Oracle Database: SQL
Fundamentals Il

Volume Il » Student Guide

D64260GC10
Edition 1.0
January 2010
D64500

ORACLE’

Authors

Chaitanya Koratamaddi

Brian Pottle
Tulika Srivastava

Technical Contributors

and Reviewers

Claire Bennett
Ken Cooper

Yanti Chang
Laszlo Czinkoczki
Burt Demchick
Gerlinde Frenzen
Joel Goodman
Laura Garza
Richard Green
Nancy Greenberg
Akira Kinutani
Wendy Lo
Isabelle Marchand
Timothy Mcglue
Alan Paulson
Manish Pawar
Srinivas Putrevu
Bryan Roberts
Clinton Shaffer
Hilda Simson
Abhishek Singh
Jenny Tsai Smith
James Spiller
Lori Tritz

Lex van der Werff
Marcie Young

Editors

Amitha Narayan
Daniel Milne
Raj Kumar

Graphic Designer
Satish Bettegowda

Publishers
Veena Narasimhan
Pavithran Adka

Copyright © 2010, Oracle. All rights reserved.

Disclaimer

This course provides an overview of features and enhancements planned in release
11g. It is intended solely to help you assess the business benefits of upgrading to 11g
and to plan your IT projects.

This course in any form, including its course labs and printed matter, contains
proprietary information that is the exclusive property of Oracle. This course and the
information contained herein may not be disclosed, copied, reproduced, or distributed
to anyone outside Oracle without prior written consent of Oracle. This course and its
contents are not part of your license agreement nor can they be incorporated into any
contractual agreement with Oracle or its subsidiaries or affiliates.

This course is for informational purposes only and is intended solely to assist you in
planning for the implementation and upgrade of the product features described. It is
not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of
any features or functionality described in this document remain at the sole discretion
of Oracle.

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government'’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Contents

I Introduction
Lesson Objectives 1-2
Lesson Agenda 1-3
Course Objectives |-4
Course Prerequisites 1-5
Course Agenda 1-6
Lesson Agenda [-7
Tables Used in This Course [-8
Appendixes Used in This Course -9
Development Environments [-10
Lesson Agenda 1-11
Review of Restricting Data 1-12
Review of Sorting Data 1-13
Review of SQL Functions [-14
Review of Single-Row Functions 1-15
Review of Types of Group Functions [-16
Review of Using Subqueries 1-17
Review of Manipulating Data 1-18
Lesson Agenda 1-19
Oracle Database SQL Documentation 1-20
Additional Resources [-21
Summary 1-22
Practice I: Overview 1-23

1 Controlling User Access
Objectives 1-2
Lesson Agenda 1-3
Controlling User Access 1-4
Privileges 1-5
System Privileges 1-6
Creating Users 1-7
User System Privileges 1-8
Granting System Privileges 1-9
Lesson Agenda 1-10
What Is a Role? 1-11
Creating and Granting Privileges to a Role 1-12

Changing Your Password 1-13
Lesson Agenda 1-14

Object Privileges 1-15

Granting Object Privileges 1-17
Passing On Your Privileges 1-18
Confirming Granted Privileges 1-19
Lesson Agenda 1-20

Revoking Object Privileges 1-21
Quiz 1-23

Summary 1-24

Practice 1: Overview 1-25

Managing Schema Objects

Objectives 2-2

Lesson Agenda 2-3

ALTER TABLE Statement 2-4

Adding a Column 2-6

Modifying a Column 2-7

Dropping a Column 2-8

SET UNUSED Option 2-9

Lesson Agenda 2-11

Adding a Constraint Syntax 2-12

Adding a Constraint 2-13

ON DELETE Clause 2-14

Deferring Constraints 2-15

Difference Between INITIALLY DEFERRED and INITIALLY IMMEDIATE 2-16
Dropping a Constraint 2-18

Disabling Constraints 2-19

Enabling Constraints 2-20

Cascading Constraints 2-22

Renaming Table Columns and Constraints 2-24
Lesson Agenda 2-25

Overview of Indexes 2-26

CREATE INDEX with the CREATE TABLE Statement 2-27
Function-Based Indexes 2-29

Removing an Index 2-30

DROP TABLE ... PURGE 2-31

Lesson Agenda 2-32

FLASHBACK TABLE Statement 2-33

Using the FLASHBACK TABLE Statement 2-35

Lesson Agenda 2-36

Temporary Tables 2-37

Creating a Temporary Table 2-38

Lesson Agenda 2-39

External Tables 2-40

Creating a Directory for the External Table 2-41

Creating an External Table 2-43

Creating an External Table by Using ORACLE_ LOADER 2-45
Querying External Tables 2-47

Creating an External Table by Using ORACLE _DATAPUMP: Example 2-48
Quiz 2-49

Summary 2-51

Practice 2: Overview 2-52

Managing Objects with Data Dictionary Views
Objectives 3-2

Lesson Agenda 3-3

Data Dictionary 3-4

Data Dictionary Structure 3-5

How to Use the Dictionary Views 3-7
USER_OBJECTS and ALL OBJECTS Views 3-8
USER OBJECTS View 3-9

Lesson Agenda 3-10

Table Information 3-11

Column Information 3-12

Constraint Information 3-14

USER CONSTRAINTS: Example 3-15
Querying USER CONS COLUMNS 3-16
Lesson Agenda 3-17

View Information 3-18

Sequence Information 3-19

Confirming Sequences 3-20

Index Information 3-21

USER INDEXES: Examples 3-22
Querying USER_IND COLUMNS 3-23
Synonym Information 3-24

Lesson Agenda 3-25

Adding Comments to a Table 3-26

Quiz 3-27
Summary 3-28
Practice 3: Overview 3-29

Manipulating Large Data Sets

Objectives 4-2

Lesson Agenda 4-3

Using Subqueries to Manipulate Data 4-4
Retrieving Data by Using a Subquery as Source 4-5
Inserting by Using a Subquery as a Target 4-7
Using the WITH CHECK OPTION Keyword on DML Statements 4-9
Lesson Agenda 4-11

Overview of the Explicit Default Feature 4-12
Using Explicit Default Values 4-13

Copying Rows from Another Table 4-14
Lesson Agenda 4-15

Overview of Multitable INSERT Statements 4-16
Types of Multitable INSERT Statements 4-18
Multitable INSERT Statements 4-19
Unconditional INSERT ALL 4-21

Conditional INSERT ALL: Example 4-23
Conditional INSERT ALL 4-24

Conditional INSERT FIRST: Example 4-26
Conditional INSERT FIRST 4-27

Pivoting INSERT 4-29

Lesson Agenda 4-32

MERGE Statement 4-33

MERGE Statement Syntax 4-34

Merging Rows: Example 4-35

Lesson Agenda 4-38

Tracking Changes in Data 4-39

Example of the Flashback Version Query 4-40
VERSIONS BETWEEN Clause 4-42

Quiz 4-43

Summary 4-44

Practice 4: Overview 4-45

Managing Data in Different Time Zones

Objectives 5-2
Lesson Agenda 5-3

Vi

Time Zones 5-4

TIME ZONE Session Parameter 5-5

CURRENT DATE, CURRENT TIMESTAMP, and LOCALTIMESTAMP 5-6
Comparing Date and Time in a Session’s Time Zone 5-7
DBTIMEZONE and SESSIONTIMEZONE 5-9

TIMESTAMP Data Types 5-10

TIMESTAMP Fields 5-11

Difference Between DATE and TIMESTAMP 5-12
Comparing TIMESTAMP Data Types 5-13

Lesson Agenda 5-14

INTERVAL Data Types 5-15

INTERVAL Fields 5-17

INTERVAL YEAR TO MONTH: Example 5-18

INTERVAL DAY TO SECOND Data Type: Example 5-20
Lesson Agenda 5-21

EXTRACT 5-22

TZ OFFSET 5-23

FROM Tz 5-25

TO TIMESTAMP 5-26

TO YMINTERVAL 5-27

TO DSINTERVAL 5-28

Daylight Saving Time 5-29

Quiz 5-31

Summary 5-32

Practice 5: Overview 5-33

Retrieving Data by Using Subqueries
Objectives 6-2

Lesson Agenda 6-3

Multiple-Column Subqueries 6-4
Column Comparisons 6-5

Pairwise Comparison Subquery 6-6
Nonpairwise Comparison Subquery 6-8
Lesson Agenda 6-10

Scalar Subquery Expressions 6-11
Scalar Subqueries: Examples 6-12
Lesson Agenda 6-14

Correlated Subqueries 6-15

Using Correlated Subqueries 6-17
Lesson Agenda 6-19

Vii

Using the EX1STS Operator 6-20

Find All Departments That Do Not Have Any Employees 6-22
Correlated UPDATE 6-23

Using Correlated UPDATE 6-24
Correlated DELETE 6-26

Using Correlated DELETE 6-27

Lesson Agenda 6-28

WITH Clause 6-29

WITH Clause: Example 6-30
Recursive WITH Clause 6-32
Recursive WITH Clause: Example 6-33
Quiz 6-34

Summary 6-35

Practice 6: Overview 6-37

Regular Expression Support

Objectives 7-2

Lesson Agenda 7-3

What Are Regular Expressions? 7-4

Benefits of Using Regular Expressions 7-5

Using the Regular Expressions Functions and Conditions in SQL and PL/SQL 7-6
Lesson Agenda 7-7

What Are Metacharacters? 7-8

Using Metacharacters with Regular Expressions 7-9

Lesson Agenda 7-11

Regular Expressions Functions and Conditions: Syntax 7-12
Performing a Basic Search by Using the REGEXP LIKE Condition 7-13
Replacing Patterns by Using the REGEXP REPLACE Function 7-14
Finding Patterns by Using the REGEXP_INSTR Function 7-15
Extracting Substrings by Using the REGEXP_SUBSTR Function 7-16
Lesson Agenda 7-17

Subexpressions 7-18

Using Subexpressions with Regular Expression Support 7-19

Why Access the nth Subexpression? 7-20

REGEXP_ SUBSTR: Example 7-21

Lesson Agenda 7-22

Using the REGEXP_COUNT Function 7-23

Regular Expressions and Check Constraints: Examples 7-24

Quiz 7-25

viii

Summary 7-26
Practice 7: Overview 7-27

Appendix A: Practice Solutions
Appendix B: Table Descriptions

Appendix C: Using SQL Developer
Objectives C-2
What Is Oracle SQL Developer? C-3
Specifications of SQL Developer C-4
SQL Developer 1.5 Interface C-5
Creating a Database Connection C-7
Browsing Database Objects C-10
Displaying the Table Structure C-11
Browsing Files C-12
Creating a Schema Object C-13
Creating a New Table: Example C-14
Using the SQL Worksheet C-15
Executing SQL Statements C-18
Saving SQL Scripts C-19
Executing Saved Script Files: Method 1 C-20
Executing Saved Script Files: Method 2 C-21
Formatting the SQL Code C-22
Using Snippets C-23
Using Snippets: Example C-24
Debugging Procedures and Functions C-25
Database Reporting C-26
Creating a User-Defined Report C-27
Search Engines and External Tools C-28
Setting Preferences C-29
Resetting the SQL Developer Layout C-30
Summary C-31

Appendix D: Using SQL*Plus
Objectives D-2
SQL and SQL*Plus Interaction D-3
SQL Statements Versus SQL*Plus Commands D-4
Overview of SQL*Plus D-5
Logging In to SQL*Plus D-6
Displaying the Table Structure D-7

SQL*Plus Editing Commands D-9

Using LIST, n, and APPEND D-11

Using the CHANGE Command D-12
SQL*Plus File Commands D-13

Using the SAVE and START Commands D-14
SERVEROUTPUT Command D-15

Using the SQL*Plus spooL, Command D-16
Using the AUTOTRACE Command D-17
Summary D-18

Appendix E: Using JDeveloper
Objectives E-2
Oracle JDeveloper E-3
Database Navigator E-4
Creating a Connection E-5
Browsing Database Objects E-6
Executing SQL Statements E-7
Creating Program Units E-8
Compiling E-9
Running a Program Unit E-10
Dropping a Program Unit E-11
Structure Window E-12
Editor Window E-13
Application Navigator E-14
Deploying Java Stored Procedures E-15
Publishing Java to PL/SQL E-16

How Can | Learn More About JDeveloper 11g ? E-17
Summary E-18

Appendix F: Generating Reports by Grouping Related Data
Objectives F-2
Review of Group Functions F-3
Review of the GROUP BY Clause F-4
Review of the HAVING Clause F-5
GROUP BY with ROLLUP and CUBE Operators F-6
ROLLUP Operator F-7
ROLLUP Operator: Example F-8
CUBE Operator F-9
CUBE Operator: Example F-10
GROUPING Function F-11

GROUPING Function: Example F-12
GROUPING SETS F-13

GROUPING SETS: Example F-15
Composite Columns F-17

Composite Columns: Example F-19
Concatenated Groupings F-21
Concatenated Groupings: Example F-22
Summary F-23

Appendix G: Hierarchical Retrieval
Objectives G-2
Sample Data from the EMPLOYEES Table G-3
Natural Tree Structure G-4
Hierarchical Queries G-5
Walking the Tree G-6
Walking the Tree: From the Bottom Up G-8
Walking the Tree: From the Top Down G-9
Ranking Rows with the LEVEL Pseudocolumn G-10
Formatting Hierarchical Reports Using LEVEL and LPAD G-11
Pruning Branches G-13
Summary G-14

Appendix H: Writing Advanced Scripts
Objectives H-2
Using SQL to Generate SQL H-3
Creating a Basic Script H-4
Controlling the Environment H-5
The Complete Picture H-6
Dumping the Contents of a Table to a File H-7
Generating a Dynamic Predicate H-9
Summary H-11

Appendix I: Oracle Database Architectural Components
Objectives [-2
Oracle Database Architecture: Overview [-3
Oracle Database Server Structures 1-4
Connecting to the Database I-5
Interacting with an Oracle Database 1-6
Oracle Memory Architecture [-8
Process Architecture 1-10
Database Writer Process 1-12

Xi

Log Writer Process 1-13

Checkpoint Process 1|-14

System Monitor Process 1-15

Process Monitor Process 1-16

Oracle Database Storage Architecture 1-17
Logical and Physical Database Structures [-19
Processing a SQL Statement 1-21

Processing a Query [-22

Shared Pool 1-23

Database Buffer Cache [-25

Program Global Area (PGA) |-26

Processing a DML Statement 1-27

Redo Log Buffer [-29

Rollback Segment [-30

COMMIT Processing [-31

Summary of the Oracle Database Architecture 1-33

Additional Practice Solutions

Xii

Appendix A
Practices and Solutions

Table of Contents

Practices and Solutions for Lesson L..........cocooiiiiiiiiiiiiiciieeeeee e 3
Practice I-1: Accessing SQL Developer Resources..........cceeevveeevieeiiieeniieeniieeeiieeene 4
Practice I-2: Using SQL DeVeIOPETcc.coouiriiriiiiiiiiieieeteeeieeeetee e 5
Practice Solutions I-1: Accessing SQL Developer Resources..........ccoceeeveniienieeneneennen. 7
Practice Solutions I-2: Using SQL Developer..........ccoceveriiniiiinicniiiiiicneceeeceeene 8

Practices and Solutions for Lesson 1cocoiiiiiiiiiiiiiiiiecceeeee e 17
Practice 1-1: Controlling USEr ACCESS.....ccuerueiruieriirienieeieeiiesieete ettt 17
Practice Solutions 1-1: Controlling USer ACCESS........cccueeruierieeriieniiieiienie e seee e 20

Practices and Solutions for LesSomn 2cooiiiiiiiiiiiiiniiiieeie e 25
Practice 2-1: Managing Schema ObJeCtScccecuierieriienieeiieiieeieeee et 25
Practice Solutions 2-1: Managing Schema ODbjJects.........cccceevvieerciieecieeeieeeiee e, 31

Practices and Solutions for Lesson 3cooiiiiiiiiiniiniieeeesereeeee e 39
Practice 3-1: Managing Objects with Data Dictionary VIews.........ccccccveeeieeriieenenneenns 39
Practice Solutions 3-1: Managing Objects with Data Dictionary Views........c..cccco... 43

Practices and Solutions for LesSson 4cocooiiiiiiiiiiiieniee e 47
Practice 4-1: Manipulating Large Data Sets..........ccecueeriieriieiienieeiieeie et 47
Practice Solutions 4-1: Manipulating Large Data Sets..........cccceeeeiiieniiieenieeiiiie s 51

Practices and Solutions for Lesson 5cccoouiiiiiiiiiinieniiieeeeeseeeee e 56
Practice 5-1: Managing Data in Different Time Zonescccceeeveeeeieeeeieeniieesenieenns 56
Practice Solutions 5-1: Managing Data in Different Time Zonescccccecveveevuennnene 59

Practices and Solutions for LesSomn 6coceoiiiiiiiiiiiiiiiiieetee e 62
Practice 6-1: Retrieving Data by Using Subqueriesccccceeviieciienieeiienieeieeee 62
Practice Solutions 6-1: Retrieving Data by Using Subqueriesccceeeveereieenennenns 66

Practices and Solutions for LeSSON 7cc.coouiiiiriiiiinienieieeieneeieseseee e 70
Practice 7-1: Regular EXpression SUPPOIt.......c.cceevieeiiieeniieeieeciieeeeeeeieeeseeesvee e 70
Practice Solutions 7-1: Regular EXpression Support..........cccceevveeiienieeieeniesieenieene 72

Oracle Database: SQL Fundamentals Il A -2

Practices and Solutions for Lesson |

In this practice, you review the available SQL Developer resources. You also learn about
your user account that you use in this course. You then start SQL Developer, create a new
database connection, and browse your HR tables. You also set some SQL Developer
preferences, execute SQL statements, and execute an anonymous PL/SQL block by using
SQL Worksheet. Finally, you access and bookmark the Oracle Database 11g
documentation and other useful Web sites that you can use in this course.

Oracle Database: SQL Fundamentals Il A -3

Practice I-1: Accessing SQL Developer Resources
In this practice, you do the following:

1) Access the SQL Developer home page.

a. Access the online SQL Developer home page available at:
http://www.oracle.com/technology/products/database/sql_developer/index.ht
ml

b. Bookmark the page for easier future access.

2) Access the SQL Developer tutorial available online at:
http://st-curriculum.oracle.com/tutorial/SQLDeveloper/index.htm. Then review
the following sections and associated demos:

a) What to Do First
b) Working with Database Objects
c) Accessing Data

Oracle Database: SQL Fundamentals il A -4

Practice I-2: Using SQL Developer

1)
2)

3)

4)

5)

6)

7)

8)

Start SQL Developer by using the desktop icon.
Create a database connection using the following information:

a) Connection Name: myconnection

b) Username: oraxx, where xx is the number of your PC (Ask your instructor to
assign you an ora account out of the ora21-ora40 range of accounts.)

c) Password: oraxx

d) Hostname: localhost

e) Port: 1521

f) SID: orcl (or the value provided to you by the instructor)

Test the new connection. If the status is Success, connect to the database by using
this new connection.

a) Click the Test button in the New/Select Database Connection window.
b) If the status is Success, click the Connect button.

Browse the structure of the EMPLOYEES table and display its data.

a) Expand the myconnection connection by clicking the plus sign next to it.
b) Expand the Tables icon by clicking the plus sign next to it.

c) Display the structure of the EMPLOYEES table.

d) View the data of the DEPARTMENTS table.

Execute some basic SELECT statements to query the data in the EMPLOYEES
table in the SQL Worksheet area. Use both the Execute Statement (or press F9)
and the Run Script (or press F5) icons to execute the SELECT statements. Review
the results of both methods of executing the SELECT statements on the
appropriate tabbed pages.

a) Write a query to select the last name and salary for any employee whose
salary is less than or equal to $3,000.

b) Write a query to display last name, job ID, and commission for all employees
who are not entitled to receive a commission.

Set your script pathing preference to /home/oracle/labs/sql2.
a) Select Tools > Preferences > Database > Worksheet Parameters.
b) Enter the value in the Select default path to look for scripts field.

Enter the following in the Enter SQL Statement box.
SELECT employee id, first name, last name,
FROM employees;

Save the SQL statement to a script file by using the File > Save As menu item.
a) Select File > Save As.
b) Name the file intro test.sqgl.

Oracle Database: SQL Fundamentals il A -5

Practice I-2: Using SQL Developer (continued)
c) Place the file under your /home/oracle/labs/sql2/labs folder.

9) Open and run confidence.sgl from your /home/oracle/labs/sql2/labs folder,
and observe the output.

Oracle Database: SQL Fundamentals il A -6

Practice Solutions I-1: Accessing SQL Developer Resources
1) Access the SQL Developer home page.
a) Access the online SQL Developer home page available online at:
http://www.oracle.com/technology/products/database/sql_developer/index.html

The SQL Developer home page is displayed as follows:

Oracle 5QL Developer - Mozilla Firefox 3 Beta 5

File Edit View History Bookmarks Tools Help
?@ ﬁ [E http://www.oracle.com/ftechnology/products/datz | - l [' 'ﬁ‘g
{Smart Bookmarks ¥ [@]Enterprise Linux [] Linux Technology C... [®]Oracle University »
OF\)ACI_E wizlcome Tulika (Accouni | Manage Subscriplions | Sian Cuf) Oracle Websites v | ™
TEGHNOLOGY: NETWORK [secure search] [Technology Metwork -] i&|
PRODUCTS GETTING STARTED DOWNLOADS DOCUMENTATION FORUMS ARTICLES §
Database
Middleware Printer Wiew E-ma.i_
Developer Tools
Enterprise Management
Applications Technology
pplaone j Oracle SQL Developer E
TECHNOLOGIES Oracle SQL Developer is a free and fully supported graphical tool for database 5 Doy
Bl & Data Warehousing development. With SQL Developer, you can browse database objects, run SQL = Or
Embedded staternents and SQL scripts, and edit and debug PL'SOL statements. You can also run any
Java number of provided reports, as well as create and save your own. SQL Developer
Linux enhances productivity and simplifies your database development tasks.
NET . Aug 20,
PHP NoCOUG
Security j What is Oracle SQOL Developer? j SQL Developer 1.5 Oct 27, 2
Technologies A-Z % 1
g] ite pape; POt ng . -
ARCHITECTURE (—) SOL Developer OTN Forum 4% White rs and Supporti Oracle O
| | Documents e
Enterprise Architecture . MNov 10-1
Enterprise 2.0 = - -Perth
crid | !?‘ SOL Developer Exchange J Online Demonsirations AUSOU
Comtinm Cirimmted frabitsas Noy 30, [L7)
[[+)

b) Bookmark the page for easier future access.

2) Access the SQL Developer tutorial available online at:
http://st-curriculum.oracle.com/tutorial/SQLDeveloper/index.htm

Then, review the following sections and associated demos:
a) What to Do First

b) Working with Database Objects
c¢) Accessing Data

Oracle Database: SQL Fundamentals Il A -7

Practice Solutions I-2: Using SQL Developer

1) Start SQL Developer by using the desktop icon.

2) Create a database connection using the following information:
a. Connection Name: myconnection

b. Username: oraxx (Ask your instructor to assign you one ora account out of the
ora2l-ora40 range of accounts.)

c. Password: oraxx

d. Hostname: localhost

e. Port: 1521

f. SID: orc1l (or the value provided to you by the instructor)
Dpconnections | [E|Reports | i
=®8Y
4 Connection

E New Connection

Import Connections

Oracle Database: SQL Fundamentals Il A -8

Practice Solutions I-2: Using SQL Developer (continued)

| = New / Select Database Connection x

Connection Ma... Connection Det... | Connection Name |m',-'|:c|nnectinn |

X

Username |0ra21 |

Password |n-n-m |

Save Passwiord

Oracle

Role [] 05 Authentication
Connection Type [] kerberos Authentication

[] Proxy Connection

Hostname ||ocalh|:|st |
Port |1521 |
(=) SID ||:|r|:I |

|

() Service name |

Status

Save] [Clear] [Test] [Connect] [Cancel

3) Test the new connection. If the status is Success, connect to the database by using this
new connection.
a) Click the Test button in the New/Select Database Connection window.

Status :

| Help | | Save | | Clear | | Test > | | Connect | | Cancel

b) If the status is Success, click the Connect button.

Status | Success

| Help | | Save | | Clear | | Test | | annectk | | Cancel

Browsing the Tables
4) Browse the structure of the EMPLOYEES table and display its data.

a) Expand the myconnection connection by clicking the plus sign next to it.

Oracle Database: SQL Fundamentals Il A -9

Practice Solutions I-2: Using SQL Developer (continued)
%Cnnnemiuns] Reportz] E]
=0T

E:|TI Connections

%a Ty Connection

b) Expand the Tables icon by clicking the plus sign next to it.

%Cmnecﬁuns] Reports] E]
EL B

4 connections
Ea Ty Connection
EtkiE Tahkles
{E Wignis
Ea Inclexes
ﬂf’a Packages
Eg Procedures
Eﬂ Functions
{:E Triggers
[Types
Eﬁ Seguehces
{E Materialized Views
@ Materialized Views Logs
E‘E! SYRONYmS
{B Public Synonyns
@ Databasze Links
[+-{58) Public Database Links
@ Directories
IE Application Express
% WML Schemas
-1 Recycle Bin
[E Cther Uzers

m

Oracle Database: SQL Fundamentals Il A -10

Practice Solutions I-2: Using SQL Developer (continued)

ER=YConnections

El% myconnection
E]L_f_:i Tables

48 COUNTRIES
- [DEPARTMENTS
- EMPLOYEES
- JOB_HISTORY
- JoBs

- LocaTions
- REGIONS

c) Display the structure of the EMPLOYEES table.

Click the EMPLOYEES table. The Columns tab displays the columns in the

EMPLOYEES table as follows:

[myconnection |EEI‘HPLOYEES | o
Columns Data| Constraintz [Crants | statiztics |Triggers |Flashback | Dependencies | Details | Indexes | QL

@ 0 acions..]
B Column Name [DataType [@ muniable |Data Default [COLUMNID @ Primary key |[§ CoMMENTS
EMPLCYEE_ID MUMEERE, 0 Mo frully 1 1 Primary key of emplo
FIRST_MAME YWARCHARZ(20 BYTE) Tes fnull z (null) First name of the emyg
LAST_MAME WARCHARZ(ZS BYTE) Mo {rull 3 (nully Last name of the emp
EMAIL WARCHARZ(25 BYTE) Mo {rnull) 4 {hully Email id of the emplos
PHOME_MUMEER. WARCHARZ(Z0 ETTE) 7es faul = (nully Phone number of the
HIRE_DATE DATE Mo {null & (nully Date when the emplo
JOB_ID WARCHARZ(10 BYTE) Mo fhull 7 (nully Current job of the em
SALARY MUMEERLS, 2) es {null g (rnully Monthly zalary of the
COMMISSION_PCT MUMBERLZ, 2) Yes fnull 9 (nully Commissian percent:
MAMACER_ID MUMEERE, 0 ez faul 10 (nully Manager id of the em
DEPARTMENT_ID RIUMEERS4, 0% ez frully 11 {hully Department id where

d) View the data of the DEPARTMENTS table.

In the Connections navigator, click the DEPARTMENTS table. Then click the Data

tab.

Oracle Database: SQL Fundamentals Il

A-11

Practice Solutions I-2: Using SQL Developer (continued)

[» myconnection | [EIDEPARTMENTS |
Columns | Data Constraints | Grants | Statistics [Triggers | Flashback | Dependencies | Details
T HEXE R s Filter:| iv
DEPARTHMEMNT_ID | DEPARTMENT_MAME | A MAGER_ID | LOCATIOM_ID |
1 10 Administration 200 1700
Z2 20 Marketing 201 1500
] 30 Purchasing 114 1700
4 40 Human Rezources Z03 2400
5 50 Shipping 121 1500
& 60 1T 103 1400
i O Buklic Belating 04 =700

5) Execute some basic SELECT statements to query the data in the EMPLOYEES table in
the SQL Worksheet area. Use both the Execute Statement (or press F9) and the Run
Script icons (or press F5) to execute the SELECT statements. Review the results of
both methods of executing the SELECT statements on the appropriate tabbed pages.

a) Write a query to select the last name and salary for any employee whose salary is
less than or equal to $3,000.

SELECT last name, salary
FROM employees
WHERE salary <= 3000;

b) Write a query to display last name, job ID, and commission for all employees who
are not entitled to receive a commission.

SELECT last name, Jjob id, commission pct
FROM employees
WHERE commission pct IS NULL;

6) Set your script pathing preference to /home/oracle/labs/sql2.
a) Select Tools > Preferences > Database > Worksheet Parameters.
b) Enter the value in the Select default path to look for scripts field. Then, click OK.

Oracle Database: SQL Fundamentals Il A -12

Practice Solutions I-2: Using SQL Developer (continued)

(@ | || Database: Worksheet Parameters

- Enwiranment |] Autacommit in SQL Worksheet
- fecelerators

F- Code Editar
- Compare and Merge |:| Close all worksheets on disconnect
[=t-Database

- fdvanced Parameter
- Autotrace/Explain Pl Max Rows to print in a script [5000 |
~-General Expart Paran
- MLS Parameters

Open aWorksheet on connect

Prompt for Save file on Cloze.

Select default path to look for scripts

- QhbjectViewer Parame |fh0mef0racleflabsfSQL2 | | Browse J
-+ PLIRGQL Compiler Opy This is the directory used when Funning a script using the @
-~ Reports syntax.

- 50L Editor Code Tem
[+ 50L Farmatter

- Third Party JDEC Driw "Drag and Drop Effects”
- dser Defined Extensi

[] zave Bind wariables to disk on exit

Choose the type of statement created when dragging from the navigator
() Insert

sheet Parameted]

7) Enter the following SQL statement:

SELECT employee id, first name, last name
FROM employees;

8) Save the SQL statement to a script file by using the File > Save As menu item.
a) Select File > Save As.

W[=8 Edit “iew DBNawvigaste Bun Debugy Source Migration Toolz Help

(5 mew .. Ctil-N BEh O0-©- -

3 open... Ctil-0
Cloze Ctrl-F4 % é
Close Al Ctrl+ShithF4
H zave Ctrl-= L name, last hame

Save .ﬂ.%

BB save ol

Replace With b
Page Setup...

EL prit... Ctil-P
Exit Alt-Fe

b) Name the file intro_test.sql.

Oracle Database: SQL Fundamentals Il A -13

Practice Solutions I-2: Using SQL Developer (continued)
Enter intro_ test.sql in the File_name text box.
c) Place the file under the /home/oracle/labs/SQL2/labs folder.

Location: [D fhomefaracleflabs fSQLE flabs v] @ @ Eﬁ E E
- = buildvid.zgl ~
_ E confidence.=ql

E dropwid.zql

Deskiop = 1ab_nz_18.5q

=| 1ab_0z_19.3q

& =| 1ab_0z_z0a.5q

=gl = 1ab_0z_z0b.5g

=| 1ab_0z_z0g.5q

Q =l 1ab_n3_07.2q1
=| 1ab_03_09_tab.sq

— =| 1ab_04_01.5q!

=| 1ab_04_03.2q]
=l lab_04_05.5q
=| 1ab_04_08a.5q
=| 1ab_04_08b.sq
=| 1ab_04_08c.5q
=l 1ab_04_09.5q

al

File name: |intru:u_test.su:|l| |

File type: | SQL Script ¢r.sql) |

Help L -S:a'u'e H [Cancel |

Then, click Save.

9) Open and run confidence. sqgl from your /home/oracle/labs/SQL2/labs folder
and observe the output.

Oracle Database: SQL Fundamentals Il A -14

Practice Solutions I-2: Using SQL Developer (continued)

Open the confidence. sql script file by using the File > Open menu item.

Location: [I:i fhomeforacleflabs/f50LE flabs v] o m Eﬁ E E

' buildvid.zql
B confidence.sql
dropwid.zql

Desktop intra_test.zql
lab_0Z_15.5ql
5 lab_0Z_19.5ql
=ql lab_0Z_z0a.sql
lab_0Z_z0b.5q
Ea lab_0Z_z0g.5ql
lab_03_07.5ql
lab_03_0%9_tab.sql

lab_04_01.5ql
@ lab_04_03.5ql

lab_04_05.5ql
Hame lab_04_0Fa.sql
lab_04_05b.5ql
lab_04_0Fc.sql
=

W
File name: |cnnfidence.sq| |
File type: | All files (=% ~|
Help L Cpen i [Cancel |
L3

Then, press F5 to execute the script.
The following is the expected result:

1 rows selected

Oracle Database: SQL Fundamentals Il A -15

Practice Solutions I-2: Using SQL Developer (continued)
COUNT (*)

1 rows selected

Oracle Database: SQL Fundamentals Il A -16

Practices and Solutions for Lesson 1

Practice 1-1: Controlling User Access

1. What privilege should a user be given to log on to the Oracle server? Is this a system
privilege or an object privilege?

2. What privilege should a user be given to create tables?

3. Ifyou create a table, who can pass along privileges to other users in your table?

4. You are the DBA. You create many users who require the same system privileges.
What should you use to make your job easier?

5. What command do you use to change your password?

6. User21 is the owner of the EMP table and grants the DELETE privilege to User22
by using the WITH GRANT OPTION clause. User22 then grants the DELETE
privilege on EMP to User23. User21 now finds that User2 3 has the privilege and
revokes it from User22. Which user can now delete from the EMP table?

7. You want to grant SCOTT the privilege to update data in the DEPARTMENTS table.
You also want to enable SCOTT to grant this privilege to other users. What command
do you use?

To complete question 8 and the subsequent ones, you need to connect to the
database by using SQL Developer. If you are already not connected, do the
following to connect:

1. Click the SQL Developer desktop icon.

2. In the Connections Navigator, use the oraxx account and the corresponding
password provided by your instructor to log on to the database.

8. Grant another user query privilege on your table. Then, verify whether that user can
use the privilege.
Note: For this exercise, team up with another group. For example, if you are user
ora21l, team up with another user ora22.
a. Grant another user privilege to view records in your REGIONS table. Include
an option for this user to further grant this privilege to other users.
Have the user query your REGIONS table.
c. Have the user pass on the query privilege to a third user (for example,
ora?23).

Oracle Database: SQL Fundamentals Il A -17

Practice 1-1: Controlling User Access (continued)

d. Take back the privilege from the user who performs step b.
Note: Each team can run exercises 9 and 10 independently.
9. Grant another user query and data manipulation privileges on your COUNTRIES
table. Make sure that the user cannot pass on these privileges to other users.
10. Take back the privileges on the COUNTRIES table granted to another user.
Note: For exercises 11 through 17, team up with another group.
11. Grant another user access to your DEPARTMENTS table. Have the user grant you
query access to his or her DEPARTMENTS table.
12. Query all the rows in your DEPARTMENTS table.

DEPARTMEMT_ID | DEPARTMEMT_MAME | MANAGER_ID | LOCATION_ID
1 10 Administration 200 1700
z 20 Marketing 201 1500
3 30 Purchasing 114 1700
4 40 Human Resources 203 2400
5 50 Shipping 121 1500
& 60 1T 105 1400
7 70 Public Relations 204 2700
g g0 Sales 145 2500

13. Add a new row to your DEPARTMENTS table. Team 1 should add Education as

department number 500. Team 2 should add Human Resources as department
number 510. Query the other team’s table.

14. Create a synonym for the other team’s DEPARTMENTS table.
15. Query all the rows in the other team’s DEPARTMENTS table by using your synonym.
Team 1 SELECT statement results:

DEPARTMENT_ID | DEPARTMEMT_MAME | M NAGER_ID | LOCATION_ID

i [e e ey L gy ey Ly TITCATTy T

16 1460 Benefits {rully 1700
17 170 Manufacturing frulll 1700
18 180 Construction {rully 1700
19 190 Contracting frulll 1700
20 200 Cperations {rully 1700
21 21017 Suppoart frully 1700
22 220 WoiZ {rully 1700
23 23017 Helpdezk frully 1700
24 240 Covernment Sales {rully 1700
25 250 Retail 5ales frully 1700
26 260 Recruiting {rully 1700
27 270 Payrall frully 1700
25 SED Hume;n Rezources frull} fhull

Oracle Database: SQL Fundamentals Il A -18

Practice 1-1: Controlling User Access (continued)

Team 2 SELECT statement results:
DEPARTMEMT_ID | DEF'ARTMENT_NAME| MANACEP_lD| LOCATICN_ID

i [e g ey e L gy ey Ly TTTATTf T

16 160 Benefits frully 1700
17 170 Manufacturing {rully 1700
1a 150 Construction frulll 1700
148 120 Contracting {rully 1700
20 200 Operations frulll 1700
21 2101T Support {rully 1700
22 220 MoC frully 1700
23 2301T Helpdesk {rully 1700
24 240 Covernment Sales frulll 1700
25 250 Retail Sales {rully 1700
26 260 Recruiting frulll 1700
27 270 Payroll {rully 1700

i 500 Educatiu:un null} frull

16. Revoke the SELECT privilege from the other team.

17. Remove the row that you inserted into the DEPARTMENTS table in step 13 and save
the changes.

Oracle Database: SQL Fundamentals Il A -19

Practice Solutions 1-1: Controlling User Access

To complete question 8 and the subsequent ones, you need to connect to the database by
using SQL Developer.

1. What privilege should a user be given to log on to the Oracle server? Is this a
system or an object privilege?
The CREATE SESSION system privilege

2. What privilege should a user be given to create tables?
The CREATE TABLE privilege

3. Ifyou create a table, who can pass along privileges to other users in your table?
You can, or anyone you have given those privileges to, by using WITH GRANT
OPTION

4. You are the DBA. You create many users who require the same system
privileges.
What should you use to make your job easier?
Create a role containing the system privileges and grant the role to the users.

5. What command do you use to change your password?
The ALTER USER statement

6. User2l is the owner of the EMP table and grants DELETE privileges to User22
by using the WITH GRANT OPTION clause. User22 then grants DELETE
privileges on EMP to User23. User21 now finds that User23 has the
privilege and revokes it from User22. Which user can now delete data from the
EMP table?

Only User21

7. You want to grant SCOTT the privilege to update data in the DEPARTMENTS
table. You also want to enable SCOTT to grant this privilege to other users. What
command do you use?

GRANT UPDATE ON departments TO scott WITH GRANT
OPTION;

Oracle Database: SQL Fundamentals Il A -20

Practice Solutions 1-1: Controlling User Access (continued)

8. Grant another user query privilege on your table. Then, verify whether that user
can use the privilege.

Note: For this exercise, team up with another group. For example, if you are user
oraZ2l, team up with another user ora22.

a) Grant another user privilege to view records in your REGIONS table.
Include an option for this user to further grant this privilege to other users.

Team 1 executes this statement:

GRANT select
ON regions
TO <team2 oraxx> WITH GRANT OPTION;

b) Have the user query your REGIONS table.

Team 2 executes this statement:

|SELECT * FROM <teaml oraxx>.regions;

c) Have the user pass on the query privilege to a third user (for example, ora?23).

Team 2 executes this statement.

GRANT select
ON <teaml oraxx>.regions
TO <team3 oraxx>;

d) Take back the privilege from the user who performs step b.

Team 1 executes this statement.

REVOKE select
ON regions
FROM <teamZ oraxx>;

9. Grant another user query and data manipulation privileges on your COUNTRIES
table. Make sure the user cannot pass on these privileges to other users.

Team 1 executes this statement.

GRANT select, update, insert
ON COUNTRIES
TO <teamZ oraxx>;

Oracle Database: SQL Fundamentals Il A - 21

Practice Solutions 1-1: Controlling User Access (continued)

10. Take back the privileges on the COUNTRIES table granted to another user.
Team 1 executes this statement.

|REVOKE select, update, insert ON COUNTRIES FROM <team2 oraxx>;

Note: For the exercises 11 through 17, team up with another group.

11. Grant another user access to your DEPARTMENTS table. Have the user grant you
query access to his or her DEPARTMENTS table.

Team 2 executes the GRANT statement.

GRANT select
ON departments
TO <teaml oraxx>;

Team 1 executes the GRANT statement.

GRANT select
ON departments
TO <teamZ oraxx>;

Here, <teaml oraxx> is the username of Team 1 and <team2 oraxx> is the
username of Team 2.

12. Query all the rows in your DEPARTMENTS table.

SELECT *
FROM departments;

13. Add a new row to your DEPARTMENTS table. Team 1 should add Education
as department number 500. Team 2 should add Human Resources as
department number 51 0. Query the other team’s table.

Team 1 executes this INSERT statement.

INSERT INTO departments (department id, department name)
VALUES (500, 'Education');
COMMIT;

Team 2 executes this INSERT statement.

INSERT INTO departments (department id, department name)
VALUES (510, 'Human Resources');
COMMIT;

Oracle Database: SQL Fundamentals Il A - 22

Practice Solutions 1-1: Controlling User Access (continued)

14. Create a synonym for the other team’s DEPARTMENTS table.

Team 1 creates a synonym named team?.

CREATE SYNONYM team?2
FOR <team2Z oraxx>.DEPARTMENTS;

Team 2 creates a synonym named teaml.

CREATE SYNONYM teaml
FOR <teaml oraxx>. DEPARTMENTS;

15. Query all the rows in the other team’s DEPARTMENTS table by using your
synonym.

Team 1 executes this SELECT statement.

SELECT *
FROM team?2;

Team 2 executes this SELECT statement.

SELECT *
FROM teaml;

16. Revoke the SELECT privilege from the other team.

Team 1 revokes the privilege.

REVOKE select
ON departments
FROM <teamZ oraxx>;

Team 2 revokes the privilege.

REVOKE select
ON departments
FROM <teaml oraxx>;

Oracle Database: SQL Fundamentals Il A -23

Practice Solutions 1-1: Controlling User Access (continued)

17. Remove the row that you inserted into the DEPARTMENTS table in step 8 and
save the changes.

Team 1 executes this DELETE statement.

DELETE FROM departments
WHERE department id = 500;
COMMIT;

Team 2 executes this DELETE statement.

DELETE FROM departments
WHERE department id = 510;
COMMIT;

Oracle Database: SQL Fundamentals Il A -24

Practices and Solutions for Lesson 2

Practice 2-1: Managing Schema Objects

In this practice, you use the ALTER TABLE command to modify columns and add

constraints. You use the CREATE INDEX command to create indexes when creating a

table, along with the CREATE TABLE command. You create external tables.

1. Create the DEPT2 table based on the following table instance chart. Enter the syntax
in the SQL Worksheet. Then, execute the statement to create the table. Confirm that
the table is created.

Column Name ID NAME
Key Type

Nulls/Unique

FK Table

FK Column

Data type NUMBER VARCHAR?2
Length 7 25

Name Muall Twpe

o NITMEER.[7]
NAME WARCHARZ(Z25)
Z2 rows sSelected

2. Populate the DEPT?2 table with data from the DEPARTMENTS table. Include only the
columns that you need.
3. Create the EMP2 table based on the following table instance chart. Enter the syntax in

the SQL Worksheet. Then execute the statement to create the table. Confirm that the
table is created.

Column Name | ID LAST NAME FIRST NAME DEPT ID

Key Type

Nulls/Unique
FK Table
FK Column
Data type NUMBER VARCHAR2 VARCHAR2 NUMBER

Length 7 25 25 7

Oracle Database: SQL Fundamentals Il A -25

Practice 2-1: Managing Schema Objects (continued)

Name Null Type

In NUMEEER. (7]
LAST HNAME VARCHARZ(Z25)
FIRST MNAME VARCHARZ(Z25)
LDEPT _ID NUMEER. (7]

4 rows selected

4. Modify the EMP2 table to allow for longer employee last names. Confirm your

modification.
Name Mall Tvpe
ID NITMEER. (7]
LAST MNAME VWARCHAR= [S50)
FIRST MNAME VARCHARZ[Z5)
DEFT_ID NITMEER. [7]
d row=s selected

5. Create the EMPLOYEES?2 table based on the structure of the EMPLOYEES table.
Include only the EMPLOYEE ID, FIRST NAME, LAST NAME, SALARY, and
DEPARTMENT _ID columns. Name the columns in your new table ID,

FIRST NAME, LAST NAME, SALARY, and DE PT 1D, respectively.

6. Drop the EMP?2 table.
7. Query the recycle bin to see whether the table is present.
CRICIMAL_MAME | OPERATION | DROPTIME

17 EMP_MEW_SAL DROP Z009-05-22:14:44:15

[15 EMPZ DROP 2009-05-22:14:57:57|
8. Restore the EMP?2 table to a state before the DROP statement.
Name Muall Tvpe

D NUMEER | 7]
LAST NAME VARCHARZ [507
FIRST NAME VARCHARZ (25]
DEPT_ID NUMEER {71

4 rows selected

9. Drop the FIRST NAME column from the EMPLOYEES?2 table. Confirm your
modification by checking the description of the table.

Oracle Database: SQL Fundamentals Il A - 26

Practice 2-1: Managing Schema Objects (continued)

MName MuT1 Twpe

ID WUMBER (&)
LAST_WNAME WOT MWULL “fARECHARZ (257
SALARY WUMBER(E, 22
DEFPT_ID MUMBEE (4}

4 rows selected

10. In the EMPLOYEES?2 table, mark the DEPT ID column as UNUSED. Confirm your
modification by checking the description of the table.

Hame M1l Tvpe

ID MUMBER{E)
LAST_NAME MOT MULL WARCHARZ(25)
SALARY WUMBER(S, 22
3 rows selected

11. Drop all the UNUSED columns from the EMPLOYEES?2 table. Confirm your
modification by checking the description of the table.

12. Add a table-level PRIMARY KEY constraint to the EMP2 table on the ID column. The
constraint should be named at creation. Name the constraint my emp id pk.

13. Create a PRIMARY KEY constraint to the DEPT2 table using the ID column. The
constraint should be named at creation. Name the constraint my dept id pk.

14. Add a foreign key reference on the EMP2 table that ensures that the employee is not
assigned to a nonexistent department. Name the constraint my emp dept id fk.

15. Modify the EMP2 table. Add a COMMISSION column of the NUMBER data type,
precision 2, scale 2. Add a constraint to the COMMISSION column that ensures that a
commission value is greater than zero.

16. Drop the EMP2 and DEPT?2 tables so that they cannot be restored. Verify the recycle
bin.

17. Create the DEPT NAMED INDEX table based on the following table instance chart.
Name the index for the PRIMARY KEY column as DEPT PK IDX.

Column Name Deptno Dname
Primary Key Yes

Data Type Number VARCHAR2
Length 4 30

18. Create an external table 1ibrary items ext. Use the ORACLE LOADER access
driver.

Oracle Database: SQL Fundamentals Il A - 27

Practice 2-1: Managing Schema Objects (continued)

Note: The emp dir directory and 1ibrary items.dat file are already created
for this exercise. 1ibrary items.dat has records in the following format:

2354, 2264,13.21, 150,
2355, 2289,46.23, 200,
2355, 2264, 50.00, 100,

a. Openthe lab 02 18.sql file. Observe the code snippet to create the
library items ext external table. Then replace <TODOI>, <TODO2>,
<TODO3>, and <TODO4> as appropriate and save the file as
lab 02 18 soln.sqgl.Run the script to create the external table.

b. Query the l1ibrary items ext table.
CATECOR...| Boo...| BOOK_P...| QUAN...|

1 £354 2204 13.21 150
2 2355 2289 46.23 200
3 £355 2204 50 1a0a

19. The HR department needs a report of the addresses of all departments. Create an
external table as dept add ext using the ORACLE DATAPUMP access driver.
The report should show the location ID, street address, city, state or province, and
country in the output. Use a NATURAL JOIN to produce the results.

Note: The emp dir directory is already created for this exercise.

a. Openthe lab 02 19.sqgl file. Observe the code snippet to create the
dept add ext external table. Then, replace <TODOI>, <TODOZ2>, and
<TODO3> with the appropriate code. Replace <oraxx emp4.exp> and
<oraxx empb.exp> with the appropriate file names. For example, if you are
the ora21 user, your file names are ora21 emp4.exp and
ora2l emp5.exp. Save the scriptas lab 02 19 soln.sqgl.

b. Runthe lab 02 19 soln.sql script to create the external table.

c. Query the dept add ext table.

Oracle Database: SQL Fundamentals Il A -28

Practice 2-1: Managing Schema Objects (continued)

LocaT. |E STREET_ADDRESS CITY STATE_PROVINCE || COUNTRY_NAME |
1 ' Wia Cola di Rie Roma
2 1100 93091 Calle della Testa YWenice {rull Italy
3 1200 2017 Shinjuku-ku Tokyo Takyo Prefecture Japan
4 1300 2450 kKamiva-cho Hirozhima {rull Japan
5 1400 2014 Jabberwocky Rd Southlake Texas United States of Amer
& 1500 2011 Interiors Blvd South 5an Francisco Califarnia United States of Amer
7 1600 2007 Zagora 5t South Brunswick Mew Jersey United States of Amer
o] 1700 2004 Charade Rd Seattle Waszhington United States of Amer

Note: When you perform the preceding step, two files oraxx emp4.exp and
oraxx emp5.exp are created under the default directory emp dir.

20. Create the emp books table and populate it with data. Set the primary key as
deferred and observe what happens at the end of the transaction.

a. Runthe lab 02 20 a.sql file to create the emp books table. Observe that
the emp books pk primary key is not created as deferrable.

lcreate table succeeded. |

b. Runthe lab 02 20 b.sqgl file to populate data into the emp books table.

What do you observe?
1l rows inserted

Error starting at line 2 in commard:

inzsert into emp books walues (300, 'Change Management')

Error report:

QL Error: ORA-00001: unicgue constraint (ORAZ1.EMP_BOOES PE) wiolated

gooool. 00000 - "Manicgue constraint (%s.%s) violated™

*Cauze: An UPDATE or INSERT statement attempted to insert a duplicate kevy.
For Trusted Oracle configqured in DEM3 MAC mode, you may see
this message if a duplicate entry exists at a different lewel.

FAction: Either remowe the unique restriction or do not insert the kevy.

c. Setthe emp books pk constraint as deferred. What do you observe?
Error starting at line 1 in commatnd:

set constraint emp books pk deferred

[Error report:

SQL Error: 0ORA-02447: cannot defer a constraint that is not deferrable

02447, 00000 - "“cannot defer a constraint that iz not deferrahle™
*Cause: An attempt was made to defer a nondeferrable constraint
FAction: Drop the constraint and create a new one that is deferrable

d. Drop the emp books pk constraint.

|alter table emp books succeeded. |

e. Modify the emp books table definition to add the emp books pk constraint
as deferrable this time.

Oracle Database: SQL Fundamentals Il A -29

Practice 2-1: Managing Schema Objects (continued)

|alter table emp books succeeded. |

f. Setthe emp books pk constraint as deferred.

|set constraint succeeded. |

g. Runthe lab 02 20 g.sqgl file to populate data into the emp books table.
What do you observe?

1l rows inserted
1l rows inserted
1l rows inserted

h. Commit the transaction. What do you observe?
Error report:

0L Error: ORA-0Z091:

transaction rolled back
ORL4-00001: unicue constraint (ORAZL.EMP_EOOES PE) wiolated
02091. 00000 - "transaction rolled back™

*Cauze: Al=zo see error 2092, If the transaction iz aborted at a remote
zite then vou will only see 2091; if aborted at host then you will
see 2092 and 2091,

TAction: 4dd rollback segment and retry the transaction.

Oracle Database: SQL Fundamentals Il A - 30

Practice Solutions 2-1: Managing Schema Objects

1. Create the DEPT?2 table based on the following table instance chart. Enter the syntax
in the SQL Worksheet. Then, execute the statement to create the table. Confirm that
the table is created.

Column Name ID NAME

Key Type

Nulls/Unique

FK Table

FK Column

Data type NUMBER VARCHAR?2

Length 7 25

CREATE TABLE dept?2
(1d NUMBER(7),
name VARCHAR2 (25));

DESCRIBE dept?2

2. Populate the DEPT?2 table with data from the DEPARTMENTS table. Include only the
columns that you need.

INSERT INTO dept2
SELECT department id, department name
FROM departments;

3. Create the EMP2 table based on the following table instance chart. Enter the syntax in
the SQL Worksheet. Then execute the statement to create the table. Confirm that the
table is created.

Column Name | ID LAST NAME FIRST NAME DEPT ID

Key Type

Nulls/Unique

FK Table

FK Column

Data type NUMBER VARCHAR? VARCHAR? NUMBER

Length 7 25 25 7

Oracle Database: SQL Fundamentals Il A - 31

Practice Solutions 2-1: Managing Schema Objects (continued)

CREATE TABLE emp2

(id NUMBER (7),
last name VARCHAR?Z2 (25),
first name VARCHAR2 (25),
dept id NUMBER (7)) ;

DESCRIBE emp2

4. Modify the EMP2 table to allow for longer employee last names. Confirm your

modification.

ALTER TABLE emp?2
MODIFY (last name VARCHAR2 (50)) ;

DESCRIBE emp?2

5. Create the EMPLOYEES?2 table based on the structure of the EMPLOYEES table.

6.

IndudeonbﬁheEMPLOYEE_ID,FIRST_NAME,LAST_NAME,SALARYJHM
DEPARTMENT _ID columns. Name the columns in your new table ID,
FIRST_NAME,LAST_NAME,SALARY}andDEPT_IDﬁfquﬁde.

CREATE TABLE employees2 AS

SELECT employee id id, first name, last name, salary,
department id dept id

FROM employees;

Drop the EMP2 table.

DROP TABLE emp2;

Oracle Database: SQL Fundamentals Il A - 32

Practice Solutions 2-1: Managing Schema Objects (continued)
7. Query the recycle bin to see whether the table is present.

SELECT original name, operation, droptime
FROM recyclebin;

8. Restore the EMP2 table to a state before the DROP statement.

FLASHBACK TABLE emp2 TO BEFORE DROP;
DESC emp2;

9. Drop the FIRST NAME column from the EMPLOYEES2 table. Confirm your
modification by checking the description of the table.

ALTER TABLE employees?2
DROP COLUMN first name;

DESCRIBE employees?2

10. In the EMPLOYEES?2 table, mark the DEPT ID column as UNUSED. Confirm your
modification by checking the description of the table.

ALTER TABLE employees?2
SET UNUSED (dept id);

DESCRIBE employees2

11. Drop all the UNUSED columns from the EMPLOYEES?2 table. Confirm your
modification by checking the description of the table.

ALTER TABLE employees?2
DROP UNUSED COLUMNS;

DESCRIBE employees?2

Oracle Database: SQL Fundamentals Il A - 33

Practice Solutions 2-1: Managing Schema Objects (continued)

12. Add a table-level PRIMARY KEY constraint to the EMP2 table on the ID column. The
constraint should be named at creation. Name the constraint my emp id pk.

ALTER TABLE emp2
ADD CONSTRAINT my emp id pk PRIMARY KEY (id);

13. Create a PRIMARY KEY constraint to the DEPT2 table using the ID column. The
constraint should be named at creation. Name the constraint my dept id pk.

ALTER TABLE dept?2
ADD CONSTRAINT my dept id pk PRIMARY KEY (id);

14. Add a foreign key reference on the EMP2 table that ensures that the employee is not
assigned to a nonexistent department. Name the constraint my emp dept id fk.

ALTER TABLE emp2
ADD CONSTRAINT my emp dept id fk
FOREIGN KEY (dept id) REFERENCES dept2(id);

15. Modify the EMP2 table. Add a COMMISSION column of the NUMBER data type,
precision 2, scale 2. Add a constraint to the COMMISSION column that ensures that a
commission value is greater than zero.

ALTER TABLE emp?2
ADD commission NUMBER (2, 2)
CONSTRAINT my emp comm ck CHECK (commission > 0);

16. Drop the EMP2 and DEPT?2 tables so that they cannot be restored. Check in the
recycle bin.

DROP TABLE empZ2 PURGE;
DROP TABLE dept2 PURGE;

SELECT original name, operation, droptime
FROM recyclebin;

17. Create the DEPT NAMED INDEX table based on the following table instance chart.
Name the index for the PRIMARY KEY column as DEPT PK IDX.

Column Name Deptno Dname
Primary Key Yes

Data Type Number VARCHAR?2
Length 4 30

Oracle Database: SQL Fundamentals Il A - 34

Practice Solutions 2-1: Managing Schema Objects (continued)

CREATE TABLE DEPT NAMED INDEX
(deptno NUMBER (4)
PRIMARY KEY USING INDEX
(CREATE INDEX dept pk idx ON
DEPT_NAMED_INDEX(deptnO)),
dname VARCHAR2 (30));

18. Create an external table 1ibrary items ext. Use the ORACLE LOADER access

driver.
Note: The emp dir directory and 1ibrary items.dat are already created for
this exercise. Ensure that the external file and the database are on the same machine.

library items.dat hasrecords in the following format:
2354, 2264, 13.21, 150,
2355, 2289, 46.23, 200,
2355, 2264, 50.00, 100,

a)Openthe 1ab 02 18.sql file. Observe the code snippet to create the
library items ext external table. Then, replace <TODO1>, <TODO2>,
<TODO3>, and <TODO4> as appropriate and save the file as
lab 02 18 soln.sqgl.
Run the script to create the external table.

CREATE TABLE library items ext (category id number (12)
book id number (6)

book price number (8, 2)
quantity number (8)

~ N N~

ORGANIZATION EXTERNAL
(TYPE ORACLE LOADER
DEFAULT DIRECTORY emp_dir
ACCESS PARAMETERS (RECORDS DELIMITED BY NEWLINE
FIELDS TERMINATED BY ', ')
LOCATION ('library items.dat')

)
REJECT LIMIT UNLIMITED;

Oracle Database: SQL Fundamentals Il A - 35

Practice Solutions 2-1: Managing Schema Objects (continued)

19.

b) Query the l1ibrary items ext table.

[SELECT * FROM library items ext;

The HR department needs a report of addresses of all the departments. Create an
external table as dept add ext using the ORACLE DATAPUMP access driver.
The report should show the location ID, street address, city, state or province, and
country in the output. Use a NATURAL JOIN to produce the results.

Note: The emp dir directory is already created for this exercise. Ensure that the
external file and the database are on the same machine.

a) Openthe lab 02 19.sql file. Observe the code snippet to create the
dept add ext external table. Then, replace <TODO1>, <TODO2>, and
<TODO3> with appropriate code. Replace <oraxx emp4.exp> and
<oraxx_emp5. exp> with appropriate file names. For example, if you are user
ora2l, your file names are ora2l emp4.exp and ora2l emp5.exp. Save
the scriptas 1ab 02 19 soln.sql.

CREATE TABLE dept add ext (location id,
street address, city,
state province,
country name)

ORGANIZATION EXTERNAL (

TYPE ORACLE DATAPUMP

DEFAULT DIRECTORY emp_dir

LOCATION ('oraxx empé4.exp', 'oraxx emp5S.exp'))

PARALLEL

AS

SELECT location id, street address, city, state province,

country name

FROM locations

NATURAL JOIN countries;

Note: When you perform the preceding step, two files oraxx emp4 . exp and
oraxx emp5.exp are created under the default directory emp dir.

Runthe lab 02 19 soln.sqgl script to create the external table.

Oracle Database: SQL Fundamentals Il A - 36

Practice Solutions 2-1: Managing Schema Objects (continued)

b) Query the dept add ext table.

[SELECT * FROM dept add ext;

20. Create the emp books table and populate it with data. Set the primary key as
deferred and observe what happens at the end of the transaction.

a) Runthe 1ab 02 20a.sqgl script to create the emp books table. Observe
that the emp books_pk primary key is not created as deferrable.

CREATE TABLE emp books (book id number,
title varchar2(20), CONSTRAINT
emp books pk PRIMARY KEY (book id));

b) Run the 1ab 02 20b.sqgl script to populate data into the emp books

table.
What do you observe?

INSERT INTO emp books VALUES (300, 'Organizations');
INSERT INTO emp books VALUES (300, 'Change Management');

The first row is inserted. However, you see the ora-00001 error with the
second row insertion.
c) Set the emp books pk constraint as deferred. What do you observe?

|SET CONSTRAINT emp books pk DEFERRED;

You see the following error: “ORA-02447: Cannot defer a constraint that is not
deferrable.”

d) Drop the emp books pk constraint.

|ALTER TABLE emp books DROP CONSTRAINT emp books pk;

€) Modify the emp books table definition to add the emp books pk
constraint as deferrable this time.

ALTER TABLE emp books ADD (CONSTRAINT emp books pk PRIMARY KEY
(book id) DEFERRABLE) ;

f) Set the emp books pk constraint as deferred.

|SET CONSTRAINT emp books pk DEFERRED;

Oracle Database: SQL Fundamentals Il A - 37

Practice Solutions 2-1: Managing Schema Objects (continued)

g) Runthe 1ab 02 20g.sqgl script to populate data into the emp books
table.
What do you observe?

INSERT INTO emp books VALUES (300, 'Change Management');
INSERT INTO emp books VALUES (300, 'Personality');
INSERT INTO emp books VALUES (350, 'Creativity');

You see that all the rows are inserted.

h) Commit the transaction. What do you observe?

[commrT;

You see that the transaction is rolled back.

Oracle Database: SQL Fundamentals Il A - 38

Practices and Solutions for Lesson 3

Practice 3-1: Managing Objects with Data Dictionary Views

In this practice, you query the dictionary views to find information about objects in your
schema.

1. Query the USER TABLES data dictionary view to see information about the tables
that you own.

TABLE_NAME
1 REGIONS
2 LOCATIONS
3 DEPARTMENTS
4 JOBS
5 EMPLOEES
6 JOB_HISTORY
7 EMP_NEW_SAL
& EMPLOYEES2
9 DEFT_MAMED_INDEX

2. Query the ALL. TABLES data dictionary view to see information about all the tables
that you can access. Exclude the tables that you own.
Note: Your list may not exactly match the following list:

TABLE_MAME @ owner |
1 DUAL S
2 SYSTEM_PRIVILEGE_MAP S
3 TABLE_PRIVILEGE_MAP S
95 PLAN_TABLES $YS
93 WRI$_ADV_ASA_RECO_DATA S
100 PSTUBTEL S

3. For a specified table, create a script that reports the column names, data types, and
data types’ lengths, as well as whether nulls are allowed. Prompt the user to enter the
table name. Give appropriate aliases to the DATA PRECISION and DATA SCALE
columns. Save this script in a file named 1ab_ 03 01.sqgl.

For example, if the user enters DEPARTMENTS, the following output results:

Oracle Database: SQL Fundamentals Il A -39

Practice 3-1: Managing Objects with Data Dictionary Views
(continued)

COLUMN_NAME |[§| DaTA_TYPE [} DaTA_LENGTH [PRECISION|E ScCALE[NULLABLE
1 DEPARTMENT_ID MUMEER 2z 4 oM
2 DEPARTMENT_NAME VARCHARZ 30 frully fully N
3 MANAGER_ID MLIMEER: 2z 6 o
4 LOCATION_ID NUMEER 2z 4 0y

4. Create a script that reports the column name, constraint name, constraint type, search
condition, and status for a specified table. You must join the USER_ CONSTRAINTS
and USER_CONS_COLUMNS tables to obtain all this information. Prompt the user to
enter the table name. Save the script in a file named 1ab 03 04.sqgl.

For example, if the user enters DEPARTMENTS, the following output results:

COLUMN_NAME || CONSTRAINT_MAME |{ CONSTRA..|SEARCH_CONDITION @ status

1 DEPARTMEMT_MAME DEPT_MAME_MM C "DEPARTMEMT_RLAME" |5 MOT ..

£ DEPARTMENT_ID DEFT_ID_PE. F (il EMABLED
3 LOCATICN_[D DEFT_LOC_FEK R (il EMABLED
4 MANAGER_ID DEFT_MGR_FE. R rnully EMAELED

5. Add a comment to the DEPARTMENTS table. Then query the
USER TAB COMMENTS view to verify that the comment is present.

COMMENTS

1 Company department information including name, code, and location.

6. Create a synonym for your EMPLOYEES table. Call it EMP. Then find the names of
all synonyms that are in your schema.

SYMONYM_MAME | TABLE_OWNER | TABLE_NAME|[] DB_LINK
1 TEAMZ ORAZZ DEPARTMENTS ¢null
2 EMP ORAZL EMPLOYEES il

7. Runlab 03 07.sql to create the dept50 view for this exercise.
You need to determine the names and definitions of all the views in your schema.
Create a report that retrieves view information: the view name and text from the
USER_VIEWS data dictionary view.
Note: The EMP DETAILS VIEW was created as part of your schema.
Note: You can see the complete definition of the view if you use Run Script (or press
F5) in SQL Developer. If you use Execute Statement (or press F9) in SQL Developer,
scroll horizontally in the result pane. If you use SQL*Plus, to see more contents of a
LONG column, use the SET LONG n command, where n is the value of the number
of characters of the LONG column that you want to see.

Oracle Database: SQL Fundamentals Il A -40

Practice 3-1: Managing Objects with Data Dictionary Views
(continued)

VIEW_NAME | TEXT

1 DEFTSO SELECT employee_id empno, last_name employes, department_id deptno
2 EMP_DETAILS_WIEW SELECT eemployee_id, ejob_id, e.manager_id, e.departmeni_id, d.location_id,

8. Find the names of your sequences. Write a query in a script to display the following
information about your sequences: sequence name, maximum value, increment size,
and last number. Name the script 1ab 03 08.sqgl. Run the statement in your

script.
SEQ_LIENCE_NAME| b 3_a LUIE | INCREMENT_EY| Lty ST_MUMEER
1 DEPARTMENTS_SEQ 3990 10 250
2 EMPLOYEES_SEQ 99989989959935959 9959595959 1 207
3 LOCATIONS_SEQ 3900 100 3300

Runthe 1ab 03 09 tab.sql script as a prerequisite for exercises 9 through 11.

Alternatively, open the script file to copy the code and paste it into your SQL Worksheet.
Then execute the script. This script:

* Drops if there are existing tables DEPT2 and EMP2
* Creates the DEPT2 and EMP2 tables

Note: In Practice 2, you should have already dropped the DEPT2 and EMP2 tables so that
they cannot be restored.

9. Confirm that both the DEPT2 and EMP2 tables are stored in the data dictionary.

TaELE_RAME
1 DEFTZ
2 EMPZ

10. Confirm that the constraints were added by querying the USER_CONSTRAINTS
view. Note the types and names of the constraints.
CONSTRAINT_NAME |[f] CONSTRAINT_TYPE
1 MY_DEPT_ID_PK P
2 MY_EMP_ID_PK P
3 MY_EMP_DEFT_ID_FE. R

11. Display the object names and types from the USER OBJECTS data dictionary view
for the EMP2 and DEPT?2 tables.

12. Create the SALES_DEPT table based on the following table instance chart. Name the
index for the PRIMARY KEY column SALES PK IDX. Then query the data
dictionary view to find the index name, table name, and whether the index is unique.

Oracle Database: SQL Fundamentals Il A - 41

Practice 3-1: Managing Objects with Data Dictionary Views
(continued)

Column Name Team Id Location
Primary Key Yes

Data Type Number VARCHAR2
Length 3 30

INDEX_MAME [TaBLE_NAME | UMIQUENESS
1 SALES_PK_IDX SALES_DEFT NONUNIQUE

Oracle Database: SQL Fundamentals Il A -42

Practice Solutions 3-1: Managing Objects with Data Dictionary
Views

1. Query the data dictionary to see information about the tables you
own.

SELECT table name
FROM user tables;

2. Query the dictionary view to see information about all the tables that you can access.
Exclude tables that you own.

SELECT table name, owner
FROM all tables
WHERE owner <>'ORAxx';

3. For a specified table, create a script that reports the column names, data types, and
data types’ lengths, as well as whether nulls are allowed. Prompt the user to enter the
table name. Give appropriate aliases to the DATA PRECISION and DATA SCALE
columns. Save this script in a file named 1ab 03 01.sqgl.

SELECT column name, data type, data length,

data precision PRECISION, data scale SCALE, nullable
FROM user tab columns
WHERE table name = UPPER('&tab name');

To test, run the script and enter DEPARTMENTS as the table name.

4. Create a script that reports the column name, constraint name, constraint type, search
condition, and status for a specified table. You must join the USER_CONSTRAINTS
and USER CONS COLUMNS tables to obtain all this information. Prompt the user to
enter the table name. Save the script in a file named 1ab 03 04.sqgl.

SELECT ucc.column name, uc.constraint name,
uc.constraint type,

uc.search condition, uc.status
FROM user constraints uc JOIN user cons_columns ucc

ON uc.table name = ucc.table name
AND uc.constraint name = ucc.constraint name
AND uc.table name = UPPER('&tab name');

To test, run the script and enter DEPARTMENTS as the table name.

Oracle Database: SQL Fundamentals Il A -43

Practice Solutions 3-1: Managing Objects with Data Dictionary
Views (continued)

5. Add a comment to the DEPARTMENTS table. Then query the
USER TAB COMMENTS view to verify that the comment is present.

COMMENT ON TABLE departments IS
'Company department information including name, code, and
location.';

SELECT COMMENTS
FROM user tab comments
WHERE table name = 'DEPARTMENTS';

6. Create a synonym for your EMPLOYEES table. Call it EMP. Then, find the names of
all the synonyms that are in your schema.

CREATE SYNONYM emp FOR EMPLOYEES;
SELECT *
FROM user synonyms;

7. Runlab 03 07.sqgl to create the dept50 view for this exercise. You need to
determine the names and definitions of all the views in your schema. Create a report
that retrieves view information: the view name and text from the USER VIEWS data
dictionary view.

Note: The EMP DETAILS VIEW was created as part of your schema.

Note: You can see the complete definition of the view if you use Run Script (or press
F5) in SQL Developer. If you use Execute Statement (or press F9) in SQL
Developer, scroll horizontally in the result pane. If you use SQL*Plus to see more
contents of a LONG column, use the SET LONG n command, where n is the value
of the number of characters of the LONG column that you want to see.

SELECT view name, text
FROM user views;

Oracle Database: SQL Fundamentals Il A -44

Practice Solutions 3-1: Managing Objects with Data Dictionary

Views (continued)

8. Find the names of your sequences. Write a query in a script to display the following
information about your sequences: sequence name, maximum value, increment size,
and last number. Name the script 1ab 03 08.sqgl. Run the statement in your
script.

SELECT sequence name, max value, increment by, last number
FROM user sequences;

Runthe 1ab 03 09 tab.sql script as a prerequisite for exercises 9 through 11.
Alternatively, open the script file to copy the code and paste it into your SQL
Worksheet. Then execute the script. This script:

e Drops the DEPT2 and EMP2 tables
e Creates the DEPT2 and EMP2 tables

Note: In Practice 2, you should have already dropped the DEPT2 and EMP2 tables so
that they cannot be restored.

9. Confirm that both the DEPT2 and EMP?2 tables are stored in the data dictionary.

SELECT table name
FROM user tables
WHERE table name IN ('DEPT2', 'EMP2');

10. Query the data dictionary to find out the constraint names and types for both the
tables.

SELECT constraint name, constraint type
FROM user constraints
WHERE table name IN ('EMP2', 'DEPT2');

11. Query the data dictionary to display the object names and types for both the tables.

SELECT object name, object type
FROM user objects

WHERE object name LIKE 'EMP%'
OR object name LIKE 'DEPT%';

Oracle Database: SQL Fundamentals Il A -45

Practice Solutions 3-1: Managing Objects with Data Dictionary
Views (continued)

12. Create the SALES_DEPT table based on the following table instance chart. Name the
index for the PRIMARY KEY column as SALES PK IDX. Then query the data
dictionary view to find the index name, table name, and whether the index is unique.

Column Name Team Id Location
Primary Key Yes

Data Type Number VARCHAR2
Length 3 30

CREATE TABLE SALES DEPT
(team id NUMBER (3)
PRIMARY KEY USING INDEX
(CREATE INDEX sales pk idx ON
SALES_DEPT(team_id)),
location VARCHARZ2 (30));

SELECT INDEX NAME, TABLE NAME, UNIQUENESS
FROM USER INDEXES
WHERE TABLE NAME = ‘SALES DEPT';

Oracle Database: SQL Fundamentals Il A -46

Practices and Solutions for Lesson 4

Practice 4-1: Manipulating Large Data Sets

In this practice, you perform multitable INSERT and MERGE operations, and track row
versions.

1. Runthe 1ab 04 01.sqgl script in the lab folder to create the SAL HISTORY
table.

2. Display the structure of the SAL. HISTORY table.

Mame MuUT1 Twpe
EMPLOYEE_ID WUMEEE.{G]
HIRE_DATE DATE
SALARY WUMEER.(S, 27
3 rows selected

3. Runthe 1ab 04 03.sql script in the lab folder to create the MGR HISTORY
table.

4. Display the structure of the MGR HISTORY table.

Wame Wull Twpe
EMPLOYEE_ID MUMBER{E)
MANAGER_ID WUMBER. (&)
SALARY WUMBER.(S, 27
3 rows selected

5. Runthe 1ab 04 05.sql script in the lab folder to create the SPECIAL SAL
table.

6. Display the structure of the SPECIAL SAL table.

Mame MUt Twhe
EMPLOYEE_ID NUMBEER.(6)
SALARY NUMBER.(E, 27

2 rows selected

7. a. Write a query to do the following:

- Retrieve details such as the employee ID, hire date, salary, and manager ID of
those employees whose employee ID is less than 125 from the EMPLOYEES
table.

- If the salary is more than $20,000, insert details such as the employee ID and
salary into the SPECIAL SAL table.

Oracle Database: SQL Fundamentals Il A -47

Practice 4-1: Manipulating Large Data Sets (continued)

- Insert details such as the employee ID, hire date, and salary into the
SAL HISTORY table.

- Insert details such as the employee ID, manager ID, and salary into the
MGR HISTORY table.

b. Display the records from the SPECIAL SAL table.

EMPLOYEE_ID [SALARY
1 100 24000

c. Display the records from the SAL HISTORY table.

EMPLOYEE_ID |§ HIRE_DATE|[saLary
1 101 21-5EP-89 17000
2 102 13-JAN-93 17000
3 103 03-JAN-30 3000
4 104 21-MAY-31 6000
5 105 25-JUN-37 4800
6 106 05-FEB-95 4800
7 107 07-FEB-99 4200

d. Display the records from the MGR HISTORY table.

B empLovEEID | manacER_ID | saLary
1 101 100 17000
2 102 100 17000
3 103 102 3000
4 104 103 5000
5 105 103 4800
6 106 103 4800
7 107 103 4200

a. Runthe lab 04 08 a.sqgl scriptin the lab folder to create the
SALES WEEK_ DATA table.

b. Runthe lab 04 08b.sql scriptin the lab folder to insert records into the
SALES WEEK DATA table.

Oracle Database: SQL Fundamentals Il A -48

Practice 4-1: Manipulating Large Data Sets (continued)
c. Display the structure of the SALES WEEK DATA table.

Wame M1 Twpe

ID WUMBEE (G
WEEE_ID MUMBEE (2]
OTv_MON WUMBER(E, 22
OTv_TUE WUMBER(S, 23
AT _WED MUMBER(E, 21
OTv_THUE. MUMBER(E, 20
OTv_FEI WUMBER(S, 22
7 rows selected

d. Display the records from the SALES WEEK DATA table.

io|g weeko [§ arvomon | orv_tue [arvowep |§ o THUR B QTv_FR

1 zoo & 2050 2200 1700 1200 3000

e. Runthe lab 04 08 e.sqgl scriptin the lab folder to create the
EMP SALES_INFO table.

f. Display the structure of the EMP_SALES INFO table.

MName Mutl Twhe

ID WUMBER(E)
WEEK: WUMBER 2]
0T _SALES WUMBER(E, 22
3 rows selected

g. Write a query to do the following:
- Retrieve details such as ID, week ID, sales quantity on Monday, sales
quantity on Tuesday, sales quantity on Wednesday, sales quantity on
Thursday, and sales quantity on Friday from the SALES WEEK DATA
table.

- Build a transformation such that each record retrieved from the
SALES WEEK DATA table is converted into multiple records for the
EMP_SALES INFO table.

Hint: Use a pivoting INSERT statement.

h. Display the records from the EMP SALES INFO table.

o |§ week|§ Qrv_saLes
1 zo0 5 2050
2 200 5 2200
3 z00 5 1700
4 200 5 1200
5 200 5 3000

9. You have the data of past employees stored in a flat file called emp . data. You want
to store the names and email IDs of all employees, past and present, in a table. To do

Oracle Database: SQL Fundamentals Il A -49

Practice 4-1: Manipulating Large Data Sets (continued)

this, first create an external table called EMP_DATA using the emp . dat source file
in the emp dir directory. Use the 1ab 04 09.sql script to do this.

10. Next, run the lab 04 10.sqgl script to create the EMP HIST table.
a. Increase the size of the email column to 45.

b. Merge the data in the EMP DATA table created in the last lab into the data in
the EMP_HIST table. Assume that the data in the external EMP DATA table is
the most up-to-date. If a row in the EMP_DATA table matches the EMP HIST
table, update the email column of the EMP HIST table to match the
EMP_DATA table row. If a row in the EMP DATA table does not match, insert
it into the EMP_HIST table. Rows are considered matching when the
employee’s first and last names are identical.

c. Retrieve the rows from EMP HIST after the merge.

FIRST_MAME|[LasT_MaAME|§ EmalL
1 Ellen Ahel EA8EBEL
Z sundar Ande SAMDE
3 Mozhe Atkinsan WA TR SO
4 David Ausztin DALSTIN
5 Hermann Baer HEAER.
6 Shelli Baida SEAIDA
7 Amit Banda ABAMDA
g Elizabeth fates EBATES
9 Sarah Bell SEELL
10 David Bernstein DEERMSTE
11 Laura Bizzot LEISSOT

11. Create the EMP3 table by using the 1ab 04 11.sqgl script. In the EMP3 table,
change the department for Kochhar to 60 and commit your change. Next, change
the department for Kochhar to 50 and commit your change. Track the changes to
Kochhar by using the Row Versions feature.

START_DATE @ Enp_DaTE [l DEPARTMENT.ID |
1 18-JUN-09 06.04.26.000000000 PM {null) 50
2 18-JUN-09 06.04.26.000000000 PM 18-JUN-09 06.04.26.000000000 PM 60
3 (null) 15-JUN-09 06.04.26.000000000 PM 30

Oracle Database: SQL Fundamentals Il A - 50

Practice Solutions 4-1: Manipulating Large Data Sets

1. Runthe 1ab 04 01.sqgl script in the lab folder to create the SAL_HISTORY
table.

2. Display the structure of the SAL. _HISTORY table.

| DESC sal history

3. Runthe 1ab 04 03.sql script in the lab folder to create the MGR_HISTORY
table.

4. Display the structure of the MGR HISTORY table.

| DESC mgr history

5. Runthe 1ab 04 05.sqgl script in the lab folder to create the SPECIAL SAL
table.

6. Display the structure of the SPECIAL SAL table.

| DESC special sal

7. a) Write a query to do the following:

- Retrieve details such as the employee ID, hire date, salary, and manager ID
of those employees whose employee ID is less than 125 from the
EMPLOYEES table.

- If the salary is more than $20,000, insert details such as the employee ID
and salary into the SPECTIAL SAL table.

- Insert details such as the employee ID, hire date, and salary into the
SAL_HISTORYtﬂﬂ&

- Insert details such as the employee ID, manager ID, and salary into the
MGR_HISTORYtMﬂ&

Oracle Database: SQL Fundamentals Il A - 51

Practice Solutions 4-1: Manipulating Large Data Sets (continued)

INSERT ALL

WHEN SAL > 20000 THEN

INTO special sal VALUES (EMPID, SAL)

ELSE

INTO sal history VALUES (EMPID, HIREDATE, SAL)
INTO mgr history VALUES (EMPID,MGR, SAL)

SELECT employee id EMPID, hire date HIREDATE,
salary SAL, manager id MGR

FROM employees

WHERE employee id < 125;

b) Display the records from the SPECIAL SAL table.

| SELECT * FROM special sal;

c) Display the records from the SAL HISTORY table.

| SELECT * FROM sal history;

d) Display the records from the MGR HISTORY table.

| SELECT * FROM mgr history;

8. a) Runthe 1ab 04 08a.sqgl script in the lab folder to create the
SALES WEEK DATA table.

b) Runthe 1ab 04 08b.sqgl script in the lab folder to insert records into the
SALES WEEK DATA table.

c) Display the structure of the SALES WEEK DATA table.

| DESC sales week data

d) Display the records from the SALES WEEK DATA table.

| SELECT * FROM SALES WEEK DATA;

Oracle Database: SQL Fundamentals Il A - 52

Practice Solutions 4-1: Manipulating Large Data Sets (continued)

e) Runthe 1ab 04 08 e.sql script in the lab folder to create the
EMP SALES_INFO table.

f) Display the structure of the EMP_SALES INFO table.

| DESC emp sales info

g) Write a query to do the following:

- Retrieve details such as the employee ID, week ID, sales quantity on
Monday, sales quantity on Tuesday, sales quantity on Wednesday, sales
quantity on Thursday, and sales quantity on Friday from the
SALES_WEEK_DATA table.

- Build a transformation such that each record retrieved from the
SALES WEEK DATA table is converted into multiple records for the
EMP_SALES INFO table.

Hint: Use a pivoting INSERT statement.

INSERT ALL
INTO emp sales info VALUES (id, week id, QTY MON)
INTO emp sales info VALUES (id, week id, QTY TUE)
INTO emp sales info VALUES (id, week id, QTY WED)
INTO emp sales info VALUES (id, week id, QTY THUR)
INTO emp sales info VALUES (id, week id, QTY FRI)
SELECT ID, week id, QTY MON, QTY TUE, QTY WED,
QTY THUR,QTY FRI FROM sales week data;

h) Display the records from the SALES INFO table.

| SELECT * FROM emp sales info;

Oracle Database: SQL Fundamentals Il A -53

Practice Solutions 4-1: Manipulating Large Data Sets (continued)

9. You have the data of past employees stored in a flat file called emp.data. You
want to store the names and email IDs of all employees past and present in a
table. To do this, first create an external table called EMP DATA using the
emp . dat source file in the emp dir directory. You can use the script in
lab 04 09.sql to do this.

CREATE TABLE emp data
(first name VARCHAR2 (20)
,last name VARCHAR2 (20)
, email VARCHAR?Z2 (30)
)
ORGANIZATION EXTERNAL
(
TYPE oracle loader
DEFAULT DIRECTORY emp_dir
ACCESS PARAMETERS
(
RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
NOBADFILE
NOLOGFILE
FIELDS
(first name POSITION (1:20) CHAR
;, last name POSITION (22:41) CHAR
, email POSITION (43:72) CHAR)
)
LOCATION ('emp.dat')) =

10. Next, run the 1ab 04 10.sql script to create the EMP HIST table.
a) Increase the size of the email column to 45.

|ALTER TABLE emp hist MODIFY email varchar (45);

b) Merge the data in the EMP_DATA table created in the last lab into the data in
the EMP_HIST table. Assume that the data in the external EMP DATA table
is the most up-to-date. If a row in the EMP DATA table matches the
EMP_HIST table, update the email column of the EMP HIST table to match
the EMP_DATA table row. If a row in the EMP_ DATA table does not match,
insert it into the EMP HIST table. Rows are considered matching when the
employee’s first and last names are identical.

MERGE INTO EMP HIST f USING EMP DATA h
ON (f.first name = h.first name
AND f.last name = h.last name)

Oracle Database: SQL Fundamentals Il A - 54

Practice Solutions 4-1: Manipulating Large Data Sets (continued)

WHEN MATCHED THEN
UPDATE SET f.email = h.email

WHEN NOT MATCHED THEN
INSERT (f.first name
, f.last name

, f.email)

VALUES (h.first name
, h.last name
, h.email);

c) Retrieve the rows from EMP HIST after the merge.

[SELECT * FROM emp hist;

11. Create the EMP3 table using the 1ab 04 11.sqgl script. In the EMP3 table,
change the department for Kochhar to 60 and commit your change. Next,
change the department for Kochhar to 50 and commit your change. Track the
changes to Kochhar using the Row Versions feature.

UPDATE emp3 SET department id = 60
WHERE last name = ‘Kochhar’;
COMMIT;

UPDATE emp3 SET department id = 50
WHERE last name = ‘Kochhar’;
COMMIT;

SELECT VERSIONS STARTTIME "START DATE",
VERSIONS ENDTIME "END DATE", DEPARTMENT ID
FROM EMP3
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
WHERE LAST NAME ='Kochhar';

Oracle Database: SQL Fundamentals Il A -55

Practices and Solutions for Lesson 5

Practice 5-1: Managing Data in Different Time Zones
In this practice, you display time zone offsets, CURRENT DATE,
CURRENT TIMESTAMP, and LOCALTIMESTAMP. You also set time zones and use the
EXTRACT function.
1. Alter the session to set NS DATE FORMAT to DD-MON-YYYY HH24 :MI:SS.
2. a. Write queries to display the time zone offsets (TZ OFFSET) for the following
time zones.
- US/Pacific-New

TZ_OFFSET{US P CIFIC - MW"
1 -07:000

- Singapore

TZ_OFFSET{SINCAPORED
1 +03:000

- Egypt
TZ_OFFSET{ECTYFTY
1 +03:000

b. Alter the session to set the TIME ZONE parameter value to the time zone
offset of US/Pacific-New.

c. Display CURRENT DATE, CURRENT TIMESTAMP, and
LOCALTIMESTAMP for this session.

d. Alter the session to set the TIME ZONE parameter value to the time zone
offset of Singapore.

e. Display CURRENT DATE, CURRENT TIMESTAMP, and
LOCALTIMESTAMP for this session.

Note: The output might be different based on the date when the command is
executed.

CURRENT_DATE | CURRENT_TIMESTAMP [LoCALTIMESTAMP

1 23-JURr-200% 15:12:08 23-JUR-09 03.12.05.000000000 PM +08:00 23-JUMN-09 03.12.05.000000000 P

Note: Observe in the preceding practice that CURRENT DATE,
CURRENT TIMESTAMP, and LOCALTIMESTAMP are sensitive to the
session time zone.

3. Write a query to display DBTIMEZONE and SESSTIONTIMEZONE.

DETIMEZONE || SESSIONTIMEZONE
1 +00:00 +0&:00

4. Write a query to extract the YEAR from the HIRE DATE column of the EMPLOYEES
table for those employees who work in department 80.

Oracle Database: SQL Fundamentals Il A - 56

Practice 5-1: Managing Data in Different Time Zones (continued)

LAST_NAME' E<TRACTHEARFROMHIRE_DATE)
1 Ruszzell 1996
Z Partners 1997
3 Errazuriz 1997
4 Cambrault 19949
5 Zlotkey 2000
& Tucker 1997
7 Bernsztein 1997

5. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY.

6. Examine and run the 1ab 05 06.sqgl script to create the SAMPLE DATES table
and populate it.

a. Select from the table and view the data.

DATE_COL
1 23-JUN-2009

b. Modify the data type of the DATE COL column and change it to
TIMESTAMP. Select from the table to view the data.

DATE_COL
1 23-JUN-08 02.14.52.000000000 Ph

c. Try to modify the data type of the DATE COL column and change it to
TIMESTAMP WITH TIME ZONE. What happens?

7. Create a query to retrieve last names from the EMPLOYEES table and calculate the
review status. If the year hired was 1998, display Needs Review for the review
status; otherwise, display not this year! Name the review status column
Review. Sort the results by the HIRE DATE column.

Hint: Use a CASE expression with the EXTRACT function to calculate the review

status.

LasT_MAME [Review
1 king nat this year!
2 Whalen nat this year!
3 kochhar nat this year!
4 Hunald nat this year!
5 Ernst nat this year!
& De Haan nat this year!
7 Mavris nat this year!

Oracle Database: SQL Fundamentals Il A - 57

Practice 5-1: Managing Data in Different Time Zones (continued)

8. Create a query to print the last names and the number of years of service for each
employee. If the employee has been employed for five or more years, print 5 years
of service. If the employee has been employed for 10 or more years, print 10
years of service. If the employee has been employed for 15 or more years,
print 15 years of service. If none of these conditions match, print maybe
next year! Sortthe results by the HIRE DATE column. Use the EMPLOYEES
table.
Hint: Use CASE expressions and TO_ YMINTERVAL.

LAST_NAME |f| HIRE_DATE || svsDATE |[{ Awards
1 OCannell 21-JUM-1999 Z23-JUMN-2009 10 vears of service
2 Grant 13-|apM-2000 22-JUM-2009 5years of service
3 Whalen 17-5EP-1987 Z23-JUMN-200%9 15 vears of service
4 Hartzstein 17-FEB-199& 22-JUM-2009 10vears of service
5 Fay 17-AUGC-1997 23-JUMN-2009 10 vears of service
& Mavriz O7-JUM-1994 22-JUM-2009 15 vears of service

Oracle Database: SQL Fundamentals Il A - 58

Practice Solutions 5-1: Managing Data in Different Time Zones

1. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY HH24:MI:SS.

ALTER SESSION SET NLS DATE FORMAT =
'DD-MON-YYYY HH24:MI:SS';

2. a. Write queries to display the time zone offsets (TZ OFFSET) for the following
time zones: US/Pacific-New, Singapore, and Egypt.

US/Pacific-New

| SELECT TZ OFFSET ('US/Pacific-New') from dual;
Singapore

| SELECT TZ OFFSET ('Singapore') from dual;
Egypt

SELECT TZ OFFSET ('Egypt') from dual;

Alter the session to set the TIME ZONE parameter value to the time zone offset
of US/Pacific-New.

ALTER SESSION SET TIME ZONE = '-7:00';

DBpMyCURRENT_DATE,CURRENT_TIMESTAMP,mﬂiLOCALTIMESTAMP
for this session.

Note: The output may be different based on the date when the command is
executed.

SELECT CURRENT DATE, CURRENT TIMESTAMP,
LOCALTIMESTAMP FROM DUAL;

Alter the session to set the TIME ZONE parameter value to the time zone offset
of Singapore.

| ALTER SESSION SET TIME ZONE = '+8:00';

.

DBphyCURRENT_DATE,CURRENT_TIMESTAMP,mﬂiLOCALTIMESTAMP
for this session.

Note: The output might be different, based on the date when the command is
executed.

SELECT CURRENT DATE, CURRENT TIMESTAMP,
LOCALTIMESTAMP FROM DUAL;

Oracle Database: SQL Fundamentals Il A -59

Practice Solutions 5-1: Managing Data in Different Time Zones
(continued)

Note: Observe in the preceding practice that CURRENT DATE,
CURRENT TIMESTAMP, and LOCALTIMESTAMP are all sensitive to the session
time zone.

3. Write a query to display DBTIMEZONE and SESSTONT IMEZONE.

SELECT DBTIMEZONE, SESSIONTIMEZONE
FROM DUAL;

4. Write a query to extract YEAR from the HIRE DATE column of the EMPLOYEES
table for those employees who work in department 80.

SELECT last name, EXTRACT (YEAR FROM HIRE DATE)
FROM employees
WHERE department id = 80;

5. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY.

| ALTER SESSION SET NLS DATE FORMAT = 'DD-MON-YYYY';

6. Examine and runthe 1ab 05 06.sqgl script to create the SAMPLE DATES table
and populate it.

a. Select from the table and view the data.

| SELECT * FROM sample dates;

b. Modify the data type of the DATE COL column and change it to TIMESTAMP.
Select from the table to view the data.

ALTER TABLE sample dates MODIFY date col TIMESTAMP;
SELECT * FROM sample dates;

c. Try to modify the data type of the DATE COL column and change it to
TIMESTAMP WITH TIME ZONE. What happens?

ALTER TABLE sample dates MODIFY date col
TIMESTAMP WITH TIME ZONE;

Oracle Database: SQL Fundamentals Il A - 60

Practice Solutions 5-1: Managing Data in Different Time Zones
(continued)

You are unable to change the data type of the DATE COL column because the
Oracle server does not permit you to convert from TIMESTAMP to TIMESTAMP
WITH TIMEZONE by using the ALTER statement.

7. Create a query to retrieve last names from the EMPLOYEES table and calculate the
review status. If the year hired was 1998, display Needs Review for the review
status; otherwise, display not this year! Name the review status column
Review. Sort the results by the HIRE DATE column.

Hint: Use a CASE expression with the EXTRACT function to calculate the review
status.

SELECT e.last name
’ (CASE extract (year from e.hire date)
WHEN 1998 THEN 'Needs Review'
ELSE 'not this year!'
END) AS "Review "
FROM employees e
ORDER BY e.hire date;

8. Create a query to print the last names and the number of years of service for each
employee. If the employee has been employed five or more years, print 5 years of
service. If the employee has been employed 10 or more years, print 10 years
of service. If the employee has been employed 15 or more years, print 15 years
of service. If none of these conditions match, print maybe next year! Sort
the results by the HIRE DATE column. Use the EMPLOYEES table.

Hint: Use CASE expressions and TO YMINTERVAL.

SELECT e.last name, hire date, sysdate,

(CASE
WHEN (sysdate —TO_YMINTERVAL('15—O'))>=
hire date THEN '15 years of service'
WHEN (sysdate -TO_YMINTERVAL('10-0"))>= hire date
THEN '10 years of service'

WHEN (sysdate - TO YMINTERVAL('5-0'))>= hire date
THEN '5 years of service'
ELSE 'maybe next year!'
END) AS "Awards"
FROM employees e;

Oracle Database: SQL Fundamentals Il A - 61

Practices and Solutions for Lesson 6

Practice 6-1: Retrieving Data by Using Subqueries

In this practice, you write multiple-column subqueries, and correlated and scalar
subqueries. You also solve problems by writing the WITH clause.

1.

Write a query to display the last name, department number, and salary of any
employee whose department number and salary both match the department number
and salary of any employee who earns a commission.

LasT_MAME B DEPARTMENTID [saLaRy
1 Russell a0 14000
2 Partners a0 13500
3 Errazuriz a0 12000

Display the last name, department name, and salary of any employee whose salary
and commission match the salary and commission of any employee located in
location ID 1700.

LaST_MAME [f DEFARTMENT_MAME [§ saLary |
1 whalen Administration 4400
2 Higgins Accounting 1z000
3 Creenberg Finance 12000
4 Cietz Accounting 8300

Create a query to display the last name, hire date, and salary for all employees who
have the same salary and commission as Kochhar.

Note: Do not display Kochhar in the result set.

LAST_NAME |f| HIRE_DATE| saLaRY
1 De Haan 13-J4N-1993 17000

Create a query to display the employees who earn a salary that is higher than the
salary of all the sales managers (JOB_ID = 'SA MAN'). Sort the results from the
highest to the lowest.

Oracle Database: SQL Fundamentals Il A - 62

Practice 6-1: Retrieving Data by Using Subqueries (continued)
LasT_mane [JoBD [saLary

1 King AD_PRES £4000
£ De Haan AD_WP 17000
3 kochhar AD_WP 17000

5. Display details such as the employee ID, last name, and department ID of those
employees who live in cities the names of which begin with 7.

EMPLOVEE_ID | LaST_NAME|] DEPARTMENTID |
1 202 Fay z0
2 201 Hartstein 20

6. Write a query to find all employees who earn more than the average salary in their
departments. Display last name, salary, department ID, and the average salary for the
department. Sort by average salary and round to two decimals. Use aliases for the
columns retrieved by the query as shown in the sample output.

EnaME [saLary | DEPTHO [DEPT_AWG
1 Fripp 8200 50 3475.555555555555555555555555555555555556
Z Kaufling 7900 50 3475.555555555555555555555555555555555556
3 Chung 3800 50 3475.555555555555555555555555555555555556
4 Mourgas 5800 50 3475.555555555555555555555555555555555556
5 Bell 4000 50 3475.555555555555555555555555555555555556
& Rajs 3500 50 3475.555555555555555555555555555555555556
7 Bull 4100 50 3475.555555555555555555555555555555555556
o Foaratt =i=inin} CO = FC CCCCCC O CCCCCCCCCCCCCCCCCCCC D OO D O

7. Find all employees who are not supervisors.
a. First, do this using the NOT EXISTS operator.

Oracle Database: SQL Fundamentals Il A -63

Practice 6-1: Retrieving Data by Using Subqueries (continued)

LA ST_HAME
1 Abel
£ Ande
3 Atkinsan
4 Austin
5 Baer
A Baida

b. Can this be done by using the NOT IN operator? How, or why not?

8. Write a query to display the last names of the employees who earn less than the
average salary in their departments.
L& ST_MAME
1 Chen

2 hciarra
3 Urman
4 Papp
5 Khoo
& Baida

9. Write a query to display the last names of the employees who have one or more
coworkers in their departments with later hire dates but higher salaries.

LAy ST_MAME
1 “argas
£ Patel
3 Qlzon
4 Marlowe
5 Landry
A Perkinz

10. Write a query to display the employee ID, last names, and department names of all
the employees.
Note: Use a scalar subquery to retrieve the department name in the SELECT
statement.

EMPLOYEE_ID | L& ST_MA ME | DEPA RTMENT
1 205 Higginzs AcCcounting
2 206 Gietz Accounting
3 200 Whalen Administration
4 100 Eing Executive
5 101 kochhar Executive

Oracle Database: SQL Fundamentals Il A - 64

Practice 6-1: Retrieving Data by Using Subqueries (continued)

105 196 wWalzh Shipping
106 197 Feeney Shipping
107 178 Grant il

11. Write a query to display the department names of those departments whose total
salary cost is above one-eighth (1/8) of the total salary cost of the whole company.
Use the WITH clause to write this query. Name the query SUMMARY.

DEPARTMENT_MAME | DEPT_TOTAL |
1 sales 304500

Z Shipping 156400

Oracle Database: SQL Fundamentals Il A - 65

Practice Solutions 6-1: Retrieving Data by Using Subqueries

1. Write a query to display the last name, department number, and salary of any
employee whose department number and salary match the department number and
salary of any employee who earns a commission.

SELECT last name, department id, salary
FROM employees
WHERE (salary, department id) IN
(SELECT salary, department id
FROM employees
WHERE commission pct IS NOT NULL);

2. Display the last name, department name, and salary of any employee whose salary
and commission match the salary and commission of any employee located in
location ID1700.

SELECT e.last name, d.department name, e.salary

FROM employees e, departments d

WHERE e.department id = d.department id

AND (salary, NVL(commission pct,0)) IN

(SELECT salary, NVL(commission pct,0)

FROM employees e, departments d
WHERE e.department id = d.department id
ANDd.location id = 1700);

3. Create a query to display the last name, hire date, and salary for all employees
who have the same salary and commission as Kochhar.

Note: Do not display Kochhar in the result set.

SELECT last name, hire date, salary

FROM employees

WHERE (salary, NVL(commission pct,0)) IN
(SELECT salary, NVL(commission pct,0)
FROM employees
WHERE last name = 'Kochhar')

AND last name != 'Kochhar';

4. Create a query to display the employees who earn a salary that is higher than the
salary of all the sales managers (JOB ID = 'SA MAN'). Sort the results on
salary from the highest to the lowest.

SELECT last name, job id, salary
FROM employees
WHERE salary > ALL

(SELECT salary

FROM employees
WHERE job id = 'SA MAN')
ORDER BY salary DESC;

Oracle Database: SQL Fundamentals Il A - 66

Practice Solutions 6-1: Retrieving Data by Using Subqueries
(continued)

5. Display details such as the employee ID, last name, and department ID of those
employees who live in cities the names of which begin with 7.

SELECT employee id, last name, department id
FROM employees
WHERE department id IN (SELECT department id
FROM departments
WHERE location id IN
(SELECT location id
FROM locations
WHERE city LIKE 'T%'));

6. Write a query to find all employees who earn more than the average salary in their
departments. Display last name, salary, department ID, and the average salary for
the department. Sort by average salary. Use aliases for the columns retrieved by
the query as shown in the sample output.

SELECT e.last name ename, e.salary salary,
e.department id deptno, AVG(a.salary) dept avg

FROM employees e, employees a
WHERE e.department id = a.department id
AND e.salary > (SELECT AVG (salary)

FROM employees

WHERE department id = e.department id)
GROUP BY e.last name, e.salary, e.department id
ORDER BY AVG(a.salary);

Oracle Database: SQL Fundamentals Il A - 67

Practice Solutions 6-1: Retrieving Data by Using Subqueries
(continued)

7. Find all employees who are not supervisors.
a. First, do this by using the NOT EXISTS operator.

SELECT outer.last name
FROM employees outer
WHERE NOT EXISTS (SELECT 'X'
FROM employees inner
WHERE inner.manager id =
outer.employee id);

b. Can this be done by using the NOT IN operator? How, or why not?

SELECT outer.last name

FROM employees outer

WHERE outer.employee id

NOT IN (SELECT inner.manager id
FROM employees inner);

This alternative solution is not a good one. The subquery picks up a NULL value, so the
entire query returns no rows. The reason is that all conditions that compare a NULL
value result in NULL. Whenever NULL values are likely to be part of the value set, do
not use NOT IN as a substitute for NOT EXISTS.

8. Write a query to display the last names of the employees who earn less than the
average salary in their departments.

SELECT last name
FROM employees outer
WHERE outer.salary < (SELECT AVG(inner.salary)
FROM employees inner
WHERE inner.department id
= outer.department id);

Oracle Database: SQL Fundamentals Il A - 68

Practice Solutions 6-1: Retrieving Data by Using Subqueries
(continued)

9. Write a query to display the last names of employees who have one or more
coworkers in their departments with later hire dates but higher salaries.

SELECT last name
FROM employees outer
WHERE EXISTS (SELECT 'X'
FROM employees inner
WHERE inner.department id =
outer.department id
AND inner.hire date > outer.hire date
AND inner.salary > outer.salary);

10. Write a query to display the employee ID, last names, and department names of
all employees.
Note: Use a scalar subquery to retrieve the department name in the SELECT
statement.

SELECT employee id, last name,
(SELECT department name
FROM departments d
WHERE e.department id =
d.department id) department
FROM employees e
ORDER BY department;

11. Write a query to display the department names of those departments whose total
salary cost is above one-eighth (1/8) of the total salary cost of the whole
company. Use the WITH clause to write this query. Name the query SUMMARY.

WITH
summary AS (
SELECT d.department name, SUM(e.salary) AS dept total
FROM employees e, departments d
WHERE e.department id = d.department id
GROUP BY d.department name)
SELECT department name, dept total
FROM summary
WHERE dept total > (SELECT SUM(dept total) * 1/8
FROM summary)
ORDER BY dept total DESC;

Oracle Database: SQL Fundamentals Il A - 69

Practices and Solutions for Lesson 7

Practice 7-1: Regular Expression Support

In this practice, you use regular expressions functions to search for, replace, and

manipulate data. You also create a new CONTACTS table and add a CHECK constraint to

the p number column to ensure that phone numbers are entered into the database in a

specific standard format.

1. Write a query to search the EMPLOYEES table for all the employees whose first
names start with “Ki” or “Ko.”

FIRST_MAME | L&y ST_MAME

1 Janette Eing
2 Steven King
3 Meena kachhar

2. Create a query that removes the spaces in the STREET ADDRESS column of the

LOCATIONS table in the display. Use “Street Address” as the column heading.
Street Address
1z97viaCaladiRie
93091 CalledellaTesta
2017 5hinjuku-ku
9450kamiya-cho
Z014|abberwocky Rd
2011InteriarsBhed
2007 Zagorast

b I = TR) R N T S

3. Create a query that displays “St” replaced by “Street” in the STREET ADDRESS
column of the LOCATIONS table. Be careful that you do not affect any rows that
already have “Street” in them. Display only those rows that are affected.

REGCEXP_REPLACE(STREET_ADDRESS,'ST$','STREET"

1 2007 Zagora Street

£ 6092 Boxwood Street

3 12-98 Victoria Street

4 53204 Arthur Street

4. Create a contacts table and add a check constraint to the p number column to
enforce the following format mask to ensure that phone numbers are entered into the
database in the following standard format: (XXX) XXX-XXXX. The table should
have the following columns:

- 1 name varchar2 (30)
- p_number varchar2 (30)

Oracle Database: SQL Fundamentals Il A -70

Practice 7-1: Regular Expression Support (continued)

5. Run the SQL script 1ab 07 05.sqgl to insert the following seven phone numbers
into the contacts table. Which numbers are added?

1 name Column Value | p_number Column Value
NULL Y (650) 555-55557
NULL Y (215) 555-34277
NULL ‘650 555-55557

NULL ‘650 555 55557

NULL *650-555-5555"

NULL Y (650) 555-5555"
NULL ‘' (650) 555-5555"

6. Write a query to find the number of occurrences of the DNA pattern ctc in the string
gtctcgtctegttcectgtctgtegttcetg. Ignore case-sensitivity.

COUNT_DMA |
1 z

Oracle Database: SQL Fundamentals Il A -71

Practice Solutions 7-1: Regular Expression Support

1. Write a query to search the EMPLOYEES table for all employees whose first
names start with “Ki” or “Ko.”

SELECT first name, last name
FROM employees
WHERE REGEXP LIKE (last name, '"K(ilo).');

2. Create a query that removes the spaces in the STREET ADDRESS column of the
LOCATIONS table in the display. Use “Street Address” as the column heading.

SELECT regexp replace (street address, ' ', '') AS "Street
Address"
FROM locations;

3. Create a query that displays “St” replaced by “Street” in the STREET ADDRESS
column of the LOCATIONS table. Be careful that you do not affect any rows that
already have “Street” in them. Display only those rows, which are affected.

SELECT regexp replace (street address, 'St$',
'Street')
FROM locations
WHERE regexp like (street address, 'St');

4. Create a contacts table and add a check constraint to the p_ number column to
enforce the following format mask to ensure that phone numbers are entered into
the database in the following standard format: (XXX) XXX-XXXX. The table
should have the following columns:

e 1 name varchar2 (30)
e p number varchar2Z (30)

CREATE TABLE contacts
(

1 name VARCHAR?2 (30),

p number VARCHARZ (30)

CONSTRAINT p number format
CHECK (REGEXP LIKE (p number, '~\(\d{3}\) \d{3}-

\d{4}$"'))
)i

Oracle Database: SQL Fundamentals Il A -72

Practice Solutions 7-1: Regular Expression Support (continued)

5. Runthe lab 07 05.sqgl SQL script to insert the following seven phone
numbers into the contacts table. Which numbers are added?
Only the first two INSERT statements use a format that conforms to the
c_contacts_pnf constraint; the remaining statements generate CHECK
constraint errors.

6. Write a query to find the number of occurrences of the DNA pattern ctc in the
string
gtctcgtctegttetgtetgtegttcetg. Use the alias Count DNA. Ignore
case-sensitivity. This function, introduced with 11g Release 2, returns the
number of times a pattern match is found in the input string.

SELECT REGEXP COUNT ('gtctcgtctcgttctgtctgtcgttctg', 'ctc')
AS Count DNA
FROM dual;

Oracle Database: SQL Fundamentals Il A -73

Practice Solutions 7-1: Regular Expression Support (continued)

Oracle Database: SQL Fundamentals Il A -74

Table Descriptions

Copyright © 2010, Oracle. All rights reserved.

Schema Description
Overall Description

The Oracle database sample schemas portray a sample company that operates worldwide to fill orders
for several different products. The company has three divisions:

* Human Resources: Tracks information about the employees and facilities

* Order Entry: Tracks product inventories and sales through various channels

« Sales History: Tracks business statistics to facilitate business decisions

Each of these divisions is represented by a schema. In this course, you have access to the objects in
all the schemas. However, the emphasis of the examples, demonstrations, and practices is on the
Human Resources (HR) schema.

All scripts necessary to create the sample schemas reside in the
$ORACLE_HOME/demo/schema/ folder.

Human Resources (HR)

This is the schema that is used in this course. In the Human Resource (HR) records, each employee
has an identification number, email address, job identification code, salary, and manager. Some
employees earn commissions in addition to their salary.

The company also tracks information about jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range. Some employees have been
with the company for a long time and have held different positions within the company. When an
employee resigns, the duration the employee was working for, the job identification number, and the
department are recorded.

The sample company is regionally diverse, so it tracks the locations of its warehouses and
departments. Each employee is assigned to a department, and each department is identified either by
a unique department number or a short name. Each department is associated with one location, and
each location has a full address that includes the street name, postal code, city, state or province, and
the country code.

In places where the departments and warehouses are located, the company records details such as the
country name, currency symbol, currency name, and the region where the country is located
geographically.

Oracle Database: SQL Fundamentalsll B -2

The HR Entity Relationship Diagram

HR

2\
(JOB_HISTORY)

employee_id
start_date
end_date
job_id

\department_id)

N\ 4
|

JOBS
job_id
job_title
min_salary
max_salary

--<

Oracle Database: SQL Fundamentals Il

DEPARTMENTS)
department_id
department_name
manager _id
location_id y

1
LY
N
(" EMPLOYEES)

employee_id
first_name
last_name
email
phone_number
hire_date
job_id
salary
commission_pct
manager_id

department_id

- J

(LOCATIONS)
location_id
street_address
postal_code
city
state_province
_ country_id y
NV
|
|

COUNTRIES
country_id
country_name
region_id

Y
]
REGIONS

region_id
region_name

B-3

The Human Resources (HR) Table Descriptions
DESCRIBE countries

Name MNull Type
COUNTREY _ID NOT HULL CHAR(Z)
COUNTRY HNAME VARCHARZ (40
FEGION _ID NUMEEE.

SELECT * FROM countries;

COUNTRY _ID COUNTRY _MAME REGION IO
1 CA Canada 2
2 DE GEFmEny 1
3 K United Kingdarm 1
4 U= United States of America 2

Oracle Database: SQL Fundamentalsll B -4

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE departments

DEPARTMENT ID
DEPARTMENT MNAME
MANAGER TD
LOCATION ID

MNOT HULL
MNOT HULL

NUMEER | 4}
VARCHARZ {30
NUMEER (&)
NUMEER: |)

SELECT * FROM departments;

DEPARTMENT ID

DEP&RTMENT _MAME

MAMNAGER_|D

LOCATION D

—_—

L I N s I L o

10 Administration

20 Marketing

a0 Shipping

6O 1T

g0 Sales

90 Executive
110 Accounting
180 Contracting

200
2
124
103
149
100
205
[l

1700
1800
1500
1400
2500
1700
1700
1700

Oracle Database: SQL Fundamentalsll B -5

The Human Resources (HR) Table Descriptions (continued)
DESCRIBE employees

EMPLOYEE_ID
FIRST NAME
LAST MAME
EMATL

PHONE _NTTMEER
HIFE_DATE
J0E_ID

SALARY
COMMISSION PCT
MANAGER ID
DEFARTMENT ID

NOT NULL NUMEER(6)
VARCHARZ (20)

NOT NULL VARCHARZ (25)

NOT NULL VARCHARZ (25)
VARCHARZ (20)

NOT NULL DATE

NOT NULL VARCHARZ (10)
NUMEEE. (&, 2)
NUMEEE. (2, 2)
NUMEEE [6}
NUMEEE | 4)

SELECT * FROM employees;

|8 rest . |§ emer B prowe_womeer HRe_DaTE || woen|E seiarv|d comm (B menccer ol ocerarTMENT D

emPLOVEE_D|fl FIRST M.

1 100 Steven

2 101 Meena

&l 102 Lex

4 103 Alexander

5 104 Bruce

B 107 Diana

7 124 Kevin

g 141 Trenna

9 142 Curtis
10 143 Randall
11 144 Peter
12 1449 Eleni
13 174 Ellen
14 176 Jonathon
15 178 Kimberely
16 200 Jennifer
17 201 Michael
18 202 Pat
19 205 Shelley
20 206 William

King SHIMG 315123 4567 17-JUN-57 AD_PRES 24000
Kochhar MEOCHHAR 315123 4368 21-ZEP-88 AD_WP 17000
De Haan LDEHAAM 915.123.4569 13-JAM-93 AD_WP 17000
Hunald AHUNOLD 590423 4367 03-JAM-90 IT_PROG 000
Erhst BERMST 590 423 4565 21-MANY-31 IT_PROG G000
Larentz DLOREMTZ 390423 5367 07-FEB-33 IT_PROG 4200
haourgas KMOURGOS 6301235234 16-MOY-88 ST_hA 5800
Rajs TRAJE 650.121.8009 17-0CT-93 =T_CLERK Fa00
Davies CDAVIES Ga0.1:21.2934 29-J4M-97 ST_CLERK 3100
Watos RMATCS Ga0.121 2574 15-MAR-88 ST_CLERK 2600
Yargas PYARGAS 630.121.2004 08-JUL-85 ST_CLERK 2300
Zlotkey EZLOTHEY 011.44.1344.420018 29-JAMN-00 =2 AN 10300
Ahel EABEL 011.44.1644 429267 11-MAY-36 SA_REP 11000
Taylar JTAYLOR 011.44 1644 429265 24-MAR-95 SA_REP as00
Grant HGRARNT 01144 1644 429263 24-MAY-339 54 _REP 7000
Whalen JAHALER 51234444 17-ZEP-87 AD_AZSET 4400
Hartstein MHARTSTE 315.123.5335 17-FEB-96 MK _hAM 13000
Fay PFAY B03.123 6666 17-AUG-37 MK _REP G000
Higgins SHIGGINS 5151238080 O7-JUn-94 AC_MGR 12000
Gietz WGIETT 3151238181 O7-JUN-94 AC_ACC. . &300

[l
{rully
(il
g1}
[rull)
{rully
{rully
(il
g1}
[l
{rully

0z

03

0z
015
(rully
(il
g1}
[l
{rully

[l
100
100
102
103
103
100
124
124
124
124
100
149
149
149
101
100
201
101
205

90
a0
a0
60
60
g0
50
a0
a0
50
50
g0
a0
a0
[l
10
20
20
110
110

Oracle Database: SQL Fundamentalsll B -6

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE job history

DESCRIBE job_history
Name

EMPLOYEE ID
START DATE
END DATE
J0E_ID
DEPARTMENT ID

NOT NULL NUMBEER (&)
NOT WNULL DATE

NOT WNULL DATE

NOT WNUOLL VARCHARZ (10)

HNUMEEE. | 4)

SELECT * FROM job_ history

B EmpLOVEE D |START DATE

EMD_DATE

—_—

102 13-JAaM-33
101 21-5EP-89
101 25-0CT-93
201 17-FEB-96
114 24-MAR-95
122 01-JAaM-39
200 17-SEP-87
176 24-MAR-95
176 01-JAM-93
200 01-JuL-94

L e AL, .5 T i T B L

—

24-JUL-95
27-0CT-93
153-MAR-97
19-DEC-99
31-DEC-99
31-DEC-93
17-JUr-93
31 -DEC-95
31-DEC-99
31-DEC-93

B s | oEPARTMENT ID
IT_PROG B0
AC_ACCOUNT 110
AC_MGR 110
Mk,_REF 20
ST_CLERK 50
ST_CLERK 50
AD_ASST a0
S4_REP a0
S8, MAN a0
AC_ACCOUNT a0

Oracle Database: SQL Fundamentalsll B -7

The Human Resources (HR) Table Descriptions (continued)
DESCRIBE jobs

Name Mall Type

JOE_ID NOT NULL WARCHARZ(10)
JOE_TITLE NOT NULL WARCHARZ(35)
MIN SALARY NUMEER (&)
Max SALARY NUMEER (&)

SELECT * FROM jobs

B s (B Jos_TMLE B mm_sarary | max_saLary

1 &D0_PREZ Presidert 20000 40aaa
2 A0 WP Administration Yice President 15000 30aaa
3 aD_ASST Administration Assistant 30aa gaaa
4 AC MGR Accounting Manager G200 16000
S AC_ACCOUNT Public Accountart 4200 S000
B =4 AN Zales Manager 10000 20000
T =A REP =ales Representative G000 12000
g ST_MAN Stock Manager 500 aa0a
9 ST_CLERK Stock Clerk 2000 Saaa
10 IT_PROG Programmer 4000 10000
11 Mk _hdLm Marketing Manager 000 15000
12 MK_REP Marketing Represertative 4000 000

Oracle Database: SQL Fundamentalsll B -8

The Human Resources (HR) Table Descriptions (continued)
DESCRIBE locations

Name uall Tvpe
LOCATION ID NOT NULL NUMEEER.(4)
ATEEET_ADDRESS VARCHARZ [40)
POSTAL CODE VARCHARZ[(1Z)
CITY NOT NULL WARCHARZ(30)
ATATE PROVINCE VARCHARZ[Z25)
COUNTEY ID CHAR. (2]

SELECT * FROM locations

LOCATION_ID | STREET_ADDRESS | POSTAL_CODE | Y | STATE_PROVINCE |COUNTRY _ID
1 1400 2014 Jabberwocky Rd 26192 Southlake Texas U=
2 1:300 2011 Interiors Bled 99236 South San Francizco California =
3 1700 2004 Charade Rd 95198 Sesttle Washington s
4 1800 460 Bloar St. W, O W3S 1%8 Tororto Crtario CA
] 2500 Magdalen Centre, The Oxford Science Park OX9 876 Crxford Cxford Lk

Oracle Database: SQL Fundamentalsll B -9

The Human Resources (HR) Table Descriptions (continued)
DESCRIBE regions

Name Mull Type
FEGION ID NOT NULL NUMEEER
FEGION HNAME VARCHARZ (25)

SELECT * FROM regions

REGION_ID B REGION_MAME

1 Europe

—_—

2 Americas
3 Asig
4 Midcle East and Africa

- N R O

Oracle Database: SQL Fundamentals Il B -10

Using SQL Developer

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

- List the key features of Oracle SQL Developer
* Identify menu items of Oracle SQL Developer
« Create a database connection

« Manage database objects

« Use SQL Worksheet

« Save and run SQL scripts

» Create and save reports

Copyright © 2010, Oracle. All rights reserved.

Objectives

In this appendix, you are introduced to the graphical tool called SQL Developer. You learn how
to use SQL Developer for your database development tasks. You learn how to use SQL
Worksheet to execute SQL statements and SQL scripts.

Oracle Database: SQL Fundamentals Il C -2

What Is Oracle SQL Developer?

« Oracle SQL Developer is a graphical tool that enhances
productivity and simplifies database development tasks.

* You can connect to any target Oracle database schema by
using standard Oracle database authentication.

SQL Developer

Copyright © 2010, Oracle. All rights reserved.

What Is Oracle SQL Developer?

Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just a few clicks, you can easily
create and debug stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, the visual tool for database development, simplifies the following tasks:
* Browsing and managing database objects
» Executing SQL statements and scripts
+ Editing and debugging PL/SQL statements
* Creating reports

You can connect to any target Oracle database schema by using standard Oracle database
authentication. When connected, you can perform operations on objects in the database.

The SQL Developer 1.2 release tightly integrates with Developer Migration Workbench that
provides users with a single point to browse database objects and data in third-party databases,
and to migrate from these databases to Oracle. You can also connect to schemas for selected
third-party (non-Oracle) databases such as MySQL, Microsoft SQL Server, and Microsoft
Access, and you can view metadata and data in these databases.

Additionally, SQL Developer includes support for Oracle Application Express 3.0.1 (Oracle
APEX).

Oracle Database: SQL Fundamentalsll C-3

Specifications of SQL Developer

« Shipped along with Oracle Database 11g Release 2
* Developed in Java
* Supports Windows, Linux, and Mac OS X platforms

« Default connectivity by using the Java Database
Connectivity (JDBC) thin driver

 Connects to Oracle Database version 9.2.0.1 and later

* Freely downloadable from the following link:

— http://lwww.oracle.com/technology/products/database/sql_de
veloper/index.html

Copyright © 2010, Oracle. All rights reserved.

Specifications of SQL Developer

Oracle SQL Developer 1.5 is shipped along with Oracle Database 11g Release 2. SQL
Developer is developed in Java leveraging the Oracle JDeveloper integrated development
environment (IDE). Therefore, it is a cross-platform tool. The tool runs on Windows, Linux, and
Mac operating system (OS) X platforms.

Default connectivity to the database is through the JDBC thin driver, and therefore, no Oracle
Home is required. SQL Developer does not require an installer and you need to simply unzip the
downloaded file. With SQL Developer, users can connect to Oracle Databases 9.2.0.1 and later,
and all Oracle database editions including Express Edition.

Note
For Oracle Database versions earlier than Oracle Database 11g Release 2, you will have to
download and install SQL Developer. SQL Developer 1.5 is freely downloadable from the
following link:
http://www.oracle.com/technology/products/database/sql _developer/index.html.
For instructions on how to install SQL Developer, you can visit the following link:
http://download.oracle.com/docs/cd/E12151 01/index.htm

Oracle Database: SQL Fundamentalsll C -4

SQL Developer 1.5 Interface

¥ Oracle SOL Developer,

File Edit W¥iew Havigate Bun Source WVersioning Migration Tools Help

Goag 90 X ERB OO = - |.1,
aCDnnectiuns " ||@ =] [
; Connections %"
4
You must define a &
connection to start &
using SQL Developer &

for running SQL queries
on a database schema.

(5 Sl History

Copyright © 2010, Oracle. All rights reserved.

SQL Developer 1.5 Interface
The SQL Developer 1.5 interface contains three main navigation tabs, from left to right:
* Connections tab: By using this tab, you can browse database objects and users to which

you have access.
» Files tab: Identified by the Files folder icon, this tab enables you to access files from your

local machine without having to use the File > Open menu.
* Reports tab: Identified by the Reports icon, this tab enables you to run predefined reports

or create and add your own reports.
General Navigation and Use
SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about selected objects. You can customize many aspects of the appearance
and behavior of SQL Developer by setting preferences.
Note: You need to define at least one connection to be able to connect to a database schema and
issue SQL queries or run procedures/functions.

Oracle Database: SQL Fundamentalsll C-5

SQL Developer 1.5 Interface (continued)
Menus

The following menus contain standard entries, plus entries for features specific to SQL
Developer:

View: Contains options that affect what is displayed in the SQL Developer interface
Navigate: Contains options for navigating to various panes and for executing
subprograms

Run: Contains the Run File and Execution Profile options that are relevant when a
function or procedure is selected, and also debugging options

Source: Contains options for use when you edit functions and procedures
Versioning: Provides integrated support for the following versioning and source control
systems: Concurrent Versions System (CVS) and Subversion

Migration: Contains options related to migrating third-party databases to Oracle
Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL
Worksheet

Note: The Run menu also contains options that are relevant when a function or procedure is
selected for debugging. These are the same options that are found in the Debug menu in
version 1.2.

Oracle Database: SQL Fundamentalsll C -6

Creating a Database Connection

* You must have at least one database connection to use
SQL Developer.
* You can create and test connections for multiple:
— Databases
— Schemas
« SQL Developer automatically imports any connections
defined in the tnsnames . ora file on your system.
* You can export connections to an Extensible Markup
Language (XML) file.
- Each additional database connection created is listed in
the Connections Navigator hierarchy.

Copyright © 2010, Oracle. All rights reserved.

Creating a Database Connection

A connection is a SQL Developer object that specifies the necessary information for connecting
to a specific database as a specific user of that database. To use SQL Developer, you must have
at least one database connection, which may be existing, created, or imported.

You can create and test connections for multiple databases and for multiple schemas.
By default, the tnsnames . ora file is located in the SORACLE HOME/network/admin
directory, but it can also be in the directory specified by the TNS ADMIN environment variable

or registry value. When you start SQL Developer and display the Database Connections dialog
box, SQL Developer automatically imports any connections defined in the tnsnames . ora file
on your system.

Note: On Windows, if the tnsnames . ora file exists but its connections are not being used by
SQL Developer, define TNS ADMIN as a system environment variable.

You can export connections to an XML file so that you can reuse it later.

You can create additional connections as different users to the same database or to connect to the
different databases.

Oracle Database: SQL Fundamentals Il C-7

Creating a Database Connection

ao:mnec... | 2 _l 5]
BW@T

Ea Caonnectips

= MNewConnection

Import Connectio New / Select Database Connection
Export Cannecti 1
nection Ma.. Connection Det. | Connection Name |myconnection
N

a(‘nnnedions B 5 Username |nr’321

@ EE} T Password |'""""" |

= a Connections

Ea myconnection
]E Tables Oracle

- (B Views
]EE Indexes Rale default v| [T @5 Authentication
- Packages I Conhection Tepe | gasic = I ["] Kerberos Authentication

[v] Sawe Password

o8 Procedures
+-{[[id Functions
][Eé CQueues Hostname localhost
]% Queues Tables Port 1577
]@ Triggers
i[5 Types -
]E Sequences () Service name
([Materialized Wiews
]@ Materialized Wiews Logs
]{B SYnonyms

[]---Ej Public Synonyms
[]---{% Datahase Links

(88 Public Database Links I Status : Success I
]@ Directaries |
JIE Application Express

£
£
[]---[E Jawa
£
£
£

["] Proxy Connection

(3) 5ID arcl

Help Save Clear Test Connect Cancel
| | I I | J

]F‘_. *ML Schemas
i Recycle Bin
H-[g Cther Users

Copyright © 2010, Oracle. All rights reserved.

Creating a Database Connection (continued)

To create a database connection, perform the following steps:
1. On the Connections tabbed page, right-click Connections and select New Connection.
2. In the New/Select Database Connection window, enter the connection name. Enter the
username and password of the schema that you want to connect to.
a) From the Role drop-down box, you can select either default or SYSDBA (you choose
SYSDBA for the sys user or any user with database administrator privileges).
b) You can select the connection type as:
- Basic: In this type, enter hostname and SID for the database you want to
connect to. Port is already set to 1521. Or you can also choose to enter the
Service name directly if you use a remote database connection.
- TNS: You can select any one of the database aliases imported from the
tnsnames.ora file.
- LDAP: You can look up database services in Oracle Internet Directory which is
a component of Oracle Identity Management.
- Advanced: You can define a custom JDBC URL to connect to the database.
c) Click Test to ensure that the connection has been set correctly.
d) Click Connect.

Oracle Database: SQL Fundamentals Il C -8

Creating a Database Connection (continued)

If you select the Save Password check box, the password is saved to an XML file. So, after
you close the SQL Developer connection and open it again, you are not prompted for the
password.

3. The connection gets added in the Connections Navigator. You can expand the connection
to view the database objects and view object definitions, for example, dependencies,
details, statistics, and so on.

Note: From the same New/Select Database Connection window, you can define connections to
non-Oracle data sources using the Access, MySQL, and SQL Server tabs. However, these
connections are read-only connections that enable you to browse objects and data in that data
source.

Oracle Database: SQL Fundamentalsll C-9

Browsing Database Objects

Use the Connections Navigator to:
* Browse through many objects in a database schema
« Review the definitions of objects at a glance

[Connections | [T 2] [myconnection EHEMPLOYEES = ¥
BW®T Columns| Data | Constraints | Grants | Statistics | Triggers | Flashback |Def * | z
H &
Elg Connections ~ 1% Actions... %
&b myconnection Column Name [§ Data Type [B nwunabie [pata Defaurt [§ coLL |5
d Ll
- { Tables EMPLOYEE_ID MUMBER(E,0) No frully &
(-4 COUMTRIES =
FIRST_MAME VARCHARZ(Z0 BYTE) Yes (nully
=[] DEPARTMENTS
-3 DEPT_ADD_EXT LAST_MAME WARCHARZ(ZS BYTE) Na {nully
59/ DEPT_MAMED_INDEX EMAIL WARCHARZ(ZS BYTE) Na {nully %
- EMP_BOOKS PHOME_MUMEER WARCHARZ(Z0 BYTE) Yes {nully S
=
- Eemp_ExT HIRE_DATE DATE Mo tnully 2
- EnP_NEW_SAL OB_ID WARCHARZ(LO BYTE) No il
[-fEH EMP_UNNAMED_INDEX
B n SALARY MUMBER(S, 2) Yes {nully
‘3 EMPLOYEE_ID COMMISSION_PCT NUMEER(Z,2) Yes {nully
‘B FIRST_NAME MANAGER_ID MUMBERS,) Yes {hully
‘B LasT_NAME DEPARTMENT_ID NUMBER(4,0) Yes {nully
B EmalL
‘B PHONE_NUMEBER
-B HIRE_DATE
‘B 108D
B saLamy e 0|
=t v | @ElsaL History

Copyright © 2010, Oracle. All rights reserved.

Browsing Database Objects

After you create a database connection, you can use the Connections Navigator to browse
through many objects in a database schema including Tables, Views, Indexes, Packages,
Procedures, Triggers, and Types.

You can see the definition of the objects broken into tabs of information that is pulled out of the
data dictionary. For example, if you select a table in the Navigator, the details about columns,
constraints, grants, statistics, triggers, and so on are displayed on an easy-to-read tabbed page.
If you want to see the definition of the EMPLOYEES table as shown in the slide, perform the
following steps:

1. Expand the Connections node in the Connections Navigator.

2. Expand Tables.
3. Click EMPLOYEES. By default, the Columns tab is selected. It shows the column

description of the table. Using the Data tab, you can view the table data and also enter new
rows, update data, and commit these changes to the database.

Oracle Database: SQL Fundamentals Il C -10

Displaying the Table Structure

Use the DESCRIBE command to display the structure of a table:

=3 % @s f& [x] E E 0 169656902 secands |myc0nnecti0n
IDESC EMPLOYEES 2
T

[resutts | [Escript output. T Explain |'_"’;'3Autmrace |=:E,DBMS Qutput | (G% OiA Output
¢85

DESC EMPLOYEES

Hame Hu11 Twpe

EMPLOYEE_ID NOT NULL NUMBER{GD

FIRST_NAME WARCHARZ (203

LAST_NAME NOT NULL WARCHARZ (257

EMAIL NOT NULL WARCHARZ (253

FPHOME_WUMEEF. WARCHARZ (207

HIRE_DATE NOT NULL DATE

JOB_ID HOT MWULL WARCHARZ (107

SELARY NUMBER(S, 23

COMMISSION_PCT NUMBER(Z,2)

MANAGER_ID NUMBER(G)

DEPARTHMENT_ID NUMBER(4)

11 rows selected

Copyright © 2010, Oracle. All rights reserved.

Displaying the Table Structure

In SQL Developer, you can also display the structure of a table using the DESCRIBE command.
The result of the command is a display of column names and data types as well as an indication
if a column must contain data.

Oracle Database: SQL Fundamentals Il C - 11

Browsing Files

Use the File Navigator to explore the file system and open
system fiIs.

File Edit Yiew MNavigate Bun Source Versioning Migration Tools Help
GoEa 9e EE 0 -@- % e
aConnections I'EH—I @. 2] [myconnection w E]y
m | SQL_Worksheet Hist g
--Djdev FEEAS WD ¢ | 'l %
ol i =%
g abfiles BELECT count(*) FROM tab; AL
-1 labs SELECT count({*] FROM employees; | 2
B saiz SELECT count(*) FROM countries; =
[code_ex SELECT count(*) FROM regions;
D demo SELECT count(*) FROM locations;
&0 emp_dir SELECT count(*) FROM departments; I'EI
,_—__|D labs SELECT count(*) FROM jobs; B
Bl posi *) FROM job_history; <
----- |3 buildwid.sql SELECT count(| i]
----- [8] confidence sql -
----- 3] dropwid.sql
----- 18] intra, test.zql _ R
_____ E Jab_0z_18.5q1 bResults [A Script Output |E_.1Explain |§3Autntr |@.| \;\
-----] 1ab_0z_18.5q! Results:
8] 1ab_nz_z20a.3q!
----- 3] lab_0z_20b.sql
----- |3 lab_02_20g.sql
3] lab_03_07.5q
----- 8] 1ab_03_09_tab.sql
----- |3 1ab_D4_01.5ql
----- g lab_04_03.5q! 1
] (lsaL History |
‘ Line 1 Column 1 | Inzert

Copyright © 2010, Oracle. All rights reserved.

Browsing Database Objects
You can use the File Navigator to browse and open system files.
* To view the files navigator, click the Files tab, or click View > Files.
* To view the contents of a file, double-click a file name to display its contents in the SQL
worksheet area.

Oracle Database: SQL Fundamentals Il C -12

Creating a Schema Object

« SQL Developer supports the creation of any schema
object by:
— Executing a SQL statement in SQL Worksheet
— Using the context menu
» Edit the objects by using an edit dialog box or one of the
many context-sensitive menus.
* View the data definition language (DDL) for adjustments

such as creating a new object or editing an existing
schema object.

Ea myconnection
- {F3) Tableip= T

- [i | 'm_' —
.EE Index| @) Refresh

Ei’a Packa
Eg Proce

[\% Queu Import Data
% Qe Help

Copyright © 2010, Oracle. All rights reserved.

Creating a Schema Object

SQL Developer supports the creation of any schema object by executing a SQL statement in
SQL Worksheet. Alternatively, you can create objects using the context menus. When created,
you can edit the objects using an edit dialog box or one of the many context-sensitive menus.

As new objects are created or existing objects are edited, the DDL for those adjustments is
available for review. An Export DDL option is available if you want to create the full DDL for
one or more objects in the schema.

The slide shows how to create a table using the context menu. To open a dialog box for creating
a new table, right-click Tables and select New Table. The dialog boxes to create and edit
database objects have multiple tabs, each reflecting a logical grouping of properties for that type
of object.

Oracle Database: SQL Fundamentalsll C-13

-
]
Creating a New Table: Example
| Create Table Edl
Schema: |ORA21 'l [w] Adyanced g
Mame:; |Dependems |
Table Type: () Mormal () External () Index Organized () Temporary (Transaction) () Temporary (Session)
(@@ J | Columns: Column Properties
— EmE *] weme [0 |
e Primary Key FIRST_MAME —
~-Unique Constraints ::EI}ETE | ® | Datatype: (2) Simple () Complex
-~ Foreign Keys BIRTHDATE ™) Type: [MUMBER 4
- Check Constraints
- Indexes |€| Precizion: | |
- Column Sequences — .
Scale: | |
- Table Properties
- Lob Parameters
[=h--Partitioning
- Partition Definitions
L Subpartition Templates Default: | |
- Camment Cannot be MULL
~-DbDL Comment:
| Help | | 0K _J | Cancel |

Copyright © 2010, Oracle. All rights reserved.

Creating a New Table: Example

In the Create Table dialog box, if you do not select the Advanced check box, you can create a
table quickly by specifying columns and some frequently used features.

If you select the Advanced check box, the Create Table dialog box changes to one with multiple
options, in which you can specify an extended set of features while you create the table.

The example in the slide shows how to create the DEPENDENTS table by selecting the
Advanced check box.

To create a new table, perform the following steps:
1. In the Connections Navigator, right-click Tables.
2. Select Create TABLE.
3. In the Create Table dialog box, select Advanced.
4. Specify column information.
5. Click OK.

Although it is not required, you should also specify a primary key by using the Primary Key tab
in the dialog box. Sometimes, you may want to edit the table that you have created; to do so,
right-click the table in the Connections Navigator and select Edit.

Oracle Database: SQL Fundamentals Il C - 14

Using the SQL Worksheet

¢« Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

« Specify any actions that can be processed by the database
connection associated with the worksheet.

File Edit View Navigate PBun Source Versioning Migration QLLIEE Help
GeEag 96 XEE O0-@- -

aCDnnections = |_] [Z] D’ myconnection
W7

E--a Connections
Ea mycannection
- [@)-[3 Tables
L E-[E8 views
- #-[38 Indexes

Database Copy

Databasze Export
Database Diff

Monitor Session
Manitar SOL

M External Taals...

W Ereferences.. | Click the Open SQL
Select SQL Worksheet icon.
Worksheet from the

Tools menu, or

File Ednt Yiew Navigate BRun Source Yersioning ration Tools Help

GoEad 9e Xam o-0-[8)

Copyright © 2010, Oracle. All rights reserved.

Using the SQL Worksheet
When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. The SQL Worksheet supports SQL*Plus statements to a certain extent. SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database.

You can specify actions that can be processed by the database connection associated with the
worksheet, such as:

* Creating a table

* Inserting data

* Creating and editing a trigger

* Selecting data from a table

» Saving the selected data to a file

You can display a SQL Worksheet by using one of the following:
* Select Tools > SQL Worksheet.
* Click the Open SQL Worksheet icon.

Oracle Database: SQL Fundamentals Il C -15

Using the SQL Worksheet

1 t ¢
Dmvl*bcmdln Dk
[:’ .,_I E:Igs &'3' (El EB -&ﬁ (’ mydbconnection 'l

Eftor saL ftatomert

1] 1*

. d

N

Resufts:

Copyright © 2010, Oracle. All rights reserved.

Using the SQL Worksheet (continued)

You may want to use the shortcut keys or icons to perform certain tasks such as executing a SQL
statement, running a script, and viewing the history of SQL statements that you have executed.
You can use the SQL Worksheet toolbar that contains icons to perform the following tasks:
1. Execute Statement: Executes the statement where the cursor is located in the Enter SQL
Statement box. You can use bind variables in the SQL statements, but not substitution
variables.
2. Run Script: Executes all statements in the Enter SQL Statement box by using the Script
Runner. You can use substitution variables in the SQL statements, but not bind variables.
Commit: Writes any changes to the database and ends the transaction
4. Rollback: Discards any changes to the database, without writing them to the database, and
ends the transaction
Cancel: Stops the execution of any statements currently being executed
6. SQL History: Displays a dialog box with information about SQL statements that you have
executed

7. Execute Explain Plan: Generates the execution plan, which you can see by clicking the
Explain tab

8. Autotrace: Generates trace information for the statement

9. Clear: Erases the statement or statements in the Enter SQL Statement box

(9%}

9]

Oracle Database: SQL Fundamentals Il C -16

Using the SQL Worksheet

¢« Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL*Plus statements.

« Specify any actions that can be processed by the database
connection associated with the worksheet.

[}i myconnection E]
PEERSe Ul ¢ myconnection - |
Enter SQL
statements.
[Results| = seript output |Ej] Explain |_§:]Autotrace | ADEMS... | @
Rezults:
Results are
shown here.

Copyright © 2010, Oracle. All rights reserved.

Using the SQL Worksheet (continued)

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. All SQL and PL/SQL commands are supported as they are passed directly from the
SQL Worksheet to the Oracle database. SQL*Plus commands used in the SQL Developer have
to be interpreted by the SQL Worksheet before being passed to the database.

The SQL Worksheet currently supports a number of SQL*Plus commands. Commands not
supported by the SQL Worksheet are ignored and are not sent to the Oracle database. Through
the SQL Worksheet, you can execute SQL statements and some of the SQL*Plus commands.

You can display a SQL Worksheet by using any of the following two options:
* Select Tools > SQL Worksheet.
* Click the Open SQL Worksheet icon.

Oracle Database: SQL Fundamentals Il C -17

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

D myconnection |

€)—>lEls<fd) sun <

Enter SGL Statemert,

SELECT emplovee_id, last_name
FROM employees;

L~ urts-h
[= Resutt= F9 >Output ﬁExplain ﬁ " E El
R EMPLOYEE_ID LAST HAME
EMPLOYEE_ID| LAST MAME b ______]
1 100 King 100 King
2 101 Kochhar 101 Kochhar
3 102 D& Haan 10z De Haan
103 Hunald
4 103 Hunold
104 Ernst
D O s 105 iustin

Copyright © 2010, Oracle. All rights reserved.

Executing SQL Statements

The example in the slide shows the difference in output for the same query when the F9 key or
Execute Statement is used versus the output when F5 or Run Script is used.

Oracle Database: SQL Fundamentals Il C -18

Saving SQL Scripts

@ Click the Save icon to
save your SQL

statement to a file.

File Edit « Mavigate BRun Source VYersioning Migration Tools Help
Goga 9@ Y886/ 0-9- 1%

Location: |D fhomeforacle flabs '] @ EG Iﬁ E |

[plpu
D plsf

. [sqn1
Desktop B3 sqiz

@ @ Identify a location,
The contents of the saved enter a file name,
file are visible and editable and click Save.
in your SQL Worksheet
window.

D zalary_report sl] Iy |

Eile name: ‘salar}o’_repon.sql
FPETE® G89Bd ¢

Enter SCGIL Statement:

1|SELECT last _name, salary | Help | save] | Cancel]

Z|FROM employees
3|WHERE =zalary > 10000;

Copyright © 2010, Oracle. All rights reserved.

Saving SQL Scripts

You can save your SQL statements from the SQL Worksheet into a text file. To save the
contents of the Enter SQL Statement box, follow these steps:
1. Click the Save icon or use the File > Save menu item.
2. Inthe Windows Save dialog box, enter a file name and the location where you want the
file saved.
3. Click Save.

After you save the contents to a file, the Enter SQL Statement window displays a tabbed page of
your file contents. You can have multiple files open at the same time. Each file displays as a
tabbed page.

Filetype: [SQL Script (") -

Script Pathing

You can select a default path to look for scripts and to save scripts. Under Tools > Preferences >
Database > Worksheet Parameters, enter a value in the “Select default path to look for scripts”
field.

Oracle Database: SQL Fundamentals Il C -19

Executing Saved Script Files: Method 1

1. Use the Files tab to locate the

@ connections R, | (5 script file that you want to open.

it 3¢ Double-click the script to display
- Jctew the code in the SQL Worksheet.
-] labfiles
=] labs
=3 saiz
D code_ex
@- demo To run the code, click either: 2
- emp_dir]
53 1abs * Execute Script (F9), or .
[8 buildvid.o . Select a connection from
- Bl i + Run Script (F5) :
the drop-down list.
OropuIa. 0 /7
@ intro_test.sql L) b o |@confidence.sql | / E]
(3] 1ab_nz_18.5q1 .
@ lab_02_19.5q| I sheet| History
-[3] 1ab_0z_202.5q! FEEAe BB ¢ | [myconnection |
3] 1ab_02_z06.50) SELECT count(*) FROM tab; n
lab_DZ_z204g.5g! SELECT count(*) FROM emplovees;
[]Iah_DB_D?qu SELECT count(*) FROM countries
i SELECT count(*) FROM regions;
[3] 1ab_n3_09_tak sql
[]I b_D4_Dl_ | SELECT count(*) FROM locations;
[EM A e s SELECT count(*) FROM departments;
--[@] 1ab_n4_0z 5q

SELECT count(*) FROM johs;
SELECT count(*) FROM job_history;

Copyright © 2010, Oracle. All rights reserved.

Executing Saved Script Files: Method 1

To open a script file and display the code in the SQL Worksheet area, perform the following:

1. In the files navigator select (or navigate to) the script file that you want to open.

2. Double-click to open. The code of the script file is displayed in the SQL Worksheet area.

3. Select a connection from the connection drop-down list.

4. To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. If you have
not selected a connection from the connection drop-down list, a connection dialog box will
appear. Select the connection you want to use for the script execution.

Alternatively, you can also:

1. Select File > Open. The Open dialog box is displayed.

2. In the Open dialog box, select (or navigate to) the script file that you want to open.
3. Click Open. The code of the script file is displayed in the SQL Worksheet area.

4. Select a connection from the connection drop-down list.

5.

To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. If you have
not selected a connection from the connection drop-down list, a connection dialog box will
appear. Select the connection you want to use for the script execution.

Oracle Database: SQL Fundamentals Il C - 20

Executing Saved Script Files: Method 2

Use the @ command
followed by the location and
name of the file you want to
execute, and click the Run
Script icon.

[myconnection

=
|}- 5 0] \V% 1.731089 seconds | myconnection vH

@ /hone foraclerabs,sq12/Tabs/confidence. sql |

The output from the
script is displayed on

W

the SCFIpt OUtpUt = Resultsl (& script outpur r—_fai Explain |§£jAutotrace |'EDBMS Output | @ i

tabbed page. gHSE |

R I oW BTECLED I
COUNT(*)

1 rows selected

Copyright © 2010, Oracle. All rights reserved.

Executing Saved Script Files: Method 2

To run a saved SQL script, perform the following:
1. Use the @ command, followed by the location, and name of the file you want to run, in the
Enter SQL Statement window.
2. Click the Run Script icon.

The results from running the file are displayed on the Script Output tabbed page. You can also
save the script output by clicking the Save icon on the Script Output tabbed page. The Windows
Save dialog box appears and you can identify a name and location for your file.

Oracle Database: SQL Fundamentals Il C - 21

Formatting the SQL Code

select emplovee_id, fTirst_name, salary from employees e, departments d
B f where e.department_id= d.department_id and e.salary >3000;
e ore f— |} Execute Statement Fa
formatting @ Execute Explain Plan F&
ﬁ Autotrace (3N1]
% Bun Script F&
B, Frint File Ctrl-p
& Clear Ctrl-D
X
@&l soLHistory Fa
& cur el
Copy Ctrl-C
Paste Ctrl-v
Select All Crrl-A
Compile Ctrl4+5hift-F9
> Query Builder
B Results =] Script output | 55 Expl Refactoring p | Output
Code Tediplate Ctrl4+5hift-T
Popup Dezcribe Shift-F4
| SELECT emplovee_id,
first_name,
After salary
. Fm]I"I enployees e,
formatt|ng departments d
WHERE e.department_id= d.department_id
AND e, salary > 3000,

Copyright © 2010, Oracle. All rights reserved.

Formatting the SQL Code

You may want to beautify the indentation, spacing, capitalization, and line separation of the
SQL code. SQL Developer has a feature for formatting SQL code.

To format the SQL code, right-click in the statement area and select Format SQL.

In the example in the slide, before formatting, the SQL code has the keywords not capitalized
and the statement not properly indented. After formatting, the SQL code is beautified with the
keywords capitalized and the statement properly indented.

Oracle Database: SQL Fundamentals Il C - 22

Using Snippets

Snippets are code fragments that may be just syntax or

examples.
File Edit BUII'M Navigate Bun Source Versioning Migration Tools Help When you place your cursor here
tl
. ER e ti i ask . . .
SHig . = i it shows the Snippets window.
@yconnecti¢ (geports imycomeion | E4p | From the drop-down list, you can
C d Model b 2 A
ig?c? @ Copra e @@ 88 ¢ ot | select the functions category that
=l-1ay Sonn) o SELECT emplovee_id, ad gl |
F—'Ea & Fmd.DB.Omect. First_nane, i you want_
E]"'E 4 wersinning Mavigator salary Em: _l
- - FROM enployees e, 5 i
EJE to;ugger CHrlShift-L [iatheney & Snippets =] E I'gl
[]"'@:@ Run Manager - = [@ ’L\g E %
Eju & <ol Hisn . Results =] Seript Gutput | = |:ﬁ] ‘13|\; £y - = H_
F— sults: = Aagregate Functions b w7
28K | = Snippets B :
([G Extended Search i Angregate Functions -
g v Status Bar Character Functions
- Toalbars Conwersion Functions
E Diste Formats
(39 Synonyms CateTime Functions
{39 Public Synonyms Mumber Formsts L]
[]---[@ Database Links q q
F-[88 Public Database Links Mumeric Functions L
[#-{2 Directories Optimizer Hints =
[SQL History H

Copyright © 2010, Oracle. All rights reserved.

Using Snippets
You may want to use certain code fragments when you use the SQL Worksheet or create or edit
a PL/SQL function or procedure. SQL Developer has the feature called Snippets. Snippets are
code fragments such as SQL functions, Optimizer hints, and miscellaneous PL/SQL
programming techniques. You can drag snippets into the Editor window.

To display Snippets, select View > Snippets.

The Snippets window is displayed at the right side. You can use the drop-down list to select a
group. A Snippets button is placed in the right window margin, so that you can display the
Snippets window if it becomes hidden.

Oracle Database: SQL Fundamentals Il C -23

Using Snippets: Example

.[}'mvcunnediun] |3 @Snippets]
FERRO® &dWBR ¢ | & 2
Erter 2QL Statemert: Character Functions
|nserting a SELECT CONCAT (charl, charZ) el (T
= I CONMCATIChar , char2)
snlppet IMITCAP(char)
LOWVWERT char)
LPAD(expr!, n, expr2)

Erter Sl Statement: Character Functions
Edltlng the . SELECT CONCAT(first name, last name) [*| CHR(m)
. »| |FROM employees: COMCATChar , char2)
shippet

Copyright © 2010, Oracle. All rights reserved.

Using Snippets: Example
To insert a Snippet into your code in a SQL Worksheet or in a PL/SQL function or procedure,
drag the snippet from the Snippets window into the desired place in your code. Then you can
edit the syntax so that the SQL function is valid in the current context. To see a brief description
of'a SQL function in a tool tip, place the cursor over the function name.
The example in the slide shows that CONCAT (charl, char?2)is dragged from the Character
Functions group in the Snippets window. Then the CONCAT function syntax is edited and the

rest of the statement is added as in the following:
SELECT CONCAT (first name, last name)

FROM employees;

Oracle Database: SQL Fundamentals Il C - 24

Debugging Procedures and Functions

Use SQL Developer to debug
PL/SQL functions and
procedures.

Use the “Compile for Debug”
option to perform a PL/SQL
compilation so that the
procedure can be debugged.

Use Debug menu options to set
breakpoints, and to perform step
into and step over tasks.

=] a myconnection

I:I'"El Tables
[]---@ Wigwvs
[II---E@ Inciexes
[]---L—LEE Packages
-8 Procedures

-8 ADD_JOB_HISTORY
B SECURE_DML
[:I'"Ea Functions

[]---B Triggers

[]----rli'l Types

[]---@ Sequences

(- Materiaized Views
[]----Eﬁ Materislized Views Log:
-3 Synonyms

I:I'"EB Public Synonyms
[]---@ Databage Links

[II---@Q Public Database Links
[]---@ Directories

[]----E WML Schemas

[

Edit...

_J Explore Directory
B Motepsc

% Dreamvveaver
@& wozilla Firefox
\é Irternet Explorer
D winZip

Wordl

= Run

Compile

Compile for Debug

Cirl+Shift-F9

e Recycle Bin |

Copyright © 2010, Oracle. All rights reserved.

Debugging Procedures and Functions

In SQL Developer, you can debug PL/SQL procedures and functions. Using the Debug menu
options, you can perform the following debugging tasks:

* Find Execution Point goes to the next execution point.

* Resume continues execution.

* Step Over bypasses the next method and goes to the next statement after the method.

» Step Into goes to the first statement in the next method.

* Step Out leaves the current method and goes to the next statement.

» Step to End of Method goes to the last statement of the current method.

» Pause halts execution but does not exit, thus allowing you to resume execution.

» Terminate halts and exits the execution. You cannot resume execution from this point;
instead, to start running or debugging from the beginning of the function or procedure,
click the Run or Debug icon on the Source tab toolbar.

* Garbage Collection removes invalid objects from the cache in favor of more frequently
accessed and more valid objects.

These options are also available as icons on the debugging toolbar.

Oracle Database: SQL Fundamentals Il C -25

Database Reporting

SQL Developer provides a number of predefined reports about
the database and its objects.

'E]Connections | I I E] l) My cohnectionh Dependencies
gAll REDOVTSl . | a B %Refresh:|D—V| []

E‘"_glz'::t?;x Ee;:b:; Critier | Mame | Type | Referenced Cwner | Referenced Mame |
B2 All Objects CTXSTS CTX_CLASSES Wl EW CTHETS DRECLASS T
a1l Objects CTHSYS CTH_CLS PACKAGE 575 STANDARD P
Collection Types CTXSTS CTH_DOC PaCEAGE 575 STAMNDARD P
E:lr':pr:r'ujr:n:ir'::t CTHIYS CTX_INDEX_SETS WIEW CTHETS DR$INDEX_SET T
g‘;;"g Sgﬁszy Type CTHSYS CTH_INDEX_SETS VIEW SYS USERS T
Object Distribution CTHSYS CTHUMDEX_SET_INDEXES W EW CTHSTS DR$INDEX_SET T
Public Database Links CTHEYS CTH_IMDEX_SET_INDEXES WIEW CTHETS DR$INDEX_SET_INDEX T
& Public Synanyms CTHSYS CTR_INDEX_SET_INDEXES Wl EW 5Ys USER$ T
{2 Application Express CTHSYS CTH_OBJECTS W CTHSTS DR$CLASS T
-2 AsHand AWR CTxSYs CTX_DBJECTS VIEW CTXSTS DRECEJECT T
Sg g:::%ai:i:::r;nm ration CTXSYS CTH_OBJECT_ATTRIEUTES VIEW CTXEYS DRECLASS T
(-2 Jobs CTXSTs CTX_OBIECT_ATTRIBUTES — WIEW CTHETS DRECBIECT T
H-(E PLSOL CTXSYS CTX_OBECT_ATTRIBUTES VIEW CTHETS DR$OBIECT_ATTRIBUTE T
[Security CTSYS CTR_OBJECT_ATTRIBUTE_LOW WIEW CTHETS DRECLASS T,
- Streams CTHSYS CTH_OBJECT_ATTRIBUTE_LOW WIEW CTHEYS DR$OBJECT T
L= Table CTXSTS CTX_OBIECT_ATTRIBUTE_LOV VIEW CTHSTS DR$OBIECT_ATTRIBUTE T,
- gﬁ;ix;n Reports CTHEYS CTH_OBJECT_ATTRIBUTE_LOW WIEW CTHETS DR$OBJECT_ATTRIELTE_LCW T
B (2 User Defined Reparts CTHSYS CTH_PARAMETERS Wl EW CTHETS DR$PARAMETER T

Copyright © 2010, Oracle. All rights reserved.

Database Reporting

SQL Developer provides many reports about the database and its objects. These reports can be
grouped into the following categories:

* About Your Database reports

* Database Administration reports

* Table reports

* PL/SQL reports

» Security reports

XML reports

* Jobs reports

* Streams reports

* All Objects reports

» Data Dictionary reports

» User-Defined reports

To display reports, click the Reports tab at the left side of the window. Individual reports are
displayed in tabbed panes at the right side of the window; and for each report, you can select
(using a drop-down list) the database connection for which to display the report. For reports
about objects, the objects shown are only those visible to the database user associated with the
selected database connection, and the rows are usually ordered by Owner. You can also create
your own user-defined reports.

Oracle Database: SQL Fundamentals Il C - 26

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

L Create Report

[E} Connections 7 o Master

1Al Reparts Mame [emp_sal | style [Taple -
@, Data Dictionary Reparts Description [employees with salary > 10000 |
@, Migration Reparts Tockip |

- {E User Defined Ramas
Copy L SELECT employee_id, first_name, salary

FROH employees

Paste WHERE salary > 10000;
Add Folder

v

Impart
Export

EJﬂCDI‘II‘IECtiDI‘IS Repurts

&)l Reports

ﬁ Data Dictionary Reports _aaachin |[Test | [Cou

EE_ User Deﬂnea’ ﬁ'epo,ﬂfs Details | Columns | Binds | Adwanced | Table Details
=& ”“" o~ T e) o]
== _==

EI sale reports . .
— > Organize reports in folders.

Copyright © 2010, Oracle. All rights reserved.

Creating a User-Defined Report

User-defined reports are reports created by SQL Developer users. To create a user-defined
report, perform the following steps:
1. Right-click the User Defined Reports node under Reports, and select Add Report.
2. In the Create Report Dialog box, specify the report name and the SQL query to retrieve
information for the report. Then, click Apply.

In the example in the slide, the report name is specified as emp sal. An optional description is
provided indicating that the report contains details of employees with salary >= 10000.
The complete SQL statement for retrieving the information to be displayed in the user-defined
report is specified in the SQL box. You can also include an optional tool tip to be displayed
when the cursor stays briefly over the report name in the Reports navigator display.

You can organize user-defined reports in folders, and you can create a hierarchy of folders and
subfolders. To create a folder for user-defined reports, right-click the User Defined Reports node
or any folder name under that node and select Add Folder. Information about user-defined
reports, including any folders for these reports, is stored in a file named UserReports.xml
under the directory for user-specific information.

Oracle Database: SQL Fundamentals Il C - 27

Search Engines and External Tools

] 40 €@ el Shortcuts to
'~ frequently used tools
1| ask |
__ zj:;em |myconneu:tion v|
=] metaiirk
EDDCS
External Toals...
= 102 docs _ g
E 9.2 docs & External Tools
E Fearch.oracle cotm External Tools:
@ Dreamweaver
@ Mozilla Firefox
Links to popular 8 o ol
search engines and] viors
discussion forums
[fnatoos || mwew. || Est. || peete |

Copyright © 2010, Oracle. All rights reserved.

Search Engines and External Tools

To enhance productivity of the SQL developers, SQL Developer has added quick links to
popular search engines and discussion forums such as AskTom, Google, and so on. Also, you
have shortcut icons to some of the frequently used tools such as Notepad, Microsoft Word, and
Dreamweaver, available to you.

You can add external tools to the existing list or even delete shortcuts to tools that you do not
use frequently. To do so, perform the following:
1. From the Tools menu, select External Tools.
2. In the External Tools dialog box, select New to add new tools. Select Delete to remove any
tool from the list.

Oracle Database: SQL Fundamentals Il C - 28

Setting Preferences

« Customize the SQL Developer interface and environment.
* In the Tools menu, select Preferences.

¥ Preferences

Wyizh Broveser and Proxy

228 Ervvironment Environment
Accelerators
- Coda Editar Showe Splash Screen at Startup
- Databasze |:| Save Al VWhen Deactivating or Exiting
B Debugger Automstically Reload Externally Modified Files:
- Documentation Sileritly Reload When File Is Unmaodified
- Extensions
~-File Types SRR
~~PLISEL Compiler Options Nawigation Level
~PLISEL Debugser —
—SaLPlus Look and Feel: Oracle - | (Reguires restart)
- SQL Formatter Theme: Default - | (Regquires restart)

Line Terminstor: |P\a{furm Default = | (Applies to new files only)

Encoding: [cp1252

Rezet Skipped Messages ‘

——

£

J |

Cancel

Copyright © 2010, Oracle. All rights reserved.

Setting Preferences

You can customize many aspects of the SQL Developer interface and environment by modifying
SQL Developer preferences according to your preferences and needs. To modify SQL Developer
preferences, select Tools, then Preferences.

The preferences are grouped into the following categories:

Environment

Accelerators (keyboard shortcuts)
Code Editors

Database

Debugger

Documentation

Extensions

File Types

Migration

PL/SQL Compilers

PL/SQL Debugger, and so on

Oracle Database: SQL Fundamentals Il

C-29

Resetting the SQL Developer Layout

Terminal

Fle Edit View Terminal Tabs Help

[oracle@EDRSR5P1 =]q ocate windowinglayout.xml (4]
Jhome/foracle/.sqldeveloper/systeml. 5. 4.59, 0.1de.11.1.1.0.22.49.48/wi
ndowinglayout.xml
/home/foracle/.sgldeveloper/systeml.5.4.59.41/0.1de.11.1.1.0.22.49.48/wi
ndowinglayout.xml

[oracle@EDRSR5P1 ~]scd fhome/foracle/.sqldeveloper/systeml.5.4.59.41/0.1
de.11.1.1.0.22.49.48

[oracle@EDRSR5P1 o0.1ide.11.1.1.8.22.49.48]51s

Debugging.layout Editing.layout projects windowinglayout.xml
dtcache.xml preferences.xml settings.ml

[oracle@EDRSR5P1 o0.ide.11.1.1.9.22.49.48]Frm windowinglayout.xml I
[oracle@EDRSR5P1 o0.1ide.11.1.1.8.22.49.48]5

Copyright © 2010, Oracle. All rights reserved.

Resetting the SQL Developer Layout

While working with SQL Developer, if the Connections Navigator disappears or if you cannot
dock the Log window in its original place, perform the following steps to fix the problem:

1. Exit from SQL Developer.

2. Open a terminal window and use the 1ocate command to find the location of
windowinglayout .xml.
Go to the directory which has windowinglayout .xml and delete it.
4. Restart SQL Developer.

(9%}

Oracle Database: SQL Fundamentals Il C - 30

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:

* Browse, create, and edit database objects

* Execute SQL statements and scripts in SQL Worksheet

« Create and save custom reports

Copyright © 2010, Oracle. All rights reserved.

Summary
SQL Developer is a free graphical tool to simplify database development tasks. Using SQL
Developer, you can browse, create, and edit database objects. You can use SQL Worksheet to
run SQL statements and scripts. SQL Developer enables you to create and save your own special

set of reports for repeated use.

Oracle Database: SQL Fundamentals Il C - 31

AlUO 8sn Awapeay ajorIQ ¥ [eulalu] 3|oRIO

Using SQL*Plus

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

* Loginto SQL*Plus

« Edit SQL commands

« Format the output using SQL*Plus commands
» Interact with script files

Copyright © 2010, Oracle. All rights reserved.

Objectives

You might want to create SELECT statements that can be used again and again. This appendix also
covers the use of SQL*Plus commands to execute SQL statements. You learn how to format output
using SQL*Plus commands, edit SQL commands, and save scripts in SQL*Plus.

Oracle Database: SQL Fundamentals Il D -2

SQL and SQL*Plus Interaction

SQL statements 1
Server

CIC 1]
Query results |

Buffer <—|
| =

|| =
Pz
saL E1Z
\ scripts lllfé

Copyright © 2010, Oracle. All rights reserved.

SQL and SQL*Plus

SQL is a command language used for communication with the Oracle server from any tool or
application. Oracle SQL contains many extensions. When you enter a SQL statement, it is stored in a
part of memory called the SOL buffer and remains there until you enter a new SQL statement.
SQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle9i Server for
execution. It contains its own command language.

Features of SQL
» Can be used by a range of users, including those with little or no programming
experience
 Is a nonprocedural language
* Reduces the amount of time required for creating and maintaining systems
* Is an English-like language

Features of SQL*Plus
* Accepts ad hoc entry of statements
* Accepts SQL input from files
» Provides a line editor for modifying SQL statements
+ Controls environmental settings
» Formats query results into basic reports
» Accesses local and remote databases

Oracle Database: SQL Fundamentals il D -3

SQL Statements Versus
SQL*Plus Commands
SQL SQL*Plus

* Alanguage * An environment

* ANSI-standard * Oracle-proprietary

« Keywords cannot be « Keywords can be
abbreviated. abbreviated.

« Statements manipulate « Commands do not
data allow manipulation of
and table definitions in the values in the database.
database.

saL [| saL | SQL*Plus .| sQL*Plus |
statements buffer J commands buffer,

Copyright © 2010, Oracle. All rights reserved.

SQL and SQL*Plus (continued)
The following table compares SQL and SQL*Plus:

SQL SQL*Plus

Is a language for communicating with the Recognizes SQL statements and sends them

Oracle server to access data to the server

Is based on American National Standards Is the Oracle-proprietary interface for

Institute (ANSI)—standard SQL executing SQL statements

Manipulates data and table definitions in the | Does not allow manipulation of values in the

database database

Is entered into the SQL buffer on one or Is entered one line at a time, not stored in the

more lines SQL buffer

Does not have a continuation character Uses a dash () as a continuation character if
the command is longer than one line

Cannot be abbreviated Can be abbreviated

Uses a termination character to execute Does not require termination characters;

commands immediately executes commands immediately

Uses functions to perform some formatting | Uses commands to format data

Oracle Database: SQL Fundamentals |l D -4

Overview of SQL*Plus

* Login to SQL*Plus.

* Describe the table structure.
« Edit your SQL statement.

« Execute SQL from SQL*Plus.

« Save SQL statements to files and append SQL statements
to files.

 Execute saved files.
« Load commands from the file to buffer to edit.

Copyright © 2010, Oracle. All rights reserved.

SQL*Plus

SQL*Plus is an environment in which you can:
* Execute SQL statements to retrieve, modify, add, and remove data from the database
» Format, perform calculations on, store, and print query results in the form of reports
 Create script files to store SQL statements for repeated use in the future

SQL*Plus commands can be divided into the following main categories:

Category Purpose

Environment Affect the general behavior of SQL statements for the session.

Format Format query results.

File manipulation Save, load, and run script files.

Execution Send SQL statements from the SQL buffer to the Oracle server.

Edit Modify SQL statements in the buffer.

Interaction Create and pass variables to SQL statements, print variable values, and
print messages to the screen.

Miscellaneous Connect to the database, manipulate the SQL*Plus environment, and

display column definitions.

Oracle Database: SQL Fundamentals Il D -5

Logging In to SQL*Plus

Terminal

File Edit Wiew Terminal Tabs Help
[oracle@EDRSR5P1 ~]$sqlplus

SOL*Plus: Release 11.2.8.0.2 Beta on Tue May 26 19:59:06 2009

Copyright (c) 1982, 2809, Oracle. All rights reserv@
ora2l@orcl

Enter user-name:
Enter password:

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.0.2 - Beta
With the Partitioning, OLAP, Data Mining and Real Application Testing options

sa= i

sqlplus [usernamel/password[@database]]]

Terminal

File Edit View TJerminal Tabs Help
[oracle@EDRSR5P1 ~]%sqlplus ora2l/ora2l@orcl

SOL*Plus: Release 11.2.0.0.2 Beta on Tue May 26 19:58:06 2809

-
Copyright (c) 1982, 2009, Oracle. ALl rights reserved. (2')
—

Connected to:
Oracle Database 1lg Enterprise Edition Release 11.2.0.08.2 - Beta
With the Partitioning, OLAP, Data Mining and Real Application Testing options

50L>

Copyright © 2010, Oracle. All rights reserved.

Logging In to SQL*Plus
How you invoke SQL*Plus depends on which type of operating system you are running Oracle
Database.
To log in from a Linux environment:

1. Right-click your Linux desktop and select terminal.
2. Enter the sglplus command shown in the slide.

3. Enter the username, password, and database name.

In the syntax:
username Your database username
password Your database password (Your password is visible if you enter it here.)

@database The database connect string

Note: To ensure the integrity of your password, do not enter it at the operating system prompt.
Instead, enter only your username. Enter your password at the password prompt.

Oracle Database: SQL FundamentaisIl D -6

Displaying the Table Structure

Use the SQL*Plus DESCRIBE command to display the structure
of a table:

DESC[RIBE] tablename

Copyright © 2010, Oracle. All rights reserved.

Displaying the Table Structure

In SQL*Plus, you can display the structure of a table using the DESCRIBE command. The result of

the command is a display of column names and data types as well as an indication if a column must
contain data.

In the syntax:

tablename The name of any existing table, view, or synonym that is accessible to
the user

To describe the DEPARTMENTS table, use this command:
SQL> DESCRIBE DEPARTMENTS

Name Null? Type
DEPARTMENT ID NOT NULL NUMBER (4)
DEPARTMENT NAME NOT NULL VARCHAR2 (30)
MANAGER ID NUMBER (6)

LOCATION ID NUMBER (4)

Oracle Database: SQL Fundamentals Il D -7

Displaying the Table Structure

DESCRIBE departments

Name Null? Type
DEPARTMENT ID NOT NULL NUMBER (4)
DEPARTMENT NAME NOT NULL VARCHAR2 (30)
MANAGER ID NUMBER (6)

LOCATION ID NUMBER (4)

Copyright © 2010, Oracle. All rights reserved.

Displaying the Table Structure (continued)

The example in the slide displays the information about the structure of the DEPARTMENTS table. In
the result:
Null?: Specifies whether a column must contain data (NOT NULL indicates that a column must

contain data.)
Type: Displays the data type for a column

Oracle Database: SQL Fundamentals Il D -8

SQL*Plus Editing Commands

e A[PPEND] text

* C[HANGE] / old / new
e C[HANGE] / text /

* CL[EAR] BUFF [ER]

* DEL

° DEL n

o DEL m n

Copyright © 2010, Oracle. All rights reserved.

SQL*Plus Editing Commands

SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Command Description
A[PPEND] text Adds text to the end of the current line
C[HANGE] / old / new Changes o1d text to new in the current line
C[HANGE] / text / Deletes t ext from the current line
CL[EAR] BUFF [ER] Deletes all lines from the SQL buffer
DEL Deletes current line
DEL n Deletes line n
DEL m n Deletes lines m to nn inclusive

Guidelines

» If you press Enter before completing a command, SQL*Plus prompts you with a line number.
* You terminate the SQL buffer either by entering one of the terminator characters (semicolon or

slash) or by pressing Enter twice. The SQL prompt then appears.

Oracle Database: SQL Fundamentals il D -9

SQL*Plus Editing Commands

* L[IST] m n
* R[UN]

° n

°* n text

° 0 text

Copyright © 2010, Oracle. All rights reserved.

SQL*Plus Editing Commands (continued)

Command Description

I [NPUT] Inserts an indefinite number of lines

I[NPUT] text Inserts a line consisting of text

L[IST] Lists all lines in the SQL buffer

L[IST] n Lists one line (specified by n)

L[IST] m n Lists a range of lines (m to n) inclusive

R [UN] Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line

n text Replaces line n with text

0 text Inserts a line before line 1

Note: You can enter only one SQL*Plus command for each SQL prompt. SQL*Plus commands are
not stored in the buffer. To continue a SQL*Plus command on the next line, end the first line with a

hyphen (-).

Oracle Database: SQL Fundamentals Il D -10

Using LIST, n, and APPEND

LIST
1 SELECT last name
2* FROM employees

1* SELECT last name

A , job id
1* SELECT last name, job id

LIST
1 SELECT last name, job id
2* FROM employees

Copyright © 2010, Oracle. All rights reserved.

Using LIST, n, and APPEND

* Usethe L[IST] command to display the contents of the SQL buffer. The asterisk (*) beside
line 2 in the buffer indicates that line 2 is the current line. Any edits that you made apply to the
current line.

* Change the number of the current line by entering the number (n) of the line that you want to
edit. The new current line is displayed.

» Use the A [PPEND] command to add text to the current line. The newly edited line is displayed.
Verify the new contents of the buffer by using the LIST command.

Note: Many SQL*Plus commands, including LIST and APPEND, can be abbreviated to just their
first letter. LIST can be abbreviated to L; APPEND can be abbreviated to A.

Oracle Database: SQL Fundamentals Il D -11

Using the CHANGE Command

LIST
1* SELECT * from employees

c/employees/departments
1* SELECT * from departments

LIST
1* SELECT * from departments

Copyright © 2010, Oracle. All rights reserved.

Using the CHANGE Command

* Use L [IST] to display the contents of the buffer.

» Use the C [HANGE] command to alter the contents of the current line in the SQL buffer. In this
case, replace the employees table with the departments table. The new current line is
displayed.

* Usethe L[IST] command to verify the new contents of the buffer.

Oracle Database: SQL Fundamentals Il D -12

SQL*Plus File Commands

e GSAVE filename
* GET filename

* START filename
* @ filename

e EDIT filename
* SPOOL filename
e EXIT

Copyright © 2010, Oracle. All rights reserved.

SQL*Plus File Commands

SQL statements communicate with the Oracle server. SQL*Plus commands control the environment,
format query results, and manage files. You can use the commands described in the following table:

Command Description
SAV[E] filename [.ext] Saves current contents of SQL buffer to a file. Use APPEND
[REP [LACE] APP [END]] to add to an existing file; use REPLACE to overwrite an

existing file. The default extension is . sql.

GET filename [.ext] Writes the contents of a previously saved file to the SQL
buffer. The default extension for the file name is .sql.
STA[RT] filename [.ext] | Runs a previously saved command file

@ filename Runs a previously saved command file (same as START)

ED[IT] Invokes the editor and saves the buffer contents to a file
named afiedt .buf

ED[IT] [filenamel[.ext]] Invokes the editor to edit the contents of a saved file

SPO[OL] [filename[.ext]| | Stores query results in a file. OFF closes the spool file. OUT
OFF | OUT] closes the spool file and sends the file results to the printer.

EXIT Quits SQL*Plus

Oracle Database: SQL Fundamentals Il D -13

Using the SAVE and START Commands

LIST
1 SELECT last name, manager id, department id
2* FROM employees

SAVE my query
Created file my query

START my query

LAST NAME MANAGER ID DEPARTMENT ID
King 90
Kochhar 100 90

107 rows selected.

Copyright © 2010, Oracle. All rights reserved.

Using the SAVE and START Commands
SAVE
Use the SAVE command to store the current contents of the buffer in a file. In this way, you can store
frequently used scripts for use in the future.
START
Use the START command to run a script in SQL*Plus. You can also, alternatively, use the symbol @

to run a script.
@my query

Oracle Database: SQL Fundamentals |l D -14

SERVEROUTPUT Command

e Use the SET SERVEROUT [PUT] command to control

whether to display the output of stored procedures or
PL/SQL blocks in SQL*Plus.

« The DBMS OUTPUT line length limit is increased from 255
bytes to 32767 bytes.

The default size is now unlimited.

* Resources are not preallocated when SERVEROUTPUT is
set.

* Because there is no performance penalty, use UNLIMITED
unless you want to conserve physical memory.

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED] }]
[FOR[MAT] {WRA[PPED] | WOR[D WRAPPED] | TRU[NCATED] }]

Copyright © 2010, Oracle. All rights reserved.

SERVEROUTPUT Command

Most of the PL/SQL programs perform input and output through SQL statements to store data in
database tables or query those tables. All other PL/SQL input/output is done through APIs that
interact with other programs. For example, the DBMS OUTPUT package has procedures such as
PUT LINE. To see the result outside of PL/SQL you require another program, such as SQL*Plus, to
read and display the data passed to DBMS OUTPUT.

SQL*Plus does not display DBMS OUTPUT data unless you first issue the SQL*Plus command SET
SERVEROUTPUT ON as follows:
SET SERVEROUTPUT ON

Note
* SIZE sets the number of bytes of the output that can be buffered within the Oracle Database
server. The default is UNLIMITED. n cannot be less than 2000 or greater than 1,000,000.
» For additional information about SERVEROUTPUT, see the Oracle Database PL/SQL User'’s
Guide and Reference 11g.

Oracle Database: SQL Fundamentals il D -15

Using the SQL*Plus spoo. Command

SPO[OL] [file name[.ext] [CRE[ATE] | REP[LACE] |
APP[END]] | OFF | OUT]

Option Description

file name[.ext] Spools output to the specified file name

CRE [ATE] Creates a new file with the name specified

REP [LACE] Replaces the contents of an existing file. If the file
does not exist, REPLACE creates the file.

APP [END] Adds the contents of the buffer to the end of the file
you specify

OFF Stops spooling

ouT Stops spooling and sends the file to your computer’'s

standard (default) printer

Copyright © 2010, Oracle. All rights reserved.

Using the SQL*Plus spooL. Command

The SPOOL command stores query results in a file or optionally sends the file to a printer. The
SPOOL command has been enhanced. You can now append to, or replace an existing file, where
previously you could only use SPOOL to create (and replace) a file. REPLACE is the default.

To spool output generated by commands in a script without displaying the output on the screen, use
SET TERMOUT OFF. SET TERMOUT OFF does not affect output from commands that run

interactively.

You must use quotation marks around file names containing white space. To create a valid HTML
file using SPOOL APPEND commands, you must use PROMPT or a similar command to create the
HTML page header and footer. The SPOOL. APPEND command does not parse HTML tags. Set
SQLPLUSCOMPAT [IBILITY] to 9.2 or carlier to disable the CREATE, APPEND, and SAVE
parameters.

Oracle Database: SQL Fundamentals Il D -16

Using the AUTOTRACE Command

« It displays a report after the successful execution of SQL
data manipulation statements (DML) statements such as
SELECT, INSERT, UPDATE, or DELETE.

* The report can now include execution statistics and the
query execution path.

SET AUTOT [RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]]
[STAT[ISTICS]]

SET AUTOTRACE ON

-- The AUTOTRACE report includes both the optimizer
-- execution path and the SQL statement execution
-- statistics

Copyright © 2010, Oracle. All rights reserved.

Using the AUTOTRACE Command

EXPLAIN shows the query execution path by performing an EXPLAIN PLAN. STATISTICS
displays SQL statement statistics. The formatting of your AUTOTRACE report may vary depending
on the version of the server to which you are connected and the configuration of the server. The
DBMS_XPLAN package provides an easy way to display the output of the EXPLAIN PLAN
command in several predefined formats.

Note
 For additional information about the package and subprograms, see the Oracle Database
PL/SQOL Packages and Types Reference 11g guide.
» For additional information about the EXPLAIN PLAN, see Oracle Database SOL Reference
llg.
» For additional information about Execution Plans and the statistics, see the Oracle Database
Performance Tuning Guide 11g.

Oracle Database: SQL Fundamentals Il D -17

Summary

In this appendix, you should have learned how to use SQL*Plus
as an environment to do the following:

« Execute SQL statements
- Edit SQL statements

* Format the output

» Interact with script files

Copyright © 2010, Oracle. All rights reserved.

Summary

SQL*Plus is an execution environment that you can use to send SQL commands to the database
server and to edit and save SQL commands. You can execute commands from the SQL prompt or
from a script file.

Oracle Database: SQL Fundamentals Il D -18

Using JDeveloper

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

« List the key features of Oracle JDeveloper

» Create a database connection in JDeveloper
- Manage database objects in Jdeveloper

* Use JDeveloper to execute SQL Commands
« Create and run PL/SQL Program Units

Copyright © 2010, Oracle. All rights reserved.

Objectives

In this appendix, you are introduced to the tool JDeveloper. You learn how to use JDeveloper for
your database development tasks.

Oracle Database: SQL Fundamentals Il E -2

Oracle JDeveloper

Oracle JDeveloper 11g

File Edmt View Application Refactor Search Navigate Build Run Versioning Tools Window Help
FeEag 90 XEE QO @ - haildu- > & (8)

Applicaticn Mavigator E] @Stan Page E]

EE New Application...

Open Application...

Oracle JDeveloper 11g

:'Eiimunure E] Model Applications

Design Databases

Elmessages - Log =

[02:47:24 PM] Creating Integrated Weblogic domain...
[02:48:09 PM] Extending Integrated Weblogic domain...
[02:48:53 PM] Integrated Weblogic domain processing completed successfully.

Messages Feedback 4[]

Copyright © 2010, Oracle. All rights reserved.

Oracle JDeveloper

Oracle JDeveloper is an integrated development environment (IDE) for developing and
deploying Java applications and Web services. It supports every stage of the software
development life cycle (SDLC) from modeling to deploying. It has the features to use the latest
industry standards for Java, XML, and SQL while developing an application.

Oracle JDeveloper 11g initiates a new approach to J2EE development with features that enable

visual and declarative development. This innovative approach makes J2EE development simple
and efficient.

Oracle Database: SQL Fundamentals Il E -3

Database Navigator

{=lApplication Mav... @Daﬁhase Navigator | [;]

S0T
El@n IDE Connhections

8= BConnectionl

EE Connectionl - Structure E]

-

E’ Connectionl

>'$‘ Username: ora2l
+../B® Host Name: localhost
B JoBC Port: 1521

@ SID: orcl

Copyright © 2010, Oracle. All rights reserved.

Database Navigator

Using Oracle JDeveloper, you can store the information necessary to connect to a database in an
object called “connection.” A connection is stored as part of the IDE settings, and can be
exported and imported for easy sharing among groups of users. A connection serves several
purposes from browsing the database and building applications, all the way through to
deployment.

Oracle Database: SQL Fundamentals Il E -4

Creating a Connection

=i Application Nav. .. aﬂmabase Navigator EJ < Crzais Daiduass Couzsils, o

! !M ’_Ij" Choose an application from the listto create a database connection owned by and -
deployed with that application. Choose IDE Connections to create a connection that can
be added to any application.

Create Connection In: |a IDE Connections '|
Click the New Connection icon in Connection Hame: | Connection \
1 the Database NaVigator. Connection Type: |Orac|e {JDEC) V‘
Username: |ora21 ‘ Edle: | |V|
Password: |---n ‘ E Save Password

- Oracle (IDEC) Settings

[] Enter Custom |DEC URL

2 In the Create Database K Driver [thin -
Connection window, enter the Host Name: [locathost JDEC Port:
username, password and the SID. ® sip: [ordl

() Service Name:

; | — Test Connection I
@ Test the connection. ﬁ r—
e = =

@ Click OK.
Copyright © 2010, Oracle. All rights reserved.

Creating a Connection

A connection is an object that specifies the necessary information for connecting to a specific
database as a specific user of that database. You can create and test connections for multiple
databases and for multiple schemas.

To create a database connection, perform the following steps:
1. Click the New Connection icon in the Database Navigator.
2. In the Create Database Connection window, enter the connection name. Enter the username
and password of the schema that you want to connect to. Enter the SID of the database that
you want to connect to.

. Click Test to ensure that the connection has been set correctly.

4. Click OK.

W

Oracle Database: SQL Fundamentalsll E-5

Browsing Database Objects

Use the Database Navigator to:
* Browse through many objects in a database schema
* Review the definitions of objects at a glance

-_._:_-;:iAppIication Mav... [anmabase Navigator | EJ FHpEPT EI
— 5 =l
EE} B -, 7 i~ Actions...
Efa Connectionl : Column Name | Data Type [{ nunable
EILr__“I Tables DEPARTMENT_ID NUMBER(4,0) Yes
ME COFYIEMP3 DEPARTMENT_NAME VARCHAR2(30 BYTE) No
. B-4E COUNTRIES
15 [DEPARTMENTS MANAGER_ID MUMBER(E, 0) Yes
B e .| LOCATION_ID MUMBER(#, 0 Yes
:‘_zg DEPT - Structure [Z]
&
-8 Table Type: NORMAL
#-[] Columns
[Constraints
=[] Indexes
@ Schema: ORAZ1
‘ Columns | Data | Constraints | Gra |T| D

Copyright © 2010, Oracle. All rights reserved.

Browsing Database Objects

After you create a database connection, you can use the Database Navigator to browse through
many objects in a database schema including tables, views, indexes, packages, procedures,
triggers, and types.

You can object definitions broken into tabs of information that is pulled out of the data
dictionary. For example, if you select a table in the Navigator, details about columns,
constraints, grants, statistics, triggers, and so on are displayed on an easy-to-read tabbed page.

Oracle Database: SQL Fundamentals Il E -6

Executing SQL Statements

File Edit View Application Refactor Search Navigate Build Run Versioning To
-8 o0 xam 00 Bl assn-»-»

-
2 Select Connection x|

ect the connection you wish to use from the list or
create a New connection.

| |
gonne:tion:h[onnectionl vl l* /

| Help | | Ok J | Cancel |

HE) BB & 201465678 seconds

‘SELECT * FROM emplovees WHERE salary < S000]|

Copyright © 2010, Oracle. All rights reserved.

Executing SQL Statements

To execute a SQL statement, perform the following steps:
1. Click the Open SQL Worksheet icon.
2. Select the connection.

3. Execute the SQL command by clicking:
* The Execute statement button or by pressing F9. The output is as follows:

[Results u2|| Script Qutput |E} Explain |§'..E'}Autntran:e |l3,DEM
Results:

B emroveen [§ rirsT_nAME|E LasT_name [
1 100 Steven King Sk

2 101 Meena Kochhar [K]

* The Run Script button or by pressing F5. The output is as follows:

[Results | [&] script output E}Explain|§?§3Aututrace|!3[:lam

vBaE
EMPLOYEE_ID FIRST_N&ME LAST
100 STewen King

Oracle Database: SQL Fundamentals Il E -7

Creating Program Units

-i_E.‘:JAppIication Mav... |aﬂiﬂahase Navigator Create PL/SQL Function =
@ L T Schema: |[ORAZ1 - Ea
Ela IDE Connections Name: ‘Bonus ‘
Ela Connectionl [] Add New Source In Lowercase
[]E Tables Parameters pooL
-8 Views i
Hame Type Mode Default Value |n{-|
5-(08 Indexes e -
[+--[[ff Packages ®
-8 Procedures
- [l Functio > L
B Queues | M i G N 3
[]—--% Queues \@
I:I---EE Triggers ? Apply Filter...
=[5 Types
e
EE Structure &| Copy to Project... Hep | ‘T ‘ﬁ
@ Generate...
@ Compile Invalid
Compile All
— BONUS
Generate |ava... 1}] :
Help (@8- Find 4&“&“9’3 o oty
CREATE DR REPLACE
E FUNCTION BOWUS RETURN WUMEER AS
BEGIN
RETURN NULL;
END BONUS;

Skeleton of the function

Copyright © 2010, Oracle. All rights reserved.

Creating Program Units

To create a PL/SQL program unit:

1. Select View > Database Navigator. Select and expand a database connection. Right-click a
folder corresponding to the object type (Procedures, Packages, Functions). Select “New
[Procedures|Packages|Functions]”.

2. Enter a valid name for the function, package, or procedure, and click OK.

3. A skeleton definition is created and opened in the Code Editor. You can then edit the
subprogram to suit your need.

Oracle Database: SQL Fundamentals Il E -8

Compiling

Compiling...
Context:

MakeSelectedCommand selection=Element containing i
Shomesoracles0racle/Midd]l eware,/Jdkle0_11JresbinsJjava -jar /

[5:14:32 PM] Successtul compilation: O errors, O warnings.

Messages Feedback

Compilation with errors

[Elcompiter - Log
Project: fhome/foraclefjdeveloper/mywork/Applicationl/Projectl/Projectl,
E}@ fhomeforacle/jdeveloper/mywork/Applicationl /Projectl/src/projectl

: @ Error(7,13): duplicate definition of variable a in constructor Hello)
@ Error(7,15): ; expected

@ Error(8,28): variable a might not have been initialized

Messages .Feedback Compiler

@
Compilation without errors

Copyright © 2010, Oracle. All rights reserved.

Compiling
After editing the skeleton definition, you need to compile the program unit. Right-click the

PL/SQL object that you need to compile in the Connection Navigator, and then select Compile.
Alternatively, you can press CTRL + SHIFT + F9 to compile.

Oracle Database: SQL Fundamentalsll E -9

Running a Program Unit
Run PL/SQL x|
Parameters:
ADD_lOB_HISTORY Parameter Data Type Mode
F_EMP_ID MUMBER I
P_START_DATE DATE 1M
F_EMD_DATE DATE M
P_JOBE_ID VARCHARZ{10) IM
P_DEPARTMENT_ID MUMBER I
PL/SQL Block
DECLARE
FP_EMP_ID MUMBER;
P_START_DATE DATE;
P_END_DATE DATE;
P_JOB_ID VARCHARZ(10);
F_DEPARTHMENT_ID NUMBER;
BEGIN
P_EMP_ID := MULL;
P_START_DATE := NULL;
F_END_DATE := NULL;
P_JOB_ID := MULL;
F_DEPARTHENT_ID := MWULL;
ADD_JOE_HISTORYT
P_EMP_ID => P_EMP_ID,
| Save File... | Erom File... | Reset |
ok J[concer |

Copyright © 2010, Oracle. All rights reserved.

Running a Program Unit

To execute the program unit, right-click the object and select Run. The Run PL/SQL dialog box
appears. You may need to change the NULL values with reasonable values that are passed into
the program unit. After you change the values, click OK. The output is displayed in the
Message-Log window.

Oracle Database: SQL Fundamentals Il E -10

Dropping a Program Unit

lgﬂApplication Mav... |a[]a:labase Navigator
4] ADD_DEPT
-] ADD_JOB_HISTOR =
@-4] SECURE_DML E:_t
#-{fi@ Functions =it _)
E:I--{Eh Queues Open Object Viewsr
E]----@E Queues Tables B Run Ctrl-F11
{8 Triggers o Make CArHShift-F9
B[Types Eﬁ Compjle for Debug
#-[14 Sequences 2 Debug
{75 Materialized Views
[]----LE Materialized Wiews Log 1%y Copy to Project... |'é., Drop x|
{3 Synonyms Generate To »
A
= Duplicate... Prompts 5QL
[=ADD_JOB_HISTORY - Structure Owner ORAZL
r Grant
Revoke Mame ADD_JOE_HISTORY
=& add_job_history (job_history. r—
-] Parameter List Zrop k Are you sure you want to drop this PROCEDURE?
: C ile D dant
-7 Code Section omplle Uependants
Eormat
Export DDL]

®

| Help | I Apply | | Cancel J

Copyright © 2010, Oracle. All rights reserved.

Dropping a Program Unit

To drop a program unit:
1. Right-click the object and select Drop.
The Drop Confirmation dialog box appears.
2. Click Apply.
The object is dropped from the database.

Oracle Database: SQL Fundamentals Il E - 11

Structure Window

;E‘iAppIication Mavi... aDatabase Mavigator

BRY
Bl a IDE Connections
Ela Connectionl
EE] Tables
ELE Wiews
EIEB Indexes
[+ Packages
EH:Q Procedures
. @-4] ADD_DEFT
&3] ADD_JOE_HISTORY
-] SECURE_DML
ﬁ"— Functions
E—‘% Queues

A i@h o -~

‘= ADD_DEFT - Structure
-

EE add_dept

E| {1 Declaration Section
- v_dept_id
v_dept_name

&6

._.;-EjiAppIication Mav... |a[latabase Mavigator

@ T

- EMP_HISTORY
-5 EMP_LIB

][EMP_NEW_SAL
- {55 EMP_SALES
- EMP_TEST
-5 EMP_UNMNAMED _INDEX
- EMP2

- EMP8

- EMPL_DEMO
- EMPLG

63

-5 EMPLOYEES3
feeillinss T T=TE =

£
[
£
[
£
[
£
[
£
[
£
[

= EMPLOYEES - Structure
4
B Table Type: HORMAL

{7 columns
#-{J Constraints
-] Indexes

------- & Schema ORAZ1

Statement: #2
Statement: #3
------ Statement: #4

Copyright © 2010, Oracle. All rights reserved.

Structure Window

The Structure window offers a structural view of the data in the document that is currently
selected in the active window of those windows that participate in providing structure: the
navigators, the editors and viewers, and the Property Inspector.

In the Structure window, you can view the document data in a variety of ways. The structures
that are available for display are based on document type. For a Java file, you can view code
structure, Ul structure, or Ul model data. For an XML file, you can view XML structure, design
structure, or UI model data.

The Structure window is dynamic, tracking always the current selection of the active window
(unless you freeze the window’s contents on a particular view), as is pertinent to the currently
active editor. When the current selection is a node in the navigator, the default editor is assumed.
To change the view on the structure for the current selection, select a different structure tab.

Oracle Database: SQL Fundamentals Il E -12

Editor Window

[BHellojava [Connectiont [{] ADD_joB HISTORY |] sECURE_DML

I I &k
=, CREATE OR REPLACE PROCEDURE add_job_history
L

p_enp_id job_history.emplovee_idxtype ,
p_start_date job_history.start_dateitype ,
p_end_date job_history,end_dateXtype ,
p_joh_id job_history.joh_id¥type ,
p_department_id job_history.department_idktype)

IS
BEGIN
= INSERT INTOD job_history
s

enplowee_id, start_date, end_date, job_id, department_id

J
VALUES

(
p_emp_id, p_start_date, p_end_date, p_job_id, p_department_id

bH
END add_job_history;l

Copyright © 2010, Oracle. All rights reserved.

Editor Window

You can view your project files all in one single editor window, you can open multiple views of
the same file, or you can open multiple views of different files.

The tabs at the top of the editor window are the document tabs. Selecting a document tab gives
that file focus, bringing it to the foreground of the window in the current editor.

The tabs at the bottom of the editor window for a given file are the editor tabs. Selecting an
editor tab opens the file in that editor.

Oracle Database: SQL Fundamentals Il E -13

Application Navigator

{=lApplication Navigator | (=]
| Defauwarkspace v & -
I Projects %Y=

< Application Resources

[7 Connections

=B 0escriptors
b7 META-INF
-7 ADF META-INF

[+ Data Controls
I Recently Opened Files

Copyright © 2010, Oracle. All rights reserved.

Application Navigator

Application Navigator gives you a logical view of your application and the data that it contains.
Application Navigator provides an infrastructure that the different extensions can plug in to and
use to organize their data and menus in a consistent, abstract manner. While Application
Navigator can contain individual files (such as Java source files), it is designed to consolidate
complex data. Complex data types such as entity objects, Unified Modeling Language (UML)
diagrams, Enterprise JavaBeans (EJB), or Web services appear in this navigator as single nodes.
The raw files that make up these abstract nodes appear in the Structure window.

Oracle Database: SQL Fundamentals Il E -14

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the following
steps:

1. Create a database connection.

2. Create a deployment profile.

3. Deploy the objects.

Copyright © 2010, Oracle. All rights reserved.

Deploying Java Stored Procedures
Create a deployment profile for Java stored procedures, and then deploy the classes and,
optionally, any public static methods in JDeveloper using the settings in the profile.
Deploying to the database uses the information provided in the Deployment Profile Wizard and

two Oracle Database utilities:
loadjava loads the Java class containing the stored procedures to an Oracle database.

publish generates the PL/SQL call-specific wrappers for the loaded public static
methods. Publishing enables the Java methods to be called as PL/SQL functions or

procedures.

Oracle Database: SQL Fundamentals Il E -15

Publishing Java to PL/SQL

& Trimtob.java | 1] TRIMLOSPROC

(@8- rine $H)2HS 8 BUORESE H M MR
public class TrinlLoh
SR
= public static void main (5tring args Q) throws S0LException {
Connection conn=null;
if (System.getProperty({"aracle.jserver.version") l= null)
{

conn = DriverManager.getConnection"jdbc:default: connection:"J;

@

DriverManager. registerbriver{new oracle.jdbc.0raclebriver{d);
conn = DriverManager.getConnection"jdhcioracle:thin:scott tiger");
h

& TrimLobjava 1] TRIMLOBPROC |
@8- o L& & h

CREATE OR REPLACE PROCEDURE TRIMLOEPROC
as lahguage java 2
name 'Trimlob.maindjava.lang. 5tringQa';

!

Copyright © 2010, Oracle. All rights reserved.

Publishing Java to PL/SQL

The slide shows the Java code and illustrates how to publish the Java code in a PL/SQL
procedure.

Oracle Database: SQL Fundamentals Il E -16

How Can | Learn More About JDeveloper 11g ?

Topic Web site

Oracle JDeveloper

Product Page http://www.oracle.com/technology/products/jdev/index.html

Oracle JDeveloper 11g

: http://www.oracle.com/technology/obe/obe11jdev/11/index.html
Tutorials

Oracle JDeveloper 11g

Product Documentation http://www.oracle.com/technology/documentation/jdev.htmi

Oracle JDeveloper 11g

. : http://forums.oracle.com/forums/forum.jspa?forumID=83
Discussion Forum

Copyright © 2010, Oracle. All rights reserved.

Oracle Database: SQL Fundamentals Il E -17

Summary

In this appendix, you should have learned how to use
JDeveloper to do the following:

« List the key features of Oracle JDeveloper

» Create a database connection in JDeveloper
- Manage database objects in JDeveloper

* Use JDeveloper to execute SQL Commands
« Create and run PL/SQL Program Units

Copyright © 2010, Oracle. All rights reserved.

Objectives

In this appendix, you are introduced to the tool JDeveloper. You learn how to use JDeveloper for
your database development tasks.

Oracle Database: SQL Fundamentals Il E -18

Generating Reports by Grouping
Related Data

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to use the:
* ROLLUP operation to produce subtotal values
* CUBE operation to produce cross-tabulation values

* GROUPING function to identify the row values created by
ROLLUP or CUBE

* GROUPING SETS to produce a single result set

Copyright © 2010, Oracle. All rights reserved.

Objectives
In this appendix, you learn how to:
* Group data to obtain the subtotal values by using the ROLLUP operator
* Group data to obtain the cross-tabulation values by using the CUBE operator
* Use the GROUPING function to identify the level of aggregation in the result set produced
by a ROLLUP or CUBE operator
» Use GROUPING SETS to produce a single result set that is equivalent to a UNION ALL

approach

Oracle Database: SQL Fundamentals Il F -2

Review of Group Functions

« Group functions operate on sets of rows to give one result

per group.
SELECT [column,]| group function(column). . .
FROM table
[WHERE condition]
[GROUP BY group by expression]
[ORDER BY column] ;
« Example:

SELECT AVG(salary), STDDEV(salary),

COUNT (commission pct) ,MAX (hire date)
FROM employees
WHERE job id LIKE 'SA%';

Copyright © 2010, Oracle. All rights reserved.

Group Functions

You can use the GROUP BY clause to divide the rows in a table into groups. You can then use
group functions to return summary information for each group. Group functions can appear in
select lists and in ORDER BY and HAVING clauses. The Oracle server applies the group
functions to each group of rows and returns a single result row for each group.

Types of group functions: Each of the group functions—AVG, SUM, MAX, MIN, COUNT,
STDDEV, and VARIANCE—accepts one argument. The AVG, SUM, STDDEV, and VARIANCE
functions operate only on numeric values. MAX and MIN can operate on numeric, character, or
date data values. COUNT returns the number of non-NULL rows for the given expression. The
example in the slide calculates the average salary, standard deviation on the salary, number of
employees earning a commission, and the maximum hire date for those employees whose
JOB_ID begins with SA.

Guidelines for Using Group Functions
* The data types for the arguments can be CHAR, VARCHAR2, NUMBER, or DATE.
» All group functions except COUNT (*) ignore null values. To substitute a value for null
values, use the NVL function. COUNT returns either a number or zero.
* The Oracle server implicitly sorts the result set in ascending order of the grouping columns
specified, when you use a GROUP BY clause. To override this default ordering, you can use
DESC in an ORDER BY clause.

Oracle Database: SQL Fundamentals Il F -3

Review of the GROUP BY Clause

« Syntax:
SELECT [column,] group function(column). . .
FROM table
[WHERE condition]
[GROUP BY group by expression]
[ORDER BY column] ;
« Example:

SELECT department id, job id, SUM(salary),
COUNT (employee id)

FROM employees

GROUP BY department id, job id

Copyright © 2010, Oracle. All rights reserved.

Review of the GROUP BY Clause

The example illustrated in the slide is evaluated by the Oracle server as follows:
* The SELECT clause specifies that the following columns be retrieved:
- Department ID and job ID columns from the EMPLOYEES table
- The sum of all the salaries and the number of employees in each group that you have

specified in the GROUP BY clause
» The GROUP BY clause specifies how the rows should be grouped in the table. The total

salary and the number of employees are calculated for each job ID within each department.
The rows are grouped by department ID and then grouped by job within each department.

~e

Oracle Database: SQL Fundamentals Il F -4

Review of the HAVING Clause

* Use the HAVING clause to specify which groups are to be

displayed.
* You further restrict the groups on the basis of a limiting

condition.

SELECT [column,] group function(column)...

FROM table

[WHERE condition]

[GROUP BY group by expression]

| [HAVING having expression]
ORDER BY column] ;

Copyright © 2010, Oracle. All rights reserved.

HAVING Clause
Groups are formed and group functions are calculated before the HAVING clause is applied to
the groups. The HAVING clause can precede the GROUP BY clause, but it is recommended that

you place the GROUP BY clause first because it is more logical.
The Oracle server performs the following steps when you use the HAVING clause:

1. It groups rows.
2. It applies the group functions to the groups and displays the groups that match the criteria

in the HAVING clause.

Oracle Database: SQL Fundamentals Il F -5

GROUP BY with ROLLUP and
CUBE Operators

 Use ROLLUP or CUBE with GROUP BY to produce
superaggregate rows by cross-referencing columns.

* ROLLUP grouping produces a result set containing the
regular grouped rows and the subtotal values.

* CUBE grouping produces a result set containing the rows
from ROLLUP and cross-tabulation rows.

Copyright © 2010, Oracle. All rights reserved.

GROUP BY with the ROLLUP and CUBE Operators

You specify ROLLUP and CUBE operators in the GROUP BY clause of a query. ROLLUP

grouping produces a result set containing the regular grouped rows and subtotal rows. The
ROLLUP operator also calculates a grand total. The CUBE operation in the GROUP BY clause

groups the selected rows based on the values of all possible combinations of expressions in the
specification and returns a single row of summary information for each group. You can use the
CUBE operator to produce cross-tabulation rows.

Note: When working with ROLLUP and CUBE, make sure that the columns following the
GROUP BY clause have meaningful, real-life relationships with each other; otherwise, the
operators return irrelevant information.

Oracle Database: SQL Fundamentals Il F -6

ROLLUP Operator

e ROLLUP is an extension to the GROUP RY clause.

« Use the ROLLUP operation to produce cumulative
aggregates, such as subtotals.

SELECT [column,] group function(column). .
FROM table

[WHERE condition]

[GROUP BY [ROLLUP] | group by expression]
[HAVING having expression];

[ORDER BY column] ;

Copyright © 2010, Oracle. All rights reserved.

ROLLUP Operator

The ROLLUP operator delivers aggregates and superaggregates for expressions within a GROUP

BY statement. The ROLLUP operator can be used by report writers to extract statistics and

summary information from result sets. The cumulative aggregates can be used in reports, charts,

and graphs.

The ROLLUP operator creates groupings by moving in one direction, from right to left, along the

list of columns specified in the GROUP BY clause. It then applies the aggregate function to these

groupings.

Note

* To produce subtotals in » dimensions (that is, » columns in the GROUP BY clause) without a

ROLLUP operator, n+1 SELECT statements must be linked with UNION ALL. This makes
the query execution inefficient because each of the SELECT statements causes table access.
The ROLLUP operator gathers its results with just one table access. The ROLLUP operator

is useful when there are many columns involved in producing the subtotals.
» Subtotals and totals are produced with ROLLUP. CUBE produces totals as well but

effectively rolls up in each possible direction, producing cross-tabular data.

Oracle Database: SQL Fundamentals Il F -7

ROLLUP Operator: Example

FROM employees
WHERE department id < 60

SELECT department id, job id, SUM(salary)

GROUP BY ROLLUP (department id, job id);

DEPARTMENT_ID [[{] JoB_ID B sum

10 AD_ASET

A LR
440

10 ¢nully
20 MK_MAN
20 MK_REP
20 ¢nully

30 PL_MAN
30 PU_CLERK,
30 ¢nully

40 HR_REP

L R T e

4400
13000
6000
18000
11000
13800
24500
a500

=
o

| EXGT

650

=
=

S0 ST_MAN
50 SH_CLERK
50 5T_CLERK
S0 inully
frally {nully

B e
E N NN N)

e
n

36400
4300
55700

15e400]

211200

Copyright © 2010, Oracle. All rights reserved.

@

@
®

Example of a ROLLUP Operator

In the example in the slide:

» Total salaries for every job ID within a department for those departments whose department

ID is less than 60 are displayed by the GROUP BY clause

* The ROLLUP operator displays:

- The total salary for each department whose department ID is less than 60
- The total salary for all departments whose department ID is less than 60, irrespective of

the job IDs

In this example, 1 indicates a group totaled by both DEPARTMENT ID and JOB ID,2
indicates a group totaled only by DEPARTMENT ID, and 3 indicates the grand total.

The ROLLUP operator creates subtotals that roll up from the most detailed level to a grand total,
following the grouping list specified in the GROUP BY clause. First, it calculates the standard
aggregate values for the groups specified in the GROUP BY clause (in the example, the sum of
salaries grouped on each job within a department). Then it creates progressively higher-level
subtotals, moving from right to left through the list of grouping columns. (In the example, the
sum of salaries for each department is calculated, followed by the sum of salaries for all

departments.)

» Given n expressions in the ROLLUP operator of the GROUP BY clause, the operation results

inn + 1 (in this case, 2 + 1 = 3) groupings.

* Rows based on the values of the first n expressions are called rows or regular rows, and the

others are called superaggregate rows.

Oracle Database: SQL Fundamentals Il

F-8

CUBE Operator

e CUBE is an extension to the GROUP BY clause.

* You can use the CUBE operator to produce cross-
tabulation values with a single SELECT statement.

SELECT [column,] group function(column)...
FROM table

[WHERE condition]

[GROUP BY [[CUBE] | group by expression]

[HAVING having expression]

[ORDER BY column] ;

Copyright © 2010, Oracle. All rights reserved.

CUBE Operator

The CUBE operator is an additional switch in the GROUP BY clause in a SELECT statement. The
CUBE operator can be applied to all aggregate functions, including AVG, SUM, MAX, MIN, and
COUNT. It is used to produce result sets that are typically used for cross-tabular reports.
ROLLUP produces only a fraction of possible subtotal combinations, whereas CUBE produces
subtotals for all possible combinations of groupings specified in the GROUP BY clause, and a
grand total.

The CUBE operator is used with an aggregate function to generate additional rows in a result set.
Columns included in the GROUP BY clause are cross-referenced to produce a superset of groups.
The aggregate function specified in the select list is applied to these groups to produce summary
values for the additional superaggregate rows. The number of extra groups in the result set is
determined by the number of columns included in the GROUP BY clause.

In fact, every possible combination of the columns or expressions in the GROUP BY clause is
used to produce superaggregates. If you have n columns or expressions in the GROUP BY clause,
there will be 2” possible superaggregate combinations. Mathematically, these combinations form
an n-dimensional cube, which is how the operator got its name.

By using application or programming tools, these superaggregate values can then be fed into
charts and graphs that convey results and relationships visually and effectively.

Oracle Database: SQL Fundamentals Il F -9

CUBE Operator: Example

SELECT department id, job id, SUM(salary)
FROM employees
WHERE department id < 60

|GROUP BY CUBE (department id, job id) |;

peparTMENTID [{ JoB_D [sumsaiarn | @
1 gnully nully [211z00]|
2 {rully HR_REP 500
3 fnully ME_MAN 13000
4 frully ME_REP 6000
5 frull) PU_MAN 11000
6 frully ST_MAN 36400
7 fully AD_ASST 4400 @
5 tnully PU_CLERK 13900
9 frully SH_CLERK 64300
10 fnully ST_CLERK, 55700
11 10 {nully 2400
'|l7‘ 1080 aceT A4010(] @
13 20 (nully 18000
14 20 ME_MAN 13000
15 20 ME_REP 6000
14 30 (nulls 4900

Copyright © 2010, Oracle. All rights reserved.

Example of a CUBE Operator

The output of the SELECT statement in the example can be interpreted as follows:
» The total salary for every job within a department (for those departments whose department
ID is less than 60)
* The total salary for each department whose department ID is less than 60
* The total salary for each job irrespective of the department
* The total salary for those departments whose department ID is less than 60, irrespective of
the job titles
In this example, 1 indicates the grand total, 2 indicates the rows totaled by JOB ID alone, 3
indicates some of the rows totaled by DEPARTMENT ID and JOB ID, and 4 indicates some of
the rows totaled by DEPARTMENT ID alone.
The CUBE operator has also performed the ROLLUP operation to display the subtotals for those

departments whose department ID is less than 60 and the total salary for those departments
whose department ID is less than 60, irrespective of the job titles. Further, the CUBE operator

displays the total salary for every job irrespective of the department.

Note: Similar to the ROLLUP operator, producing subtotals in » dimensions (that is, # columns
in the GROUP BY clause) without a CUBE operator requires that 2” SELECT statements be
linked with UNION ALL. Thus, a report with three dimensions requires 2° = 8 SELECT
statements to be linked with UNION ALL.

Oracle Database: SQL Fundamentals Il F -10

GROUPING Function

The GROUPING function:
* Is used with either the CUBE or ROLLUP operator

* Is used to find the groups forming the subtotal in a row

* |s used to differentiate stored NULL values from NULL
values created by ROLLUP or CUBE

e Returnsoori1

SELECT [column,] group function(column) .. ,
GROUPING (expr)

FROM table

[WHERE condition]

[GROUP BY [ROLLUP] [CUBE] group by expression]
[HAVING having expression]
[ORDER BY column] ;

Copyright © 2010, Oracle. All rights reserved.

GROUPING Function

The GROUPING function can be used with either the CUBE or ROLLUP operator to help you
understand how a summary value has been obtained.

The GROUPING function uses a single column as its argument. The expzr in the GROUPING
function must match one of the expressions in the GROUP BY clause. The function returns a
value of 0 or 1.

The values returned by the GROUPING function are useful to:

* Determine the level of aggregation of a given subtotal (that is, the group or groups on which
the subtotal is based)
 Identify whether a NULL value in the expression column of a row of the result set indicates:
- A NULL value from the base table (stored NULL value)
- A NULL value created by ROLLUP or CUBE (as a result of a group function on that
expression)
A value of 0 returned by the GROUPING function based on an expression indicates one of the
following:
» The expression has been used to calculate the aggregate value.
* The NULL value in the expression column is a stored NULL value.
A value of 1 returned by the GROUPING function based on an expression indicates one of the
following:
» The expression has not been used to calculate the aggregate value.
» The NULL value in the expression column is created by ROLLUP or CUBE as a result of

grouping.

Oracle Database: SQL Fundamentals Il F -11

GROUPING Function: Example

SELECT department id DEPTID, job id JOB,
SUM(salary),

GROUPING (department id) GRP_DEPT,
GROUPING (job id) GRP JOB

FROM employees

WHERE department id < 50

GROUP BY ROLLUP (department id, job id);

peerio [108 f sumsatary B cre_perT|H crejos]
10 AD_ASST 4400 0
10 trully 4400

20 ME_MAN 13000
20 ME_REP &000
20 (nully 13000
30 PL_MAN 11000
30 PU_CLERK 13900
30 {nully 24900
40 HR_REP #8500
40 {nully 500

erully (nully 54800

L T T I o W1 R

=
(=1

o o o o o o o o o o
=k o F o O Fr O O B

=
=

Copyright © 2010, Oracle. All rights reserved.

Example of a GROUPING Function

In the example in the slide, consider the summary value 4400 in the first row (labeled 1). This
summary value is the total salary for the job ID of AD ASST within department 10. To calculate
this summary value, both the DEPARTMENT ID and JOB_ID columns have been taken into
account. Thus, a value of 0 is returned for both the GROUPING (department id)and
GROUPING (job_id) expressions.

Consider the summary value 4400 in the second row (labeled 2). This value is the total salary for
department 10 and has been calculated by taking into account the DEPARTMENT ID column;
thus, a value of 0 has been returned by GROUPING (department id). Because the JOB_ID
column has not been taken into account to calculate this value, a value of 1 has been returned for
GROUPING (job_ id). You can observe similar output in the fifth row.

In the last row, consider the summary value 54800 (labeled 3). This is the total salary for those
departments whose department ID is less than 50 and all job titles. To calculate this summary
value, neither of the DEPARTMENT ID and JOB_ID columns have been taken into account.
Thus, a value of 1 is returned for both the GROUPING (department id)and

GROUPING (job_id) expressions.

Oracle Database: SQL Fundamentals Il F -12

GROUPING SETS

« The GROUPING SETS syntax is used to define multiple
groupings in the same query.

« All groupings specified in the GROUPING SETS clause are
computed and the results of individual groupings are
combined with a UNION ALL operation.

« Grouping set efficiency:

— Only one pass over the base table is required.
— There is no need to write complex UNION statements.

— The more elements GROUPING SETS has, the greater is the
performance benefit.

Copyright © 2010, Oracle. All rights reserved.

GROUPING SETS

GROUPING SETS is a further extension of the GROUP BY clause that you can use to specify
multiple groupings of data. Doing so facilitates efficient aggregation and, therefore, facilitates
analysis of data across multiple dimensions.

A single SELECT statement can now be written using GROUPING SETS to specify various
groupings (which can also include ROLLUP or CUBE operators), rather than multiple SELECT
statements combined by UNION ALL operators. For example:
SELECT department id, job id, manager id, AVG(salary)

FROM employees

GROUP BY

GROUPING SETS

((department id, job_id, manager id),

(department id, manager id), (job id, manager id)) ;
This statement calculates aggregates over three groupings:

(department id, job id, manager id), (department id,
manager id)and (job id, manager 1id)

Without this feature, multiple queries combined together with UNION ALL are required to
obtain the output of the preceding SELECT statement. A multiquery approach is inefficient
because it requires multiple scans of the same data.

Oracle Database: SQL Fundamentals Il F -13

GROUPING SETS (continued)

Compare the previous example with the following alternative:
SELECT department id, job id, manager id, AVG(salary)
FROM employees
GROUP BY CUBE (department id, job id, manager id) ;

This statement computes all the 8 (2 *2 *2) groupings, though only the (department id,
job id, manager id), (department id, manager id),and (job_ id,
manager id) groups are of interest to you.

Another alternative is the following statement:
SELECT department id, job id, manager id, AVG(salary)
FROM employees
GROUP BY department id, job_ id, manager id
UNION ALL
SELECT department id, NULL, manager_ id, AVG(salary)
FROM employees
GROUP BY department id, manager id
UNION ALL
SELECT NULL, job id, manager id, AVG(salary)
FROM employees
GROUP BY job id, manager_ id;

This statement requires three scans of the base table, which makes it inefficient.

CUBE and ROLLUP can be thought of as grouping sets with very specific semantics and results.
The following equivalencies show this fact:

CUBE(a, b, c) GROUPING SETS
is equivalent to ((a, b, ¢), (&, b), (a, ¢), (b, c),
(a), (b), (c), ()
ROLLUP (a, b,c) GROUPING SETS ((a, b, <), (a, b),(a), ()

1s equivalent to

Oracle Database: SQL Fundamentals Il F -14

GROUPING SETS: Example

SELECT department id, job id,
manager id,AVG(salary)
FROM employees
GROUP BY|GROUPING SETS|
((department id,job _id), (job id,manager id));

DEFARTMENT_ID] JOB_ID | MANACER_ID| AVGISALART)

{nully SH_CLERK 122 3200
(hully AC_MGR 101 1z004
(rully ST_MAN 100 7z2a0

(nully ST_CLERE 121 2675

R Y

| oeparTMENT_ID B JoBID MANAGER_ID] AVG(SALARY)
e 110 AC_MGR tull) 12000

40 90 AD_PRES fnulny 24000
41 B0 IT_PROGC tnully 57l 4—@
4z 100 FI_MGR. fnully 12000

Copyright © 2010, Oracle. All rights reserved.

GROUPING SETS: Example

The query in the slide calculates aggregates over two groupings. The table is divided into the
following groups:

* Department ID, Job ID

» Job ID, Manager ID

The average salaries for each of these groups are calculated. The result set displays the average
salary for each of the two groups.

In the output, the group marked as 1 can be interpreted as the following:
» The average salary of all employees with the SH CLERK job ID under manager 122 is
3,200.
* The average salary of all employees with the AC_MGR job ID under manager 101 is 12,000,
and so on.

The group marked as 2 in the output is interpreted as the following:
* The average salary of all employees with the AC_MGR job ID in department 110 is 12,000.
* The average salary of all employees with the AD PRES job ID in department 90 is 24,000,
and so on.

Oracle Database: SQL Fundamentals Il F -15

GROUPING SETS: Example (continued)

The example in the slide can also be written as:

SELECT department id, job id, NULL as manager id,
AVG(salary) as AVGSAL

FROM employees

GROUP BY department id, job id

UNION ALL

SELECT NULL, job id, manager id, avg(salary) as AVGSAL

FROM employees

GROUP BY job id, manager_ id;

In the absence of an optimizer that looks across query blocks to generate the execution plan, the
preceding query would need two scans of the base table, EMPLOYEES. This could be very
inefficient. Therefore, the usage of the GROUPING SETS statement is recommended.

Oracle Database: SQL Fundamentals Il F -16

Composite Columns

* A composite column is a collection of columns that are
treated as a unit.

ROLLUP (a,|(b, e)|, d)

« Use parentheses within the GROUP BY clause to group
columns, so that they are treated as a unit while computing
ROLLUP or CUBE operations.

* When used with ROLLUP or CUBE, composite columns
would require skipping aggregation across certain levels.

Copyright © 2010, Oracle. All rights reserved.

Composite Columns

A composite column is a collection of columns that are treated as a unit during the computation
of groupings. You specify the columns in parentheses as in the following statement: ROLLUP
(a, (b, ¢), d)

Here, (b, c) forms a composite column and is treated as a unit. In general, composite
columns are useful in ROLLUP, CUBE, and GROUPING SETS. For example, in CUBE or
ROLLUP, composite columns would require skipping aggregation across certain levels.

That is, GROUP BY ROLLUP (a, (b, c))isequivalent to:
GROUP BY a, b, ¢ UNION ALL
GROUP BY a UNION ALL
GROUP BY ()

Here, (b, c) istreated as a unit and ROLLUP is not applied across (b, c).Itis as though
you have an alias—for example, z as an alias for (b, c), and the GROUP BY expression
reduces to: GROUP BY ROLLUP(a, z).

Note: GROUP BY () is typically a SELECT statement with NULL values for the columns a and
b and only the aggregate function. It is generally used for generating grand totals.

SELECT NULL, NULL, aggregate col

FROM <table name>

GROUP BY ();

Oracle Database: SQL Fundamentals Il F -17

Composite Columns (continued)

Compare this with the normal ROLLUP as in:
GROUP BY ROLLUP(a, b, <)

This would be:
GROUP BY a, b, ¢ UNION ALL
GROUP BY a, b UNION ALL
GROUP BY a UNION ALL
GROUP BY ()

Similarly:
GROUP BY CUBE((a, b), c)

This would be equivalent to:
GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY c UNION ALL
GROUP By ()

The following table shows the GROUPING SETS specification and the equivalent GROUP BY
specification.

GROUPING SETS Statements Equivalent GROUP BY Statements

GROUP BY GROUPING SETS(a, b, c) GROUP BY a UNION ALL
GROUP BY b UNION ALL
GROUP BY c

GROUP BY GROUPING SETS(a, b, (b, c)) GROUP BY a UNION ALL

(The GROUPING SETS expression has a composite GROUP BY b UNION ALL

column.) GROUP BY b, c

GROUP BY GROUPING SETS((a, b, <)) GROUP BY a, b, c

GROUP BY GROUPING SETS(a, (b), ()) GROUP BY a UNION ALL
GROUP BY b UNION ALL
GROUP BY ()

GROUP BY GROUPING SETS GROUP BY a UNION ALL

(a,ROLLUP (b, c)) GROUP BY ROLLUP (b, <)

(The GROUPING SETS expression has a composite

column.)

Oracle Database: SQL Fundamentals Il F -18

Composite Columns: Example

SELECT department id, job id, manager id,
SUM (salary)
FROM employees
GROUP BY ROLLUP (department id, (job id, manager_id))k

DEPARTMENTID [B Jobip [B MaMACERID[H sumaLarn]
1 (il S4_REP 149 7000
TRy (AT TR T

3 10 AD_ASST 101 4400
4 10 (hully {nully 4400
5 20 ME_MARN 100 13000
& 20 MK_REP 201 5000
7 20 (ully (nully 19000
LI
DEPARTMENT_ID | JOE_ID | MANAGER_ID | SUMSALART)
40 100 FI_MGR 101 12000
41 100 FI_ACCOUNT 108 39600
42 100 {nully {nully 5160 4—@
43 110 AC_MCR 101 12000
44 110 AC_ACCOUNT 205 &300
45 110 frully {nully 20300
46 {null) (null) {nully 69140 4—@

Copyright © 2010, Oracle. All rights reserved.

Composite Columns: Example

Consider the example:
SELECT department id, job_id,manager id, SUM(salary)
FROM employees
GROUP BY ROLLUP(department id,job id, manager id) ;

This query results in the Oracle server computing the following groupings:
* (job id, manager 1id)
e (department id, job_ id, manager id)
* (department id)
* Grand total

If you are interested only in specific groups, you cannot limit the calculation to those groupings
without using composite columns. With composite columns, this is possible by treating JOB_ID
and MANAGER ID columns as a single unit while rolling up. Columns enclosed in parentheses
are treated as a unit while computing ROLLUP and CUBE. This is illustrated in the example in
the slide. By enclosing the JOB_ID and MANAGER _ID columns in parentheses, you indicate to
the Oracle server to treat JOB_ID and MANAGER ID as a single unit—that is, a composite
column.

Oracle Database: SQL Fundamentals Il F -19

Composite Columns: Example (continued)

The example in the slide computes the following groupings:
(department id, job id, manager id)
(department id)

()

The example in the slide displays the following:
» Total salary for every job and manager (labeled 1)
» Total salary for every department, job, and manager (labeled 2)
* Total salary for every department (labeled 3)
* Grand total (labeled 4)

The example in the slide can also be written as:
SELECTdepartment id, job_id, manager id, SUM(salary)
FROM employees

GROUP BY department id,job id, manager id

UNION ALL

SELECT department id, TO CHAR (NULL) , TO NUMBER (NULL) ,
SUM (salary)

FROM employees

GROUP BY department id

UNION ALL

SELECT TO NUMBER (NULL), TO CHAR(NULL),TO NUMBER (NULL),
SUM (salary)

FROM employees

GROUP BY () ;

In the absence of an optimizer that looks across query blocks to generate the execution plan, the
preceding query would need three scans of the base table, EMPLOYEES. This could be very

inefficient. Therefore, the use of composite columns is recommended.

Oracle Database: SQL Fundamentals Il F -20

Concatenated Groupings

« Concatenated groupings offer a concise way to generate
useful combinations of groupings.

* To specify concatenated grouping sets, you separate
multiple grouping sets, ROLLUP and CUBE operations with
commas so that the Oracle server combines them into a
single GROUP BY clause.

* The result is a cross-product of groupings from each
GROUPING SET.

GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

Copyright © 2010, Oracle. All rights reserved.

Concatenated Groupings

Concatenated groupings offer a concise way to generate useful combinations of groupings. The
concatenated groupings are specified by listing multiple grouping sets, CUBEs, and ROLLUPs,
and separating them with commas. The following is an example of concatenated grouping sets:

GROUP BY GROUPING SETS(a, b), GROUPING SETS (c, d)

This SQL example defines the following groupings:
(a, ¢), (a, d), (b, ¢), (b, d)

Concatenation of grouping sets is very helpful for these reasons:
* Ease of query development: You need not manually enumerate all groupings.
* Use by applications: SQL generated by online analytical processing (OLAP) applications
often involves concatenation of grouping sets, with each GROUPING SET defining
groupings needed for a dimension.

Oracle Database: SQL Fundamentals Il F - 21

Concatenated Groupings: Example

SELECT department id, job id, manager id,
SUM (salary)

FROM employees

GROUP BY department id,
ROLLUP (job_id),
CUBE (manager id)

~e

DEPARTMENTID (B JobiD [Manacer.D [sUMGALARY)
trully SA_REP 143 7000
10 AD_ASST 101 4400
20 MK_MAN 100 13000
20 M¥K_REP 201 6000

90 AD_WP 100 34000
90 AD_PRES trully 24000

Tnull) SA_REF Tnaih 7000
10 AD_ASST (nully 4400

110 {null) 101 1z000

110 {nully 205 8300
110 (nully i z03a0
Copyright © 2010, Oracle. All rights reserved.

Concatenated Groupings: Example

The example in the slide results in the following groupings:
+ (department id,job id,) (1)
« (department id,manager id) (2)
« (department id) (3)
The total salary for each of these groups is calculated.
The following is another example of a concatenated grouping.
SELECT department id, job_id, manager id, SUM(salary) totsal

FROM employees

WHERE department id<60

GROUP BY GROUPING SETS (department id),
GROUPING SETS (job id, manager id) ;

© o

Oracle Database: SQL Fundamentals Il F - 22

Summary

In this appendix, you should have learned how to use the:
* ROLLUP operation to produce subtotal values
* CUBE operation to produce cross-tabulation values

* GROUPING function to identify the row values created by
ROLLUP or CUBE
* GROUPING SETS syntax to define multiple groupings in the
same query
* GROUP BY clause to combine expressions in various ways:
— Composite columns
— Concatenated grouping sets

Copyright © 2010, Oracle. All rights reserved.

Summary

« ROLLUP and CUBE are extensions of the GROUP BY clause.
« ROLLUP is used to display subtotal and grand total values.
« CUBE is used to display cross-tabulation values.
* The GROUPING function enables you to determine whether a row is an aggregate produced
by a CUBE or ROLLUP operator.
» With the GROUPING SETS syntax, you can define multiple groupings in the same query.
GROUP BY computes all the groupings specified and combines them with UNION ALL.
» Within the GROUP BY clause, you can combine expressions in various ways:
- To specify composite columns, you group columns within parentheses so that the
Oracle server treats them as a unit while computing ROLLUP or CUBE operations.
- To specify concatenated grouping sets, you separate multiple grouping sets, ROLLUP,
and CUBE operations with commas so that the Oracle server combines them into a
single GROUP BY clause. The result is a cross-product of groupings from each
grouping set.

Oracle Database: SQL Fundamentals Il F -23

AlUO 8sn Awapeay ajorIQ ¥ [eulalu] 3|oRIO

Hierarchical Retrieval

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

* Interpret the concept of a hierarchical query
» Create a tree-structured report

* Format hierarchical data

« Exclude branches from the tree structure

Copyright © 2010, Oracle. All rights reserved.

Objectives
In this appendix, you learn how to use hierarchical queries to create tree-structured reports.

Oracle Database: SQL Fundamentals Il G -2

Sample Data from the EMPLOYEES Table

empLOvEE_D [LasT vave [Joso (B manacer_D

1 100 King AD_PRES (AUl
2 101 Hochhar SD_WP 100
3 102 De Haan AD_WP 100
4 103 Hurold IT_PROG 102
5 104 Ernst IT_PROG 103
& 107 Lorertz IT_PROG 103
16 200 Whalen AD_ASST 101
17 201 Hartstein MF_MAN 100
18 202 Fay h¥_REP 20
19 205 Higgins AC_MGR 101
20 206 Gietz AC_ACCOUNT 205

Copyright © 2010, Oracle. All rights reserved.

Sample Data from the EMPLOYEES Table

Using hierarchical queries, you can retrieve data based on a natural hierarchical relationship
between the rows in a table. A relational database does not store records in a hierarchical way.
However, where a hierarchical relationship exists between the rows of a single table, a process
called tree walking enables the hierarchy to be constructed. A hierarchical query is a method of
reporting, with the branches of a tree in a specific order.

Imagine a family tree with the eldest members of the family found close to the base or trunk of
the tree and the youngest members representing branches of the tree. Branches can have their
own branches, and so on.

A hierarchical query is possible when a relationship exists between rows in a table. For example,
in the slide, you see that Kochhar, De Haan, and Hartstein report to MANAGER _ID 100, which is
King’s EMPLOYEE 1ID.

Note: Hierarchical trees are used in various fields such as human genealogy (family trees),
livestock (breeding purposes), corporate management (management hierarchies), manufacturing
(product assembly), evolutionary research (species development), and scientific research.

Oracle Database: SQL Fundamentalsll G -3

Natural Tree Structure

EMPLOYEE ID = 100 (Parent)
King

MANAGER ID = 100 (Child)

Kochhar De Haan Mourgos Zlotkey Hartstein

Whalen Higgins Hunold Rajs Davies Matos Vargas

[] | | P

Gietz Ernst Lorentz Abel Taylor Grant

Copyright © 2010, Oracle. All rights reserved.

Natural Tree Structure

The EMPLOYEES table has a tree structure representing the management reporting line. The
hierarchy can be created by looking at the relationship between equivalent values in the
EMPLOYEE ID and MANAGER ID columns. This relationship can be exploited by joining the
table to itself. The MANAGER ID column contains the employee number of the employee’s
manager.

The parent-child relationship of a tree structure enables you to control:
» The direction in which the hierarchy is walked
* The starting point inside the hierarchy

Note: The slide displays an inverted tree structure of the management hierarchy of the
employees in the EMPLOYEES table.

Oracle Database: SQL Fundamentals Il G -4

Hierarchical Queries

SELECT [LEVEL], column, expr...
FROM table

[WHERE condition(s)]

[START WITH condition(s)]
[CONNECT BY PRIOR condition(s)]

~e

condition:

expr comparison operator expr

Copyright © 2010, Oracle. All rights reserved.

Keywords and Clauses
Hierarchical queries can be identified by the presence of the CONNECT BY and START WITH
clauses.

In the syntax:

SELECT Is the standard SELECT clause

LEVEL For each row returned by a hierarchical query, the LEVEL
pseudocolumn returns 1 for a root row, 2 for a child of a root, and so on.

FROM table Specifies the table, view, or snapshot containing the columns. You can
select from only one table.

WHERE Restricts the rows returned by the query without affecting other rows of
the hierarchy

condition Is a comparison with expressions

START WITH Specifies the root rows of the hierarchy (where to start). This clause is

required for a true hierarchical query.
CONNECT BY Specifies the columns in which the relationship between parent and
child PRIOR rows exist. This clause is required for a hierarchical query.

Oracle Database: SQL Fundamentals Il G -5

Walking the Tree

Starting Point

» Specifies the condition that must be met
* Accepts any valid condition

START WITH columnl = value

Using the EMPLOYEES table, start with the employee whose last
name is Kochhar.

...START WITH last name = 'Kochhar'

Copyright © 2010, Oracle. All rights reserved.

Walking the Tree

The row or rows to be used as the root of the tree are determined by the START WITH clause.
The START WITH clause can contain any valid condition.

Examples

Using the EMPLOYEES table, start with King, the president of the company.
. START WITH manager id IS NULL

Using the EMPLOYEES table, start with employee Kochhar. A START WITH condition can
contain a subquery.

. START WITH employee id = (SELECT employee id
FROM employees
WHERE last name = 'Kochhar')

If the START WITH clause is omitted, the tree walk is started with all the rows in the table as
root rows.

Note: The CONNECT BY and START WITH clauses are not American National Standards
Institute (ANSI) SQL standard.

Oracle Database: SQL Fundamentals Il G -6

Walking the Tree

CONNECT BY PRIOR columnl = column2

Walk from the top down, using the EMPLOYEES table.

... CONNECT BY PRIOR employee id = manager id

Direction

Top down —— Column1 = Parent Key
Column2 = Child Key

Bottomup — Column1 = Child Key
Column2 = Parent Key

Copyright © 2010, Oracle. All rights reserved.

Walking the Tree (continued)
The direction of the query is determined by the CONNECT BY PRIOR column placement. For
top-down, the PRIOR operator refers to the parent row. For bottom-up, the PRIOR operator
refers to the child row. To find the child rows of a parent row, the Oracle server evaluates the
PRIOR expression for the parent row and the other expressions for each row in the table. Rows
for which the condition is true are the child rows of the parent. The Oracle server always selects
child rows by evaluating the CONNECT BY condition with respect to a current parent row.

Examples

Walk from the top down using the EMPLOYEES table. Define a hierarchical relationship in
which the EMPLOYEE_ID value of the parent row is equal to the MANAGER _ID value of the
child row:

CONNECT BY PRIOR employee id = manager id
Walk from the bottom up using the EMPLOYEES table:

CONNECT BY PRIOR manager i1d = employee id
The PRIOR operator does not necessarily need to be coded immediately following CONNECT
BY. Thus, the following CONNECT BY PRIOR clause gives the same result as the one in the
preceding example:

CONNECT BY employee id = PRIOR manager id

Note: The CONNECT BY clause cannot contain a subquery.

Oracle Database: SQL Fundamentalsll G -7

Walking the Tree: From the Bottom Up

SELECT employee id, last name, job id, manager id
FROM employees

START WITH employee id = 101

CONNECT BY PRIOR manager id = employee id

~e

EMPLOVEE_ID |[§ LasT_raME [JoBID [§ MANAGERID
1 101 Kachhar AD_WP 100
2 100 King AD_PRES frully

Copyright © 2010, Oracle. All rights reserved.

Walking the Tree: From the Bottom Up

The example in the slide displays a list of managers starting with the employee whose employee
ID is 101.

Oracle Database: SQL Fundamentalsll G -8

Walking the Tree: From the Top Down

SELECT 1last name||' reports to '] |

PRIOR last name "Walk Top Down"

FROM employees

START WITH last name = 'King'

CONNECT BY PRIOR employee id = manager id|;

Walk Top Down
1 King reports to

2 king reports to
3 kachhar reports to King
4 Greenberg reports to Kochhar

5 Fawviet reports to Greenberg

105 Crant reports to Zlotkey
106 Jahhson reports to Zlotkey
107 Hartstein reports to King
105 Fay reports to Hartstein

Copyright © 2010, Oracle. All rights reserved.

Walking the Tree: From the Top Down

Walking from the top down, display the names of the employees and their manager. Use
employee King as the starting point. Print only one column.

Example

In the following example, EMPLOYEE ID values are evaluated for the parent row and
MANAGER_ID and SALARY values are evaluated for the child rows. The PRIOR operator
applies only to the EMPLOYEE ID value.
CONNECT BY PRIOR employee id = manager id
AND salary > 15000;

To qualify as a child row, a row must have a MANAGER_ID value equal to the EMPLOYEE ID
value of the parent row and must have a SALARY value greater than $15,000.

Oracle Database: SQL Fundamentalsll G-9

Ranking Rows with the LEVEL Pseudocolumn

Level 1
King root/
parent

| Level 2
Kochhar De Haan Mourgos Zlotkey Hartstein parent/

| child/leaf
Level 3
Whalen Higgins Hunold Rajs Davies Matos Vargas Fay

Gietz Ernst Lorentz Abel Taylor Grant

parent/
child/leaf

Level 4
leaf

Copyright © 2010, Oracle. All rights reserved.

Ranking Rows with the LEVEL Pseudocolumn

You can explicitly show the rank or level of a row in the hierarchy by using the LEVEL
pseudocolumn. This will make your report more readable. The forks where one or more
branches split away from a larger branch are called nodes, and the very end of a branch is called
a leaf or leaf node. The graphic in the slide shows the nodes of the inverted tree with their
LEVEL values. For example, employee Higgens is a parent and a child, whereas employee
Davies is a child and a leaf.

LEVEL Pseudocolumn

Value Level for Top Down Level for Bottom up

1 A root node A root node

2 A child of a root node The parent of a root node

3 A child of a child, and so on A parent of a parent, and so on

In the slide, King is the root or parent (LEVEL = 1). Kochhar, De Haan, Mourgos, Zlotkey,
Hartstein, Higgens, and Hunold are children and also parents (LEVEL = 2). Whalen, Rajs,
Davies, Matos, Vargas, Gietz, Ernst, Lorentz, Abel, Taylor, Grant, and Fay are children and
leaves (LEVEL = 3 and LEVEL = 4).

Note: A root node is the highest node within an inverted tree. A child node is any nonroot node.
A parent node is any node that has children. A leaf node is any node without children. The
number of levels returned by a hierarchical query may be limited by available user memory.

Oracle Database: SQL Fundamentals Il G -10

Formatting Hierarchical Reports Using
LEVEL and LPAD

Create a report displaying company management levels,
beginning with the highest level and indenting each of the
following levels.

COLUMN org chart FORMAT Al2

SELECT |LPAD (last name, LENGTH(last name)+(LEVEL*2)-2,' ')
AS org chart

FROM employees

START WITH first name='Steven' AND last name='King'

CONNECT BY PRIOR employee id=manager id

Copyright © 2010, Oracle. All rights reserved.

Formatting Hierarchical Reports Using LEVEL and LPAD

The nodes in a tree are assigned level numbers from the root. Use the LPAD function in
conjunction with the LEVEL pseudocolumn to display a hierarchical report as an indented tree.

In the example in the slide:

o LPAD(charl,n [,char2]) returns charl, left-padded to length n with the sequence
of characters in char2. The argument n is the total length of the return value as it is
displayed on your terminal screen.

« LPAD(last name, LENGTH(last name) + (LEVEL*2) -2,
display format

« charlisthe LAST NAME, n the total length of the return value, is length of the
LAST NAME + (LEVEL*2) -2, and char2 is ' '

That is, this tells SQL to take the LAST NAME and left-pad it with the ' ' character until the
length of the resultant string is equal to the value determined by

LENGTH (last _name) + (LEVEL*2) -2.

For King, LEVEL = 1. Therefore, (2 * 1) -2 =2-2=0. So King does not get padded with
any ' ' character and is displayed in column 1.

For Kochhar, LEVEL = 2. Therefore, (2 * 2) —2 =4 -2 =2. So Kochhar gets padded with 2
' ' characters and is displayed indented.

The rest of the records in the EMPLOYEES table are displayed similarly.

) defines the

Oracle Database: SQL Fundamentals Il G -11

Formatting Hierarchical Reports Using LEVEL and LPAD (continued)

ORGC_CHART
1 king
__kachhar

____Lreenberg
_ Fawiet
__ Chen

_ Urman

FPopp
____Whalen

10 favris
11 Baer

2
3
4
5
B Sciarra
7
]
9

12 __ Higgins

13 Gietz
14 __De Haan
15 Hunold
la __ Ernst
17 Auztin

Oracle Database: SQL Fundamentals Il G -12

Pruning Branches

Use the WHERE clause Use the CONNECT BY clause
to eliminate a node. to eliminate a branch.

WHERE last name != 'Higgins'CONNECT BY PRIOR
employee id = manager id

AND last name != 'Higgins'
Kochhar Kochhar
Whalen iggins Whalen Higgins
Gietz Gietz

Copyright © 2010, Oracle. All rights reserved.

Pruning Branches

You can use the WHERE and CONNECT BY clauses to prune the tree (that is, to control which
nodes or rows are displayed). The predicate you use acts as a Boolean condition.

Examples

Starting at the root, walk from the top down, and eliminate employee Higgins in the result, but
process the child rows.
SELECT department id, employee id,last name, job id, salary
FROM employees
WHERE last name != 'Higgins'
START WITH manager id IS NULL
CONNECT BY PRIOR employee id = manager 1id;

Starting at the root, walk from the top down, and eliminate employee Higgins and all child rows.
SELECT department id, employee id,last name, job id, salary
FROM employees
START WITH manager id IS NULL
CONNECT BY PRIOR employee id = manager id
AND last name != 'Higgins';

Oracle Database: SQL Fundamentalsll G -13

Summary

In this appendix, you should have learned that you can:

« Use hierarchical queries to view a hierarchical relationship
between rows in a table

« Specify the direction and starting point of the query
« Eliminate nodes or branches by pruning

Copyright © 2010, Oracle. All rights reserved.

Summary

You can use hierarchical queries to retrieve data based on a natural hierarchical relationship
between rows in a table. The LEVEL pseudocolumn counts how far down a hierarchical tree you
have traveled. You can specify the direction of the query using the CONNECT BY PRIOR clause.
You can specify the starting point using the START WITH clause. You can use the WHERE and
CONNECT BY clauses to prune the tree branches.

Oracle Database: SQL Fundamentals Il G -14

Writing Advanced Scripts

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

» Describe the type of problems that are solved by using
SQL to generate SQL

* Write a script that generates a script of DROP TABLE
statements

* Write a script that generates a script of INSERT INTO
statements

Copyright © 2010, Oracle. All rights reserved.

Objectives
In this appendix, you learn how to write a SQL script to generate a SQL script.

Oracle Database: SQL Fundamentals Il H -2

Using SQL to Generate SQL

« SQL can be used to generate scripts in SQL.
* The data dictionary is:

— A collection of tables and views that contain database
information

— Created and maintained by the Oracle server

sqQL Data dictionary

SQL script

Copyright © 2010, Oracle. All rights reserved.

Using SQL to Generate SQL

SQL can be a powerful tool to generate other SQL statements. In most cases, this involves
writing a script file. You can use SQL from SQL to:

* Avoid repetitive coding

* Access information from the data dictionary

* Drop or re-create database objects

* Generate dynamic predicates that contain run-time parameters
The examples used in this appendix involve selecting information from the data dictionary. The
data dictionary is a collection of tables and views that contain information about the database.

This collection is created and maintained by the Oracle server. All data dictionary tables are
owned by the SYS user. Information stored in the data dictionary includes names of Oracle
server users, privileges granted to users, database object names, table constraints, and audit
information. There are four categories of data dictionary views. Each category has a distinct
prefix that reflects its intended use.

Prefix | Description

USER_ | Contains details of objects owned by the user

ALL _ Contains details of objects to which the user has been granted access rights, in addition to
objects owned by the user

DBA Contains details of users with DBA privileges to access any object in the database

VS_ Stores information about database server performance and locking; available only to the DBA

Oracle Database: SQL Fundamentalsll H-3

Creating a Basic Script

SELECT 'CREATE TABLE ' || table name ||
' test ' || 'AS SELECT * FROM '
|| table name ||' WHERE 1=2;'

AS "Create Table Script"
FROM user tables;

Create Table Script
1 CREATE TABLE REGIOMS test A% SELECT * FROM RECICONS WHERE 1=2;
2 CREATE TABLE LOCATIONS test AS SELECT " FROM LOCATIONS WHERE 1=Z;
3 CREATE TABLE DEPARTMEMTS test AS SELECT * FROM DEPARTMENTS WHERE 1=2;
4 CREATETABLE |OBS_test AS SELECT * FROM |65 WHERE 1=2;
5 CREATE TABLE EMPLOYEES test AS SELECT ™ FROM EMPLOYEES WHERE 1=2;
& CREATE TABLE |OB_HISTORY _test AS SELECT * FROM |JOB_HISTORY WHERE 1=2;

Copyright © 2010, Oracle. All rights reserved.

A Basic Script

The example in the slide produces a report with CREATE TABLE statements from every table
you own. Each CREATE TABLE statement produced in the report includes the syntax to create a
table using the table name with a suffix of test and having only the structure of the
corresponding existing table. The old table name is obtained from the TABLE NAME column of
the data dictionary view USER_TABLES.

The next step is to enhance the report to automate the process.

Note: You can query the data dictionary tables to view various database objects that you own.
The data dictionary views frequently used include:

« USER_TABLES: Displays description of the user’s own tables

« USER_OBJECTS: Displays all the objects owned by the user

« USER_TAB PRIVS MADE: Displays all grants on objects owned by the user

« USER_COL_PRIVS MADE: Displays all grants on columns of objects owned by the user

Oracle Database: SQL Fundamentalsll H -4

Controlling the Environment

SET ECHO OFF

SET FEEDBACK OFF | Set system variables
SET PAGESIZE 0 to appropriate values.
SQL statement

SET FEEDBACK ON
SET PAGESIZE 24 Set system variables
SET ECHO ON back to the default
value.

Copyright © 2010, Oracle. All rights reserved.

Controlling the Environment

To execute the SQL statements that are generated, you must capture them in a file that can then
be run. You must also plan to clean up the output that is generated and make sure that you
suppress elements such as headings, feedback messages, top titles, and so on. In SQL Developer,
you can save these statements to a script. To save the contents of the Enter SQL Statement box,
click the Save icon or use the File > Save menu item. Alternatively, you can right-click in the
Enter SQL Statement box and select the Save File option from the drop-down menu.

Note: Some of the SQL*Plus statements are not supported by SQL Worksheet. For the complete
list of SQL*Plus statements that are supported, and not supported by SQL Worksheet, refer to
the topic titled SQL*Plus Statements Supported and Not Supported in SQL Worksheet in the
SQL Developer online Help.

Oracle Database: SQL Fundamentalsll H-5

The Complete Picture

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESIZE 0

SELECT 'DROP TABLE ' || object name || ';'
FROM user objects

WHERE object type = 'TABLE'

/

SET FEEDBACK ON
SET PAGESIZE 24
SET ECHO ON

Copyright © 2010, Oracle. All rights reserved.

The Complete Picture

The output of the command in the slide is saved into a file called dropem. sgl in SQL

Developer. To save the output into a file in SQL Developer, you use the Save File option under
the Script Output pane. The dropem. sgl file contains the following data. This file can now be

started from SQL Developer by locating the script file, loading it, and executing it.

'‘DROPTABLE|OBJECT _MAME];
1 DROP TABLE REGIONS;
2 DROP TABLE COUNTRIES:;
3 DROP TABLE LOCATIONS;
4 DROP TABLE DEPARTMENTS:;
5 DROP TABLE JOBS
& DROP TABLE EMPLOYEES;
7 DROP TABLE JOB_HISTORY;
& DROP TABLE JOB_GRADES;

Oracle Database: SQL Fundamentalsll H-6

Dumping the Contents of a Table to a File

SET HEADING OFF ECHO OFF FEEDBACK OFF
SET PAGESIZE 0

SELECT
'INSERT INTO departments test VALUES
(' || department id || ', ''' || department name | |
111, 111 || location id || ''');!

AS "Insert Statements Script™"
FROM departments

/

SET PAGESIZE 24
SET HEADING ON ECHO ON FEEDBACK ON

Copyright © 2010, Oracle. All rights reserved.

Dumping Table Contents to a File

Sometimes, it 1s useful to have the values for the rows of a table in a text file in the format of an
INSERT INTO VALUES statement. This script can be run to populate the table in case the table
has been dropped accidentally.

The example in the slide produces INSERT statements for the DEPARTMENTS TEST table,
captured in the data . sql file using the Save File option in SQL Developer.

The contents of the data . sqgl script file are as follows:

INSERT INTO departments test VALUES
(10, 'Administration', 1700) ;

INSERT INTO departments test VALUES
(20, 'Marketing', 1800);

INSERT INTO departments test VALUES
(50, 'Shipping', 1500) ;

INSERT INTO departments test VALUES
(60, '"IT', 1400);

Oracle Database: SQL Fundamentals Il H-7

Dumping the Contents of a Table to a File

Source Result

EEP SRR 1
XRE '

1"11| |department name||'''' | 'Administration’
BEBEERE '

1) ') ;

Copyright © 2010, Oracle. All rights reserved.

Dumping Table Contents to a File (continued)

You may have noticed the large number of single quotation marks in the previous slide. A set of
four single quotation marks produces one single quotation mark in the final statement. Also
remember that character and date values must be enclosed within quotation marks.

Within a string, to display one quotation mark, you need to prefix it with another single
quotation mark. For example, in the fifth example in the slide, the surrounding quotation marks
are for the entire string. The second quotation mark acts as a prefix to display the third quotation
mark. Thus, the result is a single quotation mark followed by the parenthesis, followed by the
semicolon.

Oracle Database: SQL Fundamentals Il H -8

Generating a Dynamic Predicate

COLUMN my col NEW VALUE dyn where clause

SELECT DECODE ('&&deptno', null,

DECODE ('&&hiredate', null, ' ',

'WHERE hire date=TO DATE('''||'s&hiredate'',''DD-MON-YYYY'')"'),
DECODE ('&&hiredate', null,

'WHERE department id ' || '&&deptno’,

'WHERE department id ' || '&&deptno’ ||

' AND hire date = TO DATE('''||'&&hiredate'',''DD-MON-YYYY'')"'))
AS my col FROM dual;

SELECT last name FROM employees &dyn where clause;

Copyright © 2010, Oracle. All rights reserved.

Generating a Dynamic Predicate

The example in the slide generates a SELECT statement that retrieves data of all employees in a
department who were hired on a specific day. The script generates the WHERE clause
dynamically.

Note: After the user variable is in place, you must use the UNDEFINE command to delete it.

The first SELECT statement prompts you to enter the department number. If you do not enter
any department number, the department number is treated as null by the DECODE function, and
the user is then prompted for the hire date. If you do not enter any hire date, the hire date is
treated as null by the DECODE function and the dynamic WHERE clause that is generated is also
a null, which causes the second SELECT statement to retrieve all the rows from the
EMPLOYEES table.

Note: The NEW_V [ALUE] variable specifies a variable to hold a column value. You can
reference the variable in TTITLE commands. Use NEW VALUE to display column values or the
date in the top title. You must include the column in a BREAK command with the SKIP PAGE
action. The variable name cannot contain a pound sign (#). NEW_VALUE is useful for
master/detail reports in which there is a new master record for each page.

Oracle Database: SQL Fundamentals Il H-9

Generating a Dynamic Predicate (continued)
Note: Here, the hire date must be entered in the DD-MON-YYYY format.
The SELECT statement in the slide can be interpreted as follows:

IF (<<deptno>> is not entered) THEN
IF (<<hiredate>> is not entered) THEN
return empty string
ELSE
return the string ‘WHERE hire date =
TO DATE('<<hiredate>>', 'DD-MON-YYYY')’
ELSE

IF (<<hiredate>> is not entered) THEN
return the string ‘WHERE department id
<<deptno>> entered'
ELSE

return the string ‘WHERE department id =
<<deptno>> entered

AND hire date =
TO DATE(' <<hiredate>>', 'DD-MON-YYYY')’

END IF

The returned string becomes the value of the DYN WHERE CLAUSE variable, which will be
used in the second SELECT statement.

Note: Use SQL*Plus for these examples.

When the first example in the slide is executed, the user is prompted for the values for DEPTNO
and HIREDATE:

[Enter value for deptno: 1@ |

”Enter value for hiredate: 17-SEP-1987 |

The following value for MY COL is generated:

MY¥_COL
WHERE department_id = 18 AND hire_date = TO_DATE(®27-SEP-1987* ' DD-MON-YYYY* >

When the second example in the slide is executed, the following output is generated:

|FHST_HHHE
Ihhalen

Oracle Database: SQL Fundamentals Il H-10

Summary

In this appendix, you should have learned that:

* You can write a SQL script to generate another SQL script
« Script files often use the data dictionary

* You can capture the output in a file

Copyright © 2010, Oracle. All rights reserved.

Summary

SQL can be used to generate SQL scripts. These scripts can be used to avoid repetitive coding,
drop or re-create objects, get help from the data dictionary, and generate dynamic predicates that
contain run-time parameters.

Oracle Database: SQL Fundamentals Il H - 11

AlUO 8sn Awapeay ajorIQ ¥ [eulalu] 3|oRIO

Oracle Database Architectural Components

Copyright © 2010, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

« List the major database architectural components

» Describe the background processes

« Explain the memory structures

« Correlate the logical and physical storage structures

I
. i
X
Copyright © 2010, Oracle. All rights reserved.

Objectives

This appendix provides an overview of the Oracle Database architecture. You learn about the
physical and logical structures and various components of Oracle Database and their functions.

Oracle Database: SQL Fundamentals Il -2

Oracle Database Architecture: Overview

The Oracle Relational Database Management System
(RDBMS) is a database management system that provides an

open, comprehensive, integrated approach to information
management.

ORACLE’ 1 1g

DATABASE

Copyright © 2010, Oracle. All rights reserved.

Oracle Database Architecture: Overview

A database is a collection of data treated as a unit. The purpose of a database is to store and
retrieve related information.

An Oracle database reliably manages a large amount of data in a multiuser environment so that
many users can concurrently access the same data. This is accomplished while delivering high

performance. At the same time, it prevents unauthorized access and provides efficient solutions
for failure recovery.

Oracle Database: SQL Fundamentals Il 1-3

Oracle Database Server Structures

Instance
Memory structures
f SGA Shared pool
L. Library
- Database Redo log cache
buffer buffer
cache Data dictionary
User Server cache
process process

Processes CawpCerrDEewB)

v

Database

Storage structures

Control Online redo
Data files files Iog_j files

Copyright © 2010, Oracle. All rights reserved.

Oracle Database Server Structures

The Oracle Database consists of two main components—the instance and the database.

» The instance consists of the System Global Area (SGA), which is a collection of memory
structures, and the background processes that perform tasks within the database. Every time
an instance is started, the SGA is allocated and the background processes are started.

* The database consists of both physical structures and logical structures. Because the
physical and logical structures are separate, the physical storage of data can be managed
without affecting access to logical storage structures. The physical storage structures
include:

- The control files where the database configuration is stored
- The redo log files that have information required for database recovery
- The data files where all data is stored

An Oracle instance uses memory structures and processes to manage and access the database
storage structures. All memory structures exist in the main memory of the computers that
constitute the database server. Processes are jobs that work in the memory of these computers. A
process is defined as a “thread of control” or a mechanism in an operating system that can run a
series of steps.

Oracle Database: SQL Fundamentalsll |1-4

Connecting to the Database

* Connection: Communication pathway between a user
process and a database instance

« Session: A specific connection of a user to a database
instance through a user process

<

SQL> Select ..
l User

Connection

Copyright © 2010, Oracle. All rights reserved.

Connecting to the Database

To access information in the database, the user needs to connect to the database using a tool
(such as SQL*Plus). After the user establishes connection, a session is created for the user.
Connection and session are closely related to user process but are very different in meaning.

A connection is a communication pathway between a user process and an Oracle Database
instance. A communication pathway is established using available interprocess communication
mechanisms or network software (when different computers run the database application and
Oracle Database, and communicate through a network).

A session represents the state of a current user login to the database instance. For example, when
a user starts SQL*Plus, the user must provide a valid username and password, and then a session
is established for that user. A session lasts from the time the user connects until the time the user
disconnects or exits the database application.

In the case of a dedicated connection, the session is serviced by a permanent dedicated process.
In the case of a shared connection, the session is serviced by an available server process selected
from a pool, either by the middle tier or by Oracle shared server architecture.

Multiple sessions can be created and exist concurrently for a single Oracle Database user using
the same username, but through different applications, or multiple invocations of the same
application.

Oracle Database: SQL Fundamentals |l |1-5

Interacting with an Oracle Database

: Instance

/ User Server

lﬁ L process process SGA Shared pool
' Library

ﬁ. Database Redo log cache

. buff
WD C:C:; buffer Data dictionary)|
_ cache
& |
N D DT B
A i
* 7

N\

0\ /'
B '

ORACLE 1 18

DATABASE

-

Copyright © 2010, Oracle. All rights reserved.

Interacting with an Oracle Database

The following example describes Oracle Database operations at the most basic level. It
illustrates an Oracle Database configuration where the user and associated server process are on
separate computers, connected through a network.

1. An instance has started on a node where Oracle Database is installed, often called the host
or database server.

2. A user starts an application spawning a user process. The application attempts to establish a
connection to the server. (The connection may be local, client server, or a three-tier
connection from a middle tier.)

3. The server runs a listener that has the appropriate Oracle Net Services handler. The server
detects the connection request from the application and creates a dedicated server process
on behalf of the user process.

4. The user runs a DML-type SQL statement and commits the transaction. For example, the
user changes the address of a customer in a table and commits the change.

5. The server process receives the statement and checks the shared pool (an SGA component)
for any shared SQL area that contains a similar SQL statement. If a shared SQL area is
found, the server process checks the user’s access privileges to the requested data, and the
existing shared SQL area is used to process the statement. If not, a new shared SQL area is
allocated for the statement, so it can be parsed and processed.

Oracle Database: SQL Fundamentals Il |1-6

Interacting with an Oracle Database (continued)

6. The server process retrieves any necessary data values, either from the actual data file (in
which the table is stored) or those cached in the SGA.

7. The server process modifies data in the SGA. Because the transaction is committed, the log
writer process (LGWR) immediately records the transaction in the redo log file. The
database writer process (DBWn) writes modified blocks permanently to disk when doing so
is efficient.

8. If the transaction is successful, the server process sends a message across the network to the
application. If it is not successful, an error message is transmitted.

9. Throughout this entire procedure, the other background processes run, watching for
conditions that require intervention. In addition, the database server manages other users’
transactions and prevents contention between transactions that request the same data.

Oracle Database: SQL Fundamentals |l |1-7

Oracle Memory Architecture | DB structures
“>Memory

- Process
- Storage

Server
process 2

Background
processes

Server

PGA
process 1

PGA PGA

A A A

A 4 \ 4 \ 4

/ — = — \ SGA
{ Shared Dat?-. Dictionary
H :H: :SQL area: —ace
! Library Other
= cache
Redo log Shared pool
H: buffer
| I
Database buffer
cache D)
w »I>[> Response || Request
queue queue

Java Streams
\ pool pool Large pool j

Copyright © 2010, Oracle. All rights reserved.

Oracle Memory Structures

Oracle Database creates and uses memory structures for various purposes. For example, memory
stores program code being run, data shared among users, and private data areas for each
connected user.

Two basic memory structures are associated with an instance:

* The System Global Area (SGA) is a group of shared memory structures, known as SGA
components, that contain data and control information for one Oracle Database instance.
The SGA is shared by all server and background processes. Examples of data stored in the
SGA include cached data blocks and shared SQL areas.

* The Program Global Areas (PGA) are memory regions that contain data and control
information for a server or background process. A PGA is nonshared memory created by
Oracle Database when a server or background process is started. Access to the PGA is
exclusive to the server process. Each server process and background process has its own
PGA.

Oracle Database: SQL Fundamentals Il |1-8

Oracle Memory Structures (continued)

The SGA 1is the memory area that contains data and control information for the instance. The
SGA includes the following data structures:

Database buffer cache: Caches blocks of data retrieved from the database

Redo Log buffer: Caches redo information (used for instance recovery) until it can be
written to the physical redo log files stored on the disk

Shared pool: Caches various constructs that can be shared among users

Large pool: Is an optional area that provides large memory allocations for certain large
processes, such as Oracle backup and recovery operations, and input/output (I/O) server
processes

Java pool: Is used for all session-specific Java code and data within the Java Virtual
Machine (JVM)

Streams pool: Is used by Oracle Streams to store information required by capture and apply

When you start the instance by using Enterprise Manager or SQL*Plus, the amount of memory
allocated for the SGA is displayed.

With the dynamic SGA infrastructure, the size of the database buffer cache, the shared pool, the
large pool, the Java pool, and the Streams pool changes without shutting down the instance.

Oracle Database uses initialization parameters to create and configure memory structures. For
example, the SGA TARGET parameter specifies the total size of the SGA components. If you
set SGA_ TARGET to 0, Automatic Shared Memory Management is disabled.

Oracle Database: SQL Fundamentals |l 1-9

Process Architecture DB structures
- Memory

- Process

- Storage

« User process:

— Is started when a database user or a batch process connects
to the Oracle Database

« Database processes:

— Server process: Connects to the Oracle instance and is
started when a user establishes a session

— Background processes: Are started when an Oracle instance

is started Instance
SGA
[|
[|
PGA Background processes
User Server
‘_’

Copyright © 2010, Oracle. All rights reserved.

Process Architecture

The processes in an Oracle Database server can be categorized into two major groups:
» User processes that run the application or Oracle tool code
* Oracle Database processes that run the Oracle database server code. These include server
processes and background processes.

When a user runs an application program or an Oracle tool such as SQL*Plus, Oracle Database
creates a user process to run the user’s application. The Oracle Database also creates a server
process to execute the commands issued by the user process. In addition, the Oracle server also
has a set of background processes for an instance that interact with each other and with the
operating system to manage the memory structures and asynchronously perform I/O to write
data to disk, and perform other required tasks.

The process structure varies for different Oracle Database configurations, depending on the
operating system and the choice of Oracle Database options. The code for connected users can
be configured as a dedicated server or a shared server.
* With dedicated server, for each user, the database application is run by a user process,
which is served by a dedicated server process that executes Oracle database server code.
» A shared server eliminates the need for a dedicated server process for each connection. A
dispatcher directs multiple incoming network session requests to a pool of shared server
processes. A shared server process serves any client request.

Oracle Database: SQL Fundamentals Il 1-10

Process Architecture (continued)
Server Processes

Oracle Database creates server processes to handle the requests of user processes connected to
the instance. In some situations when the application and Oracle Database operate on the same
computer, it 1s possible to combine the user process and the corresponding server process into a
single process to reduce system overhead. However, when the application and Oracle Database
operate on different computers, a user process always communicates with Oracle Database
through a separate server process.

Server processes created on behalf of each user’s application can perform one or more of the
following:
* Parse and run SQL statements issued through the application.
* Read necessary data blocks from data files on disk into the shared database buffers of the
SGA, if the blocks are not already present in the SGA.
* Return results in such a way that the application can process the information.

Background Processes

To maximize performance and accommodate many users, a multiprocess Oracle Database
system uses some additional Oracle Database processes called background processes. An Oracle
Database instance can have many background processes.

The following background processes are required for a successful startup of the database
instance:
» Database writer (DBWn)
* Log writer (LGWR)
Checkpoint (CKPT)
* System monitor (SMON)
* Process monitor (PMON)

The following background processes are a few examples of optional background processes that
can be started if required:

* Recoverer (RECO)

* Job queue

* Archiver (ARCn)

* Queue monitor (QMNn)

Other background processes may be found in more advanced configurations such as Real
Application Clusters (RAC). See the VSBGPROCESS view for more information about the
background processes.

On many operating systems, background processes are created automatically when an instance is
started.

Oracle Database: SQL Fundamentals Il |-11

Database Writer Process

Writes modified (dirty) buffers in the database buffer cache to
disk:

« Asynchronously while performing other processing

* Periodically to advance the checkpoint

a
BEs:

Database buffer Database writer Data files
cache process

Copyright © 2010, Oracle. All rights reserved.

Database Writer Process

The database writer (DBWn) process writes the contents of buffers to data files. The DBWn
processes are responsible for writing modified (dirty) buffers in the database buffer cache to
disk. Although one database writer process (DBWO0) is adequate for most systems, you can
configure additional processes (DBW1 through DBW9 and DBWa through DBWj) to improve
write performance if your system modifies data heavily. These additional DBWr processes are
not useful on uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked “dirty”” and is added to the
LRUW list of dirty buffers that is kept in system change number (SCN) order, thereby matching
the order of Redo corresponding to these changed buffers that is written to the Redo logs. When
the number of available buffers in the buffer cache falls below an internal threshold such that
server processes find it difficult to obtain available buffers, DBWn writes dirty buffers to the
data files in the order that they were modified by following the order of the LRUW list.

Oracle Database: SQL Fundamentals Il |-12

Log Writer Process

« Writes the redo log buffer to a redo log file on disk

« LGWR writes:
— A process commits a transaction
— When the redo log buffer is one-third full
— Before a DBWn process writes modified buffers to disk

=

Redo log buffer Log writer Redo log files
process

Copyright © 2010, Oracle. All rights reserved.

Log Writer Process

The log writer (LGWR) process is responsible for redo log buffer management by writing the
redo log buffer entries to a redo log file on disk. LGWR writes all redo entries that have been
copied into the buffer since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the redo log
buffer to a redo log file, server processes can then copy new entries over the entries in the redo
log buffer that have been written to disk. LGWR normally writes fast enough to ensure that
space is always available in the buffer for new entries, even when access to the redo log is
heavy.

LGWR writes one contiguous portion of the buffer to disk. LGWR writes:
* When a user process commits a transaction
* When the redo log buffer is one-third full
* Before a DBWn process writes modified buffers to disk, if necessary

Oracle Database: SQL Fundamentals Il 1-13

Checkpoint Process

Records checkpoint information in:
 The control file
« Each datafile header

\ 4

Control
CKPT > file

Checkpoint
process

Data files

Copyright © 2010, Oracle. All rights reserved.

Checkpoint Process

A checkpoint is a data structure that defines an SCN in the redo thread of a database.
Checkpoints are recorded in the control file and each data file header, and are a crucial element
of recovery.

When a checkpoint occurs, Oracle Database must update the headers of all data files to record
the details of the checkpoint. This is done by the CKPT process. The CKPT process does not
write blocks to disk; DBWn always performs that work. The SCNs recorded in the file headers
guarantee that all the changes made to database blocks before that SCN have been written to
disk.

The statistic DBWR checkpoints displayed by the SYSTEM STATISTICS monitor in Oracle
Enterprise Manager indicate the number of checkpoint requests completed.

Oracle Database: SQL Fundamentals Il |-14

System Monitor Process

« Performs recovery at instance startup
« Cleans up unused temporary segments

SMON)

System monitor
process

Temporary
segment

Copyright © 2010, Oracle. All rights reserved.

System Monitor Process

The system monitor (SMON) process performs recovery, if necessary, at instance startup.
SMON is also responsible for cleaning up temporary segments that are no longer in use. If any
terminated transactions were skipped during instance recovery because of file-read or offline
errors, SMON recovers them when the tablespace or file is brought back online. SMON checks
regularly to see whether it is needed. Other processes can call SMON if they detect a need for it.

Oracle Database: SQL Fundamentals Il |1-15

Process Monitor Process

» Performs process recovery when a user process fails:
— Cleans up the database buffer cache
— Frees resources used by the user process

* Monitors sessions for idle session timeout

« Dynamically registers database services with listeners

a

@@

Failed user

Process monitor process T T 1111
process

Database buffer
cache

Copyright © 2010, Oracle. All rights reserved.

Process Monitor Process

The process monitor (PMON) performs process recovery when a user process fails. PMON is
responsible for cleaning up the database buffer cache and freeing resources that the user process
was using. For example, it resets the status of the active transaction table, releases locks, and
removes the process ID from the list of active processes.

PMON periodically checks the status of dispatcher and server processes, and restarts any that
have stopped running (but not any that Oracle Database has terminated intentionally). PMON
also registers information about the instance and dispatcher processes with the network listener.

Like SMON, PMON checks regularly to see whether it is needed and can be called if another
process detects the need for it.

Oracle Database: SQL Fundamentals Il |1-16

Oracle Database Storage Architecture

DB structures
- Memory

- Process

- Storage

Database

Control Online redo
Data files files Iog_; files

Backup files Archived log files

Parameter file
Password file

Network files

Alert and trace files

Copyright © 2010, Oracle. All rights reserved.

Oracle Database Storage Architecture

The files that constitute an Oracle database are organized into the following:

» Control files: Contain data about the database itself (that is, physical database structure
information). These files are critical to the database. Without them, you cannot open data
files to access the data within the database.

» Data files: Contain the user or application data of the database, as well as metadata and the
data dictionary

* Online redo log files: Allow for instance recovery of the database. If the database server
crashes and does not lose any data files, the instance can recover the database with the
information in these files.

The following additional files are important to the successful running of the database:

* Backup files: Are used for database recovery. You typically restore a backup file when a
media failure or user error has damaged or deleted the original file.

* Archived log files: Contain an ongoing history of the data changes (redo) that are generated
by the instance. Using these files and a backup of the database, you can recover a lost data
file. That is, archive logs enable the recovery of restored data files.

* Parameter file: Is used to define how the instance is configured when it starts up

* Password file: Allows sysdba/sysoper/sysasm to connect remotely to the database
and perform administrative tasks

Oracle Database: SQL Fundamentals Il |-17

Oracle Database Storage Architecture (continued)

» Network files: Are used for starting the database listener and store information required for
user connections

* Trace files: Each server and background process can write to an associated trace file. When
an internal error is detected by a process, the process dumps information about the error to
its trace file. Some of the information written to a trace file is intended for the database
administrator, whereas other information is for Oracle Support Services.

» Alert log files: These are special trace entries. The alert log of a database is a chronological
log of messages and errors. Each instance has one alert log file. Oracle recommends that
you review this alert log periodically.

Oracle Database: SQL Fundamentals Il |1-18

Logical and Physical Database Structures

Logical Physical

Database

PAN A\

Schema Tablespace

A

Segment

Oracle data
block

. S

Copyright © 2010, Oracle. All rights reserved.

Logical and Physical Database Structures

An Oracle database has logical and physical storage structures.
Tablespaces

A database is divided into logical storage units called tablespaces, which group related logical
structures together. For example, tablespaces commonly group all of an application’s objects to
simplify some administrative operations. You may have a tablespace for application data and an
additional one for application indexes.

Databases, Tablespaces, and Data Files

The relationship among databases, tablespaces, and data files is illustrated in the slide. Each
database is logically divided into one or more tablespaces. One or more data files are explicitly
created for each tablespace to physically store the data of all logical structures in a tablespace. If
it is a TEMPORARY tablespace, instead of a data file, the tablespace has a temporary file.

Oracle Database: SQL Fundamentals Il |1-19

Logical and Physical Database Structures (continued)
Schemas

A schema is a collection of database objects that are owned by a database user. Schema objects
are the logical structures that directly refer to the database’s data. Schema objects include such
structures as tables, views, sequences, stored procedures, synonyms, indexes, clusters, and
database links. In general, schema objects include everything that your application creates in the
database.

Data Blocks

At the finest level of granularity, an Oracle database’s data is stored in data blocks. One data
block corresponds to a specific number of bytes of physical database space on the disk. A data
block size is specified for each tablespace when it is created. A database uses and allocates free
database space in Oracle data blocks.

Extents

The next level of logical database space is called an extent. An extent is a specific number of
contiguous data blocks (obtained in a single allocation) that are used to store specific type of
information.

Segments

The level of logical database storage above an extent is called a segment. A segment is a set of
extents allocated for a certain logical structure. For example, the different types of segments
include:

* Data segments: Each nonclustered, non-indexed-organized table has a data segment with
the exception of external tables, global temporary tables, and partitioned tables, where each
table has one or more segments. All of the table’s data is stored in the extents of its data
segment. For a partitioned table, each partition has a data segment. Each cluster has a data
segment. The data of every table in the cluster is stored in the cluster’s data segment.

* Index segments: Each index has an index segment that stores all of its data. For a
partitioned index, each partition has an index segment.

* Undo segments: One UNDO tablespace is created per database instance that contains
numerous undo segments to temporarily store undo information. The information in an
undo segment is used to generate read-consistent database information and, during database
recovery, to roll back uncommitted transactions for users.

* Temporary segments: Temporary segments are created by the Oracle Database when a
SQL statement needs a temporary work area to complete execution. When the statement
finishes execution, the temporary segment’s extents are returned to the instance for future
use. Specify a default temporary tablespace for every user or a default temporary
tablespace, which is used databasewide.

The Oracle Database dynamically allocates space. When the existing extents of a segment are
full, additional extents are added. Because extents are allocated as needed, the extents of a
segment may or may not be contiguous on the disk.

Oracle Database: SQL Fundamentals Il |-20

Processing a SQL Statement

« Connect to an instance using:
— The user process
— The server process
* The Oracle server components that are used depend on
the type of SQL statement:
— Queries return rows.
— Data manipulation language (DML) statements log changes.
— Commit ensures transaction recovery.

« Some Oracle server components do not participate in SQL
statement processing.

Copyright © 2010, Oracle. All rights reserved.

Processing a SQL Statement

Not all the components of an Oracle instance are used to process SQL statements. The user and
server processes are used to connect a user to an Oracle instance. These processes are not part of
the Oracle instance, but are required to process a SQL statement.

Some of the background processes, SGA structures, and database files are used to process SQL
statements. Depending on the type of SQL statement, different components are used:

* Queries require additional processing to return rows to the user.

+ DML statements require additional processing to log the changes made to the data.

« Commit processing ensures that the modified data in a transaction can be recovered.

Some required background processes do not directly participate in processing a SQL statement,
but are used to improve performance and to recover the database. For example, the optional
Archiver background process, ARCn, is used to ensure that a production database can be
recovered.

Oracle Database: SQL Fundamentals Il |-21

Processing a Query

« Parse:
— Search for an identical statement.
— Check the syntax, object names, and privileges.
— Lock the objects used during parse.
— Create and store the execution plan.
« Execute: Identify the rows selected.

* Fetch: Return the rows to the user process.

Copyright © 2010, Oracle. All rights reserved.

Processing a Query

Queries are different from other types of SQL statements because, if successful, they return data
as results. Other statements simply return success or failure, whereas a query can return one row
or thousands of rows.

There are three main stages in the processing of a query:
* Parse
* Execute
* Fetch

During the parse stage, the SQL statement is passed from the user process to the server process,
and a parsed representation of the SQL statement is loaded into a shared SQL area.

During parse, the server process performs the following functions:
» Searches for an existing copy of the SQL statement in the shared pool
» Validates the SQL statement by checking its syntax
* Performs data dictionary lookups to validate table and column definitions

The execute stage executes the statement using the best optimizer approach and the fetch
retrieves the rows back to the user.

Oracle Database: SQL Fundamentals Il |-22

Shared Pool

« The library cache contains the SQL statement text, parsed
code, and execution plan.

« The data dictionary cache contains table, column, and
other object definitions and privileges.

« The shared pool is sized by SHARED POOL_ SIZE.

Shared pool

Library

cache ||

Data dictionary =
cache

Copyright © 2010, Oracle. All rights reserved.

Shared Pool

During the parse stage, the server process uses the area in the SGA known as the shared pool to
compile the SQL statement. The shared pool has two primary components:

* Library cache

» Data dictionary cache

Library Cache

The library cache stores information about the most recently used SQL statements in a memory
structure called a shared SQL area. The shared SQL area contains:

* The text of the SQL statement

* The parse tree, which is a compiled version of the statement

* The execution plan, with steps to be taken when executing the statement

The optimizer is the function in the Oracle server that determines the optimal execution plan.

If a SQL statement is reexecuted and a shared SQL area already contains the execution plan for
the statement, the server process does not need to parse the statement. The library cache
improves the performance of applications that reuse SQL statements by reducing parse time and
memory requirements. If the SQL statement is not reused, it is eventually aged out of the library
cache.

Oracle Database: SQL Fundamentals Il |-23

Shared Pool (continued)
Data Dictionary Cache

The data dictionary cache, also known as the dictionary cache or row cache, is a collection of the
most recently used definitions in the database. It includes information about database files,
tables, indexes, columns, users, privileges, and other database objects.

During the parse phase, the server process looks for the information in the dictionary cache to
resolve the object names specified in the SQL statement and to validate the access privileges. If
necessary, the server process initiates the loading of this information from the data files.

Sizing the Shared Pool
The size of the shared pool is specified by the SHARED POOL_SIZE initialization parameter.

Oracle Database: SQL Fundamentals Il |-24

Database Buffer Cache

* The database buffer cache stores the most recently used
blocks.

« The size of a buffer is based on DB BLOCK SIZE.
* The number of buffers is defined by DB BLOCK BUFFERS.

Database buffer

cache
|

Copyright © 2010, Oracle. All rights reserved.

Database Buffer Cache

When a query is processed, the server process looks in the database buffer cache for any blocks
it needs. If the block is not found in the database buffer cache, the server process reads the block
from the data file and places a copy in the buffer cache. Because subsequent requests for the
same block may find the block in memory, the requests may not require physical reads. The
Oracle server uses a least recently used algorithm to age out buffers that have not been accessed
recently to make room for new blocks in the buffer cache.

Sizing the Database Buffer Cache

The size of each buffer in the buffer cache is equal to the size of an Oracle block, and it is
specified by the DB BLOCK SIZE parameter. The number of buffers is equal to the value of
the DB BLOCK BUFFERS parameter.

Oracle Database: SQL Fundamentals Il |-25

Program Global Area (PGA)

* Is not shared
* Is writable only by the server process
« Contains:

— Sort area

— Session information

— Cursor state

— Stack space

Server
process

Copyright © 2010, Oracle. All rights reserved.

Program Global Area (PGA)

A Program Global Area (PGA) is a memory region that contains data and control information
for a server process. It is a nonshared memory created by Oracle when a server process is
started. Access to it is exclusive to that server process, and is read and written only by the Oracle
server code acting on behalf of it. The PGA memory allocated by each server process attached to
an Oracle instance is referred to as the aggregated PGA memory allocated by the instance.

In a dedicated server configuration, the PGA of the server includes the following components:
* Sort area: Is used for any sorts that may be required to process the SQL statement
* Session information: Includes user privileges and performance statistics for the session
* Cursor state: Indicates the stage in the processing of the SQL statements that are currently
used by the session
» Stack space: Contains other session variables

The PGA is allocated when a process is created, and deallocated when the process is terminated.

Oracle Database: SQL Fundamentals Il |-26

Processing a DML Statement

User SGA Shared pool
process
Database
buffer Redo log
buffer
cache
UPDATE =
employees ... : : :
Server Y :
process
./ Data Control Redo
files files logfiles
Database

Copyright © 2010, Oracle. All rights reserved.

Processing a DML Statement

A data manipulation language (DML) statement requires only two phases of processing:
» Parse is the same as the parse phase used for processing a query.
» Execute requires additional processing to make data changes.

DML Execute Phase

To execute a DML statement:

» Ifthe data and rollback blocks are not already in the buffer cache, the server process reads
them from the data files into the buffer cache

* The server process places locks on the rows that are to be modified

* In the redo log buffer, the server process records the changes to be made to the rollback and
data blocks

» The rollback block changes record the values of the data before it is modified. The rollback
block is used to store the “before image” of the data, so that the DML statements can be
rolled back if necessary.

* The data block changes record the new values of the data

Oracle Database: SQL Fundamentals Il |-27

Processing a DML Statement (continued)

The server process records the “before image” to the rollback block and updates the data block.
Both of these changes are done in the database buffer cache. Any changed blocks in the buffer
cache are marked as dirty buffers (that is, buffers that are not the same as the corresponding
blocks on the disk).

The processing of a DELETE or INSERT command uses similar steps. The “before image” for a
DELETE contains the column values in the deleted row, and the “before image” of an INSERT
contains the row location information.

Because the changes made to the blocks are only recorded in memory structures and are not
written immediately to disk, a computer failure that causes the loss of the SGA can also lose
these changes.

Oracle Database: SQL Fundamentals Il |-28

Redo Log Buffer

« Has its size defined by LOG BUFFER

* Records changes made through the instance
* Is used sequentially

* Is acircular buffer

Redo log buffer

|
OO

Copyright © 2010, Oracle. All rights reserved.

Redo Log Buffer

The server process records most of the changes made to data file blocks in the redo log buffer,
which is a part of the SGA. The redo log buffer has the following characteristics:

* Its size in bytes is defined by the LOG BUFFER parameter.

It records the block that is changed, the location of the change, and the new value in a redo
entry. A redo entry makes no distinction between the types of block that is changed; it only
records which bytes are changed in the block.

* The redo log buffer is used sequentially, and changes made by one transaction may be
interleaved with changes made by other transactions.

» It is a circular buffer that is reused after it is filled, but only after all the old redo entries are
recorded in the redo log files.

Oracle Database: SQL Fundamentals Il |-29

Rollback Segment

Old image
477
Rollback segment]
New image | ;
Table
DML statement

Copyright © 2010, Oracle. All rights reserved.

Rollback Segment

Before making a change, the server process saves the old data value in a rollback segment. This
“before image” is used to:
* Undo the changes if the transaction is rolled back
* Provide read consistency by ensuring that other transactions do not see uncommitted
changes made by the DML statement
* Recover the database to a consistent state in case of failures

Rollback segments, such as tables and indexes, exist in data files, and rollback blocks are
brought into the database buffer cache as required. Rollback segments are created by the DBA.

Changes to rollback segments are recorded in the redo log buffer.

Oracle Database: SQL Fundamentals Il |-30

COMMIT Processing

@ Instance

SGA ! Shared pool
Server
process >*Database Redo lo
9
_/ @ buffer buffer
cache

C_DGswy O@@Q

v
Data Control Redo @
files files log files

User
process

Database

Copyright © 2010, Oracle. All rights reserved.

COMMIT Processing

The Oracle server uses a fast COMMIT mechanism that guarantees that the committed changes
can be recovered in case of instance failure.

System Change Number

Whenever a transaction commits, the Oracle server assigns a commit SCN to the transaction.
The SCN is monotonically incremented and is unique within the database. It is used by the
Oracle server as an internal time stamp to synchronize data and to provide read consistency
when data is retrieved from the data files. Using the SCN enables the Oracle server to perform
consistency checks without depending on the date and time of the operating system.

Steps in Processing COMMITS

When a COMMIT is issued, the following steps are performed:
1. The server process places a commit record, along with the SCN, in the redo log buffer.
2. LGWR performs a contiguous write of all the redo log buffer entries up to and including

the commit record to the redo log files. After this point, the Oracle server can guarantee
that the changes will not be lost even if there is an instance failure.

Oracle Database: SQL Fundamentals Il |-31

COMMIT Processing (continued)

3. The user is informed that the COMMIT is complete.
4. The server process records information to indicate that the transaction is complete and that
resource locks can be released.

Flushing of the dirty buffers to the data file is performed independently by DBWO and can occur
either before or after the commit.

Advantages of the Fast COMMIT

The fast COMMIT mechanism ensures data recovery by writing changes to the redo log buffer
instead of the data files. It has the following advantages:

* Sequential writes to the log files are faster than writing to different blocks in the data file.

* Only the minimal information that is necessary to record changes is written to the log files;
writing to the data files would require whole blocks of data to be written.

» If multiple transactions request to commit at the same time, the instance piggybacks redo
log records into a single write.

» Unless the redo log buffer is particularly full, only one synchronous write is required per
transaction. If piggybacking occurs, there can be less than one synchronous write per
transaction.

» Because the redo log buffer may be flushed before the COMMIT, the size of the transaction
does not affect the amount of time needed for an actual COMMIT operation.

Note: Rolling back a transaction does not trigger LGWR to write to disk. The Oracle server
always rolls back uncommitted changes when recovering from failures. If there is a failure after
a rollback, before the rollback entries are recorded on disk, the absence of a commit record is
sufficient to ensure that the changes made by the transaction are rolled back.

Oracle Database: SQL Fundamentals Il |-32

Summary of the Oracle Database Architecture
Instance
HEk Shared pool
Library
Database Redo log cache
buffer buffer
cache Data dictionary
cache
PGA v
Server
CKPT LGWR ARC
process —67 (CK)—O n
1 X < \A 2 L 2
A\ 4 v
User Archi_ved
process Control Online redo log files
Data files files log files
Database

Copyright © 2010, Oracle. All rights reserved.

Summary of the Oracle Database Architecture

An Oracle database comprises an instance and its associated database:
* An instance comprises the SGA and the background processes
- SGA: Database buffer cache, redo log buffer, shared pool, and so on
- Background processes: SMON, PMON, DBWn#n, CKPT, LGWR, and so on
* A database comprises storage structures:
- Logical: Tablespaces, schemas, segments, extents, and Oracle block
- Physical: Data files, control files, redo log files

When a user accesses the Oracle database through an application, a server process
communicates with the instance on behalf of the user process.

Oracle Database: SQL Fundamentals Il |-33

AlUO 8sn Awapeay ajorIQ ¥ [eulalu] 3|oRIO

Additional Practices and Solutions

Table of Contents

AdAItIONA] PrACHICES ..ccooiiiiiiiiiieeeee ettt ettt e e e e e et ae e e e e e e e s e ssasaaaaes 3
AdddItIONA] PTaCtICESuvvvviiiiiieii ettt e et e e e e e e eaaee e e eeaaeeeeenns 4
Additional Practices: Case StudYcocuerieriiriiniiniiiiiieeeeeee e 10

Additional Practices SOIULIONccuvviiiiiiiiieicieie et 13
Additional Practices SOIULIONoovvvuuiiiiiiiiiiiieiiiteeeee ettt e e e e 14
Additional Practices: Case Study SOIUtions...........cccceeevieeiieriieniieiiecie e 20

Oracle Database: SQL Fundamentals Il Additional Practices - 2

Additional Practices

The following exercises can be used for extra practice after you have discussed data
manipulation language (DML) and data definition language (DDL) statements in the
lessons titled “Managing Schema Objects” and “Manipulating Large Data Sets.”

Note: Run the 1ab ap cre special sal.sql,

lab _ap cre sal history.sqgl,and lab _ap cre mgr history.sqgl
scripts in the labs folder to create the SPECIAL SAL, SAL HISTORY, and
MGR_HISTORY tables.

Oracle Database: SQL Fundamentals Il Additional Practices - 3

Additional Practices

The Human Resources department wants to get a list of underpaid employees,
salary history of employees, and salary history of managers based on an industry
salary survey. So they have asked you to do the following:

Write a statement to do the following:

- Retrieve details such as the employee ID, hire date, salary, and manager ID
of those employees whose employee ID is more than or equal to 200 from

the EMPLOYEES table.

- If the salary is less than $5,000, insert details such as the employee ID and

salary into the SPECIAL SAL table.

- Insert details such as the employee ID, hire date, and salary into the

SAL HISTORY table.

- Insert details such as the employee ID, manager ID, and salary into the

MGR_HISTORY table.

the inserted records.

SPECIAL SAL

EMPLOYEEID |[{ saLary

1 200 4400

SAL HISTORY

2. Query the SPECIAL SAL, SAL HISTORY, and MGR HISTORY tables to view

EMPLOYEE_ID [{] HIRE_DATE] SALARY

[TNy B SO N

£01 17-FEB-1996
202 17-AUG-1997
£03 07-JUm-1994
204 07-JUM-1994
£05 07-]Un-1994
206 07-JUM-1994

13000
&000
6500

10000

12000
G300

MGR HISTORY

Oracle Database: SQL Fundamentals Il

Additional Practices - 4

Additional Practices (continued)

§ EmPLOYEEID [MaANAGER_ID|E saLary
201 100 13000
202 201 6000
203 101 G500
204 101 10000
205 101 12000
206 205 8300

3. Nita, the DBA, needs you to create a table, which has a primary key constraint,
but she wants the index to have a different name than the constraint. Create the
LOCATIONS NAMED INDEX table based on the following table instance chart.
Name the index for the PRIMARY KEY column as LOCATIONS PK IDX.

Column Name Deptno Dname
Primary Key Yes

Data Type Number VARCHAR2
Length 4 30

4. Query the USER INDEXES table to display the INDEX NAME for the
LOCATIONS NAMED INDEX table.

B moExMamE |B TABLE_MAME
1 LOCATIONS_PE_IDX LOCATIONS_NAMED_INDEX

Oracle Database: SQL Fundamentals Il Additional Practices -5

Additional Practices (continued)
The following exercises can be used for extra practice after you have discussed
datetime functions.

You work for a global company and the new vice president of operations wants to
know the

different time zones of all the company branches. The new vice president has requested
the following information:

5. Alter the session to set the NLS DATE FORMAT to DD-MON-YYYY
HH24 :MI:SS.

a. Write queries to display the time zone offsets (TZ OFFSET) for the following
time zones:

— Australia/Sydney

TZ_OFFSET{AUSTRALIA /SYDNEY"
1 +10:00

— Chile/Easter Island

| Bl Tz_OFFSET{CHILE/EASTERISLAND®
1 -06:00

b. Alter the session to set the TIME ZONE parameter value to the time zone
offset of Australia/Sydney.

C. Display SYSDATE, CURRENT DATE, CURRENT TIMESTAMP, and
LOCALTIMESTAMP for this session.

Note: The output might be different based on the date when the command is
executed.

SYSDATE [0 cURRENT_DATE | CURRENT_TIMESTAMP @ LocaLTIMESTAMP
1 02-JUL-2009 17:11:46 02-JUL-2008 20:11:46 02-JUL-09 08.11.46.000000000 PM +10:00 02-JUL-09 08.11.46,000000000 PM

d. Alter the session to set the TIME ZONE parameter value to the time zone
offset of Chile/Easter Island.
Note: The results of the preceding question are based on a different date, and
in some cases, they will not match the actual results that the students get.
Also, the time zone offset of the various countries may differ, based on
daylight saving time.

€. Display SYSDATE, CURRENT_DATE, CURRENT_T IMESTAMP, and
LOCALTIMESTAMP for this session.

Note: The output may be different based on the date when the command is
executed.

Oracle Database: SQL Fundamentals Il Additional Practices - 6

Additional Practices (continued)

STSDATE | CURREMT_DATE | CURRENT_TIMESTAMP | LOCALTIMESTAMP

1 02-JUL-2009 17:12:33 02-JUL-2009 04:12:33 02-JUL-0% 04.12.33.000000000 Ak -06:00 02-JUL-09 04.12.33.000000000 Ah

f. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY.
Note

» Observe in the preceding question that CURRENT DATE,
CURRENT TIMESTAMP, and LOCALTIMESTAMP are all sensitive to the
session time zone. Observe that SYSDATE is not sensitive to the session time
zZone.

* The results of the preceding question are based on a different date, and in
some cases, they will not match the actual results that the students get. Also
the time zone offset of the various countries may differ, based on daylight
saving time.

7. The Human Resources department wants a list of employees who are up for
review in January, so they have requested you to do the following:

Write a query to display the last names, month of the date of hire, and hire date of
those employees who have been hired in the month of January, irrespective of the
year of hire.

LAST_NAME| EXTRACT{MONTHFROMHIRE_DATE) | HIRE_DATE
1 Grant 113-JAN-2000
2 De Haan 113-JAN-1993
3 Hunold 1 03-JAN-1990
4 Landry 114-JAN-1993
5 Davies 129-JAN-1997
& Parthers 105-|JAN-1997F
7 Zlotkey 1 29-JAN-2000
8 Tucker 1 30-JAN-1997
3 King 1 30-JAN-1996
10 Marvins 1 24-JAN-2000
11 Fox 124-JAN-1993
12 Johnson 1 04-JAN-2000
13 Taylor 124-JAN-1993
14 Sarchand 127-JAN-1996

Oracle Database: SQL Fundamentals Il Additional Practices -7

Additional Practices (continued)

The following exercises can be used for extra practice after you have discussed
advanced subqueries.

8. The CEO needs a report on the top three earners in the company for profit
sharing. You are responsible to provide the CEO with a list. Write a query to
display the top three earners in the EMPLOYEES table. Display their last names
and salaries.

LAST_NAME|} saLary |

1 KEing 24000
2 kochhar 17000
3 [e Haan 17000

9. The benefits for the state of California have been changed based on a local
ordinance. So the benefits representative has asked you to compile a list of the
people who are affected.

Write a query to display the employee ID and last names of the employees who
work in the state of California.
Hint: Use scalar subqueries.

EMPLOYEE_ID | L&y ST_RAME
123 OConnell
199 Crant
120Weizss
121 Fripp
122 kaufling
123 Wallman

124 Mourgos
125 Mayer
126 Mikkilineni
127 Landry
128 Markle

L e B = I N B L "L oY I

= e
[RE

10. Nita, the DBA, wants to remove old information from the database. One of the
things she thinks is unnecessary is the old employment records. She has asked you
to do the following:

Write a query to delete the oldest JOB. HISTORY row of an employee by looking
up the JOB_ HISTORY table for the MIN(START DATE) for the employee.
Delete the records of only those employees who have changed at least two jobs.
Hint: Use a correlated DELETE command.

Oracle Database: SQL Fundamentals Il Additional Practices - 8

Additional Practices (continued)

1.

12.

The vice president of Human Resources needs the complete employment records
for the annual employee recognition banquet speech. The vice president makes a
quick phone call to stop you from following the DBA’s orders.

Roll back the transaction.

The sluggish economy is forcing management to take cost reduction actions. The
CEO wants to review the highest paid jobs in the company. You are responsible
to provide the CEO with a list based on the following specifications:

Write a query to display the job IDs of those jobs whose maximum salary is
above half the maximum salary in the entire company. Use the WITH clause to
write this query. Name the query MAX SAL CALC.

JOB_TITLE | JOB_TOTAL
1 President 24000
Z Administration Wice Prezident 17000
3 Sales Manager 14000
4 Marketing Manager 13000

Oracle Database: SQL Fundamentals Il Additional Practices -9

Additional Practices: Case Study

In the case study for the SOL Fundamentals I course, you built a set of database tables for
a video application. In addition, you inserted, updated, and deleted records in a video
store database and generated a report.

The following is a diagram of the tables and columns that you created for the video
application:

TITLE
ID
TITLE
DESCRIPTION
BATING
CATEGORY
RELEASE DATHE

: A

RESERVATION
RES DATE

| TITLE COPY
1D
MEMBER
o STATUS
LAST NAME '
FIRST NAME I
ADDRESS |
CITY RENTAL
PHONE L <£ BOOK_DATE
JOIN DATE ACT RET DATE
EXP RET DATE

Note: First, run the dropvid. sgl script in the labs folder to drop tables if they

already exist. Then run the buildvid. sqgl script in the labs folder to create and
populate the tables.

1. Verify that the tables were created properly by running a report to show the list of
tables and their column definitions.

Oracle Database: SQL Fundamentals Il Additional Practices - 10

Additional Practices: Case Study (continued)

TaBLE_MaME [{| coLumn_mame|§ DaTa_TveE [nULLRBLE
1 MEMBER MEMBER_ID NUMBER. N
> MEMBER LAST_NAME VARCHARZ N
3 MEMBER FIRST_MAME VARCHARZ ¥
4 MEMBER ADDRESS VARCHARZ v
5 MEMBER CITY VARCHARZ ¥
& MEMBER PHONE VARCHARZ v
7 MEMBER JOIN_DATE DATE N
5 REWTAL BOOK_DATE DATE N
3 REWTAL COPY_ID NUMBER. N
10 RENTAL MEMBER_ID NUMBER N
11 RENTAL TITLE_ID NUMBER N
12 RENTAL ACT_RET_DATE DATE v
13 RENTAL EXP_RET_DATE DATE v
14 RESERVATION RES_DATE DATE N
15 RESERVATION MEMBER_ID NUMBER N
16 RESERVATION TITLEID NUMBER N

2. Verify the existence of the MEMBER ID SEQand TITLE ID SEQ sequences
in the data dictionary.

SEQUEMCE_MAME
1 DEPARTMEMTS_SEQ
7 EMPLOYEES_SEQ
3 LOCATIONS_SEQ
4 MEMBER_ID_SEQ
5 TITLE_ID_SEQ

3. You want to create some users who have access only to their own rentals. Create a
user called Carmen and grant her the privilege to select from the RENTAL table.
Note: Make sure to prefix the username with your database account. For example,
if you are the user oraxx, create a user called oraxx Carmen.

4. Add a price column (number 4,2) to the TITLE table to store how much it costs
to rent the title.

5. Add a CATEGORY table to store CATEGORY ID and
CATEGORY DESCRIPTION. The table has a foreign key with the CATEGORY
column in the TITLE table.

6. Select all the tables from the data dictionary.

7. There is no real need to store reservations any longer. You can drop the table.

Oracle Database: SQL Fundamentals Il Additional Practices - 11

Additional Practices: Case Study (continued)

8. Create a RENTAL HISTORY table to store the details of a rental by member for
the last six months. (Hint: You can copy the RENTAL table.)

9. Show a list of the top 10 titles rented in the last month grouped by category.

catecory ([{ TITLE |
1 ACTION toda Cang
£ CHILD Willie and Christmazs Taoo
3 COMEDY My Day Off
4 SCIFI Alien Again
5 SCIF Interstellar Wars

10. You want to calculate the late fee (price of title/day) if the member brings back
the video six days late.

TITLE @ memeerio |[Price | LaTeree|
1 Alien A gain 101 {rull {rull
2 My Day Off 1ne (null (null
3 Interstellar Wars 101 {rull {rull

11. Show a list of members who have rented two or more times.

MEMBER_ID |[] LAST_MAME [FIRST_NAME |
1 101 velasquesz Carmen

12. Show a list of titles who have a status of rented.

TITLE
1 Alien Again
2 My Day Off

3 lnterstellar Wars

13. Show a list of members who have “99” in their phone numbers.

POSITION | MEMBER_ID || LAST_MAME|J FIRST_MAME|
1 1 101 Yelazquesz Zarmen
2 1 106 Urguhart hdally
3 1 109 Catchpole Antoinette

Oracle Database: SQL Fundamentals Il Additional Practices - 12

Additional Practices Solution

The following exercises can be used for extra practice after you have discussed data
manipulation language (DML) and data definition language (DDL) statements in the
lessons titled “Managing Schema Objects” and “Manipulating Large Data Sets.”

Note: Runthe 1ab ap cre special sal.sql,

lab _ap cre sal history.sqgl,and lab ap cre mgr history.sql
scripts in the labs folder to create the SPECIAL SAL, SAL HISTORY, and

MGR HISTORY tables

Oracle Database: SQL Fundamentals Il Additional Practices -13

Additional Practices Solution

1. The Human Resources department wants to get a list of underpaid employees,
salary history of employees, and salary history of managers based on an industry
salary survey. So they have asked you to do the following:

Write a statement to do the following:

- Retrieve details such as the employee ID, hire date, salary, and manager ID
of those employees whose employee ID is more than or equal to 200 from
the EMPLOYEES table.

- If the salary is less than $5,000, insert details such as the employee ID and
salary into the SPECIAL SAL table.

- Insert details such as the employee ID, hire date, and salary into the
SAL_HISTORYtﬂﬂ&

- Insert details such as the employee ID, manager ID, and salary into the
MGR_HISTORY table.

INSERT ALL

WHEN SAL < 5000 THEN

INTO special sal VALUES (EMPID, SAL)

ELSE

INTO sal history VALUES (EMPID, HIREDATE, SAL)

INTO mgr history VALUES (EMPID,MGR, SAL)

SELECT employee id EMPID, hire date HIREDATE,
salary SAL, manager id MGR

FROM employees

WHERE employee id >=200;

2. Query the SPECIAL SAL, SAL HISTORY, and the MGR HISTORY tables to
view the inserted records.

SELECT * FROM special sal;
SELECT * FROM sal history;
SELECT * FROM mgr history;

3. Nita, the DBA, needs you to create a table, which has a primary key constraint,
but she wants the index to have a different name than the constraint. Create the
LOCATIONS NAMED INDEX table based on the following table instance chart.
Name the index for the PRIMARY KEY column as LOCATIONS PK IDX.

Column Name Deptno Dname
Primary Key Yes

Data Type Number VARCHAR2
Length 4 30

Oracle Database: SQL Fundamentals Il Additional Practices - 14

Additional Practices Solution (continued)

CREATE TABLE LOCATIONS NAMED INDEX
(location_id NUMBER (4) PRIMARY KEY USING INDEX
(CREATE INDEX locations pk idx ON
LOCATIONS NAMED INDEX (location id)),

location name VARCHARZ2 (20));

4. Query the USER_INDEXES table to display the INDEX NAME for the
LOCATIONS NAMED INDEX table.

SELECT INDEX NAME, TABLE NAME
FROM USER INDEXES
WHERE TABLE NAME = ‘LOCATIONS NAMED INDEX’;

Oracle Database: SQL Fundamentals Il Additional Practices - 15

Additional Practices Solution (continued)
The following exercises can be used for extra practice after you have discussed
datetime functions.

You work for a global company and the new vice president of operations wants to
know the different time zones of all the company branches. The new vice president has
requested the following information:

5. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY HH24 :MI:SS.

ALTER SESSION
SET NLS DATE FORMAT = ‘DD-MON-YYYY HH24:MI:SS’;

a. Write queries to display the time zone offsets (TZ OFFSET) for the following
time zones:

— Australia/Sydney

| SELECT TZ OFFSET (‘Australia/Sydney’) from dual;

— Chile/Easter Island

| SELECT TZ OFFSET (‘Chile/EasterIsland’) from dual;

b. Alter the session to set the TIME ZONE parameter value to the time zone
offset of Australia/Sydney.

|ALTER SESSION SET TIME ZONE = ‘+10:00';

C. DﬁpbySYSDATE,CURRENT_DATE,CURRENT_TIMESTAMP,Mﬂ
LOCALTIMESTAMP for this session.
Note: The output may be different based on the date when the command is
executed.

SELECT SYSDATE, CURRENT DATE, CURRENT TIMESTAMP,
LOCALTIMESTAMP FROM DUAL;

d. Alter the session to set the TIME ZONE parameter value to the time zone
offset of Chile/Easter Island.

Note: The results of the preceding question are based on a different date, and
in some cases, they will not match the actual results that the students get.
Also, the time zone offset of the various countries may differ, based on
daylight saving time.

ALTER SESSION SET TIME ZONE = ‘-06:00";

e. Display SYSDATE, CURRENT DATE, CURRENT TIMESTAMP, and
LOCALTIMESTAMP for this session.

Oracle Database: SQL Fundamentals Il Additional Practices - 16

Additional Practices Solution (continued)

Note: The output may be different based on the date when the command is
executed.

SELECT SYSDATE, CURRENT DATE, CURRENT TIMESTAMP,
LOCALTIMESTAMP FROM DUAL;

f. Alter the session to set NS DATE FORMAT to DD-MON-YYYY.

| ALTER SESSION SET NLS DATE FORMAT = ‘DD-MON-YYYY’;

Note
* Observe in the preceding question that CURRENT DATE,
CURRENT TIMESTAMP, and LOCALTIMESTAMP are all sensitive to the session
time zone. Observe that SYSDATE is not sensitive to the session time zone.
» The results of the preceding question are based on a different date, and in some

cases, they will not match the actual results that the students get. Also, the time
zone offset of the various countries may differ, based on daylight saving time.

7. The Human Resources department wants a list of employees who are up for
review in January, so they have requested you to do the following:
Write a query to display the last names, month of the date of hire, and hire date of
those employees who have been hired in the month of January, irrespective of the
year of hire.

SELECT last name, EXTRACT (MONTH FROM HIRE DATE), HIRE DATE
FROM employees
WHERE EXTRACT (MONTH FROM HIRE DATE) = 1;

The following exercises can be used for extra practice after you have discussed
advanced subqueries.
Note: If you have converted the HIRE DATE column to TIMESTAMP using

code 05 12 sb.sql, the display of the HIRE DATE column would be like 13-JAN-
00 12.00.00.000000000 AM

8. The CEO needs a report on the top three earners in the company for profit
sharing. You are responsible to provide the CEO with a list.
Write a query to display the top three earners in the EMPLOYEES table. Display
their last names and salaries.

SELECT last name, salary
FROM employees e
WHERE 3 > (SELECT COUNT (*)
FROM employees
WHERE e.salary < salary);

Oracle Database: SQL Fundamentals Il Additional Practices -17

Additional Practices Solution (continued)

9. The benefits for the state of California have been changed based on a local
ordinance. So the benefits representative has asked you to compile a list of the
people who are affected. Write a query to display the employee ID and last names
of the employees who work in the state of California.

Hint: Use scalar subqueries.
SELECT employee id, last name
FROM employees e
WHERE ((SELECT location id
FROM departments d
WHERE e.department id = department id)
IN (SELECT location id
FROM locations 1
WHERE state province = ‘California’));
10. Nita, the DBA, wants to remove old information from the database. One of the

things she thinks is unnecessary is the old employment records. She has asked you
to do the following:

Write a query to delete the oldest JOB. HISTORY row of an employee by looking
up the JOB_ HISTORY table for the MIN (START DATE) for the employee.
Delete the records of only those employees who have changed at least two jobs.
Hint: Use a correlated DELETE command.

Oracle Database: SQL Fundamentals Il Additional Practices - 18

Additional Practices Solution (continued)

DELETE FROM job_history JH
WHERE employee id =
(SELECT employee id
FROM employees E
WHERE JH.employee id = E.employee id
AND START DATE = (SELECT MIN(start date)
FROM job history JH
WHERE JH.employee id =
E.employee id)
AND 3 > (SELECT COUNT (*)
FROM job history JH
WHERE JH.employee id =
E.employee id
GROUP BY EMPLOYEE ID
HAVING COUNT (*) >= 2));

11. The vice president of Human Resources needs the complete employment records
for the annual employee recognition banquet speech. The vice president makes a
quick phone call to stop you from following the DBA’s orders.

Roll back the transaction.

[RoLLBACK;

12. The sluggish economy is forcing management to take cost reduction actions. The
CEO wants to review the highest paid jobs in the company. You are responsible
to provide the CEO with a list based on the following specifications:

Write a query to display the job IDs of those jobs whose maximum salary is
above half the maximum salary in the entire company. Use the WITH clause to
write this query. Name the query MAX SAL CALC.

WITH
MAX SAL CALC AS (SELECT job title, MAX(salary) AS
job total
FROM employees, jobs
WHERE employees.job id = jobs.job id
GROUP BY job title)
SELECT job title, job total
FROM MAX SAL CALC
WHERE job total > (SELECT MAX(job total) * 1/2
FROM MAX SAL CALC)
ORDER BY job total DESC;

Oracle Database: SQL Fundamentals Il Additional Practices - 19

Additional Practices: Case Study Solutions

First, run the dropvid. sqgl script in the labs folder to drop tables if they already
exist. Then run the buildvid. sgl script in the labs folder to create and populate
the tables.

1. Verify that the tables were created properly by running a report to show the list of
tables and their column definitions.

SELECT table name,column name,data type,nullable

FROM user tab columns

WHERE table name
IN('MEMBER','TITLE','TITLE_COPY','RENTAL','RESERVATION');

2. Verify the existence of the MEMBER ID SEQand TITLE ID SEQ sequences
in the data dictionary.

|SELECT sequence name FROM user sequences;

3. You want to create some users who have access only to their own rentals. Create a
user called Carmen and grant her the privilege to select from the RENTAL table.
Note: Make sure to prefix the username with your database account. For example,
if you are the user oraxx, create a user called oraxx Carmen.

CREATE USER oraxx carmen IDENTIFIED BY oracle ;
GRANT select ON rental TO oraxx carmen;

4. Add a price column (number 4,2) to the TITLE table to store how much it costs
to rent the title.

|ALTER TABLE title ADD(price NUMBER (6))

5. Add a CATEGORY table to store CATEGORY ID and
CATEGORY DESCRIPTION. The table has a foreign key with the CATEGORY
column in the TITLE table.

CREATE TABLE CATEGORY
("CATEGORY ID" NUMBER(6,0) NOT NULL ENABLE,
"CATEGORY DESCRIPTION" VARCHARZ2 (4000 BYTE),
CONSTRAINT "CATEGORY PK" PRIMARY KEY ("CATEGORY ID"))

6. Select all the tables from the data dictionary.

|SELECT table name FROM user tables order by table name;

7. There is no real need to store reservations any longer. You can drop the table.

|DROP TABLE reservation cascade constraints;

Oracle Database: SQL Fundamentals Il Additional Practices - 20

Additional Practices: Case Study Solutions (continued)

8. Create a RENTAL HISTORY table to store the details of a rental by member for
the last six months. (Hint: You can copy the RENTAL table.)

CREATE TABLE rental history as select * from rental where '1l'
= 11

9. Show a list of the top 10 titles rented in the last month grouped by category.

SELECT t.CATEGORY, t.TITLE

FROM TITLE t, RENTAL r

WHERE t.TITLE ID = r.TITLE ID AND
r. BOOK DATE > (SYSDATE - 30) AND
rownum < 10

order by category;

10. You want to calculate the late fee (price of title/day) if the member brings back
the video six days late.

SELECT t.title, m.member id, t.price, (t.price*6) latefee
FROM title t, member m, rental r
WHERE t.title_id = r.title_id AND

m.member id = r.member id AND

r.act ret date is null;

11. Show a list of members who have rented two or more times.

SELECT member id, last name, first name FROM member m
where 2 <= (select count (*) from rental history where
member id = m.member id);

12. Show a list of titles who have a status of rented.

SELECT t.title

FROM title t

JOIN (select title id, status from title copy) b
ON t.title id = b.title id AND b.status = 'RENTED';

13. Show a list of members who have “99” in their phone numbers.

SELECT REGEXP COUNT (phone, '99',1,'i'") position, member id,
last name, first name

FROM member

WHERE REGEXP_COUNT(phone,'99',1,'i') > 0;

Oracle Database: SQL Fundamentals Il Additional Practices - 21

AlUO 8sn Awapeay ajorIQ ¥ [eulalu] 3|oRIO

	Cover Page

	Table of Contents

	Appendix A: Practices and Solutions
	Table of Contents
	Practices and Solutions for Lesson I
	Practice I-1: Accessing SQL Developer Resources
	Practice I-2: Using SQL Developer
	Practice Solutions I-1: Accessing SQL Developer Resources
	Practice Solutions I-2: Using SQL Developer

	Practices and Solutions for Lesson 1
	Practice 1-1: Controlling User Access
	Practice Solutions 1-1: Controlling User Access

	Practices and Solutions for Lesson 2
	Practice 2-1: Managing Schema Objects
	Practice Solutions 2-1: Managing Schema Objects

	Practices and Solutions for Lesson 3
	Practice 3-1: Managing Objects with Data Dictionary Views
	Practice Solutions 3-1: Managing Objects with Data DictionaryViews

	Practices and Solutions for Lesson 4
	Practice 4-1: Manipulating Large Data Sets
	Practice Solutions 4-1: Manipulating Large Data Sets

	Practices and Solutions for Lesson 5
	Practice 5-1: Managing Data in Different Time Zones
	Practice Solutions 5-1: Managing Data in Different Time Zones

	Practices and Solutions for Lesson 6
	Practice 6-1: Retrieving Data by Using Subqueries
	Practice Solutions 6-1: Retrieving Data by Using Subqueries

	Practices and Solutions for Lesson 7
	Practice 7-1: Regular Expression Support
	Practice Solutions 7-1: Regular Expression Support

	Appendix B: Table Descriptions
	Appendix C: Using SQL Developer
	Objectives
	What Is Oracle SQL Developer?
	Specifications of SQL Developer
	SQL Developer 1.5 Interface
	Creating a Database Connection
	Browsing Database Objects
	Displaying the Table Structure
	Browsing Files
	Creating a Schema Object
	Creating a New Table: Example
	Using the SQL Worksheet
	Executing SQL Statements
	Saving SQL Scripts
	Executing Saved Script Files: Method 1
	Executing Saved Script Files: Method 2
	Formatting the SQL Code
	Using Snippets
	Using Snippets: Example
	Debugging Procedures and Functions
	Database Reporting
	Creating a User-Defined Report
	Search Engines and External Tools
	Setting Preferences
	Resetting the SQL Developer Layout
	Summary

	Appendix D: Using SQL*Plus
	Objectives
	SQL and SQL*Plus Interaction
	SQL Statements Versus SQL*Plus Commands
	Overview of SQL*Plus
	Logging In to SQL*Plus
	Displaying the Table Structure
	SQL*Plus Editing Commands
	Using LIST, n, and APPEND
	Using the CHANGE Command
	SQL*Plus File Commands
	Using the SAVE and START Commands
	SERVEROUTPUT Command
	Using the SQL*Plus SPOOL Command
	Using the AUTOTRACE Command
	Summary

	Appendix E: Using JDeveloper
	Objectives
	Oracle JDeveloper
	Database Navigator
	Creating a Connection
	Browsing Database Objects
	Executing SQL Statements
	Creating Program Units
	Compiling
	Running a Program Unit
	Dropping a Program Unit
	Structure Window
	Editor Window
	Application Navigator
	Deploying Java Stored Procedures
	Publishing Java to PL/SQL
	How Can I Learn More About JDeveloper 11g ?
	Summary

	Appendix F: Generating Reports by Grouping
Related Data
	Objectives
	Review of Group Functions
	Review of the GROUP BY Clause
	Review of the HAVING Clause
	GROUP BY with ROLLUP and CUBE Operators
	ROLLUP Operator
	ROLLUP Operator: Example
	CUBE Operator
	CUBE Operator: Example
	GROUPING Function
	GROUPING Function: Example
	GROUPING SETS
	GROUPING SETS: Example
	Composite Columns
	Composite Columns: Example
	Concatenated Groupings
	Concatenated Groupings: Example
	Summary

	Appendix G: Hierarchical Retrieval
	Objectives
	Sample Data from the EMPLOYEES Table
	Natural Tree Structure
	Hierarchical Queries
	Walking the Tree
	Walking the Tree: From the Bottom Up
	Walking the Tree: From the Top Down
	Ranking Rows with the LEVEL Pseudocolumn
	Formatting Hierarchical Reports Using LEVEL and LPAD
	Pruning Branches
	Summary

	Appendix H: Writing Advanced Scripts
	Objectives
	Using SQL to Generate SQL
	Creating a Basic Script
	Controlling the Environment
	The Complete Picture
	Dumping the Contents of a Table to a File
	Generating a Dynamic Predicate
	Summary

	Appendix I: Oracle Database Architectural Components
	Objectives
	Oracle Database Architecture: Overview
	Oracle Database Server Structures
	Connecting to the Database
	Interacting with an Oracle Database
	Oracle Memory Architecture
	Process Architecture
	Database Writer Process
	Log Writer Process
	Checkpoint Process
	System Monitor Process
	Process Monitor Process
	Oracle Database Storage Architecture
	Logical and Physical Database Structures
	Processing a SQL Statement
	Processing a Query
	Shared Pool
	Database Buffer Cache
	Program Global Area (PGA)
	Processing a DML Statement
	Redo Log Buffer
	Rollback Segment
	COMMIT Processing
	Summary of the Oracle Database Architecture

	Additional Practices and Solutions
	Table of Contents
	Additional Practices
	Additional Practices: Case Study

	Additional Practices Solution
	Additional Practices: Case Study Solutions

