IN THE NAME OF ALLAH

Neural Networks

Gradient Descent Learning Rule

Shahrood University of Technology Hossein Khosravi

Homework #1

- 2
- Write a program for classification of samples of two classes using single layer perceptron:
- Samples are in 2D space
- Sample preparation
 - Randomly around a line
 - **\square** From 2 Gaussian distributions with different μ and σ
- Show the results in each iteration visually
- □ Use C++, MATLAB or other languages
- Optional: User can produce samples interactively
- Repeat the problem with 5 classes
- Due date: within 10 days

- 3
- □ Gradient Descent: Consider linear unit without threshold and continuous output *o* (not just −1,1)

$$o(X) = w_0 + w_1 x_1 + \dots + wm xm = W^T X$$

The squared error (where D is the set of training examples)
 For an example (x,d) the error e(w) of the network is

$$e(W) = d - o(X) = d - \sum_{j=0}^{m} x_j w_j$$

And the squared error of (x,d) is

$$E(W) = \frac{1}{2}e^2$$

4

The total squared error is

$$E(W) = E(w_1, ..., wm) = \frac{1}{2} \sum_{(x,d) \in D} (d - o(x))^2$$

$$E(W) = E(w_1, ..., wm) = \frac{1}{2} \sum_{(x,d) \in D} (d - WTX)^2$$

 \Box Update the weight w_i such that $E(W) \rightarrow$ minimum

$$w_i(k+1) = w_i(k) + \Delta w i$$

5

Neural Networks - Shahrood University - Hossein Khosravi

- 6
- □ Start from an arbitrary point in the **weight space**
- The direction in which the error E of an example (as a function of the weights) is **decreasing most rapidly** is the opposite of the gradient of E:

$$-\nabla E(W) = -\left[\frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_m}\right]$$

Take a small step (of size η **) in that direction**

$$w(k+1) = w(k) - \eta(\nabla E(W))$$

7

Train the w_i's such that they minimize the squared error $E(W) = E(w_1, ..., wm) = \frac{1}{2} \sum_n (dn - on(x))^2$

• Gradient:
$$\nabla E(w) = \left[\frac{\partial E}{\partial w_0}, \dots, \frac{\partial E}{\partial w_m}\right]$$

$$\Delta \boldsymbol{w} = -\eta \nabla \boldsymbol{E}(\boldsymbol{w})$$

$$\Delta w_{i} = -\eta \partial E/\partial w_{i} = -\eta \partial/\partial w_{i} 1/2\Sigma_{n} (d_{n} - o_{n})^{2}$$

$$= -\eta \partial/\partial w_{i} 1/2\Sigma_{n} (d_{n} - \Sigma_{i} w_{i} x_{i,n})^{2}$$

$$= -\eta \Sigma_{n} (d_{n} - o_{n}) (-x_{i,n})$$

$$= m \sum_{n} (d_{n} - o_{n}) (-x_{i,n})$$

$$= \eta \Sigma_n (d_n - o_n) x_{i,n}$$

■ Gradient descent learning rule $W_i(k+1) = W_i(k) + \Delta W_i = W_i(k) + \eta \sum_n (d_n - o_n) x_{in}$

Batch Learning Pseudo Code

8

Denoting a training example $(x(n), d_n)$ or $((x_{1n}, ..., x_{mn}), d_n)$ where $(x_{1n}, ..., x_{mn})$ are the input values, and d_n is the desired output

- □ k=1, randomly initialize $w_i(k)$, calculate E(W)
- □ While (E(W) unsatisfactory && k < max_iterations)
 - **Initialize each** Δw_i to zero
 - **For** each instance $(x(n), d_n)$ in D do
 - Calculate network output $o_n = \sum_i w_i(k)x_{in}$
 - For each weight dimension w_i(k), i=1,..,m

•
$$\Delta w_i = \Delta w_i + \eta (d_n - o_n) x_{in}$$

- End For
- End For
- For each weight dimension w_i(k), i=1,..,m
 - $w_i(k+1)=w_i(k)+\Delta w_i$
- EndFor
- Calculate E(W) based on updated w_i(k+1)
- k=k+1

End While

Example

 \Box Consider the 2-dimensional training set $C_1 \cup C_2$,

□ $C_1 = \{(1,1), (1, -1), (0, -1)\}$ with class label 1 □ $C_2 = \{(-1, -1), (-1, 1), (0, 1)\}$ with class label 0

\Box Train a adaline on $C_1 \cup C_2$

Example – small η

10

- $\Box C1: \{(1, 1, 1), (1, 1, -1), (1, 0, -1)\}$
- $\Box C2: \{(1, -1, -1), (1, -1, 1), (1, 0, 1)\}$

□ η=0.1

- $\square w_i(k+1) = w_i(k) + \Delta w_i; \qquad \Delta w_i = \eta \Sigma_n(d_n o_n) x_{in}$
- □ Fill out this table sequentially (**First** pass):

Input	w(k)	d _n	On	ղ(d _n -o _n)x _{in}	$\Delta \mathbf{w}_{\mathrm{i}}$
(1, 1, 1)	(1,0, 0)	1	1	(0, 0, 0)	(0, 0, 0)
(1, 1, -1)	(1, 0, 0)	1	1	(0, 0, 0)	(0, 0, 0)
(1,0, -1)	(1, 0, 0)	1	1	(0, 0, 0)	(0, 0, 0)
(1,-1, -1)	(1, 0, 0)	0	1	(-0.1, 0.1, 0.1)	(-0.1, 0.1, 0.1)
(1,-1, 1)	(1, 0, 0)	0	1	(-0.1, 0.1, -0.1)	(-0.2, 0.2, 0)
(1, 0, 1)	(1, 0, 0)	0	1	(-0.1, 0, -0.1)	(-0.3, 0.2, -0.1)
	E(W	()=3/2		w(k+1)	(0.7, 0.2, -0.1)

Neural Networks - Shahrood University - Hossein Khosravi

Example – small η

11

- $\Box C1: \{(1, 1, 1), (1, 1, -1), (1, 0, -1)\}$
- $\Box C2: \{(1, -1, -1), (1, -1, 1), (1, 0, 1)\}$

□ η=0.1

- $\square w_i(k+1) = w_i(k) + \Delta w_i; \qquad \Delta w_i = \eta \Sigma_n(d_n o_n) x_{in}$
- □ Fill out this table sequentially (**Second** pass):

Input	w(k)	d _n	On	ղ(d _n -o _n)x _{in}	$\Delta \mathbf{w}_{i}$
(1, 1, 1)	(0.7, 0.2, -0.1)	1	0.8	(0.02, 0.02, 0.02)	(0.02,0.02,0.02)
(1, 1, -1)	(0.7, 0.2, -0.1)	1	1	(0,0,0)	(0.02,0.02,0.02)
(1,0, -1)	(0.7, 0.2, -0.1)	1	0.8	(0.02,0,-0.02)	(0.04,0.02,0)
(1,-1, -1)	(0.7, 0.2, -0.1)	0	0.6	(-0.06,0.06,0.06)	(-0.02,0.08,0.06)
(1,-1, 1)	(0.7, 0.2, -0.1)	0	0.4	(-0.04,0.04,-0.04)	(-0.06,0.12,0.02)
(1, 0, 1)	(0.7, 0.2, -0.1)	0	0.6	(-0.06,0,-0.06)	(-0.12,0.12,-0.04)
	E(W)=0.9	96/2		w(k+1)	(0.58,0.32,-0.14)

Note that unlike perceptron, output can take values other than 0 and 1

Example – small η

12

- $\Box C1: \{(1, 1, 1), (1, 1, -1), (1, 0, -1)\}$
- $\Box C2: \{(1, -1, -1), (1, -1, 1), (1, 0, 1)\}$

□ η=0.1

- $\square w_i(k+1) = w_i(k) + \Delta w_i; \qquad \Delta w_i = \eta \Sigma_n(d_n o_n) x_{in}$
- □ Fill out this table sequentially (**Third** pass):

Input	w(k)	dn	On	ղ(d _n -o _n)x _{in}	Δw_i
(1, 1, 1)	(0.58,0.32,-0.14)	1	0.76	(0.024,0.024,0.024)	(0.024,0.024,0.024)
(1, 1, -1)	(0.58,0.32,-0.14)	1	1.04	(-0.004,-0.004,0.004)	(0.02,0.02,0.028)
(1,0, -1)	(0.58,0.32,-0.14)	1	0.72	(0.028,0,-0.028)	(0.048,0.04,0)
(1,-1, -1)	(0.58,0.32,-0.14)	0	0.4	(-0.06,0.06,0.06)	(-0.012,0.1,0.06)
(1,-1, 1)	(0.58,0.32,-0.14)	0	0.12	(-0.088,0.088,-0.088)	(-0.1,0.188,-0.028)
(1, 0, 1)	(0.58,0.32,-0.14)	0	0.44	(-0.056,0,-0.056)	(-0.156,0.188,-0.084)
	E(W)=0.50)56/2	2	w(k+1)	(0.424,0.508,-0.224)

Because the error surface contains only a single global minimum, this algorithm will converge to a weight vector with minimum error, regardless of whether the training examples are linearly separable, given a sufficiently small learning rate η

 \Box If η is too large

13

Overstepping the minimum in the error surface

 Gradually reduce the value of η as the number of gradient descent steps grows

Example – large η

14

- $\Box C1: \{(1, 1, 1), (1, 1, -1), (1, 0, -1)\}$
- $\Box C2: \{(1, -1, -1), (1, -1, 1), (1, 0, 1)\}$

□ η=1

- $\square w_i(k+1) = w_i(k) + \Delta w_i; \qquad \Delta w_i = \eta \Sigma_n(d_n o_n) x_{in}$
- □ Fill out this table sequentially (**First** pass):

Input	w(k)	d	0	ղ (d-o)x i	Δw_i
(1, 1, 1)	(1,0, 0)	1	1	(0, 0, 0)	(0, 0, 0)
(1, 1, -1)	(1, 0, 0)	1	1	(0, 0, 0)	(0, 0, 0)
(1,0, -1)	(1, 0, 0)	1	1	(0, 0, 0)	(0, 0, 0)
(1,-1, -1)	(1, 0, 0)	0	1	(-1, 1, 1)	(-1, 1, 1)
(1,-1, 1)	(1, 0, 0)	0	1	(-1, 1, -1)	(-2, 2, 0)
(1, 0, 1)	(1, 0, 0)	0	1	(-1, 0, -1)	(-3, 2, -1)
	E(W)=3/2		w(k+1)	(-2, 2, -1)

Example – large η

- $\Box C1: \{(1, 1, 1), (1, 1, -1), (1, 0, -1)\}$
- $\Box C2: \{(1, -1, -1), (1, -1, 1), (1, 0, 1)\}$

□ η=1

- $\square w_i(k+1) = w_i(k) + \Delta w_i; \qquad \Delta w_i = \eta \Sigma_n(d_n o_n) x_{in}$
- □ Fill out this table sequentially (**Second** pass):

Input	w(k)	d	0	ղ (d-o)x i	Δw_i
(1, 1, 1)	(-2,2, -1)	1	-1	(2, 2, 2)	(2, 2, 2)
(1, 1, -1)	(-2,2, -1)	1	1	(0, 0, 0)	(2, 2, 2)
(1,0, -1)	(-2,2, -1)	1	-1	(2, 0, -2)	(4, 2, 0)
(1,-1, -1)	(-2,2, -1)	0	-3	(3, -3, -3)	(7, -1, -3)
(1,-1, 1)	(-2,2, -1)	0	-5	(5, -5, 5)	(12, -6, 2)
(1, 0, 1)	(-2,2, -1)	0	-3	(3, 0, 3)	(15, -6, 5)
	E(V	V)=51/2		w(k+1)	(13, -4, 4)

Neural Networks - Shahrood University - Hossein Khosravi

Example – large η

16

- $\Box C1: \{(1, 1, 1), (1, 1, -1), (1, 0, -1)\}$
- $\Box C2: \{(1, -1, -1), (1, -1, 1), (1, 0, 1)\}$

□ η=1

- $\square w_i(k+1) = w_i(k) + \Delta w_i; \qquad \Delta w_i = \eta \Sigma_n(d_n o_n) x_{in}$
- □ Fill out this table sequentially (**Third** pass):

Input	w(k)	d	0	ղ (d-o)x i	Δw_i
(1, 1, 1)	(13, -4, 4)	1	13	(-12,-12,-12)	
(1, 1, -1)	(13, -4, 4)	1	5	(-4,-4,4)	
(1,0, -1)	(13, -4, 4)	1	9	(-8,0,8)	
(1,-1, -1)	(13, -4, 4)	0	13	(-13,13,13)	
(1,-1, 1)	(13, -4, 4)	0	21	(-21,21,-21)	
(1, 0, 1)	(13, -4, 4)	0	17	(-17,0,-17)	(-75,18,-25)
	E(W)=1	123/2	2	w(k+1)	(-62,14,-21)

Local minimum

Neural Networks - Shahrood University - Hossein Khosravi

Incremental Stochastic Gradient Descent

18

- Batch mode : Gradient descent
 - w(k+1)=w(k) $\eta \nabla E_D(W)$ over the entire data D
 - $\blacksquare E_D(W)=1/2\sum_n (d_n-o_n)^2$
- Incremental mode: Gradient descent
 w(k+1)=w(k) η∇E_n(W) over individual training examples
 E_n(W)=1/2 (d_n-o_n)²
- Incremental Gradient Descent can approximate
 Batch Gradient Descent arbitrarily close if η is small enough

Weights Update Rule: incremental mode

19

Computation of Gradient(E):

$$\frac{\partial E(\mathbf{W})}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} \left(\frac{1}{2}(d_n - o_n)^2\right) = \frac{\partial}{\partial \mathbf{w}} \left(\frac{1}{2}(d_n - w^T x(n))^2\right)$$
$$= -(d_n - o_n)x(n)$$

Delta rule (AdaLine: Adaptive Linear Elements) for weight update:

$$w(k+1) = w(k) - \eta \frac{\partial E(W)}{\partial w}$$
$$w(k+1) = w(k) + \eta (d_n - o_n) x(n)$$

Delta Rule (AdaLine) learning algorithm

20

k=1; initialize w_i(k) randomly; Calculate E_D(W) while (E_D(W) unsatisfactory AND k<max_iterations) Select an example (x(n),d_n)

 $\Delta w_i = \eta (d_n - o_n) x_{in}$ $w_i (k+1) = w_i (k) + \Delta w_i$

Calculate E_D(W) k = k+1; end-while;

Example – incremental mode

C1:
$$\{(1, 1, 1), (1, 1, -1), (1, 0, -1)\}$$

C2: $\{(1, -1, -1), (1, -1, 1), (1, 0, 1)\}$

η=0.1

Fill out this table sequentially (First pass): $w_i(k+1)=w_i(k)+\eta(d-o)x_i$

Input	w _i (k)	d	0	η(d-o)x _i	w _i (k+1)
(1, 1, 1)	(1,0, 0)	1	1	(0, 0, 0)	(1, 0, 0)
(1, 1, -1)	(1, 0, 0)	1	1	(0, 0, 0)	(1, 0, 0)
(1,0, -1)	(1, 0, 0)	1	1	(0, 0, 0)	(1, 0, 0)
(1,-1, -1)	(1, 0, 0)	0	1	(-0.1, 0.1, 0.1)	(0.9, 0.1, 0.1)
(1,-1, 1)	(0.9, 0.1, 0.1)	0	0.9	(-0.09, 0.09, -0.09)	(0.81,0.19,0.01)
(1, 0, 1)	(0.81,0.19,0.01)	0	0.82	(-0.082, 0, -0.082)	(0.728, 0.19, -0.072)

Perceptron Learning Rule vs. Gradient Descent Rule

Perceptron learning rule guaranteed to succeed if

- Training examples are linearly separable
- $\hfill\square$ Sufficiently small learning rate η

Gradient descent learning rules

- Guaranteed to converge to hypothesis with minimum squared error
- \blacksquare Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by H

Comparison of Perceptron and Adaline

-	-)	
z	Э	

	Perceptron	Adaline
Architecture	Single-layer	Single-layer
Neuron model	Non-linear	linear
Learning algorithm	Minimize number of misclassified examples	Minimize total squared error
Application	Linear classification	Linear classification, regression

Neural Networks - Shahrood University - Hossein Khosravi