VÓVIV®

Founded 1969

HAMPIÐJAN

SWAN NET-GUNDRY

WORLD WIDE PRESENCE

HAMPIDJAN RUSSIA

RUSSIA, KALININGRAD

HAMPIDJAN

ICELAND, REYKJAVIK ICELAND, Vestmannaeyjar

HAMPIDJAN BALTIC

LITHUANIA, SIAULIAI

HAMPIDJAN NEW ZEALAND

NEW ZEALAND, NELSON NEW ZEALAND, TIMARU

HAMPIDJAN AUSTRALIA

AUSTRALIA, GOLD COAST

HAMPIDJAN CANADA

CANADA, SPANIARDS BAY

FJARDANET

ICELAND, NESKAUPSSTAÐUR ICELAND, AKUREYRI ICELAND, ÍSAFJÖRÐUR

SILNET

FAROE ISLANDS, KLAKSVIK

COSMOS TRAWL

DENMARK, SKAGEN DENMARK, STRANDBY DENMARK, HIRTSHALS

SWAN NET GUNDRY

IRELAND, KILLYBEGS
IRELAND, CASTLETOWNBERE
IRELAND, SKIBBEREEN

SWAN NET USA

USA, SEATTLE USA, DUTCH HARBOUR USA, GLOUCESTER

NORDSØTRAWL

DENMARK, THYBORØN

Vónin Faroe Island

FAROE ISLANDS, Fuglafjørður FAROE ISLANDS, Tórshavn Branch FAROE ISLANDS, Norðskála FAROE ISLANDS, Klaksvík

Vónin CANADA

CANADA, Newfoundland

Vónin Lithuania

Lithuania, Šiauliai

Vónin RUSSIA

RUSSIA, Murmansk

VÓNIN REFA

Norway, Tromsø Norway, Svolvær Norway, Alta Norway, Finnsnes

Qalut VÓNIN

Greenland, Nuuk Greenland, Sisimiut Greenland, AASIAAT Greenland, ILULISSAT

Vónin danmark

DANMARK, Strandby DANMARK, Skagen

39 Locations Around The World

Vónin FAROE ISLANDS

VÓNIN®

Vónin LITHUANIA VÓNIN®

Vónin LITHUANIA VÓNIN®

CLIENTS

VÓNIN®

OUR GOALS AND OBJECTIVES

- Manufacture HIGH QUALITY products that meet Industry Standards.
- To be a **RELIABLE** Supplier.
- Continually IMPROVE our products in close CO-OPERATION with our Clients.
- Provide a HIGH SERVICE and GUIDANCE to our Clients.
- Build long term RELATIONSHIPS.

VÓNIN®

PRODUCTS

VÓNIN®

CAGE NETS

CAGE NETS

PLASTIC CAGES

INJECTION MOULDED BRACKETS Designed to withstand the harsh weather and currents of the North Atlantic

MOORINGS

SAFER MOORING FOR YOUR SALMON WITH OUR RUGGED SOLUTION

BIRD NETS

BIRD NETS

SEINES

STANDARD OR TO CUSTOMER SPECIFICATIONS

VÓNIN'

LICE SHIELD

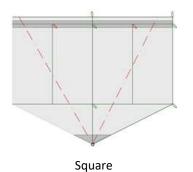
STANDARD OR TO CUSTOMER SPECIFICATIONS Next deberates or squar, other stocked Op destation was a state of altertactive in the state of the place on the lap with SON decreases of SON spaces was confined as

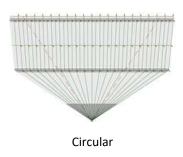
CAGE NETS

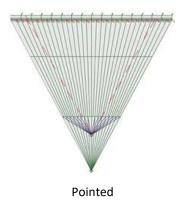
CAGE NETS

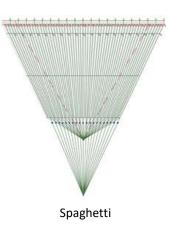
High quality cage nets for safeguarding your fish stock

We have for decades designed, developed and manufactured cage nets for the equaculture inclusify. The separence which we have accumulated through this time, has enabled us to supply the fish farmers with high quality nets which are certified according 1809*15. Our cage nets design have been throughly taxed to with-second through the control of the North Atlantic.


We know that the salmon is a valuable commodity and the salmon welfare, health and protection is a paramount concern and of out-tent importance to both the fish farmer and its shareholdens. With our cage nets you can safeguard your investment.

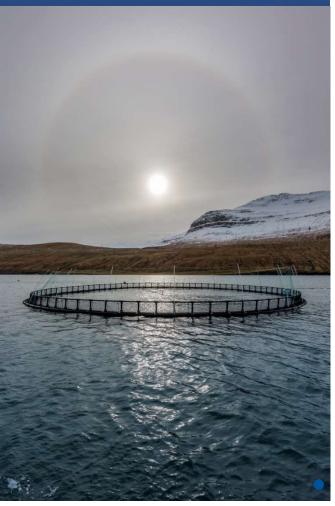



VONIN.COM


TYPES OF NET

VÓNIN®

High Quality Netting:


- Dyneema®
- Nylon
- Star
- Polyester
- Polyethylene
- Sapphire

ADVANTAGES WITH DYNEEMA

VÓNIN®

- Reduce twine size
- Or get a higher breaking strength
- Less growth on the net
 - better water flow
 - higher oxygen level
 - Increased fish welfare
 - Increased FCR
- Less net coatings/antifouling
- Superior abrasion resistance
- Less holes
- Reduced service and logistic costs
- Reduced drag forces
 - Helps to keep the volume
 - Less fuel consumption if the nets are being towed

PLASTIC CAGES

CAGES WITH INJECTION MOULDED PLASTIC BRACKETS

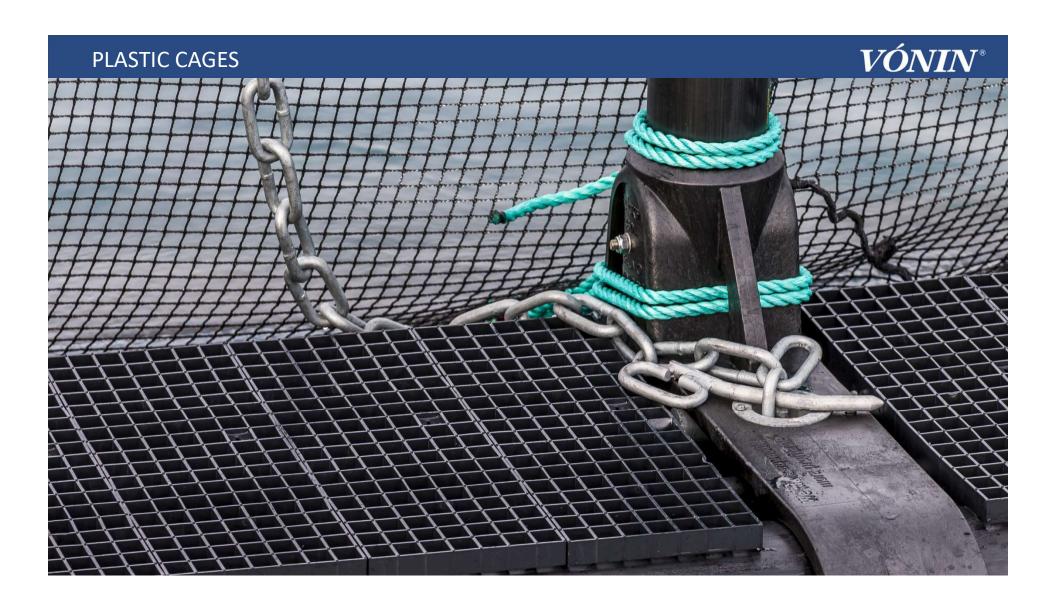
Designed to withstand the harsh weather and currents of the North Atlantic

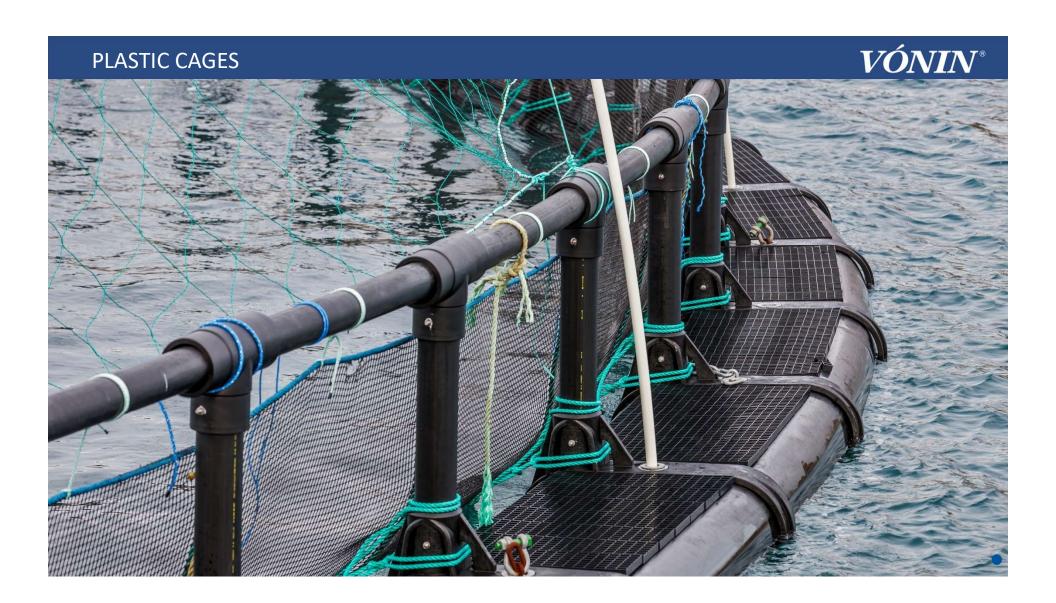
CAGES ARE OF VITAL IMPORTANCE to every fish farmer. Every fish farmer needs to be ensured that the cages at his disposal are strong and versatile enough to withstand harsh weether and strong currents.

With our cages you are certified that they can withstand the stress fiercely enforced by the Atlantic Ocean.

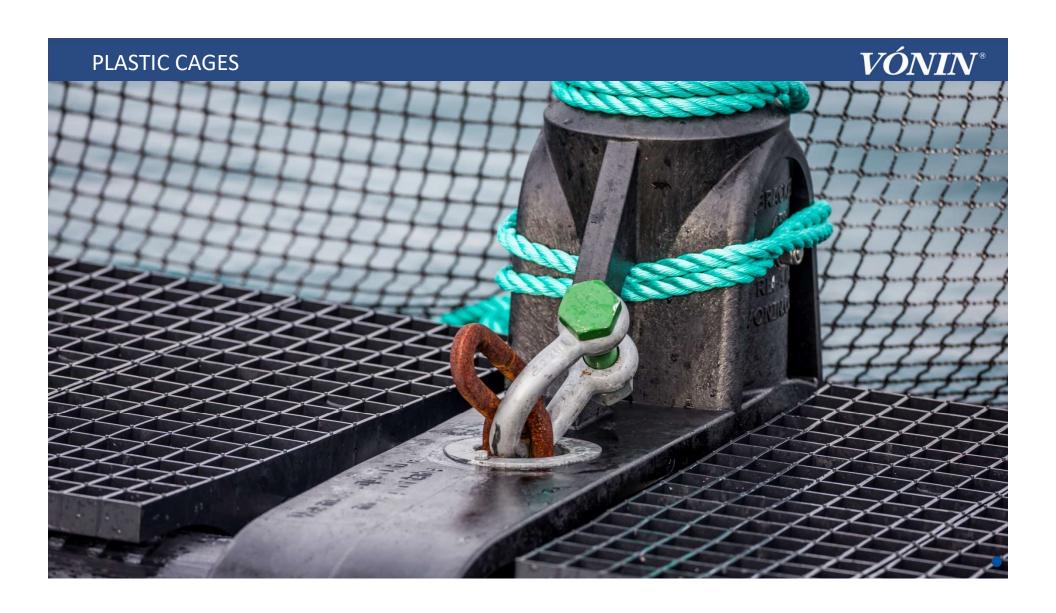
We are known to only supply high quality equip-ment, that can meet the strictest demands by the aquaculture industry.

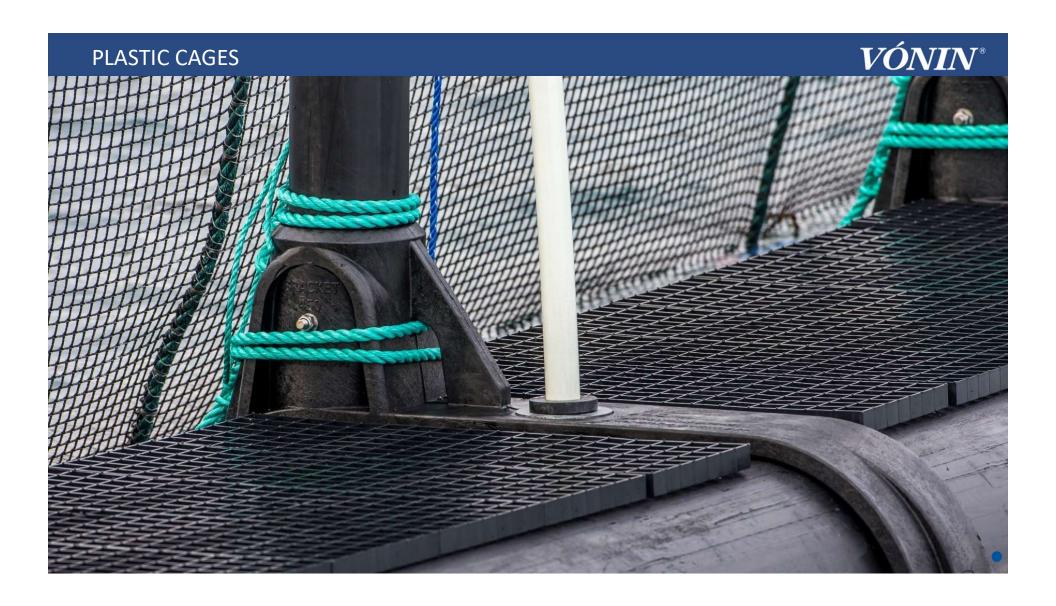

Our plastic brackets are made from high qual-ity HDPE100 and are injection moulded, which makes them strong and reliable. The neck of the bracket, which often is the week point of a brack-et has been specially designed to withstand all the strong forces which it is imposed by.

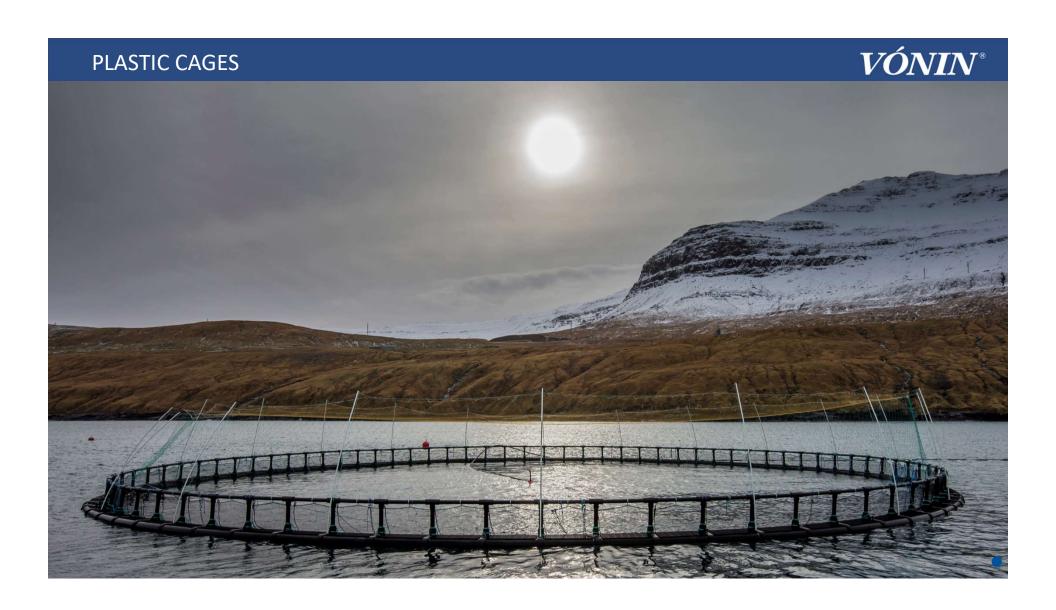




Cage model	2x450	3x450
Tube dimensions	450mm	450mm
Number of tubes	2 pcs	3 pcs
Handrail	140mm	140mm
Circumference	100 - 160 mtr	120 - 200 mtr
Polystyrene	1 - 2 tubes	1 - 3 tubes
Mooring brackets for bridles	included	included
Brackets for bird nets systems	included	included
Sinker tube brackets	included	included
Material	HDPE 100	HDPE 100
Injection moulded brackets	Yes	Yes
Anti-skid platform	Optional	Optional
Distance bars	Optional	Optional







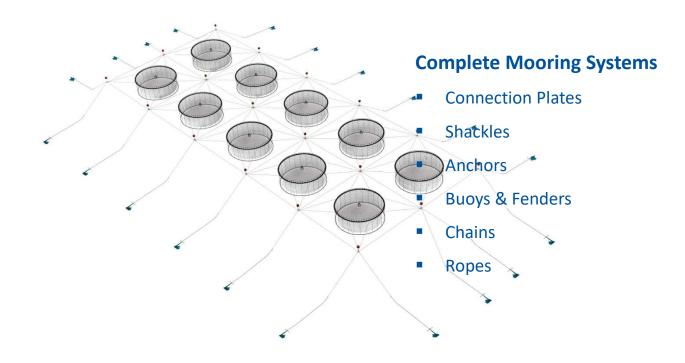
MOORINGS

MOORINGS

Rugged mooring solution to withstand the harsh conditions in the North Atlantic

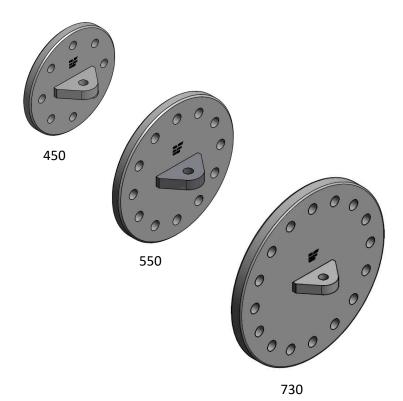
Mooring are of out-most significance to the fish farming activities. Without a proper mooring your valuable fish pens are exposed to the mercy of the vigorous and unpredictable ocean.

With our vast experience in the aquaculture industry, we have specialized in supplying high quality mooring equipment.


All mooring systems are individually worked out with computer analysis and designed according to the exact conditions on the planned site.

All our equipment is certified according to NS9415.

VONIN.COM



CONNECTION PLATES

- Molded in one piece
- Steel
- Strong, high breaking point
- Highly resistant to corrosion
- Less abrasive
- Less inspection
- Less maintenance
- Long life span

Diameter	Breaking Strenght	Weight	Holes
mm	ton	kg	qty
450	50	52	16
550	100	73	12
730	150	158	8

- Molded in two pieces
- Strong
- Durable
- Latched and Welded
- Increased vigorousness
- Long life span

Weight	Proofload
kg	kg
1.000	20.000
1.500	30.000
2.000	40.000
2.500	50.000
3.000	60.000
4.000	80.000

- Moulded in two pieces
- Strong
- Durable
- Latched and Welded
- Increased vigorousness
- Long life span

Weight	Proofload
kg	kg
1.000	20.000
1.500	30.000
2.000	40.000
2.500	50.000
3.000	60.000
4.000	80.000

Shackles

Different dimensions, styles & brands.

Masterlinks

Different dimensions, styles & brands.

Chains

Certified chains in different dimensions, Galvanised, Stainless
 Steel, Hot Dip Galvanised, Steel.

Rope

Different dimensions, styles & brands.

Buoys

All shapes, sizes & bouyancy.

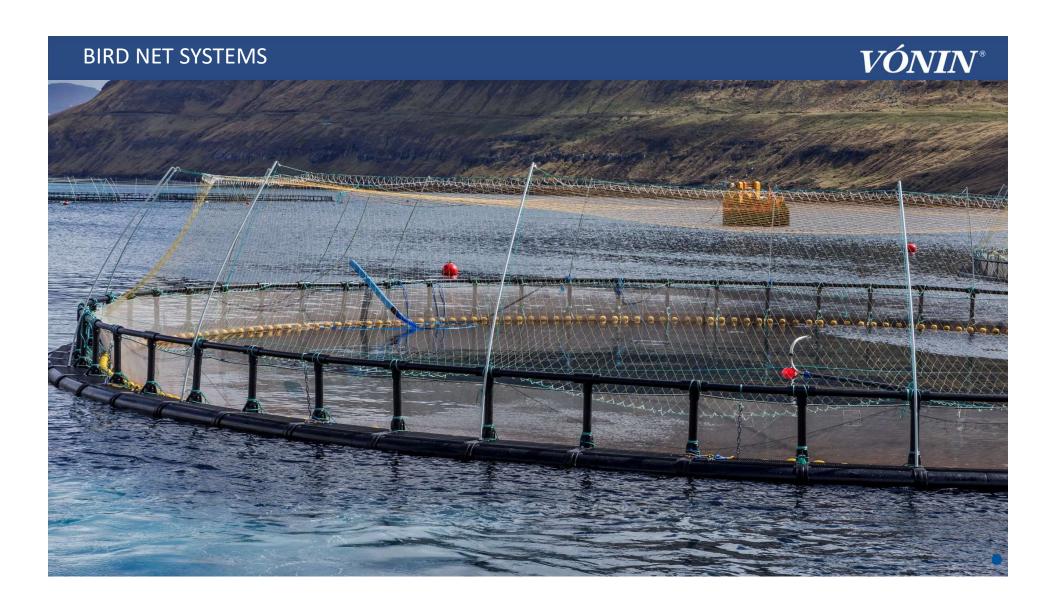
BIRD NETS

BIRD NETS

All shapes and sizes of bird nets

We produce and stock bird nets made from poly-ethylene, nylon and Dyneema® for all types and sizes of cages.

The bird nets can be made as a single top panel or a top panel mounted with side panels. Every-thing can be according to customer specifications. Our standard bird nets are made from 600 mm fullmesh netting.


The bird nets are reinforced with 14mm lines on the border, and 8mm lines from the center to the border.

BIRD NET POLES

We also stock bird net poles made from fiberglass.

The poles are fitted with special made tops to ease the mounting of the bird nets.

VÓNIN® POLE BRACKETS

■ ■ Sørvágur:

- Wave 4,5 5,5 m. (8 m.)
- Current: 0,5 cm/s.

■ **Gulin**:

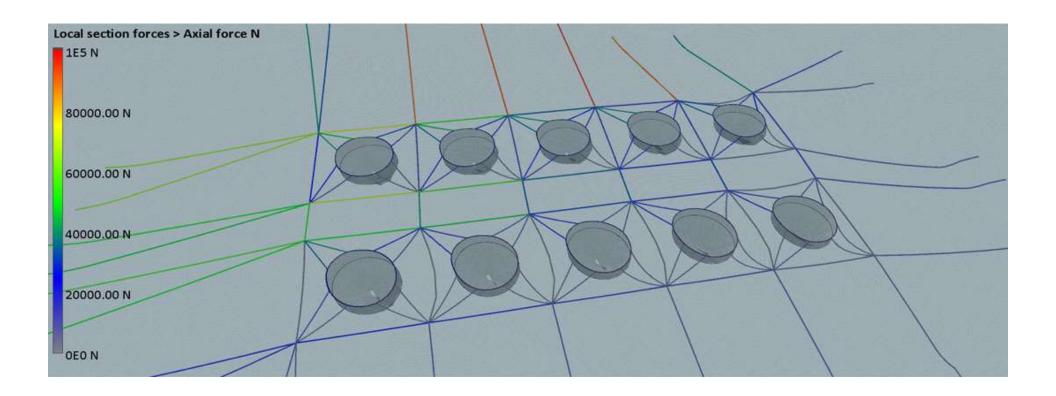
- Wave 2,5 3 m.
- Current: 0,8 cm/s.

■ Hov:

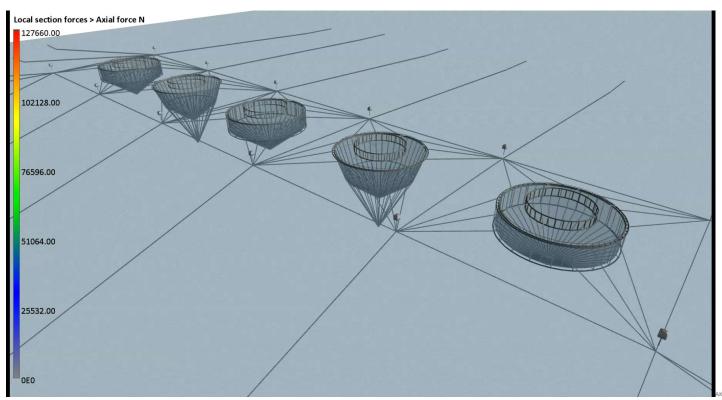
- Wave 7,5 8 m.
- Current: 0,25 cm/s.

■ ■ Sandsvág:

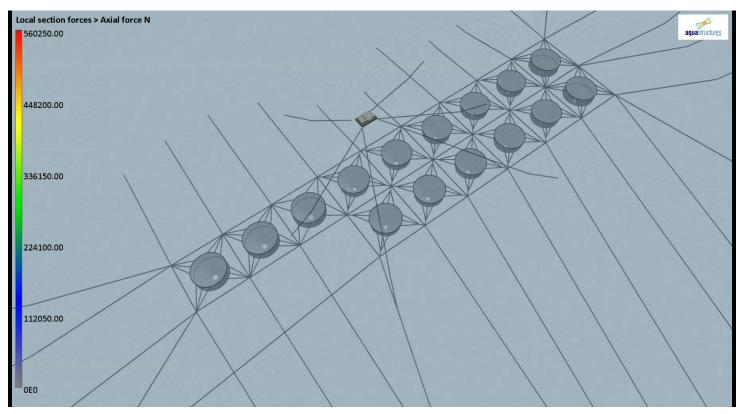
- Wave 6,80 m.
- Current: 0,6 cm/s.


AQUA SIM

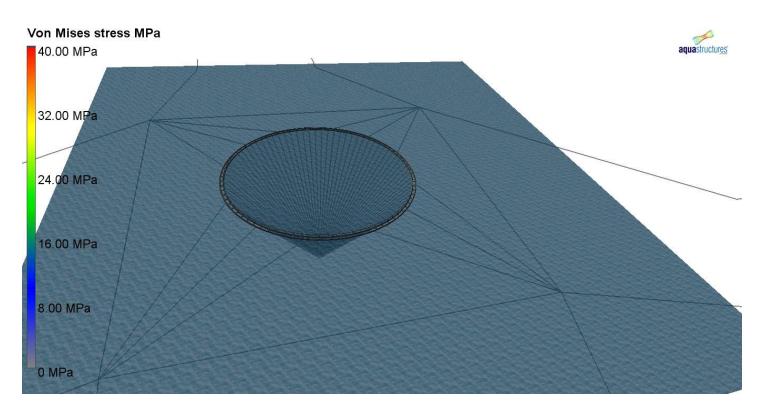
The only software that is Certified by the Norwegian Government


AQUA SIM MOORING ANALYSIS

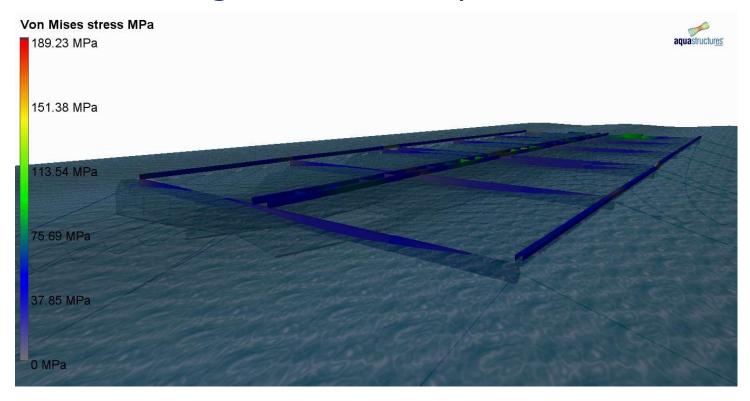
VÓNIN®


Systems of cages and net structures

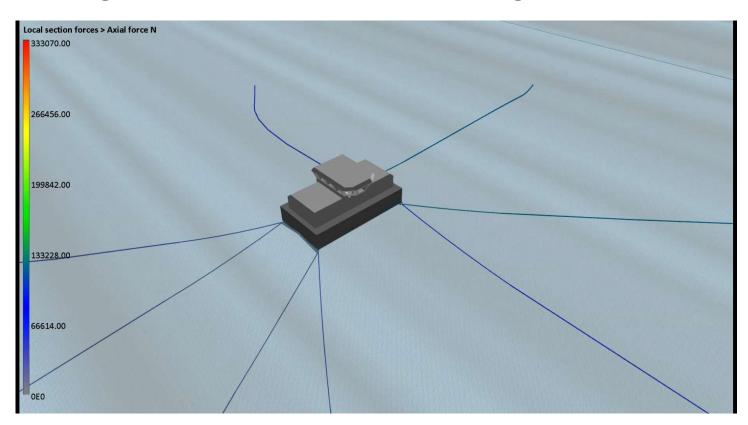
AKE AQUACULTURE MORE PROFITABLE


VÓNIN®

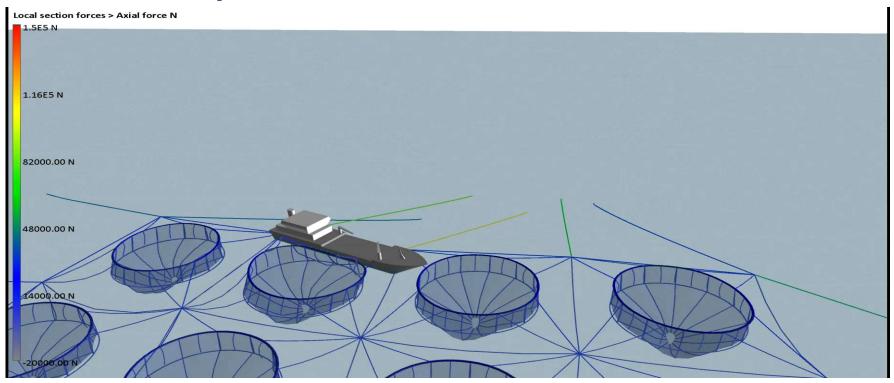
Joined Systems

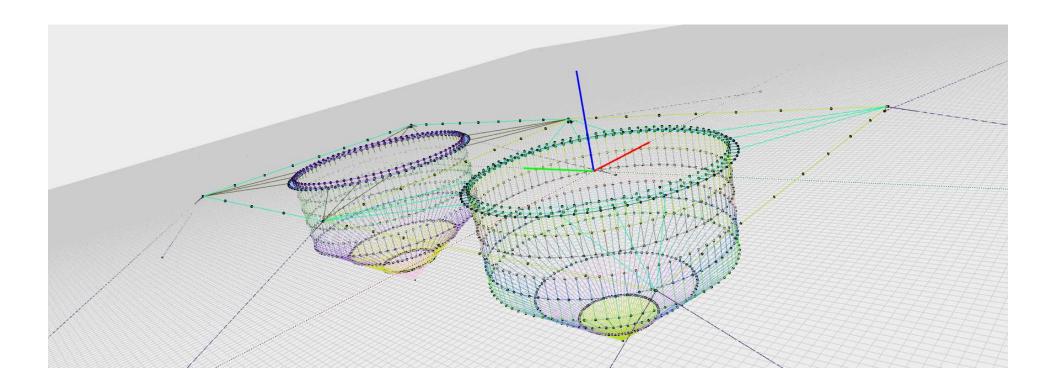


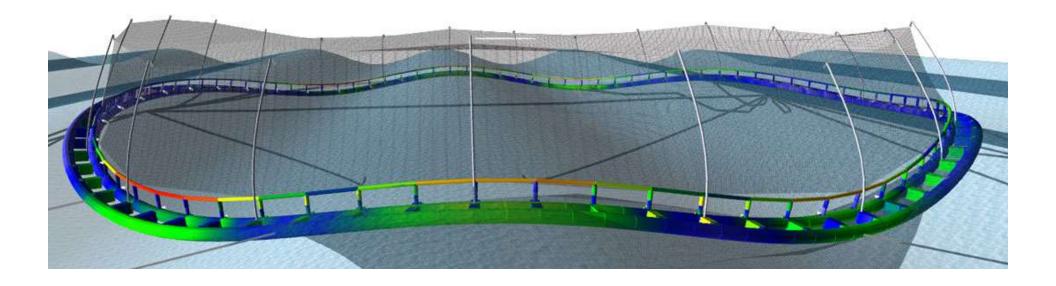
Simple cage with conical shaped net



Steel cage with water penetration


Barges, drift and shock loads in mooring lines


© VÓNIN - WE MAKE AQUACULTURE MORE PROFITABLE


VÓNIN®

Crisis Analysis

AQUASTRUCTURES VÓNIN®

MOORING ANALYSIS

Table 1.3 Floating collars used in the analysis.						
Provider	Туре	Amount [psc]	Circumference [m]	Pipe dimension [mm]/[psc]	SDR	
a tind in an area	04-45-		400	450 (0	47.6	

Net type	Depth baseline/max [m]	Half mesh [mm]	Twine diameter [mm]	Solidity clean/fouled	Stretching system - Sinker tube pieces/weight [pcs/kg]	
Circular	15/15	24	1.70	0.15/0.21	120 x 50 kg (total 6000 kg) + 500 kg in center point of the net	

*Dimension class 0 used in analyses according to NS 9415:2009.

Component	Amount	Length	Material	Dimension
Crosswise frame	10 pcs	70 m.	Hawser 8 strands	72 mm.
Longitudinal frame	12 pcs	70 m.	Hawser 8 strands	72 mm.
Attachment cages/ bridles	12 psc x 8 cages	Adjusted	Hawser 8 strands	64 mm
Coupling discs	15	- 1	Steel	12 holes
Chain buoys	15	6 m.	Chain	22 mm

1.4 Line length, bottom anchor points, generally

As a first rule linelenghts should be 3 times the depth of bottom anchor points. For material factors used in Norway, see table 1.6 for referanses in the Norwegian standard NS 9415:2009.

Table 1.6 Material factors (ref. Norwegian standard, NS 9415:2009 Table 13). Tabell 13 – Material factors for moringlines

Type	Material facto		
Synthetic rope	3,0		
Synthetic rope with knots	5,0		
Chains and chain components	2,0		
Used chains	5,0		
Coupling discs and other connecting points of steel*	1.5		
Shackles	2,0		
Rock bolts and other bottom attachments	3,0		
*First yield	-		

1.5 Accident limit state

The mooring system is analyzed with a break in the mooring line with highest load in intact state (loss of the two extra mooring lines, extr 1 and extr 2) (see table 2.1 – 2.4 for results and dimensioning loads for mooring lines, bridles, frame lines and buoys). Table 1.9 consist of assessments in accident limit state.

Tahall 1 9 Accident limit state assessments

Assessed	Break in line (see figure 2)	Risk break in line (low, medium, high)	Assessment	
Break in mooring line:				
 With highest load 	Line 14	Low	Ok	
 With highest utilization 	Line 14	Low	Ok	
 Break in line that might be critical for the whole fish farming. 	F5	Low	Ok	
 Break i coupling point, eg. Coupling disc 	Coupling point to frame	Low	Ok	
 Break in line that might be critical for the positioning or deplacement of grid, cages or the whole fish farm. 	-	252		
 Break in other lines 	Line 22, Crosswise frame	Low	Ok	
Loss of buoys etc.	Loss of buoy 15	Low	Low line ascent. Low risk if a buoy is lossed	
Progressive break.		Assessed		
Tidal change / maximal tide.		Assessed		
lcing		Assessed		

This analysis is done with an assesment for progressive fracture and state of high tide with water level elevation. The marine fish farm is also considered with icing as accidental limit load.

If there is a non conformity between the on-site mooring system and the analysed mooring system please contact Noomas Sertifisering AS for clarification on these matters.

This analysis is executed in a computer software called AquaSim, version 2.10.1 – 1740. AquaSim is based on regular waves, and is a dynamic analysis program. For more information see AquaSim user manual or contact Noomas Sertifisering AS.

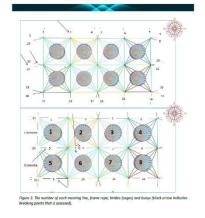
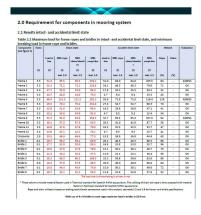

Environmental loads on the site are analyzed in 8 directions with 2 combinations. Combination 1 is 10year waves and 50 year current. Combination 2 is 50 year waves and 10 year current.

Table 1.10 The marine fish farm is analyzed in 16 different states as shown under.


Condition	Environmental	Hs		Tp	Ua	5 meters		15 meters	
Condition	loads from	Direction	[m]	[5]	[m/s]	[m/s]	[degrees]	[m/s]	[degrees
Combination 1	N	360	2.7	16	31	0.56	180	0.56	180
	NE	45	2.7	16	31	0.37	225	0.37	225
	E	90	2.7	16	31	0.46	270	0.46	270
(*)	SE	135	4	16	31	0.28	315	0.28	315
(%)	S	180	8	16	31	0.46	0	0.46	0
Windwaves	S	180	5.1	6.2	31	0.46	0	0.46	0
Combination 1	SW	225	8.3	16	31	1.2	45	1.11	45
(4)	W	270	2.7	16	31	1.2	90	1.11	90
	NW	315	2.7	16	31	0.56	135	0.65	135
Combination 2	N	360	2.9	16	34	0.5	180	0.5	180
	NE	45	2.9	16	34	0.33	225	0.33	225
	E	90	2.9	16	34	0.41	270	0.41	270
	SE	135	4.3	16	34	0.25	315	0.25	315
	S	180	9	16	34	0.41	0	0.41	0
	SW	225	8.7	16	34	1.07	45	0.99	45
	W	270	2.9	16	34	1.07	90	0.99	90
	NW	315	2.9	16	34	0.49	135	0.59	135
Break line 14	SW	225	8.7	16	34	1.07	45	0.99	45
Break line 22	W	270	2.9	16	34	1.07	90	0.99	90
Break frame FS	W	270	2.9	16	34	1.07	90	0.99	90
Break crosswise frame	SW	225	8.7	16	34	1.07	45	0.99	45
Break bridle cage 5	SW	225	8.7	16	34	1.07	45	0.99	45
Loss of buoy	SW	225	8.7	16	34	1.07	45	0.99	45
Tidal change / high tide	SW	225	8.7	16	34	1.07	45	0.99	45

Mooring

Frame and Bridles

Anchor line

Anchor

Lina	Line Load	Vertical account	Vertical least	Helding load button point	"MAL bottom sector paint
	16	(1)	90	36	80
1	27.6	12	5.5	27.6	82.7
- 2	21.0	12	3.0	21.0	63,1
3	24.3	12	3.7	24.3	22.6
4	24.0	12	3.7	24.0	:22,1
- 5	18.7	12	2.6	10.7	56.2
4	35.0	12	3.0	35.0	74.9
7	15.6	12	2.0	15.6	85.9
	11.0	12	0.9	15.8	47.1
	10.8	14	9.4	10.5	30.6
10	20.4	12	1.3	20.4	61.2
11	14.7	12	0.9	14.7	44.2
12	9.8	12	0.4	9.8	29.5
13	10.9	12	0.5	10.5	32.7
54	5.9	12	0.6	6.9	20.7
15	6.6	12	0.7	6.6	19.7
16	6.3	12	0.7	6.2	18.7
- 17	11.1	12	1.4	11.1	33.4
	10.4	12	1.5	10.4	32.5
. 19	11.0	11	1.8	11.9	35,6
20	24.0	12	2.6	24.0	72.0
21	20.4	32	1.8	20.4	61.2
22	SZA	12	4.5	52.6	97.9
23	36.6	12	5.3	36.6	109.9
24	21.7	12	2.7	21.7	67.0

Norwegian Standard NS-9415 Scottish Technical Finfish Standard 2020

VÓNIN[®]

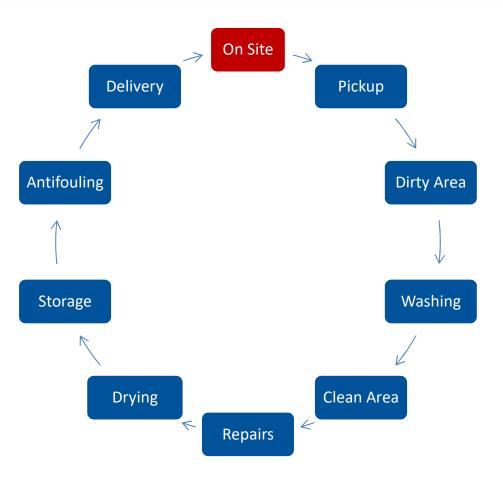
VÓNIN Drum net washer:

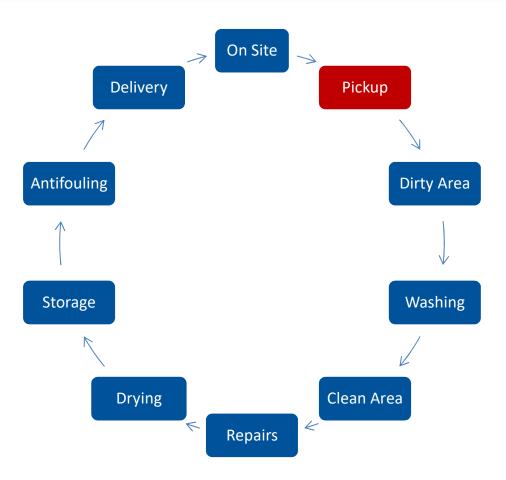
- Heavy duty washing drum machine
- 100 % water tight
- Large waterproof sealing door for loading and unloading the nets
- Custom made
- Adjustable washing programs
- fully automated PLC system which maximizes the cleaning and disinfection of the nets in an economic and environmental friendly way.

VÓNIN®

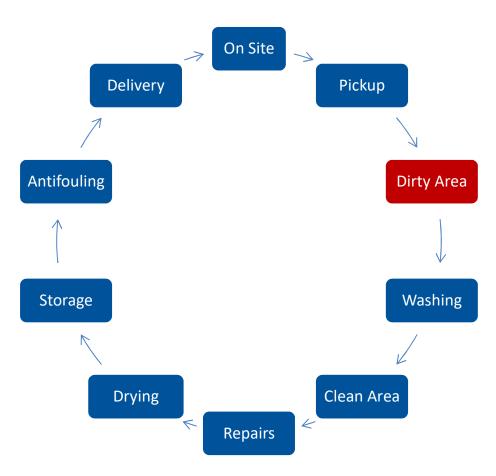
VÓNIN Roto Screen:

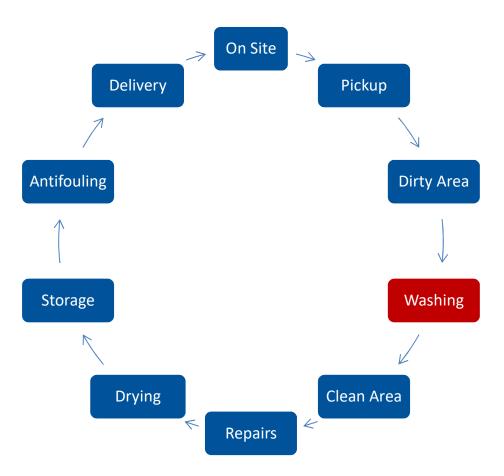
- Water spraying system
- Rotating brushes
- Resistant to clogging
- Highly reliable continuous performance
- Vónin Roto Screen is a environmental and economic solution for separating solids from liquids.

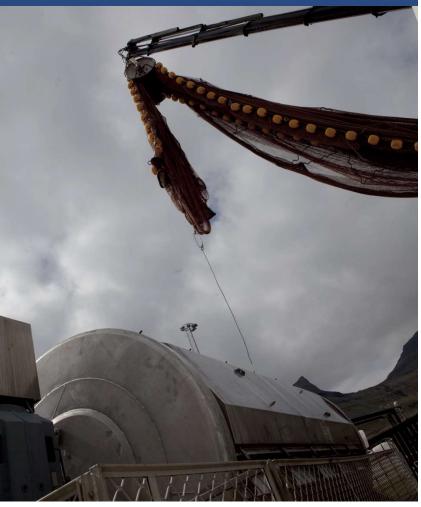

VÓNIN®

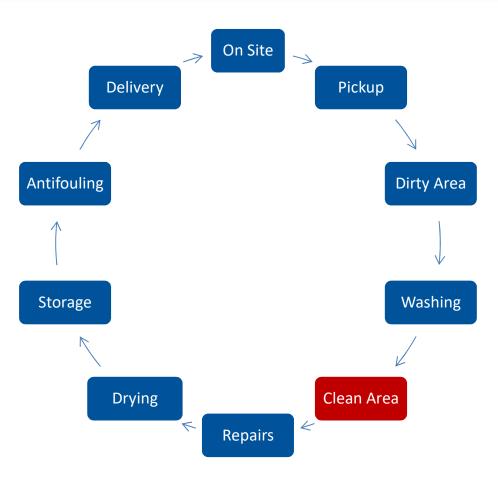


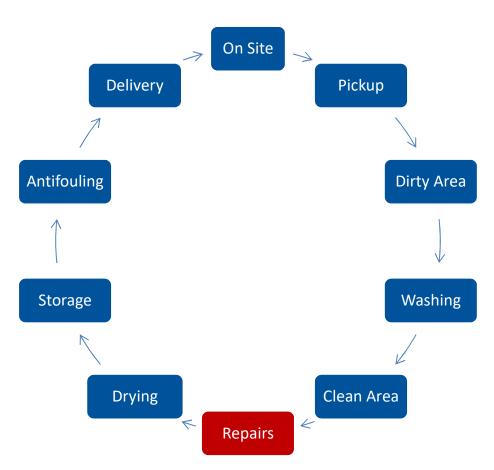
VÓNIN Disinfector of waste water:

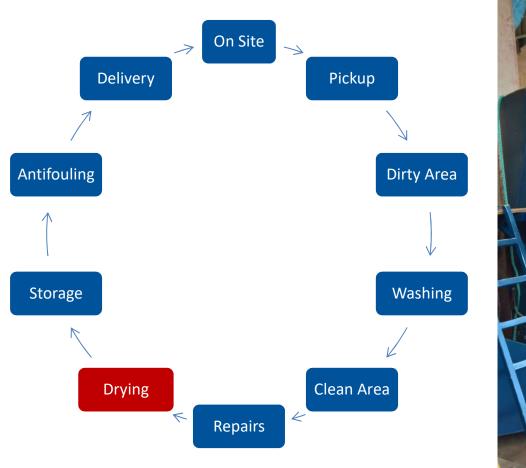

- Water disinfector system
- 3000 l/h
- Resistant to clogging
- Highly reliable continuous performance

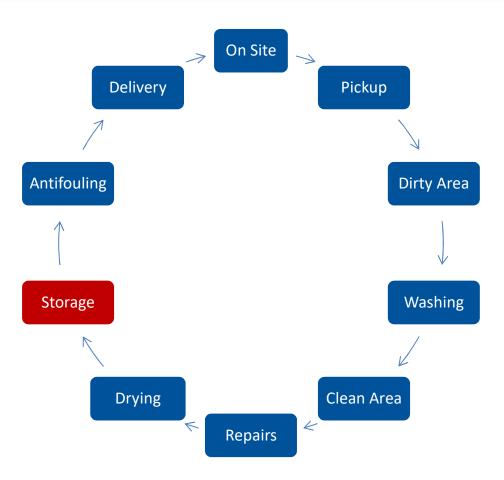


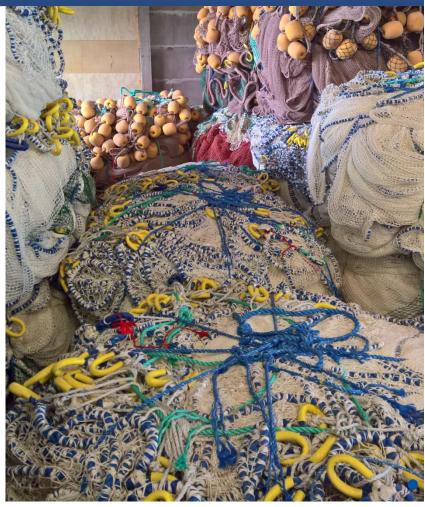


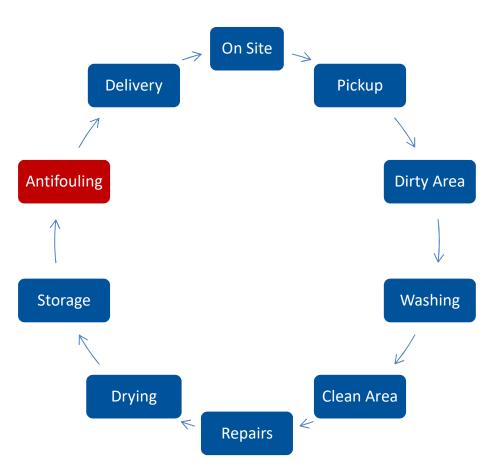


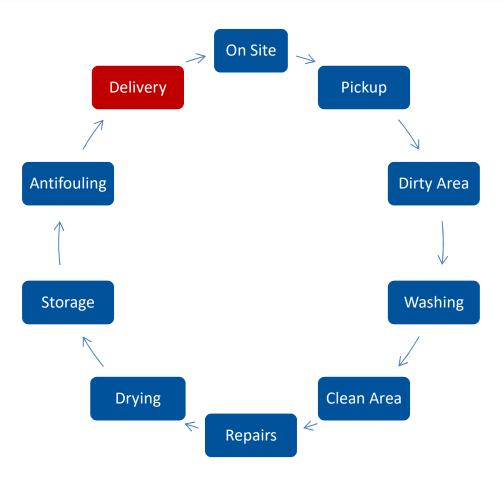


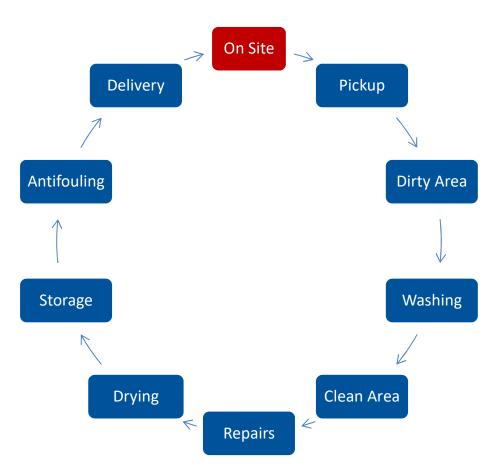


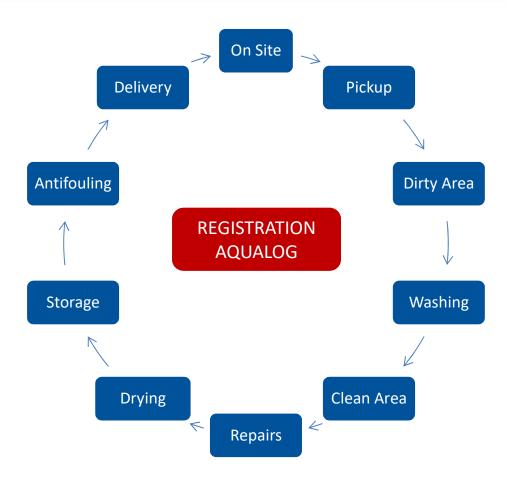












VÓNIN®

"Thank You"

