
1



Homework #1

 Write a program for classification of samples of two 
classes using single layer perceptron:

 Samples are in 2D space

 Sample preparation
 Randomly around a line

 From 2 Gaussian distributions with different μ and σ

 Show the results in each iteration visually

 Use C++, MATLAB or other languages

 Optional: User can produce samples interactively

 Repeat the problem with 5 classes

 Due date: within 10 days
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Gradient Descent Learning Rule

 Gradient Descent: Consider linear unit without threshold and 
continuous output o (not just –1,1)

𝑜 𝑋 = 𝑤0 + 𝑤1 𝑥1 + … + 𝑤𝑚 𝑥𝑚 = 𝑊𝑋

 The squared error (where D is the set of training examples )

 For an example (x,d) the error e(w) of the network is

𝑒 𝑊 = 𝑑 − 𝑜 𝑋 = 𝑑 −෍

𝑗=0

𝑚

𝑥𝑗𝑤𝑗

 And the squared error of (x,d) is 

𝐸 𝑊 =
1

2
𝑒2
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Gradient Descent Learning Rule

 The total squared error is

𝐸(𝑊) = 𝐸(𝑤1, … , 𝑤𝑚) =
1

2
෍

(𝑥,𝑑)∈𝐷

(𝑑 − 𝑜(𝑥))2

𝐸(𝑊) = 𝐸(𝑤1, … , 𝑤𝑚) =
1

2
෍

(𝑥,𝑑)∈𝐷

(𝑑 −𝑊𝑇𝑋)2

 Update the weight wi such that E(W)  minimum

𝑤𝑖(𝑘 + 1) = 𝑤𝑖(𝑘) + ∆𝑤𝑖
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Gradient Descent Learning Rule

(w1,w2)

(w1+w1,w2 +w2)
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Gradient Descent Learning Rule

 Start from an arbitrary point in the weight space

 The direction in which the error E of an example (as a 
function of the weights) is decreasing most rapidly is the 
opposite of the gradient of E:

 Take a small step (of size ) in that direction

)E(W) ()w(k)1k(w  

  ,...,  )(
1 mw

E

w

E
WE









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Gradient Descent Learning Rule

 Train the wi’s such that they minimize the squared error

 𝐸(𝑊) = 𝐸(𝑤1, … , 𝑤𝑚) =
1

2
σ𝑛(𝑑𝑛 − 𝑜𝑛(𝑥))2

 Gradient:   𝐸(𝑤) = [
𝜕𝐸

𝜕𝑤0
, … ,

𝜕𝐸

𝜕𝑤𝑚
]

𝒘 = − 𝑬(𝒘)

wi = - E/wi  = - /wi 1/2n(dn-on)2

= - /wi 1/2n(dn-i wi xi,n)2

= - n(dn- on)(-xi,n)

=  n(dn- on)xi,n

 Gradient descent learning rule

wi(k+1) = wi(k)+ wi = wi(k)+  n(dn- on)xin
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Batch Learning Pseudo Code

Denoting a training example (x(n), dn) or ((x1n,…xmn),dn) where (x1n,…,xmn) 

are the input values, and dn is the desired output

 k=1, randomly initialize wi(k), calculate E(W)
 While ( E(W) unsatisfactory && k < max_iterations )

 Initialize each wi to zero
 For each instance (x(n), dn) in D do

 Calculate network output on = i wi(k)xin

 For each weight dimension wi(k), i=1,..,m
 wi= wi + (dn-on) xin

 End For
 End For
 For each weight dimension wi(k), i=1,..,m

 wi(k+1)=wi(k)+wi

 EndFor
 Calculate E(W) based on updated wi(k+1)
 k=k+1

 End While
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Example

 Consider the 2-dimensional training set C1  C2, 

 C1 = {(1,1), (1, -1), (0, -1)} with class label 1

 C2 = {(-1,-1), (-1,1), (0,1)}   with class label 0

 Train a adaline on C1  C2
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Example – small 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)} 

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =0.1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (First pass):

Input w(k) dn on (dn-on)xin wi 

(1, 1, 1) (1,0, 0) 1 1 (0, 0, 0) (0, 0, 0) 

(1, 1, -1) (1, 0, 0) 1 1 (0, 0, 0) (0, 0, 0) 

(1,0, -1) (1, 0, 0) 1 1 (0, 0, 0) (0, 0, 0) 

(1,-1, -1) (1, 0, 0) 0 1 (-0.1, 0.1, 0.1) (-0.1, 0.1, 0.1) 

(1,-1, 1) (1, 0, 0) 0 1 (-0.1, 0.1, -0.1) (-0.2, 0.2, 0) 

(1, 0, 1) (1, 0, 0) 0 1 (-0.1, 0, -0.1) (-0.3, 0.2, -0.1) 

 E(W)=3/2 w(k+1) (0.7, 0.2, -0.1) 
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Example – small 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)} 

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =0.1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (Second pass):

Input w(k) dn On (dn-on)xin wi 

(1, 1, 1) (0.7, 0.2, -0.1) 1 0.8 (0.02, 0.02, 0.02) (0.02,0.02,0.02) 

(1, 1, -1) (0.7, 0.2, -0.1) 1 1 (0,0,0) (0.02,0.02,0.02) 

(1,0, -1) (0.7, 0.2, -0.1) 1 0.8 (0.02,0,-0.02) (0.04,0.02,0) 

(1,-1, -1) (0.7, 0.2, -0.1) 0 0.6 (-0.06,0.06,0.06) (-0.02,0.08,0.06) 

(1,-1, 1) (0.7, 0.2, -0.1) 0 0.4 (-0.04,0.04,-0.04) (-0.06,0.12,0.02) 

(1, 0, 1) (0.7, 0.2, -0.1) 0 0.6 (-0.06,0,-0.06) (-0.12,0.12,-0.04) 

 E(W)=0.96/2 w(k+1) (0.58,0.32,-0.14) 

 
Note that unlike perceptron, output can 

take values other than 0 and 1
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Example – small 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)} 

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =0.1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (Third pass):

Input w(k) dn On (dn-on)xin wi 

(1, 1, 1) (0.58,0.32,-0.14) 1 0.76 (0.024,0.024,0.024) (0.024,0.024,0.024) 

(1, 1, -1) (0.58,0.32,-0.14) 1 1.04 (-0.004,-0.004,0.004) (0.02,0.02,0.028) 

(1,0, -1) (0.58,0.32,-0.14) 1 0.72 (0.028,0,-0.028) (0.048,0.04,0) 

(1,-1, -1) (0.58,0.32,-0.14) 0 0.4 (-0.06,0.06,0.06) (-0.012,0.1,0.06) 

(1,-1, 1) (0.58,0.32,-0.14) 0 0.12 (-0.088,0.088,-0.088) (-0.1,0.188,-0.028) 

(1, 0, 1) (0.58,0.32,-0.14) 0 0.44 (-0.056,0,-0.056) (-0.156,0.188,-0.084) 

 E(W)=0.5056/2 w(k+1) (0.424,0.508,-0.224) 
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Gradient Descent Learning Rule

 Because the error surface contains only a single
global minimum, this algorithm will converge to a
weight vector with minimum error, regardless of
whether the training examples are linearly
separable, given a sufficiently small learning rate 

 If  is too large 
 Overstepping the minimum in the error surface

 Gradually reduce the value of  as the number of 
gradient descent steps grows
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Example – large 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)} 

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (First pass):

Input w(k) d O (d-o)xi wi 

(1, 1, 1) (1,0, 0) 1 1 (0, 0, 0) (0, 0, 0) 

(1, 1, -1) (1, 0, 0) 1 1 (0, 0, 0) (0, 0, 0) 

(1,0, -1) (1, 0, 0) 1 1 (0, 0, 0) (0, 0, 0) 

(1,-1, -1) (1, 0, 0) 0 1 (-1, 1, 1) (-1, 1, 1) 

(1,-1, 1) (1, 0, 0) 0 1 (-1, 1, -1) (-2, 2, 0) 

(1, 0, 1) (1, 0, 0) 0 1 (-1, 0, -1) (-3, 2, -1) 

 E(W)=3/2 w(k+1) (-2, 2, -1) 
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Example – large 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)} 

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (Second pass):

Input w(k) d O (d-o)xi wi 

(1, 1, 1) (-2,2, -1) 1 -1 (2, 2, 2) (2, 2, 2) 

(1, 1, -1) (-2,2, -1) 1 1 (0, 0, 0) (2, 2, 2) 

(1,0, -1) (-2,2, -1) 1 -1 (2, 0, -2) (4, 2, 0) 

(1,-1, -1) (-2,2, -1) 0 -3 (3, -3, -3) (7, -1, -3) 

(1,-1, 1) (-2,2, -1) 0 -5 (5, -5, 5) (12, -6, 2) 

(1, 0, 1) (-2,2, -1) 0 -3 (3, 0, 3) (15, -6, 5) 

 E(W)=51/2 w(k+1) (13, -4, 4) 
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Example – large 

 C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)} 

 C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

 =1

 wi(k+1)=wi(k)+wi ; wi= n(dn-on)xin

 Fill out this table sequentially (Third pass):

Input w(k) d O (d-o)xi wi 

(1, 1, 1) (13, -4, 4) 1 13 (-12,-12,-12)  

(1, 1, -1) (13, -4, 4) 1 5 (-4,-4,4)  

(1,0, -1) (13, -4, 4) 1 9 (-8,0,8)  

(1,-1, -1) (13, -4, 4) 0 13 (-13,13,13)  

(1,-1, 1) (13, -4, 4) 0 21 (-21,21,-21)  

(1, 0, 1) (13, -4, 4) 0 17 (-17,0,-17) (-75,18,-25) 

 E(W)=1123/2 w(k+1) (-62,14,-21) 
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Local minimum
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Incremental Stochastic Gradient Descent

 Batch mode : Gradient descent

 w(k+1)=w(k) - ED(W) over the entire data D

 ED(W)=1/2n(dn-on)2

 Incremental mode: Gradient descent

 w(k+1)=w(k) - En(W) over individual training examples 

 En(W)=1/2 (dn-on)2

 Incremental Gradient Descent can approximate 
Batch Gradient Descent arbitrarily close if  is small 
enough 
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Weights Update Rule: incremental mode

 Computation of Gradient(E): 

 Delta rule (AdaLine: Adaptive Linear Elements) for 
weight update:
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Delta Rule (AdaLine) learning algorithm

k=1;

initialize wi(k) randomly; Calculate ED(W)

while (ED(W) unsatisfactory AND k<max_iterations)
Select an example (x(n),dn)

Calculate ED(W)

k = k+1;

end-while;

iii wkwkw  )()1(

innni xodw )(  
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Example – incremental mode

C1: {(1, 1, 1), (1, 1, -1), (1, 0, -1)} 

C2: {(1, -1,-1), (1, -1,1), (1, 0,1)}

=0.1

Fill out this table sequentially (First pass):

wi(k+1)=wi(k)+(d-o)xi
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Input wi(k) d O (d-o)xi wi(k+1)

(1, 1, 1) (1,0, 0) 1 1 (0, 0, 0) (1, 0, 0)

(1, 1, -1) (1, 0, 0) 1 1 (0, 0, 0) (1, 0, 0)

(1,0, -1) (1, 0, 0) 1 1 (0, 0, 0) (1, 0, 0)

(1,-1, -1) (1, 0, 0) 0 1 (-0.1, 0.1, 0.1) (0.9, 0.1, 0.1)

(1,-1, 1) (0.9, 0.1, 0.1) 0 0.9 (-0.09, 0.09, -0.09) (0.81,0.19,0.01)

(1, 0, 1) (0.81,0.19,0.01) 0 0.82 (-0.082, 0, -0.082) (0.728, 0.19, -0.072)



Perceptron Learning Rule vs. Gradient Descent Rule

Perceptron learning rule guaranteed to succeed if

 Training examples are linearly separable

 Sufficiently small learning rate 

Gradient descent learning rules

 Guaranteed to converge to hypothesis with minimum 
squared error

 Given sufficiently small learning rate 

 Even when training data contains noise

 Even when training data not separable by H
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Comparison of Perceptron and Adaline

 Perceptron Adaline 

Architecture Single-layer Single-layer 

Neuron 
model 

Non-linear linear 

Learning 
algorithm 

Minimize 
number of 
misclassified 
examples 
 

Minimize total 
squared error 
 

Application Linear 
classification 

Linear classification,  and 
regression 
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