Line segment intersection for map overlay

Computational Geometry

Lecture 2: Line segment intersection for map overlay

Map overlay

Map layers

In a geographic information system (GIS) data is stored in separate layers

A layer stores the geometric information about some theme, like land cover, road network, municipality boundaries, red fox habitat, ...

Map overlay

Map overlay is the combination of two (or more) map layers

It is needed to answer questions like:

- What is the total length of roads through forests?
- What is the total area of corn fields within 1 km from a river?
- What area of all lakes occurs at the geological soil type "rock"?

Map overlay

Map overlay

Map overlay

To solve map overlay questions, we need (at the least) intersection points from two sets of line segments (possibly, boundaries of regions)

Problem Output-sensitive algorithms Some attempts

The (easy) problem

Let's first look at the easiest version of the problem:

Given a set of of n line segments in the plane, find all intersection points efficiently

Problem Output-sensitive algorithms Some attempts

An easy, optimal algorithm?

Algorithm FINDINTERSECTIONS(*S*)

Input. A set S of line segments in the plane.

Output. The set of intersection points among the segments in S.

- 1. for each pair of line segments $e_i, e_j \in S$
- 2. **do if** e_i and e_j intersect
- 3. **then** report their intersection point

Question: Why can we say that this algorithm is optimal?

Problem Output-sensitive algorithms Some attempts

Problem Output-sensitive algorithms Some attempts

Output-sensitive algorithm

The asymptotic running time of an algorithm is always input-sensitive (depends on n)

We may also want the running time to be output-sensitive: if the output is large, it is fine to spend a lot of time, but if the output is small, we want a fast algorithm

Problem Output-sensitive algorithms Some attempts

Intersection points in practice

Question: How many intersection points do we typically expect in our application?

If this number is k, and if k = O(n), it would be nice if the algorithm runs in $O(n \log n)$ time

Problem Output-sensitive algorithms Some attempts

First attempt

Observation: Two line segments can only intersect if their *y*-spans have an overlap

So, how about only testing pairs of line segments that intersect in the *y*-projection?

1-D problem: Given a set of intervals on the real line, find all partly overlapping pairs

$$\underbrace{s_1 \dots s_2}_{(s_1, s_2), (s_4, s_6), (s_5, s_6)} \underbrace{s_4 \ s_5 \ s_6}_{(s_5, s_6), (s_5, s_6)}$$

Problem Output-sensitive algorithms Some attempts

Second attempt

Refined observation: Two line segments can only intersect if their *y*-spans have an overlap, and they are adjacent in the *x*-order at that *y*-coordinate (they are *horizontal neighbors*)

Introduction Events, status, structures Event handling Efficiency

Plane sweep

The **plane sweep technique**: Imagine a horizontal line passing over the plane from top to bottom, solving the problem as it moves

- The sweep line stops and the algorithm computes at certain positions ⇒ events
- The algorithm stores the relevant situation at the current position of the sweep line ⇒ status
- The algorithm knows everything it needs to know above the sweep line, and found all intersection points

Introduction Events, status, structures Event handling Efficiency

Sweep

Introduction Events, status, structures Event handling Efficiency

Sweep and status

Introduction Events, status, structures Event handling Efficiency

Status and events

The status of this particular plane sweep algorithm, at the current position of the sweep line, is the set of line segments intersecting the sweep line, ordered from left to right

The events occur when the *status changes*, and when *output is generated*

event \approx interesting y-coordinate

Introduction Events, status, structures Event handling Efficiency

Introduction Events, status, structures Event handling Efficiency

... and so on ...

Introduction Events, status, structures Event handling Efficiency

The events

When do the events happen? When the sweep line is at

- an upper endpoint of a line segment
- a lower endpoint of a line segment
- an intersection point of a line segment

At each type, the **status** changes; at the third type **output** is found too

Introduction Events, status, structures Event handling Efficiency

Assume no degenerate cases

We will at first exclude degenerate cases:

- No two endpoints have the same y-coordinate
- No more than two line segments intersect in a point
- ...

Question: Are there more degenerate cases?

Introduction Events, status, structures Event handling Efficiency

Event list and status structure

The event list is an abstract data structure that stores all events in the order in which they occur

The status structure is an abstract data structure that maintains the current status

Here: The status is the subset of currently intersected line segments in the order of intersection by the sweep line

Introduction Events, status, structures Event handling Efficiency

Status structure

We use a balanced binary search tree with the line segments in the leaves as the status structure

Computational Geometry Lecture 2: Line segment intersection for map overlay

Introduction Events, status, structures Event handling Efficiency

Status structure

Upper endpoint: search, and insert

Introduction Events, status, structures Event handling Efficiency

Status structure

Upper endpoint: search, and insert

Introduction Events, status, structures Event handling Efficiency

Status structure

Upper endpoint: search, and insert

Introduction Events, status, structures Event handling Efficiency

Status structure

Sweep line reaches lower endpoint of a line segment: delete from the status structure

Sweep line reaches intersection point: swap two leaves in the status structure (and update information on the search paths)

Introduction Events, status, structures Event handling Efficiency

Finding events

Before the sweep algorithm starts, we know all upper endpoint events and all lower endpoint events

But: How do we know intersection point events??? (those we were trying to find ...)

Recall: Two line segments can only intersect if they are horizontal neighbors

Introduction Events, status, structures Event handling Efficiency

Finding events

Lemma: Two line segments s_i and s_j can only intersect after (= below) they have become horizontal neighbors

Proof: Just imagine that the sweep line is ever so slightly above the intersection point of s_i and s_j , but below any other event \Box

Also: some earlier (= higher) event made s_i and s_j horizontally adjacent!!!

Introduction Events, status, structures Event handling Efficiency

Event list

The event list must be a balanced binary search tree, because during the sweep, we discover new events that will happen later

We know upper endpoint events and lower endpoint events beforehand; we find intersection point events when the involved line segments become horizontal neighbors

Introduction Events, status, structures Event handling Efficiency

Structure of sweep algorithm

Algorithm FINDINTERSECTIONS(S)

Input. A set S of line segments in the plane.

- *Output.* The intersection points of the segments in *S*, with for each intersection point the segments that contain it.
- 1. Initialize an empty event queue *Q*. Insert the segment endpoints into *Q*; when an upper endpoint is inserted, the corresponding segment should be stored with it
- 2. Initialize an empty status structure T
- 3. while Q is not empty
- 4. **do** Determine next event point p in Q and delete it
- 5. HANDLEEVENTPOINT(p)

Introduction Events, status, structures Event handling Efficiency

Event handling

If the event is an upper endpoint event, and s is the line segment that starts at p:

- **()** Search with p in T, and insert s
- If s intersects its left neighbor in T, then determine the intersection point and insert in Q
- If s intersects its right neighbor in T, then determine the intersection point and insert in Q

Introduction Events, status, structures Event handling Efficiency

Event handling

If the event is a lower endpoint event, and s is the line segment that ends at p:

- **()** Search with p in T, and delete s
- Let s_l and s_r be the left and right neighbors of s in T (before deletion). If they intersect below the sweep line, then insert their intersection point as an event in Q

Introduction Events, status, structures Event handling Efficiency

Event handling

If the event is an intersection point event where s and s' intersect at p:

- 1 ...
- 2 ...
- **3** ...
- **4** ...

Introduction Events, status, structures Event handling Efficiency

Event handling

If the event is an intersection point event where s and s' intersect at p:

- Exchange s and s' in T
- 2 ...
- **3** ...
- **4** ...

Introduction Events, status, structures Event handling Efficiency

Event handling

If the event is an intersection point event where s and s' intersect at p:

- Exchange s and s' in T
- If s' and its new left neighbor in T intersect below the sweep line, then insert this intersection point in Q

3 ...

(] . . .

Introduction Events, status, structures Event handling Efficiency

Event handling

If the event is an intersection point event where s and s' intersect at p:

- Exchange s and s' in T
- If s' and its new left neighbor in T intersect below the sweep line, then insert this intersection point in Q
- If s and its new right neighbor in T intersect below the sweep line, then insert this intersection point in Q

Introduction Events, status, structures Event handling Efficiency

Event handling

If the event is an intersection point event where s and s' intersect at p:

- Exchange s and s' in T
- If s' and its new left neighbor in T intersect below the sweep line, then insert this intersection point in Q
- If s and its new right neighbor in T intersect below the sweep line, then insert this intersection point in Q

Report the intersection point

Introduction Events, status, structures Event handling Efficiency

Event handling

Can it be that new horizontal neighbors already intersected above the sweep line?

Can it be that we insert a newly detected intersection point event, but it already occurs in *Q*?

Introduction Events, status, structures Event handling Efficiency

How much time to handle an event?

At most one search in T and/or one insertion, deletion, or swap

At most twice finding a neighbor in T

At most one deletion from and two insertions in Q

Since T and Q are balanced binary search trees, handling an event takes only $O(\log n)$ time

Introduction Events, status, structures Event handling Efficiency

Efficiency

How many events?

- 2n for the upper and lower endpoints
- k for the intersection points, if there are k of them

In total: O(n+k) events

Motivation Introduction Line segment intersection Events, status, structures Plane sweep Efficiency

Efficiency

Initialization takes $O(n \log n)$ time (to put all upper and lower endpoint events in Q)

Each of the O(n+k) events takes $O(\log n)$ time

The algorithm takes $O(n\log n + k\log n)$ time If k = O(n), then this is $O(n\log n)$

Note that if k is really large, the brute force $O(n^2)$ time algorithm is more efficient

Introduction Events, status, structures Event handling Efficiency

Question: How much storage does the algorithm take?

Question: Given that the event list is a binary tree that may store $O(k) = O(n^2)$ events, is the efficiency in jeopardy?

Introduction Events, status, structures Event handling Efficiency

Degenerate cases

How do we deal with degenerate cases?

For two different events with the same *y*-coordinate, we treat them from left to right \Rightarrow the "upper" endpoint of a horizontal line segment is its left endpoint

 Motivation
 Introduction

 Line segment intersection
 Events, status, structures

 Plane sweep
 Efficiency

Degenerate cases

How about multiply coinciding event points?

Let U(p) and L(p) be the line segments that have p as upper and lower endpoint, and C(p) the ones that contain p

Question: How do we handle this multi-event?

Degenerate cases

How efficient is a multiply coinciding event point handled?

If |U(p)| + |L(p)| + |C(p)| = m, then the event takes $O(m \log n)$ time

What do we report?

- The intersection point itself
- Every pair of intersecting line segments
- The intersection point and every line segment involved

 \Rightarrow the output size for this one event is then ${\cal O}(1), \; {\cal O}(m^2),$ or ${\cal O}(m),$ respectively

Degenerate cases

Since m = O(n), does this imply that the whole algorithm takes $O(k) \cdot O(m \log n) = O(k) \cdot O(n \log n) = O(nk \log n)$ time?

No, we can bound $\sum m$ over all intersections by the number of edges that arise in the subdivision: $\sum m \le 2E$. With Euler's formula: $V - E + F \ge 2$, V = 2n + I with I intersections, and $2F \le 3E$, we get $m \le 12n + 6I - 12 = O(n + I)$

Introduction Events, status, structures Event handling Efficiency

Result

For any set of *n* line segments in the plane, all *I* intersections can be computed in $O(n\log n + I\log n)$ time, and within this time bound, we can report for every intersection which line segments are involved

Introduction Events, status, structures Event handling Efficiency

Conclusion

For every sweep algorithm:

- Define the status
- Choose the status structure and the event list
- Figure out how events must be handled (with sketches!)
- To analyze, determine the number of events and how much time they take

Then deal with degeneracies