preferences in a
rules database.

Recipient list Each receiver has its own channel. On the basis of the incoming
message, the recipient list identifies the list of receiver endpoints and
sends the message to all the receivers on the list.

Splitter A splitter breaks a composite message down into several individual
messages, which are subsequently processed independently. The
splitter publishes each message individually.

Aggregator The aggregator is a special message filter. It receives a message stream,
identifies the messages which need correlating, correlates them into a
single message, and publishes this message on the output channel.

Resequencer The resequencer can receive a message stream with messages in the
wrong order. It has an internal buffer for storing messages that arrive
in the wrong order until the correct order is restored.

Message transformation
This group of patterns ensures that applications can interact with one another using
the messaging system, despite the fact that they describe data in different ways and
use different formats. The building blocks are listed in the following table. Only
those patterns which are frequently used in practice are described.

Chapter 3

[127]

Building Block Description
Message
translator

The message translator is a special message filter that can convert
data from one format to another. It is primarily used to ensure that
domain objects and the canonical data model have the same format. A
translator is a special type of filter.

Content
enricher

A content enricher is a special kind of transformer, which can add
missing information to a message from an external data source.

Claim check The claim check stores the message data in persistent storage and only
sends a reference to the subsequent components. These components
can use the reference to access the stored information. This reduces the
volume of data in the messages sent across the system.

Application level: Process layer
The process layer is part of the application level and is responsible for orchestrating
component and service calls. It manages the building blocks in the mediation layer
(if they cannot act autonomously). This supports and simplifies the implementation
of complex integration processes.

Responsibility
The responsibility of the process layer is to manage and control the building blocks
in the mediation layer.

Concepts and methods
The basic requirements for the implementation of the process layer are listed in the
following table, along with where in the book to find more information:

Requirement Section of Chapter 1
SOA Service-oriented integration
Event-driven architecture Event-driven architecture
Complex event processing Complex event processing

XTP and CEP

Integration Architecture Blueprint

[128]

The base technologies needed for the implementation of the process layer are listed
in the following table.

Base technology Section of Chapter 2
Service Component Architecture (SCA) Service Component Architecture (SCA)
Process modeling Process modeling

Building blocks
The following building blocks are used in the process layer:

Job scheduler
Job schedulers manage, automate, monitor, and plan dependencies between programs.
Jobs and programs are started and made dependent on one another across different
computers under the control of the scheduler, which allows complex dependencies
to be created.

The basic features of a job scheduler are as follows:

•	 An interface for defining jobs, workflows, and dependencies between jobs
•	 Automatically starting jobs
•	 An interface for monitoring and troubleshooting jobs
•	 Priorities and/or queues to control the execution order of unrelated jobs

Most operating systems provide basic job-scheduling capabilities, such as cron,
which runs on Unix. Job schedulers also form part of database, ERP, and business
process management systems. However, these often do not meet the complex
requirements of enterprise job scheduling. In this case, it is worth installing specific
job scheduler software, such as Cronacle, IBM Tivioli Workload Scheduler, Open
Source Job Scheduler, or Quartz.

Portal
In the IT world, the term portal is used to describe a central point of access which
makes customized, internal and external information and services available. The
focus is on the provision of cross-application services (in other words, integration)
and not on the technical (for example, web-based) implementation.

Chapter 3

[129]

Workflow
A workflow, which is an executable process, is by far the most important building
block in the process layer. Workflow building blocks form the basis for implementing
the technical processes that control an integration solution. They can be implemented,
for example, in Business Process Execution Language (BPEL) using a BPEL engine.
All the workflow building blocks can be created using BPEL.

The following table gives an overview of the building blocks used to
produce workflows:

Building block Description
Basic control patterns
Sequence Executes one or more activities in sequence.
Parallel split Executes two or more activities in sequence or in parallel.
Synchronization Synchronizes two or more activities running in sequence or in

parallel. Waits to continue until all the previous activities have
been completed. Also known as barrier synchronization.

Exclusive choice One of several execution paths is selected, on the basis of
information which must be available at the time when the
exclusive choice activity is executed.

Simple merge Waits to complete one of several activities before continuing
with processing. The assumption is that only one of these
activities is executed. This is generally because these activities
are on different paths, based on an exclusive choice or deferred
choice.

Advanced branching and synchronization patterns
Multiple choice Selects several execution paths from a number of alternatives.
Synchronizing merge Brings together several execution paths and synchronizes

them, if several paths were in use. Performs the same role as
the simple merge, if only one execution path was in use.

Multiple merge A point in a workflow process where two or more paths are
merged without being synchronized. If more than one path
was activated, then after the merge, one activity is started for
each incoming path.

Discriminator A point in the workflow process that waits for one of the
incoming paths to be completed before activating the next
activity. From that moment on, the discriminator waits for all
the remaining paths to be completed, but ignores the results.
After all the incoming paths have been activated, the pattern
is reset and can be reactivated. (This is important, because it
could not otherwise be used in a loop.)

Integration Architecture Blueprint

[130]

Advanced branching and synchronization patterns
N-out-of-M join Similar to the discriminator pattern, but this pattern makes

it possible to wait for more than one preceding activity (N)
which is to be completed, and then to continue with the next
activity. The subsequent activity is only activated when the N
paths have been completed.

Structural patterns
Arbitrary cycles A point in the workflow where one or more activities are

executed several times.
Implicit termination Terminates a process instance when there is no more to

be done.
Multiple instances (MI) patterns
Multiple
instances without
synchronization

Several instances of an activity are created for one process
instance and each is executed in a separate thread. No
synchronization takes place.

Multiple instances with
a priori known design
time knowledge

Several instances of an activity are created for one process
instance. The number of instances of a given activity is known
at design time.

Multiple instances with
a priori known runtime
time knowledge

Several instances of an activity are created for one process
instance, but the number of instances is not known until
runtime. At a specific point during runtime, the number can be
determined (as in a FOR loop, but with parallel processing).

Multiple instances
without a priori runtime
knowledge

Several instances of an activity are created for one process
instance, but the number of instances is not known at design
time. Even at runtime it is not clear how many instances
will finally be needed until the activities are established. The
difference between this and the previous pattern is that after
the parallel instances have been completed, or when instances
are still being executed, additional, new instances of an activity
can be created at any time.

State-based patterns
Deferred choice Executes one of several alternative paths. The alternative to be

executed is not selected on the basis of the data available at the
time of the deferred choice, but is determined by an event (for
example, when an end user chooses a task from a work-list).

Interleaved parallel
routing

Executes a number of activities in random order, possibly
depending on the availability of resources. The order is not
known until runtime and none of the activities are executed at
the same time (in other words, in parallel).

Milestone An activity is only executed when the process has a specific
status, in other words, a specific milestone has been reached.
Otherwise, the activity is not activated.

Chapter 3

[131]

Cancellation patterns
Cancel activity Stops an active activity that is being executed.
Cancel case Stops an entire active process.

Event processing pattern
The most commonly used CEP technology patterns are described here to provide
support for the implementation of integration solutions based on an event-driven
architecture (Coral8 2007).

•	 Filtering: A simple pattern for filtering events out of one or more event
streams. A filter expression is applied to the incoming events and if the
condition is true, the event is published in the output stream.

•	 In-memory caching: This pattern keeps events in memory, for example for
a time-based window covering the last 10 minutes. This forms the basis
for many other CEP design patterns.
The cache typically stores two kinds of data:

°° Recent events from one or more input streams
°° Data from one or more database tables

Integration Architecture Blueprint

[132]

•	 Aggregation over windows: Computes statistics over different types of
sliding windows (for example, a time-based window covering the last 10
minutes or an event-based window with the last 10 events).

•	 Database lookups: Accessing databases to compare historical information or
references with incoming events.

•	 Database writes: Sending raw or derived events to a database.

•	 Correlation (joins): Joining multiple event streams.

•	 Event pattern matching: Complex time-based patterns of events across
multiple streams.

Chapter 3

[133]

•	 State machines: Modeling complex behavior and processes through
state machines.

•	 Hierarchical events: Processing, analyzing and composing hierarchical events.

•	 Dynamic queries: Submitting parameterized queries, requests and
subscriptions dynamically.

Integration Architecture Blueprint

[134]

Notation and visualization
Notation and visualization describes a notation, which makes it easy to visualize
example scenarios in the blueprint. This section forms the foundation for the next
chapter of this book, which uses individual scenarios to show how the fundamental
patterns from Chapter 1 can be implemented with the integration blueprint.

Representing the scenarios and the
notation used
Dynamic aspects are represented in scenarios, as shown in the following example:

Scenarios are read from top to bottom. They start in the top-right corner with an
information source system. The target system of the integration process, or of an
individual step, is in the bottom-right corner. The valid notation elements are
shown in the following diagram:

Chapter 3

[135]

In the image above, a .NET application sends a web service call through SOAP using
one-way call semantics, which means that it does not expect a reply. The query
passes through an SOAP adapter and causes an ESB service to start, which receives
the query as a message. The message is transformed in a translator building block
and an EJB (Enterprise JavaBean) adapter is used to connect to an EJB session bean,
which is also called using a one-way call. In other words, this integration solution
makes it possible to use an EJB session bean from a .NET application through a
simple, standards-compliant web service request.

In this example, the optional process layer is not used, as no additional
management activities are needed. The management role is performed by
the source .NET application.

Visualizing different levels of granularity
In the diagrams, the general building block is used most frequently. However, it
may be advisable to choose building blocks with different levels of granularity
for visualization purposes. The blueprint provides components (coarse granular
notation elements), objects (medium granularity), and operations (fine granular
elements). One example of their use can be seen in the following image:

It is clear that an adapter is an object. In an actual implementation, this could be a Java
or a .NET object, for example. The ESB building block is shown as a component that
contains other building blocks, and among these is the translator building block that
is designated as an operation. In an implementation, this can take the form of one or
multiple methods of a class or a module (for example, Oracle PL/SQL package).

Integration Architecture Blueprint

[136]

Representing transaction boundaries
Representing transaction boundaries is important for the purposes of planning and
describing the required system behavior. Each building block is given the label
TX-n, where TX stands for transaction and n is a unique identifier which specifies
that the building block belongs to the transaction with this ID. This enables even
nested transactions to be represented. The following diagram shows a sample
scenario with such a transaction:

This scenario shows an integration solution which reads from a JMS queue via an
adapter in a transaction, transforms the information, and then writes the data via JDBC
to a database table (in the same transaction). The source only considers a message to
have been processed if it was successfully written to the database table (using an XA
transaction), which makes it possible to guarantee reliable transmission.

Configuration parameters as additional
artifacts
The scenario in the preceding diagram is dependent on some corresponding
configuration parameters (for example, for EJB components among others).
This information can also be expressed using additional artifacts, as shown in
the following diagram:

Chapter 3

[137]

Extension for capacity planning
When integrating larger volumes of data (for example in ETL scenarios), it is
advisable to identify possible bottlenecks at an early stage of the process of capacity
planning and SLA definition. Quantitative scenarios can be helpful in this respect, as
shown in the following diagram:

Integration Architecture Blueprint

[138]

The building blocks are labeled with service times. The service time indicates how
quickly information must pass through the building block, and the individual service
times can be added together to give the overall service time. It is also possible to make
estimates of the times and compare them with load tests. In modern environments,
the individual service times can often be identified relatively accurately. Quantitative
analysis at unit test level can also be used to determine the service times. The accuracy
of the figures depends, of course, on the facilities for testing the platform/product.

Input parameters can be used together with the service times to carry out theoretical
calculations of other important parameters, such as the expected usage of a particular
resource. The example is based on a data load of 2 x 1 GB per minute.

A scenario diagram of this kind can also form a base for documenting and
planning tests.

Summary
You have now finished the most important chapter of this book. At this point in time,
you should know what the Trivadis Integration Architecture Blueprint is, how it is
structured into different layers, and why it has been defined this way. You should
now be familiar with:

•	 The information flow and the mutual dependencies between the components
of the blueprint

•	 The communication layer, which is part of the integration domain level
•	 The collection/distribution layer, which forms part of the integration

domain level
•	 The mediation layer, which belongs to the integration domain level
•	 The process layer, which is a component of the application level
•	 The notation and visualization, which can be used to easily visualize

integration scenarios

In the next chapter, we will use the blueprint with its notation and visualization to
visualize some common integration scenarios in a mostly product-neutral form. We
will cover traditional, as well as modern, SOA-driven integration solutions. By then
you should get a better feeling of how the Integration Architecture Blueprint can be
used in practice.

Implementation scenarios
Having understood the business patterns described in Chapter 1, Basic Principles, and
the structure of the blueprint covered in Chapter 3, Integration Architecture Blueprint,
this chapter will use individual scenarios to illustrate how the business pattern can
be implemented using the Integration Architecture Blueprint.

The scenarios have been deliberately designed to be independent of
specific vendor products, and are based solely on the building blocks that
form part of the different layers of the blueprint.
The symbols used have the same semantic meaning as described in Chapter 3.

This chapter will:

•	 Explain service-oriented integration scenarios
•	 Use scenarios to show how data integration business patterns can

be implemented
•	 Present a description of scenarios for implementing the business patterns for

EAI/EII integration
•	 Look in detail at the implementation of event processing business patterns
•	 Describe a scenario for implementing business patterns for grid computing

and Extreme Transaction Processing (XTP)
•	 Explain how an SAP ERP system can be combined with the

integration blueprint
•	 Explain how an existing integration solution can be modernized using SOA,

and describe a scenario that has already been implemented in practice
•	 Combine the integration blueprint with the other Trivadis

Architecture Blueprints

Implementation scenarios

[140]

EAI/EII scenarios
These scenarios show how the EAI/EII integration business patterns described in
Chapter 1 can be implemented. These business patterns are as follows:

•	 Direct connection: Represents the simplest type of interaction between two
applications and is based on a 1:1 topology, in other words, an individual
point-to-point connection.

•	 Broker: Is based on the direct connection pattern and extends it to a 1: N
topology. It allows an individual query from a source application to be
routed to several target applications.

•	 Router: A variant of the broker pattern with several potential target
applications, where the message is routed to only one target application.

Implementing the direct connection business
pattern
An SOA-based implementation of the direct connection business pattern makes use
of an ESB component in the mediation layer, as shown in the following diagram:

Trigger:

An application sends a request using a web service.

Primary flow:

1.	 An endpoint on the ESB receives the request through SOAP from the calling
application and sends it as a message in a channel on the bus.

2.	 The message uses the second endpoint and the EJB adapter to call an
EJB session bean.

Chapter 4

[141]

Alternative flows:

•	 The calls can use request/reply instead of one-way semantics and return a
result to the calling application.

•	 A message translator building block can be used to transform the message
(data mapping).

Variant with synchronous call over asynchronous
protocol
A variant of the previous scenario is that of bridging from a synchronous to an
asynchronous request and response exchange pattern. This can be helpful if the target
system is only accessible through some message-oriented middleware (MOM), that
is, a message queue. Asynchronous request-response messaging can be achieved using
separate queues: one for the request messages and one for the response messages.
Asynchronous request-response messaging is often the best approach for interacting
with some mainframe systems, such as IBM zSeries systems through MQSeries. (IBM's
message-oriented middleware offering, now also known as Websphere MQ.)

Trigger:

An application sends a request using a web service.

Primary flow:

1.	 An endpoint on the ESB receives the request through SOAP from the
calling application.

2.	 The message is translated into the format of the target system.

Implementation scenarios

[142]

3.	 The message is placed into the request queue through a JMS adapter, adding
some additional information used for correlation.

4.	 The host system consumes the request message from the queue, processes the
request, and sends the response information by placing the message into the
response queue, together with the correlation information.

5.	 The ESB endpoint consumes the response message and uses the correlation
information to correlate the response with the corresponding request.

6.	 The response is translated into the source format and returned as an SOAP
response message to the requester.

Implementing the broker business pattern
An SOA-based implementation of the broker business pattern also makes use of an
ESB in the mediation layer. This provides support for a publish/subscribe pattern,
or a message dispatcher pattern. The scenario is shown in the following diagram:

Trigger:

An application places a message in the queue.

Primary flow:

1.	 An event-driven consumer building block on the ESB uses the JMS adapter to
extract the message from the queue and sends it in a channel on the bus.

2.	 The message is forwarded by a content-based router building block to
the interested systems (there may be more than one). The router bases its
activities on the content of the message, in other words, the information in
the message header or body.

3.	 The first system offers a web service interface and can therefore be connected
directly through an SOAP adapter.

Chapter 4

[143]

4.	 The second system is connected to the database by means of a stored
procedure, which is supported by the corresponding database adapter.

Alternative flows:

•	 The message router can be based on the canonical data model, which means
that a message translator building block is incorporated upstream and
downstream of the message router building block. First of all, the message
is converted into canonical format, then the routing logic is applied to the
canonical format, and the message is transformed into the format of the
target system before it is forwarded.

•	 If the routing rules are complex, they can be externalized into an external
rule engine.

•	 The content-based router can be replaced by a dynamic router, which results
in a dynamic subscribe mechanism that allows the potential target systems
to subscribe dynamically.

•	 BPEL can be used for the mediation instead of the ESB.

Implementing the router business pattern
An SOA-based implementation of the router business pattern is possible if an ESB is
used in the mediation layer. This is shown in the following diagram:

Trigger:

An application places a message in the queue.

Implementation scenarios

[144]

Primary flow:

1.	 An event-driven consumer building block on the ESB removes the message
from the queue through the JMS adapter and places it in a channel on
the bus.

2.	 A content-based router identifies, based on the content of the message, one
target system, which in this case is either the FTP or Database distributor
(for this example, FTP is chosen, which is marked in bold).

3.	 The message is transformed into the necessary target format by a message
translator building block.

4.	 An FTP adapter writes the message to a file (CSV format) and forwards it to
the receiver using the FTP protocol.

Alternative flows:

•	 The message translator is not needed if the target format is the same as that
of the message that triggers the process

•	 If the routing rules are complex, they can be externalized into an external
rule engine

•	 BPEL can be used for the mediation instead of the ESB

Service-oriented integration scenarios
These scenarios show how the service-oriented integration business patterns
described in Chapter 1 can be implemented. These business patterns are as follows:

•	 Process integration: The process integration pattern extends the 1: N
topology of the broker pattern. It simplifies the serial execution of business
services, which are provided by the target applications.

•	 Workflow integration: The workflow integration pattern is a variant of
the serial process pattern. It extends the capability of simple serial process
orchestration to include support for user interaction in the execution of
individual process steps.

Implementing the process integration
business pattern
In the scenario shown in the following diagram, the process integration business
pattern is implemented using BPEL.

Chapter 4

[145]

Trigger:

An application places a message in the queue.

Primary flow:

1.	 The message is extracted from the queue through JMS and a corresponding
JMS adapter.

2.	 A new instance of the BPEL integration process is started and the message is
passed to the instance as input.

3.	 The integration process orchestrates the integration and calls the systems that
are to be integrated in the correct order.

4.	 A content-based router in the mediation layer is responsible for ensuring
that the correct one of the two systems is called. However, from a process
perspective, this is only one stage of the integration.

5.	 In the final step, a "native" integration of an EJB session bean is carried out
using an EJB adapter.

Implementation scenarios

[146]

Variant with externalized business rules in a
rule engine
A variant of the previous scenario has the business rules externalized in a rule engine,
in order to simplify the condition logic in the integration process. This corresponds to
the external business rules variant of the process integration business pattern, and is
shown in the form of a scenario in the following diagram:

Trigger:

The JEE application sends an SOAP request.

Primary flow:

1.	 The SOAP request initiates a new instance of the integration process.
2.	 The integration process is implemented as before, with the exception that in

this case, a rule engine is integrated before evaluating the condition. The call
to the rule engine from BEPL takes the form of a web service call through
SOAP.

3.	 Other systems can be integrated via a DB adapter as shown here, for example
to enable them to write to a table in an Oracle database.

Variant with batch-driven integration process
In this variant, the integration process is initiated by a time-based event. In this case,
a job scheduler added before the BPEL process triggers an event at a specified time,
which starts the process instance. The process is started by the scheduler via a web
service call. The following diagram shows the scenario:

Chapter 4

[147]

Trigger:

The job scheduler building block does a web service request at a specified time.

Primary flow:

1.	 The call from the job scheduler via SOAP initiates a new integration
process instance.

2.	 As in the previous variants, the BPEL process executes the necessary
integration steps and, depending on the situation, integrates one system
via a database adapter, and the other directly via a web service call.

Implementing the workflow business pattern
In this scenario, additional user interaction is added to the integration process scenario.
As a result, the integration process is no longer fully automated. It is interrupted at a
specific point by interaction with the end user, for example to obtain confirmation for a
certain procedure. This scenario is shown in the following diagram:

Implementation scenarios

[148]

Trigger:

An application places a message in the queue.

Primary flow:

1.	 The message is removed from the queue by the JMS adapter and a new
instance of the integration process is started.

2.	 The user interaction takes place through the asynchronous integration of a
task service. It creates a new task, which is displayed in the user's task list.

3.	 As soon as the user has completed the task, the task service returns a callback
to the relevant instance of the integration process, and by that, informs the
process of the user's decision.

4.	 The integration process responds to the decision and executes the
remaining steps.

Data integration scenarios
These scenarios show how the data integration business patterns described in
Chapter 1 can be implemented. These business patterns are as follows:

•	 Federation: The federation pattern allows access to different data sources,
and gives the impression to the requesting application that these are a
single logical data source.

•	 Population: The population pattern gathers data from one or more data
sources, processes the data in an appropriate way, and applies it to a
target database.

•	 Synchronization: The synchronization pattern enables bidirectional
update flows of data in multi-copy database environments.

Implementing the federation business pattern
A modern SOA-based approach can be taken in order to implement the federation
business pattern. A combination of splitter and aggregator building blocks from the
mediation layer are used to access data from different sources and to bring the data
together to form a view. The necessary building blocks are made available by an ESB
component. The following diagram shows the SOA-based implementation of the
federation business pattern.

Chapter 4

[149]

Trigger:

The application sends a web service request through an SOAP.

Primary flow:

1.	 The request causes processing to start on the ESB.
2.	 The ESB splits the request into the number of source systems that are to

be used.
3.	 A request takes place for each source system; in this case, using a database

adapter, once for Oracle and once for SQL server.
4.	 The results of the two requests are combined by the ESB using an aggregator

building block to form a single result view, and this result is then returned to
the calling application.

Alternative flow:

•	 The accesses to the source systems can be run in parallel by the ESB in order
to keep the overall response time to a minimum (from the perspective of the
calling application)

Variant of the federation pattern using mashup
technology
Modern mashup techniques from Web 2.0 can be regarded as another way of
implementing the federation business pattern.

Implementation scenarios

[150]

Mashup refers to the creation of new content by seamlessly (re)combining existing
content such as text, data, images, audio, or video, to produce a type of collage.
Mashups often make use of application programming interfaces (APIs) made
available by other web applications.

The following diagram shows the scenario of implementing the federation pattern
using the mashup process:

Trigger:

An application sends a request in a RESTful style.

Primary flow:

1.	 The request is received by the mashup server and a processing pipeline is
started.

2.	 The first data source is an Oracle table, which makes information available as
a feed through a SQL connection.

3.	 The second source involves a direct connection to an RSS feed using the
ATOM protocol, which also returns a feed.

4.	 The two feeds are combined into one single feed, by using a transform
operation (in an aggregator building block).

5.	 The result is returned to the requesting application using a publish operation.

Chapter 4

[151]

Implementing the population business pattern
The scenario in the following diagram is the traditional implementation of the
population business pattern. This involves using a component that supports ETL
functionality and is started at a specific time using a job scheduler building block.

Trigger:

The job scheduler building block initiates processing at a given time,
determined by the job configuration.

Primary flow:

1.	 The start event launches the procedure.
2.	 The extract/gather building block reads the required data from the source,

which in this case is an Oracle database.
3.	 The transform/process building block transforms and processes the data.
4.	 The load/apply building block writes the data to the target database, which

in this case is a SQL Server database.

Implementation scenarios

[152]

Variant involving encapsulation of the population
pattern as a web service
The population pattern can also be used effectively in a modern SOA-based
environment. In this case, the component with the ETL functionality (population)
is encapsulated as a web service and incorporated into an SOA. This enables the
population pattern to be used by an integration process, as shown in the
following diagram:

Trigger:

The application sends a web service request using SOAP.

Primary flow:

1.	 The SOAP request initiates a new instance of the integration process.
2.	 To enable the integration process to make use of updated data at a later time,

it starts the population procedure via the web service interface, in other
words, using an SOAP request, and interrupts/pauses the process.

3.	 The population procedure (ETL processing) is executed and the data
is copied from the DB2 database to the Oracle database using the
SQL interfaces.

Chapter 4

[153]

4.	 The integration process is informed that the ETL processing has come to
an end by means of an SOAP (callback) request. The process waits for the
message with the corresponding receive activity.

5.	 The process restarts and reads the data from the updated source using a
database adapter.

Variant of the population pattern started by a
change event from Change Data Capture (CDC)
In the third variant, the population pattern is also used with an SOA-based approach.
However, the population procedure is not triggered by a process, but by a change
event from the database.

The Change Data Capture (CDC) method is applied to the source database. CDC
has a number of ways of recognizing changes in a source table, for example using
database triggers, time stamps or version numbers, or by scanning the database log.
Every change identified is published as a CDC event, which a given system can react
on. The following image shows the scenario of the event being processed by an ESB,
which triggers the population procedure.

Implementation scenarios

[154]

Trigger:

A change event from CDC indicates a change in the data (in Oracle
database A).

Primary flow:

1.	 The event is published and forwarded through Oracle Advanced Queuing
(AQ), a message infrastructure in the Oracle database.

2.	 An event-driven consumer in the ESB extracts the message (event) from the
database queue using an AQ adapter.

3.	 If necessary, the ESB transforms the data from a specific format to a canonical
format and forwards the event to the required receiver (message dispatcher).
In this case, the CDC event causes the population pattern or the ETL
processing to start.

4.	 The population procedure writes the modified data from the source database
(Oracle A), to the target database (Oracle B), and transforms the information.
As a result, the information is immediately updated in the target database.

5.	 At any time, the application can access the current data in the target database
via a web service query from the ESB mediation layer. The ESB uses a
database adapter for the SQL access.

Alternative flows:

•	 The ESB can also forward the event to potential interested receivers by means
of a message router (message dispatcher or publish/subscribe).

•	 The population procedure is not required to carry out a full update of the
target database. If the Change Data Capture event contains the primary key,
the population procedure can also only be implemented for the
relevant records.

Variant with SOA-based population pattern
triggered by a Change Data Capture event
This variant applies a modern SOA-based approach using an ESB component, and
the Change Data Capture event from the database as triggers. This is shown in the
following diagram:

Chapter 4

[155]

Trigger:

A record is added or modified in the source Oracle database.

Primary flow:

1.	 The modification in the database is identified by the database adapter using a
specific strategy, such as polling a timestamp column (in principle, a variant
of Change Data Capture).

2.	 An event-driven consumer building block in the ESB reacts to the new or
modified record in the source database.

3.	 The information from the modified record is read and published on the bus
as a message in a channel.

4.	 A message translator building block can be used to convert the message,
if required.

5.	 A database adapter writes the message to the target database (SQL Server).

Implementing the synchronization
business pattern
This implementation of the synchronization pattern makes use of the SOA-based
implementation of the population pattern. It duplicates this implementation and
applies it in both directions. In other words, two parallel, separate message flows are
used on the ESB, and both are implemented as a population pattern, as shown in the
following diagram.

Implementation scenarios

[156]

The important factor in this scenario is to avoid endless loops. This is because the
synchronization in one direction represents an update to the target system, which
means that the Change Data Capture procedure must be able to process it. One
variant of this pattern involves only certain areas of the source data, which do not
overlap in the two source databases (for example, at a client level or a regional level)
being modified. Another variant labels updates resulting from the synchronization
with a flag or a timestamp in every record, so that the Change Data Capture
mechanism can distinguish such updates from "normal" application updates.

In addition, this scenario can lead to conflicts if the same record is modified at the
same time in both databases. A cleaning process must be put in place when updates
to identical records are possible.

Trigger:

A record is added or modified in the Oracle or SQL Server database.

Primary flow:

1.	 One database adapter is used for each database to identify modified or new
records by means of a polling procedure. If a change is identified, and if it
has been made by a user and not by the synchronization process, then the
record is sent as a message in a channel on the bus.

2.	 The ESB can carry out an optional transformation, and thus writes the record
to the target database through a database adapter.

Alternative flow:

•	 In order to avoid conflicts, the two message flows on the ESB can
communicate with one another.

Chapter 4

[157]

EDA scenario
This scenario shows how the event processing business pattern for event-driven
architecture integration described in Chapter 1 can be implemented.

Implementing the event processing business
pattern
As shown in the following diagram, the event processing business pattern can be
implemented using a Complex Event Processing (CEP) engine, which is
controlled by an ESB.

Trigger:

An event occurs and is placed in a queue by the source system.

Primary flow:

1.	 An event-driven consumer building block removes the messages or events
from the queues using an appropriate JMS adapter, and forwards them to the
CEP engine.

2.	 The CEP engine uses a specific query language to identify the events that are
of interest, and enables events to be, for example, filtered, correlated,
and aggregated.

3.	 The CEP engine sends the events that it has identified, in the form of
messages, to the ESB endpoint. This ensures that the events are forwarded as
messages to a web service through SOAP.

4.	 The events that are not of interest are discarded.

Implementation scenarios

[158]

Alternative flows:

•	 Events are sent via sources other than queues and are linked to the ESB using
the appropriate adapters.

•	 The events identified as interesting by the CEP engine are sent to a message
router building block in the mediation layer, which ensures that several
potential systems receive the event (in combination with the broker
business pattern).

•	 Events that are not of interest are saved in persistent storage.

Variant with two levels of complex event processing
The event processing business pattern can be implemented on more than one level
with multiple use of a CEP engine, as shown in the following diagram. The CEP
engine is seen as a logical entity, but in reality, the multiple engines are often the same
physical engine with the complex event processor simply being used more than once.

The output stream from the first CEP engine (in other words, the events that
are identified) acts as the input stream for the next CEP engine. This makes the
process of identifying complex events simpler, as the first CEP query, for example,
establishes causality between the events, and the second CEP query aggregates the
two events into a new event (a complex event).

Chapter 4

[159]

Trigger:

An event occurs and is placed in a queue by the source system.

Primary flow:

1.	 An event-driven consumer building block removes the messages or events
from the queues using an appropriate JMS adapter and forwards them to the
CEP engine.

2.	 The first CEP engine (first level) defines the events of interest using the query
language and places them in another queue.

3.	 The second CEP engine (second level) uses the second queue as input, and
processes the output from the first engine for a second time.

4.	 The second CEP engine sends the events that it has identified to the ESB
endpoint, which ensures that the events are forwarded to a web service
through SOAP.

5.	 The events that are not of interest are discarded.

Alternative flows:

•	 For reasons of efficiency, an in-memory queue, or a data grid framework
(see next section), can be used for the second queue.

•	 Further levels of CEP engines can be added to identify more complex events,
and their causality.

•	 The CEP engine for each level can take the form of an independent physical
engine in order to allow for the processing of a heavy event load.

Grid computing/XTP scenario
This scenario shows how the business pattern for grid computing and
Extreme Transaction Processing (XTP) technologies described in Chapter 1
can be implemented.

Implementation scenarios

[160]

Implementing the grid computing business
pattern
The grid computing business pattern can be implemented using a data grid
framework and is shown in the following diagram:

Trigger:

An application makes a change to an object in the distributed cache.

Primary flow:

1.	 The data grid ensures that the modified object in the distributed cache is
updated.

2.	 The relevant backup data is updated.
3.	 Depending on the topology of the cache, the data may be distributed across

the entire cluster or only across certain computers.
4.	 Applications can register their interest on changes to data by applying a

suitable filter. In this case, they receive an event whenever the data has
been changed.

Variant with ESB wrapping a data grid to cache
service results
The grid computing business pattern can be combined with the direct connection
pattern and the ESB building block to implement a caching of service results, as
shown in the following diagram:

Chapter 4

[161]

Trigger:

An application sends an SOAP request to the ESB.

Primary flow:

1.	 The ESB checks if the requested information is already available in the data
grid/cache.

2.	 If the information is available in the cache, then the data is directly returned
from the cache.

3.	 If the information is not in the cache, then the data is read through the
database adapter from an Oracle database, placed in the cache, and
returned to the requesting application.

Connecting to an SAP system
This scenario shows how SAP can be integrated using the Trivadis Integration
Architecture Blueprint. We are making an exception in this case by considering
a specific product as a candidate for integration, identifying the corresponding
integration platforms, and including them in the scenario. By doing this, we can
show how the Integration Architecture Blueprint is used in practice, using some
vendor products for the building blocks.

Implementation scenarios

[162]

The image below shows how an orchestration using Microsoft BizTalk and SAP
can be combined. On the one hand, a simple SAP service is accessed using a
Remote Function Call (RFC), and on the other hand, an SAP business process is
implemented using the SAP Exchange Infrastructure (SAP XI) to access the SAP
system. The SAP business process is callable as a service and is used from the
BizTalk orchestration.

Trigger:

The application sends an SOAP request.
Primary flow:

1.	 The SOAP request initiates a new instance of a BizTalk process.
2.	 The process either implements a call directly in SAP in the form of an SAP

RFC call, or starts another business process which is made available by SAP
XI through an SOAP call.

3.	 The SAP XI business process is initiated and sends two calls to the SAP
system. One takes the form of a SAP RFC call, and the other uses a web
service interface made available by SAP.

Modernizing an integration solution
This section uses an example to illustrate how an existing integration solution that
has grown over time can be modernized using SOA methods, and the scenarios
from the previous sections.

Chapter 4

[163]

The example is a simplified version of a specific customer project in which an
existing solution was modernized with the help of SOA.

The task of the integration solution is to forward orders entered in the central ERP
system to the external target applications.

Initial situation
The current solution is primarily based on a file transfer mechanism that sends the
new and modified orders at intervals to the relevant applications, in the form of
files in two possible formats (XML und CSV). The applications are responsible for
processing the files independently.

At a later date, another application (IT App in the following diagram) was added
to the system using a queuing mechanism, because this mechanism allowed for the
guaranteed exchange of messages with the application by reading new orders, and
sending appropriate messages through the queue in the form of a transaction.

The following diagram shows the initial situation before the modernization process
took place:

Implementation scenarios

[164]

The extraction and file creation logic is written in PL/SQL. A Unix shell script is
used to send the files through the File Transfer Protocol (FTP), as no direct FTP call
was possible in PL/SQL. Both a shell script and the PL/SQL logic are responsible for
orchestrating the integration process.

Oracle Advanced Queuing (AQ) is used as the queuing infrastructure. As PL/
SQL supports sending of AQ messages through an API (package), it was possible to
implement this special variant of the business case entirely in PL/SQL, without a call
to a shell script being needed. In this case, the integration is bi-directional. This means
that when the order has been processed by the external system, the application must
send a feedback message to the ERP system. A second queue, which is implemented
in the integration layer using PL/SQL, is used for this purpose.

Sending new orders
New orders added to the master system (ERP-App) are periodically sent to
interested external systems.

Trigger:

The job scheduler triggers an event every 30 minutes for each external system
that has to be integrated.

Flow:

1.	 The event triggered by the job scheduler starts a shell script, which is
responsible for part of the orchestration.

2.	 The shell script first starts a PL/SQL procedure that creates the files, or
writes the information to the queue.

3.	 The PL/SQL procedure reads all the new orders from the ERP system's
database, and enriches them with additional information about the product
ordered and the customer.

4.	 Depending on the external target system, a decision is made as to whether
the information about the new order should be sent in the form of files, or
messages in queues.

5.	 The target system can determine in which format (XML or CSV) the file
should be supplied. A different PL/SQL procedure is called depending on
the desired format.

6.	 The PL/SQL procedure writes the file in the appropriate format using a
PL/SQL tool (in other words, the built-in package UTL_FILE) to the database
server. The database server is used only for interim storage of the files, as
these are uploaded to the target systems in the next step.

Chapter 4

[165]

7.	 The main shell script starts the process of uploading the files to the external
system, and another shell script completes the task.

8.	 The files are made available on the external system and are processed in
different ways depending on the application in question.

9.	 A PL/SQL procedure is called to send the order information through the
queue. The procedure is responsible for formatting and sending the message.

10.	 The document is now in the output queue (send) ready to be consumed.
11.	 The application (IT App) consumes the messages from the queue

immediately and starts processing the order.
12.	 When the order has been processed, the external application sends a message

to the feedback queue (receive).

Receiving the confirmation
The process orders are periodically sent back to the ERP system for invoicing.

Trigger:

The job scheduler triggers an event every 15 minutes.

Flow:

1.	 The job scheduler event starts a PL/SQL procedure, which processes the
feedback message.

2.	 The message is consumed from the feedback queue (receive).
3.	 A SQL UPDATE command updates the status of the order in the ERP database.

Evaluation of the existing solution
By evaluating the existing solution we came to the following conclusions:

•	 This is an integration solution that has grown up over time using a wide
variety of different technologies.

•	 A batch solution which does not support real-time integration. Exchanging
information in files is not really a state-of-the-art solution.

•	 Exchanging information in files is not really a state-of-the-art solution.
°° Data cannot be exchanged reliably, as FTP does not

support transactions.
°° Error handling and monitoring are difficult and

time-consuming. (It's not easy to determine if the IT app does
not send a response.)

Implementation scenarios

[166]

°° Files must be read and processed by the external applications,
all of which use different methods.

•	 Integrating new distribution channels (such as web services) is difficult, as
neither PL/SQL nor shell scripts are the ideal solution in this case.

•	 Many different technologies are used. The integration logic is distributed,
which makes maintenance difficult:

°° Job scheduler (for orchestration)
°° PL/SQL (for orchestration and mediation)
°° Shell script (for orchestration and mediation)

•	 Different solutions are used for files and queues.

Many of these disadvantages are purely technical. From a business perspective, only
the first disadvantage represents a real problem. The period of a maximum of 30
minutes between the data being entered in the ERP system, and the external systems
being updated, is clearly too long. From a technical point of view, it is not possible to
reduce this amount of time, as the batch solution overhead is significant and, in the
case of shorter cycles, the total overhead would be too large.

Therefore, the decision was made to modernize the existing integration solution and
to transform it into an event-driven, service-oriented integration solution based on
the processing of individual orders.

Modernizing — integration with SOA
The main objective of the modernization process, from a business perspective, is the
real-time integration of orders.

From a technical standpoint, there are other objectives, including the continued use
of the batch mode through file connections. This means that the new solution must
completely replace the old one, and the two solutions should not be left running in
parallel. A further technical objective is that of improved support as a result of the
introduction of a suitable infrastructure.

On the basis of these considerations, a new SOA-based integration architecture was
proposed and implemented, as shown in the following diagram:

Chapter 4

[167]

Trigger:

Each new order is published to a queue in the ERP database, using the
Change Data Capture functionality of the ERP system.

Flow:

1.	 The business event is consumed from the queue by an event-driven
consumer building block in the ESB. The corresponding AQ adapter is
used for this purpose.

2.	 A new BPEL process instance is started for the integration process. This
instance is responsible for orchestrating all the integration tasks for each
individual order.

3.	 First, the important order information concerning the products and the
customer must be gathered, as the ERP system only sends the primary key
for the new order in the business event. A service is called on the ESB that
uses a database adapter to read the data directly from the ERP database, and
compiles it into a message in canonical format.

4.	 A decision is made about the system to which the order should be sent, and
about whether feedback on the order is expected.

Implementation scenarios

[168]

5.	 In the right-hand branch, the message is placed in the existing output queue
(send). A message translator building block converts the order from the
canonical format, to the message format used so far, before it is sent. The
AQ adapter supports the process of sending the message. The BPEL process
instance will be paused until the callback from the external applications
is received.

6.	 The message is processed by the external application in the same way as
before. The message is retrieved, the order is processed, and, at a specified
time, a feedback message is sent to the feedback queue (receive).

7.	 The paused BPEL process instance is reactivated and consumes the message
from the feedback queue.

8.	 An invoke command is used to call another service on the ESB, which
modifies the status of the ERP system in a similar way to the current solution.
This involves a database adapter making direct modifications to a table or
record in the ERP database.

9.	 In the other case, which is shown in the branch on the left, only a message
is sent to the external systems. Another service is called on the ESB for this
purpose, which determines the target system and the target format based on
some information passed in the header of the message.

10.	 The ESB uses a header-based router to support the content-based forwarding
of the message.

11.	 Depending on the target system, the information is converted from the
canonical format to the correct target format.

12.	 The UK App already has a web service, which can be used to pass the order
to the system. For this reason, this system is connected via an SOAP adapter.

13.	 The two other systems continue to use the file-based interface. Therefore, an
FTP adapter creates and sends the files through FTP in XML or CSV format.

14.	 In order to ensure that the external application (labeled GE App in the
diagram) still receives the information in batch mode, with several orders
combined in one file, an aggregator building block is used. This collects the
individual messages over a specific period of time, and then sends them
together in the form of one large message to the target system via the
FTP adapter.

15.	 An aggregation process is not needed for the interface to the other external
application (labeled CH App in the image), as this system can also process a
large number of small files.

Chapter 4

[169]

Evaluation of the new solution
An evaluation of the new solution shows the following benefits:

•	 The orchestration is standardized and uses only one technology.
•	 One BPEL instance is responsible for one order throughout the entire

integration process:
°° This simplifies the monitoring process, because the instance

continues running until the order is completed; in other
words, in one of the two cases until the feedback message
from the external system has been processed.

•	 The orchestration is based only on the canonical format. The target system
formats are generated at the last possible moment in the mediation layer:

°° Additional distribution channels can easily be added on the
ESB, without having to modify the orchestration process.

°° The solution can easily support other protocols or formats
that are not yet known, simply by adding an extra translator
building block.

Trivadis Architecture Blueprints and
integration
The Trivadis Architecture Blueprints (Liebhart et al. 2007) can be combined with
the Integration Architecture Blueprint by incorporating the building blocks from
the architecture blueprints into the integration blueprint.

Implementation scenarios

[170]

This is shown in the following diagram using the example of an architecture based
on the Spring framework:

The (application) service is assigned to the process layer, as it is primarily
responsible for orchestrating and managing the data accesses. As described in the
Spring Architecture Blueprint, a data access from the service can use Data Access
Objects (DAOs) with Hibernate or Java Database Connectivity (JDBC). This
corresponds to the building blocks made available by the Integration Architecture
Blueprint. The service is used by two applications: One has a JMS connection using
Spring Message Listener and the other a web service connection through Spring
Webservice Framework.

Chapter 4

[171]

As already described in Chapter 3, simple integration processes and steps can be
combined to form more complex processes, by turning the target of one step in the
process into the source for the next.

As shown in the following diagram, the Microsoft .NET Architecture Blueprint and
the Spring Architecture Blueprint can be used to implement web services where
the individual artifacts are assigned to the same layer. This is transparent for the
integration blueprint, as these are simply applications which can be addressed
using the appropriate protocol.

Applications based on the Oracle ADF Architecture Blueprint and Oracle Forms
Blueprint can also be integrated in the same way.

Summary
You have now seen how the Trivadis Integration Architecture Blueprint can be
used to illustrate integration scenarios that implement the various business patterns
described in Chapter 1.

Most of the scenarios have been kept independent of specific vendor products on the
integration level, and are based solely on the building blocks that form part of the
different layers of the blueprint.

Implementation scenarios

[172]

You should now be able to:

•	 Explain service-oriented integration scenarios
•	 Explain scenarios for implementing the business patterns for EAI/EII and

data integration
•	 Understand the concept of modern integration scenarios using event

processing business patterns, as well as grid computing and Extreme
Transaction Processing (XTP)

•	 Explain how an ERP system (SAP) can be combined with the
integration blueprint

•	 Explain how an existing integration solution can be updated using SOA,
and describe a scenario that has already been implemented in practice

•	 Combine the integration blueprint with the other Trivadis
Architecture Blueprints.

In the next chapter, we will map the products and platforms of some major vendors
and of the open source community to the Trivadis Integration Architecture Blueprint.
This should help you to see in which areas of the blueprint the vendors are active, and
can guide you when comparing solutions of the different vendors.

Vendor Products for
Implementing the
Trivadis Blueprint

In this chapter, we will map not only single products, but complete product lines
from a range of vendors to the Trivadis Integration Architecture Blueprint.

For implementing modern, service-oriented integration architectures, we will
cover the following products and product lines:

•	 Oracle Fusion Middleware product line
•	 IBM WebSphere product line
•	 Microsoft Biztalk and .NET 3.0
•	 Spring framework combined with other open source software

For implementing more traditional, data integration architectures, we will cover
the following products and product lines:

•	 Oracle Data Integration
•	 IBM Information Management
•	 Microsoft SQL Server Integration Services

Oracle Fusion Middleware product line
Oracle Fusion Middleware is a complete platform for designing, implementing and
operating service-oriented integration architectures.

Vendor Products for Implementing the Trivadis Blueprint

[174]

The following diagram shows the Oracle Fusion Middleware components in the
integration blueprint:

The following table holds a description of the components of the Oracle Fusion
Middleware product line, as shown in this diagram:

Component Description
Adapters Oracle Adapters use Java Connector Architecture (JCA)

technology to connect external systems to the Oracle SOA Suite.
The Oracle SOA Suite includes out-of-the-box adapters to
integrate with transport protocols, data stores, messaging
middleware, and ERP systems, such as FTP, JMS, Advanced
Queuing (AQ), Websphere MQ, files, databases, Oracle
applications, SAP, Siebel, and so on.
Oracle offers other adapters under separate licenses that enable
a wide range of systems and technologies, including SAP,
Siebel, Tuxedo, CICS, and so on, to be integrated.

B2B Oracle Integration B2B supports industry standard protocols,
including RosettaNet, Electronic Data Interchange (EDI),
Applicability Statement 2 (AS2), and UCCnet, together with
internal configurations. In addition, it provides out-of-the-box
connectivity to industry hubs, such as Wal-Mart, Cisco, and Intel.

Chapter 5

[175]

Component Description

BPEL The Oracle BPEL component offers a comprehensive and
easy-to-use infrastructure for orchestrating, executing,
monitoring, and improving business processes based on
BPEL standards. BPEL processes can be executed.

BPM The Oracle Business Process Management component
is a complete set of tools for creating, executing, and
optimizing business processes.
The suite enables collaboration between Business and IT
to automate and optimize business processes. The result is
improved efficiency and agility, and lower costs.
Oracle BPM is specially tuned for line-of-business users, and
is based on the standard-based notation BPMN 2.0, which also
allows for these processes to be executed.

BAM Oracle Business Activity Monitoring provides business
functionality for monitoring an organization's services
and processes. KPIs are correlated down to the level of the
business processes themselves, and BAM can be used to
adapt the processes quickly and easily to changes in different
circumstances.
Oracle BAM is a complete solution for creating real-time,
operational dashboards and for developing monitoring
applications over the web.

Business Rules The Oracle Business Rules component enables dynamic
decisions to be made at runtime and allows the rules on which
the decisions are based to be externalized, so that they can
be adapted much more quickly and easily, sometimes even
by business analysts themselves. This increase in agility is
important, as it allows enterprises to remain competitive and to
meet regulatory requirements.

Coherence Oracle Coherence (formerly Tangosol Coherence) is a well
known enterprise data grid implementation.
It provides fast and reliable access to frequently used data,
making it possible for organizations to scale mission-critical
applications predictably. By automatically and dynamically
partitioning data in memory across multiple servers, Coherence
ensures continuous data availability and transactional integrity,
even in the event of a server failure. Coherence is a shared
infrastructure that combines data locality with local processing
power to perform real-time data analyses, in-memory grid
computations and parallel transaction, and event processing.

Vendor Products for Implementing the Trivadis Blueprint

[176]

Component Description
CEP Oracle Complex Event Processing is a complete solution for

building applications to filter, correlate, and process events in
real time so that downstream applications, service-oriented
architectures, and event-driven architectures are driven by true,
real-time intelligence.
Oracle CEP is an integral component of the SOA Suite that
enables patterns in event streams to be identified by formulating
corresponding queries. The CEP monitors these streams, stores
the necessary individual and independent events, and attempts
to correlate them into specific patterns. Users write the queries
with the help of Continuous Query Language (CQL).

Human Workflow The Human Workflow component assigns a task, such as
an order conformation, to a role or a user and waits until it
receives a response. The user completes the task in a work-list
application that displays current tasks and enables the user to
process them individually.

Mediator The Oracle Mediator component provides a lightweight
framework to mediate between various components within a
composite application in an SCA. Mediator converts data to
facilitate communication between different interfaces exposed
by different components, which are wired together to build an
SOA composite application. Mediator facilitates integration
between events and services, where service invocations and
events can be mixed and matched. You can use a Mediator
component to consume a business event or to receive a service
invocation. A Mediator component can evaluate routing rules,
perform transformations, validate, and either invoke another
service or raise another business event.

OSB Oracle Service Bus is a key component of the SOA Suite and
the Event- driven Architecture Suite in the Oracle Fusion
Middleware product family. OSB uniquely delivers the
integration capabilities of an Enterprise Service Bus (ESB)
with operational service management in a single product.
OSB is designed to handle the deployment, management,
and governance challenges of implementing service-oriented
architecture (SOA) from department to enterprise scale. OSB
is a proven, lightweight SOA integration platform designed
for connecting, mediating, and managing interactions between
heterogeneous services, and not just for web services, but also
Java and .Net messaging services and legacy endpoints.

Chapter 5

[177]

Component Description

OSBA The Layer 7 Oracle Service Bus (L7 OSB) Appliance combines
the ESB capabilities of OSB with Layer 7's XML security to
create a pre-integrated, pre-configured secure SOA integration
solution that can reduce the cost and complexity of an SOA
implementation. The OSB Appliance provides acceleration
of CPU-intensive operations such as message parsing, data
validation, and XML transformation, while the integral Layer 7
XML firewall provides DMZ-class threat protection, advanced
identity integration, and message-level security capabilities to
address the broadest range of external threats. By performing
these tasks in a hardware appliance, OSBA ensures latency is
reduced, applications aren't overloaded and service endpoints
can offload computationally intensive operations to hardware.

SCA The new Oracle middleware generation supports a service
infrastructure based on the Service Component Architecture
standard. The goal of SCA is to reduce IT complexity through
a standardized framework for assembling disparate enterprise
SOA components into a higher-level composite. SOA Suite 11g
benefits greatly from SCA because it fundamentally simplifies
the entire application lifecycle from development through
deployment and management.

SDO Service Data Objects specify a standard way to access data
and can be used to modify business data regardless of how it is
physically accessed.
Developers and architects do not need to know the technical
details of how to access a particular backend data source in
order to use SDO in their composite applications. Consequently,
they can use static or dynamic programming styles and obtain
connected as well as disconnected access.

TimesTen Oracle TimesTen In-Memory Database is a memory-optimized
relational database that delivers very low response time and
very high throughput for performance-critical systems. It is
targeted to run in the application tier, close to applications,
and optionally in process with applications. It can be used as
the database of record or as a cache to the Oracle database.
TimesTen databases fit entirely in physical memory. They are
persistent and recoverable, and access to them is provided using
standard SQL interfaces.

TopLink TopLink is Oracle's object/relational (O/R) mapping tool
(implementation of Data Mapper building block, see Chapter 3,
Integration Architecture Blueprint) and, like Hibernate, offers a
JPA-compliant interface (EJB 3). Java objects can be mapped to
relational databases and to XML.

Vendor Products for Implementing the Trivadis Blueprint

[178]

Component Description
User Messaging
Service

Oracle User Messaging Service provides a general service that
enables messages to be sent from applications to users through
a range of different channels. It also routes incoming messages
from devices to the correct applications.
Messaging drivers implement transport protocols that send the
messages along the different channels. The channels supported
include e-mail, SMS, and TTS (text to speech).

WebCenter WebCenter is a product that integrates enterprise services
to form a standardized, context-sensitive web application.
Using the Oracle WebCenter applications, developers can
break down the boundaries between web-based portals and
enterprise applications. As a result, they can rapidly create
flexible, context-sensitive work environments that make use of
rich, Ajax-based components, portlets, and content in an open,
standards-based architecture.

Oracle Application Integration
Architecture (AIA)
Oracle Application Integration Architecture (AIA) is a pre-built open architecture
implementing the canonical data model pattern by so-called Enterprise Business
Objects (EBO). AIA is a collection of infrastructure components and tools packaged
with methodology guidance for the purpose of creating loosely-coupled,
standards-based integrations. AIA is designed as a service-oriented architecture with
all of the interoperability features inherent in service-oriented designs. The concepts
described above represent major components and capabilities of AIA, but not the
specific terminology. AIA is based on several key components, which can be easily
mapped into the Trivadis Integration Architecture Blueprint, as shown in the
following diagram:

Chapter 5

[179]

The following table holds a description of the components of the Application
Integration Architecture (AIA).

Component Description
ABCS The role of the Application Business Connector Service is to

expose the business functions provided by the participating
application in a representation that conforms with Enterprise
Business Services (EBSs). It also serves as a glue to allow the
participating application to invoke the EBSs.

ABM Application Business Messages are based on the application-
specific terminology known and understood by those
applications. These messages are translated into standard
messages understood by AIA, specifically Enterprise Business
Messages (EBM) used by EBSs.

CAVS Composite Application Validation System provides a
powerful end-to-end integration testing framework that allows
an organization to develop all or part of an end-to-end test
scenario, and simulate input and output from all applications
involved in the integration flow.

EBF Enterprise Business Flows represent business/integration
processes that define and orchestrate a series of discrete steps to
complete an integration task, such as synchronizing a product
across multiple applications or submitting an order from CRM
to the back office for fulfillment.
EBFs are defined independently of the underlying applications,
simplifying the process of integrating applications from
multiple vendors. They will always use the services of the EBSs.

EBM At the most basic level, Enterprise Business Messages are
the messages that are exchanged between two applications.
The EBM represents the specific content of an EBO needed for
performing a specific activity.

EBO The Enterprise Business Object is the definition for a standard
business data object and is composed of reusable data
components. The library of all EBOs makes up a data model. The
EBO represents a layer of abstraction on top of the logical data
model, and is targeted for use by developers, business users,
and system integrators. In the integrations developed using
AIA architecture, the EBO data model serves as a common data
abstraction across systems. It supports the loose coupling of
systems in AIA and eliminates the need for one-to-one mappings
of the disparate data schemas between each set of systems.

Vendor Products for Implementing the Trivadis Blueprint

[180]

Component Description
EBS Enterprise Business Services are the foundation blocks in the

Oracle Application Integration Architecture. EBS represents
the application-or implementation-independent web service
definition for performing a business task. The architecture
facilitates distributed processing using EBSs.

PIP A Process Integration Pack is a pre-built set of integrated
orchestration flows, application integration logic, and extensible
enterprise business objects and services, required to manage the
state and execution of a defined set of activities or tasks between
specific Oracle applications associated with a given process.

Oracle Data Integrator
Oracle Data Integrator (ODI) is a product that streamlines the high performance
movement and transformation of data between disparate systems in batch,
real-time, synchronous, and asynchronous modes.

The Extract, Load, and Transform (ELT) architecture of the Oracle Data Integrator
makes use of a wide range of relational database management systems (RDBMS
engines) to process and transform the data. This approach increases the performance
and scalability of the system, and lowers the overall solution costs.

The Data Integrator is primarily intended for data integration tasks.

The following diagram shows the components of the ODI in the integration blueprint:

Chapter 5

[181]

The following table holds a description of the components of the ODI:

Component Description
KM Knowledge Modules implement the actual data flows

and define the templates for generating code across the
multiple systems involved in each process. The modules
are generic, because they allow data flows to be generated
regardless of the transformation rules. However, they are
also highly specific, because the code they generate and the
integration strategy they implement are finely tuned for a
given technology. ODI provides a comprehensive library of
Knowledge Modules:

•	 Reverse Engineering KM: This module is used for
reading the data from tables and other objects in
source databases.

•	 Journalizing KM: This module is used to record in
a journal the new and changed data within either a
table or view. It implements Change Data Capture
(CDC) functionality.

•	 Loading KM: This module is used for efficient
extraction of data from source databases and
includes database-specific utilities, such as bulk
unload.

•	 Integration KM: This module is used to load data
into the target database.

•	 Check KM: This ensures that constraints in the
source and target databases are not violated.

•	 Service KM: This module provides the capability
to make data services (data as web services)
available.

Repository The Repository stores information about models and
projects, together with runtime information. It is used by
the Designer and the Scheduler Agents. All the objects
configured and used by the Data Integrator modules are
stored in the Repository.

Scheduler Agent The Scheduler Agent coordinates the execution of
integration processes. It can be installed on any platform
that supports a Java Virtual Machine (JVM). The
execution can be started by the integral scheduler or an
external, third-party scheduler.

Vendor Products for Implementing the Trivadis Blueprint

[182]

IBM WebSphere product line
WebSphere is a product line developed by IBM that includes a range of software
products for application integration, an infrastructure, and an integrated
development environment.

The following diagram shows the IBM WebSphere components in the
integration blueprint:

The following table holds a description of the components of the IBM WebSphere
product line, as shown in this diagram:

Component Description
BEP Business Event Processing refers to the capability of monitoring

message processing in a business context.
Business Event Processing enables business units to define, design, and
create business events and behavior patterns without the involvement
of the IT department or additional programming. The product provides
graphical tools for bi-directional monitoring and visualization of all
activity flows. Patterns, rather than static rules, form the basis of the
product, providing users with comprehensive functionality for creating
actions based on individual messages and events, or combinations of
the two.

Chapter 5

[183]

Component Description
DataPower
Appliance

IBM's SOA DataPower Appliances are purpose-built, easy-to-deploy
network devices to simplify, help secure and accelerate XML and
web services deployments, and, at the same time, to extend the SOA
infrastructure. These devices allow an innovative, pragmatic approach
to be taken to the implementation of service-oriented architecture,
while also protecting existing investments in applications, security, and
network infrastructure.
The following devices are available:

•	 XI50: This device offers transport-independent transformations
between binary files, flat-text files, and XML messages for
secure XML enablement, enterprise message buses, and
mainframe connectivity.

•	 XA35: This device can speed up common types of XML
processing by offloading them from servers and networks. It
can perform XML parsing, XML schema validation, XML Path
Language (XPath) routing, Extensible Stylesheet Language
Transformations (XSLT), XML compression, and other essential
XML processing with wirespeed XML performance.

•	 XS40: This device guarantees the security of XML messages
and web services transactions, including encryption, firewall
filtering, digital signatures, schema validation, WS-Security,
XML access control, XPath, and detailed logging.

InfoSphere
MashupHub

InfoSphere MashupHub is a light-weight information management
environment for IT and business professionals who wish to publish
and share web, departmental, personal, and enterprise information for
use in Web 2.0 applications and mashups. MashupHub includes visual
tools for creating, storing, transforming, and remixing feeds to be used
in mashup and situational applications. It also includes a central catalog
for users to tag, rate, and share "mashable" assets.

InfoSphere
Streams

InfoSphere Streams provides an execution platform and services for
user-developed applications that ingest, filter, analyze, and correlate
potentially massive volumes of continuous data streams. It supports
the composition of new applications in the form of stream processing
graphs that can be created on the fly, mapped to a variety of hardware
configurations, and adapted as requests come and go.
InfoSphere Streams is comparable to Oracle CEP and
Microsoft's StreamInsight.

Vendor Products for Implementing the Trivadis Blueprint

[184]

Component Description
solidDB IBM solidDB product family features relational, in-memory database

technology that delivers better performance, performing up to ten
times faster than conventional, disk-based databases. solidDB uses the
familiar SQL language to access the data.

Tivoli Netcool Tivoli Netcool strengthens the Tivoli portfolio to help enterprises,
service providers, and government agencies manage the critical services
they deliver to customers and end users across complex technology
infrastructures. Netcool supports IBM Service Management, a
comprehensive, modular approach to integrated service visibility
and control.

WebSphere
Adapters

WebSphere Adapters use Java Connector Architecture (JCA)
technology to connect external systems to the process server, ESB, or
Message Broker.
The adapters can integrate with different transport protocols, data
stores, messaging middleware, and ERP systems, such as FTP, JMS,
Websphere MQ, files, databases, Oracle applications, SAP, Siebel,
and so on.

WebSphere
Business
Monitor

IBM WebSphere Business Monitor is a comprehensive Business
Activity Monitoring (BAM) software product that provides an
up-to-date view of an organization's business performance.
Customizable business dashboards process business events and
data and calculate Key Performance Indicators (KPIs) and metrics.
The events and data can be collected from a wide variety of sources,
including WebSphere Process Server and IBM FileNet P8 BPM.
Adapters can be used to access data from other sources.

WebSphere
Enterprise
Service Bus

IBM WebSphere Enterprise Service Bus offers a standards-based
integration platform for the easy connection of services. Web services
connectivity, messaging with Java Message Service (JMS), and
service-oriented integration increase flexibility and keep downtimes
to a minimum. An ESB executes the integration logic and allows for
intelligent interaction between business events and endpoints.

WebSphere
eXtreme Scale

IBM WebSphere eXtreme Scale is the IBM in-memory data-grid product.
It can be described as a fully elastic, memory-based storage grid. It
virtualizes the free memory of a potentially large number of Java virtual
machines, and makes them behave like a single key-addressable storage
pool for application states. Applications can view this as a
network -attached storage medium. It is key addressable and
applications can store a value at a key. Data within the grid can be
replicated to achieve fault tolerance and protect against data loss.
IBM WebSphere eXtreme Scale is comparable to Oracle coherence.

Chapter 5

[185]

Component Description
WebSphere
Message Broker

WebSphere Message Broker can act as a message and protocol switch,
enabling disparate applications and business data to be connected
across multiple platforms, and providing functions for implementing an
intelligent routing of an organization's entire business data. Business data
can be made available in the required format exactly where it is needed.

WebSphere
Message Broker
CEP Detector
Nodes

This is an extension of the Message Broker with Complex Event
Processing (CEP) functionality.

WebSphere
Partner
Gateway

The Partner Gateway provides centralized and consolidated B2B trading
partner and transaction management, to enable and manage process
and data integration with trading partners.
It is useful for companies that need a single point of management for
all B2B trading-partner integration and that need to support a wide
range of B2B transport protocols, such as Electronic Data Interchange
over the Internet (EDIINT) AS1, AS2, and AS3; commerce XML
(cXML); RosettaNet Implementation Framework (RNIF), Version 1.1
and 2.0; and e-business XML Messaging Service (ebMS), Version 2.0,
as well as industry data formats (for example, EDI) and industry XML
implementations. It combines comprehensive trading partner and
transaction management capabilities, with support for a wide range
of standards-based transport protocols and industry data formats
to provide data exchange, process integration, and web services
interoperability among trading partners.

WebSphere
Portal

The IBM WebSphere Portal adapts to users' needs and delivers a
composite view that allows the user to interact with several backend
systems, as if there were only one system in use.

WebSphere
Process Server

The WebSphere Process Server provides a runtime environment for
business processes and acts as a process integration platform for
business services on the basis of an SOA. It consists of the following
components:

•	 Business State Machines: supports the modeling of business
processes as a sequence of states and events.

•	 Business Processes: implements a BPEL-compliant process
engine. BPEL models can be created in WebSphere Integration
Developer or imported from a business model that has been
produced in WebSphere Business Modeler.

•	 Human Tasks: standardized components that can be used to
assign activities to end users.

•	 Business Rules: enables business rules to be externalized from
the business process and increases their flexibility by allowing
them to be adapted more rapidly.

Vendor Products for Implementing the Trivadis Blueprint

[186]

Component Description
WebSphere
Service Registry
and Repository

This product improves the management and governance of services.
Through its robust registry and repository capabilities and its close
integration with IBM SOA Foundation, WebSphere Service Registry
and Repository can be an essential base component of an SOA
implementation.
The WebSphere Service Registry and Repository system allows
information about the services in an SOA, commonly referred to as
service metadata, to be stored, accessed, and managed, in order to
support a successful SOA implementation.

WebSphere TX WebSphere Transformation Extender (TX) is a universal data
transformation and validation engine. It tackles one of the major
challenges of integrating enterprise systems, in other words, the
processing of complex data. WebSphere TX can convert and assess the
content of high volumes of large, multipart documents with complex
formatting, using a codeless, graphical approach to development.

IBM Information Management software
IBM Information Management software allows data to be stored, accessed, and
analyzed in a wide range of environments.

The products from the IBM Information Management software portfolio are
primarily focused on data integration.

The following diagram shows the IBM Information Management software
components in the integration blueprint:

Chapter 5

[187]

The following table holds a description of the components of IBM Information
Management software, as shown in the preceding diagram:

Component Description
Business Glossary The Business Glossary helps organizations to create and manage

a controlled vocabulary that acts as the common language
between Business and IT. This is an important step towards
aligning technology more effectively with business goals.

Change Data
Capture

This is a real-time Change Data Capture and replication solution
for heterogeneous environments. It identifies and distributes
information within diverse data stores in realtime.

Change Data
Capture for Oracle
Replication

IBM InfoSphere Change Data Capture for Oracle Replication
distributes data in realtime within Oracle systems.

DataStage DataStage enables organizations to design data flows that can
be used to extract information from different source systems.
This information can be enriched by means of transformations,
and is ultimately supplied to one or more target databases or
applications (supports ETL processing).

DataStage MVS
Edition

DataStage MVS Edition brings data transformation to IBM
mainframes. It consolidates, collects, and centralizes information
from several systems and mainframes.

Federation Server Federation Server gives virtual access to enterprise information,
as if it came from a single source, and, at the same time,
preserves the integrity of the sources in question. The solution
has transparent access to data from disparate sources, including
relational, structured, and unstructured data, XML files,
messages, and web services.

Information
Analyzer

IBM WebSphere Information Analyzer helps to give an
understanding of the structure, content, and quality of data
sources. It allows a profile to be created for source systems, gives
an insight into the systems themselves and monitors data rules.

Information Service
Director

Information Service Director enables transformation, federation,
and data-quality testing functionality to be published as a service
within an SOA. As a result, developers can quickly and easily
provide a service consisting of data integration logic that has
been developed using the Information Server.

Metadata Server The Metadata Server provides a metadata repository that is
integrated with all the product modules in the Information
Server. The metadata infrastructure is designed in such a way
that the metadata can be managed more easily, and be used
within one SOA by disparate technologies.

Vendor Products for Implementing the Trivadis Blueprint

[188]

Component Description
QualityStage This module is responsible for a range of data cleansing and

standardization tasks. Users can adapt and correct data (such as
addresses or e-mail addresses) using the rules provided. These
rules can also be extended. For example, when consolidating
customer data it is possible to search for duplicates in the
standardized records. The duplicates can be removed or
combined if they are incomplete.

Microsoft BizTalk and .NET 3.0
BizTalk Server is the Microsoft server for Business Process Management (BPM),
integration (EAI), and service-oriented architectures (SOA). Business processes
can be mapped, defined, executed, and analyzed within the IT environment using
BizTalk server.

.NET is the Microsoft development platform. Since version 3.0, the .NET framework
has included additional functionality relating to integration architectures, such as
Windows Communication Foundation (WCF), Windows Workflow Foundation
(WF), or the identity system CardSpace.

The following diagram shows the Microsoft BizTalk and .NET components in the
integration blueprint:

Chapter 5

[189]

The following table holds a description of the components of Microsoft BizTalk and
other server products, as shown in the preceding diagram:

Component Description
BizTalk
Accelerators

BizTalk Server Accelerators speed up the implementation
of solutions. Microsoft provides accelerators for SWIFT and
RosettaNet among others.

BizTalk
Adapters

Because BizTalk Server needs to communicate with a variety
of other software, it relies on the BizTalk Adapters to make this
possible. An adapter is an implementation of a communication
mechanism, such as a particular protocol. All the adapters are
built on a standard base called the Adapter Framework.
BizTalk server is supplied with more than 20 adapters. These
include adapters for BASE EDI (EDIFACT and X.12), files, FTP,
HTTP, MSMQ/MSMQT, POP3, SMTP, SOAP, Websphere MQ,
SharePoint Services, WSE, SQL Server, Oracle Database, TIBCO,
SAP R/3 (Version 4.x and 6.20), Siebel, and PeopleSoft.
If other adapters are needed, they can be developed individually
or acquired from third-party suppliers.

BRE The BizTalk Rules Engine enables the creation of policies
consisting of individual rules. The BRE can evaluate documents
on the basis of specified rules, and apply the actions defined
in the rules to the documents. The policies can be called from
orchestrations. However, policies can also be used by any
application that the BRE has an appropriate API for.

BizTalk Server
Engine

The BizTalk Server Engine is the heart of the product. It consists
of two main components:

•	 A messaging component that provides the ability
to communicate with a range of other software. By
relying on exchangeable adapters for different kinds of
communication, the BizTalk Server Engine can support a
variety of protocols and data formats.

•	 Support for creating and running graphically-defined
processes called orchestrations. Built on top of the BizTalk
Server Engine's messaging components, orchestrations
implement the logic that drives all or part of a business
process.

Vendor Products for Implementing the Trivadis Blueprint

[190]

Component Description
Business Activity
Monitoring

BizTalk makes it possible to implement business processes by
connecting several systems together. The users of these business
processes need to be able to find out the status of the processes.
In order to provide users with an accurate picture of the current
status of one or more processes, the Business Activity Monitoring
modules collect permanent data from running processes, and
store it in a database.

Infopath Infopath is a Windows application program that enables
XML-based forms to be designed and filled with information. The
proprietary, XML-based file format of the Infopath files takes a
similar approach to the W3C XForms standard to represent form
fields and control elements of data instances in XML format.
The main target group consists of organizations with
homogeneous work environments that need to be able to
integrate forms into workflows.

Orchestration
Designer
for Business
Analysts

Orchestration Designer for Business Analyst is a tool that enables
business analysts to create orchestration data flows in the familiar
Microsoft Visio environment. The complex flows can then be
exported to the orchestration designer and used by developers to
implement the orchestrations.

SharePoint
Server

Microsoft Office SharePoint Server (MOSS) is an extension of
Windows SharePoint Services (WSS).
Among other things, it offers more features for workflows,
business intelligence, searches, and managing large web sites.

SharePoint
Services

The purpose of WSSs is to optimize the cooperation between
users within one web user interface. The fundamental structure
of Windows SharePoint Services ensures that the cooperation
between the people involved is integrative and subject based.
WSS is a free add-on to Windows Server and includes templates
for creating document libraries, blogs, wikis, and meeting
workspaces.
WSS also offers a workflow environment, which enables the
publishing process for a document, or the authorization of
vacation requests, for example, to be represented (support for
human workflows).

Chapter 5

[191]

Component Description
StreamInsight Microsoft StreamInsight is a solution for building applications

to filter, correlate, and process events in real-time so that
downstream applications, service-oriented architectures,
and event-driven architectures are driven by true, real-time
intelligence.
StreamInsight was planned to be a part of the Microsoft SQL
Server product, but it is technically independent. StreamInsight
has a .NET-based API. Developers implement input and output
adapters as .NET classes that can connect to any kind of data
producers or consumers of event streams. Filtering, aggregation,
and correlation of event streams are formulated LINQ queries
that are run by the StreamInsight engine.

The following table holds a description of the components of
Microsoft .NET 3.0 and 3.5:

Component Description
Enterprise Single
Sign On

When systems from different manufacturers are integrated, the
user names and passwords that allow access to these systems
must be made available. On the one hand, the information must
be treated as strictly confidential (encrypted storage), while on the
other hand, a mechanism is needed to assign Windows accounts
to user accounts on backend systems.
From version 3.0 of .NET onwards, Microsoft has supplied
CardSpace, a token-based identity metasystem, which uses
standardized WS-* protocols, such as WS-Security, WS-Trust,
WS-MetadataExchange, and WS-SecurityPolicy. CardSpace can be
integrated with any product that supports these protocols.

Entity
Framework

The Entity Framework is Microsoft's O/R mapper, which was
introduced together with SQL Server 2008. Entity Framework
maps database and domain models using XML files.
The Entity Framework offers an open provider model, and
database manufacturers such as IBM and Oracle have already
announced their own providers.
It works as an LINQ provider that allows .NET developers to
formulate queries in the Language integrated Query (LINQ)
syntax that has been introduced with .NET version 3.5.

Vendor Products for Implementing the Trivadis Blueprint

[192]

Component Description
OData and WCF
Data Services

The Open Data Protocol (OData) is a highly interoperable
"RESTful" Web protocol for querying and updating data. OData
builds upon Web technologies such as HTTP, Atom Publishing
Protocol (AtomPub), and JSON. OData is released under
Microsoft's Open Specification Promise that allows anyone to freely
use and implement OData.
WCF Data Services allow for an easy implementation of an OData
data service based on .NET (3.5 SP1 and 4.0) and the Entity
Framework.
With IBM's WebSphere eXtreme Scale REST data service, there is
already a non-Microsoft implementation of OData.

Trivadis TMDA Trivadis Managed Data Access is a generator, that enables a
data access layer with the accompanying dataset and filter classes
to be created on the basis of an existing database schema and
configuration file. However, TMDA also has a class library (the
actual data access layer) that provides powerful functions for
programming database accesses.

WCF Windows Communication Foundation combines the remoting,
Microsoft Message Queues (MSMQ), DCOM, and web services
communications technologies within one newly developed,
standardized API. It also incorporates additional web services
protocols, such as WS-Security and WS-Transactions, which
previously had to be installed separately as Web Services
Enhancements (WSE). In addition, WCF integrates distributed
transactions with COM+.
The philosophy behind WCF is frequently summarized as ABC or
address, binding, and contract.

WF Workflow Foundation is the workflow engine of BizTalk. It
enables sequential or state-driven workflows to be defined,
and business rules to be tested. In this case, the implementation
of the rule manager is equivalent to the instantiation of the
policy activity of Workflow Foundation. Windows Workflow
Foundation (WF) is part of .NET 3.0.

Microsoft SQL Server Integration
Services
Microsoft SQL Server Integration Services (SSIS) is a comprehensive data integration
platform that is used to transport, call, transform, and consolidate information from
disparate sources and to upload it to several different systems. It is the successor to
Data Transformation Services (DTS).

Chapter 5

[193]

The SSIS is primarily intended for data integration tasks.

The following diagram shows the components of Microsoft SQL Server Integration
Services in the integration blueprint:

The following table holds a description of the components of SQL Server Integration
Services, as shown in the preceding diagram:

Component Description
Connection Managers A Connection Manager is a logical representation of a

connection.
SQL Server Integration Services provides a variety of
different connection managers that packages can use
to create connections with a range of data sources
and servers.
The following connection types are supported, among
others: ADO, ADO.NET, Excel, file, flat file, FTP, HTTP,
MSMQ, MSOLAP, OLEDB, ODBC, and SMTP.

Vendor Products for Implementing the Trivadis Blueprint

[194]

Component Description
Control Flow Elements SQL Server Integration Services provides three different

types of Control Flow Elements:
•	 Containers: Objects in SQL Server Integration

Services that provide a structure. They support
repeating control flows in packages and they
group tasks and containers into meaningful units
of work. Containers can include other containers
in addition to tasks.

•	 Tasks: Control flow elements that define units
of work that are performed in a package control
flow. A SQL Server Integration Services package
is made up of one or more tasks. If the package
contains more than one task, the tasks are
connected and sequenced in the control flow
by constraints. SQL Server Integration Services
includes the following types of tasks:

°° Data flow tasks
°° Data preparation tasks
°° Workflow tasks
°° SQL server tasks
°° Scripting tasks
°° Analysis service tasks
°° Maintenance tasks

•	 Precedence constraints: Constraints connect
executables, containers, and tasks to form an
ordered control flow.

Data Flow Elements SQL Server Integration Services provides three different
types of Data Flow components:

•	 Sources: This component extracts data from data
stores, such as tables and views in relational
databases, files, and SQL Server Analysis
Services databases.

•	 Transformations: This component modifies,
summarizes, and cleans data.

•	 Destinations: This component loads data into
data stores or creates in-memory datasets.

Chapter 5

[195]

Spring framework combined with other
open source software
The Spring framework is an open source framework for the Java platform. The
purpose of the Spring framework (often referred to simply as Spring) is to simplify
development with Java/JavaEE and to promote good programming practice. Spring
has a wide range of functionality and offers an end-to-end solution for developing
applications and business logic. The focus is on decoupling individual framework
components and on the interaction of a variety of platforms and tools, ranging from
J2EE servers and persistence tools, to web integration.

The Spring Integration and Spring Batch subprojects, and other components in the
open source environment that can easily be combined with the Spring Universe,
enable the Spring framework to be used for integration solutions.

The following diagram shows the components of the Spring framework and other
open source software in the integration blueprint:

Vendor Products for Implementing the Trivadis Blueprint

[196]

The following table holds a description of the components of the Spring
frameworkand other open source software, as shown in the preceding diagram:

Component Description
Apache Camel Apache Camel is a powerful open source integration

framework, which supports and implements most of
the patterns/building blocks described in Chapter 2, Base
Technologies. Camel allows for the creation of the Enterprise
Integration Patterns to implement routing and mediation rules
in either a Java-based domain-specific language (or Fluent
API), through Spring-based XML Configuration files, or
through the Scala DSL.

Apache Commons
SCXML

State Chart XML (SCXML) is currently a Working Draft
published by the World Wide Web Consortium (W3C).
SCXML provides a generic state-machine-based execution
environment based on Harel State Tables.
Apache Commons SCXML is a candidate for the control
language within multiple markup languages coming out of
the W3C (see Working Draft for details). Commons SCXML is
an implementation aimed at creating and maintaining a Java
SCXML engine that is capable of executing a state machine
defined using a SCXML document, while abstracting out the
environment interfaces.

Apache Hadoop Apache Hadoop is a Java software framework that supports
data-intensive distributed applications. It enables applications
to work with thousands of nodes and petabytes of data.
Hadoop was inspired by Google's MapReduce and Google
File System (GFS) papers.

Apache ODE Apache ODE was developed by Apache Software Foundation
and stands forOrchestration Director Engine. It can execute
business processes that follow the WS-BPEL standard.

Atomikos Atomikos provides a transaction management solution for
XTP, SOA, and open source environments offering basic
support for JDBC/XA pools, JMS/XA pools, and JTA/XA to
enable functional testing of transaction processes outside of
the application server.

Chapter 5

[197]

Component Description
Esper Esper is an open source event processor for CEP and ESP

applications. Esper simplifies and speeds up the development
of applications with a large number of incoming events or
messages. This enables events to be analyzed, filtered, and
consumed in different ways, and in real time.
Because it is a pure CEP engine, Esper must be embedded in
an application in such a way that the events can be passed
to the engine, and the corresponding actions carried out.
Therefore, Esper is also ideally suited to integration in the
Spring platform.
Esper has its own query language called Event Processing
Language (EPL), which has many similarities with SQL.

Hibernate Hibernate is an open source persistence framework for Java.
The framework allows the status of an object in a relational
database to be stored, and objects to be created from the
corresponding records. This functionality is referred to
as Object-Relational Mapping (ORM), and it means that
developers do not need to program SQL queries. It ensures
that the application is independent of the SQL dialect of the
database. The objects are standard objects with attributes
and methods (referred to in Java as POJOs, or plain old Java
objects). The relationships between the objects are mapped to
the corresponding database relationships.

JBoss Rules JBoss Rules is an open source rule engine. It takes the form of a
library and is available free of charge with an Apache license.
At the heart of the rule engine is an inference engine. Its job is
to match facts and rules (pattern matching) in order to make
conclusions that trigger corresponding actions.

jBPM jBPM is a framework developed by JBoss for the purpose of
implementing workflows for the Java EE platform. The Java
Process Definition Language (jPDL) is used to define the
processes. The jPDL is a format based on XML that is only
used in the jBPM. A graphical editor is also available for the
jPDL.

Mule Mule is a set of components that allows independent
applications to communicate with one other simply (often in a
purely declarative form) through a virtualized transport layer.
In principle, Mule is an implementation of the Enterprise
Integration Patterns, presented in (Hohpe, Wolf 2004).

Nagios Nagios is a popular open source computer system and
network-monitoring software application. It watches hosts
and services, alerting users when things go wrong, and again
when the errors have been fixed.

Vendor Products for Implementing the Trivadis Blueprint

[198]

Component Description
OS Workflow OS Workflow from OpenSymphony is a basic implementation

of a workflow engine, which is highly flexible. It uses its own
dialect of XML to describe the workflows, and a rudimentary
GUI editor is available for the XML dialect.

OSGi The specification of the Open Service Gateway initiative
service platform is a Java-based runtime environment
above the level of JVMs and their basic services. One of
the main features of the service platform is its ability to
execute dynamic, controlled service applications (referred
to as bundles) at runtime and, most importantly, to update
and then remove them. The model of the OSGi service
platform therefore makes it possible to run different,
largely independent, modular applications in parallel on
the same virtual machine, and to manage and update them
remotely throughout the entire lifecycle of the applications.
Dependencies between bundles are automatically resolved
and an intelligent version management system is available.

Quartz Scheduler Quartz Scheduler is an open source job scheduling system that
can be integrated with any J2EE or J2SE application, or used
as a standalone solution. Quartz can be used to create simple
or complex workflow plans with just a few hundred or several
thousand jobs, where a job is a standard component such as
an EJB or a Spring bean (POJO). Quartz supports distributed
transactions and clustering.

Spring Batch Spring Batch is a light-weight, comprehensive batch
framework designed to enable the development of robust
batch applications that are vital for the daily operations of
enterprise systems.
Spring Batch provides reusable functions that are essential
in processing large volumes of records, including logging/
tracing, transaction management, job processing statistics,
job restart, skip, and resource management. It also provides
technical services that enable extremely high-volume and
high-performance batch jobs to be created through the use of
optimization and partitioning techniques.

Spring Integration Spring Integration provides an extension of the Spring
programming model to support the well-known Enterprise
Integration Patterns (Hohpe, Wolf 2004), while building on the
Spring Framework's existing integration mechanisms.
It enables messaging within Spring-based applications and
integrates with external systems through adapters. These
adapters provide a higher level of abstraction than the Spring
framework support for remoting, messaging, and scheduling.

Chapter 5

[199]

Component Description
Spring ORM and
DAO

The Spring ORM module is an integration of the most popular
ORM framework. However, it does not provide its own ORM
solution, but instead integrates Hibernate, Oracle TopLink,
JDO, and iBATIS SQL Maps in a standardized form.
The Spring DAO module is an abstraction of JDBC, which
significantly simplifies programming for the JDBC API.

Spring Security Spring Security provides comprehensive security services
for J2EE-based enterprise software applications. There is a
particular emphasis on supporting projects built using The
Spring framework, which is the leading J2EE solution for
enterprise software development. If you're not using Spring for
developing enterprise applications, we warmly encourage you
to take a closer look at it. Some familiarity with Spring—and in
particular, dependency injection principles—will help you get
up to speed with Spring Security more easily.

SpringSource
Application
Platform

The SpringSource Application Platform is a completely
modular Java application server designed to run enterprise
Java applications and Spring-powered applications. The
platform is based on the new SpringSource Dynamic Module
Kernel, and provides a module-based server, which uses the
power of Spring, Apache Tomcat, and OSGi.

WSO2 BAM The WSO2 Business Activity Monitor serves the needs
of both business and IT domain experts to monitor and
understand business activities within an SOA deployment.
While specifically designed to monitor SOA deployments,
it can be extended to cater to other general monitoring
requirements as well.
WSO2 BAM supports both zero latency, as well as straight
through processing. Data is collected through push or pull
models, automatically, and processed in real time, to be made
available for business and IT users.

WSO2 Data Services
Server

The WSO2 Data Services Server augments SOA development
efforts by providing an easy-use platform for creating and
hosting data services. Data services are essentially web
services that provide unprecedented access to data stored
in heterogeneous data stores, thus enabling easy integration
of data into business processes, mashups, gadgets, BI
applications, and any service in general.

Vendor Products for Implementing the Trivadis Blueprint

[200]

Component Description
WSO2 Governance
Registry

WSO2 Governance Registry addresses both design-time
and runtime governance scenarios, to ensure compliance
with corporate standards. It allows enterprise architects and
developers to always keep track of the services being created
and used within an SOA. The WSO2 Governance Registry
connects SOA infrastructure with the people, processes, and
policies essential to an effective SOA.

Summary
In this chapter, you have seen how various products and product lines from a range
of vendors can be mapped to the Trivadis Integration Architecture Blueprint.

By now you should know which products from each vendor can be used for
implementing modern service-oriented integration architectures, as well as more
traditional data integration architectures.

With this knowledge and the architectural guidelines, you should now be able to
successfully implement your own integration projects.

References
(Adams et Al. 2001) J. Adams, S. Koushik, G. Vasudeva, G. Galambos: Patterns for
e-business, IBM Press, August 2001

(Ambriola, Tortora 1993) V. Ambriola, G. Tortora: Advances in Software
Engineering and Knowledge Engineering, World Scientific Publishing Company,
December 1993

(Andrews et al. 2003) T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. SMith, S. Thattte, I. Trickovic, S. Weerawarana: Business
Process Execution Language for Web Services, OASIS 5.5.2003

(Alves et al. 2006) A. Alves, A. Arkin, S. Askary, B. Bloch F. Curbera, Y. Goland, N.
Kartha, , C. Kevin, V. Mehta, S. Thatte, D. Vander Rijn, P. Yendluri, A. Yui: Web Services
Business Process Execution Language Version 2.0, OASIS Committee Draft,
17th May, 2006

(Beatty et al. 2003) J. Beatty, S. Brodsky, M. Nally, R. Patel: Next-Generation
Data Programming: Service Data objects, A Joint Whitepaper with IBM and BEA,
November 2003

(Barber, Edwards 2007) G. Barber, M. Edwards: Service Data Objects Specifications,
Open Service Oriented Architecture, 2007

(Berenson et al. 95) H. Berenson, P. Bernstein, G. Gray, J. Melton, E. O'Neil, P.
O'Neil: A Critique of ANSI SQL Isolation Levels, Proceedings of the ACM SIGMOD
Conference, San Jose, 1995

(Bernus et al. 2003) P. Bernus, L. Nemes, G. Schmidt: Handbook on Enterprise
Architecture International Handbooks on Information Systems, Springer,
November 2003

(BrichHanson 1970) P. BrinchHanson: The Nucleus of a Multiprogramming
System, Communications of the ACM, April 1970

References

[202]

(Brunner 2007) L. Brunner: Delivering the Goods, The Seybold Report Volume 7
Number 8 2007

(Carter 2007) S. Carter: SOA & Web 2.0—The New Language of Business, Pearson,
2007

(Casanave 2007) C. Casanave: Designing a Semantic Repository—Integrating
architecures for reuse and integration, ModelDriven.org 2007

(Chappell 2004) D.A. Chappell: Enterprise Service Bus, O'Reilly, 2004

(Coral8 2007) Coral8 Inc.: Complex Event Processing: Ten Design Patterns, 2007

(Craggs 2003) S. Craggs: Best-of-Breed ESB, EAI Consortium, June 2003

(CSSWIFT 2005) Credit Suisse, Bank Leu, Bank Hofmann: Private Swift Network
(PSN) for EAM, User Procedure Manual, Credit Suisse Group 2005

(Damodaran 2004) S. Damodaran: B2B integration over the Internet with XML:
RosettaNet successes and challenges, International World Wide Web
Conference ACM 2004

(Edwards 2007) M. Edwards: Service Component Architecture (SCA), OASIS 2007

(Eugster et al. 2003) P. Th. Eugster, P. A. Felber, R. Guerraoui, A-M. Kermarrec: The
Many Faces of Pubish/Subscribe, ACM Computing Surveys, June 2003

(FIPS 1993) Federal Information Processing Standards Publication 161-1: Electronic
Data Interchange (EDI), April 1993

(Foster, Kesselmann 1999) I. Foster, C. Kesselmann: The Grid—Blueprint of a New
Computing Infrastructure (Morgan Kaufmann Publishers, San Francisco 1999)

(Fröschle, Reinheimer 2007) H-P. Fröschle St. Reinheimer (Hrsg): Service-Oriented
Architecture (SOA), HMD Heft 253, dpunkt Verlag, 2007

(Gartner 2006) Gartner Group: Technology Hype cycle 2006, Gartner, 07/2006

(Gilfix 2003) M. Gilfix: Managing Evolution of Integration Middleware via
Integration Architecture Design, IBM 2003

(Gorton 2006) I. Gorton: Essential Software Architecture, Springer 2006

(Grangard et al. 2001) A. Grangard, B. Eisenberg, D. Nikull: ebXML Technical
Architecture Specification v1.0.4, OASIS, February 2001

(Gray, Reuter 1993) J. Gray, A. Reuter: Transaction Processing: Concepts and
Techniques, Morgan Kaufmann; First edition, 1993

Appendix

[203]

(Gruber et al. 2005) O. Gruber, B-J. Hargrave, J. McAffer, P.Rapicault, T. Watson: The
Eclipse 3.0 platform: Adopting OSGi technology, IBM Systems Journal 2005,
VOL 44, NO. 2

(Haiduk et al. 2002) P. Haiduk, P. Heusinger, M. Wagner: Use of OSGi on
hardware-limitted components, Fraunhofer Institute for Integrated Circuits,
Nürnberg 2002

(Hall et al. 2005) J. Hall, K.A. Healy, R. G. Ross, R.,G.: The Business Motivation
Model – Business Governance in a Volatile World, The Business Rules Group,
Release 1.2 , September 2005

(Hapner et al. 2002) M. Hapner, R. Burridge,R. Sharma ,J. Fialli, L. Stout: Java
Message Service, Version 1.1 April 12, 2002

(Hardwick, Bolton 1997) M. Hardwick, R. Bolton: The Industrial Virtual Enterprise,
Communications of the ACM, September 1997

(Haren 2007) V. Haren: TOGAF Version 8.1.1 Enterprise Edition — Study Guide,
Van Haren Publishing, August 2007

(Heinisch, Simons 2004) C. Heinisch, M. Simons: Telematics-moderated Software
Download in Automotive Controllers, Steinbeis Transfer Center for
Software Technology, 2004

(HL7V3 1998) American National Standards Institute: HL7 Version 3 Statement
of Principles, 1998

(Hohpe, Wolf 2004) G. Hohpe, B. Woolf: Enterprise Integration Patterns,
Addison-Wesley, 2004

(Inmon, Nesavich 2008) W.H. Inmon, A. Nesavich: Tapping into Unstructured Data,
Prentice Hall, 2008

(JCASpec 2003) Connector Architecture Expert Group: J2EE Connector Architecture
Specification, Version 1.5, Sun Microsystems, Inc., November 2003

(June 2005) R. Jung: Architectures for Data Integration, German university-
Publisher, 2005

(Liebhart et al. 2007) D. Liebhart, G. Schmutz, M. Lattmann, M. Heinisch, M.
Könings, M. Kölliker, P. Pakull, P. Welkenbach: Architecture Blueprints: A Guide for
Construction of software systems with Java Spring, .NET, ADF, Forms, and
SOA, Hanser, May 2007

(Lindsay 2008) B.G. Lindsay: Jim Gray at IBM – The Transaction Processing
Revolution, SIGMOD Record, June 2008, Vol. 37, No. 2

References

[204]

(Linthicum 1999) D.S Linthicum.: How to Select a Message Broker, e-biz
Journal, 9.1.1999

(Linthicum 2000) D.S Linthicum.: Enterprise Application Integration,
Addison-Wesley Professional, Dez. 2000

(Konsynski 1993) B.R. Konsynski: Strategic control in the extended enterprise,
IBM Systems Journal VOL 32, NO 1, 1993

(Kirchhof et al. 2003) A. Kirchhof, T. Gurzki, H. Hinderer, J, Vlachakis: What is a
Portal? — Definition and Use of Enterprise Portals, White Paper,
Fraunhofer IAO, 2003

(Knappe et al. 2003) M. Knappe, O. Koch, C Schneider: Business Integration—
Foundations of distributed IT Infrastructure, CTI Whitepaper, Januar 2003

(Krawczyk 2006) M. Krawczyk: Mastering IDoc Business Scenarios with SAP XI,
SAP Press, October 2006

(Lam, Shankararaman 2007) W. H. Lam, V. Shankararaman: Enterprise Architecture
and Integration: Methods, Implementation, and Technologies, IGI Global, May 2007

(Lee et al. 2003) J. Lee, K. Siau, S. Hong: Enterprise Integration with ERP and EAI,
Communications of the ACM, February 2003, Vol.46, No.2

(Lublinsky 2002) B. Lublinsky: Approaches to B2B Integration, EAI Journal, 2002

(Luckham 2002) D. Luckham: The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise, Addison-Wesley Professional, May 2002

(Misek, Purdy 2006) R. Misek, J. Purdy: Coherence 3.3 User Guide, Oracle Corp. 2006

(Moser 2003) G. Moser: SAP R/3 Interfacing Using BAPIs; A Practical Guide to
Working within the SAP Business Framework, GWV-Vieweg, October 2003

(Mühl et al. 2006) G. Mühl, L. Fiege, P.R. Pietzuch: Distributed Event-Based
Systems, Springer 2006

[Nussdorfer, Martin 2003] R: Nussdorfer, W. Martin: RTE-Real-Time Oriented IT
Architecture, EAI Forum, 2003

(Nussdorfer, Martin 2006) R: Nussdorfer, W. Martin: Role of Portals in a
Service-Oriented Architecture, iBonD — intelligend Business on Demand — Series,
March 2006

(OGSi 2003) Open Service Gateway initiative: OGSi Service Platfrom, Release 3
Specification, 2003

Appendix

[205]

(OMG 2008) Object Management Group: Business Process Modeling Notation, V1.1,
OMG 2008

(OpenGroup 1991) The Open Group: Distributed Transaction Processing: The XA
Specification, X/Open Company Ltd. 1991

(Pape 2006) Ch. Pape: Enterprise Application Integration (EAI), University of
Karlsruhe — Faculty of Computer Science and Business, 2006

(Patil, Newcorner 2003) S. Patil, E. Newcorner: ebXML and Web Services, IEEE
Internet Computing, May-June 2003

(Puschmann 2004) T. Puschmann: Prozessportale—Architecture for networking
with Customers and suppliers, Springer, Berlin, 2004

(Quema et al. 2003) V. Quema, R. Balter, L. Lellissard, D. Feliot, A. Freyssinet,
S. Lacourte: Administration and Deployment Tools in a Message-Oriented
Middleware, INRIA, France 2003

(Rahm 1994) E. Rahm: Multi-computer Database Systems: Fundamentals of
Distributed and Parallel Database Processing, Addison-Wesley, 1994

(Ring, Ward-Dutton 1999) K. Ring, N. Ward-Dutton: Enterprise Application
Integration: Making the Right Connections, Ovum Consulting Research 05/1999

(Rotem-Gal-Oz 2007) A. Rotem-Gal-Oz: SOA Patterns, Manning Publications 2007

(Russel et Al. 2006) N. Russell, A. ter Hofstede, W. van der Aalst, and N. Mulyar:
Workflow Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22,
BPMcenter.org, 2006

(Saad 2003) A. Saad: Protoyping in the BMW Car IT GmbH, JavaSpectrum, 2/2003

(Sailer 2001) M. Sailer: Requirements, Development, and Trends in Enterprise
Application Integration (EAI), SerCon GmbH 2001

(Scheer et Al. 2006) A.-W. Scheer, W. Jost, H. Hess,A. Kronz: Corporate Performance
Management, ARIS in Practice, Spinger 2006

(Scheer, Werth 2005) Scheer, A.-W., Werth, D.: Business Process Management and
Business Rules, Institute of Information Management,, Saarbrucken, February 2005

(Ten-Hove, Walker 2005) R. Ten-Hove, P. Walker: Java Business Integration (JBI
1.0), Sun Microsystems Inc. 18 August, 2005

References

[206]

(Thomson 1997) J. Thomson.: Avoiding the Middleware Muddle—Taking the
guesswork out of tool selection, IEEE Software, November/December 1997

(Viehmann 2008) H. Viehmann: From CQL to CEP to BAM — Oracle's Event
Processing Platform now and in the (near) Future, Oracle Corp. 2008

(Wallrab 2005) A. Wallrab: JSR-208: Java Business Integration,
Sun Microsystems 2005

(Wakelin et al. 2002) P. Wakelin, M. Keen. R. Johnson, D.C. Diaz: Java Connectors for
CICS: Featuring the J2EE Architecture, IBM RedBook, March 2002

(White 2004) S.A.: White.: Introduction to BPMN, BPTrends, July 2004

(Wütherich et al. 2008) G. Wütherich, N. Hartmann, B. Kolb, M. Lübken: The OSGi
Service Platform, dpunkt Publishing 2008

(Yuan et al. 2006) J. Yuan, A. Baharmi, C. Wang, M. Murray, A. Hunt: A Semantic
Information Integration Tool Suite, ACM VLDB 06 Conference Proceedings, 2006

(Zachmann 2007) J. A. Zachman: The Framework For Enterprise Architecture:
Background, Description and Utility, Zachmann International 2007

(Zeidler 2007) A. Zeidler: Event-based Middleware for Pervasive Computing.
Foundations, Concepts, Design, Vdm Publishing Dr. Müller, 2007

Index
Symbols
.NET 3.0

about 188
components 188-192

.NET 3.0, components
Enterprise Single Sign On 191
Entity Framework 191
OData and WCF Data Services 192
Trivadis TMDA 192
Windows Communication Foundation 192
Workflow Foundation (WF) 192

A
A2A 7, 9, 10
ABCS, AIA components 179
ABM, AIA components 179
Accelerating Advertising Processes in the

Digital Age. See AdsML, transport
formats

ACID 24, 65
Adapter Framework 189
adapters, Oracle Fusion Middleware

components 94, 174
ADO.NET, transport protocols 117
AdsML, transport formats 118
agents

about 54
execution patterns 54

aggregator 148
AIA

about 178
components 179, 180

AIA, components
Application Business Connector Service

179
Composite Application Validation System

179
ANSI/ISO SQL standard

levels 66
anycast, routing scheme 26
Apache Camel, Spring framework

components 196
Apache Hadoop, Spring framework

components 196
Apache ODE, Spring framework

components 196
application and information view 95
Application Business Connector Service. See

ABCS, AIA components
Application Business Message. See ABM,

AIA components
application level

process layer 127
application-to-application. See A2A
AQ 164
architecture blueprint 94
asynchronous receiver 124
atomicity 65
Atomicity, Consistency, Isolation, Durabil-

ity. See ACID
Atomikos, Spring framework components

196
ATOM protocol 150
AtomPub 192
Atom Publishing Protocol. See AtomPub

[208]

B
B2B 7, 9, 10
B2B, Oracle Fusion Middleware

components 174
B2C

B2Cabout 7, 9, 10
BAM 58, 184
BAM, BizTalk Server components 190
BAM, Oracle Fusion Middleware

components 175
BAPI, transport formats 117
base technologies, middleware

component-oriented middleware 24
data-oriented middleware 24
message-oriented middleware 24
remote procedure call 24
transaction-oriented middleware 24

BEA 84
BEP 182
BizTalk Accelerators, BizTalk Server

components 189
BizTalk Adapters, BizTalk Server

components 189
BizTalk Server

about 188
components 188, 189

BizTalk Server, components
BizTalk Accelerators 189
BizTalk Adapters 189
BizTalk Server Engine 189
BRE 189
Business Activity Monitoring 190
Infopath 190
Orchestration Designer for Business

Analysts 190
SharePoint Server 190
SharePoint Services 190
StreamInsight 191

BizTalk Server Engine, BizTalk Server
components

messaging components 189
BPD 88
BPEL

about 55, 62, 89
business protocols 89
executable business protocols 89

BPEL integration process 145
BPEL, Oracle Fusion Middleware

components 175
BPEL process 147
BPM 188
BPMN

about 62, 88
example 88
graphical elements 88

BPM, Oracle Fusion Middleware
components 175

BRE, BizTalk Server components 189
Broadcast, routing scheme 9, 25
broker 158
broker pattern, EAI

advantages 34
disadvantages 34
logical components 33
publish/subscribe message flow 33
uses 34

broker pattern, EII. See broker pattern, EAI
building blocks

about 103
in collection layer, adapter 103
in collection layer, mapper 103
in distributer layer, adapter 103
in distributer layer, mapper 103
in mediation layer, message translator 103
in mediation layer, router 103

building blocks, collection/distribution
layer

adapter 119
connector 119
DAO 120
data mapper 120
mappers 119

building blocks, mediation layer
canonical data model 122, 123
message channels 125
message construction 124
message routing 126
message transformations 126

Business Activity Monitoring. See BAM,
Oracle Fusion Middleware
components

Business Application Programming
Interface. See BAPI, transport formats

[209]

Business event 167
Business Event Processing. See BEP
Business Glossary 187
Business Process Diagrams. See BPD
Business Process Execution Language. See

BPEL
Business Process Management. See BPM
Business Process Modeling Notation. See

BPMN
Business Rules, Oracle Fusion Middleware

components 175
business-to-business. See B2B
business-to-consumer. See B2C

C
canonical model, building blocks

competing consumers 124
event-driven consumer 124
message dispatcher 124
message endpoint 124
polling consumer 124
selective consumer 124

CardSpace 188
CAVS, AIA components 179
CDC 153, 181
CEP

about 47, 48, 157
funnel model 48

CEP funnel model 49
Change Data Capture. See CDC 187
channel adapter 125
claim check 127
Coherence 175
collection/distribution layer, integration

domain level
about 118
base technology, JCA 119
base technology, SOD 119
building blocks 119
responsibility 118

communication layer, transport level
base technology 114
building blocks 114
implementing, requirements 114
responsibility 113

transportation formats, using as building
blocks 117, 118

transportation protocols, using as building
blocks 115-117

communication methods, middleware
conversational (Dialog-Oriented) 23
message passing 23
message queuing 23
publish/subscribe 23
request/reply 23

Competing consumers 124
Complex Event Processing. See CEP
CEP, Oracle Fusion Middleware

components 176
Composite Application Validation System.

See CAVS, AIA components
Connection Managers, SSIS components

193
consistency 65
Content-based router 145
content enricher 127
Continuous Query Language. See CQL
Control Flow Elements, SSIS components

containers 194
Precedence constraints 194
tasks 194

CQL 176
cron 128
Cronacle 128

D
DAO 120
DAO, Spring framework components 199
Data Access Object. See DAO
Data Flow Elements, SSIS components

destinations 194
sources 194
transformations 194

data grids, grid computing
domain entity 52
domain object 52
in-memory 51

data integration, patterns
about 37
federation pattern 37

[210]

population pattern 38
synchronization pattern 40

data integration scenarios
business patterns 148
federation business pattern, implementing

148
population business pattern, implementing

151
synchronization business pattern,

implementing 155, 156
data mapper 120
DataPower Appliance 183
DataStage 187
DataStage MVS Edition 187
Data Transfer Object. See DTO
Data Transformation Services. See DTS
DCOM, transport protocols 117
dead letter channel 125
direct connection business pattern, EAI/EII

scenarios
about 140
alternative flows 141
primary flow 140
synchronous to asynchronous, bridging

from 141, 142
trigger 140

direct connection pattern, EAI
about 32
advantages 32
disadvantages 32
logical pattern 32
uses 33

direct connection pattern, EII. See direct
connection pattern, EAI

Distributed Component Object Model. See
DCOM, transport protocols

Distributed Transaction 61
distribution topologies, grid computing

partitioned caches 53
replicated caches 52
replicated caches, advantages 52
replicated caches, disadvantages 53

domain-driven design
about 93
objectives 93

DTO 85

DTS 192
durability 65

E
EAI

about 7, 9, 12, 14
broker pattern 33
defining 14
direct connection pattern 32
integration levels 16
Middleware products 15
router pattern 35
SOA, differentiating between 12

EAI/EII scenarios
broker business pattern, implementing 142
business patterns 140
direct connection business pattern, imple-

menting 140
router business pattern, implementing 143

EBF 179
EBM 179
EBO 178, 179
EBS 180
ebXML, transport formats 117
Eclipse 3.0 73
EDA

about 45, 46
event processing 47
scenarios 157

EDA scenarios
event processing business pattern,

implementing 157, 158
EdiFact, transport formats 117
EII

about 7
aspects 45
broker pattern 33
direct connection pattern 32- 35
implementing, patterns 31
router pattern 35

EIS 76
EJB 80
EJB session bean 145
Electronic Business using XML. See ebXML,

transport formats

[211]

Enterprise Application Integration. See EAI
Enterprise Business Flow. See EBF
Enterprise Business Message. See EBM
Enterprise Business Objects. See EBO
Enterprise Business Service. See EBS
Enterprise Information Integration. See EII
Enterprise Information Systems. See EIS
Enterprise JavaBean. See EJB
Enterprise Service Bus. See ESB
Enterprise Single Sign On, .NET 3.0

components 191
Entity Framework, .NET 3.0 components

191
EPC

about 62, 87
example 87

EPL 197
ESB

about 9, 21, 176
basic structure 22
core functions 21
product, functions 22

ESP 48
Esper, Spring framework components 197
ETL 38, 180
Event-driven architecture. See EDA
event-driven consumer 124
Event-Driven Process Chain. See EPC
event processing business pattern, EDA

scenarios
implementing, CEP used 157, 158
variant with, two levels of CEP 158, 159

event processing, EDA
about 47
CEP 47, 48
ESP 47, 48
SEP 47, 48

Event Processing Language. See EPL
event processing pattern

aggregation over windows 132
Correlation (joins) 132
database lookups 132
database writes 132
dynamic queries 133
Event pattern matching 132
filtering 131

hierarchical events 133
In-memory caching 131
state machines 133

Event Stream Processing. See ESP
execution patterns, agents

data-grid aggregation 55
data-grid-wide execution 55
node-based execution 55
parallel execution 55
query-based execution 55
targeted execution 54

Extended Enterprise 10
Extensible Stylesheet Language. See XSL
Extract, Transform, and Load. See ETL
Extreme Transaction Processing. See XTP

F
Failover 16
federation business pattern, data integration

scenarios
about 148, 149
implementing, mashup process used 150
mashup technology, using 149
SOA-based implementation diagram 148,

149
federation pattern, data integration

about 37
calling applications 37
diagrammatic representation 37
federation building block 38
source application 38
uses 38

Federation Server 187
File Transfer Protocol. See FTP
FTP 164

G
GFS 196
Google File System. See GFS
graphical elements, BPMN

artifacts 88
connecting objects 88
flow objects 88
swimlanes 88

grid, defining 49

[212]

grid computing
about 49
basic model 50
data grids 51
distribution topologies 52
features 50
tasks, distributed caching 50
tasks, event-driven processing 50
tasks, processing 50
uses 55

grid computing business pattern
combining with direct connection pattern

and ESB 160
implementing 160

grid computing scenarios
about 159
business pattern, implementing 160

grid computing, uses
complex real-time intelligence 57
data access buffers 56
data access virtualization 56
data format virtualization 56
distributed master data management 56
distributed transactional data cache

(domain entities) 55
distributed transactional object cache

(domain entities) 55
ESB notification service 56
high performance backup and recovery 56
maintenance window virtualization 56
SOA grid 55
storage access virtualization 56

H
Hibernate, Spring framework components

197
HL7, transport formats 117
hub-and-spoke architecture, integration

architecture variants
about 28, 29
advantages 29
disadvantages 29
opportunities 29
threats 29

Human Workflow, Oracle Fusion
Middleware components 176

I
IaaS 57
IBM 84
IBM Information Management software

about 186
components 186-188

IBM Information Management software,
components

Business Glossary 187
Change Data Capture 187
Change Data Capture for Oracle

Replication 187
DataStage 187
DataStage MVS Edition 187
Federation Server 187
Information Analyzer 187
Information Service Director 187
Metadata Server 187
QualityStage 188

IBM Tivioli Workload Scheduler 128
IBM WebSphere

about 182
components 182-186

IBM WebSphere, components
BEP 182
CEP Detector Nodes 185
DataPower Appliance 183
InfoSphere MashupHub 183
InfoSphere Streams 183
solidDB 184
Tivoli Netcool 184
WebSphere Adapters 184
WebSphere Business Monitor 184
WebSphere Enterprise Service Bus 184
WebSphere eXtreme Scale 184
WebSphere Message Broker 185
WebSphere Partner Gateway 185
WebSphere Portal 185
WebSphere Process Server 185
WebSphere Service Registry and Repository

186
WebSphere Transformation Extender 186

IDoc, transport formats 118
Infopath, BizTalk Server components 190
Information Analyzer 187

[213]

Information-as-a-Service. See IaaS
information flow 101
information flow, Trivadis Integration

Architecture Blueprint
different target system, routing to in com-

munication layer 110
different target system, routing to in

mediation layer 109
target, as source 108, 109
task, sharing in mediation layer 110
workflow building block, using 111

Information Service Director187
InfoSphere MashupHub 183
InfoSphere Streams 183
integration

A2A 7
n about 7
B2B 7
B2C 7
design patterns 8
EAI 8
ESB 8
hub-and-spoke architecture 8
pipeline architecture 8
point-to-point architecture 8
semantic integration 9
types 9, 11
XTP 8

integration architecture variants
shub-and-spoke architecture 26
pipeline architecture 27
spoint-to-point architecture 26
service-oriented architecture 27

integration domain
business domains 93
technical domains 93

integration domain level
collection/distribution layer 118
mediation layer 120

integration domain level, application and
information view

about 96
mediation layer 96

Integration instead of isolation 2
integration levels, EAI

integration on data level 16
integration on object level 16

integration on process level 16
integration solution, modernizing

about 163
confirmation, receiving 165
existing solution, evaluating 165
initial situation 163-166
new orders, sending 164
new solution, evaluating 169
SOA-based integration architecture 166-168

integration, types
information portals 11
shared business functions 12
shared data 11

integration view
connecting layer 100
forwarding layer 100
tasks 100
transportation layer 100

invalid message channel 125
invoke command 168
isolation 65
isolation levels

about 66
read committed 67
read uncommitted 68
repeatable read 67
serializable 66

J
Java Business Integration. See JBI
Java Connector Architecture. See JCA
Java Database Connectivity. See JDBC
Java Messaging Service. See JMS
Java Process Definition Language. See jPDL
Java Virtual Machine. See JVM
JBI

about 62, 79
components 80
message exchange pattern, one-way 79
message exchange pattern, reliable one-way

79
message exchange pattern, request/

optional response 79
message exchange pattern, request/

response 79
tasks 79

[214]

Service KM 181
Knowledge modules. See KM
KPIs 184

L
L7 OSB 177
Layer 7 Oracle Service Bus. See L7 OSB
layered architecture

building block 92
layer 92

layers, allocating to levels
application level 112
communication layer 111
integration domain level 112
media and collection/distribution layers

111
process layers 112
transportation layer 112

M
mapper 94
mediation layer, integration domain level

base technologies 121
building blocks 121
implementing, requirements 121
responsibility 120

Mediator
benefits 101
pattern, defining 101

Mediator, Oracle Fusion Middleware
components 176

message broker
about 18,
availability attribute 19
failure handling attributes 19
hub-and-spoke architecture 19
logical ports 18
message routing 19
message transformation 19
modifiability attribute 19
performance attribute 19
scalability attribute 19

message channels, building blocks
channel adapter 125
dead letter channel 125
invalid message channel 125

JBI, components
binding components 80
delivery channel 81
JBI container 80
JBI environment 80
NMR 80
normalized message 81
pluggable components 80
service engine 80

JBoss Rules, Spring framework components
197

JCA
about 62, 76, 174
components 77
contracts 78
uses 76

JCA, components
Common Client Interface (CCI) 77
Container-Component Contracts 77
Enterprise Information System 77
resource adapter 77
System-Level Contracts 77

JCA, contracts
connection management 78
life cycle management 78
message inflow management 79
security management 78
transaction inflow management 78
transaction management 78
work management 78

JDBC 170
JMS 48, 81, 145
JMS adapter 145
jPDL 197
JSR 235 84
JVM 181

K
Key Performance Indicators. See KPIs
KM

Check KM 181
Integration KM 181
Journalizing KM 181
Loading KM 181
Reverse Engineering KM 181

[215]

Microsoft SQL Server Integration Services.
See SSIS

middleware
about 9, 23
base technologies 24
communication methods 23
database gateways 24
database replication 24
direct messaging 24
message infrastructure 24
message queue systems 24
object request brokers 24
peer-to-peer, API 24
remote procedure calls 24
routing schemes 25

MOM 141
MOSS 190
MSMQ 192
Mule, Spring framework components 197
multicast, routing scheme 18, 26

N
Nagios, Spring framework components 197
Near real-time 23
Next Generation SOA 46
NMR 80
Normalized Message Router. See NMR
notation

capacity planning extensions 137, 138
configuration parameters 136
granularity levels, visualizing 135
scenarios, representing 134
transaction boundaries, representing 136
valid notations, diagram 134

O
OData and WCF Data Services, .NET 3.0

components 192
ODI

about 180
components 180, 181
ETL architecture 180

ODI, components
knowledge 181
knowledge modules 181

point-to-point channel 125
publish/subscribe channel 125

message context data 81
message dispatcher pattern 124, 142
message endpoint 124
Message flows 156
Message-Oriented Middleware. See MOM
message router 158
message router, building blocks

aggregator 126
content-based router 126
dynamic router 126
message filter 126
pipes-and-filters 126
recipient list 126
resequence 126
splitter 126

message transformation, building blocks
claim check 127
content enricher 127
correlation identifier 125
message translator 127
Request/reply 124
return address 125

message translator 127
messaging, attributes

availability 16
failure handling 16
modifiability 17
performance 17
scalability 17

messaging infrastructure
components, customer 20
components, event management 20
components, intermediate queue 20
components, local queue 20
components, message management 20
components, producer 20
diagrammatic representation 20

Metadata Server 187
Microsoft 89
Microsoft BizTalk. See BizTalk Server
Microsoft Message Queues. See MSMQ
Microsoft .NET Architecture Blueprint 171
Microsoft Office SharePoint Server. See

MOSS

[216]

Fusion Middleware components 177
orchestrating 106
Orchestration Designer for Business

Analysts, BizTalk Server components
190

OSB 176
OSBA 177
OSGi

about 72
architecture 74
architecture, layers 72
bundles 75
bundles, collaborating 76
collaborative model 76
collaborative software environment 72
component model 72
features 72
framework 73
service platform 73
specifications 73

OSGi, architecture
execution environment 74
life cycle management 74
modules 74
service registry 75

OSGi, Spring framework components 198
OSOA 84

P
partitioned caches

load-balanced 54
location transparency 54
partitioned 53

patterns, SDO
Data Access Object (DAO) 86
Data Transfer Object (DTO) 86
disconnected data usage 86
Entity object (EO) 86
optimistic concurrency semantics data

access 86
PIP 180
pipeline architecture, integration

architecture variants
about 29
advantages 30
disadvantages 30

repository 181
Scheduler Agent 181

OGSi 62
OLAP 46
OLTP 46
Online Analytical Processing. See OLAP
Online Transaction Processing. See OLTP
Open Grid Services infrastructure. See

OGSi
Open Service Gateway initiative. See OSGi
Open Service-Oriented Architecture. See

OSOA
Open Source Job Scheduler 128
Oracle 89
Oracle ADF Architecture Blueprint 171
Oracle Advanced Queuing. See AQ
Oracle Application Integration Architecture.

See AIA
Oracle Data Integrator. See ODI
Oracle Fusion Middleware

about 173
components 174-178
components, diagrammatic representation

174
Oracle Application Integration Architecture

178
Oracle Fusion Middleware, components

adapters 174
B2B 174
BAM 175
BPEL 175
BPM 175
Business Rules 175
Coherence 175
Complex Event Processing 176
Human Workflow 176
Mediator 176
OSB 176
SCA 177
SDO 177
TimesTen 177
TopLink 177
User Messaging Service 178
WebCenter 178

Oracle Service Bus. See OSB
Oracle Service Bus Appliance. See OSBA
Oracle Service Bus Appliance, Oracle

[217]

process layer, building blocks
event processing pattern 131
job scheduler 128
portal 128
workflow 129

process layer, Trivadis Integration
Architecture Blueprint

about 106, 107
adding 105
building blocks 107, 108
orchestrating 106

process modeling
about 86
applications 90
BPEL 89
BPMN 88
EPC 87

publisher
about 17
availability attribute 18
failure handling attribute 18
modifiability attribute 18
performance attribute 18
scalability attribute 18

publish/subscribe channel 125
publish/subscribe pattern 142

Q
QoS 97
Quality of Service. See QoS
QualityStage 188
Quartz 128
Quartz Scheduler, Spring framework

components 198
queuing mechanism 163
Query language 157

R
Radio Frequency Identification. See RFID
real-time enterprise. See RTE
Reliable messaging 18
Remote Function Call. See RFC
replication pattern. See synchronization

pattern, data integration
repository, ODI components 181

opportunities 30
themes 30

point-to-point architecture, integration
architecture variants

about 27
advantages 28
disadvantages 28
opportunities 28
threats 28

point-to-point channel 125
polling consumer 124
population business pattern, data

integration scenarios
about 151
CDC method, using 153, 154
encapsulating, as web service 152
SOA-based population pattern variant,

triggered by CDC 154, 155
population pattern, data integration

about 38
diagrammatic representation 39
population component 39
source applications 39
target application 39
uses 39

process integration business pattern,
service-oriented integration

batch-driven integration process, variant
with 146

externalized business rules, variant with
146

Process Integration Pack. See PIP
process integration pattern, service-oriented

integration
about 42
advantages 43
disadvantages 43
source applications, components 42
target applications, components 43
uses 43
variants, external business rules 44
variants, parallel process pattern 43

process layer, application level
base technologies 128
building blocks 128
implementing, requirements 127
responsibility 127

[218]

client and implementation 82
diagram 82
policy framework 82

SCDL 84
SCXML 196
SDO

about 62, 84, 177
architecture 85
patterns 86

SDO, architecture
data access service 85
data graph 85
data object 85
diagram 85

selective consumers 124
semantic integration

about 13
model-based semantic repositories 14
problems 13

SEP 48
Separation of Concerns. See SOC; See SoC
Service Component Architecture. See SCA
Service Component Definition Language.

See SCDL
Service Data Objects. See SDO
Service Level Agreements. See SLA
service-oriented architecture, integration

architecture variants
about 30
advantages 31
disadvantages 31
opportunities 31
threats 31

service-oriented integration
business patterns 144
pattern 42
process integration business pattern,

implementing 144, 145
process integration pattern 42
workflow integration pattern 42, 44

servlet 84
shared business functions

EAI 12
SOA 12

shared data
data transfer 11
file replication 11

resequence 126
RFC 162
RFID 47
roles

collection layer 102
communication layer 102
distribution layer 102
mediation layer 102

RosettaNet, transport formats 118
router pattern, EAI

about 35
advantages 36
disadvantages 36
logical components 35
uses 36

router pattern, EII. See router pattern, EAI
routing schemes, middleware

about 9
anycast 26
broadcast 25
multicast 26
unicast 25

RSS feed 150
RTE 45

S
SAP 89
SAP Exchange Infrastructure. See SAP XI
SAP system

connecting to 161, 162
SAP XI 162
SCA

about 62, 81, 177
composites 84
elements 83
specifications 82

SCA, elements
binding 83
implementation 83
property 83
reference 83
service 83
wire 83

SCA specifications
assembly model 82
binding specification 82

[219]

Spring ORM, Spring framework
components 199

Spring Security, Spring framework
components 199

SpringSource Application Platform, Spring
framework components 199

Spring Webservice Framework 170
SSD

about 59
benefits 59
uses 59

SSIS
about 192
components 193, 194

SSIS, components
Connection Managers 193
Control Flow Elements 194
Data Flow Elements 194

State Chart XML. See SCXML
StreamInsight, BizTalk Server components

191
subscriber 17
SWIFT, transport formats 117
synchronization pattern, data integration

about 40
diagrammatic representation 40
multi-step synchronization 41
source applications 41
target application 40
uses 41

synchronous receiver 124

T
Tangosol Coherence. See Coherence
technical integration domain 92
TimesTen, Oracle Fusion Middleware

components 177
Tivoli Netcool 184
TMDA 192
TopLink, Oracle Fusion Middleware

components 177
transactional systems

about 63
atomic transactions 65
commit 64
completing 64

shared database 11
shared data storage 52
SharePoint Services, BizTalk Server

components 190
Siebel 89
Simple Event Processing. See SEP
Skiddle 84
SLA 50
SOA 12, 15

EAI, differentiating between 12
SoC 33, 100
solidDB 184
Solid State Disk. See SSD
splitter 148
Spring Architecture Blueprint 171
Spring Batch, Spring framework

components 198
Spring framework

about 195
components 196- 199

Spring framework, components
Apache Camel 196
Apache Commons SCXML 196
Apache Hadoop 196
Apache ODE 196
Atomikos 196
DAO 199
Esper 197
Hibernate 197
JBoss Rules 197
jBPM 197
Mule 197
Nagios 197
OSGi 198
OS Workflow 198
Quartz Scheduler 198
Spring Batch 198
Spring Integration 198
Spring ORM 199
Spring Security 199
SpringSource Application Platform 199
WSO2 Business Activity Monitor 199
WSO2 Data Services Server 199
WSO2 Governance Registry 200

Spring Integration, Spring framework
components 198

[220]

ODBC 115
POP3 116
RMI 115
SMB 116
SMTP 116
soap 116
SQL*NET 116
115
UCP 115
XML-RPC 116
XMPP 116

Trivadis Architecture Blueprints
about 169
applications 95
non-transactional information storage 95
Spring framework based example 170
transactional information storage 95
transport level 96

Trivadis Integration Architecture Blueprint
about 91
adapter 94
application and information view 95
application and integration view,

differentiating between 99
application and integration view, tasks 100
architecture blueprint 94
blueprints, structuring 94
building blocks 92, 103
collection and distribution layer, combining

104
components 91
direction changing, in information flow

104, 105
domain-driven design 93
information flow 101, 108
integration blueprint, layers 98
integration blueprint, levels 98
integration blueprint, tasks 97
integration domain 93
layered architecture 92
layers, allocating to levels 111
mapper 94
overview diagram 95
process layer, adding 105, 106
roles 101
standards 92
technical integration domain 92

example 63
rollback 64
transaction coordinator 65
transaction manager 65

transactions
about 63
isolation levels 63, 66
phantom read 68
transactional systems 63
two-phase commit 63, 69
XA transaction 63, 70

transport formats
AdsML 118
BAPI 117
ebXML 117
EdiFact 117
HL7 117
IDoc 118
RosettaNet 118
SWIFT 117

transport level, Trivadis Architecture
Blueprints

about 96
application llevel 96
assembly 97
BAM 97
communication level 96
deployment 97
governance 97
integration domain level 96
management 97
QoS 97
security 97
transaction 97

transport protocols
ADO.NET 117
DCOM 117
FTP 115
HTTP 115
IMAP 116
IOP 115
iSCSI 116
JDBC 115
JMS 115
MSMQ 116
Net8 116
NFS 116

[221]

cancellation patterns 131
Multiple instances (MI) patterns 130
state-based patterns 130
structural patterns 130
synchronization patterns 129, 130

Workflow Foundation, .NET 3.0 components
192

workflow integration pattern,
service-oriented integration

diagrammatic representation 44
variants, parallel workflow 44

WSDL 83
WSE 192
WSFL 89
WSO2 Business Activity Monitor, Spring

Framework components 199
WSO2 Data Services Server, Spring

Framework components 199
WSO2 Governance Registry, Spring

Framework components 200
WSS 190

X
XA35 device 183
XA transaction

about 70
atomic transaction, comparing with 71
Die X/Open XA specification 70
using 71

XI50 device 183
XLANG 89
XLS 80
XS40 device 183
XTP

about 7, 49, 57
and CEP 58
applications 58
growth areas 58
SOA grid 58

Z
zero latency access 52

Trivadis Managed Data Access. See TMDA
Trivadis TMDA, .NET 3.0 components 192
two-phase commit

about 69, 70
commit phase 69
commit request 69
protocol 70

TX 186

U
unicast, routing scheme 25
UPDATE command 165
User Messaging Service, Oracle Fusion

Middleware components 178

V
Virtual Enterprise 10
visualization. See notation

W
WCF 188
WebCenter, Oracle Fusion Middleware

components 178
Web Service Definition Language. See

WSDL
Web Services Enhancements. See WSE
WebSphere Adapters 184
WebSphere Enterprise Service Bus 184
WebSphere eXtreme Scale 184
WebSphere Message Broker 185
WebSphere Partner Gateway 185
WebSphere Portal 185
WebSphere Process Server 185
WebSphere Service Registry and Repository

186
WebSphere Transformation Extender. See

TX
WF 188
Windows Communication Foundation. See

WCF
Windows SharePoint Services. See WSS
Windows Workflow Foundation. See WF
workflow, building blocks

advanced branching patterns 129, 130
basic control patterns 129

Thank you for buying
Service Oriented Architecture:

An Integration Blueprint

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

P U B L I S H I N G

professional expert ise dist i l led

SOA Patterns with BizTalk
Server 2009
ISBN: 978-1-847195-00-5 Paperback: 400 pages

Implement SOA strategies for BizTalk Server solutions

1.	 Discusses core principles of SOA and shows
them applied to BizTalk solutions

2.	 The most thorough examination of BizTalk and
WCF integration in any available book

3.	 Leading insight into the new WCF SQL Server
Adapter, UDDI Services version 3, and ESB
Guidance 2.0

SOA Governance
ISBN: 978-1-847195-86-9 Paperback: 228 pages

The key to successful SOA adoption in your
organization

1.	 Learn about SOA Governance to achieve SOA
success in your company.

2.	 Follow a fictitious company's journey of SOA
Governance adoption

3.	 Learn to choose the right people, processes, and
policies to achieve successful SOA Governance
within your company

4.	 Understand the services and strategies used to
achieve consistent results.

Please check www.PacktPub.com for information on our titles

P U B L I S H I N G

professional expert ise dist i l led

WCF Multi-tier Services
Development with LINQ
ISBN: 978-1-847196-62-0 Paperback: 384 pages

Build SOA applications on the Microsoft platform in
this hands-on guide

1.	 Master WCF and LINQ concepts by completing
practical examples and apply them to your real-
world assignments

2.	 First book to combine WCF and LINQ in a
multi-tier real-world WCF service

3.	 Ideal for beginners who want to build scalable,
powerful, easy-to-maintain WCF services

Business Process Driven SOA
using BPMN and BPEL
ISBN: 978-1-847191-46-5 Paperback: 328 pages

From Business Process Modeling to Orchestration
and Service Oriented Architecture

1.	 Understand business process management and
how it relates to SOA

2.	 Understand advanced business process
modeling and management with BPMN and
BPEL

3.	 Work with tools that support BPMN and BPEL
(Oracle BPA Suite)

4.	 Transform BPMN to BPEL and execute
business processes on the SOA platform

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	Table of Contents
	عناوین
	Preface
	Chapter 1: Basic Principles
	Integration
	Concepts
	A2A, B2B, and B2C

	Integration types
	Information portals
	Shared data
	Shared business functions
	Differences between EAI and SOA

	Semantic integration and the role of data
	Enterprise Application Integration (EAI)
	Levels of integration

	Messaging
	Publish/subscribe
	Message brokers
	Messaging infrastructure
	Enterprise Service Bus
	The core functions of an ESB
	The structure of an ESB

	Middleware
	Middleware communication methods
	Middleware base technologies
	Routing schemes

	Integration architecture variants
	Point-to-point architecture
	Hub-and-spoke architecture
	Pipeline architecture
	Service-oriented architecture

	Patterns for EAI/EII
	Direct connection
	Uses

	Broker
	Uses

	Router
	Uses

	Patterns for data integration
	Federation
	Uses

	Population
	Uses

	Synchronization
	Uses
	Multi-step synchronization

	Patterns for service-oriented integration
	Process integration
	Uses
	Variants

	Workflow integration
	Variants

	Event-driven architecture
	Introducing EDA
	Event processing
	Simple Event Processing (SEP)
	Event Stream Processing (ESP)
	Complex Event Processing (CEP)

	Grid computing/Extreme Transaction Processing (XTP)
	Grid computing
	Data grids
	Distribution topologies
	Agents
	Execution patterns

	Uses
	XTP (Extreme Transaction Processing)
	XTP and CEP
	Solid State Disks and grids

	Summary

	Chapter 2: Base Technologies
	Transactions
	Transactional systems
	Isolation levels
	Serializable
	Repeatable read
	Read committed
	Read uncommitted

	Phantom reads
	Two-Phase Commit protocol (2PC)
	XA transactions

	OSGi
	OSGi architecture
	OSGi bundles
	Collaborative model

	Java Connector Architecture (JCA)
	Uses
	JCA components
	Contracts

	Java Business Integration (JBI)
	JBI components

	Service Component Architecture (SCA)
	SCA specification
	SCA elements
	Composites

	Service Data Objects (SDO)
	SDO architecture
	Implemented patterns

	Process modeling
	Event-driven Process Chain (EPC)
	Business Process Modeling Notation (BPMN)
	Business Process Execution Language (BPEL)
	The application of process modeling

	Summary

	Chapter 3: Integration Architecture Blueprint
	Dissecting the Trivadis Integration
Architecture Blueprint
	Standards, components, and patterns used
	Structuring the integration blueprint
	The road to the integration blueprint
	Applications and integration
	Layers in the integration solution
	Information flow and roles
	Information flow and building blocks
	Combining the collection and distribution layer
	Change of direction in the information flow
	Adding the process layer
	The role of the process layer
	The building blocks of the process layer
	Information flow in more complex integrations
	The target becomes the source in a more
complex integration
	Routing to different target systems in the
mediation layer
	Routing to different target systems in the communication layer
	Task sharing in the mediation layer
	Management using a workflow building block

	Allocating layers to levels

	Transport level: Communication layer
	Responsibility
	Concepts and methods
	Building blocks
	Transport protocols
	Transport formats

	Integration domain level:
Collection/distribution layer
	Responsibility
	Concepts and methods
	Building blocks

	Integration domain level: Mediation layer
	Responsibility
	Concepts and methods
	Building blocks
	Canonical data model
	Message construction
	Messaging channel
	Message routing
	Message transformation

	Application level: Process layer
	Responsibility
	Concepts and methods
	Building blocks
	Job scheduler
	Portal
	Workflow
	Event processing pattern

	Notation and visualization
	Representing the scenarios and the
notation used
	Visualizing different levels of granularity
	Representing transaction boundaries
	Configuration parameters as additional artifacts
	Extension for capacity planning

	Summary

	Chapter 4: Implementation scenarios
	EAI/EII scenarios
	Implementing the direct connection business pattern
	Variant with synchronous call over asynchronous protocol

	Implementing the broker business pattern
	Implementing the router business pattern

	Service-oriented integration scenarios
	Implementing the process integration business pattern
	Variant with externalized business rules in a
rule engine
	Variant with batch-driven integration process

	Implementing the workflow business pattern

	Data integration scenarios
	Implementing the federation business pattern
	Variant of the federation pattern using mashup technology

	Implementing the population business pattern
	Variant involving encapsulation of the population pattern as a web service
	Variant of the population pattern started by a change event from Change Data Capture (CDC)
	Variant with SOA-based population pattern triggered by a Change Data Capture event

	Implementing the synchronization
business pattern

	EDA scenario
	Implementing the event processing business pattern
	Variant with two levels of complex event processing

	Grid computing/XTP scenario
	Implementing the grid computing business pattern
	Variant with ESB wrapping a data grid to cache service results

	Connecting to an SAP system
	Modernizing an integration solution
	Initial situation
	Sending new orders
	Receiving the confirmation
	Evaluation of the existing solution

	Modernizing — integration with SOA
	Evaluation of the new solution

	Trivadis Architecture Blueprints and
integration
	Summary

	Chapter 5: Vendor Products for Implementing the
Trivadis Blueprint
	Oracle Fusion Middleware product line
	Oracle Application Integration
Architecture (AIA)

	Oracle Data Integrator
	IBM WebSphere product line
	IBM Information Management software
	Microsoft BizTalk and .NET 3.0
	Microsoft SQL Server Integration
Services
	Spring framework combined with other open source software
	Summary

	Appendix: References
	Index

