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Introduction
• Mechanical vibration is the motion of a particle or body which oscillates 

about a position of equilibrium.  Most vibrations in machines and 

structures are undesirable due to increased stresses and energy losses.

• Time interval required for a system to complete a full cycle of the motion 

is the period of the vibration.

• Number of cycles per unit time defines the frequency of the vibrations.

• Maximum displacement of the system from the equilibrium position is the 

amplitude of the vibration.

• When the motion is maintained by the restoring forces only, the vibration is 

described as free vibration.  When a periodic force is applied to the system, 

the motion is described as forced vibration.

• When the frictional dissipation of energy is neglected, the motion is 

said to be undamped.  Actually, all vibrations are damped to some 

degree.
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Free Vibrations of Particles.  Simple Harmonic Motion
• If a particle is displaced through a distance xm from its 

equilibrium position and released with no velocity, the 

particle will undergo simple harmonic motion,
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• General solution is the sum of two particular solutions,
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• x is a periodic function and ωn is the natural circular 

frequency of the motion.

• C1 and C2 are determined by the initial conditions:
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Free Vibrations of Particles.  Simple Harmonic Motion
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Free Vibrations of Particles.  Simple Harmonic Motion

( )φω += txx nm sin

• Velocity-time and acceleration-time curves can be 

represented by sine curves of the same period as the 

displacement-time curve but different phase angles.
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Simple Pendulum (Approximate Solution)
• Results obtained for the spring-mass system can be 

applied whenever the resultant force on a particle is 

proportional to the displacement and directed towards the 

equilibrium position.

for small angles, 
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• Consider tangential components of acceleration and force 

for a simple pendulum,
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Simple Pendulum (Exact Solution)

0sin =+ θθ
l

g
��An exact solution for

leads to 
( )

∫
−

=
2

0
22 sin2sin1

4
π

φθ

φ
τ

m

n
d

g

l

which requires numerical solution.









=

g

lK
n π

π
τ 2

2



© 2003 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

S
e
v
e
n

th
E

d
itio

n

19 - 9

Sample Problem 19.1

A 50-kg block moves between vertical 

guides as shown.  The block is pulled 

40mm down from its equilibrium position 

and released.

For each spring arrangement, determine a)  

the period of the vibration, b) the 

maximum velocity of the block, and c) the 

maximum acceleration of the block.

SOLUTION:

• For each spring arrangement, determine the 

spring constant for a single equivalent 

spring.

• Apply the approximate relations for the 

harmonic motion of a spring-mass system.
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Sample Problem 19.1

mkN6mkN4 21 == kk
SOLUTION:

• Springs in parallel:

- determine the spring constant for equivalent spring
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- apply the approximate relations for the harmonic motion of a 

spring-mass system
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Sample Problem 19.1

mkN6mkN4 21 == kk
• Springs in series:

- determine the spring constant for equivalent spring

- apply the approximate relations for the harmonic motion of a 

spring-mass system
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Free Vibrations of Rigid Bodies

• If an equation of motion takes the form

0or0 22 =+=+ θωθω nn xx ����

the corresponding motion may be considered as 

simple harmonic motion.  

• Analysis objective is to determine ωn.
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• For an equivalent simple pendulum,

35bl =

• Consider the oscillations of a square plate
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Sample Problem 19.2

k

A cylinder of weight W is suspended as 

shown.

Determine the period and natural 

frequency of vibrations of the cylinder.

SOLUTION:

• From the kinematics of the system, relate 

the linear displacement and acceleration to 

the rotation of the cylinder.

• Based on a free-body-diagram equation for 

the equivalence of the external and effective 

forces, write the equation of motion.

• Substitute the kinematic relations to arrive at 

an equation involving only the angular 

displacement and acceleration.
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Sample Problem 19.2
SOLUTION:

• From the kinematics of the system, relate the linear displacement 

and acceleration to the rotation of the cylinder.

θrx = θδ rx 22 ==
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• Based on a free-body-diagram equation for the equivalence of the 

external and effective forces, write the equation of motion.
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• Substitute the kinematic relations to arrive at an equation 

involving only the angular displacement and acceleration.
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Sample Problem 19.3

s13.1

lb20

n =

=

τ

W

s93.1=nτ

The disk and gear undergo torsional 

vibration with the periods shown.  Assume 

that the moment exerted by the wire is 

proportional to the twist angle.

Determine a) the wire torsional spring 

constant, b) the centroidal moment of 

inertia of the gear, and c) the maximum 

angular velocity of the gear if rotated 

through 90o and released.

SOLUTION:

• Using the free-body-diagram equation for 

the equivalence of the external and effective 

moments, write the equation of motion for 

the disk/gear and wire.

• With the natural frequency and moment of 

inertia for the disk known, calculate the 

torsional spring constant.

• With natural frequency and spring constant 

known, calculate the moment of inertia for 

the gear.

• Apply the relations for simple harmonic 

motion to calculate the maximum gear 

velocity.
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Sample Problem 19.3
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lb20

n =

=

τ
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s93.1=nτ

SOLUTION:

• Using the free-body-diagram equation for the equivalence of 

the external and effective moments, write the equation of 

motion for the disk/gear and wire.
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• With the natural frequency and moment of inertia for the disk 

known, calculate the torsional spring constant.
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Sample Problem 19.3
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• With natural frequency and spring constant known, 

calculate the moment of inertia for the gear.

27.4
293.1

I
π= 2

sftlb 403.0 ⋅⋅=I

• Apply the relations for simple harmonic motion to calculate 

the maximum gear velocity.
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Principle of Conservation of Energy
• Resultant force on a mass in simple harmonic motion is 

conservative - total energy is conserved.
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• Consider simple harmonic motion of the square plate,
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Sample Problem 19.4

Determine the period of small 

oscillations of a cylinder which rolls 

without slipping inside a curved 

surface.

SOLUTION:

• Apply the principle of conservation of energy 

between the positions of maximum and 

minimum potential energy. 

• Solve the energy equation for the natural 

frequency of the oscillations.



© 2003 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

S
e
v
e
n

th
E

d
itio

n

19 - 20

Sample Problem 19.4
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SOLUTION:

• Apply the principle of conservation of energy between the 

positions of maximum and minimum potential energy. 

2211 VTVT +=+
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Sample Problem 19.4
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• Solve the energy equation for the natural frequency of the 

oscillations.
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Forced Vibrations

:maF =∑

( ) xmxkWtP stfm ��=+−+ δωsin

tPkxxm fm ωsin=+��

( ) xmtxkW fmst ��=−+− ωδδ sin

tkkxxm fm ωδ sin=+��

Forced vibrations - Occur when 

a system is subjected to a 

periodic force or a periodic 

displacement of a support.

=fω forced frequency
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Forced Vibrations
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At ωf = ωn, forcing input is in 

resonance with the system.

tPtkxtxm fmfmfmf ωωωω sinsinsin2 =+−

Substituting particular solution into governing equation,
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Sample Problem 19.5

A motor weighing 350 lb is supported by 

four springs, each having a constant 750 

lb/in.  The unbalance of the motor is 

equivalent to a weight of 1 oz located 6 in. 

from the axis of rotation.  

Determine a) speed in rpm at which 

resonance will occur, and b) amplitude of 

the vibration at 1200 rpm.

SOLUTION:

• The resonant frequency is equal to the 

natural frequency of the system.

• Evaluate the magnitude of the periodic 

force due to the motor unbalance.  

Determine the vibration amplitude from 

the frequency ratio at 1200 rpm.
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Sample Problem 19.5
SOLUTION:

• The resonant frequency is equal to the natural frequency of the 

system.

ftslb87.10
2.32

350 2⋅==m

( )
ftlb000,36

inlb30007504

=

==k

W = 350 lb

k = 4(350 lb/in)

rpm 549rad/s 5.57

87.10

000,36

==

==
m

k
nω

Resonance speed = 549 rpm
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Sample Problem 19.5

W = 350 lb

k = 4(350 lb/in)

rad/s 5.57=nω

• Evaluate the magnitude of the periodic force due to the motor 

unbalance.  Determine the vibration amplitude from the 

frequency ratio at 1200 rpm.
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Damped Free Vibrations

• With viscous damping due to fluid friction,

:maF =∑ ( )
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kxxcxm

xmxcxkW st
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• Substituting x = eλt and dividing through by eλt yields 

the characteristic equation,
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• Define the critical damping coefficient such that
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• All vibrations are damped to some degree by forces 

due to dry friction, fluid friction, or internal friction.
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Damped Free Vibrations
• Characteristic equation,

m

k

m

c

m

c
kcm −








±−==++

2
2

22
0 λλλ

== nc mc ω2 critical damping coefficient

• Heavy damping:  c > cc
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- nonvibratory motion

• Critical damping:  c = cc
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Damped Forced Vibrations
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Electrical Analogues
• Consider an electrical circuit consisting of an inductor, resistor 

and capacitor with a source of alternating voltage

0sin =−−−
C

q
Ri

dt

di
LtE fm ω

• Oscillations of the electrical system are analogous to damped 

forced vibrations of a mechanical system.

tEq
C

qRqL fm ωsin
1

=++ ���
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Electrical Analogues

• The analogy between electrical and mechanical systems 

also applies to transient as well as steady-state 

oscillations.

• With a charge q = q0 on the capacitor, closing the switch 

is analogous to releasing the mass of the mechanical 

system with no initial velocity at x = x0.

• If the circuit includes a battery with constant voltage E, 

closing the switch is analogous to suddenly applying a 

force of constant magnitude P to the mass of the 

mechanical system.
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Electrical Analogues
• The electrical system analogy provides a means of 

experimentally determining the characteristics of a given 

mechanical system.

• For the mechanical system,

( ) ( ) 0212112121111 =−++−++ xxkxkxxcxcxm �����

( ) ( ) tPxxkxxcxm fm ωsin12212222 =−+−+ ����

• For the electrical system,

( ) 0
2

21

1

1
21111 =

−
++−+

C

qq

C

q
qqRqL ����

( ) tE
C

qq
qqRqL fm ωsin

2

12
12222 =

−
+−+ ����

• The governing equations are equivalent.  The characteristics of 

the vibrations of the mechanical system may be inferred from 

the oscillations of the electrical system.


