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Multi-layer NN

 Between the input and output layers there are hidden layers, 
as illustrated below. 
 Hidden nodes do not directly send outputs to the external 

environment.

 Multi-layer NN overcome the limitation of a single-layer NN
 They can handle non-linearly separable learning tasks. 
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XOR problem 
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Two classes, green and red, cannot be 
separated using one line, but two lines.
The NN below with two hidden nodes
realizes this non-linear separation, where
each hidden node represents one of the 
two blue lines.
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Types of decision regions 

022110  xwxww

022110  xwxww

Convex

region

L1
L2

L3
L4 -3.5

Network

with a single

node

One-hidden layer network that 

realizes the convex region: 

Each hidden node realizes one 

of the lines bounding the 

convex region

P1
P2

P3
1.5

Two-hidden layer network that 

realizes the union of three 

convex regions: each box 

represents a one hidden layer 

network realizing one convex 

region

x1

1

x2 w2

w1

w0

1

1

1

1

1

x1

x2

1

1

1

1

1

x1

x2

1

Neural Networks - Shahrood University - Hossein Khosravi

5



Structure
Types of
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FFNN NEURON MODEL

 The classical learning algorithm of FFNN is based on the 
gradient descent method. 

 The activation function used in FFNN are continuous 
functions of the weights, differentiable everywhere. 
 A typical activation function is the Sigmoid Function
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FFNN NEURON MODEL

 Sigmoid Function:

 When a approaches to 0,  tends to a linear function

 When a tends to infinity then  tends to the step function
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The objective of multi-layer NN

 The error of output neuron j after the activation of the 
network on the n-th training example                           is:                     

 The network error is the sum of the squared errors of the 
output neurons:

 The total mean squared error is the average of the network 
errors over the training examples.
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Feed forward NN

 Idea: Credit assignment problem

 Problem of assigning credit or blame to 
individual elements involving in forming 
overall response of a learning system (hidden 
units)

 In neural networks, problem relates to 
distributing the network error to the weights.
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Multilayer Networks of Sigmoid Units
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Sigmoid Unit

(x) is the sigmoid function

Nice property:

We can derive gradient decent rules to train:

 One sigmoid unit

 Multilayer networks of sigmoid units  Backpropagation
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Error Gradient for a Sigmoid Unit

We know:

So:

Keep in mind 

for later use!
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Training: Backprop algorithm 

 Searches for weight values that minimize the total 
error of the network over the set of training 
examples.

 Repeated procedures of the following two passes:

 Forward pass: Compute the outputs of all units in the 
network, and the error of the output layers.

 Backward pass: The network error is used for updating the 
weights (credit assignment problem). 
 Starting at the output layer, the error is propagated backwards 

through the network, layer by layer. This is done by recursively 
computing the local gradient of each neuron.
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Backprop 

 Back-propagation training algorithm illustrated:

 Backprop adjusts the weights of the NN in order to 
minimize the network total mean squared error.

Network activation

Error computation

Forward Step

Error propagation

Backward Step
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BP for the case of sigmoid

Initialize all weights to small random numbers. 
 While Unsatisfied, Do

 For each training example, Do

 Feed Forward: Input the training example to the network and 
compute the network outputs

 Gradient Descent: For each output unit k : k k(1 - k) (tk - k)
 Backprop: For each hidden unit h

h h(1 - h) koutputs wh,kk

 Adjust Weights: Update each network weight wji

wji wji +wji

where wji =  j yi

yi is the output of neuron i in the previous layer:

 End For

 End While
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Nonlinear decision surfaces

One output

No hidden

One output

Two hidden
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BP Example

 XOR
 X0 X1 X2 Y
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1 1 1 0
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Neuron a Neuron b Neuron C

woa =0.34 va=0.34

oa=0.58

w0b =-0.12 vb= -0.12

ob=0.47

w0c =-0.99 vc=-0.54

oc=0.37
w1a =0.13 w1b =0.57 wac =0.16

w2a =-0.92 w2b =-0.33 wbc =0.75

a=oa(1-oa)kwakk

=0.58*(1-0.58)*0.16*(-0.085)

=-0.003

b=ob(1-ob)kwbkk

=0.47*(1-0.47)*0.75*(-

0.085)

=-0.016

c=oc(1-oc)(tc-oc)

=0.37*(1-0.37)*(0-0.37)

= -0.085

woa =ax0=0.5*(-0.003)*1

=-0.015

wob =bx0=0.5*(-

0.016)*1

=-0.008

woc =c1=0.5*(-0.085)*1

= -0.043

w1a =ax1=0.5*(-0.003)*0=0 w1b =bx1=0.5*(-

0.01)*0=0

wac = cOa = 0.5*(-

0.085)*0.58  = -0.025

w2a =ax2=0.5*(-0.003)*0=0 w2b =bx2=0.5*(-

0.01)*0=0

wbc =cOb=0.5*(-0.085)*0.47

= -0.020

Sigmoid A.F. ; =0.5; Sample{(1, 0, 0), 0}
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Weight updating

Neuron a Neuron b Neuron C

woa = woa+ woa=0.34-

0.015=0.325

w0b = w0b + wob =-0.12-

0.008

w0c = w0c + w0c =-0.99-0.043

w1a = w1a + w1a=0.13+0 w1b = w1b + w1b =0.57+0 wac = wac + wac =0.16-0.025

w2a = w2a+ w2a =-0.92+0 w2b = w2b + w2b =-0.33+0 wbc = wbc + wbc =0.75-0.02

woa =ax0=0.5*(-0.003)*1

=-0.015

wob =bx0=0.5*(-

0.016)*1

=-0.008

woc =c1=0.5*(-0.085)*1

=-0.043

w1a =aw1a=0.5*(-

0.003)*0=0

w1b =bw1b=0.5*(-

0.01)*0=0

wac =cwac=0.5*(-

0.085)*0.58   = -0.025

w2a =aw2a=0.5*(-

0.003)*0=0

w2b =bw2b=0.5*(-

0.01)*0=0

wbc =cwbc=0.5*(-

0.085)*0.47 = -0.020



Backpropagation: Properties

 Gradient descent over entire network weight 
vector.

 Easily generalized to arbitrary directed graphs.

 Will find a local, not necessarily global error 
minimum:
 In practice, often works well (can run multiple times 

with different initial weights).

 Minimizes error over training examples:
 Will it generalize well to subsequent examples?

 Training can take hundreds of iterations  slow

 Using the network after training is very fast.






