IN THE NAME OF ALLAH

Neural Networks

Gradient Descent Learning Rule

Shahrood University of Technology
Hossein Khosravi

Homework \#1

\square Write a program for classification of samples of two classes using single layer perceptron:
\square Samples are in 2D space
\square Sample preparation
\square Randomly around a line
\square From 2 Gaussian distributions with different μ and σ
\square Show the results in each iteration visually
\square Use C++, MATLAB or other languages
\square Optional: User can produce samples interactively
\square Repeat the problem with 5 classes
\square Due date: within 10 days

Gradient Descent Learning Rule

\square Gradient Descent: Consider linear unit without threshold and continuous output o (not just -1,1)

$$
o(X)=w_{0}+w_{1} x_{1}+\ldots+w m x m=W^{\mathrm{T}} X
$$

\square The squared error (where D is the set of training examples)
\square For an example (x, d) the error $e(w)$ of the network is

$$
e(W)=d-o(X)=d-\sum_{j=0}^{m} x_{j} w_{j}
$$

- And the squared error of (x, d) is

$$
E(W)=\frac{1}{2} e^{2}
$$

Gradient Descent Learning Rule

\square The total squared error is

$$
\begin{aligned}
& E(W)=E\left(w_{1}, \ldots, w m\right)=\frac{1}{2} \sum_{(x, d) \in D}(d-o(x))^{2} \\
& E(W)=E\left(w_{1}, \ldots, w m\right)=\frac{1}{2} \sum_{(x, d) \in D}(d-W T X)^{2}
\end{aligned}
$$

\square Update the weight w_{i} such that $\mathrm{E}(\mathrm{W}) \rightarrow$ minimum

$$
w_{i}(k+1)=w_{i}(k)+\Delta w i
$$

Gradient Descent Learning Rule

Neural Networks - Shahrood University - Hossein Khosravi

Gradient Descent Learning Rule

\square Start from an arbitrary point in the weight space
\square The direction in which the error E of an example (as a function of the weights) is decreasing most rapidly is the opposite of the gradient of E :

$$
-\nabla E(W)=-\left[\frac{\partial E}{\partial w_{1}}, \ldots, \frac{\partial E}{\partial w_{m}}\right]
$$

\square Take a small step (of size η) in that direction

$$
\mathrm{w}(\mathrm{k}+1)=\mathrm{w}(\mathrm{k})-\eta(\nabla \mathrm{E}(\mathrm{~W}))
$$

Gradient Descent Learning Rule

\square Train the w_{i} 's such that they minimize the squared error

- $E(W)=E\left(w_{1}, \ldots, w m\right)=\frac{1}{2} \sum_{n}(d n-o n(x))^{2}$
\square Gradient: $\nabla E(w)=\left[\frac{\partial E}{\partial w_{0}}, \ldots, \frac{\partial E}{\partial w_{m}}\right]$

$$
\begin{aligned}
& \Delta \boldsymbol{w}=-\eta \nabla \boldsymbol{E}(\boldsymbol{w}) \\
& \Delta \mathrm{w}_{\mathrm{i}}=-\eta \partial \mathrm{E} / \partial \mathrm{w}_{\mathrm{i}}=-\eta \partial / \partial \mathrm{w}_{\mathrm{i}} 1 / 2 \sum_{\mathrm{n}}\left(\mathrm{~d}_{\mathrm{n}}-\mathrm{o}_{\mathrm{n}}\right)^{2} \\
& =-\eta \partial / \partial \mathrm{w}_{\mathrm{i}} 1 / 2 \sum_{\mathrm{n}}\left(\mathrm{~d}_{\mathrm{n}}-\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}, \mathrm{n}}\right)^{2} \\
& =-\eta \sum_{\mathrm{n}}\left(\mathrm{~d}_{\mathrm{n}}-\mathrm{o}_{\mathrm{n}}\right)\left(-\mathrm{x}_{\mathrm{i}, \mathrm{n}}\right) \\
& =\eta \sum_{\mathrm{n}}\left(\mathrm{~d}_{\mathrm{n}}-\mathrm{o}_{\mathrm{n}}\right) \mathrm{x}_{\mathrm{i}, \mathrm{n}}
\end{aligned}
$$

\square Gradient descent learning rule
$w_{i}(k+1)=w_{i}(k)+\Delta W_{i}=w_{i}(k)+\eta \Sigma_{n}\left(d_{n}-o_{n}\right) x_{i n}$

Batch Learning Pseudo Code

Denoting a training example $\left(x(n), d_{n}\right)$ or $\left(\left(x_{1 n}, \ldots x_{m n}\right), d_{n}\right)$ where $\left(x_{1 n}, \ldots, x_{m n}\right)$ are the input values, and d_{n} is the desired output
$\square \quad \mathrm{k}=1$, randomly initialize $\mathrm{w}_{\mathrm{i}}(\mathrm{k})$, calculate $\mathrm{E}(\mathrm{W})$
\square While (E (W) unsatisfactory \& \& k < max_iterations)

- Initialize each Δw_{i} to zero
- For each instance $\left(x(n), d_{n}\right)$ in D do
- Calculate network output $o_{n}=\sum_{i} w_{i}(k) x_{i n}$
- For each weight dimension $w_{i}(k), i=1, . ., m$
- $\Delta w_{i}=\Delta w_{i}+\eta\left(d_{n}-o_{n}\right) x_{i n}$
- End For
- End For
- For each weight dimension $w_{i}(k), i=1, . ., m$
- $w_{i}(k+1)=w_{i}(k)+\Delta w_{i}$
\square EndFor
Calculate E(W) based on updated $\mathrm{w}_{\mathrm{i}}(\mathrm{k}+1)$
- $k=k+1$
\square End While

Example

\square Consider the 2-dimensional training set $\mathrm{C}_{1} \cup \mathrm{C}_{2}$,
$\square C_{1}=\{(1,1),(1,-1),(0,-1)\}$ with class label 1
$\square C_{2}=\{(-1,-1),(-1,1),(0,1)\}$ with class label 0
\square Train a adaline on $\mathrm{C}_{1} \cup \mathrm{C}_{2}$

Example - small η

$\square \mathrm{C} 1:\{(1,1,1),(1,1,-1),(1,0,-1)\}$
\square C2: $\{(1,-1,-1),(1,-1,1),(1,0,1)\}$

- $\eta=0.1$
$\square w_{i}(k+1)=w_{i}(k)+\Delta w_{i} ; \quad \Delta w_{i}=\eta \Sigma_{n}\left(d_{n}-o_{n}\right) x_{\text {in }}$
\square Fill out this table sequentially (First pass):

Input	$\mathbf{w}(\mathbf{k})$	$\mathbf{d}_{\mathbf{n}}$	$\mathbf{o}_{\mathbf{n}}$	$\boldsymbol{\eta}\left(\mathbf{d}_{\mathbf{n}}-\mathbf{o}_{\mathbf{n}}\right) \mathbf{x}_{\text {in }}$	$\Delta \mathbf{w}_{\mathbf{i}}$
$(1,1,1)$	$(1,0,0)$	1	1	$(0,0,0)$	$(0,0,0)$
$(1,1,-1)$	$(1,0,0)$	1	1	$(0,0,0)$	$(0,0,0)$
$(1,0,-1)$	$(1,0,0)$	1	1	$(0,0,0)$	$(0,0,0)$
$(1,-1,-1)$	$(1,0,0)$	0	1	$(-0.1,0.1,0.1)$	$(-0.1,0.1,0.1)$
$(1,-1,1)$	$(1,0,0)$	0	1	$(-0.1,0.1,-0.1)$	$(-0.2,0.2,0)$
$(1,0,1)$	$(1,0,0)$	0	1	$(-0.1,0,-0.1)$	$(-0.3,0.2,-0.1)$
	$E(W)=3 / 2$				$w(k+1)$

Example - small η

$\square \mathrm{C} 1: \quad\{(1,1,1),(1,1,-1),(1,0,-1)\}$
$\square C 2:\{(1,-1,-1),(1,-1,1),(1,0,1)\}$
$\square \eta=0.1$
$\square \mathrm{w}_{\mathrm{i}}(\mathrm{k}+1)=\mathrm{w}_{\mathrm{i}}(\mathrm{k})+\Delta \mathrm{w}_{\mathrm{i}} ; \quad \quad \Delta \mathrm{w}_{\mathrm{i}}=\eta \Sigma_{\mathrm{n}}\left(\mathrm{d}_{\mathrm{n}}-\mathrm{o}_{\mathrm{n}}\right) \mathrm{x}_{\text {in }}$
Fill out this table sequentially (Second pass):

Input	w(k)	d_{n}	O_{n}	$\mathrm{n}\left(\mathrm{d}_{\mathrm{n}}-\mathrm{O}_{\mathrm{n}}\right) \mathrm{X}_{\text {in }}$	$\Delta \mathrm{w}_{\mathrm{i}}$
$(1,1,1)$	(0.7, 0.2, -0.1)	1	0.8	(0.02, 0.02, 0.02)	(0.02,0.02,0.02)
$(1,1,-1)$	(0.7, 0.2, -0.1)	1	1	$(0,0,0)$	(0.02,0.02,0.02)
(1,0, -1)	(0.7, 0.2, -0.1)	1	0.8	(0.02,0,-0.02)	(0.04,0.02,0)
$(1,-1,-1)$	(0.7, 0.2, -0.1)	0	0.6	(-0.06,0.06,0.06)	(-0.02,0.08,0.06)
$(1,-1,1)$	(0.7, 0.2, -0.1)	0	0.4	(-0.04,0.04,-0.04)	(-0.06,0.12,0.02)
$(1,0,1)$	(0.7, 0.2, -0.1)	0	0.6	(-0.06, 0,-0.06)	(-0.12,0.12,-0.04)
	$E(W)=0.96 / 2$			$\mathrm{w}(\mathrm{k}+1)$	(0.58,0.32,-0.14)

> Note that unlike perceptron, output can take values other than 0 and 1

Example - small η

$\square \mathrm{C} 1: \quad\{(1,1,1),(1,1,-1),(1,0,-1)\}$
$\square C 2:\{(1,-1,-1),(1,-1,1),(1,0,1)\}$
$\square \eta=0.1$
$\square \mathrm{w}_{\mathrm{i}}(\mathrm{k}+1)=\mathrm{w}_{\mathrm{i}}(\mathrm{k})+\Delta \mathrm{w}_{\mathrm{i}} ; \quad \quad \Delta \mathrm{w}_{\mathrm{i}}=\eta \Sigma_{\mathrm{n}}\left(\mathrm{d}_{\mathrm{n}}-\mathrm{o}_{\mathrm{n}}\right) \mathrm{x}_{\text {in }}$
\square Fill out this table sequentially (Third pass):

Input	$\mathbf{w}(\mathbf{k})$	$\mathbf{d}_{\mathbf{n}}$	$\mathbf{O}_{\mathbf{n}}$	$\mathbf{\eta}\left(\mathbf{d}_{\mathbf{n}}-\mathbf{o}_{\mathbf{n}}\right) \mathbf{x}_{\text {in }}$	$\mathbf{w}_{\mathbf{i}}$
$(1,1,1)$	$(0.58,0.32,-0.14)$	1	0.76	$(0.024,0.024,0.024)$	$(0.024,0.024,0.024)$
$(1,1,-1)$	$(0.58,0.32,-0.14)$	1	1.04	$(-0.004,-0.004,0.004)$	$(0.02,0.02,0.028)$
$(1,0,-1)$	$(0.58,0.32,-0.14)$	1	0.72	$(0.028,0,-0.028)$	$(0.048,0.04,0)$
$(1,-1,-1)$	$(0.58,0.32,-0.14)$	0	0.4	$(-0.06,0.06,0.06)$	$(-0.012,0.1,0.06)$
$(1,-1,1)$	$(0.58,0.32,-0.14)$	0	0.12	$(-0.088,0.088,-0.088)$	$(-0.1,0.188,-0.028)$
$(1,0,1)$	$(0.58,0.32,-0.14)$	0	0.44	$(-0.056,0,-0.056)$	$(-0.156,0.188,-0.084)$
	$\mathrm{E}(W)=0.5056 / 2$				$\mathbf{w}(\mathrm{k}+1)$

Gradient Descent Learning Rule

\square Because the error surface contains only a single global minimum, this algorithm will converge to a weight vector with minimum error, regardless of whether the training examples are linearly separable, given a sufficiently small learning rate η
\square If η is too large
\square Overstepping the minimum in the error surface
\square Gradually reduce the value of η as the number of gradient descent steps grows

Example - large η

$\square C 1:\{(1,1,1),(1,1,-1),(1,0,-1)\}$
\square C2: $\{(1,-1,-1),(1,-1,1),(1,0,1)\}$

- $\eta=1$
$\square w_{i}(k+1)=w_{i}(k)+\Delta w_{i} ; \quad \Delta w_{i}=\eta \Sigma_{n}\left(d_{n}-o_{n}\right) x_{\text {in }}$
\square Fill out this table sequentially (First pass):

Input	$\mathbf{w}(\mathbf{k})$	\mathbf{d}	$\mathbf{0}$	$\mathbf{n}(\mathbf{d}-\mathbf{0}) \mathbf{x}_{\mathbf{i}}$	$\boldsymbol{\Delta} \mathbf{w}_{\mathbf{i}}$					
$(1,1,1)$	$(1,0,0)$	$\mathbf{1}$	1	$(0,0,0)$	$(0,0,0)$					
$(1,1,-1)$	$(1,0,0)$	1	1	$(0,0,0)$	$(0,0,0)$					
$(1,0,-1)$	$(1,0,0)$	1	1	$(0,0,0)$	$(0,0,0)$					
$(1,-1,-1)$	$(1,0,0)$	0	1	$(-1,1,1)$	$(-1,1,1)$					
$(1,-1,1)$	$(1,0,0)$	0	1	$(-1,1,-1)$	$(-2,2,0)$					
$(1,0,1)$	$(1,0,0)$	0	1	$(-1,0,-1)$	$(-3,2,-1)$					
	$\mathrm{E}(\mathrm{W})=3 / 2$								$\mathrm{w}(\mathrm{k}+1)$	$(-2,2,-1)$

Example - large η

$\square C 1:\{(1,1,1),(1,1,-1),(1,0,-1)\}$
\square C2: $\{(1,-1,-1),(1,-1,1),(1,0,1)\}$

- $\eta=1$
$\square \mathrm{w}_{\mathrm{i}}(\mathrm{k}+1)=\mathrm{w}_{\mathrm{i}}(\mathrm{k})+\Delta \mathrm{w}_{\mathrm{i}} ; \quad \quad \Delta \mathrm{w}_{\mathrm{i}}=\eta \Sigma_{\mathrm{n}}\left(\mathrm{d}_{\mathrm{n}}-\mathrm{o}_{\mathrm{n}}\right) \mathrm{x}_{\text {in }}$
\square Fill out this table sequentially (Second pass):

Input	w(k)	d	0	$\eta(\mathrm{d}-0) \mathrm{x}_{\mathrm{i}}$	$\Delta \mathrm{w}_{\mathrm{i}}$
$(1,1,1)$	(-2,2, -1)	1	-1	$(2,2,2)$	$(2,2,2)$
(1, 1, -1)	$(-2,2,-1)$	1	1	$(0,0,0)$	$(2,2,2)$
(1,0,-1)	$(-2,2,-1)$	1	-1	(2, 0, -2)	$(4,2,0)$
(1,-1, -1)	(-2,2, -1)	0	-3	($3,-3,-3$)	($7,-1,-3$)
$(1,-1,1)$	(-2,2, -1)	0	-5	$(5,-5,5)$	($12,-6,2)$
$(1,0,1)$	$(-2,2,-1)$	0	-3	$(3,0,3)$	(15, -6, 5)
	$E(W)=51 / 2$			w(k+1)	(13, -4, 4)

Example - large η

$\square C 1:\{(1,1,1),(1,1,-1),(1,0,-1)\}$
\square C2: $\{(1,-1,-1),(1,-1,1),(1,0,1)\}$

- $\eta=1$
$\square w_{i}(k+1)=w_{i}(k)+\Delta w_{i} ; \quad \Delta w_{i}=\eta \Sigma_{n}\left(d_{n}-o_{n}\right) x_{\text {in }}$
\square Fill out this table sequentially (Third pass):

Input	w(k)	d	0	$\eta(\mathrm{d}-\mathrm{O}) \mathrm{x}_{\mathrm{i}}$	$\Delta w_{\text {i }}$
$(1,1,1)$	(13, -4, 4)	1	13	(-12,-12,-12)	
(1, 1, -1)	($13,-4,4)$	1	5	(-4,-4,4)	
(1,0, -1)	(13, -4, 4)	1	9	$(-8,0,8)$	
(1,-1, -1)	(13, -4, 4)	0	13	(-13,13,13)	
$(1,-1,1)$	(13, -4, 4)	0	21	(-21,21,-21)	
$(1,0,1)$	($13,-4,4)$	0	17	$(-17,0,-17)$	(-75,18,-25)
	$\mathrm{E}(\mathrm{W})=1123 / 2$			w(k+1)	(-62,14,-21)

Local minimum

PES of H/Pt(100)

Neural Networks - Shahrood University - Hossein Khosravi

Incremental Stochastic Gradient Descent

\square Batch mode : Gradient descent
$\square w(k+1)=w(k)-\eta \nabla E_{D}(W)$ over the entire data D
$\square E_{D}(W)=1 / 2 \Sigma_{n}\left(d_{n}-o_{n}\right)^{2}$
\square Incremental mode: Gradient descent
$\square w(k+1)=w(k)-\eta \nabla E_{n}(W)$ over individual training examples
$\square E_{n}(W)=1 / 2\left(d_{n}-o_{n}\right)^{2}$
\square Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily close if η is small enough

Weights Update Rule: incremental mode

\square Computation of Gradient(E):

$$
\begin{aligned}
\frac{\partial E(\mathrm{~W})}{\partial \mathrm{w}} & =\frac{\partial}{\partial \mathrm{w}}\left(\frac{1}{2}\left(d_{n}-o_{n}\right)^{2}\right)=\frac{\partial}{\partial \mathrm{w}}\left(\frac{1}{2}\left(d_{n}-w^{T} x(n)\right)^{2}\right) \\
& =-\left(d_{n}-o_{n}\right) x(n)
\end{aligned}
$$

\square Delta rule (AdaLine: Adaptive Linear Elements) for weight update:

$$
\begin{aligned}
& \mathrm{w}(\mathrm{k}+1)=\mathrm{w}(\mathrm{k})-\eta \frac{\partial E(W)}{\partial w} \\
& \mathrm{w}(\mathrm{k}+1)=\mathrm{w}(\mathrm{k})+\eta\left(\mathrm{d}_{\mathrm{n}}-o_{n}\right) x(n)
\end{aligned}
$$

Delta Rule (AdaLine) learning algorithm

k=1; initialize $w_{i}(k)$ randomly; Calculate $\mathrm{E}_{\mathrm{o}}(\mathrm{W})$
while ($E_{\mathrm{D}}(\mathrm{W})$ unsatisfactory AND $\mathrm{k}<$ max_iterations)
Select an example ($\left.\mathrm{x}(\mathrm{n}), d_{n}\right)$

$$
\begin{aligned}
& \Delta w_{i}=\eta\left(d_{n}-o_{n}\right) x_{i n} \\
& w_{i}(k+1)=w_{i}(k)+\Delta w_{i}
\end{aligned}
$$

Calculate $\mathrm{E}_{\mathrm{D}}(\mathrm{W})$
k = k+1;
end-while;

Example - incremental mode

$C 1:$	$\{(1,1,1),(1,1,-1),(1,0,-1)\}$
$C 2:$	$\{(1,-1,-1),(1,-1,1),(1,0,1)\}$
$\eta=0.1$	

Fill out this table sequentially (First pass):
$w_{i}(k+1)=w_{i}(k)+\eta(d-o) x_{i}$

Input	$\mathrm{w}_{\text {f }}(\mathrm{k})$	d	0	$n(\mathrm{~d}-\mathrm{o}) \mathrm{x}_{\mathrm{i}}$	$\mathrm{w}_{\text {i }}(\mathrm{k}+1)$
$(1,1,1)$	$(1,0,0)$	1	1	$(0,0,0)$	$(1,0,0)$
$(1,1,-1)$	$(1,0,0)$	1	1	$(0,0,0)$	$(1,0,0)$
$(1,0,-1)$	$(1,0,0)$	1	1	$(0,0,0)$	$(1,0,0)$
$(1,-1,-1)$	$(1,0,0)$	0	1	(-0.1, 0.1, 0.1)	(0.9, 0.1, 0.1)
$(1,-1,1)$	(0.9, 0.1, 0.1)	0	0.9	(-0.09, 0.09, -0.09)	(0.81,0.19,0.01)
$(1,0,1)$	(0.81,0.19,0.01)	0	0.82	(-0.082, 0, -0.082)	(0.728, 0.19, -0.072)

Perceptron Learning Rule vs. Gradient Descent Rule

Perceptron learning rule guaranteed to succeed if
\square Training examples are linearly separable
\square Sufficiently small learning rate η
Gradient descent learning rules
\square Guaranteed to converge to hypothesis with minimum squared error
\square Given sufficiently small learning rate η
\square Even when training data contains noise
\square Even when training data not separable by H

Comparison of Perceptron and Adaline

	Perceptron	Adaline
Architecture	Single-layer	Single-layer
Neuron model	Non-linear	linear
Learning algorithm	Minimize number of misclassified examples	Minimize total squared error
Application	Linear classification	Linear classification regression

