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Nonlinear hyperspectral unmixing with
robust nonnegative matrix factorization

Cédric Févotte and Nicolas Dobigeon

Abstract—We introduce a robust mixing model to describe
hyperspectral data resulting from the mixture of several pure
spectral signatures. The new model extends the commonly used
linear mixing model by introducing an additional term account-
ing for possible nonlinear effects, that are treated as sparsely
distributed additive outliers. With the standard nonnegativity and
sum-to-one constraints inherent to spectral unmixing, our model
leads to a new form of robust nonnegative matrix factorization
with a group-sparse outlier term. The factorization is posed as an
optimization problem which is addressed with a block-coordinate
descent algorithm involving majorization-minimization updates.
Simulation results obtained on synthetic and real data show that
the proposed strategy competes with state-of-the-art linear and
nonlinear unmixing methods.

Index Terms—Hyperspectral imagery, nonlinear unmixing,
robust nonnegative matrix factorization, group-sparsity.

I. INTRODUCTION

SPECTRAL unmixing (SU) is an issue of prime interest
when analyzing hyperspectral data since it provides a

comprehensive and meaningful description of the collected
measurements in various application fields including remote
sensing [1], planetology [2], food monitoring [3] or spectro-
microscopy [4]. SU consists in decomposing P multi-band
observations Y = [y1, . . . ,yP ] into a collection of K
individual spectra M = [m1, . . . ,mK ], called endmembers,
and estimating their relative proportions (or abundances)
A = [a1, . . . ,aP ] for each observation [5], [6]. Most of the
hyperspectral unmixing algorithms proposed in the signal
& image processing and geoscience literatures rely on the
commonly admitted linear mixing model (LMM), Y ≈MA.
Indeed, LMM provides a good approximation of the physical
process underlying the observations and has resulted in
useful results for many applications. However, for some other
specific applications, LMM may be inaccurate and other
models, referred to as “nonlinear”, need to be considered.
For instance, when considering sand-like scenes, light is
subjected to multiple scattering and absorption phenomena,
which result in highly nonlinear effects. Proper analysis of
such mixtures involves very complex optical modeling and
one typically needs to resort to approximate models to make
the problem tractable. As such, the Hapke model [7] has
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been widely advocated, in particular for unmixing purposes
[8]–[11]. Conversely, in remotely sensed images composed of
vegetation (e.g., trees), interactions of photons with multiple
components of the scene lead to nonlinear effects that can
be taken into account using bilinear models [12]–[17]. As
explained in [18], many of these models only differ by the
constraints imposed on the bilinear term. Additionally, to
approximate a large range of second-order nonlinearities,
Altmann et al. [19] introduced a polynomial post-nonlinear
model that has demonstrated its ability to describe many
nonlinear effects, in particular in vegetated areas [20]. A
common feature of these models is that they all incorporate
a supplementary additive term to the standard LMM, that
accounts for the nonlinearities. One major drawback of these
models, however, is that they require to choose a specific
form of nonlinearity, and this can be limiting in practice.
References [21] and [22] offer comprehensive and recent
overviews of nonlinear models and associated unmixing
algorithms.

In this paper, a new so-called robust LMM (rLMM)
is proposed. In a similar fashion to the nonlinear models
detailed above, it is built on the standard LMM, with the
inclusion of a supplementary additive term that accounts for
nonlinear effects. As a consequence, the proposed method
can be considered to analyze any mixture that results
from the combination of a linear contribution MA and a
residual term. Bilinear models [18] and the multi-mixture
pixel model (MMP) [23], which combine macroscopic and
intimate mixtures, are archetypal examples of this class of
models that are encompassed by our proposed approach.
However, contrary to these models, rLMM does not require
to specify a given analytical form of the nonlinearity.
Instead, nonlinearities are merely treated as outliers. The
main motivation for introducing rLMM is to introduce a
flexible unmixing method able to analyze a large variety
of remotely sensed scenes. In particular, it is well admitted
that, for most of these images, the linear mixing model
(LMM) is a relevant description of the data. For such
datasets, resorting to nonlinear mixing models is not always
necessary and may in fact result in inaccurate estimation
(due to, e.g., overfitting). Thus the LMM can be considered
as a valid model to describe the majority of the pixels
in a remotely sensed image. Conversely, as illustrated in
previous works [21], the LMM assumption does not hold for
specific and localized areas, mainly situated at the interface
of heterogeneous regions. For this limited number of pixels,
LMM-based unmixing algorithms fail in properly recovering



2

the materials and their abundances. From this premise, our
goal is to propose a new model (as well as the corresponding
unmixing algorithm) appropriate for both scenarios. As
such, we propose to decompose the L × P matrix of the
multi-band observations as Y ≈ MA + R, where R is a
sparse (and nonnegative) residual term accounting for outliers
(i.e., nonlinear effects). To reflect the assumption that the
LMM holds for most of the observed pixels, the sparsity
constraint is imposed at the group-level, i.e., a column of R
will be assumed to be either entirely zero or not. Finally, it is
also worthy to note that the proposed decomposition relates
to robust nonnegative matrix factorization (rNMF) as will be
explained in more details in the sequel of the paper.

The article is organized as follows. The rLMM is detailed
in Section II. Section III describes a block-coordinate de-
scent algorithm for rLMM estimation. Experimental results
obtained on synthetic data are reported in Section IV. Two
real hyperspectral images are investigated in Section V and
Section VI concludes. This article extends our preliminary
conference paper [24] in a significant way. We show how some
of the multiplicative updates obtained heuristically in [24] can
be rigorously obtained via majorization-minimization. While
[24] only considers the case where the measure of fit is the
squared Euclidean distance, this article additionally considers
the Kullback-Leibler divergence, a common measure of fit for
nonnegative data. In this article, we also describe an efficient
rule of thumb for the critical task of choosing the value of
the penalty weight. Finally, we provide extensive experimental
results on synthetical and real data.

II. ROBUST LINEAR MIXING MODEL

A. Model design

The proposed rLMM is described by

yp ≈
K∑
k=1

akpmk + rp, (1)

where yp = [y1p, . . . , yLp]T denotes the pth pixel spectrum
observed in L spectral bands, mk = [m1k, . . . ,mLk]T de-
notes the kth endmember spectrum, ap = [a1p, . . . , aKp]

T

denotes the abundances associated with the pth pixel and
rp = [r1p, . . . , rLp]

T denotes the outlier term (accounting for
nonlinearities). The matrix formulation of Eq. (1) is given by

Y ≈MA + R. (2)

Per se, this robust LMM generalizes most of the bilinear
mixing models [18] that have been widely used to analyze
hyperspectral scenes acquired over multi-layered areas by
remote sensors. This specific context has been extensively
studied in the literature, for planetary and Earth science [25],
[26], in particular to characterize vegetation [13], [27]–[30] or
urban [17] canopies. Note however that the proposed nonlinear
model cannot be used to analyze mineralogical data, that result
from intimate mixtures of sand-like materials.

The approximation symbol in Eqs. (1) and (2) underlies
the minimization of a measure of dissimilarity D(Y|MA +

R). The measure of dissimilarity is such that D(A|B) =∑
ij d(aij |bij), where d(x|y) is either the squared Euclidean

distance (SED), given by dSED(x|y) = 1
2 (x − y)2, or the

Kullback-Leibler divergence (KLD), given by dKLD(x|y) =
x log x

y−x+y. We address these two measures of dissimilarity
because they are the most commonly used in NMF. The SED
is the more common one in hyperspectral unmixing, but recent
papers such as [31] have also pointed the benefits of using the
KLD. As will be discussed in Section VI, the methodology
presented in the paper could also accommodate other measures
of fit such as the more general β-divergence [32].

The matrices Y, M and A are nonnegative by nature and
we assume the abundance coefficients to sum to one, i.e.,

ap ∈ SK def=

{
a ∈ RK

∣∣ ak ≥ 0,
K∑
k=1

ak = 1

}
, (3)

as commonly assumed in most hyperspectral data models.
In this work, we assume the nonlinear component rp to be
nonnegative as well, like in the bilinear models of [12], [13],
[15] and the polynomial model with constructive interferences
of [19]. This assumption allows a fair comparison with the
latter works, which inspired us the proposed methodology,
and is physically well-motivated for multi-layered models
(scenes with multiple reflections). One could however envisage
relaxing this assumption and the pros and cons of doing so are
discussed in Section VI.

As discussed in the introduction, we expect rp to be often
zero, i.e., pixels to follow the standard LMM in general. For
pixels where the LMM assumption fails, nonlinearities will
become “active” and rp will become nonzero. This amounts
to say that the energy vector

e = [‖r1‖2 , . . . , ‖rP ‖2] (4)

is sparse. In Eq. (4), ‖·‖2 denotes the Euclidean norm defined
by ‖x‖2 =

√∑
k x

2
k. Sparsity can routinely be enforced by

`1-regularization, as done next.

B. Objective function

In light of previous section, our objective is to solve the
minimization problem defined by

min
M,A,R

J(M,A,R) = D(Y|MA + R) + λ ‖R‖2,1

s.t. M ≥ 0, A ≥ 0, R ≥ 0 and ‖ap‖1 = 1, (5)

where λ is a nonnegative penalty weight, A ≥ 0 denotes
nonnegativity of the coefficients of A, ‖x‖1 =

∑
k |xk| and

‖ · ‖2,1 is the so-called `2,1-norm defined by

‖R‖2,1 = ‖e‖1 =
P∑
p=1

‖rp‖2 . (6)

Eq. (5) defines a robust NMF problem. Robust NMF is a
nonnegative variant of robust PCA [33] which has appeared in
different forms in the literature. In [34], the outlier term R is
nonnegative and penalized by the `1 norm. In [35] and [36], R
is real-valued and penalized by `1 and `1,2 norms, respectively.
In [37], the `2,1 norm of (Y−MA) is minimized (noise-free
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scenario). A so-called robust nonnegative matrix factorization
approach was introduced for the reconstruction of reflectance
spectra in [38]; however the term “robust” there refers to a
different feature, namely the use of a data-fitting term (the
hypersurface cost function) that is less sensitive to outlier
observations than the traditional SED, for the computation of
a regular NMF Y ≈MA. Note finally that other articles have
addressed hyperspectral unmixing with regular NMF (i.e., in
the standard linear model), e.g., [39]–[42].

To the best of our knowledge, the formulation of robust
NMF described by Eq. (5), where R is nonnegative and
penalized by the `2,1 norm (and where the abundances sum
to one), is entirely novel. Furthermore, previous works [34]–
[37] have only considered robust NMF with the SED, i.e.,
D(Y|MA + R) = ‖Y −MA − R‖22, while we here also
address the case of the KLD.

III. BLOCK-COORDINATE DESCENT ALGORITHM

In order to solve the rNMF minimization problem defined
at Eq. (5), we present an iterative block-coordinate descent
algorithm that updates each of the parameters M, A and
R in turn. Each parameter is updated conditionally upon
the current value of the other parameters and such that the
objective function is decreased. This is the updating scheme
employed by virtually all NMF algorithms. Unfortunately,
given the non-convexity of the objective function J(M,A,R),
this strategy can return local solutions and proper initialization
is required. This will be addressed in Section IV. The updates
of the parameters are described next. In short, the parameters
M and R are updated via majorization-minimization (MM).
Generally speaking, MM consists in optimizing an easier-to-
minimize tight upper-bound of the original objective function
[43]. The parameter A is updated using a heuristic scheme
that has proven to work well in the literature. All the updates
turn out to be “multiplicative”, i.e., such that the new update
is obtained by term-to-term multiplying the previous update
by a nonnegative matrix, hence automatically preserving the
nonnegativity of the estimates through iterations. The result-
ing algorithm has linear complexity O(LKP ) (in flops) per
iteration.

A. Update of the endmember spectra M

Updating M given the current values of A and R involves
solving the following minimization problem

min
M

C(M) = D(Y|MA + R) s.t. M ≥ 0, (7)

where D(·|·) is either the SED or the KLD. When R = 0, this
problem boils down to updating the dictionary/endmembers
matrix in NMF. MM algorithms have been designed for that
purpose in [32], [44], [45]. MM algorithms have been among
the very first to be considered for NMF and they are still a
prime choice today, thanks to their low complexity and ease of
implementation. In this section, we extend the MM approach
to the case where R ≥ 0. Denote by M̃ the estimate of M at
current iteration. The first step of MM consists in building an
upper bound G(M|M̃) of C(M) which is tight for M = M̃,
i.e., C(M) ≤ G(M|M̃) for all M and C(M̃) = G(M̃|M̃).

The second step consists in minimizing the bound with respect
to (w.r.t) M, producing a valid descent algorithm. Indeed, at
iteration i + 1, it holds by construction that C(M(i+1)) ≤
G(M(i+1)|M(i)) ≤ G(M(i)|M(i)) = C(M(i)). The bound
G(M|M̃) will be referred to as auxiliary function.

Using convexity of D(·|·) w.r.t its second argument, C(M)
can be majorized using Jensen’s inequality, as follows. Let
us denote ỹlp =

∑
k m̃lkakp + rlp the data approximation

formed with the current iterate M̃ (and recall that A and R
are here treated as constants). Then, define for k = 1, . . . ,K,
λ̃lkp = m̃lkakp/ỹlp and for k = K + 1, λ̃lkp = rlp/ỹlp. By
construction, we have

∑K+1
k=1 λ̃lkp = 1. Then, using definition

of convexity, we have

C(M) =
∑
lp

d(ylp|
∑
k

mlkakp + rlp)

=
∑
lp

d

(
ylp|

∑
k

λ̃lkp
mlkakp

λ̃lkp
+ λ̃l(K+1)p

rlp

λ̃l(K+1)p

)

≤
∑
lp

[
K∑
k=1

λ̃lkpd

(
ylp|

mlkakp

λ̃lkp

)

+ λ̃l(K+1)pd

(
ylp|

rlp

λ̃l(K+1)p

)]

=
∑
lp

[
K∑
k=1

m̃lkakp
ỹlp

d

(
ylp|ỹlp

mlk

m̃lk

)
+
rlp
ỹlp

d(ylp|ỹlp)

]
def= G(M|M̃) (8)

The auxiliary function essentially “takes out” the sum over
k from within the measure of similarity in the expression of
C(M) (first line of Eq. (8)) to make the optimization over M
separable w.r.t its entries mlk. Skipping details for brevity, the
resulting function can be minimized in closed-form w.r.t M̃,
resulting in the following updates

mSED
lk = m̃lk

∑
p akpylp∑
p akpỹlp

, (9)

mKLD
lk = m̃lk

∑
p

akq∑
q akq

ylp
ỹlp

(10)

where we recall that ỹlp =
∑
k m̃lkakp + rlp is the data

approximation at current iteration. Note that the two updates
can be expressed in the same form

mlk = m̃lk

∑
p akpylpỹ

β−2
lp∑

p akpỹ
β−1
lp

(11)

where β = 2 for the SED and β = 1 for the KLD.
With the SED, the minimization problem defined at Eq. (7)

could alternatively be cast as a nonnegative quadratic problem
described by

min
M

C(M) =
1
2
‖(Y −R)−MA‖22 s.t. M ≥ 0. (12)

In this formulation the problem can be solved using the MM
algorithm of Sha et al. [46], based on a different auxiliary
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function which does not require R to be nonnegative.1 The
algorithm results in the following multiplicative update

mlk = m̃lk

|
∑
p akp(ylp − rlp)|+

∑
p akp(ylp − rlp)

2
∑
p akps̃lp

, (13)

where s̃lp =
∑
k m̃lkakp. We compared the updates defined by

Eqs. (11) & (13) experimentally and found no significant dif-
ference in convergence behavior, with however Eq. (13) being
on average marginally faster. One interest of our approach, as
opposed to using the algorithm of [46], is that it is not specific
to the SED, and can readily be adapted to other measures of
fit as the derivations in Eq. (8) hold for any divergence d(x|y)
which is convex w.r.t y.

B. Update of the outlier term R
Updating R given the current values of M and A involves

solving the following minimization problem

min
R

C(R) = D(Y|MA + R) + λ‖R‖2,1 s.t. R ≥ 0. (14)

The problem has an analytical solution in the squared Eu-
clidean real-case [47], but does not to appear to have one in
the nonnegative case, and nor with the KLD. We resort again
to MM. The data-fitting term may be majorized exactly as
we did in Section III-A. Denote by R̃ the current update of
R, slp =

∑
kmlkakp = [MA]lp the low-rank component and

ỹlp = slp+r̃lp the current data approximation.2 Then, applying
the Jensen inequality we obtain

D(Y|MA + R) ≤
∑
lp

[
r̃lp
ỹlp

d(ylp|ỹlp
rlp
r̃lp

) +
slp
ỹlp

d(ylp|ỹlp)
]
.

(15)

Denote by F (R|R̃) the right-hand side of Eq. (15). An auxil-
iary function for C(R) may simply be obtained as G(R|R̃) =
F (R|R̃) +λ‖R‖2,1. However, this specific auxiliary function
is yet not amenable to optimization w.r.t R in our case (no
closed-form solution). Hence, the first step of our strategy is
to majorize the penalty function ‖R‖2,1 as well. By concavity
of the square-root function, we may write

‖R‖2,1 ≤
1
2

∑
p

(
‖rp‖22
‖r̃p‖2

+ ‖r̃p‖2
)
. (16)

Eq. (16) essentially replaces
√∑

l r
2
lp by a quadratic tight

upper-bound that involves
∑
l r

2
lp, with the effect of decou-

pling the spectral bands from within the square root. This
extra majorization returns an auxiliary function which is now
amenable to optimization, leading to the following updates

rSED
lp = r̃lp

ylp

ỹlp + λ
r̃lp

‖r̃p‖2

, (17)

rKLD
lp =

‖r̃p‖2
2λ

(√
1 + 4λ

r̃lp
‖r̃p‖2

ylp
ỹlp
− 1

)
. (18)

1In our own derivations, the nonnegativity of R is used in the definition
of λl(K+1)p.

2The same notation ỹlp is used for ỹlp =
P

k m̃lkakp + rlp in
Section III-A and for ỹlp =

P
k mlkakp + r̃lp in Section III-B. Our intent

is too avoid the use of too many notations and the definition of ỹlp should
be clear from context (i.e., which parameter update is considered).

Update (18) becomes numerically unstable when λ → 0. As
such, a better-behaved update may be obtained by further
majorizing the linear term rlp that appears in the expression of
G(R|R̃) for the KLD by a monomial of degree 2, matching in
this way the quadratic upper bound of the penalty function –
such a trick is used in other settings in [48], [49]. This results
in the alternative multiplicative update given by

rKLD
lp = r̃lp

 ylp/ỹlp

1 + λ
r̃lp

‖r̃p‖2

 1
2

. (19)

In practice, ignoring the exponent 1
2 in Eq. (19) still reduces

the objective function at each iteration and produces faster
convergence. This may be interpreted as over-relaxation of
the MM update, see [32] for further discussion on this subject.
Again, the final updates for R can be expressed in the same
form

rlp = r̃lp

 ylpỹ
β−2
lp

ỹβ−1
lp + λ

r̃lp

‖r̃p‖2

 , (20)

where β = 2 for the SED and β = 1 for the KLD.

C. Update of the abundances A

Updating A given the current values of M and R involves
solving the following minimization problem

min
A

C(A) = D(Y|MA + R)

s.t. A ≥ 0 and ∀p, ‖ap‖1 = 1. (21)

The sum-to-one constraint on the abundances induces an extra
difficulty as compared to the optimization problems involved
by the updates of M and R. In some cases such a constraint
can be handled using Lagrange multipliers, but this approach
does not succeed in our setting. We hence resort to another
common approach based on a change of variable. We introduce
the variable U to be a nonnegative matrix of dimension K×P
and set

akp =
ukp∑
k ukp

. (22)

The optimization problem of Eq. (21) is turned into the new
optimization problem

min
U

C(U) = D

(
Y |M

[
u1

‖u1‖1
, . . . ,

uP
‖uP ‖1

]
+ R

)
s.t. U ≥ 0 (23)

which is free from the sum-to-one constraint. This approach
has been used for NMF in [50]. Unfortunately, we were not
able to produce an auxiliary function for the new objective
function in (23) – in particular because it is no longer convex
w.r.t the variable to be optimized. Instead, we resort to a
heuristic commonly used in NMF, see, e.g., [51], [52], as
follows. As it appears, the gradient of C(U) can be expressed
as the difference of two nonnegative functions such that

∇ukp
C(U) = ∇+

ukp
C(U)−∇−ukp

C(U). (24)
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The heuristic algorithm simply writes

ukp = ũkp
∇−ukp

C(Ũ)

∇+
ukpC(Ũ)

. (25)

It ensures the nonnegativity of the parameter updates provided
initialization with a nonnegative value, and produces a descent
algorithm in the sense that ukp is updated towards left (resp.,
right) when the gradient is positive (resp., negative). The
algorithm was found experimentally to decrease the value
of the objective function at each iteration. Denoting s̃lp =∑
kmlkãkp and ỹlp = s̃lp + rlp, the update is found to be

ukp = ũkp

∑
l(mlkylpỹ

β−2
lp + s̃lpỹ

β−1
lp )∑

l(mlkỹ
β−1
lp + s̃lpylpỹ

β−2
lp )

. (26)

where β = 2 for the SED and β = 1 for the KLD. The update
for A is then simply akp = ukp/

∑
k ukp.

As it turns out, the updates (11), (20) and (26) can be
implemented in matrix form, as shown in Algorithm 1, which
recapitulates the overall procedure. In Algorithm 1, all op-
erators preceded by a dot ‘·’ are entrywise MATLAB-like
operations and fraction bars shall be taken term-to-term as
well. Additionally, 1M,N denotes the M × N matrix with
coefficients equal to 1. A MATLAB implementation of the
algorithm is available from the authors’ webpages.

D. Setting the value of λ

The hyperparameter λ controls the trade-off between the
data-fitting term D(Y|MA+R) and the penalty term ‖R‖2,1.
Setting the “right” value of λ is a difficult task, like in any
other so-called variational approach that involves a regulariza-
tion term. We describe in this paragraph a rule of thumb for
choosing λ in a plausible range of values. Our approach is
based on the method of moments. It consists in interpreting
the objective function (5) as a joint likelihood and in matching
the empirical mean of the data with its prior expectation in the
statistical model.

The SED and the KLD are “pseudo-likelihood” for proba-
bilistic models (Gaussian and Poisson, respectively) such that
E[Y|MA + R] = MA + R. In the same analogy, the term
λ‖R‖2,1 can be interpreted as a log-prior term. Using some
results from [53], the corresponding prior distribution p(rp|λ)
for each column of R can be obtained as a scale mixture
of conditionally independent half-Normal distributions, with
a Gamma distribution assigned to the scale parameter. In
particular, the expectation of rlp under this prior can be found
to be

E[rlp|λ] =
2√
π

Γ(K/2 + 1)
Γ(K/2 + 1/2)

1
λ

def=
C

λ
. (27)

Let us now assume an unspecified independent prior model
for MA but such that E[[MA]lp] = ρ. Denoting by µ̂ =
(LP )−1

∑
ylp the empirical data expectation, our approach

consists in matching µ̂ with E[[MA]lp] + E[rlp], leading to

λ̂ =
C

µ̂− ρ
. (28)

Algorithm 1 Group robust NMF
Set β = 2 (SED) or 1 (KLD)
Set value of λ
Set convergence tolerance parameter ‘tol’
Initialize M, A and R
S = MA
Ŷ = S + R
while err ≥ tol do

% Update outlier term R

R← R.

[
Y.Ŷ.(β−2)

Ŷ.(β−1) + λR diag[‖r1‖1, . . . , ‖rP ‖1]−1

]
Ŷ ← S + R

% Update abundances A

A← A.
MT (Y.Ŷ.(β−2)) + 1K,L(S.Ŷ.(β−1))
MT (Ŷ.(β−1)) + 1K,L(S.Y.Ŷ.(β−2))

A← A diag[‖a1‖1, . . . , ‖aP ‖1]−1

S←MA

Ŷ ← S + R

% Update endmembers M

M←M.

[
(Y.Ŷ.(β−2))AT

(Ŷ.(β−1))AT

]
S←MA

Ŷ ← S + R

Compute the objective function relative decrease ‘err’ (or
any other convergence criterion).

end while

We insist that the latter expression only provides a handy
gross estimate of λ that comes with no statistical guarantee
(and that is sensitive to parametrization). In particular the
estimate of λ is very dependent on ρ, the prior expectation
of [MA]lp. However, because ρ is lower bounded by 0, the
estimate of λ is lower bounded by λ0 = C/µ̂, corresponding to
a plausible minimum degree of sparsity. We used λ = λ0 in the
evaluations below and this was found to provide satisfactory
results.

IV. EXPERIMENTS WITH SYNTHETIC DATA

In this section we evaluate the relevance of the rLMM
proposed in Section II and the accuracy of the corresponding
rNMF algorithm described in Section III using synthetic
data. Since the main motivation for introducing the rLMM
is to introduce a flexible unmixing method able to analyze
a large variety of remotely sensed scenes, these datasets have
been generated following the main assumption underlying this
model, i.e., assuming that most of the pixels result from
linear combinations of the endmembers, as detailed below.
Note that the proposed rLMM-based unmixing strategy may
not be suitable for unmixing scenes which consists of only
nonlinearly mixed data. However, such data is unusual and
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can generally be identified before any analysis. In such case,
specific fully nonlinear unmixing strategies need to be invoked,
which is out of the scope of the present paper.

A. Data generation

Four 64 × 64-pixel images composed of K = 3 or 6 pure
spectral components have been generated according to four
different linear and nonlinear models. The endmember spectra
have been extracted from the spectral library provided with
the ENVI software [54]. The first image, denoted as ILMM, is
composed of pixels following the standard LMM (no nonlinear
component)

yp =
K∑
k=1

akpmk + np, (29)

where np denotes white additive Gaussian noise and ap ∈ SK .
The three other images, denoted IFM, IGBM and IMMP are
generated as follows. 75% of the image pixels are generated
according to the LMM in (29) and the remaining 25 % is
generated according to a model that features nonlinear compo-
nent interactions. More precisely, the latter pixels are generated
according to the following models (in which mi �mj stands
for the termwise Hadamard product):
• the Fan bilinear model (FM) [13]

yp =
K∑
k=1

akpmk +
K−1∑
i=1

K∑
j=i+1

aipajpmi �mj + np,

with ap ∈ SK ,
• the generalized bilinear model (GBM) [19]

yp =
K∑
k=1

akpmk +
K−1∑
i=1

K∑
j=i+1

γijp aipajpmi�mj +np,

with ap ∈ SK and where the nonlinear coefficient γijp ∈
(0, 1) adjust the bilinear interaction between the ith and
jth endmembers in the pth pixel,

• the multi-mixture pixel (MMP) model [23], which com-
bines macroscopic and microscopic (i.e., intimate) mix-
tures

yp =
K∑
k=1

akpmk + a(K+1)pR

(
K∑
k=1

fkpwk

)
+ np,

with ap ∈ SK+1 and where fp = [f1p, . . . , fKp]
T are the

microscopic proportions, {wk} are the albedo-domain
endmember signatures and R(·) is the mapping function
from the albedo domain to the reflectance domain chosen
as in [23].

In a first experiment, the four images ILMM, IFM, IGBM

and IMMP have been generated by sampling the abundance
coefficients ap randomly and uniformly over their admissible
set SK while the macroscopic abundances ap and microscopic
abundances fp of the MMP model have been randomly and
uniformly sampled over SK+1 and SK , respectively. In a
second experiment, we wanted to evaluate the robustness of
the algorithms w.r.t the absence of pure pixels in the images to

be unmixed. To do so, we imposed a cutoff to the abundance
coefficients that removes pure pixels from the observations. As
such, in this case the abundances have been uniformly drawn
over a truncated version of the set defined by (3), namely

SK0.9 =

{
a ∈ RK

∣∣ 0 ≤ ak ≤ 0.9,
K∑
k=1

ak = 1

}
. (30)

Finally, in the two experiments the interaction coefficients γijp
appearing in the GBM have been uniformly drawn over the
set (0, 1) and the signal-to-noise ratio is set to SNR = 40dB,
which is an admissible value for most of the real imaging
spectrometers.

B. Compared methods

The four images have been unmixed using rNMF and state-
of-the-art algorithms specially designed for the considered
models. For these models, the state-of-the-art algorithms are
two-steps; the endmember matrix M is estimated in a first step,
and then the abundance matrix A is estimated in a second step,
given the endmember estimates (in a so-called “inversion”
step). In contrast, rNMF performs a joint estimation of M
and A (and R).

We considered vertex component analysis (VCA) [55] cou-
pled with fully constrained least squares (FCLS) [56]. VCA
and FCLS are standard endmember extraction and inversion
methods designed for the LMM. Besides, we considered
the nonlinear endmember extraction technique proposed in
[57], denoted as Heylen’s algorithm in what follows, coupled
with four different inversion methods designed for various
nonlinear models, namely the FM, GBM and the very flexible
polynomial post-nonlinear mixing model (PPNM) [19]. FM
inversion is achieved with the algorithm detailed in [13], which
exploits a first-order Taylor series expansion of the nonlinear
term. GBM inversion is achieved with the gradient descent
algorithm from [58]. Finally, PPNM inversion is addressed
with the subgradient-based optimization scheme from [19].

Finally, the sparsity promoting bilinear unmixing algorithm,
denoted BISPICE [59], has been also considered, initialized
with either VCA or Heylen’s endmember extraction.

The proposed rNMF has been applied with the SED, reflect-
ing the Gaussian additive noise used in the data generation and
for fair comparison with the other methods that rely on this
assumption as well. We set λ = λ0 and considered initializa-
tions by either VCA or Heylen’s algorithm. Convergence was
stopped when the relative difference between two successive
values of the objective function fell under 10−5.

C. Performance measures

The performance of the unmixing algorithms has been
evaluated in terms of endmember estimation accuracy using
the average spectral angle mapper (aSAM)

aSAM (M) =
1
K

K∑
k=1

acos
(
〈mk, m̂k〉
‖mk‖ ‖m̂k‖

)
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TABLE I
ESTIMATION PERFORMANCE IN TERM OF ASAM (M) (×10−3) AND GMSE (A) (×10−3). BEST SCORES APPEAR IN BOLDFACE AND SECOND BEST

SCORES APPEAR IN ITALIC. RNMF AND BISPICE ARE INITIALIZED BY EITHER VCA OR HEYLEN METHOD, AS STATED BETWEEN BRACKETS. REFER TO
TEXT FOR OTHER DETAILS.

aSAM (M) GMSE2 (A)

VCA Heylen
BISPICE rNMF VCA Heylen BISPICE rNMF

(VCA) (Heylen) (VCA) (Heylen) +FCLS +FM +GBM +PPNM (VCA) (Heylen) (VCA) (Heylen)

w
/o

pu
re

pi
xe

ls
K

=
3

ILMM 51.47 55.43 13.16 13.16 27.15 28.26 2.32 10.07 1.98 1.91 0.20 0.16 0.87 0.59

IFM 48.75 78.35 67.43 67.43 28.80 46.66 3.21 14.36 3.51 3.52 20.50 20.50 1.60 2.26
IGBM 47.45 55.95 33.26 33.26 26.93 30.85 2.52 8.70 1.87 1.75 10.00 10.02 1.03 0.89
IMMP 48.35 41.29 9.79 9.79 26.13 20.07 7.62 26.00 5.86 5.90 3.81 3.76 5.55 4.79

K
=

6

ILMM 84.89 90.80 36.73 36.73 33.68 83.70 4.47 35.77 8.60 7.49 0.69 1.05 1.13 2.64

IFM 80.06 156.91 115.20 115.20 154.30 242.84 10.11 48.12 35.95 32.98 8.04 27.50 13.74 17.98

IGBM 60.66 96.29 45.58 45.58 47.40 92.60 4.90 33.77 9.95 10.00 3.12 3.40 4.70 16.35

IMMP 113.34 68.08 58.33 58.33 46.70 43.75 8.13 26.66 2.68 2.62 1.61 0.82 1.97 1.65

w
ith

pu
re

pi
xe

ls
K

=
3

ILMM 6.19 13.48 8.92 8.92 6.19 6.59 0.03 4.56 0.06 0.06 0.06 0.04 0.03 0.04

IFM 10.46 14.78 61.96 61.96 8.21 8.23 0.78 4.24 0.18 0.14 20.45 20.45 0.69 0.66

IGBM 8.79 14.48 26.15 26.15 7.76 8.08 0.26 3.33 0.08 0.08 10.46 10.47 0.22 0.25

IMMP 6.96 13.80 7.24 7.24 6.73 6.47 4.16 20.42 4.22 4.20 3.78 3.69 4.17 4.15

K
=

6

ILMM 54.69 70.04 28.92 28.92 34.67 34.86 1.54 28.08 2.80 2.64 0.39 0.46 0.72 0.93

IFM 76.70 169.60 118.47 118.47 123.29 174.62 7.17 49.88 32.65 31.82 7.98 21.90 9.28 17.31

IGBM 55.12 104.75 41.14 41.14 66.09 130.41 3.13 31.96 8.14 7.24 2.62 3.54 4.64 14.60

IMMP 112.49 72.34 107.70 107.70 26.48 32.81 8.77 33.69 3.55 3.09 6.36 0.69 2.02 1.55

and of abundance estimation accuracy using the global mean
square error (GMSE)

GMSE (A) =
1
KP

P∑
p=1

‖ap − âp‖2 .

D. Results and discussion

The performance measures returned by the unmixing meth-
ods are reported in Table I. First, the aSAM values show that
the proposed rNMF algorithm competes favorably with the two
considered state-of-the-art endmember extraction algorithms,
namely VCA and Heylen’s algorithm, as well as with the
MMP-based BISPICE unmixing algorithm. Initialized by these
algorithms, the rLMM algorithm almost always improves the
endmember estimation accuracy, with or without pure pixels.
In particular, the proposed algorithm provides noticeable im-
provements when analyzing data resulting from the mixtures
of K = 3 endmembers, while the expected gain seems less
significant in case of 6-endmember mixtures. Similarly, when
analyzing the GMSE related to abundance estimation, these
results demonstrate the flexibility of the rLMM to model obser-
vations coming from various scenarios. More generally, these
results demonstrate the ability of the rLMM-based unmixing
technique to mitigate several kinds of nonlinear effects while
preserving good estimation performance when analyzing only
linear mixtures. Note that these results have been obtained with
a single realization of each dataset. However, no significant
statistical difference in the unmixing performance has been
observed with more realizations of the simulated datasets.

V. EXPERIMENTS WITH REAL DATA

In this section we apply rNMF to real hyperspectral datasets
and discuss the results.

A. Description of the datasets

We consider two real hyperspectral images that have been
chosen because of availability of partial ground truth. The first
image was acquired over Moffett Field, CA, in 1997, by the
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
[60]. Water absorption bands have been removed from the
224 spectral bands, leading to L = 189 spectral bands ranging
from 0.4µm to 2.5µm with a nominal bandwidth of 10nm. The
scene of interest, of size of 50×50 pixels, consists of a part of
lake and a coastal area composed of soil and vegetation. This
dataset has been previously studied in [15], [61] and, thus, the
unmixing results obtained in the current work can be compared
to those reported in these later references. This dataset will be
referred to as the “Moffett” image in the following and is
depicted in Fig. 1(a).

The second considered dataset was acquired by the Hyspex
hyperspectral scanner over Villelongue, France, in 2010. The
sensed spectral domain consists of L = 160 spectral bands
ranging from 0.4µm to 1.0µm. This image consists of a
forested area where 12 vegetation species have been identified,
during the Madonna project [62]. The sub-image of interest, of
size of 50×50 pixels, is known to be mainly composed of oak
and chestnut trees, with an additional unknown non-planted-
tree endmember (referred to as Endm. #3 in what follows).
This dataset will be referred to as the “Madonna” image in
the following and is depicted in Fig. 1(b).

B. Robust unmixing results

The proposed rLMM-unmixing technique has been applied
on the real Moffett and Madonna images, with K = 3, with
both the SED and the KLD. The endmember spectra and
abundance maps estimated by rNMF are depicted in Fig. 2.
For conciseness, only the abundance maps obtained with the
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(a) Moffett (b) Madonna

Fig. 1. Red-green-blue compositions of the real hyperspectral images.

0 1 2

Vegetation

0 1 2

Water

0 1 2

Soil

(a) Moffett

0.4 0.6 0.8 1

Chesnut tree

0.4 0.6 0.8 1

Oak tree

0.4 0.6 0.8 1

Endm. #3

(b) Madonna

Fig. 2. Unmixing results of two real hyperspectral images. Top of each image:
endmembers estimated by the proposed rNMF-based unmixing algorithm
under the KLD (red lines) and under the SED (black lines). Bottom of each
image: estimated abundance maps obtained with the KLD; black (resp. white)
pixels correspond to absence (resp. presence) of the associated endmembers.

KLD are displayed as the results for the SED are visually very
similar.

The unmixing results are in good agreement with previ-
ous results [61], [63]. However, in addition to the standard
description of the data by linearly mixed endmembers, the
proposed model also provides information regarding the pixels
that cannot be explained with the standard LMM. As such,

(a) Moffett (b) Madonna

Fig. 3. Energy of the nonlinear components returned by rNMF under the
KLD. Dark (resp. light) pixels correspond to small (resp. large) values.

Fig. 3 displays the energy e = [‖r1‖2 , . . . , ‖rP ‖2] of the
residual outlier component estimated by rNMF. Regarding
the Moffett image, the maps demonstrate that most of the
pixels of this scene can be accurately described using the
LMM. However, a few pixels, mainly located in the lake shore,
appear at outliers. These pixels probably correspond to areas
where some interactions between several endmembers occur
(e.g., water/vegetation, water/soil). Similar results have been
already observed in [15], [64], which confirms the relevance
of the proposed method. For the Madonna image, the energy
map exhibits outlier terms that are mainly located in the area
occupied by the oak trees and the unknown 3rd endmember.
Furthermore, the image shows regular vertical patterns that are
almost surely due to a sensor defect or miscalibration during
the data post-processing.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new mixing model to
describe hyperspectral data. This model, denoted as rLMM,
extends the standard LMM by including an outlier resid-
ual term that can capture so-called nonlinear effects. These
nonlinear effects are treated as additive and sparsely active
outliers. In contrast with state-of-the-art literature on nonlinear
hyperspectral unmixing, our approach does not require the
specification of a particular model of nonlinearity.

The resulting unmixing problem was formulated as a new
form of robust NMF problem, for which we developed a
simple and effective block-coordinate descent algorithm that
involves multiplicative updates. We provided an effective rule
of thumb for setting the value of the penalty weight, which
leaves our algorithm virtually free of parameters (only the
number of endmembers needs to be specified). Simulations
conducted on synthetic and real data have illustrated the
relevance of rLMM, which outperformed many unmixing
methods designed for various linear and nonlinear models.

We conclude this paper by sketching avenues for future
work. Let us first emphasize that the methodology described
in this paper is not specific to hyperspectral unmixing per
se and may be relevant to other fields where NMF is used.
For instance, NMF with the KLD is popular in text retrieval,
where the columns of Y are word counts from documents.
The proposed model, which accounts for outliers, can be
useful to such a setting. Additionally, the proposed model and
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methodology can be extended to other data-fidelity terms, such
as the more general β-divergence [32], [65] (which takes the
SED, the KLD and the Itakura-Saito divergence as special
cases). Algorithmically, this only results in choosing β to be
any real value instead of being either 2 or 1 in Eqs. (11), (20)
& (26) – we explain this in details in the technical report [66].
The more general model has for example potential applications
in music signal processing where the β-divergence is often
used for spectrogram factorization [52], [67].

Secondly, another line of investigation concerns the rele-
vance of lifting the nonnegative constraint on the outlier term
R. We made such an assumption in this paper because our
primary motivation was to generalize existing nonlinear un-
mixing models, the majority of which assume the nonlinearity
term to be nonnegative. Assuming R to be real-valued may
model shadow effects that induce a decrease of reflectance.
Whether such a model is efficient or not for hyperspectral
unmixing requires substantial experimental validation that is
left for future work. On the algorithmic side, it has to be noted
that assuming R to be real-valued comes with some changes
(for the worse or the better). First, for the divergences that are
only defined for nonnegative numbers (such as the KLD), the
approximate MA + R needs to remain nonnegative and this
is a challenge in itself. In the specific case of the SED, for
which negative values can be tolerated, the update described by
Eq. (13) can be used for M when R is real-valued. The update
of R itself becomes easier as problem (14) has a closed-form
solution in the real case [47]. The update of the abundances
A requires more study as the positive-negative decomposition
of the gradient used in Section III-C may not hold strictly
anymore.

ACKNOWLEDGEMENTS

Thanks to Vincent Y. F. Tan and Zhao Renbo (National Uni-
versity of Singapore) as well as Yoann Altmann (Heriot-Watt
University, Edinburgh) for feedback about this manuscript.

REFERENCES

[1] G. P. Asner and K. B. Heidebrecht, “Spectral unmixing of vegetation,
soil and dry carbon cover in arid regions: comparing multispectral and
hyperspectral observations,” Int. J. Remote Sens., vol. 23, no. 19, pp.
3939–3958, Oct. 2002.

[2] K. E. Themelis, F. Schmidt, O. Sykioti, A. A. Rontogiannis, K. D.
Koutroumbas, and I. A. Daglis, “On the unmixing of MEx/OMEGA
hyperspectral data,” Planetary and Space Science, vol. 68, no. 1, pp.
34–41, 2012.

[3] A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyper-
spectral imaging : an emerging process analytical tool for food quality
and safety control,” Trends in Food Science & Technology, vol. 18,
no. 12, pp. 590–598, 2007.

[4] N. Dobigeon and N. Brun, “Spectral mixture analysis of EELS spectrum-
images,” Ultramicroscopy, vol. 120, pp. 25–34, Sept. 2012.

[5] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal
Process. Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.

[6] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics
Appl. Earth Observations and Remote Sens., vol. 5, no. 2, pp. 354–379,
April 2012.

[7] B. W. Hapke, “Bidirectional reflectance spectroscopy. I. Theory,” J.
Geophys. Res., vol. 86, no. B4, pp. 3039–3054, April 1981.

[8] J. F. Mustard and C. M. Pieters, “Photometric phase functions of
common geologic minerals and applications to quantitative analysis of
mineral mixture reflectance spectra,” J. Geophys. Res., vol. 94, no. B10,
pp. 13,619–13,634, Oct. 1989.

[9] K. J. Guilfoyle, M. L. Althouse, and C.-I. Chang, “A quantitative and
comparative analysis of linear and nonlinear spectral mixture models
using radial basis function neural networks,” IEEE Trans. Geosci. and
Remote Sens., vol. 39, no. 8, pp. 2314–2318, Aug. 2001.

[10] J. Broadwater, R. Chellappa, A. Banerjee, and P. Burlina, “Kernel fully
constrained least squares abundance estimates,” in Proc. IEEE Int. Conf.
Geosci. Remote Sens. (IGARSS), July 2007, pp. 4041–4044.

[11] J. Broadwater and A. Banerjee, “A comparison of kernel functions for
intimate mixture models,” in Proc. IEEE GRSS Workshop Hyperspectral
Image SIgnal Process.: Evolution in Remote Sens. (WHISPERS), Aug.
2009, pp. 1–4.

[12] J. M. P. Nascimento and J. M. Bioucas-Dias, “Nonlinear mixture model
for hyperspectral unmixing,” in Proc. SPIE Image and Signal Processing
for Remote Sensing XV, L. Bruzzone, C. Notarnicola, and F. Posa, Eds.,
vol. 7477, no. 1. SPIE, 2009, p. 74770I.

[13] W. Fan, B. Hu, J. Miller, and M. Li, “Comparative study between a
new nonlinear model and common linear model for analysing laboratory
simulated-forest hyperspectral data,” Int. J. Remote Sens., vol. 30, no. 11,
pp. 2951–2962, June 2009.

[14] B. Somers, K. Cools, S. Delalieux, J. Stuckens, D. V. der Zande, W. W.
Verstraeten, and P. Coppin, “Nonlinear hyperspectral mixture analysis
for tree cover estimates in orchards,” Remote Sens. Environment, vol.
113, pp. 1183–1193, Feb. 2009.

[15] A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, “Nonlinear
unmixing of hyperspectral images using a generalized bilinear model,”
IEEE Trans. Geosci. and Remote Sens., vol. 49, no. 11, pp. 4153–4162,
Nov. 2011.

[16] B. Somers, L. Tits, and P. Coppin, “Quantifying nonlinear spectral
mixing in vegetated areas: computer simulation model validation and
first results,” IEEE J. Sel. Topics Appl. Earth Observations and Remote
Sens., vol. 7, no. 6, pp. 1956–1965, June 2014.
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