Beginning with the Haskell Programming L anguage

About the Tutorial

Navigation

Navigating through the tutorial is easy:
e Use the Next and Previous buttons to move forwardoacward.
e Use the Menu button to return to the tutoranu.
e If you'd like to tell us what you think, use the Feedbawatton.
¢ If you need help with the tutorial, use the Hbigton.

Isthistutorial right for you?

This tutorial targets programmersiofperative languages wanting to learn about
functional programming in the language HaskeNlany users of imperative language:
have given little thought to what it means to program in an imperative (also callec
"procedural”) language, and some will be unaware that ptnadigms of
programming exist at allf you have programmed in languages such as C, Pascal,
Fortran, C++, Java, Cobol, Ada, Perl, TCL, REXX, JavaScript, Visual Basic, or n
others, you have been using an imperative paradigi.tutorial provides a gentle
introduction to the paradigm of functional programming, with specific illustrations
the Haskell 98anguage.

Programmers with a background in functional programming will probably find this
tutorial a bit slow; however, programmers who have not used Haskell 98 in partic
can still get a quick sense of the language by browsinmitbeal.

About Haskell

Haskell is just one of a number of functional programming langu@ijbkers include
Lisp, Scheme, Erlang, Clean, Mercury, ML, OCaml, and otfAdrs.common adjunct
languages SQL and XSL are also functioh#éde functional languages$ogical or
constraint-based languages like Prolog adeclarative. In contrast, botlprocedural
andobject-oriented languages are (broadly speakinginperative. Some languages,
such as Python, Scheme, Perl, and Ruby, cross these paradigm boundaries; but
most part, programming languages have a particular prifoang.

Among functional languages, Haskell is in many ways the most idealized languag
Haskell is goure functional language, which means it eschews all side effects (moi
later).Haskell has aon-strict or lazy evaluation model, and grictly typed (but with
types that allow ad hoc polymorphism@ther functional languages differ in each of
these features--for reasons important to their design philosophies--but this collec
features brings one, arguably, farthest into the functional way of thinking about
programs.

On a minor note, Haskell is syntactically easier to get a handle on than are the
Lisp-derived languages (especially for programmers who have used lightly punct
languages like Python, TCL and REXXJost operators are infixed rather than
prefixed.Indentation and module organizatimoks pretty familiar.And perhaps most
strikingly, the extreme depth of nested parentheses (as seen in lagpidisd.

Obtaining Haskell

Haskell has several implementations for multiple platfoffhgse include both an
interpreted version callddugs, and several Haskell compilefidhe best starting place
for all of these igHaskell.org Links lead to various Haskell implementati@epending
on your operating system, and its packaging system, Haskell may have already k
installed, or there may be a standard way to install a ready-to-run vérgoommend
those taking this tutorial obtain Hugs for purposes of initial experimentation, and
working along with this tutorial, if you wish to do so.

Additional reading

Two recent books on Haskell bear particular recommendation for readers wishin
learnmore.
e Haskell: The Craft of Functional Programming (Second Edition)Simon
ThompsonAddison-Wesley1999.
e The Haskell School of Expression: Learning Functional Programming through
Multimedia. Paul HudakCambridge University Pres2000.

What's not covered

Unfortunately, in an introductory tutorial, many of Haskell's most powerful--but
complex--features cannot be coverigdparticular, the whole area tyjpe classes and
algebraic types (includingabstract data types) is a bit too much for a first introductiol
For readers whose interest is piqued, it is enough to mention that Haskell allows
create your own data types, and to inherit properties of those data tyyes in
instances. The Haskell type system contains the fundamental features of object-ol
programming (inheritance, polymorphism, encapsulation); but in a way that is alrr
impossible to grasp within a C++/Java/Smalltalk/Eiffel styléhatking.

The other significant element omitted is a discussion of monads, and therefordto
seems strange to write a tutorial that does not even start with a "Hello World!"
program, but thinking in a functional style requires a number of stfftde that "Hello
World!" is quite simple, it also involves the mini "pseudo-imperative” world of mon
It would be easy for a beginner to be lulled in by the pseudo-imperative style of I/
miss what is really going oswimming is best learned by getting in thater.

Contact

David Mertz is a writer, a programmer, and a teacher, who always endeavors to
improve his communication to readers (and tutorial takers). He welcomes any
comments; please direct thermtertz@gnosis.cx

Taking the Vows

Giving things up

The most difficult part of starting to program with Haskell is giving up many of the
most familiar techniques and ways of thinking within imperative programrifigst

impression is often that it must simply be impossible to write a computer program
cannot do X, Y, or Z, especially since X, Y, and Z are some of the most commor

patterns in "normal” imperative programmirhg this section, let's review a few of the
most "shocking" features of Haskell (and of functional programming in general, fc
mostpart).

No mutable variables

One of the most common programming habits in imperative programming is to as
variable one value, then assign it a different value; perhaps along the way we tes
whether the variable has obtained certain key valbesstructs like the C examples
below are ubiquitous (other imperative languagesiangar):

if (nyVar==37) {...}

myVar += 2
for (nmyVar=0; nyVar<37; nyVar++) {...}

In Haskell, by contrast, variables of this sort do not exist ahalame can be bound"
a value, but once assigned, the name simply stands for that value throughout the
program.Nothing is allowed tahange.

In Haskell, "variables" are much like the variables in mathematical equdtlmsmay
need to satisfy certain rules, but they are not "counters” or "containers" in the sty
imperative programminglust to get headed in the right way of thinking, consider s
linear equations like the ones below asrespiration:

10x + by - 7z + 1 =0
17x + by - 10z + 3 =0
bx - 4y + 3z - 6 =0

In this type of description, we have "unknowns," but the unknowns do not chang:
value while we are figuring theout.

| solate side effects

In Haskell, function computation cannot have side effects within the prolytast.of
the side effects in imperative programs are probably the sort of variable reassigni
mentioned in the last panel (whether global variables, or local, or dictionaries, list
other storage structures), but every 1/O event is also a sort of side4é@eadianges
the world rather than being part of a computation peNsgurally, there are many
times when what you want to do is change the world in some manner (if not, you
cannot even know a program has rigskell circumscribes all such side effects wit
a very narrow "box" calletibnadi ¢ 1 0. Nothing in a monad can get out, and nothir
outside a monad can gat

Often, structured imperative programming approaches functional programming’s
of circumscribing I/OGood design might require that input and output only happe
a limited set of appropriately named functiolbsss structured programming tends tc
read and write to STDIO, files, graphic devices, etc., all over the place and in a v
is difficult to predict.Functional programming takes the circumscription to a much
higherlevel.

No loops

Another interesting feature of Haskell is its lack of bgp constructThere is nd or
and nowhi | e. There is nazoTO Or br anch Or j np or br eak. One would almost think ©
impossible to control what a program does without such basic (imperative) const

B e e e s — g - —— R el Gk sttt 2

but getting rid of these thlngs is actﬁally qthuberatlng

The lack of loops is really the same as the matter of no side eBauts.one pass
through a loop cannot have variables with different values than another pass, the
nothing to distinguish them; and the need to branch is usually in ordeatdifferent
program activity Since functional programming doesn't haegvities, but only,
definitions, why bothetbranching.

However, | should try to stay honest about thirigactually proves possible to
simulate almost all of the usual loop constructs, often using the same keywords ¢
other languages, and in a style that looks surprisingly similar to imperative constr
Simon Thompson provides many examples of this in his book (see Addreaiwiahg).

No program order

Another thing Haskell lacks--or does not need--is program oftierset of definitions
that make up a program can occur in any order whatsoBwvisrmight seem strange
when definitions look a great deal like assignments in imperative langkages.
example, this might seem likepaoblem:

- Program excer pt
1+i
5

J
i

-- Hugs session after |oadi ng above program
-- Mai n>

-- 5 . Integer

-- Mai n> |

- - 6 :: Integer

The thing to understand in a program like the one above is Hratj are notassigned
values, but are ratheéefined in the manners givein fact, even in the abovie,andj
are functions, and the examples above are of function definitrormgany imperative
programming languages, you are also not allowed to define functions multiple tirr
least in the samscope).

A New Expressiveness

What's in a Haskell program?

myNum :: Int --int nmyNum() {

myNum = 12+13 -- return 12+13; }

square :: Int -> Int -- int square(int n) {

square n = n*n -- return n*n; }

double :: Int -> Int -- int double(int n) {

double n = 2*n -- return 2*n; }

dubSgr :: Int -> Int -- int dubSgr(int n) {

dubSqr n = square (double n) -- return square(double(n)); }

A Haskell program consists, basically, of a set of function definitlemsctions are

bound to names in a manner that looks very similar to variable assignment in oth
languagesHowever, it really is not the same thing; a Haskell bound name is muct
similar to a binding in a mathematical proof, where we might say "Let tau refer to

equation . . .'"A name binding just provides a shorthand for later use of an equatic
the name can only be bound a single time within a program--trying to change it
generates a program error.

Defining functions

exanmple :: Int

exanpl e = double (myNum - square (2+2))

dubSqgr2 :: Int -> Int

dubSqr2 = square . doubl e -- Function conposition

There are (optionally) two parts to a function definitibhe first part (conceptually,
not necessarily within a listing) is the type signature of a fundtioa function, the typ
signature defines all the types of the input, and the type of the oBtpué analogous
C definitions are given in the end-of-line commeantthe example.

The second part of a function definition is the actual computation of the furatiuns
second part, often (but not always) some ad hoc variables are provided to the le
equal sign that are involved in the computation to the rigiilike variables in C,
however--and much like variables in mathematics--the Haskell variables refer to t
exact same "unknown quantity” on both sides of the equal sign (not to a "contain
where a value ikeld).

It is also often possible to bypass explicit naming of variables entirely in function
definitions.In dubSqgr 2, it is enough to say that we shoulglar e whatever thing is
doubl e'd. For this, there is no need to mention a variable name since the thing
dubSqgr 2'd is just whatever expression follows the bound name in later expre&3ior
coursedoubl e must itself take the same type of ingubSgr 2 expects, and in turn
output the type of outpuiguar e needs asmput.

More ssimple function definitions

-- Average of three Integers as floating point

averageThree :: Int ->1Int -> Int -> Float
averageThree | mn = fromnt(l+m:n) / 3
-- float averageThree(int |, int m int n) {

-- return ((float)(l+mn))/3; }

di fSquare x y = (x-y)"2 -- C lacks polynorphic type inference

Much as in C, Haskell is rigidly typed@heaver ageThr ee is a good example of a
function that requires type coercion in order to return the right valuekligyeever,
thedi f Squar e function shows something distinct to Haskeillt Squar e has no type
signature, so Haskell wilhfer the appropriate type signature from the operations
involved in the function definitiorAt first appearance this might seem to be the sar
thing that dynamically or loosely typed languages do; but what Haskell does is qt
different.di f Squar e is rigidly typed at compile time--there is no runtime dynamism
this, but the type afi f Squar e has alype Class that includes both integers and float
(and also rationals, complex numbers, eW¢. can find the inferred type withiugs:

Mai n> :type difSquare
difSquare :: Numa =>a ->a -> a

That is, both of the input arguments, as well as the output, are inferred to have tl
Classnum Had we explicitly declared a type liket , the function would operate ove

= TTT T T Tt TT O TTZ€w«rTTTTTg TTT TTT YT TR T

narrower range of values (which is good or béd depending cnreeds).

Recursion
-- Factorial by primitive recursion on decreasing num
facl :: Int -> Int

facl n =if n==1then 1 else (n * facl (n-1))

-- Factorial by primitive recursion on list tail
fac2 :: Int -> Int

fac2 n = prodList [1 .. n]

prodList Ist =

if (length Ist)==1 then head I st
el se head | st*(prodList (tail Ist))

Absent loop structures, flow in Haskell programs is usually expressed as recursic
Thinking about all flow in terms of recursion takes some work, but it turns out to
just as expressive and powerful aswhige andfor constructs in othdanguages.

The trick to recursion is that we would like it to terminate eventually (at least we
usually do).One way to guarantee termination of recursion is tqtisetive
recursion. This amounts to taking a "thing" to recurse on, and making sure that tr
call is closer to a terminal condition than the call that got us hepeactice, we can
assure this either by decrementing an integer for each call (and terminating at ze
some other goal), or by taking only tla¢ of a list for each successive call (and
terminating at an empty listgoth versions of factorial listed in the example assume
they will be passed an integer greater than zero (and will fail otherwise; exeouisd:

Non-primitive recursion also exists, but it is more difficult to know for sure that a
recursion will terminateAs well, mutual recursion between functions is allowed (ar
frequently encountered), but primitive recursion is still the safest and most comm
form.

Pattern matching

prodLst2 [] =0 -- Return 0 as product of empty list
prodLst2 [Xx] = x -- Return elem as prod of one-elem list
prodLst2 (x:xs) = x * prodLst2 xs

third (a,b,c,d) =c -- The third item of a four item tuple
three = third (1,2, 3,4) --'three'is 3

-- Is a sequence a sub-sequence of another sequence?

i sSubseq [] _ = True

i sSubseq _ [] = Fal se

i sSubseq | st (x:xs) (Ist==start) || isSubseq Ist xs
where start = take (length Ist) (x:xs)

In functional programming, we are "more concerned with how something is defin
than with the specifics of how it is calculated” (take this motto with a grain of salt.
however, efficiency still matters in some cas&g idea is that it is a compiler or
interpreter's job to figure out how to reach a solution, noptbgrammer's.

One useful way of specifying how a function is defined is to describe what results
return given different types of inputs.powerful way of describing "different types o
inputs" in Haskell is usingattern matching. We can provide multiple definitions of a
function, each having a particular pattern for input argum&htsfirst listed definition
that succeeds in matchina a aiven function call is the one used for that call. In thi

e ——t—————— = B i Tt ettt e — it e s = ms e ———-

manner, you can pull out the head and tail of alist, match specific input values, identify
empty lists as arguments (for recursion usually), and analyze other patterns. Y ou
cannot, however, perform value comparisons with pattern matching (e.g., "n<= 3"
must be detected differently). An underscore is used in a position where something
should match, but where the matched value is not used in the definition.

Guards

prodLst3 Ist -- Guard version of list product
| length Ist==0 =0
| length Ist==1 = head Ist
| otherwise = head Ist * prodLst3 (tail Ist)

-- A sublist is a string that occurs in order, but not
-- necessarily contiguously in another list
isSublist [] _ =True
isSublist _] = False
isSublist (e:es) (x:xs)
| e==x && isSublist es xs = True
| otherwise = isSublist (e:es) XS

Somewhat analogous to pattern matching, and also similar to if .. then .. else ,
constructs (which we saw examples of earlier) are guardsin function definitions. A
guard is simply a condition that might obtain, and a definition of afunction that pertains
in that case. Anything that could be stated with pattern matching can aso be rephrased
into aguard, but guards allow additional tests to be used as well. Whichever guard
matches first (in the order listed) becomes the definition of the function for the
particular application (other guards might match also, but they are not used for acall if
listed later).

In terms of efficiency, pattern matching is usually best, when possible. It is often
possible to combine guards with pattern matching, asin theisSublist ~ example.

List comprehensions

-- Odd little list of even i's, multiple-of-three j's,
-- and their product; but limited to i,j elements
-- whose sum is divisible by seven.
myLst :: [(Int,Int,Int)]
myLst = [(i,j,i%) | i <- [2,4..100],

j <-[3,6..100],

0==((i+j) ‘rem” 7)]

-- Quick sort algorithm with list comp and pattern matching
--'++' is the list concatenation operator; we recurse on both
-- the list of "small" elements and the list of "big" elements

gsort[] =]
gsort (x:xs) = gsort [y | y<-xs, y<=x] ++ [X] ++ gsort [y | y<-Xs, y>X

One of the most powerful constructsin Haskell is list comprehensions (for
mathematicians: thisterm comes from the "Axiom of Comprehension” of
Zermelo-Frankel set theory). Like other functional languages, Haskell builds alot of
power on top of manipulation of lists. In Haskell, however, it is possible to generate a
list in acompact form that smply states where the list elements come from and what
criteriaelements meet. Lists described with list comprehensions must be generated from
other starting lists; but fortunately, Haskell also provides a quick "enumeration” syntax
to specify starting lists.

L azy evaluation |

fxXy=x+y -- Non-lazy function definition
compl =f (4*5) (17-12) -- Must compute arg vals in full
gxy=x+37 -- Lazy function definition

comp2 =g (4*5) (17-12) --'17-12' is never computed

-- Lazy guards and patterns

-- Find the product of head of three lists

prodHeads :: [Int] -> [Int] -> [Int] -> Int

prodHeads[] _ =0 -- empty list gives zero product

prodHeads []_=0

prodHeads __[]=0

prodHeads (x:xs) (y:ys) (z:zS) = x*y*z

-- Nothing computed because empty list matched

comp3 = prodHeads [1..100] [] [n | n <- [1..12000], (n ‘rem" 37)==0]

-- Only first elem of first and third list computed by lazy evaluation
comp4 = prodHeads [1..100] [55] [n | n <- [1..1000], (n ‘rem" 37)==0]

In imperative languages--and also in some functional languages--expression eva
is strict and immediatéf you writex = y+z; in C, for example, you are telling the
computer to perform a computation and put a value into the memory catiigtht'x’
now! (whenever the code is encounterdd)Haskell, by contrast, evaluation is
lazy--expressions are only evaluated when, and as much, as they need to be (in
C does include shortcutting of Boolean expressions which is a minor kind of lazin
The definitions of andg in the example show a simple form of thiference.

While a function likeg is somewhat silly, sincgis just not used, functions with patte
matching or guards will very often use particular arguments only in certain
circumstancedf some arguments have certain properties, those or other argume
might not be necessary for a given computatiorsuch cases, the needless
computations are not performdeurthermore, when lists are expressed in
computational ways (list comprehensions and enumeration ellipsis form), only as
list elements as are actually utilized are actuzdlgulated.

L azy evaluation I |
-- Define a list of ALL the prime numbers
primes :: [Int]
primes = sieve [2 ..] -- Sieve of Eratosthenes

sieve (xX:xs) = x : sieve [y | y <- xs, (y ‘rem” x)/=0]

-- Given an ordered list and a thing, is the thing in the list?
memberOrd :: Ord a => [a] -> a -> Bool
memberOrd (x:xs) n

| x<n = memberOrd xs n

| x==n =True

| otherwise = False

isPrime n = memberOrd primes n
--'isPrime 37" is True
--'isPrime 427" is False

A truly remarkable thing about Haskell--and about lazy evaluation--is that it is pos
to work withinfinite lists. Not just large ones, but actual infinities! The trick, of cou
is that those parts of the list which are unnecessary for a particular calculation ar

ralrnilatad avnliciths finiet tha riila far thair avnancinn iec I ant kv tha riintima

calculated explicitly (Just the rule tor their expansion IS kept by the runtime
environment).

A famous and ancient algorithm for finding prime numbers is the Sieve of Eratost
The idea here is to keep an initial element of the list of integers, but strike off all ¢
multiples as possible primeBhe example does this, but is performed only as far as
needed for a specific calculatiorhe listprimes , however, really is exactly the list of
all the primenumbers!

First class functions (passing functions)

-- Quick sort algorithm with arbitrary comparison function
gsortF :: (a ->a ->Bool) ->[a] -> [4]
gsortF f [] =]
gsortF f (x:xs) =qsortF f [y | y<-xs, f y x] ++
[x] ++
gsortF f [y | y<-xs, not (f y x)]

-- Comparison func that alphabetizes from last letter back
tailConp :: String -> String -> Bool
tailConp st = reverse s < reverse t

-- List of sample words
myWrds = ["foo", "bar", "baz", "fubar", "bat"]

--tOrd is ['foo","bar","fubar","bat","baz"]
tOrd = gsortF tail Conp nyWrds
--hOrd is ['bar*,"bat","baz","foo","fubar"]
hOrd = gsortF (<) nyWrds

A powerful feature of Haskell (as with all functional programming) is that function:
first class. What the first class status of functions means is that functions are then
simply valuesJust as you might pass an integer as an argument to a function, in |
you can pass another function to a functibma limited extent, you can do the same
with function pointers in a language like C, but Haskell is far naersatile.

The power of Haskell's first class functions lies largely in Haskell's type checking
systemln C, one might write a "quicksort" function that accepted a function point
an argument, much as in the Haskell exantptvever, in C you would have no eas
way to make sure that the function (pointed to) had the cdygersignature. That is,
whatever function serves as an argumenséatF must take two arguments of the
same type ("a" stands for a generic type) and prodsoel aresult.Naturally, the list
passed as the second argumembtar must also be of the same type "ddtice
also that the type signature given in the sample code is only needed for documet
purposesilf the signature is left out, Haskell infers all these type constraints
automaticallytailComp meets the right type signature, with the tgpeng being a
specialization of the generic type allowedisortF arguments (a different comparisc
function might operate over a different type or tgfsess).

First classfunctions (function factories)

[-- Make an "adder" from an Int
nkAdder n = addN where addN m = n+m
add7 = nkAdder 7 --e.g. 'add7 3'is 10

-- Make a function from a mapping; first item in pair maps
-- to second item in pair, all other integers map to zero

nkFunc :: [(Int,Int)] -> (Int -> Int)
nkFunc [] (\n -> 0)
nkFunc ((i,j):ps) (\n ->if n==i then j else (nkFunc ps) n)

f = nmkFunc [(1,4),(2,3),(5,7)]
- Hugs session:
Main> f 1
4 .. Int
Main> f 3
0 :: Int
Main> f 5
7 . Int
Mai n> f 37
0 :: Int

Passing functions to other functions is only half the power of first class functions.
Functions may also act é&tories, and produce new functions as their resilte
ability to create functions with arbitrary capabilities within the program machinery
be quite powerfulFor example, one might computationally produce a new compal
function that, in turn, was passed to ¢ger t F function in the previoupanel.

Often, a means afreating a function is witrambda notation. Many languages with
functional features use the word "lambda" as the name of the operator, but Hask
the backslash character (because it looks somewhat similar to the Greek letter, |
A lambda notation looks much like a type signatiitee arrow indicates that a lambd
notation describes a function from one type of thing (the thing following the backs
to another type of thing (whatever follows @aeow).

The example factorykFunc packs a fair amount into a short descriptibime main
thing to notice is that the lambda indicates a function fidmthe resultBy the type
signature, everything is amt , although type inference would allow a broader type.
The form of the function definition is primitive recursivien empty list produces a
result of zeroA non-empty list produces either the result given byetsi pair, or the
result that would be produced if only itsi | is considered (and the tail eventually
shrinks to empty byecursion).

M odules and Program Structure

Basic syntax

So far in this tutorial, we have seen quite a bit of Haskell code in an informalnvay
this final section, we make explicit some of what we’ve been dbirfgct, Haskell's
syntax is extremely intuitive and straightforwafthe simplest rule is usually to "write
what you mean."

Haskell and literate Haskell

The examples in this tutorial have used the standard Haskell fonntia¢. standard
format, comments are indicated with a double dash to theiAletlomments in the
examples are end-of-line comments, which means that everything following a dot
dash on a line is a commeNbu mayalso create multi-ine comments by enclosing
blocks in the pair "{-" and "-}"Standard Haskell files should be named with. tie
extension.

Literate scripting is an alternative format for Haskell source filesfiles named with

Literate scripting is an alternative format for Haskell source filesfiles named with
the.lhs extension, all program lines begin with the greater than chargetything
that is not a program line is a commeérttis style places an emphasis on program
description over program implementatittiooks something like:

Factorial by primitive recursion on decreasing num
> facl :: Int -> Int

> facl n =if n==1then 1 else (n * facl (n-1))
Make an "adder" from an Int

> nkAdder n = addN where addN m = n+m

> add7 = nkAdder 7

The offsiderule

Sometimes in Haskell programs, function definitions will span multiple lines and c:
of multiple elementsThe rule for blocks of elements at the same conceptual level
they should be indented the same amdtigments thalbelong to a higher level
element should be indented mo#s. soon as aoutdent occurs, further lines are
promoted back up a conceptual lewelpractice, it is obvious, and Haskell will almo:
always complain oerrors.

-- Is a function monotonic over Ints up to n?
i shonotonic f n
= mappi ng == gsort mappi ng --Isrange list the same sorted?
wher e -- "where" clause is indented below =
mappi ng = nap f range -- "where" definition remain at least as
range = [0..n] -- indented (more would be OK)
-- Iterate a function application n times
iter nf Xx
| n == = X -- Guards are indented below func name
| otherwise =f (iter (n-1) f x)

| find that two spaces is a nice looking indentation for a subelement, but you hav
of freedom in formatting for readability (just don't outdent within the dexed).

Operator and function precedence

Operators in Haskell fall into multiple levels of precedeMest of these are the sam
as you would expect from other programming languadeftiplication takes
precedence over addition, and so on"@e+4 " is 10, not 14)Haskell's standard
documentation can provide tdetails.

There is, however, one "gotcha" in Haskell precedence where it is easy to make
mistake.Functions take precedence over operafns. result of this is that the
expressiorifg 5" means "apply (and 5) as arguments torfot "apply the result of
(g 5) tof." Most of the time, this sort of error will produce a compiler error mess
since, for examplé, will require anint as an argument rather than another functiol
However, sometimes the situation can be worse than this, and you can write son
valid butwrong:

double n = n*2

resl = double 5"2 --'res1'is 100, i.e. (5*2)"2
res2 = double (572) --'res2'is 50, i.e. (5"2)*2
res3 = doubl e double 5 -- Causes a compile-time error

[res4 = doubl e (double b) --'res4ls 2y, le. (5*2)*2 |

As with other languages, parentheses are extremely useful in disambiguating exy
where you have some doubt about precedence (or just want to document the int
explicitly). Notice, by the way, that parenthesesrateused around function argumel
in Haskell; but there is no harm in pretending they are, which just creates an extr
expression grouping (asies2 above).

Scope of names

Readers might think there is a conflict between two points in this tutonahe one
hand, we have said that names are defined as expressions only once in a progra
other hand, many of the examples use the same variable names repBatbdipints
are true, but need to befined.

Every name is defined exactly ongghin a given scope. Every function definition
defines its own scope, and some constructs within definitions define their own na
scopesFortunately, the "offside rule" that defines subelements also precisely defil
variable scopingA variable (a name, really) can only occur oncth a given
indentation block. Let's see an example, much like previounss:

X XYy --'X" as arg is in different scope than func name
| y==1 = y*x*z --'y' from arg scope, but X' from 'where' sq
| otherw se = x*x -- 'X' comes from 'where' scope
wher e
X = 12 -- define X' within the guards
z =5 -- define 'z' within the guards
ni =x 12 --'nl"is 144 (‘X' is the function name)
n2 =x 331 --'n2"is 60 ('x'is the function name)

Needless to say, the example is unnecessarily conflisiagvorth understanding,
however, especially since arguments only have a scope within a particular functic
definition (and the same names can be used in other funietiimitions).

Breaking down the problem

One thing you will have noticed is that function definitions in Haskell tend to be
extremely short compared to those in other languddes.is partly due to the concis
syntax of Haskell, but a greater reason is because of the emphasis in functional
programming of breaking down problems into their component parts (rather than
sort of "doing what needs to be done" at each point in an imperative proghasn).
encourages reusability of parts, and allows much better verification that each par
does what it is supposeddo.

The small parts of function definitions may be broken out in several Wagsway is tc
define a multitude of useful support functions within a source file, and use them &
neededThe examples in this tutorial have mostly done tH®wever, there are also
two (equivalent) ways of defining support functions within the narrow scope of a
function definition: theet clause and thehere clauseA simple exampldollows.

f n = n+n*n
f2n
=let sq = n*n
in n+sq
f3n
= n+sq
where sq = n*n

| where sq = n*n

The three definitions are equivalent, but f 2 and f 3 chose to define a (trivial) support
function sq within the definition scope.

I mporting/exporting

Haskell also supports amodule system that allows for larger scale modularity of
functions (and also for types, which we have not covered in thisintroductory tutorial).
The two basic elements of module control are specification of imports and specification
of exports. The former is done with the i npor t declaration; the latter with the nodul e
declaration. Some examples include:

nodul e
i mport
i mport

i mport

i mport

-- declare the current nodule, and export only the objects |isted

MyNuneric (isPrine, factorial, prinmes, sunSquares) where

MyStrings -- inport everything MyStrings has to offer

-- inport only listed functions from MyLists
MyLists (quicksort, findMax, satisfice)

-- inport everything in MyTrees EXCEPT nornalize
MyTrees hiding (normalize)

-- inport MyTuples as qualified nanes, e.g.

-- three = MyTuples.third (1,2,3,4,5,6)
qualified MyTupl es

Y ou can see that Haskell provides considerable, and fine-grained control of where
function definitions are visible to other functions. This module system helps build

