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Introduction

* Mechanical vibration is the motion of a particle or body which oscillates
about a position of equilibrium. Most vibrations in machines and
structures are undesirable due to increased stresses and energy losses.

Yluanas

e Time interval required for a system to complete a full cycle of the motion
1s the period of the vibration.

e Number of cycles per unit time defines the frequency of the vibrations.

 Maximum displacement of the system from the equilibrium position is the
amplitude of the vibration.

 When the motion 1s maintained by the restoring forces only, the vibration 1is
described as free vibration. When a periodic force 1s applied to the system,
the motion 1s described as forced vibration.

When the frictional dissipation of energy is neglected, the motion is
said to be undamped. Actually, all vibrations are damped to some
degree.
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Free V|brat|ons of Particles. Simple Harmonic Motion

e If a particle 1s displaced through a distance x,, from its
equilibrium position and released with no velocity, the
particle will undergo simple harmonic motion,
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Unstret/:l;ed T=k3,, ma=F=W — k(5Sl + .X) = —kx
5y A .
mi+kx =0
=5 . | |
Equilibeim e General solution is the sum of two particular solutions,

V W
! x = C, si | k I |k
: = e

= C;sin(w,t)+ C, cos(w, 1)

@ e x1s a periodic function and @), 1s the natural circular

< e frequency of the motion.

Bl ... 1  C, and C, are determined by the initial conditions:

1 [ R ! T x = Cysin(w,t)+ C, cos(w,t) Cr = xg
+ X | — - — W

v=x=C0, cos(a)nt)— Crw, SiIl(CUnf) Ci=vy/w

+
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Free Vibrations of Particles. Simple Harmonic Motion
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e Displacement is equivalent to the x component of the sum of two vectors C 1+ 6’2

which rotate with constant angular velocity — @,,.

& x = x,, sin(aw,t +¢) Xy = \/(vo /o, )2 + x(% = amplitude
] ¢ =tan "' (vy/xqw,)= phase angle
= T, = 2z = period
— Q
& "
1 w,
fr,=—= = natural frequency
T, 27
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e Velocity-time and acceleration-time curves can be
represented by sine curves of the same period as the
displacement-time curve but different phase angles.

x=x,, sin(@,t+¢)

V=X

= x,,w, cos(@,t +¢)

= x,,w, sin(w, t +¢+7/2)

a=xXx

= —xma),% sin(@,t + @)

= xma),% sin(w,,t + ¢+ )
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Simple Pendulum (Approximate Solution)

e Results obtained for the spring-mass system can be
applied whenever the resultant force on a particle 1s
proportional to the displacement and directed towards the
equilibrium position.

e Consider tangential components of acceleration and force
for a simple pendulum,

SF,=ma,: —Wsin8=mil6

67+§sin0=0

for small angles,

9+§0:0

0 =0, sin(w,t+¢)

27 [
T,=— =27 |—
Dy 8
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Vector Mechanics for Engineers: Dynamics
Simple Pendulum (Exact Solution)

leads to

Table 19.1.
Pendulum

An exact solution for

T

67+§sin0=0

n

which requires numerical solution.

2K

=(27z
T

Correction Factor for the Period of a Simple

00

10°

20°

30°

75/2

dg

I

J

\/l—smz(em /2)sin? ¢

60°

90°

120°

150°

1571

1.574

1.583

1.598

1.686

1.854

2.157

2.768

1.000

1.002

1.008

1.017

1.073

1.180

1.373

1.762
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- SOLUTION:

e For each spring arrangement, determine the
spring constant for a single equivalent
spring.

* Apply the approximate relations for the
harmonic motion of a spring-mass system.

(b)

A 50-kg block moves between vertical
guides as shown. The block is pulled
= 40mm down from its equilibrium position
< and released.

For each spring arrangement, determine a)

the period of the vibration, b) the
maximum velocity of the block, and c) the
maximum acceleration of the block.
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Sample Problem 19.1

SOLUTION:

e Springs in parallel:

kl =4kN/m k2 =6kN/m

- determine the spring constant for equivalent spring

- apply the approximate relations for the harmonic motion of a

ST spring-mass system
4
o, = |5 = JONM o drad)s
m 20kg
T, = 2z 7, =0.444 s
a)l’l
’@‘ P:k15+k25 Vm :xma)n
< P = (0.040 m)(14.14 rad/s) v, =0.566 m/s
_ k = g — kl + k2
= 4 :
S| = 10KN/m=10"N/m Gy =Xy

= (0.040 m)(14.14 rad /s )* a,, =8.00m/s>
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Sample Problem 19.1

ky =4kN/m k&, =6kN/m e Springs in series:
- determine the spring constant for equivalent spring

YIUdASS

- apply the approximate relations for the harmonic motion of a
spring-mass system

w, = \/£ = \/2400N/m = 6.93rad/s
m
27

20kg
T, =— 7, =0.907 s
n a)n n
_ v, =X,, 0,
I P=kd+ky0 = (0.040 m)(6.93 rad/s) v,, =0.277m/s
<
’:‘ k = B = kl + k2 — 2
’E‘ o Ay =Xy
S 0m=10'N/m = (0.040 m)(6.93 rad/s)? ay =1.920m/s’
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Free Vibrations of Rigid Bodies

 If an equation of motion takes the form

5c'+a),%x=0 or 9+a),%9=0

the corresponding motion may be considered as
simple harmonic motion.

* Analysis objective 1s to determine @,.

e Consider the oscillations of a square plate
5 —W(bsin0)=(mb&)+16

but fzim{(2b)2+(2b)2J=§mb2, W =mg

@ 9+3g81n9 67+§§6?:O
5 5b 5 b

] then w, = 3—8 T, = 7 2 b
o W, 3g

* For an equivalent simple pendulum,

| =5b/3
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Sample Problem 19.2
: SOLUTION:

e From the kinematics of the system, relate
the linear displacement and acceleration to
the rotation of the cylinder.

e Based on a free-body-diagram equation for
the equivalence of the external and effective
forces, write the equation of motion.

A cylinder of weight Wis suspended as , gypgtitute the kinematic relations to arrive at

<1 shown. an equation involving only the angular
Determine the period and natural displacement and acceleration.
@ frequency of vibrations of the cylinder.
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Sample Problem 19.2

SOLUTION:

* From the kinematics of the system, relate the linear displacement
S Gl and acceleration to the rotation of the cylinder.
xX=r6 0=2x=2r6

YIUdASS

a=60+) a=ra=r0 a=r@+|
e Based on a free-body-diagram equation for the equivalence of the
external and effective forces, write the equation of motion.

+DZMA:Z(MA)eﬁ3 Wr—T2(2r)=m67r+I_a

but T, =Ty +kd =W +k(2r0)

e Substitute the kinematic relations to arrive at an equation
involving only the angular displacement and acceleration.

Wr — (%W + 2kr6?)(2r) = m(ré)r +Lmr2e

2
" g+§£9:0
’ ‘ 3m
Rk 27 3m 0, 1 |8k
, =.|— T, =—=27T | — =1 =
" \3m ", 8k I o7 27\ 3m

19- 14
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Sample Problem 19.3

& & SOLUTION:
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e Using the free-body-diagram equation for
the equivalence of the external and effective
moments, write the equation of motion for
the disk/gear and wire.

* With the natural frequency and moment of
inertia for the disk known, calculate the
torsional spring constant.

r,=1.13s  7,=193s

The disk and gear undergo torsional
vibration with the periods shown. Assume e With natural frequency and spring constant

& that the moment exerted by the wire is known, calculate the moment of inertia for
’:‘ proportional to the twist angle. the gear.

<

B Determine a) the wire torsional spring e Apply the relations for simple harmonic
> constant, b) the centroidal moment of motion to calculate the maximum gear

[B| inertia of the gear, and ¢) the maximum velocity.

angular velocity of the gear if rotated
through 90° and released.
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Sample Problem 19.3

SOLUTION:

» Using the free-body-diagram equation for the equivalence of
the external and effective moments, write the equation of
motion for the disk/gear and wire.

SYXMo=%(Mg),; : +KO=-16

6'?'+£6':0
I

\/? 2z \/7
W, == T,=— =27 |—
I ), K

e With the natural frequency and moment of inertia for the disk
known, calculate the torsional spring constant.

2
i:lmﬂ:l( 20 j(gj =0.1381b - ft - 52
2 20322 12

1'13:2”‘/&;8 K =4271b-ft/rad
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Sample Problem 19.3

& %*’;ﬁ * With natural frequency and spring constant known,
Y 7 calculate the moment of inertia for the gear.

i
1.93=27,|—— [ = ft - g2
427 [ =0.4031b-ft-s

* Apply the relations for simple harmonic motion to calculate
the maximum gear velocity.

YIUdASS

6=0,sna,t w=06,0,sna,t W

6, =90°=1.571rad

o, = em[z_”j = (1.571 rad)(léﬂ j

n 3s

| V] [A] [A]
S

- X
I

@,, =5.11rad/s

K =4.271b-ft/rad
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Principle of Conservation of Energy

e Resultant force on a mass in simple harmonic motion 1s
conservative - total energy is conserved.

b co;m I I' +V = constant %mfcz + lkx2 = constant
_L\__L x2 n (()2x2
At e Consider simple harmonic motion of the square plate,
T, =0 V, = Wh(1-cos @) = Wb|2sin2(6,, /2)|
2
= JWb6,,
Tzzémnz,l 1Ia) V=0
<] 2
E — % (b@ ( mb )a)m
< _1 (5 b2 )9-2
— m
B e
]

T1+V1=T2+V2
0+1wpe,, = (3mb 20> +0

m n

D
I
ﬁ
oQ
~
)
S

n




Vector Mechanics for Engineers: Dynamics

YIUdASS

Sample Problem 19.4

SOLUTION:

* Apply the principle of conservation of energy
between the positions of maximum and
minimum potential energy.

e Solve the energy equation for the natural
frequency of the oscillations.

Determine the period of small
B8 oscillations of a cylinder which rolls
without slipping inside a curved

surface.




Vector Mechanics for Engineers: Dynamics

YIUdASS

Sample Problem 19.4

0] SOLUTION:

% | * Apply the principle of conservation of energy between the
R 6 positions of maximum and minimum potential energy.

R-r “m | (R —-r)cos 8,

Tl +V1 =T2 +V2

Position 1 8,
W e
Position 2

)
h
¥
/S-Datum T = V, =Wh=W(R = r)(1-cos6)

=W(R- r)(e,,,% /2)

Position 2
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Sample Problem 19.4

0] * Solve the energy equation for the natural frequency of the
% | oscillations.
R
I Hm R—r Hm _ _ 2
baliin T =0 vi=w(r-r)e2 /2)

Ty =3m(R-r)’6,, Vy =0

Position 1 8,
W .

A

h

¥
Datum
Position 2

Tl +V1 =T2 +V2

2
0+ W(R=r) =3 m(R-r)207, +0
] 92 , ,
’E‘ (mg)(R — r)Tm — %m(R _ I’) (ema)n )m
]
Position 2 " 3R-r " ,, 2 g
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Forced Vibrations

Forced vibrations - Occur when
a system 1s subjected to a
periodic force or a periodic
displacement of a support.

@ ¢ = forced frequency

Equilibrium l

ma=mx

+ Y F =ma:

Pmsina)ft+W—k(5st+x)=mjc' W—k(5st+x—5msina)ft)=

mi+kx =B, sin@t mi +kx = ko, sina (1
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Forced Vibrations
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X=X +

complementary * X particular

=|C; sinw,t + C, cos @,t]+ x,, sin Wt
Substituting particular solution into governing equation,
— ma)j%xm SIn @ ¢t +kx, sSin @ ¢t = Py, sin @ ¢t
. P, P,k B O,

m = =

B k—ma)]% 1—(a)f/a)n)2 1—(60f/60n)2

— P/ k

’M‘ or 2

’E‘ mx + kx = P, sin (()fl‘ Tm ] .
[~ 5, /
’E‘ mX+kx = ko, sin @ ¢t .

] i

At @ = @, forcing input is in
resonance with the system.

|
l
I
I
I|
|
|
I
L : 8 @
I I
I
I
|
|
I
I

19 - 23



YIUdASS

Sample Problem 19.5

Vector Mechanics for Engineers: Dynamics

A motor weighing 350 Ib is supported by
S8 four springs, each having a constant 750
I Ib/in. The unbalance of the motor 1s

equivalent to a weight of 1 oz located 6 1n.

’E\ from the axis of rotation.

Determine a) speed in rpm at which
B resonance will occur, and b) amplitude of
the vibration at 1200 rpm.

SOLUTION:

e The resonant frequency is equal to the
natural frequency of the system.

e Evaluate the magnitude of the periodic
force due to the motor unbalance.
Determine the vibration amplitude from
the frequency ratio at 1200 rpm.
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Sample Problem 19.5

SOLUTION:
e The resonant frequency is equal to the natural frequency of the
system.

m=2"2_10.871b-s2/ft
322

k = 4(750) = 30001b/in
=36,0001b/ft

W =350 Ib

k = 4(350 Ib/in) k 36,000
@y =4[ = \/7
m 10.87

=57.5rad/s =549 rpm

Resonance speed = 549 rpm
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Sample Problem 19.5

e Evaluate the magnitude of the periodic force due to the motor
unbalance. Determine the vibration amplitude from the
frequency ratio at 1200 rpm.

@r =@ =1200rpm =125.7 rad/s

:(loz)(llb ){ ! 2)=O.O()19411b-32/ft

160z )\ 32.2ft/s

W =350 1b P, =ma, = mro®

k= 4(350 Ib/in) = (0.001941)($ 125.7)* =15.331b
_ @, =57.5rad/s
1< o Bk 15.33/3000
5 " 1-(w; @, F 1-(1257/57.57
’E‘ =—0.0013521n
>

x,, =0.001352 in. (out of phase)

P, sin Wyt
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Damped Free Vibrations

e All vibrations are damped to some degree by forces
due to dry friction, fluid friction, or internal friction.

e With viscous damping due to fluid friction,
+H D> F=ma: W—k(5st+x)—cx:mx’

mx+cx+kx=0

Equilibrium |

:
:

e Substituting x = ¢# and dividing through by e# yields
the characteristic equation,

mam.i? C c 2 k
mA* +cA+k =0 A=——"+ (_j _n

2m \\ 2m m

e Define the critical damping coefficient such that

2
(C—CJ —£=O C, :2mF:2ma)n
2m m m
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Damped Free Vibrations

» Characteristic equation,

) c ¢V ok
mA=+cA+k=0 /1=—+\/(j _r

2m  \\ 2m m

c. =2ma, = critical damping coefficient

* Heavy damping: ¢ > c,
At Ayt

negative roots
nonvibratory motion

x=Cie™" +Che

e Critical damping: c¢ = c,
wl X = (Cl + C2t)e_w”t

double roots
nonvibratory motion

* Light damping: c < c,

x = e le/2m) (Cy sin @yt + C, cos wt)

2
w,; =0, \/ 1- [ch = damped frequency
C
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Damped Forced Vibrations
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o AL_‘}‘\ o

& =
- 6—6—0.125

|
[N

c — s
6—070.25

13
¢ _
i 0.50
1

(4

BlE

m¥+cx+kx = P, sin @ t X=X +

complement ary * X particular

X X 1

= magnification

i /k : ° : \/[1 B (wf /wn )2 ]2 T [Z(C/Cc )(a)f /wn )]2 factor
2(c/c, )(a)f /a)n )

tan @ = = phase difference between forcing and steady state

1- (a) 7/ @n )2 response




Vector Mechanics for Engineers: Dynamics
Electrical Analogues

R e Consider an electrical circuit consisting of an inductor, resistor
and capacitor with a source of alternating voltage
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E, sinwfr—Lﬂ—Ri—izo
L = dt C

o e .
Lq+Rq+Eq=Em SIN @ ¢t

* Oscillations of the electrical system are analogous to damped

E=E,, sin ot . . ’
forced vibrations of a mechanical system.

Table 19.2. Characteristics of a Mechanical System and of Its
Electrical Analogue

’@‘ Mechanical System Electrical Circuit
’ﬂ‘ m  Mass L Inductance
— ¢  Coefficient of viscous R Resistance
’E‘ damping
— k  Spring constant 1/C  Reciprocal of capacitance
’E‘ x  Displacement q Charge
v Velocity i Current
P Applied force E Applied voltage
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Electrical Analogues
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e The analogy between electrical and mechanical systems
also applies to transient as well as steady-state
oscillations.

e With a charge g = g, on the capacitor, closing the switch
1s analogous to releasing the mass of the mechanical
S system with no 1nitial velocity at x = x,,.

e If the circuit includes a battery with constant voltage E,
closing the switch is analogous to suddenly applying a
force of constant magnitude P to the mass of the
mechanical system.
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Electrlcal Analogues
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i e The electrical system analogy provides a means of
" Lie, experimentally determining the characteristics of a given
1 s .

mechanical system.

Trl * For the mechanical system,

mljc'l +c15c1 + Cz(xl —).62)+ klxl +k2(X1 —X2): 0

mzxz +C2(X2 —x1)+k2(x2 —X1)= Pm sina)ft

* For the electrical system,

q1 + qd1 — 42 =0

¢ G

92 — 491
Gy

e The governing equations are equivalent. The characteristics of

the vibrations of the mechanical system may be inferred from
the oscillations of the electrical system.

LG+ Ri(¢1—¢2)+

Lydp + Ry (G2 — 1)+ =E,, sin@yt

E=E,, sin wyt




