
1

Homework #1

 Write a program for classification of samples of two
classes using single layer perceptron:

 Samples are in 2D space

 Sample preparation
 Randomly around a line

 From 2 Gaussian distributions with different μ and σ

 Show the results in each iteration visually

 Use C++, MATLAB or other languages

 Optional: User can produce samples interactively

 Repeat the problem with 5 classes

 Due date: within 10 days

Neural Networks - Shahrood University - Hossein Khosravi

2

Gradient Descent Learning Rule

 Gradient Descent: Consider linear unit without threshold and
continuous output o (not just –1,1)

𝑜 𝑋 = 𝑤0 + 𝑤1 𝑥1 + … + 𝑤𝑚 𝑥𝑚 = 𝑊𝑋

 The squared error (where D is the set of training examples)

 For an example (x,d) the error e(w) of the network is

𝑒 𝑊 = 𝑑 − 𝑜 𝑋 = 𝑑 −෍

𝑗=0

𝑚

𝑥𝑗𝑤𝑗

 And the squared error of (x,d) is

𝐸 𝑊 =
1

2
𝑒2

Neural Networks - Shahrood University - Hossein Khosravi

3

Gradient Descent Learning Rule

 The total squared error is

𝐸(𝑊) = 𝐸(𝑤1, … , 𝑤𝑚) =
1

2
෍

(𝑥,𝑑)∈𝐷

(𝑑 − 𝑜(𝑥))2

𝐸(𝑊) = 𝐸(𝑤1, … , 𝑤𝑚) =
1

2
෍

(𝑥,𝑑)∈𝐷

(𝑑 −𝑊𝑇𝑋)2

 Update the weight wi such that E(W)  minimum

𝑤𝑖(𝑘 + 1) = 𝑤𝑖(𝑘) + ∆𝑤𝑖

Neural Networks - Shahrood University - Hossein Khosravi

4

Gradient Descent Learning Rule

(w1,w2)

(w1+w1,w2 +w2)

Neural Networks - Shahrood University - Hossein Khosravi

5

Gradient Descent Learning Rule

 Start from an arbitrary point in the weight space

 The direction in which the error E of an example (as a
function of the weights) is decreasing most rapidly is the
opposite of the gradient of E:

 Take a small step (of size ) in that direction

)E(W) ()w(k)1k(w  

  ,...,)(
1 mw

E

w

E
WE










Neural Networks - Shahrood University - Hossein Khosravi

6

Gradient Descent Learning Rule

 Train the wi’s such that they minimize the squared error

 𝐸(𝑊) = 𝐸(𝑤1, … , 𝑤𝑚) =
1

2
σ𝑛(𝑑𝑛 − 𝑜𝑛(𝑥))2

 Gradient: 𝐸(𝑤) = [
𝜕𝐸

𝜕𝑤0
, … ,

𝜕𝐸

𝜕𝑤𝑚
]

𝒘 = − 𝑬(𝒘)

wi = - E/wi = - /wi 1/2n(dn-on)2

= - /wi 1/2n(dn-i wi xi,n)2

= - n(dn- on)(-xi,n)

=  n(dn- on)xi,n

 Gradient descent learning rule

wi(k+1) = wi(k)+ wi = wi(k)+  n(dn- on)xin

Neural Networks - Shahrood University - Hossein Khosravi

7

Batch Learning Pseudo Code

Denoting a training example (x(n), dn) or ((x1n,…xmn),dn) where (x1n,…,xmn)

are the input values, and dn is the desired output

 k=1, randomly initialize wi(k), calculate E(W)
 While (E(W) unsatisfactory && k < max_iterations)

 Initialize each wi to zero
 For each instance (x(n), dn) in D do

 Calculate network output on = i wi(k)xin

 For each weight dimension wi(k), i=1,..,m
 wi= wi + (dn-on) xin

 End For
 End For
 For each weight dimension wi(k), i=1,..,m

 wi(k+1)=wi(k)+wi

 EndFor
 Calculate E(W) based on updated wi(k+1)
 k=k+1

 End While

Neural Networks - Shahrood University - Hossein Khosravi

8

Example

 Consider the 2-dimensional training set C1  C2,

 C1 = {(1,1), (1, -1), (0, -1)} with class label 1

 C2 = {(-1,-1), (-1,1), (0,1)} with class label 0

 Train a adaline on C1  C2

Neural Networks - Shahrood University - Hossein Khosravi

9

Example – small 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)}

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =0.1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (First pass):

Input w(k) dn on (dn-on)xin wi

(1, 1, 1) (1,0, 0) 1 1 (0, 0, 0) (0, 0, 0)

(1, 1, -1) (1, 0, 0) 1 1 (0, 0, 0) (0, 0, 0)

(1,0, -1) (1, 0, 0) 1 1 (0, 0, 0) (0, 0, 0)

(1,-1, -1) (1, 0, 0) 0 1 (-0.1, 0.1, 0.1) (-0.1, 0.1, 0.1)

(1,-1, 1) (1, 0, 0) 0 1 (-0.1, 0.1, -0.1) (-0.2, 0.2, 0)

(1, 0, 1) (1, 0, 0) 0 1 (-0.1, 0, -0.1) (-0.3, 0.2, -0.1)

 E(W)=3/2 w(k+1) (0.7, 0.2, -0.1)

Neural Networks - Shahrood University - Hossein Khosravi

10

Example – small 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)}

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =0.1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (Second pass):

Input w(k) dn On (dn-on)xin wi

(1, 1, 1) (0.7, 0.2, -0.1) 1 0.8 (0.02, 0.02, 0.02) (0.02,0.02,0.02)

(1, 1, -1) (0.7, 0.2, -0.1) 1 1 (0,0,0) (0.02,0.02,0.02)

(1,0, -1) (0.7, 0.2, -0.1) 1 0.8 (0.02,0,-0.02) (0.04,0.02,0)

(1,-1, -1) (0.7, 0.2, -0.1) 0 0.6 (-0.06,0.06,0.06) (-0.02,0.08,0.06)

(1,-1, 1) (0.7, 0.2, -0.1) 0 0.4 (-0.04,0.04,-0.04) (-0.06,0.12,0.02)

(1, 0, 1) (0.7, 0.2, -0.1) 0 0.6 (-0.06,0,-0.06) (-0.12,0.12,-0.04)

 E(W)=0.96/2 w(k+1) (0.58,0.32,-0.14)

Note that unlike perceptron, output can

take values other than 0 and 1

Neural Networks - Shahrood University - Hossein Khosravi

11

Example – small 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)}

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =0.1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (Third pass):

Input w(k) dn On (dn-on)xin wi

(1, 1, 1) (0.58,0.32,-0.14) 1 0.76 (0.024,0.024,0.024) (0.024,0.024,0.024)

(1, 1, -1) (0.58,0.32,-0.14) 1 1.04 (-0.004,-0.004,0.004) (0.02,0.02,0.028)

(1,0, -1) (0.58,0.32,-0.14) 1 0.72 (0.028,0,-0.028) (0.048,0.04,0)

(1,-1, -1) (0.58,0.32,-0.14) 0 0.4 (-0.06,0.06,0.06) (-0.012,0.1,0.06)

(1,-1, 1) (0.58,0.32,-0.14) 0 0.12 (-0.088,0.088,-0.088) (-0.1,0.188,-0.028)

(1, 0, 1) (0.58,0.32,-0.14) 0 0.44 (-0.056,0,-0.056) (-0.156,0.188,-0.084)

 E(W)=0.5056/2 w(k+1) (0.424,0.508,-0.224)

Neural Networks - Shahrood University - Hossein Khosravi

12

Gradient Descent Learning Rule

 Because the error surface contains only a single
global minimum, this algorithm will converge to a
weight vector with minimum error, regardless of
whether the training examples are linearly
separable, given a sufficiently small learning rate 

 If  is too large
 Overstepping the minimum in the error surface

 Gradually reduce the value of  as the number of
gradient descent steps grows

Neural Networks - Shahrood University - Hossein Khosravi

13

Example – large 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)}

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (First pass):

Input w(k) d O (d-o)xi wi

(1, 1, 1) (1,0, 0) 1 1 (0, 0, 0) (0, 0, 0)

(1, 1, -1) (1, 0, 0) 1 1 (0, 0, 0) (0, 0, 0)

(1,0, -1) (1, 0, 0) 1 1 (0, 0, 0) (0, 0, 0)

(1,-1, -1) (1, 0, 0) 0 1 (-1, 1, 1) (-1, 1, 1)

(1,-1, 1) (1, 0, 0) 0 1 (-1, 1, -1) (-2, 2, 0)

(1, 0, 1) (1, 0, 0) 0 1 (-1, 0, -1) (-3, 2, -1)

 E(W)=3/2 w(k+1) (-2, 2, -1)

Neural Networks - Shahrood University - Hossein Khosravi

14

Example – large 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)}

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (Second pass):

Input w(k) d O (d-o)xi wi

(1, 1, 1) (-2,2, -1) 1 -1 (2, 2, 2) (2, 2, 2)

(1, 1, -1) (-2,2, -1) 1 1 (0, 0, 0) (2, 2, 2)

(1,0, -1) (-2,2, -1) 1 -1 (2, 0, -2) (4, 2, 0)

(1,-1, -1) (-2,2, -1) 0 -3 (3, -3, -3) (7, -1, -3)

(1,-1, 1) (-2,2, -1) 0 -5 (5, -5, 5) (12, -6, 2)

(1, 0, 1) (-2,2, -1) 0 -3 (3, 0, 3) (15, -6, 5)

 E(W)=51/2 w(k+1) (13, -4, 4)

Neural Networks - Shahrood University - Hossein Khosravi

15

Example – large 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)}

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (Third pass):

Input w(k) d O (d-o)xi wi

(1, 1, 1) (13, -4, 4) 1 13 (-12,-12,-12)

(1, 1, -1) (13, -4, 4) 1 5 (-4,-4,4)

(1,0, -1) (13, -4, 4) 1 9 (-8,0,8)

(1,-1, -1) (13, -4, 4) 0 13 (-13,13,13)

(1,-1, 1) (13, -4, 4) 0 21 (-21,21,-21)

(1, 0, 1) (13, -4, 4) 0 17 (-17,0,-17) (-75,18,-25)

 E(W)=1123/2 w(k+1) (-62,14,-21)

Neural Networks - Shahrood University - Hossein Khosravi

16

Local minimum

Neural Networks - Shahrood University - Hossein Khosravi

17

Incremental Stochastic Gradient Descent

 Batch mode : Gradient descent

 w(k+1)=w(k) - ED(W) over the entire data D

 ED(W)=1/2n(dn-on)2

 Incremental mode: Gradient descent

 w(k+1)=w(k) - En(W) over individual training examples

 En(W)=1/2 (dn-on)2

 Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily close if  is small
enough

Neural Networks - Shahrood University - Hossein Khosravi

18

Weights Update Rule: incremental mode

 Computation of Gradient(E):

 Delta rule (AdaLine: Adaptive Linear Elements) for
weight update:

)()(

)))((
2

1
(

w
))(

2

1
(

ww

)W(22

nxod

nxwdod
E

nn

T

nnn


















)()(dw(k)1)w(k

)(
 w(k)1)w(k

n nxo

w

WE

n










Neural Networks - Shahrood University - Hossein Khosravi

19

Delta Rule (AdaLine) learning algorithm

k=1;

initialize wi(k) randomly; Calculate ED(W)

while (ED(W) unsatisfactory AND k<max_iterations)
Select an example (x(n),dn)

Calculate ED(W)

k = k+1;

end-while;

iii wkwkw )()1(

innni xodw)( 

Neural Networks - Shahrood University - Hossein Khosravi

20

Example – incremental mode

C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)}

C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

=0.1

Fill out this table sequentially (First pass):

wi(k+1)=wi(k)+(d-o)xi

Neural Networks - Shahrood University - Hossein Khosravi

21

Input wi(k) d O (d-o)xi wi(k+1)

(1, 1, 1) (1,0, 0) 1 1 (0, 0, 0) (1, 0, 0)

(1, 1, -1) (1, 0, 0) 1 1 (0, 0, 0) (1, 0, 0)

(1,0, -1) (1, 0, 0) 1 1 (0, 0, 0) (1, 0, 0)

(1,-1, -1) (1, 0, 0) 0 1 (-0.1, 0.1, 0.1) (0.9, 0.1, 0.1)

(1,-1, 1) (0.9, 0.1, 0.1) 0 0.9 (-0.09, 0.09, -0.09) (0.81,0.19,0.01)

(1, 0, 1) (0.81,0.19,0.01) 0 0.82 (-0.082, 0, -0.082) (0.728, 0.19, -0.072)

Perceptron Learning Rule vs. Gradient Descent Rule

Perceptron learning rule guaranteed to succeed if

 Training examples are linearly separable

 Sufficiently small learning rate 

Gradient descent learning rules

 Guaranteed to converge to hypothesis with minimum
squared error

 Given sufficiently small learning rate 

 Even when training data contains noise

 Even when training data not separable by H

Neural Networks - Shahrood University - Hossein Khosravi

22

Comparison of Perceptron and Adaline

 Perceptron Adaline

Architecture Single-layer Single-layer

Neuron
model

Non-linear linear

Learning
algorithm

Minimize
number of
misclassified
examples

Minimize total
squared error

Application Linear
classification

Linear classification, and
regression

Neural Networks - Shahrood University - Hossein Khosravi

23

