Preparatory problems

$45^{\text {th }}$ International Chemistry Olympiad (IChO-2013)

Chemistry Department

Moscow State University
Russian Federation

Edited by: Vadim Eremin, Alexander Gladilin
e-mail:
vadim@educ.chem.msu.ru
alexander.gladilin@simeon.ru

Released
January 31, 2013

Contributing authors

Moscow State University, Chemistry Department

A. Bacheva
M. Beklemishev
A. Belov
A. Bendrishev
A. Berkovich
E. Budynina
A. Drozdov
V. Eremin
A. Garmash
A. Gladilin

Eu. Karpushkin
M. Korobov
E. Lukovskaya
A. Majuga
V. Terenin
I. Trushkov
S. Vatsadze
A. Zhirnov

Bashkirian Medical State University

B. Garifullin

National Polytechnic Institute, Toulouse, France
D. Kandaskalov

Kazan' Federal University, A.Butlerov Institute of Chemistry
I. Sedov

PREFACE

Dear friends!

We are happy to present you the Booklet of Preparatory problems. Members of the Science Committee really did their best to prepare interesting tasks. The set covers all major parts of modern chemistry. All the tasks can be solved by applying a basic knowledge of chemistry, even in case a problem refers to a topic of advanced difficulty. Still, we expect it will take some time and efforts of yours to find the correct answers. Thus, most probably we know how you will spend some of your time in the coming months. We wish you much pleasure while working with this set of problems.

FACE YOUR CHALLENGE, BE SMART!

Note to mentors

In addition to the problems, you will find in the Booklet:

- The list of topics of advanced difficulty
- The Safety rules and recommendations set by the IChO International Jury
- The hazard warning symbols, their designations and explanations, R-ratings and Sprovisions

Worked solutions will be posted at the website by the end of May, 2013.
We pay great attention to safety. In the section preceding the practical preparatory problems you will find safety precautions and procedures to be followed. At the registration in Moscow we will ask every head mentor to sign a form stating that his/her students are aware of the safety rules and adequately trained to follow them. Prior to the Practical Examination all students will have to read and sign safety instructions translated into their languages of choice.

Few chemicals mentioned in the practical preparatory problems are classified to $\mathrm{T}+$ (very toxic). It is not necessary to use these particular substances; you can search for appropriate substitutions. We would like to stress that students' training should be aimed at mastering specific laboratory skills rather than working with definite compounds. We assure you that during the Practical Examination at the 45th IChO VERY TOXIC chemicals will be used under NO circumstances.

Despite our great proof reading efforts, some mistakes and misprints are still possible. We appreciate your understanding and will be happy to get your feedback. Please address your comments to secretary@icho2013.chem.msu.ru. You may also write your comments on our website. Please explore our official website on a regular basis, since corrections/upgrades of the preparatory problems, if any, will posted there.

Acknowledgements

We would like to express our deep gratitude to Prof. A. Shevelkov, Prof. V. Nenaidenko, and Dr. Yu. Halauko as well as to the members of the International Steering Committee for their valuable comments and suggestions.

Sincerely yours,
Members of the IChO-2013 Science Committee

Contents

Physical constants, formulas, and equations 5
Topics of advanced difficulty 6
Theoretical problems
Problem 1. Graphite oxide 7
Problem 2. Efficiency of photosynthesis 9
Problem 3. Ammine complexes of transition metals 10
Problem 4. Preparation of inorganic compound 11
Problem 5. Inorganic chains and rings 12
Problem 6. Transition metal compounds 12
Problem 7. Simple equilibrium 13
Problem 8. Copper sulfate and its hydrates 14
Problem 9. TOF and TON 16
Problem 10. Kinetic puzzles 19
Problem 11. Black box 20
Problem 12. Chlorination 21
Problem 13. The dense and hot ice 22
Problem 14. Redox reactions in photosynthesis 24
Problem 15. Complexation reactions in the determination of inorganic ions 26
Problem 16. Malaprade reaction 28
Problem 17. Analysis of Chrome Green 28
Problem 18. Chemistry of phenol 30
Problem 19. Chrysanthemic acid 31
Problem 20. Heterocycles 33
Problem 21. Cyclobutanes 35
Problem 22. Introduction to translation 36
Problem 23. Intriguing translation 39
Problem 24. Unusual amino acids: search for new properties 41
Problem 25. Specific features of Clostridium metabolism 43
Problem 26. Analysis of complex formation 46
Problem 27. Inorganic polymers: polyphosphates and polysilicones 48
THE SAFETY RULES AND REGULATIONS 50
Practical problems
Problem 28. Determination of copper and zinc by complexometric titration 57
Problem 29. Conductometric determination of ammonium nitrate and nitric acid 59
Problem 30. Analysis of fire retardants by potentiometric titration 61
Problem 31. Formation of double carbon-nitrogen bond 63
Problem 32. Osazone of glucose 66
Problem 33. Acetone as a protecting agent 69
Problem 34. Determination of molecular mass parameters (characteristics) by viscometry 73
Problem 35. Cooperative interactions in polymer solutions 76

Physical Constants, Formulas and Equations

Avogadro's constant: $N_{\mathrm{A}}=6.0221 \times 10^{23} \mathrm{~mol}^{-1}$
Universal gas constant: $R=8.3145 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
Speed of light: $c=2.9979 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Planck's constant: $h=6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Faraday's constant: $F=96485 \mathrm{C} \cdot \mathrm{mol}^{-1}$
Standard pressure, $p^{\circ}=1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Zero of the Celsius scale, 273.15 K
1 nanometer (nm) $=10^{-9} \mathrm{~m}$
1 electronvolt $(\mathrm{eV})=1.6022 \cdot 10^{-19} \mathrm{~J}=96485 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$

Energy of light quantum with wavelength $\lambda: E=h c / \lambda$
Energy of one mole of photons: $E=h c N_{\mathrm{A}} / \lambda$
Gibbs energy: $G=H-T S$
Relation between equilibrium constant, standard electromotive force and standard Gibbs energy:
$K=\exp \left(-\frac{\Delta G^{\circ}}{R T}\right)=\exp \left(\frac{n F E^{\circ}}{R T}\right)$
Clapeyron equation for phase transitions: $\frac{d p}{d T}=\frac{\Delta H}{T \Delta V}$
Clausius-Clapeyron equation for phase transitions involving vapor: $\frac{d \ln p}{d T}=\frac{\Delta H}{R T^{2}}$
Dependence of Gibbs energy of reaction on concentrations: $\Delta G=\Delta G^{\circ}+R T \ln \frac{c_{\text {prod }}}{C_{\text {reag }}}$
Dependence of electrode potential on concentrations: $E=E^{\circ}+\frac{R T}{n F} \ln \frac{C_{\mathrm{ox}}}{C_{\text {red }}}$

Topics of advanced difficulty

Theoretical

1. Simple phase diagrams, the Clapeyron and Clausius-Clapeyron equations, triple points.
2. Analysis of complex reactions using steady-state and quasi-equilibrium approximations, mechanisms of catalytic reactions, determination of reaction order for complex reactions.
3. Relation between equilibrium constants, electromotive force and standard Gibbs energy; dependence of Gibbs energy on the reaction mixture composition (isotherm of chemical reaction).
4. Biosynthesis of peptides and proteins: translation, genetic code, canonical amino acids, mRNA and tRNA, codone-anticodone interaction, aminoacyl tRNA synthetases.
5. Reactions of monocyclic homo- and heterocycles with less than 7 carbon atoms in the ring.
6. Redox reactions of hydroxyl, ketone and aldehyde groups.

Practical

1. Conductometry
2. Viscometry

Whilst it is not explicitly stated in the Regulations, we expect the students to be acquainted with basic synthetic techniques: vacuum filtration, drying of precipitates, determination of melting point and extraction with immiscible solvents.

Theoretical problems

Problem 1. Graphite oxide

Graphite oxide (GO) is a compound obtained by treating graphite with strong oxidizers. In GO carbon honeycomb layers (Fig. 1a) are decorated with several types of oxygen containing functional groups. A net molecular formula of GO is $\mathrm{CO}_{X} \mathrm{H}_{Y}$, where X and Y depend on the method of oxidation. In recent years GO has attracted much attention as a promising precursor of graphene, the most famous two-dimensional carbon nanomaterial with unique electrical properties. The exfoliation of graphite oxide produces atomically thin graphene oxide sheets (Fig. 1b). The reduction of the latter produces graphene.

Figure 1. a) Crystal lattice of graphite. GO retains the layer structure of graphite, but the interlayer spacing is almost two times larger ($\sim 12 \AA$ instead of $6.69 \AA$ in the figure) and part of the carbon atoms are oxidized. b) Single sheet in the GO crystal lattice. Several oxygen containing functional groups are shown. Absolute and relative number of functional groups depends on the particular synthesis method.

1. Give two reasons why GO is more favorable precursor of graphene, compared to graphite itself? What in your opinion is the most serious disadvantage of GO as a graphene precursor?
2. The simplest model of the GO sheet (the Hoffman model) is presented in Fig. 2a. It was assumed that only one functional group, namely ($-\mathrm{O}-$) is formed in the carbon plane as a result of the graphite oxidation. Calculate X in the net formula CO_{X} of GO, if 25% of carbon atoms in GO keep the $s p^{2}$ hybridization. What is the maximum X in the Hoffman model?

Figure 2. (a) Hoffman structural model of the GO sheet/ (b) Lerf-Klinowski model
3. The up-to date model of a single GO sheet (Lerf-Klinowski model) is shown in Fig. 2b. Name functional groups shown in the Figure.
4. Let all the sheets in a GO lattice look like it was predicted in the Lerf-Klinowski model (Fig. 2b). The net formula of the material is $\mathrm{CH}_{0.22} \mathrm{O}_{0.46}$. Estimate the amount of carbon atoms (in \%) which were not oxidized. Give the upper and lower limits.
5. GO absorbs water in between the GO sheets. This is one of the most important properties of the material. Absorption occurs due to the formation of hydrogen bonds between molecules of water and functional groups (Fig. 3). Let GO have the net formula $\mathrm{CH}_{0.22} \mathrm{O}_{0.46}$. What maximum amount of water molecules can be absorbed per atom of carbon in this case? What is the net formula of the corresponding GO hydrate? Use the Lerf-Klinowski model. Consider only contacts depicted in Fig. 3 (one molecule of water between two epoxy and/or between two OH groups).

Figure 3. Proposed hydrogen bonding network formed between oxygen functionality on GO and water

Problem 2. Efficiency of photosynthesis

Photosynthesis is believed to be an efficient way of light energy conversion. Let's check this statement from various points of view. Consider the overall chemical equation of photosynthesis performed by green plants in the form:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

where $\mathrm{CH}_{2} \mathrm{O}$ denotes the formed carbohydrates. Though glucose is not the main organic product of photosynthesis, it is quite common to consider $\mathrm{CH}_{2} \mathrm{O}$ as $1 / 6$ (glucose). Using the information presented below, answer the following questions.

1. Calculate the standard enthalpy and standard Gibbs energy of the above reaction at 298 K. Assuming that the reaction is driven by light energy only, determine the minimum number of photons necessary to produce one molecule of oxygen.
2. Standard Gibbs energy corresponds to standard partial pressures of all gases (1 bar). In atmosphere, the average partial pressure of oxygen is 0.21 bar and that of carbon dioxide $-3 \cdot 10^{-4}$ bar. Calculate the Gibbs energy of the above reaction under these conditions (temperature 298 K).
3. Actually, liberation of one oxygen molecule by green plants requires not less than 10 photons. What percent of the absorbed solar energy is stored in the form of Gibbs energy? This value can be considered as the efficiency of the solar energy conversion.
4. How many photons will be absorbed and how much biomass (in kg) and oxygen (in m^{3} at $25^{\circ} \mathrm{C}$ and 1 atm) will be formed:
a) in Moscow during 10 days of IChO;
b) in the MSU campus during the practical examination (5 hours)?
5. What percent of the solar energy absorbed by the total area will be converted to chemical energy:
a) in Moscow;
b) in MSU?

This is another measure of photosynthesis efficiency.
Necessary information:
Average (over 24 h) solar energy absorbed by Moscow region in summer time $-150 \mathrm{~W} \cdot \mathrm{~m}^{-2}$;

Moscow area $-1070 \mathrm{~km}^{2}$, percentage of green plants area -18%;
MSU campus area $-1.7 \mathrm{~km}^{2}$, percentage of green plants area -54%; green plants utilize $\sim 10 \%$ of the available solar energy (average wavelength is 680 nm)

Substance	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	$\mathrm{CO}_{2(\mathrm{~g})}$	$\mathrm{O}_{2(\mathrm{~g})}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}$
Standard enthalpy of combustion, $\Delta_{\mathrm{c}} H_{298}^{\circ}, \mathrm{kJ} \cdot \mathrm{mol}^{-1}$	-	-	-	-2805
Standard entropy, $S_{298}^{\circ}, \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$	70.0	213.8	205.2	209.2

Problem 3. Ammine complexes of transition metals

1. The synthesis of chromium(3+) ammine complexes usually starts from a freshly prepared in situ solution of a chromium(2+) salt. How can one prepare such a solution using metallic chrome? Specify the conditions.
2. To the solution of a chromium($2+$) salt, the solution of ammonia and a solid ammonium chloride are added. Then a stream of air is passed through the solution. The red precipitate is formed that contains $28.75 \mathrm{wt} . \%$ of N . Determine the composition of the precipitate and give the reaction equation.
3. What oxidizer can be used instead of oxygen to obtain the same product? Justify the choice.
4. What product will be formed if the experiment described above is performed under inert atmosphere without oxygen? Give the equation.
5. Explain why the ammine complexes of chromium(3+) cannot be prepared by the action of water ammonia on a solution of chromium(3+) salt.
6. Arrange the hexammine complexes of iron(2+), chromium(3+) and ruthenium(2+) in a row of increasing stability towards the acidic water solutions. Explain your choice.
7. In the case of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ the hydrolysis rate increases upon the addition of an acid. Propose a mechanism and derive the rate law.

Problem 4. Preparation of inorganic compound

The substance X has been prepared by the following procedures. Copper(II) sulfate pentahydrate (ca 10 g) was dissolved in a mixture of distilled water $\left(80 \mathrm{~cm}^{3}\right.$) and concentrated sulfuric acid (4 cm^{3}). The solution was boiled with analytical-grade metallic tin (10 g) until the solution became colorless and the deposited copper was covered with a grey coating of tin. The resultant solution was filtered and treated with an ammonia-water solution until the complete precipitation of a product. It was filtered off and washed with water until no odor of ammonia was detectable. The precipitate obtained was added to the nitric acid solution gradually in small portions, with stirring, until the solution was saturated. The suspension was boiled for 2 min , filtered into a warm, insulated flask and allowed to cool slowly. The 1.05 g of crystalline product X was obtained. Under heating X rapidly decomposes with the mass loss of 17.49%. The residue formed is a binary compound identical with the common mineral of tin. The volatile decomposition products passed over 1.00 g of anhydrous copper(II) sulfate increase its mass by 6.9\%.

1. Determine the composition of X .
2. What important instruction has been omitted in the description of the procedure?
3. Predict the structure of the cation in X taking into account that all the metal atoms in it are equivalent.
4. What particles are formed by addition of an acid or an alkali to the solution of X?
5. What happens when 1 M solution of bismuth trichloride in 1 M HCl is added to the 1 M solution of tin chloride? Calculate the equilibrium constant of the reaction. Extract the necessary data from the Latimer diagrams below.

Problem 5. Inorganic chains and rings

1. The interaction of thionyl chloride and sodium azide at $-30^{\circ} \mathrm{C}$ gives colorless crystals X , containing $36.4 \mathrm{wt} . \%$ of Cl . The crystals consist of cyclic trimers. Find the composition of X and give the reaction equation.
2. Draw two stereoisomers of X.
3. A colorless liquid Y was prepared by a reaction between X and antimony(III) fluoride. Addition of 1.00 g of Y to the excess of barium acetate aqueous solution gave the precipitate with the mass of 3.96 g . Determine the chemical formula of Y, draw its structure and write the reaction equation.
4. Y enters the substitution reactions with typical nucleophiles such as methylamine. What product will be formed in the reaction between Y and the excess of methylamine? Draw its structure.
5. Give two examples of molecules or ions which are isoelectronic to Y , draw their structures.
6. One of the substances isoelectronic to Y transforms in the presence of water traces into polymer Z .1 .00 g of Z was dissolved in water and the resulting solution was added to the excess of barium acetate solution. The precipitate with the mass of 2.91 g was formed. Determine the formula of Z and draw its structure.

Problem 6. Transition metal compounds

Procedures for the synthesis of several compounds of transition metal \mathbf{X} are given below.
"A solution of 2 g of very fine powder A in 50 mL of 28% sodium hydroxide is triturated in a small Erlenmeyer flask with 3.5 g of finely ground $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$; the flask stands in an ice bath. The trituration requires about 10 minutes, that is, until a light-blue crystalline slurry is obtained. The mixture is then transported under vacuum onto an ice-cooled glass filter, and the product washed thoroughly with 28% sodium hydroxide at $0^{\circ} \mathrm{C}$. The wet preparation is rapidly spread in a thin layer on fresh clay and stored at $0^{\circ} \mathrm{C}$ in an evacuated desiccator (no drying
agent)... The preparative procedure should be designed so as to avoid contamination by silicates or aluminates ... Product \mathbf{B}, in the form of well-crystallized sky-blue rods, remains stable at $0^{\circ} \mathrm{C}$ if kept free of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CO}_{2} \ldots$ A solution of \mathbf{B} in 50% potassium hydroxide turns grassy green upon heating or dilution; simultaneously, \mathbf{C} is precipitated.

In a pure form, salt \mathbf{D}, which is a main constituent of \mathbf{B}, is prepared according to the following procedure: $« \mathrm{NaOH}$ is entirely dehydrated by heating in silver pot at $400^{\circ} \mathrm{C}$ and mixed with \mathbf{C} in a such way that $\mathrm{Na}: \mathbf{X}$ molar ratio is $3: 1$. Mixture is heated to $800^{\circ} \mathrm{C}$ in a silver pot and kept under oxygen flow for 5 h . The formed product \mathbf{D} is rapidly cooled to room temperature». Salt \mathbf{D} is a dark-green compound inert to CO_{2}.

A solution of 30 g of KOH in 50 mL of water is prepared; 10 g of \mathbf{A} is added and the mixture is boiled in an open $250-\mathrm{mL}$ Erlenmeyer flask until a pure green solution is obtained. The water lost by evaporation is then replaced and the flask set in ice. The precipitated blackgreen crystals, which show a purplish luster, are collected on a Pyrex glass filter, washed (high suction) with some 1 M potassium hydroxide, and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$. The formed compound \mathbf{E} can be recrystallized by dissolving in dil. KOH and evaporated in vacuum».

1. Determine the element \mathbf{X} and molecular formulae of $\mathbf{A}-\mathbf{E}$ using the following data: a) sodium weight content in \mathbf{B} is 18.1%; b) the weight content of the element \mathbf{X} in $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, and \mathbf{E} is $34.8,13.3,63.2,29.3$, and 27.9% respectively.
2. Write all the reaction equations.

Problem 7. Simple equilibrium

The gaseous substances A_{2} and B_{2} were mixed in a molar ratio 2:1 in a closed vessel at a temperature T_{1}. When the equilibrium $\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g})=2 \mathrm{AB}(\mathrm{g})$ was established the number of heteronuclear molecules in a gas phase became equal to the total number of homonuclear molecules.

1. Determine the equilibrium constant K_{1} for the above reaction.
2. Find the ratio of heteronuclear to homonuclear molecules at equilibrium if the substances are mixed in a ratio $1: 1$ at the temperature T_{1} ?

The equilibrium mixture obtained from the initial mixture $\mathrm{A}_{2}: \mathrm{B}_{2}=2: 1$ was heated so that equilibrium constant became $K_{2}=K_{1} / 2$.
3. How much substance B_{2} (in percent to the initial amount) should be added to the vessel in order to keep the same equilibrium amounts of A_{2} and AB as at the temperature T_{1} ?

Consider the reaction yield $\eta=n_{\text {eq }}(\mathrm{AB}) / n_{\max }(\mathrm{AB})$ as a function of the initial molar ratio $\mathrm{A}_{2}: \mathrm{B}_{2}$ $=x: 1$ at any fixed temperature ($n_{\max }$ is the maximum amount calculated from the reaction equation). Answer the following questions qualitatively, without exact equilibrium calculations.
4. At what x the yield is extremal (minimal or maximal)?
5. What is the yield at: a) $x \rightarrow \infty$; b) $x \rightarrow 0$?
6. Draw the graph of $\eta(x)$.

Now, consider the variable ratio $\mathrm{A}_{2}: \mathrm{B}_{2}=x: 1$ at a fixed total pressure.
7. At what x the equilibrium amount of AB is maximal?

Problem 8. Copper sulfate and its hydrates

A British artist Roger Hiorns entirely filled a flat with a supersaturated copper sulfate solution. After removal of the solution, blue crystals remained on the walls, floor, and ceiling.

1. Write down the formula of these crystals.
2. Humidity inside this flat has a constant low level. Using the Clausius-Clapeyron equation, calculate the temperature at which the humidity will be 35% (of the saturated vapor pressure of water at the same temperature).

Copper sulfate is often used in laboratories as a drying agent, for example, to obtain absolute ethanol.

3. By rectification of aqueous ethanol one can increase its concentration to not more than $95.5 \mathrm{wt} . \%$. This is due to the fact that:
a) pressures of water and ethanol vapor are the same
b) mole fractions of ethanol in the gas and liquid phases are equal
c) water forms a stable complex with ethanol
d) ethanol absorbs water vapor from the air

Choose the correct answer.

For further dehydration of ethanol, anhydrous copper sulfate is added. After a while the liquid is decanted and treated with a new portion of anhydrous copper sulfate. These operations are repeated 2-3 times until copper sulfate will stop turning blue. Then ethanol is filtered and distilled.
4. What is the minimum residual water content (in mass percent) that can be achieved by using this method at room temperature?

Two chemists argued at what temperature - high or low - should the process of drying be performed in order to achieve lower residual water content.
5. Calculate the minimum residual water contents if ethanol was dried at $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

Necessary information. Vapor pressure of water over its dilute solution in ethanol is given by $p=p_{\text {sat }} \gamma x$, where $p_{\text {sat }}$ is the saturated vapor pressure of water, x is the mole fraction of water in solution, γ is the activity coefficient of water, which only slightly depends on temperature and can be assumed to be 2.45 .

	$\Delta_{\mathrm{f}} H_{298}^{\circ} /\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$p_{\text {sat }} /$ Pa at 298K
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	-2277.4	1047
$\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	-1688.7	576
$\mathrm{CuSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	-1084.4	107
CuSO_{4}	-770.4	
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.83	3200
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.83	

Problem 9. TOF and TON

TOF, turnover frequency, and TON, turnover number, are two important characteristics of a catalyst. According to the definitions given by the International Union of Pure and Applied Chemistry (IUPAC), TOF is the maximum number of molecules of a reagent that a catalyst can convert to a product per catalytic site per unit of time. TON is the number of moles (or molecules) of a reagent that a mole of catalyst (or a catalytic site) can convert before becoming inactivated. TON characterizes the stability (life time) of a catalyst, while TOF is a measure of its best efficiency. Very important is the word "maximum" in the definition of TOF!

In Russian, TOF and TON sound like names of two clowns

1. $T O N$ is a dimensionless value. What is the dimension of TOF? Derive a relation between TON and TOF.
2. Let a catalytic reaction $\mathrm{A}+\mathrm{Cat} \rightarrow \mathrm{B}$ proceed in a closed system. A and B are gases, Cat is a solid catalyst.
a) The dependence of the amount of B produced at $1 \mathrm{~cm}^{2}$ of a catalytic surface upon time is given in Fig. 1a. There are 10^{15} catalytic sites in $1 \mathrm{~cm}^{2}$ of the surface. Estimate TOF.

Figure 1a. The amount of the product N_{B} as a function of time
b) The dependences of the amount of B formed in $1 \mathrm{~cm}^{2}$ of the catalytic surface upon time are given in Fig. 1b. Different curves correspond to different initial pressures of the reagent A. These pressures (in arbitrary units) are shown by red numbers. There are 10^{15} catalytic sites in $1 \mathrm{~cm}^{2}$ of the surface. Calculate TOF for the catalyst. This catalyst worked during 40 minutes and then became inactivated. Estimate TON

Figure 1b. The amount of the product N_{B} as a function of time
3. a) TOF is often used to describe the operation of deposited catalysts. To make a deposited catalyst one has to deposit atoms of metal on the inert surface. These atoms form catalytic sites. The dependence of the rate of the catalytic reaction upon the amount of metal atoms deposited on $1 \mathrm{~cm}^{2}$ of the surface (less than one monolayer) is shown in Fig. 2a. Calculate TOF.

Figure 2a. The dependence of N_{b} on $N_{\text {Cat }}$
b) Russian scientist professor Nikolay I. Kobozev has shown that the dependence of N_{B} on $N_{\text {Cat }}$ can be much more complicated. The corresponding curve in Fig. 2b has maximum! According to the Kobozev's theory (a simplified version) a structure consisted of n deposited atoms rather than a single atom form a catalytic site. Maximum rate of catalytic reaction was observed when

$$
\frac{\text { (number of deposited atoms per surface unit) }}{(\text { number of catalytic }}=n
$$

From the data shown in Fig. 2 b calculate n, the number of atoms forming a catalytic site. TOF for the point of maximum rate in Fig. 2b is given in SI units.

Figure 2b. The dependence of N_{b} on $N_{\text {Cat }}$
4. Atoms of Au deposited on the $\mathrm{Mo}-\mathrm{TiO}_{\mathrm{x}}$ support exhibit exceptional catalytic activity for the CO oxidation

$$
\mathrm{CO}+0.5 \mathrm{O}_{2} \xrightarrow{\mathrm{Au}} \mathrm{CO}_{2}
$$

(M. S. Chen and D. W. Goodman, Science, v.306, p.254, 2004).

The maximum rate of reaction $r_{1}\left\{\mathrm{~mol} / \mathrm{cm}^{2} / \mathrm{s}\right\}$ was observed for the bilayer atomic structure presented in Fig. 3a. Red and yellow spheres are atoms of Au. For the monolayer structure (Fig. 3b), the reaction was four times slower, $r_{2}=1 / 4 r_{1}$. Calculate the ratio of TOF for the atoms of Au in the upper layer in Fig. 3a (all red spherical particles), to TOF for the monolayer in Fig. 3b (all yellow spherical particles). In the former case, every single Au atom is a catalytic site. The rate of the catalytic reaction on each yellow site in Fig.3a and Fig.3b is the same if the site is accessible to reactants and is equal to zero if the access is blocked.

a)

Figure 3. Structure of the gold catalyst deposited on the $\mathrm{Mo}-\mathrm{TiO}_{2}$ support.
a) Bilayer structure; b) monolayer structure

Problem 10. Kinetic puzzles

Propose the mechanisms for the reactions given below. Prove that your mechanisms are consistent with the experimentally observed rate laws. Use proper approximations if necessary.

1. Oxidation of bromide ion by permanganate in acidic solution

$$
2 \mathrm{MnO}_{4}^{-}+10 \mathrm{Br}^{-}+16 \mathrm{H}^{+}=2 \mathrm{Mn}^{2+}+5 \mathrm{Br}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

a) at low concentrations of Br^{-}and H^{+}

$$
r=k c\left(\mathrm{MnO}_{4}^{-}\right) c^{2}\left(\mathrm{Br}^{-}\right) c^{3}\left(\mathrm{H}^{+}\right)
$$

b) at high concentrations of Br^{-}and H^{+}

$$
r=k c\left(\mathrm{MnO}_{4}^{-}\right) c\left(\mathrm{Br}^{-}\right) c\left(\mathrm{H}^{+}\right)
$$

where c are the total concentrations of reactants. In both cases $c\left(\mathrm{MnO}_{4}^{-}\right) \ll c\left(\mathrm{Br}^{-}\right), c\left(\mathrm{H}^{+}\right)$.
2. Oxidation of benzamide by peroxydisulfate in the presence of Ag^{+}ions in water-acetic acid solution

$$
\begin{gathered}
2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}=2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+6 \mathrm{SO}_{4}{ }^{2-}+\mathrm{N}_{2}+6 \mathrm{H}^{+} \\
r=k\left[\mathrm{Ag}^{+}\right]\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]
\end{gathered}
$$

3. Oxidation of formate ion by peroxydisulfate in water solution

$$
\begin{gathered}
\mathrm{HCOO}^{-}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}=\mathrm{CO}_{2}+2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+} \\
r=k\left[\mathrm{HCOO}^{-}\right]^{1 / 2}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]
\end{gathered}
$$

4. Oxidation of azide ion by iodine in carbon disulfide solution

$$
\begin{gathered}
\mathrm{I}_{2}+2 \mathrm{~N}_{3}^{-}=3 \mathrm{~N}_{2}+2 \Gamma \\
r=k\left[\mathrm{~N}_{3}^{-}\right]
\end{gathered}
$$

5. Condensation of aldehydes with acryl esters in the presence of the base -

1,4-diazabicyclo[2.2.2]octane (DABCO) in tetrahydrofurane solution

$$
r=k[\text { aldehyde }]^{2}[\text { ester }][\mathrm{DABCO}]
$$

6. Decomposition of peroxyacids in water solution

$$
\begin{gathered}
2 \mathrm{RCO}_{3} \mathrm{H}=2 \mathrm{RCO}_{2} \mathrm{H}+\mathrm{O}_{2} \\
r=c^{2}\left(\mathrm{RCO}_{3} \mathrm{H}\right) \frac{k_{1}\left[\mathrm{H}^{+}\right]}{\left(k_{2}+\left[\mathrm{H}^{+}\right]\right)^{2}},
\end{gathered}
$$

where $c\left(\mathrm{RCO}_{3} \mathrm{H}\right)$ is the total concentration of acid. Consider the following: when the mixture of normal $\mathrm{RCO}-\mathrm{O}-\mathrm{O}-\mathrm{H}$ and isotopically labeled $\mathrm{RCO}-{ }^{18} \mathrm{O}-{ }^{18} \mathrm{O}-\mathrm{H}$ peroxyacid is used as a reactant, the main species of evolving oxygen are ${ }^{16} \mathrm{O}_{2}$ and ${ }^{18} \mathrm{O}_{2}$.

Problem 11. Black box

Substance P is synthesized from substances X and Y in a constant-flow reactor which has two feeds for reagent solutions and one outlet for a resulting solution (all solutions are liquid). The operator of the reactor can set flows of the reagents at his will. Due to intensive stirring the concentration of any substance is the same in any part of the reactor. The measured parameters of the working reactor are given in the table below.

Exp. no.	Input flow of reactant solutions, $\mathrm{m}^{3} / \mathrm{s}$		Concentrations of reactants in input flows, $\mathrm{mol} / \mathrm{m}^{3}$		Concentrations of substances in output flow, $\mathrm{mol} / \mathrm{m}^{3}$		
	X	Y	X	Y	X	Y	P
1	0.0100	0.0100	1600	2100	299	48.2	501
2	0.0200	0.0100	1600	2100	732	30.9	335
3	0.0100	0.0200	1600	2100	8.87	351	524
4	0.0200	0.0200	1600	2100	308	66.6	492

Using the data above, obtain as much information as possible about this system, e.g. the volume of the reactor, the reaction rate constant, the reaction orders, etc. If you find the reaction orders, propose a mechanism which is consistent with the discovered rate law.

Hint: because the reaction proceeds in a liquid phase, the output volumetric flow is equal to the sum of input volumetric flows.

Problem 12. Chlorination of styrenes

Addition of chlorine to styrenes is often accompanied by the formation of 2-chlorostyrene. In some solvents, the formation of solvent-incorporated products is also observed. For example, chlorination of styrene in acetic acid yields a 1-acetoxy-2-chloro derivative. The overall process can be illustrated by the following scheme:

Formation of each product obeys the same rate law: the reaction order is 1 with respect to both styrene and chlorine.

The product distribution during the chlorination of cis-1-phenylpropene

at $25^{\circ} \mathrm{C}$ is given in the Table.

product	1,2-dichloro	1-acetoxy-2-chloro	2-chlorostyrene
$\mathrm{mol} \%$	61	30	9

1. The rate constant of the overall reaction is $1.45 \cdot 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$. What are the rate constants for the formation of 1,2-dichloro and 1-acetoxy-2-chloro adducts and 2-chlorostyrene?
2. Products of this reaction can be separated by chromatography. If the achiral sorbent is used, the determined number of products in cis-1-phenylpropene + chlorine reaction is 6 . Why? What is the determined number of products if the sorbent is chiral?

Problem 13. The dense and hot ice

The pressure-temperature phase diagrams of pure substances describe the conditions at which various equilibrium phases exist. The phase diagram of water is shown below (pressure is given in the logarithmic scale).

The phase diagram of water in the semi-log scale

Using this diagram and the appropriate thermodynamic equations describing phase transitions, answer the following questions.

1. How do the boiling point of water and the melting points of ordinary ice (ice I) and ice V vary with pressure? Explain this qualitatively applying the Le Chatelier principle.
2. What would happen with water vapor if the pressure is gradually increased from 10 Pa to 10 GPa at a temperature: a) 250 K, b) 400 K , c) 700 K ?
3. The lowest possible temperature at which equilibrium liquid water still exists is achieved in the triple point between water, ice I, and ice III. The pressure in this point is 210 MPa, estimate the temperature.
4. Several forms of ice can exist in equilibrium with liquid water. Assuming that the heat of fusion is approximately the same for all forms, determine, which of the ices has the largest density. What is the melting point of this ice at a pressure of 10 GPa ?
5. The densest ice has the cubic crystal structure with two water molecules per one unit cell. The edge of the unit cell is 0.335 nm . Calculate the density of ice.
6. Estimate the enthalpy of fusion of the densest ice.

Necessary data:

densities of ordinary ice and water: 0.917 and $1.000 \mathrm{~g} / \mathrm{cm}^{3}$, respectively;
enthalpy of fusion of ordinary ice: $+6010 \mathrm{~J} / \mathrm{mol}$;
triple point «water - ice VI - ice VII»: pressure 2200 MPa , temperature 355 K .
Hint. Assume that the densities of condensed phases and the enthalpies of phase transitions do not vary with pressure and temperature.

Problem 14. Redox reactions in photosynthesis

Redox reactions are at the heart of photosynthesis. Some of them are spontaneous, others are driven by light or conjugated chemical reactions. The former are named exergonic ($\Delta G<0$), the latter - endergonic ($\Delta G>0$).

Every redox reaction consists of two conjugated processes (half-reactions) - oxidation and reduction. In photosynthesis, half-reactions are often separated not only in space, but also in time. In living organisms, this is performed by dividing redox reactions into many steps involving bioorganic substances - enzymes, cofactors, etc.

Every half-reaction is characterized by a standard redox potential E° which refers to 1 M concentration of all substances in solution and 1 bar pressure of all gaseous substances. The values of E° for several reactions involved in photosynthesis are listed in the table. Biochemists usually correct the standard potential to pH 7.0 and designate it as E°.

Photosynthesis in green plants and algae can be described by an overall equation (see Problem 2):

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

In this process water is oxidized to O_{2}, and carbon dioxide is reduced to carbohydrates. The former reaction occurs under the action of light and consists of the so called light stages, the latter is driven by exergonic chemical reactions and involves the dark stages only.

Half-reaction	Standard redox potential, $E^{\circ}(\mathrm{V})$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	1.23
$\mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{H}_{2} \mathrm{~S}$	0.14
Plastoquinone $+2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow$ Plastoquinone $\cdot \mathrm{H}_{2}$	0.52
Cytochrome $\mathrm{f}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e} \rightarrow$ Cytochrome $\mathrm{f}\left(\mathrm{Fe}^{2+}\right)$	0.365
$\mathrm{NADP}^{+}+\mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{NADP} \cdot \mathrm{H}$	-0.11
$\mathrm{P} 680^{+}+\mathrm{e} \rightarrow \mathrm{P} 680$	1.10
Chlorophyll ${ }^{+}+\mathrm{e} \rightarrow$ Chlorophyll	0.78

1. Calculate the standard biochemical redox potential for all half-reactions presented in the table above.
2. Using the answers obtained in Problem 2, determine E° and E° for the half-reaction of CO_{2} reduction to $\mathrm{CH}_{2} \mathrm{O}$.

Some bacteria convert CO_{2} into organic matter, but do not produce molecular oxygen. In these organisms, other substances are oxidized instead of water, e.g. $\mathrm{H}_{2} \mathrm{~S}$ or H_{2}.
3. Write the overall reaction equation of photosynthesis in green sulfur bacteria, which oxidize hydrogen sulfide to elementary sulfur. Separate this equation into the oxidation and reduction steps. Calculate the standard Gibbs energy of the overall reaction at 298 K. Assuming that the reaction is driven by light energy only, determine the minimum number of photons (840 nm) necessary to oxidize one molecule of hydrogen sulfide.

Light reactions in green plants lead to the oxidation of water, reduction of NADP ${ }^{+}$to NADP•H, and formation of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and $\mathrm{HPO}_{4}{ }^{2-}$ (designated as P_{i}). The latter process is described by the equation:

$$
\mathrm{ADP}+\mathrm{P}_{i}+\mathrm{H}^{+} \rightarrow \mathrm{ATP}+\mathrm{H}_{2} \mathrm{O}
$$

4. Write the overall reaction of light stages of photosynthesis in green plants.

During light stages, light energy is converted into chemical energy stored in ATP and NADH•H and wasted further in dark reactions, which are highly endoergic.
5. Calculate the Gibbs energy of the overall reaction describing light stages of photosynthesis given that the standard biochemical Gibbs energy for ATP formation is +30.5 $\mathrm{kJ} / \mathrm{mol}$.

Redox properties of molecules can change significantly after electronic excitation. The excited state can be both a stronger oxidant and a stronger reductant than the ground state.
6. Explain this effect qualitatively, considering excitation process as an electronic transition between HOMO and LUMO.

In all known photosynthetic organisms the excited states are strong reductants.
7. Derive the equation relating the redox potential of the excited state, redox potential of the ground state, and the excitation energy $E_{\text {ex }}=h \nu$. Using this equation, calculate the standard redox potential for the processes: $\mathrm{P} 680^{+}+\mathrm{e} \rightarrow \mathrm{P} 680^{*}\left(\lambda_{\text {ex }}=680 \mathrm{~nm}\right.$) and Chlorophyll ${ }^{+}+\mathrm{e} \rightarrow$ Chlorophyll ${ }^{*}\left(\lambda_{\text {ex }}=680 \mathrm{~nm}\right.$), where asterisk denotes excited state.

Problem 15. Complexation reactions in the determination of inorganic ions

Reactions of complex formation are frequently used in titrimetric methods of determination of various inorganic ions. For example, fluoride forms a stable complex with aluminum(III):

$$
6 \mathrm{~F}^{-}+\mathrm{Al}^{3+}=\mathrm{AlF}_{6}{ }^{3-}
$$

In water the complex gives a neutral solution. This process can be used for the direct titration of fluoride and indirect determinations of other species.

In the first experiment, a sample solution containing fluoride was neutralized with methyl red, solid NaCl was added to saturation, and the solution was heated to $70-80^{\circ} \mathrm{C}$. The titration was performed with $0.15 \mathrm{M} \mathrm{AlCl}_{3}$ until yellow color of the indicator turned pink.

1. What process occurred at the endpoint?
2. Why heating increased the endpoint sharpness?
3. What is the purpose of adding sodium chloride?

In the second experiment, the content of calcium was determined in the following way. An excess of NaCl together with 0.500 g NaF were added to the sample, and the resulting solution was titrated with a standard 0.1000 M solution of AlCl_{3} in the presence of methyl red. The endpoint was attained with 10.25 mL of the titrant.
4. What operation (absolutely necessary to make the determination correct!) is missing from the description of the procedure? Compare with the first experiment described above.
5. Write down the reactions taking place in this procedure.
6. Calculate the amount of calcium in the sample.

Similar principles are used in determination of silicic acid. To the neutralized colloidal solution of the sample, 0.5 g of KF was added, which was followed by introduction of $\mathrm{HCl}(10.00 \mathrm{~mL}$ of 0.0994 M solution) up to a definite excess. The resulting mixture was then titrated with a standard solution of alkali in the presence of phenyl red (5.50 mL of 0.1000 M NaOH was spent).
7. What chemical reaction(s) is the determination based on? Write silicic acid as $\mathrm{Si}(\mathrm{OH})_{4}$.
8. What indicator should be used when neutralizing the sample of silicic acid before the titration? The $\mathrm{p} K_{\mathrm{a}}$ values of indicators: methyl red, 5.1; phenol red, 8.0; thymolphthalein, 9.9.
9. Calculate the amount of silicic acid in the sample solution.

Problem 16. Malaprade reaction

Oxidation of 1-(3,4,5-trimethylphenyl)butane-2,3-diol with an excess of sodium periodate yields 3,4,5-trimethyl phenylacetaldehyde and acetaldehyde. Other α-dions, α-diols, and α-hydroxycarbonyls undergo similar type of oxidation (Malaprade reaction). However, carboxylic, ester and isolated aldehyde groups are not oxidized under these conditions.

1. Provide the structures of organic products of the reaction of periodate with glycerol and butane-1,2-diol (mixture A).
2. A weighed amount of mixture $\mathbf{A}\left(m_{\mathbf{A}}=1.64 \mathrm{~g}\right)$ was introduced into the reaction with an excess of periodate, and the formed aldehyde groups were titrated with potassium permanganate in an acidic medium, which required $n_{M n}=0.14$ mol equivalents of $\mathrm{KMnO}_{4}\left(1 / 5 \mathrm{KMnO}_{4}\right)$. Write down the reactions of permanganate in an acidic medium with the products of mixture \mathbf{A} oxidation with periodate. Determine the molar composition of mixture A.
3. A weighed amount of an individual compound \mathbf{B} containing an amino group ($m_{\mathbf{B}}=105.0 \mathrm{mg}$) was dissolved in water and acidified. Then an excess of NaIO_{4} was added. When the reaction was completed, $1.0 \cdot 10^{-3} \mathrm{~mol}$ of carboxylic groups (as part of carboxylic acids) and $1.0 \cdot 10^{-3}$ mol of ammonium ions were found in the mixture, while $8.0 \cdot 10^{-3}$ mol equivalents of $\mathrm{MnO}_{4}{ }^{-}$ were spent for the permanganatometric titration of the products. Determine possible structures of \mathbf{B}, if it is neither ether nor an ester. Propose a scheme for \mathbf{B} oxidation with periodate using one of the suggested structures as an example.

Problem 17. Analysis of Chrome Green

Chrome Green pigment is obtained by mixing lead(II) chromate and iron(II) hexacyanoferrate(III). A titrimetric method of Chrome Green analysis involves the following steps: an accurate weight of the pigment sample is treated with sodium carbonate solution while heating and then filtered.

1. Write down the reactions occurring on treatment of Chrome Green with carbonate. What is left on the filter?

To determine chromate, the iodometric method is used. An excess of KI is added to the acidified solution, and the released iodine is titrated with the standardized $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution in the presence of starch.
2. Write down the reactions occurring when chromate is determined by this method. Why is it not recommended to titrate dichromate directly with thiosulfate?
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution should be standardized before using it as the titrant. The standardization is carried out against a standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution in the same way as described above for the determination of chromate. If the acidity of the solution significantly exceeds 0.4 M , the reaction between dichromate and iodide induces the oxidation of iodide with atmospheric oxygen.
3. Propose a scheme for such an induced process. How would it affect the results of thiosulfate determination?

One aliquot of the filtered sample of Chrome Green solution (10.00 mL out of the total volume of 50.0 mL) was used for the iodometric determination of chromate following the procedure described above (5.01 mL of $0.0485 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was spent).
4. Calculate the amount of lead chromate in the sample ($\mathrm{mg} \mathrm{PbCrO}_{4}$).

A reaction of chromium(VI) with $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ might occur upon adding the acid.
5. Estimate whether any analytical errors might be caused by this side reaction.

Another aliquot of the filtered solution (10.00 mL out of the total volume of 50.0 mL) was mixed with 10.00 mL of 0.0300 M solution of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$, acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ to obtain $\left[\mathrm{H}^{+}\right] \cong 1 \mathrm{M}$ and titrated by $0.00500 \mathrm{M} \mathrm{KMnO}_{4}$ (2.85 mL was spent).
6. What reaction did occur upon acidification of the sample? Write down the reaction of titration with permanganate.
7. Calculate the amount of Turnbull's Blue in the sample $\left(\mathrm{mg} \mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}\right)$.

Problem 18. Chemistry of phenol

Phenol is a valuable industrial commodity for the synthesis of various materials and compounds with useful properties. Therefore, its annual production totals several million tons. The classical industrial method of phenol production is a two-stage process developed by the Soviet chemist R. Udris in 1942. First, the mixture of benzene \mathbf{A} and propene \mathbf{B} is compressed under heating in the presence of an acid as a catalyst. Interaction of equal amounts of \mathbf{A} and \mathbf{B} leads to compound C which is then oxidized with air followed by acidification, which finally results in two products: phenol and compound \mathbf{D} also widely used in industry.

High potential of phenol in the synthesis of polymers, drugs, and dyes can be illustrated by the hereunder examples.

The reaction of phenol with \mathbf{D} in the presence of an acid gives bisphenol A, which was for the first time synthesized by the Russian chemist A. Dianin in 1891. The treatment of bisphenol A with NaOH leads to \mathbf{E}, which reacts with phosgene affording polycarbonate with a monomeric unit \mathbf{F}.

The treatment of phenol with diluted nitric acid results in isomeric compounds \mathbf{G} and \mathbf{H}, which can be separated by steam distillation. The molecule of \mathbf{G} has two planes of symmetry (that of the molecule and an orthogonal one), while the plane of the molecule is the only element of symmetry for \mathbf{H}. Starting with \mathbf{G}, one can obtain paracetamol \mathbf{J} via a two-stage process.

Aspirin M can be obtained from phenol in three steps. First, phenol is treated with NaOH and CO_{2} under heating and high pressure. This reaction gives compound \mathbf{K}, which has only one element of symmetry (plane of the molecule). Two equivalents of an acid are required for acidification of \mathbf{K} to form compound \mathbf{L}. Further acetylation of \mathbf{L} affords aspirin \mathbf{M}.

Moreover, \mathbf{L} is a precursor of a dye Aluminon used for quantitative determination of aluminum and some other metals. Reaction of two equivalents of \mathbf{L} with formaldehyde under acidic conditions affords \mathbf{N}. Addition of one more equivalent of \mathbf{L} to \mathbf{N} in the presence of NaNO_{2} and sulfuric acid yields \mathbf{O}, which finally gives Aluminon upon treatment with ammonia.

1. Write down the structural formulae of A-E and G-O.
2. Write down the structure of monomeric unit \mathbf{F}.

Problem 19. Chrysanthemic acid

Insecticides are substances preventing us from insects by destroying, repelling or mitigating them. The use of insecticides is one of the major factors behind the increase in agricultural productivity in the 20th century. Insecticides are also used in medicine, industry and housekeeping. Natural insecticides, such as nicotine and esters of chrysanthemic acid, are produced in plants. On the contrary to nicotine, esters of chrysanthemic acid are non-toxic to man and other mammals.

Many methods for chrysanthemic acid synthesis have been described to date. Two of these are presented in the hereunder scheme (the first step of both methods is the reaction discovered in 1905 by the Russian chemist A. Favorskii).

1. Write down the structural formulae of all compounds given in this scheme. Note that \mathbf{A} is a gaseous hydrocarbon with the density lower than that of air, \mathbf{G} is a natural alcohol, \mathbf{F}^{\prime} is a mixture of isomers, whereas \mathbf{F} ' is formed only in trans-form.

Methods given in the scheme provide chrysanthemic acid as a mixture of stereoisomers, while natural chrysanthemic acid has (1R,3R)-configuration.
2. Write down the structural formulae of natural chrysanthemic acid.

Tetramethrin is a key substance of many household insecticides. This compound belonging to pyrethroids of the $1^{\text {st }}$ generation can be obtained by esterification of chrysanthemic acid with alcohol \mathbf{X}. Synthesis of the latter is given below.

3. Write down the structural formulae of $\mathbf{O}-\mathbf{R}$, and \mathbf{X}. Note that the transformation of \mathbf{O} into \mathbf{P} is an isomerization with retention of the carbocyclic skeleton leading to the most stable isomer.

Synthesis of Tetramethrin is completed by the reaction of \mathbf{X} with chrysanthemic acid or some of its derivatives.
4. Which of the following acid derivatives could easily form esters in reaction with alcohols?
a) anhydride; b) methyl ester; c) amide; d) hydrazide

The $1^{\text {st }}$ generation pyrethroids are photochemically unstable, which stimulated development of new types of pyrethroids (of the $2^{\text {nd }}$ and $3^{\text {rd }}$ generations). In particular, substitution of the $\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ fragment in chrysanthemic acid by the $\mathrm{CH}=\mathrm{CHal}_{2}$ moiety increases photostability of pyrethroids. Thus, three compounds (cis-permethrin, \mathbf{Y}, cypermethrin, \mathbf{Z}, and deltamethrin, \mathbf{W}) were prepared from cis-2-(2,2-dihalovinyl)-3,3-dimethylcyclopropane-1-carboxylic acid and 3 -phenoxybenzaldehyde according to the scheme below.

5. Write down the structural formulae of $\mathbf{S}, \mathbf{T}, \mathbf{W}, \mathbf{Y}, \mathbf{Z}$. Note that the halide content in \mathbf{W}, \mathbf{Y}, \mathbf{Z} is $31.6,18.1$, and 17.0%, respectively.

Problem 20. Heterocycles

Chemists are fascinated with pyrroles and their benzannulated derivatives, indoles, for more than 150 years owing to the high diversity of their transformations and a broad spectrum of bioactivity. Fischer synthesis starting from arylhydrazines and ketones is the classical method providing for various indoles. For a long time, the mechanism of this reaction was under discussion, and three pathways given below were considered as alternatives.

1. Write down the mechanism of enhydrazine \mathbf{A} formation.

In 1970s, the Russian scientist I. Grandberg investigated a reaction of N, N-diarylhydrazines $\mathrm{Ar}^{1} \mathrm{Ar}^{2} \mathrm{NNH}_{2}$ with ketones and discovered that a mixture of two indoles in a ratio of $c a .1: 1$ is formed, the result being independent of the substituent nature (donor or acceptor) in the aryl groups. These experiments proved unambiguously the mechanism of the Fischer indole synthesis.
2. Point out the mechanism (a,b or \boldsymbol{c}) proved by I. Grandberg.

The Paal-Knorr reaction of amines with 1,4-diketones is the classical synthesis of a pyrrole core. Still, some amines can form the pyrrole ring in the reaction with 1,3-diketones. Thus, ethyl ester of glycine (aminoacetic acid) provides pyrrole derivatives \mathbf{B} and \mathbf{C} in an acid-catalyzed reaction with hexane-2,5-dione and a base-catalyzed reaction with pentane-2,4-dione, respectively.
3. Write down the structural formulae of \mathbf{B} and \mathbf{C}.

The Russian chemist B. Trofimov with collaborators developed a method of pyrrole synthesis from oximes and alkynes. Thus, treatment of a mixture of acetone oxime and propyne with KOH in DMSO under heating produced pyrroles \mathbf{D} and \mathbf{E}.

4. Write down the structural formulae of D-F. Note that the carbon content in \mathbf{F} is 28.7%.

Use of alkynes with electron-withdrawing groups allows applying milder reaction conditions. Thus, acetophenone oxime reacts with ethyl propynoate affording a single product \mathbf{G} upon treatment with 4-(dimethylamino)pyridine in toluene under microwave irradiation.
5. Write down the structural formula of \mathbf{G}.

Pyrrole ring is a key moiety of many bioactive natural compounds including porphobilinogen, an intermediate in biosynthesis of heme and chlorophyll. This compound was synthesized in laboratory according to the hereunder scheme.

6. Decipher the scheme and write down structural formulae of $\mathbf{H}-\mathbf{N}$.

Problem 21. Cyclobutanes

In 1894 Emil Fischer proposed the "lock and key" principle for interaction between a drug and its molecular target. The interaction is efficient only in case of substances having specific complementary geometry that fit exactly to the molecular target. According to this model, a potential drug should accept a definite conformation with the appropriately located functional groups. One of ways to achieve this goal is restriction of conformational mobility of molecules. Recently Ukrainian chemists reported synthesis of conformationally rigid diamines \mathbf{I} and \mathbf{J} according to the scheme below.

The starting compound \mathbf{A} was synthesized for the first time in 1958 by J.D. Roberts and F.F. Caserio (authors of the classical textbook on organic chemistry), according to the scheme:

$$
\mathbf{K} \xrightarrow[\mathrm{t}]{\mathrm{CN}_{\mathrm{CN}}} \mathbf{L} \xrightarrow[\text { 2) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {1) } \mathrm{KOH}, \mathrm{t}} \quad \mathbf{m} \xrightarrow[\mathrm{NaIO}_{4}]{\mathrm{OsO}_{4}} \underset{\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}}{A}
$$

Another method for \mathbf{A} synthesis is given below:

1. Decipher the schemes. Write down the structural formulae of compounds A-P accounting for the following:
a) \mathbf{C} and \mathbf{D} are isomers; \mathbf{J} has two planes of symmetry;
b) hydrocarbon \mathbf{K} has a single type of hydrogen atoms; $\omega_{\mathrm{H}}=10.0 \%$;
c) \mathbf{N} and \mathbf{O} are isomers; $\omega_{\mathrm{H}}=3.8 \%$; $\omega_{\mathrm{C}}=22.9 \%$.

Starting from \mathbf{P}, a very interesting compound \mathbf{W} was synthesized:

$$
\begin{aligned}
& \mathbf{P} \xrightarrow[\text { 2) } \mathrm{H}_{2} \mathrm{O}]{\text { 1) } \mathrm{LiAlH}_{4}} \mathbf{Q} \xrightarrow[\text { Py }]{\mathrm{TsCl}} \mathbf{R} \xrightarrow{\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}} \mathbf{s} \xrightarrow[t]{20 \% \mathrm{HCl}} \\
& \longrightarrow \quad \mathbf{T} \xrightarrow[\text { 3) } \Delta, t-\mathrm{BuOH}]{\text { 1) } \left.\mathrm{SOCl}_{2} ; 2\right) \mathrm{NaN}_{3}} \mathbf{~} \xrightarrow{\mathrm{NH}_{2} \mathrm{OH}} \mathbf{v} \xrightarrow[\substack{\text { 2) } \mathrm{CF}_{3} \mathrm{CO} 2 \mathrm{H} \\
\text { 3) } \mathrm{NaHCO}^{2}}]{\text { 1) } \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}} \mathbf{w}
\end{aligned}
$$

2. Write down the structural formulae of $\mathbf{Q}-\mathbf{W}$.
3. Can \mathbf{W} be resolved into enantiomers?

Problem 22. Introduction to translation

Biosynthesis of proteins, also known as translation, proceeds at ribosomes found to be large multi-component supramolecular complexes composed of ribosomal RNA and proteins. The first stage of translation (referred to as initiation) includes assembling of large and small ribosomal subparticles together with messenger RNA (mRNA) as it is shown in Fig. 1.

Figure 1. General scheme of protein translation in a living cell (http://www.biology4kids.com/files/cell_ribos.html)

1. Any amino acid is encoded by a codon, a sequence of three nucleotide residues in mRNA. How many codons do exist, if only four main ribonucleotides are taken into consideration? Do all codons encode amino acids?
2. Is it possible to derive a unique ribonucleotide sequence for a protein with a known amino acid sequence?

Amino acids are delivered to a functioning ribosome by a specific small RNA (referred to as transfer RNA, or tRNA). Each tRNA corresponds to a sole codon.
3. How many different tRNAs can deliver an individual amino acid to ribosome? Consider leucine and methionine.

To be delivered to a ribosome, an amino acid should be covalently bound to its tRNA. This reaction requires energy provided by ATP hydrolysis and is catalyzed by aminoacyl-tRNA synthetase (aaRS), an enzyme specific for a particular amino acid. The side chain of the attached amino acid is not involved in covalent linkage with the tRNA.
4. Write down equation(s) of the reaction(s) catalyzed by aaRS during the process of amino acid binding to tRNA. Indicate groups of the tRNA and amino acid involved in the linkage formation.
5. Using the table of genetic code write down amino acid sequences for the oligopeptides:
a) encoded by the hereunder mRNA
b) encoded by the hereunder mRNA with the first and the last C replaced by U
c) encoded by the hereunder mRNA with the first G replaced by C
d) encoded by the hereunder mRNA with the last but one G replaced by U

5'AUGGAUCACGCCAUCAAUGUUGUCGGUUGGAGUGUGGAUACGUUGGAUGAUGG

 AACUGAAGCU3'.6. Write down the nucleotide sequence of mRNA encoding the peptide Met-Asp-Val-Asn-His-Pro-Glu-Tyr-Gly-Lys. Use A, U, G, and C for unambiguously decided positions, N1/N2 if any of two nucleotides is possible at a particular position, and \mathbf{N} if any of four nucleotides is possible at a particular position ($\mathbf{N} 1$ and $\mathbf{N} 2$ can be any of A, U, G, and C).
7. Molecular weight of an E.coli protein is of about 51 kDa . Estimate the length of encoding mRNA (in nm, rounding to integer). Take the average molecular weight of an amino acid as 110 $\mathrm{g} / \mathrm{mol}$, and the average length of a ribonucleotide residue as $0,34 \mathrm{~nm}$. How long will it take a cell to synthesize this protein if the ribosome reads 20 ribonucleotide residues per second?

A group of researches accomplished protein synthesis in a cell-free system (in vitro). All required components (ribosomes, tRNAs, ATP, GTP, salts, amino acids, aaRS, translation factors, etc.) were added to the system. A synthetic polyribonucleotide consisting of only A and C in the ration of $1: 5$ was used as the messenger RNA (nucleotide residues are arranged randomly in the mRNA).
8. Determine the amino acid composition of the synthesized protein. What are the ratios between the amino acid residues in the protein?

The 3D structure of a tRNA is depicted in Fig. 2. There are two key regions: the CCA3’ terminus which is linked to the amino acid, and the anticodon exactly matching to the mRNA codon.

Fig. 2. The 3D structure of a tRNA
9. A mutant tRNA ${ }^{\mathrm{Tyr}}$ with anticodon specific to Ser codon (instead of Tyr codon) was introduced into the synthetic system described in i.8. What would be the resultant protein?

A biochemist specializing in protein chemistry described his discovery of a new mutant protein with Glu to His mutation to a molecular geneticist. The latter was very much surprised and advised the biochemist to do a double check.
10. Why did the geneticist express a doubt concerning the possibility of the above mutation? What mutation is more probable?

Problem 23. Intriguing translation

Borrow trouble for yourself, if that's your nature, but don't lend it to your neighbours

Joseph Rudyard Kipling
An acyclic oligopeptide \mathbf{X} is composed of residues of two proteinogenic (canonical, encoded) amino acids \mathbf{A} and \mathbf{B}. The prevalent ionic form of \mathbf{X} in aqueous solution at pH 4.7 consists of 25 atoms.

1. Determine the number of amino acid residues in \mathbf{X}. Use the information provided by the Wikipedia at either http://en.wikipedia.org/wiki/Proteinogenic_amino_acid or http://en.wikipedia.org/wiki/Amino_acid (hint: pay attention to the given $\mathrm{p} K_{\mathrm{a}}$ values of amino acid side groups).
2. How many individual peptides are in agreement with the above information?

Combustion of 1.000 g of \mathbf{X} in an excess of oxygen followed by absorption of the reaction products with an excess of calcium hydroxide solution leads to formation of 3.273 g of precipitate. Quantitative transfer of the filtered precipitate into 10% aqueous hydrochloric acid results in liberation of 0.496 L of gas (STP - standard temperature and pressure).
3. Draw the stereochemical structure of \mathbf{X} supporting it by appropriate calculations. Specify the absolute configuration (R or S) of chiral centers in \mathbf{X}.
4. Explain why \mathbf{A}, in contrast to \mathbf{B}, is not found as a free amino acid in living cells.

Addition of amino acid \mathbf{A} to a growing polypeptide chain during translation is possible only in case of a certain motive (Element \mathbf{X}) in the secondary structure of messenger ribonucleic acid (mRNA). Element \mathbf{X} is a hairpin with two loops composed of approximately 60 nucleotides. Three such motives determining synthesis of glutathione peroxidase fragments in different organisms are schematically given hereunder (left to right: Poxviridae host cell infected with fowlpox, Poxviridae host cell infected with canarypox virus, and human cell).

Each square box in the pictures stands for a nucleotide residue with one of the canonical nitrogen bases: adenine (A), guanine (G), uracil (U) or cytosine (C). Hydrogen bonds are formed according to the complementary principle (Chargaff's rule) between the bases with boxes opposite to each other. The only exceptions are:

- Nucleotides with boxes filled grey: pairs are formed by either two pyrimidines or these are unusual pairs A-C or G-U
- Nucleotides with boxes filled black: pairs are formed by two purines
- Nucleotides located in the middle of the upper loops and visually close to each other due to way of the hairpins representation.

The mRNA triplet (codon) identical for all three sequences is circled.

Fragments of mRNA sequences belonging to different organisms are given in the hereunder
Table in an arbitrary order. These sequences contain Elements X depicted in the above images.

№	Nucleotide sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$
1	...GCUGCUAAUGAAGAAAUGACUAUAAAUAGAUGGGUCAUGCCUGACACGCAAAG...
2	..AGGCACUCAUGACGGCCUGCCUGCAAACCUGCUGGUGGGGCAGACCCGAAAAUCCCAC...
3	...GACGAGAUAAUGAAGAAAUGGUCCUAAACAGAUGGGUCGUUCCUGACACCCCGG...

5. Fill the boxes in the images of all three structures, using one-letter symbols for nucleotides, and correlate the images with fragments of mRNA. Note that the sequences in the Table are bit longer than fragments corresponding to Elements X.
6. Draw the unusual base pair guanine-uracil found in the hairpin structure, and show the hydrogen bonds.
7. What is the role of the encircled codon in the case of poxoviruses (but not humans!)? Note that the subsequent triplet determines inclusion of the next amino acid into the growing polypeptide chain. Choose only one answer.

№	Answer
1	It interacts with transport RNA of amino acid A
2	It determines termination of biosynthesis of the viral polypeptides on ribosome
3	It forms a "foot" of the lower loop thus playing a purely structural role
4	It is unable to interact with aminoacyl-tRNA. Thus the ribosome ignores it continuing addition of amino acids from the next codon
5	It is an ordinary codon without any special features

RNA-containing viruses are characterized by frequent mutations allowing better adaption to changing environmental conditions.
8. For each of viral sequences, propose a mutation (single nucleotide substitution by another one), which presumably would not affect either translation or glutathione peroxidase functioning. Use the table of codons at http://en.wikipedia.org/wiki/Genetic_code.

Problem 24. Unusual amino acids: search for new properties

If you want it to be done, do yourself

 Mr. Zorg, "Fifth Element"Search for natural compounds with anti-cancer potential is one of rapidly developing branches of modern science. Results of a recent research will be considered below.
\mathbf{X} is a potential antineoplastic drug. In order to study mechanisms of its formation from different precursors, a mixture of three synthesized in the laboratory compounds \mathbf{A}, \mathbf{B} and \mathbf{C} was administered orally to rats at doses of $63.5,58.5$ and $39.6 \mu \mathrm{~g}$ per kg of body weight, respectively.
\mathbf{A} and \mathbf{B} are stable α-amino acids found in nature. Residue of one of these compounds is detected in proteins. Information about \mathbf{A}, \mathbf{B}, and \mathbf{C} is summed up in the table below:

Compound	Content, mass \%			Number of elements forming the compound	Number of chiral atoms
	C	H	O		1
\mathbf{A}	31.09	5.74	16.57	5	1
\mathbf{B}	26.67	5.04	17.77	4	0
\mathbf{C}	9.24	3.10	Is found in \mathbf{C}	5	

It is also known that:

- A, B and \mathbf{C} have molecular weight of less than $250 \mathrm{~g} / \mathrm{mole}$ each;
- A, B and C contain C, H,N and O (not obligatory all these elements) in usual (native) isotopic ratios;
- The number of nitrogen atoms obeys the following inequality: $N_{\text {nitrogen }}(\mathbf{B}) \geq N_{\text {nitrogen }}(\mathbf{A})$.

1. Considering all possibilities for the number of nitrogen atoms in \mathbf{A} and \mathbf{B}, determine their elemental composition.
2. If you failed to get the answer in i. 1, take advantage of an additional hint: \mathbf{A} and \mathbf{B} contain the same number of nitrogen atoms.
3. Draw all possible structures of \mathbf{B} (without stereochemical details).
4. If the provided data is sufficient, indicate the absolute configuration (R or S) at the stereocenters of the structures in i.3.

During the experiment, samples of air exhaled by test animals were collected at definite time intervals. The following substances (in addition to other metabolites) were detected:

Detected gaseous compound	Density rel. H_{2}	Precursor compound
A1	53	A
B1	53.5	B
C1	56	C

5. Draw the structures of A1 and B1, if it is known that A1 has only identical atoms of hydrogen and does not contain π-bonds.

Formation of $\mathbf{C 1}$ from \mathbf{C} in rats proceeds via two enzymatic stages: reduction of \mathbf{C} giving intermediate \mathbf{X} is followed by its transformation into $\mathbf{C 1}$.
6. Determine the structures of \mathbf{C}, \mathbf{C}, and antineoplastic metabolite \mathbf{X}, if it is known that \mathbf{C} does not contain $\mathrm{C}-\mathrm{O}$ bonds.

Formation of $\mathbf{A 1}$ and $\mathbf{B 1}$ from \mathbf{A} and \mathbf{B}, respectively, also occurs in two steps, the latter being catalyzed by the same enzyme as was involved in transformation of \mathbf{X} into \mathbf{C}.
7. Determine the structures of \mathbf{A} and \mathbf{B}.
8. Comment on the choice of \mathbf{A}, \mathbf{B}, and \mathbf{C} masses in the mixture administered to rats.

One of the amino acids discussed above can be found in proteins. It is also know that this amino acid does not have its own transfer RNA (tRNA).
9. Decide the residue of which amino acid (\mathbf{A} or \mathbf{B}) can be found in proteins. From the variants listed below, choose one explaining how it appears in proteins.

№	Variant
1	A, because it is formed as a result of the one-step post-translational modification of a canonical amino acid
2	A, because it is structurally similar to a canonical amino acid, which sometimes leads to false insertion during translation
3	A, because it can be involved in protein biosynthesis at ribosomes without pre-formation of aminoacyl-tRNA
4	B, because it is structurally similar to a canonical amino acid, which sometimes leads to false insertion during translation
5	B, because it can be involved in protein biosynthesis at ribosomes without pre-formation of aminoacyl-tRNA

Problem 25. Specific features of Clostridium metabolism

Imagination is more important than knowledge

Albert Einstein
As first shown in 1993, a type of acidogenic (producing acid) Clostridium bacteria is capable of glucose fermentation at certain conditions according to the hereunder total reaction equation:

$$
\begin{equation*}
5 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+k \mathrm{H}_{2} \mathrm{O} \rightarrow l \mathbf{A}+m \mathbf{B}+n \mathbf{C}+10 \mathbf{D} \tag{1}
\end{equation*}
$$

where k, l, m, n are integers.
\mathbf{A} and \mathbf{B} are unbranched saturated carboxylic acids, \mathbf{C} and \mathbf{D} are gases (at STP) free of C-H bonds. The obtained mixture of \mathbf{C} and \mathbf{D} has the density rel. H_{2} of 10.55.

1. Draw the structural formulae of \mathbf{C} and \mathbf{D}.
2. Mathematically prove that each of \mathbf{A} and \mathbf{B} is a monocarboxylic acid.
3. Choose the appropriate $\mathrm{l}: \mathrm{m}$ ratio for the reaction (1) from the variants given below.

Variant	$l: m$ ratios
a.	$1: 1$
b.	$1: 2$
c.	$1: 3$
d.	$1: 4$
e.	$1: 5$
f.	Other ratio

Note that the fermentation products contain less carbon atoms than the starting compound.

4. Draw all possible variants of \mathbf{A} and \mathbf{B}.

Clostridium is capable of utilizing \mathbf{D} in an unusual synthesis of acetyl-CoA (coenzyme A). This synthetic process is conjugated with cyclic metabolism of a vitamin derivative \mathbf{Z} according to the following scheme:

$\mathbf{Z}_{\text {start }}$ and $\mathbf{Z}_{\text {finish }}$ contain the same number of nitrogen atoms. Molar fractions (χ) of nitrogen and hydrogen are given below:

Compound	$\chi(\mathrm{H}), \%$	$\chi(\mathrm{~N}), \%$
$\mathbf{Z}_{\text {start }}$	43.103	12.069
$\mathbf{Z}_{\text {finish }}$	41.818	12.727

5. Determine the total number of atoms in $\mathbf{Z}_{\text {start }}$ and $\mathbf{Z}_{\text {finish }}$, if it is known that these are less than 100 for both compounds.

Back in 1952, it was shown that cultivation of Clostridium thermoaceticum under anaerobic conditions in the presence of only non-radioactive \mathbf{D} isotopologues (compounds D1 and D2) gives rise to formation of acetyl-CoA isotopologues with the equal mass fraction of N (12.08 \%). Moreover, no traces of unlabeled acetyl-CoA ($M=809.6 \mathrm{~g} / \mathrm{mol}$) were detected in the experiment.
6. Work out the formulae of $\mathbf{D} 1, \mathbf{D} 2$, and \mathbf{E}, if all the coefficients in the reaction equation of acetyl-CoA formation are equal to 1 .

Study of Clostridium transcriptome revealed a short (~ 100 nucleotides) coding sequence composed of only guanine (G) and cytosine (C) present in equimolar quantities and randomly positioned.
7. What is the ratio between the amino acid residues in the olygopeptide encoded by the sequence? Choose only one correct variant.

Variant	Ratio	Variant	Ratio
1	$1: 1: 2$	4	$1: 1: 4: 2$
2	$1: 1: 3$	5	$1: 2: 2: 2: 1$
3	$1: 1: 1: 1$	6	Data insufficient to choose a sole variant

One of the proteins synthesized by Clostridium consists of 238 amino acid residues. Positions 230 to 234 (from N-terminus) were identified as Trp-His-Met-Glu-Tyr. A mutation affecting only one nucleotide occurred in the gene region corresponding to the above peptide fragment. As a result, the length of biosynthesized protein decreased up to 234 amino acid residues, whereas the sequence in positions 230 to 234 changed to Trp-Thr-Tyr-Gly-Val.
8. Write down the only possible original (before mutation) mRNA sequence encoding the above peptide fragment.

Problem 26. Analysis of complex formation

Antibodies $\mathbf{A b}$ are proteins capable of selective binding with specific antigen $\mathbf{A g}$ species (usually protein or polysaccharide), thus forming the so-called immune complex $\mathbf{A b} \mathbf{*}^{\mathbf{A g}}$. The binding constant of the process K_{b} is very high (around 10^{9}), however, binding is reversible.

$$
\mathbf{A b}+\mathbf{A g} \rightleftarrows \mathbf{A b} * \mathbf{A g}
$$

Despite of seeming complexity of biological objects, their functional features can often be analyzed by simply treating $\mathbf{A g}$ and $\mathbf{A b}$ as a ligand and complexing agent, respectively, in a common reaction of the $\mathbf{A b} \mathbf{*} \mathbf{A g}$ complex formation. Moreover, specific binding of proteins with other ligands (enzyme inhibitors, lipids, methal ions, etc.) can be analyzed by using the same approach.

1. Express K_{b} as a function of equilibrium concentrations [Ab], [Ag], [Ab*Ag] (consider that $1: 1 \mathrm{Ab} * \mathrm{Ag}$ complex is formed).

Parameter $\overline{\mathbf{n}}$ is an average number of Ag molecules bound to one Ab molecule. In the case of only one binding site in $\mathrm{Ab}, \mathbf{0} \leq \overline{\mathbf{n}} \leq \mathbf{1}$.
2. Express $\overline{\mathbf{n}}$ as a function of K_{b} and equilibrium concentration of the unbound ligand [Ag] for this simplest case of a single binding site in Ab molecule. Assume that K_{b} remains unchanged in course of the binding process. Draw schematically the $\overline{\mathbf{n}}$ vs [Ag] plot ("titration" curve of Ab with Ag).

For easier and reliable analysis, the titration curve may be linearized in special coordinates.

b) Express $\left[\mathbf{A b} \mathbf{}^{*} \mathbf{A g}\right] /[\mathbf{A g}]$ as a function of $[\mathbf{A b} * \mathbf{A g}]$.
c) One of the data points in the Experimental data A set has been determined incorrectly.

Encircle this outlier in the plot.
d) Suggest a way for K_{b} determination from the plot analysis.
e) In the same plot, draw schematically a curve for ADP binding with another ligand, if the latter is characterized by a 10 times higher K_{b} value (as compared to that for $\mathbf{A D P}{ }^{*} \mathbf{M g}^{\mathbf{2 +}}$ complex formation).

Experimental data set A

ADP protein binds with Mg^{2+} in 1:1 complex (single binding site, one Mg^{2+} per site). K_{b} is not dependent on \bar{n}. ADP total concentration is kept constant at $80 \mu \mathrm{M}$.

Mg^{2+} total concentration, $\mu \mathrm{M}$	Bound Mg^{2+} concentration, $\mu \mathrm{M}$
20.0	11.6
50.0	26.0
100	42.7
150	52.8
200	59.0
300	61.1
400	69.5

Some antibodies can only bind a single antigen molecule, whereas others bind two (or even more) antigen molecules. Maximal number of $\mathbf{A g}$ molecules that can be bound to a single $\mathbf{A b}$ is referred to as the $\mathbf{A b}$ valence.
4. a) Derive an expression to be used for determination of the $\mathbf{A b}$ valence from the plot analysis in coordinates $\left[\mathbf{A b} \mathbf{b}^{*} \mathbf{A g}\right] /[\mathbf{A g}] v s\left[\mathbf{A b}{ }^{*} \mathbf{A g}\right]$.
b) Plot the Experimental data B using the above coordinates. Determine the enzyme valence.

Experimental data set B

An enzyme binds with its inhibitor \mathbf{I}, the binding to different sites is independent, and K_{b} is the same. Enzyme total concentration is kept constant at $11 \mu \mathrm{M}$.

\mathbf{I} total concentration, $\mu \mathrm{M}$	Free (unbound) I concentration, $\mu \mathrm{M}$
5.2	2.3
10.4	4.95
15.6	7.95
20.8	11.3
31.2	18.9
41.6	27.4
62.4	45.8

Ab specimen often contains admixtures of other proteins not capable of binding with Ag. Thus, a "known" total Ab concentration includes both functionally active antibodies and unreactive proteins.
5. a) Suggest a way for determination of the actual $\mathbf{A b}$ concentration from the data analysis in coordinates [Ab*Ag]/[Ag]vs [Ab*Ag].
b) Does the ADP specimen contain any unreactive admixtures (Experimental data A)?
c) Why is it impossible to conclude unambiguously about the presence of unreactive admixtures in the enzyme specimen (Experimental data B)? What helpful (to determine the admixtures concentration) data is missing?

Problem 27. Inorganic polymers: polyphosphates and polysilicones

There are few elements capable of forming elementary substances with long-chain molecules.

1. Give 3 examples of elements, atoms of which can form elementary substance with linear (or close to linear) chain molecules (longer than 10 atoms).

Such long-chain elementary substances are not very common. However, many elements can form heteroatomic long-chain molecules. High-polymeric inorganic polyphosphates can serve as an example. These compounds are linear polymers composed of orthophosphate residues. The condensation reaction is one of the ways of such polymer formation.
2. Write down the condensation reaction giving diphosphate from the orthophosphate precursor.
3. In general, condensation reactions are reversible. Write down the equilibrium constant of the condensation reaction between phosphate oligomers, provided that polyphosphate species of different polymerization degree (including monomers) are not kinetically distinguishable. Assume that each (poly)phosphate ion present in the system bears only a single bound proton (i.e. may be represented as $\mathrm{P}_{i} \mathrm{O}_{3 i} \mathrm{OH}^{(i+1)-}$).
4. Of the synthetic routes to long-chain polyphosphoric acids listed below, choose the most and the least energetically favorable. Take into account that the P-O bond is macroergic (for instance, ΔG° of adenosine triphosphate hydrolysis into adenosine diphosphate and inorganic phosphate is of about $-31 \mathrm{~kJ} / \mathrm{mol}$).
i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ condensation in 1 M aqueous solution at room temperature.
ii) $\mathrm{H}_{3} \mathrm{PO}_{4}$ condensation in concentrated solution at room temperature.
iii) $\mathrm{H}_{3} \mathrm{PO}_{4}$ condensation with dichlorophosphoric acid $\mathrm{HPO}_{2} \mathrm{Cl}_{2}$ at elevated temperature.

In many cases, the equilibrium constant of a condensation reaction is too low to provide for highmolecular weight products. Other condensation reactions are too fast, which results in complexity of their control. To overcome these drawbacks, a procedure to form condensing species in situ from corresponding precursor has been developed.
5. Draw the structural formulae of isomeric compounds $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{H}_{5} \mathrm{Si}$ if none of these contains $\mathrm{Si}-\mathrm{H}$ bonds. Write down a scheme of condensation of these compounds (in the presence of water) yielding a long-chain molecule. What are the atoms forming the main chain of the product?
6. Which of the isomeric compounds $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{H}_{5} \mathrm{Si}$ from i. 5 gives the linear condensation product only? Draw the structure of the final condensation product provided all the reactions are by 100% complete. What functional groups may be additionally found in the product due to incomplete hydration or condensation reactions?
7. Write down a reaction scheme illustrating appearance of branching in the main chain during condensation of another isomeric compound $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{H}_{5} \mathrm{Si}$ from i. 5 (that not chosen in i. 6).

THE SAFETY RULES AND REGULATIONS

Regulations of the International Chemistry Olympiad (IChO)

§ 12 Safety

(1) During the experimental part, the competitors must wear laboratory coats and eye protection. The competitors are expected to bring their own laboratory coats. Other means of protection for laboratory work are provided by the organizer.
(2) When handling liquids, each student must be provided with a pipette ball or filler. Pipetting by mouth is strictly forbidden.
(3) The use of very toxic substances (designation $\mathrm{T}+$) is strictly forbidden. The use of toxic substances (designation T) is not recommended, but may be allowed if special precautions are taken. Substances belonging to the categories R 45, R 46, R 47 must not be used under any circumstances (see Appendix B for definitions of these categories).
(4) Detailed recommendations involving students' safety and the handling and disposal of chemicals can be found in Appendices A 1, A 2, and B. These appendices are based on the directives of the European Communities and are updated automatically with these directives.
a) Appendix A 1: Safety Rules for Students in the laboratory.
b) Appendix A 2: Safety Rules and Recommendations for the Host Country of the IChO.
c) Appendix B contains:

B 1: Hazard Warning Symbols and Hazard Designations;
B 2: R-Ratings and S-Provisions: Nature of special risks (R) and safety advice (S);
B 3: Explanation of Danger Symbols (for use of chemicals in schools).

APPENDIX A

A 1: SAFETY RULES FOR STUDENTS IN THE LABORATORY

All students of chemistry must recognize that hazardous materials cannot be completely avoided. Chemists must learn to handle all materials in an appropriate fashion. While it is not expected that all students participating in the International Chemistry Olympiad know the hazards of every chemical, the organizers of the competition will assume that all participating students know the basic safety procedures. For example, the organizers will assume that students know that eating, drinking or smoking in the laboratory or tasting a chemical is strictly forbidden.

In addition to the common-sense safety considerations to which students should have been previously exposed, some specific rules, listed below, must also be followed during the Olympiad. If any question arises concerning safety procedures during the practical exam, the student should not hesitate to ask the nearest supervisor for direction.

Rules regarding personal protection

1. Eye protection must be worn in the laboratories at all times. If the student wears contact lenses, full protection goggles must also be worn. Eye protection will be provided by the host country.
2. A laboratory coat is required. Each student will supply this item for himself/herself.
3. Long pants and closed-toed shoes are recommended for individual safety. Long hair and loose clothing should be confined.
4. Pipetting by mouth is strictly forbidden. Each student must be provided with a pipette bulb or pipette filler.

Rules for Handling Materials

1. Specific instructions for handling hazardous materials will be included by the host country in the procedures of the practical exam. All potentially dangerous materials will be labeled using the international symbols below. Each student is responsible for recognizing these symbols and knowing their meaning (see Appendix B 1, B 2 and B 3).
2. Do not indiscriminately dispose chemicals in the sink. Follow all disposal rules provided by the host country.

A 2: SAFETY RULES AND RECOMMENDATIONS FOR THE HOST COUNTRY OF THE INTERNATIONAL CHEMISTRY OLYMPIAD

Certainly it can be assumed that all students participating in the IChO have at least modest experience with safety laboratory procedures. However, it is the responsibility of the International Jury and the organizing country to be sure that the welfare of the students is carefully considered. Reference to the Safety Rules for Students in the Laboratory will show that the students carry some of the burden for their own safety. Other safety matters will vary from year to year, depending on practical tasks. The organizers of these tasks for the host country are therefore assigned responsibility in the areas listed below. The organizers are advised to carefully test the practical tasks in advance to ensure the safety of the experiments. This can best be accomplished by having students of ability similar to that of IChO participants carry out the testing.

Rules for the Host Country (see also A 1):

1. Emergency first-aid treatment should be available during the practical examination.
2. Students must be informed about the proper methods of handling hazardous materials.
a) Specific techniques for handling each hazardous substance should be included in the written instructions of the practical examination.
b) All bottles (containers) containing hazardous substances must be appropriately labeled using internationally recognized symbols (see Appendix B 1).
3. Chemical disposal instructions should be provided to the students within the written instructions of the practical examination. Waste collection containers should be used for the chemicals considered hazardous to the environment.
4. The practical tasks should be designed for appropriate (in other words, minimum) quantities of materials.
5. The laboratory facilities should be chosen with the following in mind:
a) Each student should not only have adequate space in which to work, but should be in safe distance from other students.
b) There should be adequate ventilation in the rooms and a sufficient number of hoods when needed.
c) There should be more than one emergency exit for each room.
d) Fire extinguishers should be near by.
e) Electrical equipment should be situated in an appropriate spot and be of a safe nature.
f) There should be appropriate equipment available for clean-up of spills.
6. It is recommended that one supervisor be available for every four students in the laboratory to adequately ensure safe conditions.
7. The organizers should follow international guidelines for the use of toxic, hazardous or carcinogenic substances in the IChO.

APPENDIX B

B 1: HAZARD WARNING SYMBOLS AND HAZARD DESIGNATIONS AND THEIR EXPLANATION (Applied for Chemicals in Schools)

1. Explosive substances (E)

These are substances which can be caused to explode by exposure to a flame or which are more sensitive to impact of friction than 1,3 -dinitrobenzene (e.g. picrates, organic peroxides). In particular they include substances with R ratings R1-R3 (see B 2), designation E.

When using and storing these substances, the S provisions (S15-S17) must be observed (see B 2).

2. Fire inducing substances, Oxidizing (0)

These are substances which can have a strong exothermic reaction on coming into contact with other, particularly flammable substances or organic peroxides. They include in particular substances R 7 to R 9, designation O.

3. Highly flammable, easily flammable and flammable substances ($\mathrm{F}+$, F)

In liquid form, highly flammable substances have an ignition point below $0{ }^{\circ} \mathrm{C}$ and a boiling point of $35^{\circ} \mathrm{C}$ maximum. They are to be designated by the danger symbol $\mathrm{F}+$ and the rating R 12.

Substances are easily flammable if they:
a) can heat up and ignite at normal air temperature without energy supply,
b) are easily ignited in solid state by short exposure to a source of flammation and continue to burn or glow after removal of the latter,
c) ignite below $21^{\circ} \mathrm{C}$ in liquid state,
d) ignite in gaseous state if mixed with air at 101.3 kPa and $20^{\circ} \mathrm{C}$,
e) develop easily flammable gases in dangerous quantities when in contact with water or damp air,
f) ignite if brought into contact with air when in dust-like state.

These substances are to be designated with the danger symbol F and the rating R 11 .
Flammable substances have in liquid form an ignition point of $21{ }^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ and are to designated with the rating R 10 , no danger symbol.

When dealing with highly flammable, easily flammable and flammable liquids may only be heated using sealed electrical heating equipment which is not in itself a source of flammation. All substances must be heated in such a way that the dangerous vapors liberated by heating cannot escape into the atmosphere. This does not apply to fire hazardous substances in small quantities for fire demonstrations.

The regulations laid down by the state fire authorities must be observed.

4. Toxic substances ($\mathrm{T}+, \mathbf{T}, \mathrm{Xn}$)

Legislation applying to chemicals distinguishes three categories of toxicants:
highly toxic substances (R 26 R 28), danger symbol T+,
toxic substances (R 23 R 25), danger symbol T,
less toxic substances (R 20 R 22), danger symbol Xn.
Highly toxic substances are those which can cause grave acute or chronic health damage or death almost immediately if inhaled, swallowed or absorbed through the skin in small amounts.

Toxic substances are those which can cause considerable acute or chronic health damage or death if inhaled, swallowed or absorbed through the skin in small amounts.

Less toxic substances (noxious substances) are those which can cause restricted health damage if inhaled, swallowed or absorbed through the skin.

If highly toxic or toxic substances are produced in the course of an experiment (e.g. chlorine, hydrogen sulfide), these may only be produced in the quantities necessary for the experiment. in the case of volatile substances, the experiment must be conducted under a hood where the gas can be drawn off. Residue must be appropriately disposed of after the experiment and may on no account be stored. If the facilities for disposal are not available, the experiment may not be conducted.

Less toxic substances and preparations may be obtained without a permit. Less toxic substances are also those which contain a highly toxic or toxic substance at a level of concentration below that determined by law as the maximum for classification as noxious. Chlorine water, bromine water and hydrogen sulfide solution in a concentration of up to 1% may therefore be used in instruction.

5. Corrosives and irritants (C, X i)

Caustic or corrosive substances ($\mathrm{R} 34, \mathrm{R} 35$), designation C, are those which can destroy living materials by their action upon it. Substances are classed as irritants (R 36 R 38), designation Xi, if they cause inflammation without being corrosive on direct, prolonged or repeated contact with the skin or mucous membranes. The relevant safety recommendations (S 22 S 28) should be observed.

6. Carcinogenic, genotype or embryo damaging, chronically harmful substances

Substances may not be used for instruction if they have a proven carcinogenic effect (R 45), if they cause hereditary damage (R 46) or embryo damage (R 47), or if they are chronically damaging (R 48), particularly those substances classed as unmistakably carcinogenic. Such substances must be removed from all school stocks. Storage is not permitted under any circumstances.

Further, substances for which there is a well founded suspicion of carcinogenic potential (R 40) may only be used if corresponding safety precautions are taken and only in such cases where they cannot be replaced by less dangerous chemicals.

B 2: R RATINGS AND S PROVISIONS

Nature of special risks (R)

R 1 Explosive when dry.
R 2 Risk of explosion by shock, friction, fire or other sources of ignition.
R 3 Extreme risk of explosion by shock, friction, fire or other sources of ignition.
R 4 Forms very sensitive explosive metallic compounds.
R 5 Heating may cause an explosion.
R 6 Explosive with or without contact with air.
R 7 May cause fire.
R 8 Contact with combustible material may cause fire.
R 9 Explosive when mixed with combustible material.
R 10 Flammable.
R 11 Highly flammable.
R 12 Extremely flammable.
R 13 Extremely flammable liquefied gas.
R 14 Reacts violently with water.
R 15 Contact with water liberates highly flammable gases.
R 16 Explosive when mixed with oxidizing substances.
R 17 Spontaneously flammable in air.
R 18 In use, may form flammable/explosive vapor air mixture.
R 19 May form explosive peroxides.
R 20 Harmful by inhalation.
R 21 Harmful in contact with skin.
R 22 Harmful if swallowed.
R 23 Toxic by inhalation.
R 24 Toxic in contact with skin.
R 25 Toxic if swallowed.
R 26 Very toxic by inhalation.
R 27 Very toxic in contact with skin.
R 28 Very toxic if swallowed.
R 29 Contact with water liberates toxic gas.
R 30 Can become highly flammable in use.
R 31 Contact with acids liberates toxic gas.
R 32 Contact with acids liberates very toxic gas.
R 33 Danger of cumulative effects.
R 34 Causes burns.
R 35 Causes severe burns.

R 36 Irritating to eyes.

R 37 Irritating to respiratory system.
R 38 Irritating to skin.
R 39 Danger of very serious irreversible effects.
R 40 Possible risks of irreversible effects.
R 41 Danger of serious eye damage.
R 42 May cause sensitization by inhalation.
R 43 May cause sensitization by skin contact.
R 44 Risk of explosion if heated by occlusion.
R 45 May cause cancer.
R 46 May cause hereditary damage.
R 47 May cause embryo damage.
R 48 Danger of chronic damage.

Safety advice (S)

S 1 Keep locked up.
S 2 Keep out of reach of children.
S 3 Keep in a cool place.
S 4 Keep away from living quarters.
S 5 Keep contents under (appropriate liquid to be specified by the manufacturer).
S 6 Keep under (inert gas to be specified by the manufacturer).
S 7 Keep container tightly closed.
S 8 Keep container dry.
S 9 Keep container in a well ventilated place.
S 10 Keep contents wet.
S 11 Avoid contact with air.
S 12 Do not keep the container sealed.
S 13 Keep away from food, drink and animal feeding stuffs.
S 14 Keep away from (incompatible materials to be indicated by the manufacturer).
S 15 Keep away from heat.
S 16 Keep away from sources of ignition No smoking.
S 17 Keep away from combustible materials.
S 18 Handle and open container with care.
S 20 When using do not eat or drink.
S 21 When using do not smoke.
S 22 Do not inhale dust.
S 23 Do not inhale gas/fumes/vapor/spray.
S 24 Avoid contact with skin.
S 25 Avoid contact with eyes.
S 26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.
S 27 Take off immediately all contaminated clothing.
S 28 After contact with skin, wash immediately with plenty of (to be specified by the manufacturer).
S 29 Do not empty into drains.
S 30 Never add water to this product.
S 31 Keep away from explosive materials.
S 33 Take precautionary measures against static discharges.
S 34 Avoid shock and friction.
S 35 This material and its container must be disposed of in a safe way.

S 36 Wear suitable protective clothing.
S 37 Wear suitable gloves.
S 38 In case of insufficient ventilation, wear suitable respiratory equipment.
S 39 Wear eye/face protection.
S 40 To clean the floor and all objects contaminated by this material, use (to be specified by the manufacturer).
S 41 In case of fire and/or explosion do not breathe fumes.
S 42 During fumigation/spraying wear suitable respiratory equipment.
S 43 In case of fire, use (indicate in space the precise type of fire fighting equipment. If water increases the risk, add Never use water).
S 44 If you feel unwell, seek medical advice (show the label where possible).
S 45 In case of accident or if you feel unwell, seek medical advice (show the label a where
B 3: EXPLANATION OF DANGER SYMBOLS

PRACTICAL PROBLEMS

Problem 28. Determination of copper and zinc by complexometric titration

Alloys can be found in many objects we come across in our daily life. Due to their particular characteristics (i.e., conductivity, mechanical or corrosion resistance), alloys are successfully applied in many advanced fields such as aeronautics, construction, electronics devices, and jewelry. That is why developing reliable methods of alloys analysis is of extreme importance.

Brass is an alloy of copper and zinc which is familiar to most students. In this experiment, a brass alloy containing Cu^{2+} and Zn^{2+} ions will be analyzed by complexometric titration with $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA. Since the stability constants of the complexes of these metals with EDTA are close, masking of the Cu^{2+} ions by a complexing agent (thiosulfate) is used. In the first titration, copper and zinc are titrated together with $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA. In the second titration, sodium thiosulfate is added to bind the Cu^{2+} ions, thus allowing titration of solely zinc ions with $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA.

Chemicals and reagents:

- Brass sample, $\sim 250 \mathrm{mg}$ per student, or
- Test solution (a standard solution containing about $1.5 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{Cu}^{2+}$ and $1 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{Zn}^{2+}$ ions simulating a digested sample of brass)
- Nitric acid, HNO_{3}, concentrated ($\sim 70 \% \mathrm{w} / \mathrm{v}$)
- $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA standard solution, $0.0500 \mathrm{~mol} \mathrm{~L}^{-1}$
- Acetate buffer solution, $\mathrm{pH} 5.5-6.0,0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ in acetate
- Sodium thiosulfate solution, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \sim 10 \%(\mathrm{w} / \mathrm{v})$
- Metallochromic indicator 4-(2-pyridylazo)resorcinol (PAR) ${ }^{1}$, 0.1% aqueous solution (w/v)

Substance	State	R-Ratings	S-Provisions
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	aqueous solution	3638	26
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	qqueous solution		2425
HNO_{3}	aqueous solution	835	23263645
$\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{EDTA}$	aqueous solution	363738	263739
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	aqueous solution		2425

Apparatus and glassware:

- Analytical balance ($\pm 0.0001 \mathrm{~g}$)
- Beaker, 10 mL
- Hotplate
- Volumetric flask, 100 mL

[^0]- Burette, 25 or 50 mL
- Volumetric pipettes, 2, 5 and 10 mL
- Erlenmeyer flask, 100 mL (3 ea.)
- Graduated cylinders, 10 and 25 mL

A. Brass digestion

a) Take a precise weight of the brass sample ($\sim 250 \mathrm{mg}$) and place it in a beaker.

Note. If no certified brass samples are available, you can use a test solution simulating the digested alloy.
b) Carefully add 5 mL of concentrated nitric acid (the experiment should be done under a fume hood, as NO_{2} gas evolves).
c) Heat the beaker slightly on a hotplate to provide for an effective dissolution.
d) When the digestion of the sample is complete, evaporate the solution to near dryness to remove the most part of the acid (avoid evaporating to dry salts, as hydrolysis may occur. If still so, add a minimal amount of HCl to dissolve the residue). Allow the beaker cooling down to room temperature.
e) Dissolve the contents of the beaker in distilled water, transfer it to a 100.00 mL volumetric flask and make it up to the mark.

B. Determination of the total amount of $\mathbf{C u}^{2+}$ and Zn^{2+}

f) Transfer 10.00 mL of the test solution into a 100 mL Erlenmeyer flask, add 20 mL of water, 5 mL of acetate buffer solution and 3 drops of PAR solution, mix thoroughly.
g) Titrate the content of the flask with $0.0500 \mathrm{~mol} \mathrm{~L}^{-1}$ standard $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA solution until the color of PAR indicator changes from bluish-violet to blue or greenish-yellow (for Xylenol orange indicator, the color changes from red to green). Repeat the titration as necessary.

C. Determination of $\mathbf{Z n}^{2+}$

h) Transfer 10.00 mL of the test solution into a 100 mL Erlenmeyer flask, add 10 mL of water, 5 mL of acetate buffer solution, 2 mL of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and 3 drops of PAR solution, mix thoroughly.
i) Titrate the content of the flask with $0.0500 \mathrm{~mol} \mathrm{~L}^{-1}$ standard $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA solution until the color changes from red to yellow (for Xylenol orange, the colors are the same).

D. Calculation of Cu^{2+} concentration

j) The volume of $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA which is necessary for Cu^{2+} titration is calculated as the difference of the titrant volumes in titrations \mathbf{B} and \mathbf{C}.

Questions and Data Analysis

1. Give balanced chemical equations for the reactions that take place when:

- brass dissolves in nitric acid;
- copper and zinc ions are titrated by $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA;

2. Explain how $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ masks the Cu^{2+} ion, giving the appropriate chemical equation.
3. Why should the pH value of the titrated solution be kept within 5-6?
4. Calculate the molar fraction of H_{2} EDTA ${ }^{2-}$ at pH 6 . EDTA is a weak acid with the following acidity constants: $K_{1}=1.0 \cdot 10^{-2}, K_{2}=2.1 \cdot 10^{-3}, K_{3}=6.9 \cdot 10^{-7}, K_{4}=5.5 \cdot 10^{-11}$.
5. Derive the formulae for calculation of Cu^{2+} and Zn^{2+} concentrations in the test solution. Calculate the mass ratio of Cu and Zn in the alloy.

Problem 29. Conductometric determination of ammonium nitrate and nitric acid

Conductometric titration is a type of titration in which the electrical conductivity of the reaction mixture is continuously monitored as one reactant is added. The equivalence point in such titration is determined by the change in electrical conductivity of the solution. Marked jumps of conductance are primarily associated with changes of concentrations of the two most highly conducting species, hydrogen and hydroxyl ions. The method can be used for titrating colored solutions or suspensions, the latter being impossible with color indicators. Electrical conductivity measurement is used as a tool to locate the endpoint.

Industrial production of ammonium nitrate involves the acid-base reaction of ammonia with nitric acid. Conductometric titration can be used to control the residual concentration of nitric acid in the solution after the reaction with ammonia.

In this work you will perform a conductometric titration of a mixture of nitric acid and ammonium nitrate.

Table of Chemicals:

Compound	State	R-Ratings	S-Provisions
HNO_{3}	Solution in water, $\sim 1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$	242534	232636373945
$\mathrm{NH}_{3}(\mathrm{aq})$	Solution in water, $\sim 1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$	102334374150	232425263637 3945
$\mathrm{NaOH}(\mathrm{aq})$	Solution in water, $\sim 1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$	35	26373945
NaCl	Solid, 0.6 g	-	$24 / 25$

Equipment and Glassware:

- Conductivity meter
- Analytical balance ($\pm 0.0001 \mathrm{~g}$)
- Burette
- Volumetric pipettes, 10, 15 and 25 mL
- Pipette bulb or pump
- Magnetic stirrer
- Stirring bar
- Volumetric flasks, 100 mL (5 ea.)
- Glass beaker, 100 mL

Directions:

a) Place ammonia and nitric acid solutions into three $100-\mathrm{mL}$ volumetric flasks marked \mathbf{A}, \mathbf{B}, and \mathbf{C} in quantities indicated in the hereunder table. Fill the flasks with deionized water up to the mark and mix thoroughly.

Solution	Volume of $1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{HNO}_{3}, \mathrm{~mL}$	Volume of $1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{NH}_{3}, \mathrm{~mL}$
\mathbf{A}	10	15
\mathbf{B}	10	10
\mathbf{C}	20	10

b) Transfer 25.0 mL of solution \mathbf{A} into a glass beaker using a 25 mL transfer pipette.
c) Titrate the sample solution with a standardized NaOH ($\sim 1 \mathrm{M}$, known exactly) by adding 0.2 mL portions of the titrant. After adding each titrant portion, stir the solution. Record the value of the electric conductivity when it becomes constant.
d) Titrate the sample solution until the conductivity starts to rise (add a few more titrant portions to be able to draw a straight line).
e) Repeat steps (b-d) for solutions \mathbf{B} and \mathbf{C}.
f) Transfer 20 mL of HNO_{3} and 10 mL of NH_{3} solutions into each of volumetric flasks D and \mathbf{E}. Fill the flasks up to the mark and mix thoroughly. For flasks filling, use distilled (instead of deionized) water for \mathbf{D} and deionized water containing 0.6 g of NaCl for \mathbf{E}.
g) Repeat steps (b-d) for solutions \mathbf{D} and \mathbf{E}.

Questions and Data Analysis

1. Give balanced chemical equations for the reactions taking place when the titrant is added.
2. Draw the titration curve in the coordinates "electrical conductivity - volume of titrant" for all the solutions studied $(\mathbf{A}-\mathbf{E})$. How many breaks of titration curves should be observed? Explain the resulting dependences. Which curves are practically the same and why?
3. Draw straight lines through the linear portions of the titration curves. Find the inflection points as the abscissa values corresponding to the intersections of the lines.
4. Calculate the concentrations of nitric acid and ammonium salt using these inflection points for each case. Compare the results with those calculated from the known amounts of HNO_{3} and NH_{3}.
5. Using the obtained results, predict the curve shape for the titration of a mixture of sodium hydroxide and free ammonia with HCl .

Problem 30. Analysis of fire retardants by potentiometric titration

The purpose of the experiment is to determine the composition of a mixture simulating a fire retardant containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and $\mathrm{NH}_{4} \mathrm{Cl}$. First, the sample is dissolved in HCl and titrated with NaOH to determine the amount of phosphoric acid, the best precision being achieved if potentiometric titration (pH values recorded with a pH meter) is used. Generally, titration of a mixture of hydrochloric and phosphoric acids with an alkali results in two end points (inflexions in the titration curve). The first end point indicates the total amount of hydrochloric and phosphoric acids, while the second one corresponds to the completion of the second stage neutralization of phosphoric acid. In this experiment, the second end point cannot be observed due to the formation of ammonium buffer.

To determine the concentration of the ammonium salt, the formaldehyde method is used. The reaction between formaldehyde and ammonium produces the hexamethylene tetrammonium cation $\left(\mathrm{CH}_{2}\right)_{6}\left(\mathrm{NH}^{+}\right)_{4}$, which is more acidic than the $\mathrm{NH}_{4}{ }^{+}$cation. Another potentiometric titration
is necessary to find the total amount of $\left(\mathrm{CH}_{2}\right)_{6}\left(\mathrm{NH}^{+}\right)_{4}$, and thus calculate the total amount of diammonium phosphate and ammonium chloride in the sample.
The acidity constants of phosphoric acid: $K_{\mathrm{a} 1}=7.1 \times 10^{-3}, K_{\mathrm{a} 2}=6.2 \times 10^{-8}, K_{\mathrm{a} 3}=5.0 \times 10^{-13}$.

Chemicals and Reagents

- Mixture of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and $\mathrm{NH}_{4} \mathrm{Cl}$, about $1: 1$ by weight
- \quad Sodium hydroxide, $0.1 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$
- \quad Hydrochloric acid, $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$
- Formaldehyde, $20 \% \mathrm{CH}_{2} \mathrm{O}$ (aq)

Table of Chemicals

Compound	State	R-Ratings	S-Provisions	
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$	Solid	$36 / 37 / 38$	26	
$\mathrm{NH}_{4} \mathrm{Cl}$	Solid	2236	22	
HCl	Liquid	23253438	2636373945	
NaOH	Liquid	35	26373945	
$\mathrm{CH}_{2} \mathrm{O}$	Liquid	$23 / 24 / 25344043$	$1 / 22636 / 37 / 3945$	

Equipment and Glassware

- Analytical balance ($\pm 0.0001 \mathrm{~g}$)
- Volumetric pipette, 10 mL
- Pipette pump
- Burette, 25 mL
- Beaker, 100 mL
- Volumetric flask, 100 mL
- Magnetic stirrer
- Stirring bar
- $\quad \mathrm{pH}$ meter
A. Determination of phosphate amount as phosphoric acid
a) Weigh about 0.6 g of the test mixture and place it in a 100 mL volumetric flask. Fill with water up to the mark.
b) Transfer 10 mL of the prepared solution into a 100 mL beaker using a 10 mL volumetric pipette. Add 10 mL of 0.1 M hydrochloric acid (concentration known exactly) using a 10 mL volumetric pipette, and dilute it with 20 mL of distilled water. Place the beaker onto a magnetic stirrer and put in the stirring bar.
c) Titrate the sample with 0.1 M sodium hydroxide adding it by 0.5 mL portions until the pH starts increasing. Continue adding the titrant in drop portions. When the change of pH with each added portion significantly decreases, continue titration with larger portions of sodium hydroxide. Record the volume of sodium hydroxide added and each pH value measured.
d) Repeat the titration with new aliquots of the sample solution as needed to obtain consistent results.

B. Determination of the total amount of ammonium salts

e) Prepare a 20% aqueous solution of formaldehyde free of formic acid. Neutralize the solution with sodium hydroxide, if needed. Use titration in the presence of phenolphthalein to determine the necessary amount of NaOH for the neutralization.
f) Transfer 10 mL of the sample solution into a 100 mL beaker using a 10 mL volumetric pipette. Add 5 mL of the formaldehyde solution and wait for 2 min .
g) Place the beaker onto the magnetic stirrer and put in the stirring bar. Titrate the sample with 0.1 M sodium hydroxide with constant stirring as described in part \mathbf{A}.
h) Repeat the titration with new aliquots of the sample solution as needed to obtain consistent results.

Questions and Data Analysis

1. How many end points are expected during the titration of a mixture of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and HCl ?
2. Can color indicators be used in the determination of concentrations of hydrochloric and phosphoric acids in their mixture?
3. Write down the equations of all the reactions occurred.
4. Plot the graphs of $\mathrm{pH}, \Delta \mathrm{pH} / \Delta \mathrm{V}$, and $\Delta^{2} \mathrm{pH} / \Delta \mathrm{V}^{2}$ vs. volume of the titrant added. Find the end points from the curves analysis. Why is there only one end point in the titration curve of hydrochloric and phosphoric acids in the presence of ammonium ion?
5. Calculate the content (in weight \%) of (a) diammonium phosphate and (b) ammonium chloride in the test sample.

Problem 31. Formation of double carbon-nitrogen bond

Imines (nitrogen analogues of carbonyl compounds) are formed when any primary amine reacts with aldehyde or ketone under appropriate conditions. Mechanically, the amine first attacks the aldehyde with formation of an intermediate. Its subsequent dehydration gives the imine.

Imine formation is like a biological reaction: it is fastest near neutrality. Many biological processes involve imine formation. Three outstanding examples are: synthesis of amino acids from oxoacids, transamination of α-amino acids and mechanism of vision. The former two
processes include formation of an imino intermediate between an amino acid and vitamin B_{6} derivative (pyridoxal). The transformation of light energy into electric signal in our eyes includes the cis-trans-photoisomerization of a polyene retinal (an aldehyde), which is covalently linked to the protein (an amine) by the imine bond. Imines are also very important in organic synthesis as intermediates in the so-called "reductive amination" reaction allowing direct transformation of carbonyl compounds into amines.

In this task you will prepare aniline derivative of benzaldehyde (I).

Chemicals and Reagents

- Aniline
- Benzaldehyde
- 96% aqueous ethanol

Table of Chemicals

Compound	State	R-Ratings	S-Provisions
$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$, Aniline	Liquid	$\begin{aligned} & \text { 23/24/25 } 404143 \\ & 48 / 23 / 24 / 255068 \end{aligned}$	$\begin{gathered} 262736 / 37 / 3945 \\ 4661 \end{gathered}$
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$, Benzaldehyde	Liquid	22	224
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, Ethanol, 96% aqueous solution	Liquid	11	2716

Equipment and Glassware

- Magnetic stirrer with heating
- Magnetic bar
- Glass beaker, 25 mL
- Round-bottom two necked flask, 50 mL
- Reflux condenser
- Laboratory stand with metal rings and clamps
- Adding funnel
- Separating funnel
- Filter flask
- Porous Shott's glass filter
- Water- or vacuum pump
- Analytical balance ($\pm 0.001 \mathrm{~g}$)
- Capillary for melting point determination (2-3 ea.)
- Glass tube for capillary filling
- Melting point apparatus
- Glass rod
- Ice bath

Procedure

$N-[(E)$-Phenylmethylene]aniline

0.42 g of freshly distilled benzaldehyde is placed in a round bottom two necked flask equipped with a reflux condenser and an addition funnel. The reaction vessel is mounted on the magnetic stirrer with a heating mantle. 0.37 g of freshly distilled aniline is poured in the funnel. The aniline is added dropwise to the flask with intensive stirring. Almost immediately the yellow precipitate starts to form and the reaction mixture warms up. After the addition of aniline is finished, the reaction mixture is stirred for 15 minutes. To the end of this process prepare a 25 mL glass with 3 mL of 96% ethanol. Transfer the reaction mixture from the flask to the glass, wash the flask with 1 mL of ethanol and add this to the glass. Then place the glass in an ice-bath for 10 minutes. Knead the content of the glass and transfer it on the glass Shott's filter. Turn on the water-pump, connect it to the filtration flask and filter the precipitate off. To provide for effective drying, keep the precipitate pressing with the glass rod from time to time until the mother liquor stops to drop down. Keep drying the product under vacuum for at least 10 min . Weigh the product and calculate the yield. Pick out a few crystals of the product for further determination of its melting point.

Determination of melting point

Use a glass capillary sealed from one side. Place the non-sealed end of the capillary into a product crystals, then turn it sealed end down and throw several times down through a glass tube. Check that the sealed side of the capillary is filled with the product. Apply the ready capillary to a melting point apparatus and record the melting point of the product.

Questions

1. Draw the mechanism of imine formation. How can you name the intermediate? What are the rate-limiting steps at low and high pH conditions?
2. What is similar and different in mechanisms of imine and acetal formation?
3. Draw the mechanism of vitamin B_{6} derivative catalyzed transformation of pyruvic acid into alanine.

4. Draw the mechanism of reductive amination of cycohexanone into N, N-dimethyl cyclohexylamine using sodium cyanoborohydride and dimethylamine.
5. Suggest mechanisms for the two hereunder reactions. Draw the correct stereochemistry for the product of the second reaction.

Problem 32. Osazone of glucose

Carbohydrates are in the very heart of biomolecular chemistry. Analysis of carbohydrates and products of their transformations is often hardly possible due to their appearance as oils or syrups with no characteristic melting point. The sophisticated stereochemistry of carbohydrates does not make their investigation easier. In the $1880^{\text {th }}$ the German chemist Emil Fischer found that heating of some monosaccharides with an excess of phenylhydrazine results in formation of crystalline products, which he named "osazones". Different phenylosazones existed as distinctive crystals, and formed at different rates from various parent sugars. The crystallinity of these products helped in their analysis, whereas the loss of chirality at the $2^{\text {nd }}$ carbon atom was of
great importance in establishing stereochemical details of many monosaccharides. In this task you will prepare phenylhydrazine derivative of carbohydrate D-glucose (I).

Chemicals and Reagents

- $\quad D$-Glucose
- Phenylhydrazine
- Water
- Acetic acid solution, 50\%
- Ethanol, 96\%

Table of Chemicals

Compound	State	R-Ratings	S-Provisions
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, D$-Glucose	Solid	-	-
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$, Phenylhydrazine	Liquid	$23 / 24 / 254345$ $48 / 23 / 24 / 2568$	4553
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, Acetic acid, 50% solution	Aqueous solution	1035	232645
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, Ethanol, 96% solution	Aqueous solution	11	2716

Equipment and Glassware

- Magnetic stirrer with heating
- Magnetic bar
- Water bath
- Round-bottom flask, 50 mL
- Reflux condenser
- Laboratory stand with metal rings and clamps
- Filter flask
- Porous Shott's glass filter
- Water- or vacuum pump
- Analytical balance ($\pm 0.001 \mathrm{~g}$)
- Pipette pump
- \quad Capillary for melting point determination (2-3 ea.)
- Glass tube for capillary filling
- Melting point apparatus
- Glass rod

Procedure

D-glucose osazone

To a round bottom flask equipped with a reflux condenser and a water bath add 200 mg of glucose, 4 mL of water, 400 mg of freshly distilled phenylhydrazine (caution - poisonous!) and 0.4 mL of 50% acetic acid. Using the magnetic stirrer with a heating mantle, heat the reaction mixture until the water in the bath starts boiling. In 5 min , the yellow precipitate of osazone will start forming. Continue heating for 1 h , then carefully remove the bath, remove the condenser and let the reaction mixture slowly cool down to the room temperature.

Knead the content of the flask and transfer it on the glass Shotts' filter. Turn on the water-pump, connect it to the filtration flask and filter the precipitate off. After the mother liquor stops dropping down, disconnect the flask and take the glass filter off. Wash the reaction flask with mother liquor, place the glass filter back, pour the content of the reaction flask onto the filter, and connect to vacuum. After the mother liquor stops dropping down, disconnect the flask. Add 3 mL of ethanol to the precipitate, knead it with a glass bar, and connect to vacuum again. Repeat the rinsing procedure with ethanol once more. To provide for effective drying, keep the precipitate pressing with the glass rod from time to time. Keep drying the product under vacuum for at least 10 min . Weigh the product and calculate the yield. Pick out a few crystals of the product for further determination of its melting point.

Determination of melting point

Determine the melting point of the product according to the directions in Problem 31.

Questions

1. Put the stoichiometry coefficients for the reaction between D-glucose and phenylhydrazine. What are the other products of this reaction?
2. Which starting substance would you use to calculate the yield of your product?
3. What is the product of the glucose reaction with equimolar amount of phenylhydrazine under mild conditions?
4. \quad Draw the osazones of D-glucose, D-mannose and D-fructose. What can you say about the similarity in stereochemistry of the starting sugars?
5. Do the pairs of osazones of the hereunder sugars represent the same or different molecules?
a) D-glucose and L-glucose
b) D-allose and D-talose
c) D-galactose and D-talose
d) D-ribose and D-allose

Problem 33. Acetone as a protecting agent

Protecting groups play significant role in modern organic synthesis, since they allow hiding the reactive $\mathrm{X}-\mathrm{H}$ groups ($\mathrm{X}=\mathrm{O}, \mathrm{N}, \mathrm{S}$) from interaction with, mainly, nucleophilic and oxidizing reagents. At the same time, protecting groups are further easily removed by applying specific reagents under mild conditions. Acetone, commonly known as an organic solvent, is also widely used in organic synthesis as a protecting agent. Acetone reveals a broad spectrum of the reaction ability towards hydroxyl, amino and thiol groups forming either hemiketals or ketals (and their N - and S -analogues) depending on the number and location on nucleophilic $\mathrm{X}-\mathrm{H}$ groups. In the form of its (hetero)ketal, the acetone residue can be considered in the protected molecule as part of a five-membered saturated 1,3-diheterocycle.

In this task you will prepare acetone derivatives of carbohydrate D-mannose (I) and α-amino acid L-cysteine (II).

Chemicals and Reagents

- $\quad D$-Mannose
- Iodine, crystalline
- Anhydrous acetone
- $\quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, dilute
- Chloroform
- $\mathrm{Na}_{2} \mathrm{SO}_{4}$, calcined
- $\quad L$-Cisteine hydrochloride
- Ninhydrine reagent (0.3% sol-n of ninhydrine in n-butanol cont. 3% of sodium acetate)

Table of Chemicals

Compound	State	R-Ratings	S-Provisions
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, D$-Mannose	Solid	-	28
I_{2}	Solid	$20 / 2150$	232561
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$	Liquid	11366667	291626
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	Aqueous solution	-	$24 / 25$
CHCl_{3}	Liquid	$22384048 / 20 / 22$	$236 / 37$
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Solid	-	-
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{SCl}$, $L-C i s t e i n e ~$ hydrochloride	Solid	$2236 / 37 / 38$	$252636 / 37 / 39$
$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{4}$, Ninhydrine	Solution	$2236 / 37 / 38$	$2628 \mathrm{~A} 37 / 39$
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}, \mathrm{n}$-butanol	Liquid	$102237 / 384167$	$27 / 9132637 / 3946$
$\mathrm{CH}_{3} \mathrm{COONa}$	Solution	-	-

Equipment and Glassware

- Magnetic stirrer with heating
- Magnetic bar
- Glass beaker, 50 or 100 mL (2 ea.)
- Round-bottom flask, 50 mL
- Reflux condenser
- Laboratory stand with metal rings and clamps
- Thermometer
- Adding funnel
- Separating funnel
- Filter flask
- Porous Shott’s glass filter (2 ea.)
- Rotary evaporator
- Water- or vacuum pump
- Analytical balance ($\pm 0.001 \mathrm{~g}$)
- Pipette pump
- \quad Capillary for melting point determination (2-3 ea.)
- Glass tube for capillary filling
- Melting point apparatus
- Filter paper
- Glass rod
- Ice bath

Procedure

A. D-Mannose protection with acetone

Fix a beaker on a magnetic stirrer with a metal ring attached to a stand. Place 200 mg of mannose, 60 mg of crystalline iodine and 12 mL of anhydrous acetone in the beaker. Attach to stand a thermometer with its bulb in the reaction mixture. Heat the reaction mixture for $c a .30$ \min at $35^{\circ} \mathrm{C}$ with stirring. After all the mannose is dissolved, turn the heater off and cool the mixture down to the room temperature. Then fix an adding funnel above the beaker using a metal ring attached to the stand (take care the stopcock is closed!). Pour the dilute $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution into the funnel and add it dropwise to the brown reaction mixture until the color disappearance. Add 10 mL of water and transfer the reaction mixture from the beaker into a separating funnel (take care the stopcock is closed!) fixed on the stand using a metal ring. Add 10 mL of chloroform and close the funnel by placing the stopper at its top. Take the funnel in your hands so that its narrow end is directed upwards and away from yourself. Carefully turn the stopcock, release the air and close the funnel back. Shake the funnel several times with agitation and release the air as described above. Repeat shaking and air release three times. Then hang the funnel back on the metal ring and wait until the aqueous and organic layers are clearly separated. Remove the stopper from the top of the funnel. Carefully open the stopcock and let the lower organic layer to flow into a beaker. Leave the upper aqueous layer in the funnel. Add another 10 mL of chloroform to the funnel and repeat the extraction procedure using the same beaker. Wash the combined organic layers with 10 mL of water using a clean separation funnel. Place calcined $\mathrm{Na}_{2} \mathrm{SO}_{4}$ into the beaker with combined organic layers. Fix the beaker on the magnetic stirrer, add the magnetic bar and stir the mixture for 15 min . Filter the drying agent off. Remove the solvent from the filtrate using a rotary evaporator ${ }^{2}$. Weigh the obtained white product and calculate the yield. Pick out a few crystals of the product for further determination of its melting point.

B. Modification of L-Cisteine with acetone

Fix a round-bottom flask on a stand. Place 100 mg of L-cisteine hydrochloride in 2 mL of anhydrous acetone in the flask. Attach the reflux condenser and heat the mixture to boiling. The starting amino acid hydrochloride readily dissolves, which is shortly followed by the product precipitation. Keep refluxing for about 30 min , then remove the condenser and cool down the reaction mixture using an ice bath. Knead the content of the flask and transfer it onto the glass Shott filter. Turn on the vacuum or water-pump, connect it to the filtration flask and filter the precipitate off. After the mother liquor stops dropping down, disconnect the flask and take the

[^1]glass filter off. Rinse the reaction flask with the mother liquor, place the glass filter back, pour the content of the reaction flask onto the filter, and connect to the vacuum line. After the mother liquor stops dropping down, disconnect the flask. Add 1 mL of anhydrous acetone to the precipitate, knead with a glass rod, and connect the flask to the vacuum line again. To provide for effective drying, keep the precipitate pressing with the glass rod from time to time. Keep drying the product under vacuum for at least 10 min . Pick out a few crystals of the product for further determination of its melting point.

Test reaction

Do the following test to check whether the reaction of cysteine protection with acetone is complete.

Ninhydrine reaction. Dissolve several milligrams of the product in aqueous acetone, and immediately apply a drop of the resulting solution to filter paper. Cover the spot with a drop of ninhydrine reagent. Gently heat up the filter paper. Perform the same test with the starting amino acid. Compare the results and explain the difference.

Determination of melting point

Determine the melting points of the products according to the directions in Problem 31.

Questions

1. Draw the mechanism of formation of 1,3-dioxolane ring from acetone and 1,2-diol. Which catalyst acid or base, will you apply? Why?
2. Draw the products of acetone reaction with trans- and cis-cyclohexane-1,2-diols. Which of the products is thermodynamically more favorable?
3. Based on the answer to Question 2, explain the nature and stereochemistry of the product of the D-mannose reaction with acetone paying attention to the mutual stereochemical relationships between vicinal hydroxyl groups in the starting sugar. Why the initial sixmembered pyranose transforms into five-membered furanose? What is the way of such transformation in carbohydrate chemistry?
4. What conditions and reagents would you apply to remove acetone protecting groups from diacetonemannose?
5. Draw the mechanism of product formation in the reaction of cysteine with acetone. Explain the role of hydrochloric acid.
6. Draw the mechanism and products of the reaction between cysteine and ninhydrine. Show the product which is responsible for the color of the reaction mixture.

Problem 34. Determination of molecular mass parameters (characteristics) by viscometry

Fluid resistance to flow is referred to as viscosity. It is quantitatively characterized by the viscosity coefficient (fluids with high viscosity coefficients reveal enhanced resistance to flow). Experimentally, the viscosity coefficient can be determined by following the rate at which a liquid flows out from a thin capillary.

The viscosity of solutions of low-molecular weight compounds only slightly depends on their concentration. By contrast, solutions of polymers are characterized by a pronounced dependence of their viscosity on the polymer concentration, which allows determining the latter from viscometry data analysis.

For dilute polymer solutions, it was found that the reduced viscosity $\eta_{\text {red }}$ and polymer concentration c (in g / mL) are related as follows:

$$
\eta_{\text {red }}=\frac{t-t_{0}}{t_{0} c} .
$$

where t and t_{0} are flow times of the solution and pure solvent, respectively.

The intrinsic viscosity [η] can be further determined from extrapolation of the reduced viscosity to zero polymer concentration:

$$
\eta_{\text {red }}(c)=[\eta]+k c .
$$

The intrinsic viscosity is a function of the polymer and solvent nature. In general, it is related to the molar mass of the polymer according to the Mark-Kuhn-Houwink equation:

$$
[\eta]=K M^{a}
$$

Increasing of the solvent-polymer affinity results in more expanded polymer coils, which, in turn, provides for higher resistance to the solution flow. Thus, the index of power (a) is growing with increasing of the solvent affinity towards the polymer.

Usually a polymer sample is polymolecular (polydisperse), i.e. it contains macromolecules of different molecular weights. Accordingly, polymer samples are characterized by average molar masses (depends on the way of averaging). Thus, a viscosity-average molar mass M_{v} can be found from the Mark-Kuhn-Houwink equation using experimentally determined [η] and reference data for K and a.

Polydispersity (or heterogeneity) index of a polymer sample can be determined as the ratio of its viscosity-average molar masses found in solvents significantly differing in their affinity towards the polymer.

In this task you will find the polydispersity index of a polystyrene sample by capillary viscometry using toluene ($K=0.017 \mathrm{ml} / \mathrm{g}, a=0.69$) and methyl ethyl ketone ($K=0.039 \mathrm{ml} / \mathrm{g}$, $a=0.57$). All constants are given for $25^{\circ} \mathrm{C}$.

Chemicals and reagents:

- Polystyrene (number-average molar mass of about 100000) solution in toluene, $10 \mathrm{~g} / \mathrm{L}$, 25 mL
- Polystyrene (number-average molar mass of about 100000) solution in methyl ethyl ketone, $10 \mathrm{~g} / \mathrm{L}, 25 \mathrm{~mL}$
- Toluene, 50 mL
- Methyl ethyl ketone, 50 mL

Table of Chemicals

Compound	State	R-Rating	S-Provision
$\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{\mathrm{n}}$, Polystyrene	Solutions in toluene and methyl ethyl ketone	-	-
$\mathrm{C}_{7} \mathrm{H}_{8}$, Toluene	Liquid	$113848 / 206365$ 67	$22936 / 374662$
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$, Methyl ethyl ketone	Liquid	11366667	2916

Apparatus and glassware:

- Ubbelohde or other capillary viscometer
- Graduated cylinder, 10 mL
- 10 glass vials, 20 mL
- Volumetric pipette, 5 mL
- Stopwatch

Procedure

a) For both polymer solutions, prepare a number of dilutions (in the concentrations range of 1 to $10 \mathrm{~g} / \mathrm{L}$).
b) Measure flow time for the solvent (toluene) using the Ubbelohde viscometer (repeat three times).
c) Measure flow times for all polystyrene solutions in toluene (repeat each three times)
d) Fill in the table below.
e) Repeat ii. b) - d) for polystyrene solutions in methyl ethyl ketone.

Concentration of the polymer $c, \mathrm{~g} / \mathrm{L}$	Flow time $t, \mathrm{~s}$	$\eta_{\text {rel }}=\frac{t}{t_{0}}$	$\eta_{s p}=\frac{t-t_{0}}{t_{0}}$	$\frac{\eta_{s p}}{c}, \mathrm{~L} / \mathrm{g}$
10				

Questions and data analysis

1. Calculate the relative, specific and reduced viscosities for each solution studied
2. Plot the reduced viscosity against polystyrene concentration for each solvent.
3. Approximate the dependences from i. 2 with appropriate straight lines.
4. Determine the intrinsic viscosity of the polystyrene solutions in toluene and methyl ethyl ketone as Y-intercept.
5. Using the Mark-Kuhn-Houwink equation, determine the corresponding values of viscosity-average molar masses of the polystyrene sample.
6. Evaluate the polydispersity index of the polystyrene sample.

Problem 35. Cooperative interactions in polymer solutions

Macromolecular interactions in solutions are behind many processes in living organisms. Organization of DNA into a double helix can serve as a well-known example. Formation of such intermolecular complexes is often driven by significant entropy gain. In laboratory this phenomena can be studied by using a simple model system, a mixture of poly(methacrylic acid) and poly(ethylene glycol).

Chemicals and reagents:

- (PMAA, molecular weight of 30000) aqueous solution, $2 \mathrm{~g} / \mathrm{L}, 50 \mathrm{~mL}$
- Poly(ethylene glycol) (PEG, molecular weights of 1000, 2000, 3000, 6000) aqueous solutions, $1 \mathrm{~g} / \mathrm{L}, 10 \mathrm{ml}$ of each solution
- Deionized water

Table of Chemicals

Compound	State	R-Ratings	S-Provisions
$\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)_{\mathrm{n}}$, Poly(methacrylic acid)	Aqueous solution	-	-
$\mathrm{C}_{2 \mathrm{n}} \mathrm{H}_{4 \mathrm{n}+2} \mathrm{O}_{\mathrm{n}+1}$, Poly(ethylene glycol)	Aqueous solution	-	-

Apparatus and glassware:

- Ubbelohde viscometer or other capillary viscometer with thermostat
- Graduated cylinder, 10 mL
- 10 glass vials, 20 mL
- Volumetric pipette, 5 mL
- Stopwatch

Procedure

a) Prepare $1 \mathrm{~g} / \mathrm{L}$ solution of PMAA in water by diluting the initial solution of PMMA.
b) Prepare mixtures of the initial solution of PMMA with the initial solutions of PEG of different molecular weights, each in volume ratio of 1:1 (4 mixtures in total).
c) Measure the flow time of water at $25^{\circ} \mathrm{C}$ using the Ubbelohde viscometer (repeat three times)
d) Measure the flow time of the prepared PMAA solution and of all mixtures at $25^{\circ} \mathrm{C}$ (repeat each three times).
e) Fill in the table below.
f) Repeat ii. c)-e) at $40^{\circ} \mathrm{C}$.

Composition	Temperature, ${ }^{\circ} \mathrm{C}$	Flow time, s	Specific viscosity of the solution
Water	25		
PMAA, $1 \mathrm{~g} / \mathrm{l}$	25		
PMAA+PEG-1000	25		
PMAA+PEG-2000	25		
PMAA+PEG-3000	25		
PMAA+PEG-6000	25		
water	40		
PMAA, $1 \mathrm{~g} / \mathrm{l}$	40		
PMAA+PEG-1000	40		
PMAA+PEG-2000	40		
PMAA+PEG-3000	40		
PMAA+PEG-6000	40		

Questions and data analysis

1. Calculate the specific viscosity (see the explanation in Problem 34) for each of the measured samples.
2. Plot specific viscosity against molecular weight of PEG for each temperature.
3. Explain the dependences of the viscosity on temperature and molecular weight of PEG.

Solutions to Preparatory problems

Problem 1. Graphite oxide

1) In GO the interplane spacing is larger. This facilitates exfoliation of GO. Graphite is hydrophobic, whereas GO is hydrophilic due to the formation of the functional groups. This makes GO soluble in water, which is very important for chemical exfoliation. The grave disadvantage of GO as a precursor of graphene is the necessity of reduction of single sheets after exfoliation. Graphene produced from GO is always defective.
2) 25% of carbon atoms retain the $s p^{2}$ hybridization, which means that they are not bonded to oxygen atoms. 75% of carbon atoms form chemical bonds with oxygen. Each oxygen atom is bonded to the pair of carbon atoms. The net formula is $\mathrm{CO}_{0.375}$. Maximum X in the Hoffman model is 0.5 . The net formula is $\mathrm{CO}_{0.5}$.
3) The four groups are the phenol ($\mathrm{OH} s p^{2}$), hydroxyl ($\mathrm{OH} s p^{3}$), and epoxide groups in the basal plane, and the carboxylic acid groups at the edges.
4) Each hydrogen atom corresponds to one oxidized carbon atom. 22% of carbon atoms are bonded to the hydroxyl or phenol group, or are in the carboxylic acid group. Let all the hydrogen atoms be in the carboxylic acid groups. Then 44% of oxygen atoms are in the carboxylic acid groups and 2% are in the epoxy groups. In this case $22 \%+2 \cdot 2 \%=26 \%$ of all the carbon atoms are oxidized. 74% of the total amount of carbon atoms do not form chemical bonds with oxygen. This is the upper limit. Let all the hydrogen atoms be in the hydroxyl or phenol groups. This means that there are no carboxylic acid groups in the particular GO sample! Then 24% of oxygen atoms are in the epoxy groups. In this case $22 \%+2 \cdot 24 \%=70 \%$ of all the carbon atoms are bonded to oxygen. 30% of carbon atoms are not oxidized. This is the lower limit.
5) Acid groups do not participate in the hydrogen bonding network (Fig. 3). It means that maximum degree of water absorption will be reached in case of the absence of such groups in GO. Then each pair of hydrogen atoms holds one molecule of $\mathrm{H}_{2} \mathrm{O}(0.11)$, and each pair of epoxy groups also holds one molecule of $\mathrm{H}_{2} \mathrm{O}(0.46-0.22) / 2=0.12$. Altogether there are 0.23 molecules of water per one carbon atom. The chemical formula of GO hydrate is $\mathrm{CH}_{0.22} \mathrm{O}_{0.46} \cdot 0.23 \mathrm{H}_{2} \mathrm{O}$.

Problem 2. Efficiency of photosynthesis

1. $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}$.

The process is reverse to combustion of $1 / 6$ (glucose), hence:

$$
\Delta_{\mathrm{r}} H_{298}^{\circ}=-\frac{1}{6} \Delta_{\mathrm{c}} H_{298}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=467.5 \mathrm{~kJ} \cdot \mathbf{m o l}^{-1} .
$$

Standard entropy change in the reaction:

$$
\Delta_{\mathrm{r}} S_{298}^{\circ}=\frac{1}{6} S_{298}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)+S_{298}^{\circ}\left(\mathrm{O}_{2}\right)-S_{298}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-S_{298}^{\circ}\left(\mathrm{CO}_{2}\right)=-43.7 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1} .
$$

Standard Gibbs energy change:

$$
\Delta_{\mathrm{r}} G_{298}^{\circ}=\Delta_{\mathrm{r}} H_{298}^{\circ}-298 \Delta_{\mathrm{r}} S_{298}^{\circ}=467.5-298 \cdot\left(-43.7 \cdot 10^{-3}\right)=480.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} .
$$

Energy of 1 mol of photons with wavelength of 680 nm :

$$
E_{\mathrm{m}}=\frac{h c N_{\mathrm{A}}}{\lambda}=\frac{6.63 \cdot 10^{-34} \cdot 3.00 \cdot 10^{8} \cdot 6.02 \cdot 10^{23}}{680 \cdot 10^{-9}} \cdot 10^{-3}=176 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} .
$$

The minimum number of photons necessary to supply more energy than $E=480.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ is 3 . (Instead of $E=\Delta_{\mathrm{r}} G_{298}^{\circ}$, one can use $E=\Delta_{\mathrm{r}} H_{298}^{\circ}=\Delta_{\mathrm{r}} U_{298}^{\circ}$ - the result is the same: 3 photons.)
2. $\quad \Delta_{\mathrm{r}} G_{298}=\Delta_{\mathrm{r}} G_{298}^{\circ}+R T \ln \frac{p_{\mathrm{O}_{2}}}{p_{\mathrm{CO}_{2}}}=480.5+8.314 \cdot 298 \cdot 10^{-3} \cdot \ln \frac{0.21}{3 \cdot 10^{-4}}=496.7 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.

The correction from non-standard pressures is not large - about $1 / 30$ of the standard Gibbs energy.
3. Energy of 10 mol of photons absorbed by green plants is $176 \cdot 10=1760 \mathrm{~kJ}$. Of this amount 480.5 kJ is converted to Gibbs energy. The efficiency of the solar energy conversion by green plants can be estimated as $480.5 / 1760 \cdot 100 \%=\mathbf{2 7 \%}$.
4. Total solar energy absorbed:
a) Moscow area: $\quad E=1070 \cdot 10^{6} \mathrm{~m}^{2} \cdot 150 \mathrm{~J} \cdot \mathrm{~s}^{-1} \cdot \mathrm{~m}^{-2} \cdot(10 \cdot 86400) \mathrm{s}=1.4 \cdot 10^{17} \mathrm{~J}$.
b) MSU campus: $\quad E=1.7 \cdot 10^{6} \mathrm{~m}^{2} \cdot 150 \mathrm{~J} \cdot \mathrm{~s}^{-1} \cdot \mathrm{~m}^{-2} \cdot(5 \cdot 3600) \mathrm{s}=4.6 \cdot 10^{12} \mathrm{~J}$.

Number of photons $N=\left(E / E_{\mathrm{m}}\right) \cdot N_{\mathrm{A}}$:
a) Moscow area: $\quad N=\mathbf{4 . 8 \cdot 1 0}{ }^{35}$.
b) MSU campus: $\quad N=\mathbf{1 . 6} \cdot 10^{\mathbf{3 1}}$.

Solar energy utilized by green plants and converted to chemical energy:
a) Moscow area: $\quad E_{\text {util }}=1.4 \cdot 10^{17} \cdot(18 \% / 100 \%) \cdot(10 \% / 100 \%) \cdot(27 \% / 100 \%)=6.8 \cdot 10^{14} \mathrm{~J}$
b) MSU campus: $\quad E_{\text {util }}=4.6 \cdot 10^{12} \cdot(54 \% / 100 \%) \cdot(10 \% / 100 \%) \cdot(27 \% / 100 \%)=6.7 \cdot 10^{10} \mathrm{~J}$

Quantity of photosynthesis products $n\left(\mathrm{CH}_{2} \mathrm{O}\right)=E_{\text {util }} / \Delta_{\mathrm{r}} G_{298}^{\circ}$
a) Moscow area: $\quad n\left(\mathrm{CH}_{2} \mathrm{O}\right)=n\left(\mathrm{O}_{2}\right)=1.4 \cdot 10^{9} \mathrm{~mol}$

$$
\begin{aligned}
& m\left(\mathrm{CH}_{2} \mathrm{O}\right)=n \cdot M=1.4 \cdot 10^{9} \mathrm{~mol} \cdot 0.03 \mathrm{~kg} / \mathrm{mol}=\mathbf{4 . 2 \cdot 1 0 ^ { 7 }} \mathbf{~ k g} \\
& V\left(\mathrm{O}_{2}\right)=n \cdot V_{\mathrm{m}}=1.4 \cdot 10^{9} \mathrm{~mol} \cdot 0.0244 \mathrm{~m}^{3} / \mathrm{mol}=\mathbf{3 . 4 \cdot 1 0 ^ { 7 }} \mathbf{m}^{3}
\end{aligned}
$$

b) MSU campus: $\quad n\left(\mathrm{CH}_{2} \mathrm{O}\right)=n\left(\mathrm{O}_{2}\right)=1.4 \cdot 10^{5} \mathrm{~mol}$

$$
m\left(\mathrm{CH}_{2} \mathrm{O}\right)=n \cdot M=1.4 \cdot 10^{5} \mathrm{~mol} \cdot 0.03 \mathrm{~kg} / \mathrm{mol}=4200 \mathbf{~ k g}
$$

$$
V\left(\mathrm{O}_{2}\right)=n \cdot V_{\mathrm{m}}=1.4 \cdot 10^{5} \mathrm{~mol} \cdot 0.0244 \mathrm{~m}^{3} / \mathrm{mol}=\mathbf{3 4 0 0} \mathrm{m}^{3}
$$

5. Percent of solar energy converted to chemical energy:
a) Moscow area: $\quad(18 \% / 100 \%) \cdot(10 \% / 100 \%) \cdot(27 \% / 100 \%)=0.005=\mathbf{0 . 5 \%}$
b) MSU campus: $\quad(54 \% / 100 \%) \cdot(10 \% / 100 \%) \cdot(27 \% / 100 \%)=0.015=\mathbf{1 . 5 \%}$

Problem 3. Ammine complexes of transition metals

1. Chrome is dissolved in a diluted sulfuric or hydrochloric acid:

$$
\mathrm{Cr}+2 \mathrm{HCl}=\mathrm{CrCl}_{2}+\mathrm{H}_{2}
$$

The experiment is conducted under inert atmosphere.
2. $4\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}+4 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{O}_{2}=4\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \downarrow+4 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$

The formula of the precipitate is $\mathrm{CrCl}_{3} \mathrm{~N}_{5} \mathrm{H}_{15}$.
3. $\mathrm{H}_{2} \mathrm{O}_{2}$. The compound $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ is formed because the oxidation takes place via the η_{2}-bridging peroxocomplex, followed by the hydrolysis when the leaving peroxo-group is replaced by the chloride-ion from the solution.
4. $2\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}+2 \mathrm{NH}_{4} \mathrm{Cl}=2\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}+\mathrm{H}_{2}+2 \mathrm{NH}_{3}$
5. The chromium(3+) complexes are inert, thus the substitution process occurs slowly. This is due to the d^{3} configuration.
6. $\quad \mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}<\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}<\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$

The coordinated ammonia has no vacant electron pair and therefore cannot interact with a proton. The iron($2+$) complex is labile, that is, ammonia ligands can be easily substituted by water molecules, which have a free electron pair even when linked to a metal atom. The ruthenium(2+) complex is inert, but due to high atomic radius of ruthenium has a possibility to
form an intermediate complex with an enhanced coordination number. The chromium(3+) complex is inert and has no possibility to bind a proton. Therefore it is the most stable complex in the acidic media.
7. $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}+\mathrm{NH}_{4}^{+}$
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\mathrm{H}^{+} \rightarrow\left[\mathrm{RuH}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
$\left[\mathrm{RuH}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow\left[\mathrm{RuH}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}+\mathrm{NH}_{4}{ }^{+}$(fast)
$\left[\mathrm{RuH}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+} \rightarrow\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{H}^{+}$
$r=k\left[\mathrm{H}^{+}\right]\left[\mathrm{RuH}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}\right]$

See J.D. Atwood, Inorganic and organometallic reaction mechanisms, $2^{\text {nd }}$ edition, Wiley-VCH, pp.85-86 and P.C. Ford et al, Inorg. Chem., 1968, 7, 1976.

Problem 4. Preparation of inorganic compound

1. The common mineral of tin is cassiterite, SnO_{2}. Thus, 1.05 g of X after decomposition give 0.8664 g of SnO_{2} that contains 5.738 mmol of tin. Under decomposition 0.069 g (3.833 mmol) of water form. As the ratio $n(\mathrm{Sn}): n\left(\mathrm{H}_{2} \mathrm{O}\right)$ is equal to 1.5 (or $3: 2$), the brutto formula of X contains 3 equivalents of $\mathrm{SnO}_{2}, 4$ of H and 2 of O (from 2 water molecules). In addition, it also contains nitrogen and probably more oxygen. Their mass is $1.05-0.8664-0.069=0.1146$ g and the average molar mass is $M=0.1146 /(0.00383 / 2)=60 \mathrm{~g} / \mathrm{mol}$, which corresponds to $\mathrm{N}_{2} \mathrm{O}_{2}$. Thus, the formula of X is $\mathrm{Sn}_{3} \mathrm{O}_{10} \mathrm{~N}_{2} \mathrm{H}_{4}$, or $\mathrm{Sn}_{3} \mathrm{O}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$.
2. All the operations should be performed in an inert atmosphere, because tin(II) hydroxide is oxidized in air.
3. If all the metal atoms in the cation are equivalent they have the same coordination sphere. So, we may suppose the formula $\left[\mathrm{Sn}_{3}(\mathrm{OH})_{4}\right]^{2+}$, that is a combination of three pyramids linked by joint edges in a cycle (See J.D. Donaldson et al, JCS Dalton Trans, 1995, 2273.):

The pyramidal nonplanar geometry is due to the electron pair on each tin atom.
4. In the acidic solution the hydrated tin(2+) ions are formed, in the basic media - the anions $\left[\mathrm{Sn}(\mathrm{OH})_{3}\right]^{-},\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]^{4-}$ and oligonuclear species such as $\left[\mathrm{Sn}_{2} \mathrm{O}(\mathrm{OH})_{4}\right]^{2-},\left[\mathrm{Sn}_{4} \mathrm{O}(\mathrm{OH})_{10}\right]^{4-}$.
5. $2 \mathrm{BiCl}_{3}+3 \mathrm{SnCl}_{2}+6 \mathrm{HCl}=2 \mathrm{Bi}+3 \mathrm{H}_{2} \mathrm{SnCl}_{6}$

$$
\begin{aligned}
& E^{\circ}=0.317-0.15=0.167 \mathrm{~V} \\
& K=\exp \left(\frac{n F E^{\circ}}{R T}\right)=\exp \left(\frac{6 \cdot 96500 \cdot 0.167}{8.314 \cdot 298}\right)=8.90 \cdot 10^{16}
\end{aligned}
$$

Problem 5. Inorganic chains and rings

1. $3 \mathrm{SOCl}_{2}+3 \mathrm{NaN}_{3}=[\mathrm{NS}(\mathrm{O}) \mathrm{Cl}]_{3}+3 \mathrm{NaCl}+\mathrm{N}_{2}$

$$
\mathrm{X}-[\mathrm{NS}(\mathrm{O}) \mathrm{Cl}]_{3}
$$

2.

(a)
-SONOCIOO

(b)
3. $\mathrm{Y}-[\mathrm{NS}(\mathrm{O}) \mathrm{F}]_{3}$
$2\left[\mathrm{NS}(\mathrm{O}) \mathrm{F}_{3}+9 \mathrm{Ba}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+18 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{BaF}_{2} \downarrow+6 \mathrm{BaSO}_{4} \downarrow+12 \mathrm{CH}_{3} \mathrm{COOH}+6 \mathrm{CH}_{3} \mathrm{COONH}_{4}\right.$
4. $\left[\mathrm{NS}(\mathrm{O})\left(\mathrm{NHCH}_{3}\right)\right]_{3}$
5.

$\left[\mathrm{N}_{3} \mathrm{~S}_{3} \mathrm{O}_{6}\right]^{3-}$ and

6.

$$
\mathrm{Z}=\left(\mathrm{SO}_{3}\right)_{n}
$$

Problem 6. Transition metal compounds

1. Anhydrous salt \mathbf{D} is the main constituent of compound \mathbf{B}. We may suppose that \mathbf{B} is a hydrate of \mathbf{D}. The Na: X molar ratio in \mathbf{D} is $3: 1$. \mathbf{D} is not a binary compound $\mathrm{Na}_{3} \mathrm{X}$ as in this case $\mathrm{M}_{\mathbf{X}}=(29.3 \cdot 69 / 70.7)=28.6$. There is no such element. So, \mathbf{D} contains some other element(s) too. Oxygen is the most probable element, i.e., \mathbf{D} is $\mathrm{Na}_{3} \mathrm{XO}_{n}$ (salt \mathbf{D} cannot have formulae of $\mathrm{Na}_{3} \mathrm{H}_{\mathrm{m}} \mathrm{XO}_{\mathrm{n}}$ type as all volatiles should be removed under reaction conditions used for synthesis of \mathbf{D} (heating at $800^{\circ} \mathrm{C}$). High content of \mathbf{X} in compound \mathbf{C} allows one to suppose that \mathbf{C} is a binary compound, i.e., it is an oxide of \mathbf{X}. Now we can determine \mathbf{X}.

Oxide	$\mathrm{X}_{2} \mathrm{O}$	XO	$\mathrm{X}_{2} \mathrm{O}_{3}$	XO_{2}	$\mathrm{X}_{2} \mathrm{O}_{5}$	XO_{3}	$\mathrm{X}_{2} \mathrm{O}_{7}$	XO_{4}
$M_{\mathbf{X}}$	13.74	27.48	41.22	54.96	68.70	82.43	96.17	109.91

Therefore, \mathbf{X} is Mn and \mathbf{C} is MnO_{2}. From the content of Mn in \mathbf{D} we derive its formula, $\mathrm{Na}_{3} \mathrm{MnO}_{4}$. The manganese oxidation state in this compound is +5 . Under heating or cooling, the alkaline solution of \mathbf{D} disproportionates, giving solid MnO_{2} and a green solution. Solutions of manganese(VII) derivatives are usually purple but not green. Therefore, the solution contains a salt of manganese (VI). The analogous green solution is formed in the last procedure. We may conclude that this procedure leads to manganate, $\mathrm{K}_{2} \mathrm{MnO}_{4}$. Indeed, the content of Mn in $\mathrm{K}_{2} \mathrm{MnO}_{4}$ (compound \mathbf{E}) is 27.9\%.

Compound $\mathbf{B}(\mathrm{a} \mathrm{Mn}(\mathrm{V})$ derivative)is obtained by the reaction of \mathbf{A} with sodium sulfite which is a well-known reducing agent. Heating of the alkaline solution of \mathbf{A} affords $\mathrm{K}_{2} \mathrm{MnO}_{4}$. It is possible only if \mathbf{A} is a $\mathrm{Mn}(\mathrm{VII})$ derivative. Indeed, the Mn content in \mathbf{A} corresponds to the formula of KMnO_{4}. The remaining unknown compound is \mathbf{B}. Above we supposed that \mathbf{B} is a hydrate of \mathbf{D}. Calculations using the formula of $\mathrm{Na}_{3} \mathrm{MnO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ lead to $M_{\mathbf{B}}=413.5$. It corresponds to $n=12.5$. However, $M_{\mathbf{B}}=381.2$ from the Na content. In other words, $\mathrm{Na}: \mathrm{Mn}$ ratio in \mathbf{B} is not $3: 1$ but $3.25: 1$. This additional sodium appears due to the presence of some other Na compound(s) in the solvate. To determine this compound, the analysis of the synthetic procedure is required. During the synthesis of \mathbf{B} solvate is washed with NaOH solution. So, the possible formula of \mathbf{B} is $\mathrm{Na}_{3} \mathrm{MnO}_{4} \cdot 0.25 \mathrm{NaOH} \cdot n \mathrm{H}_{2} \mathrm{O}$. From Na and Mn content we conclude that $n=12$. Finally, \mathbf{B} is $\left[4 \mathrm{Na}_{3} \mathrm{MnO}_{4} \cdot \mathrm{NaOH} \cdot 48 \mathrm{H}_{2} \mathrm{O}\right]$.
2. Four reactions are discussed in the text. They are:

1) $4 \mathrm{KMnO}_{4}+4 \mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}+13 \mathrm{NaOH}+16 \mathrm{H}_{2} \mathrm{O}=\left[4 \mathrm{Na}_{3} \mathrm{MnO}_{4} \cdot \mathrm{NaOH} \cdot 48 \mathrm{H}_{2} \mathrm{O}\right] \downarrow+4$ $\mathrm{Na}_{2} \mathrm{SO}_{4}+4 \mathrm{KOH}$
$\left(4 \mathrm{KMnO}_{4}+4 \mathrm{Na}_{2} \mathrm{SO}_{3}+13 \mathrm{NaOH}+44 \mathrm{H}_{2} \mathrm{O}=\left[4 \mathrm{Na}_{3} \mathrm{MnO}_{4} \cdot \mathrm{NaOH} \cdot 48 \mathrm{H}_{2} \mathrm{O}\right] \downarrow+4 \mathrm{Na}_{2} \mathrm{SO}_{4}+4 \mathrm{KOH}\right)$
2) $2 \mathrm{Na}_{3} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Na}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+4 \mathrm{NaOH}$
3) $12 \mathrm{NaOH}+4 \mathrm{MnO}_{2}+\mathrm{O}_{2}=4 \mathrm{Na}_{3} \mathrm{MnO}_{4}+6 \mathrm{H}_{2} \mathrm{O}$
4) $4 \mathrm{KMnO}_{4}+4 \mathrm{KOH}=4 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Problem 7. Simple equilibrium

1. The initial ratio $\mathrm{A}_{2}: \mathrm{B}_{2}=2: 1$

$$
K_{1}=\frac{n(\mathrm{AB})^{2}}{n\left(\mathrm{~A}_{2}\right) n\left(\mathrm{~B}_{2}\right)}=\frac{1.5^{2}}{1.25 \cdot 0.25}=7.2
$$

2. The initial ratio $\mathrm{A}_{2}: \mathrm{B}_{2}=1: 1$

The ratio of heteronuclear to homonuclear molecules:

$$
\frac{n(\mathrm{AB})}{n\left(\mathrm{~A}_{2}\right)+n\left(\mathrm{~B}_{2}\right)}=\frac{2 y}{(1-y)+(1-y)}=\frac{y}{1-y}=\sqrt{\frac{K_{1}}{4}}=1.34
$$

3. New equilibrium constant: $K_{2}=K_{1} / 2=3.6$.

Equilibrium amounts: $n(\mathrm{AB})=1.5 \mathrm{~mol}, n\left(\mathrm{~A}_{2}\right)=1.25 \mathrm{~mol}, n\left(\mathrm{~B}_{2}\right)=0.25+x \mathrm{~mol}$,
$K_{2}=\frac{1.5^{2}}{1.25 \cdot(0.25+x)}=3.6$,
$x=0.25 \mathrm{~mol}=25 \%$ of initial amount of B_{2} should be added.

$$
\begin{aligned}
& \begin{array}{l}
1 \\
\mathrm{~A}_{2}
\end{array}+\mathrm{B}_{2}=2 \mathrm{AB} \\
& \begin{array}{ccc}
y & y & 2 y \\
1-y & 1-y & 2 y
\end{array} \\
& K_{1}=\frac{n(\mathrm{AB})^{2}}{n\left(\mathrm{~A}_{2}\right) n\left(\mathrm{~B}_{2}\right)}=\frac{(2 y)^{2}}{(1-y) \cdot(1-y)}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
2 \\
\mathrm{~A}_{2}+\mathrm{B}_{2}=2 \mathrm{AB}
\end{array} \\
& \begin{array}{ccc}
x & x & 2 x \\
2-x & 1-x & 2 x
\end{array} \\
& n(\mathrm{AB})=2 x=n\left(\mathrm{~A}_{2}\right)+n\left(\mathrm{~B}_{2}\right)=(2-x)+(1-x), \\
& x=0.75
\end{aligned}
$$

4. Consider two initial mixtures: $\mathrm{A}_{2}: \mathrm{B}_{2}=x: 1$ and $\mathrm{A}_{2}: \mathrm{B}_{2}=1 / x: 1=1: x$. It is clear that in both cases the equilibrium yield is the same, hence $\eta(x)=\eta(1 / x)$. The value $x=1$ for such functions is the extremum point. We can prove it in the following way. Consider the identity:

$$
\eta(1)-\eta(x)=\eta(1)-\eta\left(\frac{1}{x}\right)
$$

near the point $x=1$. If $\eta(x)$ is an increasing or decreasing function at $x=1$, then near this point both sides of the identity will have opposite signs. Hence, either $\eta(x)=$ const (which is chemical nonsense), or $x=1$ is the point of extremum.
5. a) At $x \rightarrow \infty$ the very large amount of A_{2} will almost completely shift the equilibrium $A_{2}+B_{2}=2 A B$ to the right, and almost all B_{2} will be converted to $A B$, the yield will tend to 1 , $\eta(x \rightarrow \infty) \rightarrow 1$.
b) At $x \rightarrow 0(1 / x \rightarrow \infty)$ the situation is the same as in (a) if we interchange A_{2} and B_{2}, that is $\eta(x \rightarrow 0) \rightarrow 1$.
6. From question 5 it follows that at $x=1$ the function $\eta(x)$ has a minimum, because at $x=0$ or $x=\infty$ it approaches the maximum possible value of 1 . Qualitatively, the graph is as follows:

7. Suppose we have in total 1 mol of A_{2} and B_{2}, and the molar ratio $\mathrm{A}_{2}: \mathrm{B}_{2}=x: 1$. Then, the initial amounts of reagents are: $n\left(\mathrm{~A}_{2}\right)=x /(x+1), n\left(\mathrm{~B}_{2}\right)=1 /(x+1)$. It follows from the symmetry between A_{2} and B_{2} that the equilibrium amount of $A B$ will be the same for the molar ratios x and $1 / x$, hence $x=1$ corresponds to the maximum or minimum $n_{\mathrm{eq}}(\mathrm{AB})$.

If x is very large (small), then the initial amount of $\mathrm{B}_{2}\left(\mathrm{~A}_{2}\right)$ will be small and so will be $n_{\text {eq }}(A B)$. Therefore, the maximum amount of $A B$ will be obtained at $A_{2}: B_{2}=1: 1$. The equilibrium calculation for this case is as follows.

$$
\begin{aligned}
& 0.5 \quad 0.5 \\
& \mathrm{~A}_{2}+\underset{\mathrm{B}_{2}}{y}=2 \mathrm{AB} \\
& y=\underset{y}{y} \\
& 0.5-y \quad 0.5-y \quad 2 y \\
& K=\frac{n(\mathrm{AB})^{2}}{n\left(\mathrm{~A}_{2}\right) n\left(\mathrm{~B}_{2}\right)}=\frac{(2 y)^{2}}{(0.5-y)^{2}} \\
& y=\frac{\sqrt{K}}{4+2 \sqrt{K}} \\
& n_{\mathrm{eq}}(\mathrm{AB})=\frac{\sqrt{K}}{2+\sqrt{K}}
\end{aligned}
$$

Problem 8. Copper sulfate and its hydrates

1. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.
2. The Clausius-Clapeyron equation for the decomposition of a solid hydrate:

$$
\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}=\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

has the form:

$$
\frac{d p_{h}}{d T}=\frac{\Delta H_{d}}{T \Delta V} \approx \frac{p_{h} \Delta H_{d}}{2 R T^{2}},
$$

where p_{h} is the vapor pressure of water over the hydrate, ΔH_{d} is the enthalpy of decomposition. The solution of this equation is:

$$
p_{h}=p_{h 0} \exp \left(\frac{\Delta H_{d}}{2 R}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)\right),
$$

where $p_{h 0}=1047 \mathrm{~Pa}$ is the saturated vapor pressure over $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $T_{0}=298 \mathrm{~K}$. Enthalpy of decomposition of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is: $\Delta H_{d}=2 \cdot(-241.83)-1688.7+2277.4=105.04 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.

The similar equation describes the temperature dependence of the vapor pressure of water p_{w} :

$$
p_{w}=p_{w 0} \exp \left(\frac{\Delta H_{\mathrm{vap}}}{R}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)\right)
$$

The enthalpy of vaporization of water is: $\Delta H_{\text {vap }}=-241.83+285.83=44.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. The humidity is the ratio of two vapor pressures:

$$
\frac{p_{h}}{p_{w}}=\frac{p_{h 0}}{p_{w 0}} \exp \left(\frac{\Delta H_{d} / 2-\Delta H_{\mathrm{vap}}}{R}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)\right)=0.35
$$

From this equation we find the required temperature:

$$
\begin{gathered}
\frac{1}{T}=\frac{1}{T_{0}}-\frac{R}{\Delta H_{d} / 2-\Delta H_{\text {vap }}} \ln \frac{0.35 p_{w 0}}{p_{h 0}}=\frac{1}{298}-\frac{8.314}{(105.04 / 2-44) \cdot 10^{3}} \ln \frac{0.35 \cdot 3200}{1047}=0.00329 \\
T_{0}=\frac{1}{0.00329}=304 \mathrm{~K} \text { or } 31^{\circ} \mathrm{C} .
\end{gathered}
$$

3. b)
4. After several repetitions of the procedure, the equilibrium is established between the anhydrous copper sulfate and its monohydrate: $\mathrm{CuSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}=\mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$. In this case the saturated vapor pressure of water over its solution in ethanol is equal to the saturated vapor pressure of water over $\mathrm{CuSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. Thus, $p_{h}=p_{w} \gamma x, x=\frac{p_{h}}{p_{w} \gamma}=0.0136$, the mass fraction of water is:

$$
w\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{x M\left(\mathrm{H}_{2} \mathrm{O}\right)}{x M\left(\mathrm{H}_{2} \mathrm{O}\right)+(1-x) M\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)}=0.0054, \text { or } 0.54 \% .
$$

5. Enthalpy of decomposition of $\mathrm{CuSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ is: $\Delta H_{d}=-241.83-770.4+1084.4=72.17$ $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$. From the equations above it follows that:

$$
x=\frac{p_{h}}{p_{w} \gamma}=\frac{p_{h 0}}{\gamma p_{w 0}} \exp \left(\frac{\Delta H_{d}-\Delta H_{\mathrm{vap}}}{R}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)\right)
$$

At $T=273 \mathrm{~K}, x=0.0048, w=0.19 \%$; at $T=313 \mathrm{~K} x=0.0235, w=0.93 \%$.

Problem 9. TOF and TON

1. The TOF unit is $\left\{\right.$ time $\left.^{-1}\right\}$. SI unit for TOF is $\left\{\mathrm{s}^{-1}\right\}$.

TOF relates to TON by the equation

$$
T O F \times t=T O N,
$$

where t is the time till the moment of inactivation of a catalyst. The formula gives the upper limit for TON. It assumes that the catalyst works with its best efficiency (TOF) all the time and becomes inactivated suddenly, in a moment. It is more realistic to assume that TOF goes down gradually. Then the following relation is valid:

$$
T O F \times t \geq T O N
$$

2. a) TOF is a maximum value of

$$
\begin{equation*}
\frac{\Delta N_{\mathrm{B}}}{\Delta t \cdot 10^{15}} \tag{1}
\end{equation*}
$$

Maximum of $\Delta N_{\mathrm{B}} / \Delta t$ corresponds to the initial linear part of the curve in Fig. 1a and is equal to

$$
\frac{\Delta N_{\mathrm{B}}}{\Delta t}=\tan \alpha=\left(\frac{7}{2}\right) \cdot 10^{-8} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \cdot \mathrm{~s}}=21 \cdot 10^{15} \frac{\mathrm{molec}}{\mathrm{~cm}^{2} \cdot \mathrm{~s}}
$$

TOF is equal to

$$
T O F=\frac{\Delta N_{\mathrm{B}}}{\Delta t \cdot 10^{15}}=21
$$

b) There are several curves in Fig. 1b. It is obvious that the value of $\Delta N_{\mathrm{B}} / \Delta t$ for the initial linear parts of the curves goes up with the increase of the initial pressures of the reagent A. However for curves (10) and (11) the initial slopes $\Delta N_{\mathrm{B}} / \Delta t$ are the same. It means that the maximum efficiency of the catalyst is achieved. Now $\Delta N_{\mathrm{B}} / \Delta t$ is independent of the reagent pressure and no more A can be converted into products per unit of time per catalytic site. The initial slopes of the curves (10) and (11) should be used to calculate TOF and TON

$$
\frac{\Delta N_{\mathrm{B}}}{\Delta t \cdot 10^{15}}=210 \mathrm{~s}^{-1} ; \quad T O N \leq T O F \times t=210 \cdot 40 \cdot 60=5 \cdot 10^{5}
$$

3. a) The slope of the linear dependence in Fig. 2a should be used to calculate TOF:

$$
T O F=\tan \alpha=6 \mathrm{~s}^{-1}
$$

It is assumed that every single atom of the metal forms a catalytic site and works independently. TOF is independent of the amount of atoms deposited.
b) In this case a group of n atoms, rather than a single atom, forms a catalytic site. The number of catalytic sites is

$$
k=\frac{N_{\mathrm{B}}}{T O F}=\frac{18 \cdot 6.02 \cdot 10^{23} \cdot 10^{-11}}{35}=3.1 \cdot 10^{12} \mathrm{molec} / \mathrm{cm}^{2},
$$

and the number of atoms n in one catalytic site is equal to:

$$
n=\frac{N_{\text {Cat }}}{k}=\frac{N_{\text {Cat }}}{N_{\mathrm{B}}} T O F=\frac{7 \cdot 10^{12}}{3.1 \cdot 10^{12}}=2.2 \approx 2
$$

4) The authors of this study considered every single Au atom to be a catalytic site. One has to calculate the number of Au atoms involved in the catalytic process in Fig. 3a and 3b. In the case (b), all yellow spheres are taking part in the reaction. In the case (a), $1 / 3$ of the yellow spheres from the lower monolayer are involved together with all red spheres. $2 / 3$ of the yellow
spheres are blocked by the red spheres from the top and do not participate in the catalytic reaction.

Let N_{Au} be the number of the yellow spheres in Fig. 3b. The number of the red spheres in Fig. 3a is equal to $1 / 3 N_{\text {Au }}$. The total number of Au atoms involved in catalytic reaction in Fig. 3a is $1 / 3 N_{\mathrm{Au}}$ (red) $+1 / 3 N_{\mathrm{Au}}$ (yellow). The rate of the reaction in case (a) is:

$$
r_{2}=4 r_{1}=r_{2}(\mathrm{red})+\frac{1}{3} r_{1},
$$

where r_{2} (red) and $1 / 3 r_{1}$ are partial rates for the red and yellow spheres, respectively.

$$
\text { Finally, } \quad \frac{\operatorname{TOF}(\mathrm{a})}{\operatorname{TOF}(\mathrm{b})}=\frac{4 r_{1}-\frac{1}{3} r_{1}}{\frac{1}{3} N_{\mathrm{Au}}}: \frac{r_{1}}{N_{\mathrm{Au}}}=\frac{3\left(11 / 3 r_{1}\right)}{r_{1}}=11
$$

Problem 10. Kinetic puzzles

Below are given the mechanisms of these reactions, established by various experimental methods. However, the limited data given in the text of a problem allow multiple mechanisms. Therefore the only two criteria for the correct solutions are: 1) the consistency of the mechanism with the rate law; 2) the chemical sense.

1. The schematic mechanism is:

$$
\begin{array}{lll}
2 \mathrm{H}^{+}+\mathrm{Br}^{-}+\mathrm{MnO}_{4}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br} & K & \text { fast } \\
\mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br}+\mathrm{H}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{H}_{3} \mathrm{MnO}_{4}+\mathrm{Br}_{2} & k & \text { limiting } \\
\mathrm{H}_{3} \mathrm{MnO}_{4} \rightarrow \text { products } & & \text { fast }
\end{array}
$$

At low concentrations of proton and bromide the equilibrium of the first reaction is shifted to the left, hence the concentration of the complex $\mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br}$ is

$$
\left[\mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br}\right]=K\left[\mathrm{MnO}_{4}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2} \approx K c\left(\mathrm{MnO}_{4}^{-}\right) c\left(\mathrm{Br}^{-}\right) c^{2}\left(\mathrm{H}^{+}\right)
$$

At high concentrations of proton and bromide the equilibrium of the first reaction is shifted to the right, hence the concentration of complex $\mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br}$ equals the total concentration of permanganate:

$$
\left[\mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br}\right] \approx c\left(\mathrm{MnO}_{4}^{-}\right)
$$

The rate of the reaction

$$
2 \mathrm{MnO}_{4}^{-}+10 \mathrm{Br}^{-}+16 \mathrm{H}^{+}=2 \mathrm{Mn}^{2+}+5 \mathrm{Br}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

is half of that of the rate-determining step:

$$
r=1 / 2 k\left[\mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]
$$

in the case (a)

$$
r=1 / 2 k\left[\mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right] \approx k_{\mathrm{eff}} c\left(\mathrm{MnO}_{4}^{-}\right) c^{2}\left(\mathrm{Br}^{-}\right) c^{3}\left(\mathrm{H}^{+}\right)
$$

where $k_{\text {eff }}=1 / 2 k K$.
In the case (b)

$$
r=1 / 2 k\left[\mathrm{H}_{2} \mathrm{MnO}_{4} \mathrm{Br}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right] \approx k_{\mathrm{eff}} c\left(\mathrm{MnO}_{4}^{-}\right) c\left(\mathrm{Br}^{-}\right) c\left(\mathrm{H}^{+}\right)
$$

where $k_{\text {eff }}=1 / 2 k$.
2. The catalytic effect of silver is due to formation of silver(II) ions and sulfate ion radicals upon reaction of Ag^{+}with persulfate. The mechanism is:

$$
\begin{array}{ll}
\mathrm{Ag}^{+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow \cdot \mathrm{SO}_{4}^{-}+\mathrm{SO}_{4}^{2-}+\mathrm{Ag}^{2+} & \text { slow, rate-determining } \\
\cdot \mathrm{SO}_{4}^{-}+\mathrm{PhCONH}_{2} \rightarrow \text { products } & \text { fast } \\
\mathrm{Ag}^{2+}+\mathrm{PhCONH}_{2} \rightarrow \text { products } & \text { fast }
\end{array}
$$

The first reaction is the rate-determining step; therefore the overall oxidation reaction has the same order as the rate-determining step:

$$
r=k\left[\mathrm{Ag}^{+}\right]\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]
$$

3. The minimal mechanism includes the following steps:

$$
\begin{array}{lll}
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \cdot \mathrm{SO}_{4}^{-} & k_{1} & \text { very slow } \\
\mathrm{HCOO}^{-}+\cdot \mathrm{SO}_{4}^{-} \rightarrow \mathrm{H}^{+}+\cdot \mathrm{CO}_{2}^{-}+\mathrm{SO}_{4}^{2-} & k_{2} & \text { fast } \\
\cdot \mathrm{CO}_{2}^{-}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow \cdot \mathrm{SO}_{4}^{-}+\mathrm{CO}_{2}+\mathrm{SO}_{4}^{2-} & k_{3} & \text { fast } \\
\cdot \mathrm{CO}_{2}^{-}+\cdot \mathrm{SO}_{4}^{-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{CO}_{2} & k_{4} & \text { fast }
\end{array}
$$

The second and the third reaction make a chain process involving consumption of peroxydisulfate and formate. The first reaction is very slow, so most of peroxydisulfate is consumed in the third reaction. Applying the steady-state approximation to $\cdot \mathrm{SO}_{4}{ }^{-}$and $\cdot \mathrm{CO}_{2}{ }^{-}$we get:

$$
\begin{gathered}
2 r_{1}-r_{2}+r_{3}-r_{4}=0 \\
r_{2}-r_{3}-r_{4}=0
\end{gathered}
$$

Hence

$$
\begin{gathered}
r_{1}=r_{4} \\
r_{2}-r_{3}=r_{1}
\end{gathered}
$$

Since the rate of the first reaction is very low, then

$$
r_{1}=r_{4}
$$

$$
r_{2}=r_{3}
$$

Applying the rate laws we get:

$$
\begin{gathered}
k_{1}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]=k_{4}\left[\cdot \mathrm{CO}_{2}^{-}\right]\left[\cdot \mathrm{SO}_{4}^{-}\right] \\
k_{2}\left[\mathrm{HCOO}^{-}\right]\left[\cdot \mathrm{SO}_{4}^{-}\right]=k_{3}\left[\cdot \mathrm{CO}_{2}^{-}\right]\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]
\end{gathered}
$$

Hence

$$
\begin{gathered}
{\left[\cdot \mathrm{CO}_{2}^{-}\right]=\left(k_{1} k_{2}\right)^{1 / 2}\left(k_{3} k_{4}\right)^{-1 / 2}\left[\mathrm{HCOO}^{-}\right]^{1 / 2}} \\
{\left[\cdot \mathrm{SO}_{4}^{-}\right]=\left(k_{1} k_{3}\right)^{1 / 2}\left(k_{2} k_{4}\right)^{-1 / 2}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{HCOO}^{-}\right]^{-1 / 2}}
\end{gathered}
$$

The rate of the reaction is equal to the rate of formate consumption:

$$
r=r_{2}=k_{2}\left[\mathrm{HCOO}^{-}\right]\left[\cdot \mathrm{SO}_{4}^{-}\right]=\left(k_{1} k_{2} k_{3}\right)^{1 / 2} k_{4}{ }^{-1 / 2}\left[\mathrm{HCOO}^{-}\right]^{1 / 2}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]=k_{\mathrm{eff}}\left[\mathrm{HCOO}^{-}\right]^{1 / 2}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]
$$

A more complex mechanism includes the formation of OH radicals and several chain termination reactions. That's why the given rate law is valid only for a limited range of reactant concentrations.
4. The rate-determining step is the addition of azide ion to the solvent, carbon disulfide:

The oxidation of this ion by iodine is a series of fast reactions. The overall rate of the reaction

$$
\mathrm{I}_{2}+2 \mathrm{~N}_{3}^{-}=3 \mathrm{~N}_{2}+2 \mathrm{I}^{-}
$$

is half of that of the azide- CS_{2} reaction:

$$
r=1 / 2 k\left[\mathrm{~N}_{3}{ }^{-}\right]\left[\mathrm{CS}_{2}\right] .
$$

Introducing the effective constant $k_{\text {eff }}=1 / 2 k\left[\mathrm{CS}_{2}\right]$ we get:

$$
r=k_{\mathrm{eff}}\left[\mathrm{~N}_{3}^{-}\right] .
$$

5. The reaction mechanism includes several steps. The first step is the reversible addition of DABCO to ester:

The next two steps are the reversible additions of two molecules of aldehyde to the zwitter ion formed in the previous step:

The rate-determining step is an intramolecular proton transfer followed by the elimination of DABCO:

After that, the product rapidly eliminates one molecule of aldehyde. Applying quasi-equilibrium conditions to the first three steps, we get:

$$
r=k_{\mathrm{RDS}} K_{1} K_{2} K_{3}[\text { aldehyde }]^{2}[\text { ester }][\mathrm{DABCO}]=k_{\text {eff }}[\text { aldehyde }]^{2}[\text { ester }][\mathrm{DABCO}]
$$

It is worth mentioning that in protic solvents the rate-determining step is the solvent-assisted proton transfer in DABCO-ester-aldehyde adduct, hence the reaction order is one with respect to either aldehyde, or ester or base.
6. The first step of the reaction is the reversible addition of peroxyacid anion to the carboxylic group of peroxyacid:

The next, rate-determining step is a decomposition of the addition product:

Applying a quasi-equilibrium approximation, we get:

$$
r=k_{\text {eff }}\left[\mathrm{RCO}_{3} \mathrm{H}\right]\left[\mathrm{RCO}_{3}^{-}\right]
$$

The concentrations of peroxyacid and its anion are related to the total concentration of peroxy compound $c\left(\mathrm{RCO}_{3} \mathrm{H}\right)$ and proton concentration $\left[\mathrm{H}^{+}\right]$as follows:

$$
\left[\mathrm{RCO}_{3} \mathrm{H}\right]=\frac{\left[\mathrm{H}^{+}\right]}{K_{a}+\left[\mathrm{H}^{+}\right]} c\left(\mathrm{RCO}_{3} \mathrm{H}\right) \quad\left[\mathrm{RCO}_{3}^{-}\right]=\frac{K_{a}}{K_{a}+\left[\mathrm{H}^{+}\right]} c\left(\mathrm{RCO}_{3} \mathrm{H}\right),
$$

where K_{a} is the acidity constant of peroxyacid. Substituting these concentrations to the rate law we obtain:

$$
r=c^{2}\left(\mathrm{RCO}_{3} \mathrm{H}\right) \frac{k_{e f f} K_{a}\left[\mathrm{H}^{+}\right]}{\left(K_{a}+\left[\mathrm{H}^{+}\right]\right)^{2}}=c^{2}\left(\mathrm{RCO}_{3} \mathrm{H}\right) \frac{k_{1}\left[\mathrm{H}^{+}\right]}{\left(k_{2}+\left[\mathrm{H}^{+}\right]\right)^{2}}
$$

Note that at given $c\left(\mathrm{RCO}_{3} \mathrm{H}\right)$ the reaction rate is maximum if $\left[\mathrm{RCO}_{3} \mathrm{H}\right]=\left[\mathrm{RCO}_{3}^{-}\right]$(and $\left[\mathrm{H}^{+}\right]=$ K_{a}).

Problem 11. Black box

Since this is a reactor with ideal stirring, the concentrations of substances in the output flow are equal to the concentrations inside the reactor. In a stationary state, the concentrations and quantities of substances in the reactor are constant. Consider the material balance with respect to X, Y and P .

Stationary conditions are:

$$
\begin{equation*}
\frac{\Delta v_{X, R}}{\Delta t}=0 \quad \frac{\Delta v_{Y, R}}{\Delta t}=0 \quad \frac{\Delta v_{P, R}}{\Delta t}=0, \tag{1}
\end{equation*}
$$

where $\Delta v_{X, R}, \Delta v_{Y, R}, \Delta v_{P, R}$ are the changes of the quantities for the substances X, Y and P in the reactor during time Δt. The quantity of the substance in the reactor may change due to input flow, chemical reaction, and output flow:

$$
\begin{equation*}
\frac{\Delta v_{X, R}}{\Delta t}=\left(\frac{\Delta v_{X, R}}{\Delta t}\right)_{\text {input }}+\left(\frac{\Delta v_{X, R}}{\Delta t}\right)_{\text {reaction }}+\left(\frac{\Delta v_{X, R}}{\Delta t}\right)_{\text {output }} \tag{2}
\end{equation*}
$$

The same is true for Y and P .
Input flow rates of the substances are

$$
\begin{equation*}
\left(\frac{\Delta v_{X, R}}{\Delta t}\right)_{\text {input }}=f_{X} c_{X, I} \quad\left(\frac{\Delta v_{Y, R}}{\Delta t}\right)_{\text {input }}=f_{Y} c_{Y, I} \quad\left(\frac{\Delta v_{P, R}}{\Delta t}\right)_{\text {input }}=0, \tag{3}
\end{equation*}
$$

where f_{X} and f_{Y} are the input volumetric flows of the solutions of X and $\mathrm{Y}, c_{\mathrm{X}, \mathrm{I}}$ and $c_{\mathrm{Y}, \mathrm{I}}$ concentrations of X and Y in the respective solutions.

Let the balanced reaction equation be

$$
n_{\mathrm{X}} \mathrm{X}+n_{\mathrm{Y}} \mathrm{Y}=n_{\mathrm{P}} \mathrm{P}
$$

where $n_{\mathrm{X}}, n_{\mathrm{Y}}$ and n_{P} are the stoichiometric coefficients for the corresponding substances. Due to a chemical reaction the quantities of the substances in the reactor change with the rates

$$
\begin{equation*}
\left(\frac{\Delta v_{X, R}}{\Delta t}\right)_{\text {reaction }}=-n_{X} r V_{R} \quad\left(\frac{\Delta v_{Y, R}}{d t}\right)_{\text {reaction }}=-n_{Y} r V_{R} \quad\left(\frac{\Delta v_{P, R}}{\Delta t}\right)_{\text {reaction }}=n_{P} r V_{R}, \tag{4}
\end{equation*}
$$

where r - the reaction rate, V_{R} - the reactor volume.
The output flows of the substances are:

$$
\begin{equation*}
\left(\frac{\Delta v_{X, R}}{\Delta t}\right)_{\text {output }}=f_{o} c_{X, R}\left(\frac{\Delta v_{Y, R}}{\Delta t}\right)_{\text {output }}=f_{o} c_{Y, R} \quad\left(\frac{\Delta v_{P, R}}{\Delta t}\right)_{\text {output }}=f_{o} c_{P, R}, \tag{5}
\end{equation*}
$$

where f_{O} is the volumetric output flow, $c_{\mathrm{X}, \mathrm{R}}, c_{\mathrm{Y}, \mathrm{R}}$ and $c_{\mathrm{P}, \mathrm{R}}$ - the concentrations of substances X, Y and P in the reactor. Since the process is stationary and the reaction proceeds in the liquid phase, the output volumetric flow equals the sum of input volumetric flows:

$$
\begin{equation*}
f_{O}=f_{X}+f_{Y} \tag{6}
\end{equation*}
$$

Thus the material balance equations (2) considering expressions (1) and (3)-(6) are

$$
\begin{gathered}
\frac{\Delta v_{X, R}}{\Delta t}=f_{X} c_{X, I}-n_{X} r V_{R}-c_{X, R}\left(f_{X}+f_{Y}\right)=0 \\
\frac{\Delta v_{Y, R}}{\Delta t}=f_{Y} c_{Y, I}-n_{Y} r V_{R}-c_{Y, R}\left(f_{X}+f_{Y}\right)=0 \\
\frac{\Delta v_{P, R}}{\Delta t}=n_{P} r V_{R}-c_{P, R}\left(f_{X}+f_{Y}\right)=0
\end{gathered}
$$

Hence

$$
\begin{gathered}
n_{X} r V_{R}=f_{X} c_{X, I}-c_{X, R}\left(f_{X}+f_{Y}\right) \\
n_{Y} r V_{R}=f_{Y} c_{Y, I}-c_{Y, R}\left(f_{X}+f_{Y}\right) \\
n_{P} r V_{R}=c_{P, R}\left(f_{X}+f_{Y}\right)
\end{gathered}
$$

Exp. no.	$n_{\mathrm{X}} r V_{\mathrm{R}}, \mathrm{mol} / \mathrm{s}$	$n_{\mathrm{Y}} r V_{\mathrm{R}}, \mathrm{mol} / \mathrm{s}$	$n_{\mathrm{P}} r V_{\mathrm{R}}, \mathrm{mol} / \mathrm{s}$	$n_{\mathrm{X}}: n_{\mathrm{Y}}: n_{\mathrm{P}}$
1	10.02	20.04	10.02	$1: 2: 1$
2	10.04	20.07	10.05	$1: 2: 1$
3	15.73	31.47	15.72	$1: 2: 1$
4	19.68	39.34	19.68	$1: 2: 1$

Hence the balanced reaction equation is

$$
X+2 Y=P
$$

Now consider the rate dependence on concentrations

Exp. no.	$c_{\mathrm{X}, \mathrm{R}}, \mathrm{mol} / \mathrm{m}^{3}$	$c_{\mathrm{Y}, \mathrm{R}}, \mathrm{mol} / \mathrm{m}^{3}$	$c_{\mathrm{P}, \mathrm{R}}, \mathrm{mol} / \mathrm{m}^{3}$	$r V_{\mathrm{R}}, \mathrm{mol} / \mathrm{s}$
1	299	48.2	501	10.02
2	732	30.9	335	10.04
3	8.87	351	524	15.73
4	308	66.6	492	19.68

The rate law is

$$
r=k c_{X, R}^{x} R_{Y, R}^{y} c_{P, R}^{p}
$$

or, after multiplying by reactor volume,

$$
r V_{R}=k V_{R} c_{X, R}^{x} c_{Y, R}^{y} c_{P, R}^{p}
$$

Take the logarithm of both parts of the equation

$$
\begin{equation*}
\ln \left(r V_{R}\right)=\ln \left(k V_{R}\right)+x \ln c_{X, R}+y \ln c_{Y, R}+p \ln c_{P, R} \tag{7}
\end{equation*}
$$

The coefficients in this equation are given in the table below:

Exp. no.	$\ln c_{X, R}$	$\ln c_{Y, R}$	$\ln c_{P, R}$	$\ln \left(r V_{\mathrm{R}}\right)$
1	5.70	3.88	6.22	2.30
2	6.60	3.43	5.81	2.31
3	2.18	5.86	6.26	2.76
4	5.73	4.20	6.20	2.98

Solving the system of equations (7) we get:

$$
x=1.00 \quad y=2.00 \quad p=0.01 \quad \ln \left(k V_{\mathrm{R}}\right)=-11.20
$$

Hence the orders of the reaction are one in X , two in Y , and zero in P . The product $k V_{\mathrm{R}}$ is:

$$
k V_{\mathrm{R}}=\exp (-11.20)=1.37 \cdot 10^{-5} \mathrm{~m}^{9} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}
$$

One of the possible mechanisms that match the obtained rate law is:

$$
\begin{array}{ll}
\mathrm{X}+\mathrm{Y} \leftrightarrow \mathrm{I} & \text { fast } \\
\mathrm{I}+\mathrm{Y} \rightarrow \mathrm{P} & \text { slow, rate-determining }
\end{array}
$$

Summarizing, the obtained results are:

- the reaction equation: $\mathrm{X}+2 \mathrm{Y}=\mathrm{P}$;
- the reaction orders: 1,2 , and 0 with respect to X, Y, and P respectively;
- the product of the rate constant and reactor volume: $k V_{\mathrm{R}}=1.37 \cdot 10^{-5} \mathrm{~m}^{9} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{~s}^{-1}$.

Problem 12. Chlorination of styrenes

1. Since all reaction pathways obey the same rate law, the quantity of the product is proportional to the respective rate constant. The overall constant equals the sum of constants for different pathways. Hence
for 1,2-dichloro:

$$
k=1.45 \cdot 10^{4} \frac{61 \%}{100 \%}=8.8 \cdot 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

for 1-acetoxy-2-dichloro:

$$
k=1.45 \cdot 10^{4} \frac{30 \%}{100 \%}=4.4 \cdot 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

for 2-chlorostyrene:

$$
k=1.45 \cdot 10^{4} \frac{9 \%}{100 \%}=1.3 \cdot 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

2. This reaction is not stereospecific and leads to the formation of diastereomeric addition products in comparable amounts. The following products are obtained (approximate ratios of product quantities at $25^{\circ} \mathrm{C}$ are given as an illustration):

1,2-dichloro:

enantiomers

enantiomers

:3

1-acetoxy-2-chloro:

enantiomers

enantiomers

2-chlorostyrene:

~1:3
The chiral sorbent is unable to separate enantiomers, so only 6 different fractions can be obtained. The chiral sorbent allows full separation, so in this case the determined number of products is 10 .

Problem 13. The dense and hot ice

1. The boiling point of water and the melting point of ice V increase, and the melting point of ordinary ice decreases with the increasing pressure. This can be easily explained using the Le Chatelier principle. In the phase transitions

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

and

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{ice}, \mathrm{~V})} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

the volume increases and heat is absorbed $(\Delta V>0, \Delta H>0)$. Hence, with the increasing pressure both equilibria are shifted to the left; consequently, temperature should be increased to keep the equilibria.

In the phase transition

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{ice}, \mathrm{l})} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

the volume decreases and heat is absorbed ($\Delta V<0, \Delta H>0$). Hence, with the increasing pressure the phase equilibrium is shifted to the right, and temperature should be decreased to keep the equilibrium.
2. a) $250 \mathrm{~K}:$ vapor \rightarrow ice $\mathrm{I} \rightarrow$ ice III \rightarrow ice $\mathrm{V} \rightarrow$ ice VI
b) $400 \mathrm{~K}: \quad$ vapor \rightarrow liquid \rightarrow ice VII
c) 700 K : only vapor (at high pressure it may be called "supercritical fluid"), no phase transitions occur.
3. Phase transitions between condensed phases are described by the Clapeyron equation:

$$
\frac{d p}{d T}=\frac{\Delta H}{T \Delta V}
$$

or, in approximate form:

$$
\frac{\Delta p}{\Delta T}=\frac{\Delta H}{T \Delta V}
$$

We calculate the right side of this equation for the ice $I \rightleftharpoons$ water transition. The volume change is determined from the densities:

$$
\begin{aligned}
& \Delta V=V(\text { water })-V(\text { ice })=\frac{M\left(\mathrm{H}_{2} \mathrm{O}\right)}{\rho(\text { water })}-\frac{M\left(\mathrm{H}_{2} \mathrm{O}\right)}{\rho(\text { ice })}=\frac{18}{1.000}-\frac{18}{0.917}=-1.63 \mathrm{~cm}^{3} / \mathrm{mol} \\
& \frac{\Delta p}{\Delta T}=\frac{\Delta H}{T \Delta V}=\frac{6010 \mathrm{~J} / \mathrm{mol}}{273 \mathrm{~K} \cdot\left(-1.63 \cdot 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}\right)}=-1.35 \cdot 10^{7} \mathrm{~Pa} / \mathrm{K}=-13.5 \mathrm{MPa} / \mathrm{K} .
\end{aligned}
$$

If this slope does not depend on pressure and temperature then at the pressure of 210 MPa the temperature of liquid water in equilibrium with ice I and Ice III is approximately:

$$
T=273+\Delta T=273+\frac{210-0.1}{-13.5}=-257.5 \mathrm{~K}=-15.5^{\circ} \mathrm{C} .
$$

This is an estimate; the real value is $-22^{\circ} \mathrm{C}$. The difference between the estimated and real values is due to the fact that the enthalpy of fusion and densities vary with pressure. For example, at 210 MPa the enthalpy of fusion of ice I is $4230 \mathrm{~J} / \mathrm{mol}$ (instead of 6010 at normal pressure), and the volume change is $\Delta V=-2.43 \mathrm{~cm}^{3} / \mathrm{mol}$ (instead of $-1.63 \mathrm{~cm}^{3} / \mathrm{mol}$ at normal pressure).
4. From the Clapeyron equation it follows that the slope of the $p(T)$ dependencies for the melting points of ice III to ice VII is determined by $\Delta H, T$, and ΔV. The first quantity is assumed to be the same for all transitions, the temperature is comparable in all cases, hence the main
contribution to the slope comes from ΔV. For ice VII, the slope is the smallest, hence, the $\Delta V=$ V (water) - V (ice) is the largest, whereas V (ice) is the smallest. It means that ice VII is the densest form of ice (among those forms that are shown on the phase diagram).

From the phase diagram we see that the melting point of ice VII at a pressure of 10 GPa is about 630 K . This is, indeed, a very "hot" ice.
5. Determine the molar volume of ice VII. One mole contains $N_{\mathrm{A}} / 2$ cubic unit cells:

$$
V_{\mathrm{m}}=\frac{N_{\mathrm{A}}}{2} d^{3}=3.01 \cdot 10^{23} \cdot\left(0.335 \cdot 10^{-7}\right)^{3}=11.3 \mathrm{~cm}^{3} / \mathrm{mol} .
$$

The density of ice VII is:

$$
\rho=M / V_{\mathrm{m}}=18 / 11.3=1.59 \mathrm{~g} / \mathrm{cm}^{3} .
$$

6. Knowing the density of ice VII, we use the Clapeyron equation to estimate its enthalpy of fusion. Comparing the triple point "water - ice VI - ice VII" and the melting point of ice VII at pressure 10 GPa we estimate the slope: $\Delta p / \Delta T=\left(10^{4}-2200\right) /(630-355)=28 \mathrm{MPa} / \mathrm{K}$. The volume change during melting is: $\Delta V=(18 / 1.00)-11.3=6.7 \mathrm{~cm}^{3} / \mathrm{mol}$. Substituting these data into the Clapeyron equation, we get:

$$
\Delta H=T \Delta V \frac{\Delta p}{\Delta T}=355 \mathrm{~K} \cdot\left(6.7 \cdot 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}\right) \cdot\left(28 \cdot 10^{6} \mathrm{~Pa} / \mathrm{K}\right)=66000 \mathrm{~J} / \mathrm{mol} .
$$

This value is by an order of magnitude larger than the exact value $6400 \mathrm{~J} / \mathrm{mol}$. The reason is probably due to a low resolution of the phase diagram at high pressures, which leads to a rough estimate of the slope. This result also shows that the approximations used are not valid at high pressures and temperatures.

Problem 14. Redox reactions in photosynthesis

1. Applying the Nernst equation for a half-reaction

$$
\mathrm{Ox}+m \mathrm{H}^{+}+n e \rightarrow \mathrm{R}
$$

and putting $\left[\mathrm{H}^{+}\right]=10^{-7}$, we get a standard biochemical redox potential:

$$
E^{\circ \prime}=E^{\circ}+\frac{0.0591}{n} \lg \left(10^{-7}\right)^{m}=E^{\circ}-0.414 \frac{\mathrm{~m}}{\mathrm{n}}
$$

Half-reaction	$E^{\circ}(\mathrm{V})$	$E^{\circ}(\mathrm{V})$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	1.23	0.82
$\mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{H}_{2} \mathrm{~S}$	0.14	-0.27
Plastoquinone $+2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow$ Plastoquinone $\cdot \mathrm{H}_{2}$	0.52	0.11
Cytochrome $\mathrm{f}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e} \rightarrow$ Cytochrome $\mathrm{f}\left(\mathrm{Fe}^{2+}\right)$	0.365	0.365
$\mathrm{NADP}^{+}+\mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{NADP} \cdot \mathrm{H}$	-0.11	-0.32
$\mathrm{P} 680^{+}+\mathrm{e} \rightarrow \mathrm{P} 680$	1.10	1.10
$\mathrm{Chlorophyll}^{+}+\mathrm{e} \rightarrow$ Chlorophyll	0.78	0.78

2. The standard electromotive force for the reaction

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

is the difference between standard redox potentials for oxidant and reductant.

$$
\begin{array}{ll}
\mathrm{CO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} & E_{1}^{\circ} \\
\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} & E_{2}^{\circ}=1.23 \mathrm{~V}
\end{array}
$$

For this reaction, the standard Gibbs energy is $480.5 \mathrm{~kJ} / \mathrm{mol}$, and 4 electrons are transferred from $\mathrm{H}_{2} \mathrm{O}$ to CO_{2}. Hence, the standard emf is:

$$
E^{\circ}=-\frac{\Delta G^{\circ}}{n F}=-\frac{480500}{4.96500}=-1.24 \mathrm{~V}=E_{1}^{\circ}-1.23 \mathrm{~V}
$$

For CO_{2} reduction to carbohydrates the standard redox potential is $E_{1}^{\circ}=-0.01 \mathrm{~V}$. The standard biochemical potential is: $E_{1}^{01}=-0.01-0.414 \frac{4}{4}=-0.42 \mathrm{~V}$.
3. The overall reaction:

$$
\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{CH}_{2} \mathrm{O}+2 \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}
$$

Oxidation:

$$
\mathrm{H}_{2} \mathrm{~S}-2 \mathrm{e} \rightarrow \mathrm{~S}+2 \mathrm{H}^{+}
$$

Reduction:

$$
\mathrm{CO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
$$

Standard emf: $\quad E^{\circ}=-0.01-0.14=-0.15 \mathrm{~V}$
Standard Gibbs energy: $\quad \Delta G^{\circ}=-n F E^{\circ}=-4 \cdot 96500 \cdot(-0.15) \cdot 10^{-3}=57.9 \mathrm{~kJ} / \mathrm{mol}$.
Energy of light with wavelength 840 nm :

$$
E_{\mathrm{m}}=\frac{h c N_{\mathrm{A}}}{\lambda}=\frac{6.63 \cdot 10^{-34} \cdot 3.00 \cdot 10^{8} \cdot 6.02 \cdot 10^{23}}{840 \cdot 10^{-9}} \cdot 10^{-3}=143 \mathrm{~kJ} / \mathrm{mol} .
$$

One quantum gives enough energy to oxidize two molecules of $\mathrm{H}_{2} \mathrm{~S}$.
4. Both NADP^{+}reduction and ATP formation require one proton, and during $\mathrm{H}_{2} \mathrm{O}$ oxidation two protons are released. Hence, the overall reaction equation of light stages is:

$$
\mathrm{NADP}^{+}+\mathrm{ADP}+\mathrm{P}_{i}+h \nu \rightarrow 1 / 2 \mathrm{O}_{2}+\mathrm{NADP} \cdot \mathrm{H}+\mathrm{ATP}
$$

(water is not present in this reaction, because the number of $\mathrm{H}_{2} \mathrm{O}$ molecules oxidized to O_{2} is equal to the number of $\mathrm{H}_{2} \mathrm{O}$ molecules formed during ADP phosporylation).
5. The overall reaction is the sum of two reactions:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{NADP}^{+}+h v \rightarrow 1 / 2 \mathrm{O}_{2}+\mathrm{NADP} \cdot \mathrm{H}+\mathrm{H}^{+}
$$

and

$$
\mathrm{ADP}+\mathrm{P}_{i}+\mathrm{H}^{+} \rightarrow \mathrm{ATP}+\mathrm{H}_{2} \mathrm{O} .
$$

For the latter, the standard biochemical Gibbs energy is known ($30.5 \mathrm{~kJ} / \mathrm{mol}$) and for the former it can be determined from the standard biochemical redox potentials.

$$
\Delta G^{0 \prime}=-n F E^{0 \prime}=-2 \cdot 96500 \cdot(0.82-(-0.32)) \cdot 10^{-3}=220 \mathrm{~kJ} / \mathrm{mol} .
$$

The overall light stages reaction contains no protons, hence the standard Gibbs energy is the same as the standard biochemical Gibbs energy:

$$
\Delta G^{\circ}=\Delta G^{\circ \prime}=220+30.5=250.5 \mathrm{~kJ} / \mathrm{mol}
$$

6. This effect is easily understood using a simple orbital diagram (see Appendix in "Molecular Mechanisms of Photosynthesis" by R.E.Blankenship). In the ground state, a lost electron comes from the low-energy HOMO, while an acquired electron enters the high-energy LUMO. As a result, the molecule is neither a strong oxidant nor a good reductant. In the excited state, the situation is different: a lost electron leaves the high-energy LUMO, and the acquired electron comes to low-energy HOMO: both processes are energetically favorable, and the molecule can act both as a strong oxidant and a powerful reductant.

7. Consider two half-reactions:

$$
\mathrm{Ox}+\mathrm{e} \rightarrow \mathrm{R} \quad \text { (standard redox potential } E_{\mathrm{OxR}}^{\circ} \text {) }
$$

and

$$
\left.\mathrm{Ox}+\mathrm{e} \rightarrow \mathrm{R}^{*} \quad \text { (standard redox potential } E_{\mathrm{Ox} \times \mathrm{R}^{*}}^{\circ}\right) .
$$

The difference in their Gibbs energies is equal to the excitation energy:

$$
F\left(E_{\mathrm{OXR}}^{\circ}-E_{\mathrm{OX} \mathbb{R}^{*}}^{\circ}\right)=E_{\mathrm{ex}}=\frac{h c N_{\mathrm{A}}}{\lambda},
$$

whence it follows:

$$
E_{\mathrm{OX} \mathbb{R}^{*}}^{\circ}=E_{\mathrm{OXR}}^{\circ}-\frac{h c N_{\mathrm{A}}}{\lambda F} .
$$

For $\mathrm{P} 680^{+}: \quad E_{{\mathrm{P} 680^{+} / \mathrm{P680}}^{*}}^{\circ}=1.10-\frac{6.63 \cdot 10^{-34} \cdot 3.00 \cdot 10^{8} \cdot 6.02 \cdot 10^{23}}{680 \cdot 10^{-9} \cdot 96500}=-0.72 \mathrm{~V}$
For Chlorophyll ${ }^{+}: E_{\mathrm{Ch}^{+} / \mathrm{Chl}^{*}}^{\circ}=0.78-\frac{6.63 \cdot 10^{-34} \cdot 3.00 \cdot 10^{8} \cdot 6.02 \cdot 10^{23}}{680 \cdot 10^{-9} \cdot 96500}=-1.04 \mathrm{~V}$

Problem 15. Complexation reactions in the determination of inorganic ions

1. After the endpoint, the excessive Al^{3+} ions undergo hydrolysis, which makes the medium acidic, and the indicator turns red:

$$
\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}=\mathrm{Al}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}{ }^{2+}+\mathrm{H}^{+}
$$

2. On heating, the hydrolysis equilibrium shifts rightwards.
3. Cryolite $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ being formed upon the titration is only slightly soluble in water. Hence, NaCl was added to further decrease its solubility and shift the equilibrium of complex formation rightwards.
4. Neutralization of the sample solution before titration is missing. This operation is mandatory if an acid-base indicator is used to observe the endpoint and the sample is suspected to contain acids. Heating makes the endpoint sharper but is not as critical.
5. In this case a reverse titration was applied. Fluoride precipitates calcium:

$$
\mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}=\mathrm{CaF}_{2} \downarrow
$$

and the excess of fluoride is titrated with AlCl_{3} :

$$
6 \mathrm{~F}^{-}+\mathrm{Al}^{3+}=\mathrm{AlF}_{6}{ }^{3-}
$$

6. $\quad 10.25 \mathrm{~mL}$ of $0.1000 \mathrm{M} \mathrm{AlCl}_{3}$ gives 1.025 mmol of Al^{3+}, corresponding to 6.15 mmol of F^{-}. The initial amount of NaF was 0.500 g , or 11.91 mmol , i.e. 5.76 mmol of F^{-}was spent for the precipitation of calcium. The amount of calcium is $2.88 \cdot 10^{-3} \mathrm{~mol}$.
7. $\quad \mathrm{Si}(\mathrm{OH})_{4}+6 \mathrm{KF}+4 \mathrm{HCl}=\mathrm{K}_{2} \mathrm{SiF}_{6}+4 \mathrm{KCl}+2 \mathrm{H}_{2} \mathrm{O}$

As can be seen from the equation, HCl is spent in this process, and its excess is titrated with NaOH in the presence of an acid-base indicator. (To be more precise, the excess of HCl reacts with KF yielding a weak acid HF, which is then titrated with NaOH .)
8. The solution of free silicic acid (a weak acid with $\mathrm{p} K_{\mathrm{a}}$ of about 10) will be slightly acidic; hence, the indicator used in the neutralization of the sample should change its color in a weakly acidic medium (methyl red, $\mathrm{p} K_{\mathrm{a}} \approx 5$). In weakly alkaline media (color change range of two other indicators), a considerable part of the silicic acid will be present in the form of a silicate ion, the buffer solution of which will consume a certain amount of the reacting HCl .
9. The amount of NaOH and the excess of HCl are the same and equal to 0.550 mmol . Hence, the amount of HCl spent for the reaction with silicic acid is $0.994-0.550=0.444 \mathrm{mmol}$, and the amount of silicic acid is 0.111 mmol .

Problem 16. Malaprade reaction

1. With glycerol: $\mathrm{HCOOH}+2 \mathrm{HCHO}$, with butane-1,2-diol: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCHO}$
2.

$$
\begin{array}{cc}
\mathrm{HCHO}-2 \mathrm{e}^{-} \rightarrow \mathrm{HCOOH} ; & \mathrm{HCOOH}-2 \mathrm{e}^{-} \rightarrow \mathrm{CO}_{2} ; \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}-2 \mathrm{e}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} ; & \mathrm{Mn}^{+7}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+} ;
\end{array}
$$

The complete reactions are:

$$
\begin{gathered}
5 \mathrm{HCHO}+4 \mathrm{MnO}_{4}^{-}+12 \mathrm{H}^{+}=5 \mathrm{CO}_{2}+4 \mathrm{Mn}^{2+}+11 \mathrm{H}_{2} \mathrm{O} \\
5 \mathrm{HCOOH}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}=5 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O} \\
5 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}=5 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

The total mass of the mixture: $m_{\mathrm{A}}=n_{\text {gly }} \mathrm{M}_{\mathrm{gly}}+n_{\text {but }} \mathrm{M}_{\text {but }}$.
The number of mols of $1 / 5 \mathrm{KMnO}_{4}$ spent for the oxidation of aldehyde groups:
$n_{\text {ald }}=4 \cdot 2 n_{\text {gly }}\left(2\right.$ moles of $\mathrm{CH}_{2} \mathrm{O}$ from glycerol, $4 \mathrm{e}^{-}$each $)+2 n_{\text {gly }}\left(\mathrm{HCOOH}\right.$ from glycerol, $\left.2 \mathrm{e}^{-}\right)+$ $2 n_{\text {but }}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}\right.$ from butylene glycol, $\left.2 \mathrm{e}^{-}\right)+4 n_{\text {but }}\left(1 \mathrm{~mol}\right.$ of $\mathrm{CH}_{2} \mathrm{O}$ from butylene glycol, $\left.4 \mathrm{e}^{-}\right)=$ $10 n_{\text {gly }}+6 n_{\text {but }}$.
Solving these two simultaneous equations (with $\mathrm{M}_{\mathrm{gly}}=92$ and $\mathrm{M}_{\mathrm{but}}=90$) one gets:
$n_{\text {but }}=0.0101 \mathrm{~mol}, n_{\text {gly }}=0.0079 \mathrm{~mol}$.
3. The carboxylic group could either exist in the original compound \mathbf{B} (a) or be formed during the oxidation (b).
(a). Let us suppose a minimum amount of oxygen-containing groups in $\mathbf{B}: 0.001 \mathrm{~mol}$ of -COOH $(45 \mathrm{mg})$ and two hydroxyl groups ($\equiv \mathrm{C}-\mathrm{OH} 29 \mathrm{~g} / \mathrm{mol} \cdot 0.002 \mathrm{~mol}=58 \mathrm{mg}$); then, 0.001 mol of nitrogen should be also present (14 mg); this gives the total mass of 117 mg , which is even higher than the mass of $\mathbf{B}(105 \mathrm{mg})$. Therefore, part of oxygen originates from the oxidant or water as a result of the substitution of amine nitrogen atom (which has transformed into the ammonium ion) with oxygen (so, amino groups in Malaprade reaction behave as hydroxyl ones). In case \mathbf{B} contains one oxygen atom less, we will get: 1 mmol of $\equiv \mathrm{C}-\mathrm{OH}$ groups (29 mg) +1 mmol of $\mathrm{CHNH}_{2}(29 \mathrm{mg})+1 \mathrm{mmol}$ of $\mathrm{COOH}(45 \mathrm{mg})=103 \mathrm{mg}$. To attain the required 105 mg , the following groups can be suggested: $\mathrm{CHOH}(30 \mathrm{mg}), \mathrm{CH}_{2} \mathrm{NH}_{2}(30 \mathrm{mg})$ and $\mathrm{COOH}(45 \mathrm{mg})$, which brings us to the empirical formula of \mathbf{B} : $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{3}$. Remembering that nitrogen must be in the form of an amino group, no ether oxygens are permitted and an acid is formed as the result of
oxidation (this can only be HCOOH , and to obtain that, a $-\mathrm{CH}(\mathrm{OH})-$ or $-\mathrm{CH}\left(\mathrm{NH}_{2}\right)-$ group must be present), we can make up a list of possible structures of \mathbf{B}. In case the carboxylic group was present in the original compound (a), that will be 2-amino-3-hydroxypropionic acid or 3-amino-2-hydroxypropionic acid:

Scheme of their oxidation with periodate:

$$
\mathrm{HOCH}_{2}-\mathrm{CH}\left(\mathrm{NH}_{2}\right)-\mathrm{COOH} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{HOOC}-\mathrm{CHO}+\mathrm{NH}_{4}^{+} .
$$

Glyoxylic acid HOOC-CHO is oxidized by KMnO_{4} to oxalic acid and then to $\mathrm{CO}_{2}(4 \mathrm{mmol}$ equivalents of KMnO_{4}); together with formaldehyde (4 mmol eq.) it makes up the required 8 mmol eq. to be spent for the titration.
(b). In case compound \mathbf{B} is originally lacking carboxylic group, the molecular weight of 105 corresponds to compounds containing 1 oxygen atom less and 1 extra carbon atom $\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}_{2}\right)$, i.e. butane derivatives containing 1 amino and 2 hydroxyl groups. (Propanes with 3 hydroxyl groups and 1 amino group will give molecular weights of 107.) If the butane moiety is unbranched and all three groups (two OH and the NH_{2}) are vicinal:

then periodate oxidation yields $\mathrm{HCHO}, \mathrm{HCOOH}$ and $\mathrm{CH}_{3} \mathrm{CHO}$; the two isobutane derivatives

both result in 1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ and 2 moles of HCHO , while all these butanes meet the task requirements, as they require 8 mmol equivalents of KMnO_{4} for their oxidation. Compound $\mathrm{HC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ is not oxidized with periodate. If OH and NH_{2} groups are not vicinal, formaldehyde and an aldehyde are formed, but no necessary carboxylic acid is produced. If \mathbf{B} contains a $\mathrm{C}=\mathrm{O}$ group (for instance, $\mathrm{O}=\mathrm{CH}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}\left(\mathrm{NH}_{2}\right)-\mathrm{CH}_{3}$), its formula is $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$ (molecular weight 103), which is not consistent with the problem conditions.

Scheme of periodate oxidation for the linear butane derivatives:

$$
\mathrm{CH}_{2} \mathrm{NH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{HCOOH}+\mathrm{CH}_{3} \mathrm{CHO}
$$

For the branched butanes:

$$
\mathrm{HOCH}_{2}-\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}-\mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{2} \mathrm{O}
$$

Problem 17. Analysis of Chrome Green

1. $\mathrm{PbCrO}_{4}+4 \mathrm{Na}_{2} \mathrm{CO}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{~Pb}(\mathrm{OH})_{4}+\mathrm{Na}_{2} \mathrm{CrO}_{4}+4 \mathrm{NaHCO}_{3}$

$$
2 \mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}+12 \mathrm{Na}_{2} \mathrm{CO}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Fe}(\mathrm{OH})_{2} \downarrow+4 \mathrm{Na}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+12 \mathrm{NaHCO}_{3}
$$

and then
$6 \mathrm{Fe}(\mathrm{OH})_{2} \downarrow+4 \mathrm{Na}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+1 / 2 \mathrm{O}_{2}+4 \mathrm{Na}_{2} \mathrm{CO}_{3}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Fe}(\mathrm{OH})_{3} \downarrow+4 \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ $+4 \mathrm{NaHCO}_{3}$

Totally:

$$
2 \mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}+1 / 2 \mathrm{O}_{2}+16 \mathrm{Na}_{2} \mathrm{CO}_{3}+17 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Fe}(\mathrm{OH})_{3} \downarrow+4 \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+16 \mathrm{NaHCO}_{3}
$$

Ferric hydroxide is left on the filter.
2. Direct oxidation of thiosulfate with dichromate is not stoichiometric. The reactions normally used are:

$$
\begin{gathered}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}
\end{gathered}
$$

3. If reaction B is induced by reaction A, it implies that reaction A produces some intermediates active with the components of reaction B . In our case, the reduction of $\mathrm{Cr}(\mathrm{VI})$ occurs via the formation of intermediate oxidation states of chromium, predominantly $\operatorname{Cr}(\mathrm{V})$ species. (At the same time, the oxidation of Γ to I^{0} may not require any iodine-containing intermediates.) A reasonable reaction scheme is as follows:

$$
\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{I}^{-} \rightarrow \mathrm{Cr}(\mathrm{~V})+\mathrm{I} ; \mathrm{Cr}(\mathrm{~V})+\mathrm{O}_{2} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \text { etc. }
$$

As a result of oxygen involvement, a higher amount of free iodine is obtained, which results in a greater amount of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ titrant spent and lower apparent concentration determined.
4. The amount of chromium is found as follows: $3 n_{\mathrm{Cr}}=n_{\text {thios }}=0.0485 \mathrm{M} \cdot 5.01 \mathrm{~mL}=0.2430$ $\mathrm{mmol}\left(n_{\mathrm{Cr}}=0.081 \mathrm{mmol}\right)$. This corresponds to 26.2 mg of $\mathrm{PbCrO}_{4}(\mathrm{M}=323.2 \mathrm{~g} / \mathrm{mol})$ in the aliquot, or 131 mg totally.
5. Owing to the fast redox equilibrium:

$$
\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+\mathrm{Fe}^{3+} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{Fe}^{2+},
$$

a certain amount of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ will be present in the system. The side reaction

$$
\mathrm{CrO}_{4}{ }^{2-}+3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+4 \mathrm{H}_{2} \mathrm{O}
$$

produces an amount of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ equivalent to $\mathrm{CrO}_{4}{ }^{2-}$ reacted. At the titration stage that hexacyanoferrate(III) would also liberate free iodine; hence, the side process can be neglected.
6. Acidification of the sample: $\mathrm{CrO}_{4}{ }^{2-}+3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+4 \mathrm{H}_{2} \mathrm{O}$ Titration: $\mathrm{MnO}_{4}^{-}+5\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+4 \mathrm{H}_{2} \mathrm{O}$
Hexacyanoferrates may be partially precipitated in the form of Pb^{2+} salts but this does not preclude them from the redox reactions.
7. On acidification of the $2^{\text {nd }}$ aliquot, chromium is reduced by $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ (see i. 5). Then permanganate is spent for the oxidation of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$, namely, the amount of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ added plus the amount contained initially in the sample less the amount spent for the reduction of $\operatorname{Cr}(\mathrm{VI}): 5 n_{\mathrm{MnO}_{4}}=n_{\mathrm{Fe} \text { added }}+n_{\text {Fe from sample }}-3 n_{\mathrm{Cr}}$. From this equation we can find $n_{\mathrm{Fe} \text { from sample }}=$ $5 n_{\mathrm{MnO}_{4}}-n_{\text {Fe added }}+3 n_{\mathrm{Cr}}=5 \cdot 0.00500 \cdot 2.85-10 \cdot 0.0300+0.2430=0.07125-0.3000+0.2430=$ $0.0142 \mathrm{mmol}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$. One mol of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ results from 0.5 mol of $\mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$ (see solution to question 1), therefore, the answer is 4.21 mg of $\mathrm{Fe}_{3 / 2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathrm{M}=295.6 \mathrm{~g} / \mathrm{mol})$ in the aliquot, or the total amount of 21.1 mg .

Problem 18. Chemistry of phenol

1-2. Structures of benzene \mathbf{A} and propene \mathbf{B} are commonly known.

The interaction between \mathbf{A} and \mathbf{B} under acidic condition proceeds as Friedel-Crafts alkylation of the aromatic ring with the thermodynamically more stable secondary propyl carbocation as an electrophile. Being a product of the interaction of equal amounts of \mathbf{A} and \mathbf{B}, \mathbf{C} turns out to be
isopropylbenzene, i.e. cumene. Oxidation of \mathbf{C} with subsequent acidification leads to phenol and acetone \mathbf{D}. This classical industrial procedure is known as cumene process.

The structure of \mathbf{D} can also be easily determined from that of bisphenol A, which is formed as a result of two consecutive Friedel-Crafts alkylations of phenol. Treatment of bisphenol A with NaOH leads to disodium bis-phenolate \mathbf{E}, which gives polycarbonate with the monomeric unit \mathbf{F} as a result of the reaction with phosgene.

The reaction of phenol with diluted nitric acid proceeds as a mononitration resulting in isomeric nitrophenols \mathbf{G} and \mathbf{H}. Due to the activation effect of OH-group in phenol, electrophilic substitution can occur in ortho- and para-positions of phenol. G is para-nitrophenol (two planes of symmetry), whereas \mathbf{H} is ortho-nitrophenol (only one plane of symmetry). Further reduction of NO_{2}-group in para-nitrophenol \mathbf{G} results in para-aminophenol \mathbf{I}. Due to its higher nucleophilicity, NH_{2}-group (rather than OH -group) in \mathbf{I} is acetylated with acetic anhydride giving paracetamol J.

The reaction of phenol with CO_{2} in the presence of NaOH proceeds through intermediate formation of sodium phenolate, which interacts with CO_{2} under heating and high pressure (Kolbe-Schmitt reaction) to give disodium salicylate \mathbf{K}. Acidification of \mathbf{K} with two equivalents of an acid results in salicylic acid \mathbf{L}, which provides aspirin \mathbf{M} when acetylated with acetic anhydride.

Aluminon synthesis is based on the same approach as previously considered for bisphenol A. The reaction of salicylic acid \mathbf{L} with formaldehyde under acidic conditions affords \mathbf{N}, which is an analogue of bisphenol A. Addition of another equivalent of salicylic acid \mathbf{L} under oxidative conditions $\left(\mathrm{NaNO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ gives the tri-acid \mathbf{O}, which is a direct precursor of Aluminon. Thus, the structure of \mathbf{O} can be derived from that of Aluminon.

Problem 19. Chrysanthemic acid

1. Chrysanthemic acid is formed as a result of hydrolysis of its ethyl ester, \mathbf{F}, which, in turn, is obtained by cyclopropanation of \mathbf{E} with diazoacetic ester. Therefore, \mathbf{E} is 2,5-dimethylhex-2,4-diene with molecular formula $\mathrm{C}_{8} \mathrm{H}_{14}$. This conclusion is supported by the molecular formula of \mathbf{D}. Evidently, transformation of \mathbf{D} to \mathbf{E} is elimination of two water molecules.

Eight carbon atoms of \mathbf{D} originate from \mathbf{A} and \mathbf{B}. The other reaction between these compounds affords \mathbf{L} containing 5 carbon atoms (\mathbf{N} is formed from \mathbf{H} and $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{SNa}$; the number of carbon atoms in \mathbf{H} and \mathbf{L} is the same). The provided information strongly suggests that \mathbf{A} is acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$. Hence, \mathbf{A} is composed of 2 , and \mathbf{B} should be composed of 3 carbon atoms. Reaction between A and \mathbf{B} was disclosed by Favorskii in 1905 as that between acetylenes and carbonyl compounds. It means that \mathbf{B} is either propionic aldehyde $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}\right)$ or acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$. Accounting for the structure of \mathbf{E}, \mathbf{B} is acetone. \mathbf{E} is also formed through the Grignard reaction of acetone with the corresponding RMgBr followed by elimination of water. The structure of \mathbf{H} can be unambiguously deduced from that of \mathbf{E} - it is prenyl bromide. So, the natural alcohol is prenol (3-methylbut-2-en-1-ol). \mathbf{L} is formed from \mathbf{A} and \mathbf{B} under the same reaction conditions but when \mathbf{A} to \mathbf{B} ratio is of 1:1. Therefore, \mathbf{L} is 2-methylbut-3-yn-2-ol. Its hydrogenation in the presence of Lindlar catalyst leads to the corresponding alkene \mathbf{M}. Subsequent reaction with HBr affords prenyl bromide \mathbf{H} via nucleophilic substitution with double bond migration. The reaction of \mathbf{H} with sodium 4-toluenesulfinate results in the corresponding sulfone \mathbf{N}.

Finally, acid-catalyzed self-condensation of acetone yields 4-methylpent-3-en-2-one (mesityl oxide, I). Iodoformic reaction of \mathbf{I} produces the salt of the corresponding acid \mathbf{J} which is further transformed into ethyl ester \mathbf{K}. The reaction of \mathbf{K} with deprotonated sulfone \mathbf{N} results in chrysanthemic acid ester F".

2.

3. The first step is the Diels-Alder reaction. Compound \mathbf{P} with tetrasubstituted double bond is the most stable isomer of \mathbf{O} with the same carbocyclic skeleton. Heating of \mathbf{P} with ammonia leads to imide \mathbf{R}, which further reacts with $\mathrm{CH}_{2} \mathrm{O}$ giving the target alcohol \mathbf{X}.

4. Amides and hydrazides do not easily form esters in reaction with alcohols. Oppositely, anhydrides are appropriate reagents for the ester synthesis. Moreover, re-esterification of methyl or ethyl esters with high-boiling alcohols is well-known. These reactions are efficient due to methanol (ethanol) removal from the reaction mixture via distillation (Le Chatelier’s principle).
5. Reduction of 3-phenoxybenzaldehyde yields the corresponding benzyl alcohol S, while its reaction with NaCN produces cyanohydrin \mathbf{T}. Reaction of \mathbf{S} or \mathbf{T} with 2,2-(dihalovinyl)-3,3-dimethylcyclopropane-1-carbonyl chloride affords the target pyrethroids.

Molecular formulae of the esters formed from alcohol \mathbf{S} and \mathbf{T} are $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Hal}_{2} \mathrm{O}_{3}$ and $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Hal}_{2} \mathrm{NO}_{3}$, respectively. Halide content in the esters is $2 \mathrm{M}_{\mathrm{Hal}} /\left(2 \mathrm{M}_{\mathrm{Hal}}+320\right)$ and $2 \mathrm{M}_{\mathrm{Hal}} /\left(2 \mathrm{M}_{\mathrm{Hal}}+345\right)$, respectively. Calculation of halide content in these compounds allows unambiguously deciding on the structures of the pyrethroids.

Content of Hal, \%	Using exact atomic mass				Using approximate atomic mass			
	F	Cl	Br	I	F	Cl	Br	I
Ester of S	10.60	$\mathbf{1 8 . 1 2}$	33.28	44.20	10.61	$\mathbf{1 8 . 1 6}$	33.33	44.25
Ester of T	9.91	$\mathbf{1 7 . 0 3}$	$\mathbf{3 1 . 6 3}$	42.36	9.92	$\mathbf{1 7 . 0 7}$	$\mathbf{3 1 . 6 8}$	42.40

Problem 20. Heterocycles

1. Interaction of ketone with arylhydrazine affords hydrazone, which isomerizes into enhydrazine under acidic conditions.

2. Mechanism \boldsymbol{a} includes the electrophilic attack of aminoalkyl cation at the aromatic moiety. This attack is very susceptible to electron properties of the aryl group (attack on the electron-enriched aryl ring is much more efficient than that on the electron-depleted arene). The same is expected for mechanism \boldsymbol{c}. Only the sigmatropic shift has no significant dependence on substituents in both arenes. Therefore, I. Grandberg proved that the Fischer indole synthesis proceeds via mechanism \boldsymbol{b}.
3. Reactions are started by interaction of amine with the carbonyl group furnishing imine. To complete pyrrole moiety formation, monoimine of hexane-2,5-dione should isomerize into the enamine followed by an attack of the amine group on the second $\mathrm{C}=\mathrm{O}$ group. Formally, imine of pentane-2,4-dione can form the pyrrole ring in two ways. First, it is the interaction of the nitrogen atom with the methyl group. However, the methyl group itself is unreactive towards nucleophiles. Keto-enol equilibrium with involvement of the methyl group in this compound is less probable than that with CH_{2}-fragment. Even if the equilibrium was true, enol is a nucleophile and cannot react with nucleophilic nitrogen atom. Therefore, the second possibility should be considered, namely, the reaction of the second carbonyl with CH_{2} bound to N atom. This reaction is quite probable as CH_{2}-group is also connected with the electron-withdrawing ester group and can be deprotonated by a base as shown below.

$+$

4-5. Two products are formed in the reaction of propyne, and only one product in the case of the alkyne bearing an electron-withdrawing ester group. This allows supposing a nucleophilic attack of a certain intermediate on the alkyne moiety. A base generates a nucleophilic agent from acetone oxime. Again, two ways of deprotonation are possible: O-deprotonation and C deprotonation. However, oxime enolate, if formed, should add to alkyne with the formation of hex-4-en-2-one oxime. There is no possibility for the transformation of this oxime into pyrrole ring. The alternative possibility is O-deprotonation and nucleophilic addition of the oximate ion to alkyne furnishing O-alkenyl acetone oxime. Formation of the C-C bond between the methyl group of acetone and the β-carbon atom of the alkenyl group is needed to complete the pyrrole ring synthesis. At the first glance, such transformation is impossible. However, this system is very similar to the N-aryl- N '-alkenyl moiety which undergoes the 3,3 -sigmatropic rearrangement in the Fischer indole synthesis. Indeed, isomerization of O-alkenyl acetone oxime into O -alkenyl- N-alkenyl derivative creates the fragment required for the 3,3 -sigmatropic shift. So, formation of the pyrrole ring giving 2,4-dimethylpyrrole and 2,5-dimethylpyrrole is analogous to that of indole in the Fischer synthesis. The former compound is transformed into \mathbf{C} via N deprotonation followed by the Kolbe-Schmitt carboxylation and ester formation. To provide \mathbf{B}, E should be N-alkylated with ethyl haloacetate. Halogen can be determined from the carbon content in the alkylation reagent.

6. Methyl group in the starting compound is very acidic due to activation by both orthonitro group and para-nitrogen atom of pyridine. So, it can be easily deprotonated to further react with diethyl oxalate providing the corresponding ketoester \mathbf{H}. Reduction of the nitro group gives aniline. Condensation of the amino group with the appropriately located ketone moiety affords the 6-azaindole derivative $\mathbf{I}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$. Aminomethylation of this indole furnishes the gramine derivative \mathbf{J} which undergoes nucleophilic substitution with sodium dimethylmalonate producing \mathbf{K}. Its hydrolysis results in a compound with the molecular formula of $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$. It means that: a) hydrolysis of the malonate fragment is accompanied by decarboxylation; b) the ester moiety at the C 2 position of the indole is hydrolyzed too. However, even if so, the molecular formula should be $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$. The difference equals to CH_{2}. Hydrolysis of $\mathrm{OCH}_{3}-$ group in ortho-position to pyridine nitrogen is the only possibility. Indeed, hydrogenation of this pyrrolopyridone yields \mathbf{M}. Its decarboxylation and hydrolysis of the amide function finally leads to porphobilinogen.

Problem 21. Cyclobutanes

1. Hydrocarbon \mathbf{K} consists of $90 \% \mathrm{C}$ and $10 \% \mathrm{H}$. Its simplest formula is $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)_{\mathrm{n}}$, and it has a single type of H atoms. So, it is allene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$. A has 5 carbon atoms. Therefore, allene reacted with $\mathrm{CH}_{2}=\mathrm{CHCN}$ in a ratio of $1: 1$ and lost one carbon atom during the following steps. Various products can be supposed for this reaction, however, it is known that allene is prone to undergo cycloaddition as 2π-component. Acrylonitrile undergoes cycloaddition as 2π component too. So, the product should be a cyclobutane derivative, which is consistent with the next scheme. The C and H content in \mathbf{N} and \mathbf{O} provides for their molecular formula $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}\right)$. In this respect, two sub-processes should proceed: a) acetone is doubly brominated; b) ketone is transformed into ketal in the reaction with methanol catalyzed by HBr evolved in the bromination step. Two dibromoacetones (1,1- and 1,3-) can be formed. Reaction of the latter with dimethyl malonate affords the corresponding cyclobutane derivative. Its treatment with hydrochloric acid leads to the hydrolysis of ketal into ketone and esters into an acid. So, the product should be 3-oxocyclobutane-1,1-dicarboxylic acid. However, its formula is $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{5}$. Therefore, hydrolysis is also accompanied by decarboxylation of the malonic acid moiety. So, \mathbf{A} is 3 -oxocyclobutanecarboxylic acid. Accounting for it, \mathbf{L} is the product of [2+2] cycloaddition, i.e., 1-cyano-3-methylenecyclobutane. Its hydrolysis followed by oxidation of $\mathrm{C}=\mathrm{C}$ double bond produces \mathbf{A}. Finally, the schemes for preparation of \mathbf{A} are as follows:

Reaction of \mathbf{A} with SOCl_{2} furnishes acyl chloride, which reacts with NaN_{3} affording acyl azide. Heating of RCON_{3} produces isocyanate $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{O}$, which immediately reacts with $t-\mathrm{BuOH}$ giving rise to N -Boc-protected 3-aminocyclobutanone B. Reduction of keto group with NaBH_{4} leads to cis- and trans-isomers of the corresponding aminocyclobutanol. Further reaction with $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$ produces mesylates, which undergo $S_{N} 2$ displacement with NaN_{3} affording aminoazides. Reduction of azido group and deprotection of amine furnishes cis-and transisomers of 1,3-diaminocyclobutane. Therefore, \mathbf{J} is cis-1,3-diaminocyclobutane (two planes of symmetry), and \mathbf{I} is trans-isomer (one plane of symmetry). Similarly, \mathbf{G} is trans-, and \mathbf{H} is cis-
isomer. As the $S_{N} 2$ reaction proceeds with inversion of the configuration, compound \mathbf{E} (leading to \mathbf{G}) is cis-, and \mathbf{F} is trans-isomer.

2-3. Reduction of \mathbf{P} with LiAlH_{4} gives the corresponding diol \mathbf{Q}, which is transformed into ditosylate \mathbf{R}. Reaction of \mathbf{R} with dimethyl malonate leads to formation of the second cyclobutane ring (S). Hydrolysis of \mathbf{S} proceeds similarly to that of \mathbf{P}, i.e., it produces ketoacid T. Further transformations are also similar to those in the first scheme and produce spiro[3.3]heptane-2,6diamine \mathbf{W}. This compound has no plane or center of symmetry. It is chiral due to axial chirality (similarly to 1,3-disubstituted allenes), thus, it can be resolved into two enantiomers.

Problem 22. Introduction to translation

1. There are $4^{3}=64$ different three-nucleotide combinations of 4 nucleotides. Only 61 codons encode amino acids added to the growing polypeptide chain. 3 remaining combinations are STOP codons determining termination of the translation process.
2. No, because of redundancy of the genetic code: most amino acids are encoded by several codons.
3. Leucine is encoded by 6 different codons, thus it is delivered to a ribosome by 6 different tRNAs. Being encoded by only 1 codon, methionine is transported by a sole tRNA. In some organisms the latter codon is also responsible for the translation start, encoding the N -terminal amino acid N -formylmethionine. Still, methionine and N -formylmethionine are transported by different tRNAs.
4. The equations of consecutive reactions are:
amino acid + ATP $=$ aminoacyl adenylate +PPi (inorganic pyrophosphate)
aminoacyl adenylate + tRNA $=$ aminoacyl tRNA + AMP

(1)

Thus, the carboxylic group of the amino acid reacts with 3'-OH group of its tRNA.
5. a) Met-Asp-His-Ala-Ile-Asn-Val-Val-Gly-Trp-Ser-Val-Asp-Thr-Leu-Asp-Asp-Gly-Thr-Glu-Ala or fMet-Asp-His-Ala-Ile-Asn-Val-Val-Gly-Trp-Ser-Val-Asp-Thr-Leu-Asp-Asp-Gly-Thr-Glu-Ala, depending on the biosynthesizing species (Eukaryotes, Prokaryotes, or Archaea).
b) The third amino acid is tyrosine, and the last one is valine. All the rest positions are the same.
c) The N-terminal amino acid is leucine. All the rest positions are the same. It should be noted that the translation in bacteria would not start without the START codon.
d) The last but one codon is changed into STOP codon, which will result in the oligopeptide shorter by 2 amino acid residues than that in i. 5 a.
6. AUG-GAU/C-GUN-AAU/C-CAU/C-CCN-GAA/G-UAU/C-GGN-AAA/G
7. The protein consists of $51000 / 110 \approx 464$ amino acid residues.

Hence, it is encoded by the mRNA containing 464*3+3=1395 nucleotide residues including the STOP codon.

The length of mRNA is $1395 * 0.34=474.3 \approx 474 \mathrm{~nm}$.
The time needed for biosynthesis of the protein is: $1395 / 20=69.7 \approx 70 \mathrm{~s}$, that is a bit more than one minute.
8. Taking into account that the $\mathrm{A}: \mathrm{C}$ ratio is $1: 5$, the probability of finding A and C at any position is $1 / 6$ and $5 / 6$, respectively. Thus, the probability of finding certain codons is:

$$
\begin{array}{ll}
\text { AAA }=(1 / 6)^{3}=1 / 216 & \text { CCC }=(5 / 6)^{3}=125 / 216 \\
\text { AAC }=(1 / 6)^{2} * 5 / 6=5 / 216 & \text { CCA }=(5 / 6)^{2} * 1 / 6=25 / 216 \\
\text { ACA }=1 / 6 * 5 / 6 * 1 / 6=5 / 216 & \text { CAC }=5 / 6 * 1 / 6 * 5 / 6=25 / 216 \\
\text { ACC }=1 / 6 *(5 / 6)^{2}=25 / 216 & \text { CAA }=5 / 6^{*}(1 / 6)^{2}=5 / 216
\end{array}
$$

Using the table of genetic code one gets: Lys:Asn:Thr:Pro:His:Gln=1:5:30:150:25:5
9. Anticodon has no influence on the CCA3' terminus. Thus, the mutant tRNA will add tyrosine to the positions where serine was initially expected with respect to mRNA sequence. This may lead to improper folding of the protein and total or partial loss of its functional activity.
10. Glu is encoded by GAA and GAG, and His by CAU and CAC. Two substitutions (of the $1^{\text {st }}$ and $3^{\text {rd }}$ residues) are needed to make this mutation true, which is quite improbable. Single residue mutations occur much more frequently, and Glu to Gln mutation can serve as an example (together with many other mutations of this type).

Problem 23. Intriguing translation

1. If \mathbf{X} is an acyclic dipeptide, \mathbf{A} and \mathbf{B} should be composed of 28 atoms in total $(25+3$ for $\mathrm{H}_{2} \mathrm{O}$). In the case of an acyclic tripeptide similar calculations lead to 31 atoms in total ($25+6$ for $2 \mathrm{H}_{2} \mathrm{O}$), this being true for any of two combinations of residues in the tripeptide ($\mathbf{A}+2 \mathbf{B}$ or $2 \mathbf{A}+\mathbf{B}$). Analysis of the structures of all proteinogenic amino acids given in Wikipedia suggests glycine as one with the minimal number of atoms (10) followed by alanine formed by 13 atoms. Thus, the tripeptide with the minimal number of atoms is composed of 2 glycines and 1 alanine. The total number of atoms (33) in the amino acids forming this tripeptide exceeds 31, which makes any tripeptide as well as large peptides impossible. Therefore, \mathbf{X} is a dipeptide.
2. Both α-carboxylic and α-amino groups exist mostly in the ionic forms at pH 4.7. Ionization state of the side groups at the given pH value should be determined individually based on their pKa values as reported in Wikipedia. One should leave into consideration only amino acids with the number of atoms less than $19(28-10=18$; this is maximal possible value in case one of two amino acids is glycine). Surprisingly, the data found on different Wikipedia pages lead to contradictory results. According to the former weblink (http://en.wikipedia.org/wiki/Proteinogenic_amino_acid), only ten amino acids can be further considered. These are:

Amino acid	Prevailing form at pH 4.7 (according to Wikipedia)	Number of atoms	Amino acid	Prevailing form at pH 4.7 (according to Wikipedia)	Number of atoms
Gly		10	Asp		15
Ala		13	Pro		17
Cys		14	Thr		17
Sec		14	Asn		18
Ser		14	Glu		18

The listed amino acids provide for the following dipeptides (without regard to N - and C-termini): Ser-Cys, Ser-Sec, Cys-Sec, Gly-Asn, Gly-Glu и Asp-Ala. Taking into account the residue positioning (N - or C-terminal), one gets two different dipeptides for each of 4 former pairs, and 3 dipeptides for each 2 latter pairs (note that β-carboxyl group of Asp and γ-carboxyl group of Glu can be also involved in peptide bond formation; see an example below).

(1)

(2)

(3)

Thus, the total number of dipeptides equals to 14 . However, serious caution is needed when using Wikipedia, since it is a collection of the user-generated content. Note that pKa values of some groups are absolutely incorrect (section "Side Chain Properties"). In particular, the side group of Asn is absolutely non-protonated at pH 4.7 . Finally, the correct number of individual peptides is 12 (excluding Gly-Asn and Asn-Gly).

Screenshot of the webpage http://en.wikipedia.org/wiki/Proteinogenic_amino_acid dated 20.10.2012 is given below. Being irresponsible of these mistakes, authors of the problem promise to correct the data after publishing the Solutions to Preparatory problems.

At the same time, the $\mathrm{p} K_{\mathrm{a}}$ values found at the other webpage (http://en.wikipedia.org/wiki/Amino_acid) are correct.
3. One should analyze all five variants of dipeptides (with no regard to N - and C-termini) from i. 2 by calculating masses of corresponding precipitates. Typical procedure is given below for the correct answer (Cys-Sec):

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSe}+9.5 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+\mathrm{SO}_{2}+\mathrm{SeO}_{2}+\mathrm{N}_{2}+6 \mathrm{H}_{2} \mathrm{O}(1) ; \\
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O}(2) ; \\
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O}(3) ; \\
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{SeO}_{2} \rightarrow \mathrm{CaSeO}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O}(4) .
\end{gathered}
$$

Number of moles of dipeptide: $1.000 \mathrm{~g} / 271.19 \mathrm{~g} / \mathrm{mol}=3.687 \cdot 10^{-3} \mathrm{~mol}$. Thus, the mass of precipitate is:

$$
\mathrm{m}(\text { precipitate })=3.687 \cdot 10^{-3} \mathrm{~mol} *(6 * 100.09+120.14+167.04) \mathrm{g} / \mathrm{mol}=3.273 \mathrm{~g}
$$

However, further calculations according to the equations of chemical reactions of precipitate dissolution in hydrochloric acid

$$
\begin{aligned}
& \mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}(5) ; \\
& \mathrm{CaSO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{SO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}(6),
\end{aligned}
$$

provide for contradictory results. Gas volume given in the task is by approx. 15% less than that obtained from the calculations. The only reason behind the difference is the deficiency of
hydrochloric acid with respect to the precipitate amount (Note that by contrast to the rest of the task, there is no indication of an excess or deficiency in the case of hydrochloric acid!).

Since the available data is insufficient to decide on the sequence of amino acid residues, both Cys-Sec and Sec-Cys are accepted as correct answers for \mathbf{X}.

(1)

(2)
4. The -SeH group is a much stronger reducing agent than the -SH group. Thus, Sec is very readily oxidized, which makes its presence as free selenocysteine inside a cell impossible.
5. Searching for a correlation between the given images and sequences is much easier than can be expected. There could be many ways to reach the correct answer. A sample strategy is given below. First, one should decide which of the fragments refers to human RNA. Genomes of the viruses belonging to the same family should be phylogenetically close, with a slight divergence form the common ancestor. Indeed, sequences 1 and 3 reveal high similarity, both dramatically differing from sequence 2 , the latter thus being attributed to human cell. Next step is the search for nucleotides corresponding to the black boxes in the image of human RNA. Note that there are colorless and grey boxes to the ends from black ones. These include 9 nucleotides at the 5'- and 11 nucleotides at the 3 '-end. These forbidden areas are highlighted red in the hereunder sequence. Nucleotides corresponding to the black boxes are located between the red fragments, and should be twice two consecutive purine nucleotides AG, AA or GG (all options highlighted yellow). Furthermore, there should be exactly 30 nucleotides between the yellow fragments, which allows the final assignment (highlighted yellow and underlined).

AGGCACUCAUGACGGCCUGCCUGCAAACCUGCUGGUGGGGCAGACCCGAAAAUCCCAC

Thus, the encircled codon is UGA, which can be also found in fragments 1 and 3. Using the above strategy, one can fill in the rest two images and find the correlation between the images and fragments (fragments 1, 2, and 3 refer to the images of the fowlpox virus, homo sapiens, and canarypox virus, respectively).

6. Guanine-uracil is the so-called Wobble Base Pair.

7. UGA, according to the table of genetic code, is known as the STOP codon terminating translation. However, it is stated in the problem that the chain elongation proceeds after UGA (variants 2 and 3 invalid). UGA is similarly located in sequences of very dissimilar organisms (a mammal and viruses), which underlines its importance for translation and makes variant 5 hardly possible. Variant 4 can be also discriminated, since translation is an uninterruptible process.

Thus, variant 1 is the correct answer. Indeed, UGA in a certain motive (referred to as SECIS element, Selenocysteine Insertion Sequence) is read as the codon determining selenocysteine inclusion into polypeptides. In viruses, SECIS element is located in the translated region of RNA. In eukaryotes, this hairpin-like structure is found in the unreadable part of mRNA (in 3'untranslated region, 3^{\prime}-UTR), and Sec is not found in human proteins.
8. Knowledge of the UGA position allows setting the reading frame. In principle, there could be various mutations meeting the requirements. Examples are given below.

Choosing a mutation, one should keep in mind that the wild type and mutant codons must encode the same amino acid. Also, nucleotides of this codon should not be involved in maintaining the secondary structure of SECIS element (no hydrogen bonding to opposite nucleotides). Thus, one can suggest $\mathrm{U}-23 \rightarrow \mathrm{C}-23$ mutation for the fowlpox virus (both are tyrosine codons), and A $28 \rightarrow \mathrm{G}-28$ mutation for the canarypox virus (both are lysine codons).

Problem 24. Unusual amino acids: search for new properties

1. Calculation of molar ratios of carbon, hydrogen and oxygen in A-C allows determining their minimal molecular weights corresponding to the net formulae (note that isotopic ratios of C, H, N and O are native):

Compound	Calculation of ratios	Calculation of minimal molecular weights, $\mathrm{g} / \mathrm{mole}$
\mathbf{A}	$n(\mathrm{C}): n(\mathrm{H}): n(0)=\frac{31.09}{12.01}: \frac{5.74}{1.008}: \frac{16.57}{16.00}=5: 11: 2$	$M=\frac{60.05 \cdot 100}{31.09}=193.1$
\mathbf{B}	$n(\mathrm{C}): n(\mathrm{H}): n(0)=\frac{26.67}{12.01}: \frac{5.04}{1.008}: \frac{17.77}{16.00}=4: 9: 2$	$M=\frac{48.04 \cdot 100}{26.67}=180.1$
\mathbf{C}	$n(\mathrm{C}): n(\mathrm{H})=\frac{9.24}{12.01}: \frac{3.10}{1.008}=1: 2.25=1: 4$	$M=\frac{12.01 \cdot 100}{9.24}=130.0$

With provision of the upper bound ($\mathrm{M}<250 \mathrm{~g} / \mathrm{mole}$), true and minimal molecular weights coincide. The residual molecular weights available for the other two elements (besides C, H, and O) in A and B are of 90.0 and $91.0 \mathrm{~g} /$ mole, respectively. There are two possible reasons behind the difference in the residual molecular weights for \mathbf{A} and $\mathbf{B}(91.0-90.0=1 \mathrm{~g} / \mathrm{mole})$. These are dissimilarity of atomic weights of the fifth elements in \mathbf{A} and \mathbf{B} and/or different number of nitrogen atoms in these compounds. All possible variants of the number of nitrogen atoms (cannot exceed 6) in \mathbf{A} are considered in the hereunder table:

Number of N atoms in \mathbf{A}	Residual molecular weight left for the 5th element in \mathbf{A}	Variants of the $5^{\text {th }}$ element	Biochemical sense
1	76	-	-
2	62	2P	To be considered
3	48	1 Ti ?	Impossible
		2 Mg ?	Impossible
		3 O ?	Impossible
		4 C ?	Impossible
4	34	-	-
5	20	1 Ne ?	Impossible
6	6	6 H ?	Impossible

With provision of the inequality given in the problem text, the variant of 2 nitrogen atoms in \mathbf{A} corresponds to 1 or 2 nitrogen atoms in \mathbf{B}, and 75 or $63 \mathrm{~g} / \mathrm{mole}$ left for the $5^{\text {th }}$ element in the latter compound, respectively. No reasonable variants are in agreement with the above values. Therefore, we seem to have come up against a brick wall.
2. Difference by $1 \mathrm{~g} / \mathrm{mole}$ in the molecular weights of the $5^{\text {th }}$ element in \mathbf{A} and \mathbf{B} is left as the only reason. This can be true in case of isotopes (note that native isotope ratios are mentioned only for four elements!). If so, isotopes should be stable (stability of all initial compounds) and most likely of one and the same element (\mathbf{A}, \mathbf{B}, and \mathbf{C} are precursors of the same compound \mathbf{X}). With account of the equal number of nitrogen atoms in \mathbf{A} and \mathbf{B}, the following set of isotope combinations is available: 20-21, 34-35, 48-49, 62-63, 76-77. Furthermore, the difference of 1 $\mathrm{g} /$ mole unambiguously suggests only one atom of the $5^{\text {th }}$ element in each of \mathbf{A} and \mathbf{B}.

Two sets of stable isotopes (${ }^{48} \mathrm{Ti}-{ }^{49} \mathrm{Ti}$ and $\left.{ }^{76} \mathrm{Se}-{ }^{77} \mathrm{Se}\right)$ formally fit well. Since there are no native titanium-containing amino acids, the elemental composition of \mathbf{A} and \mathbf{B} is finally found as: C, H, N, O, and Se.
3. As determined above, the molecular formula of \mathbf{B} is $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SeNO}_{2}$. Four structures can be proposed for this α-amino acid. The rightmost structure contains two chiral atoms, thus being invalid, whereas the leftmost one is unstable. So, two central structures are left as the correct answer.

4. Both R - and S-amino acids are found in nature. Since it is not mentioned in the problem text which exactly of \mathbf{A} and \mathbf{B} is found in proteins, it is impossible to unambiguously assign configurations of α-carbon atoms without additional information.
5. Gases A1, B1, and $\mathbf{C} 1$ have molecular weights of 106, 107 and $112 \mathrm{~g} / \mathrm{mole}$, respectively. It is seen that the difference in the molecular weights of \mathbf{A} and $\mathbf{B}(1 \mathrm{~g} / \mathrm{mole})$ is retained for their metabolites. Thus, A1 and B1 are likely to be isotopologues. Besides selenium, A1 and B1 contain elements with a total residual molecular weight of $106-76=30 \mathrm{~g} / \mathrm{mole}$. Since gaseous metabolites contain hydrogen, there are two possible variants of their molecular formula: $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Se}$ or $\mathrm{CH}_{2} \mathrm{SeO}$. With provision of identity of hydrogen atoms in $\mathbf{A 1}$, the following structures are possible:

Of these two, only dimethylselenide does not contain π-bonds. Finally, A1 is $\left(\mathrm{CH}_{3}\right)_{2}{ }^{76} \mathrm{Se}$, and $\mathbf{B 1}$ is $\left(\mathrm{CH}_{3}\right)_{2}{ }^{77} \mathrm{Se}$.
6. The atomic weight of selenium isotope in $\mathbf{C 1}$ is $76+(112-106)=82$ a.u. (Note that the final metabolite is the same for all three initial original compounds!). Residual molecular weight left for the $4^{\text {th }}$ element in \mathbf{C} (it consists of only four elements) is $130-16-82=32 \mathrm{~g} / \mathrm{mole}$, which corresponds to two atoms of oxygen. Thus, the molecular formula of \mathbf{C} is $\mathrm{CH}_{4} \mathrm{O}_{2}{ }^{82} \mathrm{Se}$.

Presence of methyl groups in $\mathbf{C 1}$ as well as lack of C-O bonds in the structure allow the final ascertainment of the structural formula of \mathbf{C} (the leftmost of the hereunder ones with ${ }^{82} \mathrm{Se}$):

Then, \mathbf{X} is methyleselenide $\mathrm{CH}_{3} \mathrm{SeH}$, and $\mathbf{C 1}$ is $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}$ produced as result of \mathbf{X} methylation (transferase reaction).
7. As determined in i. 6, methylation is the second step of the processes under consideration. With respect to extremely high specificity of enzymes, all substrates subjected to methylation should be very similar. Thus, the isotopologues of $\mathbf{X}\left(\mathrm{CH}_{3}{ }^{76} \mathrm{SeH}\right.$ and $\left.\mathrm{CH}_{3}{ }^{77} \mathrm{SeH}\right)$ are the only reasonable intermediates on the way from \mathbf{A} and \mathbf{B} to $\mathbf{A 1}$ and $\mathbf{B 1}$, respectively. These intermediates can directly originate only from compounds containing $\mathrm{CH}_{3}-\mathrm{Se}-$ residue. Thus, selenomethionine and methylselenocysteine can be attributed to \mathbf{A} and \mathbf{B} :

A

B
8. Since the experiment under discussion is aimed at revealing pathways of selenium metabolism, it is reasonable to check masses of selenium in each of the administered compounds. Calculations involving the molecular weights of \mathbf{A}, \mathbf{B}, and \mathbf{C} and masses of these compounds in the mixture provide for a wonderful result: the mixture contains $25 \mu \mathrm{~g}$ of each of selenium isotopes.
9. Variant 2 is the correct choice. Selenomethionine is structurally similar to methionine (compare the structures hereunder), which sometimes leads to mistakes in translation and false insertion of selenium-containing amino acid instead of sulfur-containing one.

Isotope ${ }^{76} \mathrm{Se}$ is found in nature ($\sim 1 \%$ of the total selenium pool), so the residue of selenomethionine with ${ }^{76}$ Se can be found (though rarely) in proteins.

Variant 1 is impossible, since posttranslational modification leading to \mathbf{A} should involve methylation of selenohomocysteine residue, the latter amino acid also lacking its own tRNA:

Variants 3 and 5 are impossible, since protein biosynthesis admits the only way of polypeptide chain elongation, which involves an amino acid residue transfer from aminoacyl-tRNA.

Variant 4 is impossible for the same reasons as Variant 2. Methylselenocysteine is structurally similar to S-methylcysteine (compare the hereunder structures), which is not a canonical amino acid, thus lacking its own tRNA:

Methylselenocystein

Methylcysteine

Problem 25. Specific features of Clostridium metabolism

1. Glucose consists of carbon, oxygen and hydrogen. As a result of its fermentation in $\mathrm{H}_{2} \mathrm{O}$ the following gaseous (at STP) products could be theoretically formed:
1) Molecular hydrogen,
2) Various hydrocarbons,
3) Formaldehyde,
4) CO and CO_{2}.

Absence of C-H bonds in \mathbf{C} and \mathbf{D} allows excluding variants 2 and 3 from further consideration.

Molecular mass of the gas mixture is $10.55^{*} 2 \mathrm{~g} / \mathrm{mol}=21.1 \mathrm{~g} / \mathrm{mol}$. It is obvious that hydrogen is one of the two gases, whereas either CO or CO_{2} is the other one. CO seems to be an improbable variant; still all the options should be checked by applying the hereunder formula for n :

$$
\begin{gathered}
M(\boldsymbol{C}) \cdot \frac{n}{n+10}+M(\boldsymbol{D}) \cdot \frac{10}{n+10}=21.1 \\
n=\frac{211-10 \cdot m(\boldsymbol{D})}{M(\boldsymbol{C})-21.1}
\end{gathered}
$$

\mathbf{C}	\mathbf{D}	Coefficient n
H_{2}	CO_{2}	12.0
CO_{2}	H_{2}	8.3
H_{2}	CO	9.6
CO	H_{2}	27.7

Since n is integer in only one case, \mathbf{C} and \mathbf{D} are attributed to H_{2} and CO_{2}, respectively.
Note that bacterial cultures exist in specific, sometimes solid, nutritious media. Thus, conventional data of gases (in particular, of CO_{2}) solubility in water may be inapplicable.
2. With respect to the results in i. 1, the updated reaction (1) is rewritten as:

$$
5 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+k \mathrm{H}_{2} \mathrm{O} \rightarrow l \mathbf{A}+m \mathbf{B}+12 \mathrm{H}_{2}+10 \mathrm{CO}_{2}
$$

a) In the case when each of \mathbf{A} and \mathbf{B} is a saturated monocarboxylic acids, the equation transforms into:

$$
5 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+k \mathrm{H}_{2} \mathrm{O} \rightarrow l \mathrm{C}_{\mathrm{x}} \mathrm{H}_{2 \mathrm{x}} \mathrm{O}_{2}+m \mathrm{C}_{\mathrm{y}} \mathrm{H}_{2 \mathrm{y}} \mathrm{O}_{2}+12 \mathrm{H}_{2}+10 \mathrm{CO}_{2},
$$

where x and y are the numbers of carbon and hydrogen atoms in \mathbf{C} and \mathbf{D}, respectively.

With account of the balance of the elements numbers, one gets the hereunder system of equations:

Element	Balance equation
C	$l \cdot \mathrm{x}+m \cdot \mathrm{y}=20$
H	$18+k=l \cdot \mathrm{x}+m \cdot \mathrm{y}$
O	$k=2 l+2 m-10$

It is seen from the first two equations that $k=2$. Thus, the equation for oxygen can be rewritten as $l+m=6$
b) In the case when \mathbf{A} is a saturated monocarboxylic and \mathbf{B} a saturated dicarboxylic acids (reverse variant is equivalent), the equation transforms into:

$$
5 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+k \mathrm{H}_{2} \mathrm{O} \rightarrow l \mathrm{C}_{\mathrm{x}} \mathrm{H}_{2 \mathrm{x}} \mathrm{O}_{2}+m \mathrm{C}_{\mathrm{y}} \mathrm{H}_{2 \mathrm{y}-2} \mathrm{O}_{4}+12 \mathrm{H}_{2}+10 \mathrm{CO}_{2},
$$

where x and y are the numbers of carbon and hydrogen atoms in \mathbf{C} and \mathbf{D}, respectively.

Further analysis provides an analogous system of equations:

Element	Balance equation
C	$l \cdot \mathrm{x}+m \cdot \mathrm{y}=20$
H	$18+k=l \cdot \mathrm{x}+m \cdot \mathrm{y}-m$
O	$k=2 l+4 m-10$

There is only one set of integer values corresponding to $m=k=1$. Still, then $l=3.5$, which is in contradiction with the conditions of the problem.
\mathbf{A} and \mathbf{B} with higher number of carboxylic groups (for example, two dicarboxylic acids) are impossible, as this results in negative k, l, or m.
3. $\quad l$ and m are integers, and $l+m=6$. This suggests the following possible ratios: 1:1 (3:3), 1:2 (2:4) and 1:5. Still, $l \cdot x+m \cdot y=20$, which makes the ratio of $1: 1$ impossible (both x and y noninteger, $20 / 3=6.67$). Ratios of $2: 1$ and 5:1 are theoretically possible. Thus, the correct variants are $\underline{b}, \underline{e}$ and \underline{f}.
4. The next step is a search for integer solutions of the equation $l \cdot x+m \cdot y=20$ for the ratios established in i. 3.

$l=2 ; m=4$		$l=1 ; m=5$	
\mathbf{x}	\mathbf{y}	\mathbf{x}	\mathbf{y}
8	1	15	1
6	2	10	2
$\mathbf{4}$	$\underline{\mathbf{3}}$	$\underline{\mathbf{5}}$	$\underline{\mathbf{3}}$
$\underline{\mathbf{2}}$	$\underline{\mathbf{4}}$		

Since the number of carbon atoms decreases as a result of fermentation ($x<6$ and $y<6$), only the variants underlined in the above table are left for consideration. These correspond to four unbranched monocarboxylic acids:

Further discrimination of the variants based on the available data is impossible.
For your information: A and \mathbf{B} are acetic and butyric acids, respectively.
5. Since $\mathbf{Z}_{\text {start }}$ and $\mathbf{Z}_{\text {finish }}$ contain the same number of nitrogen atoms, a system of equations (2) and (3) can be set up:

$$
\begin{gathered}
\frac{a}{b}=0.12727(2) ; \frac{a}{b+n}=0.12069 \\
b=18.34 \cdot n
\end{gathered}
$$

where a is the number of N atoms, whereas b and $b+n$ are the total numbers of atoms in $\mathbf{Z}_{\text {finish }}$ and $\mathbf{Z}_{\text {start }}$, respectively.

The given limitation of less than 100 atoms in each of $\mathbf{Z}_{\text {start }}$ and $\mathbf{Z}_{\text {finish }}$ can be written as $n<6$. Variable b is necessarily integer, thus leading to the solely possible combination of $b=55$ and $n=3$. So, $\mathbf{Z}_{\text {start }}$ and $\mathbf{Z}_{\text {finish }}$ are composed of 58 and 55 atoms, respectively. This means that $\mathbf{Z}_{\text {start }}$ loses 3 atoms in acetyl-CoA formation.
6. The difference in the number of hydrogen atoms in $\mathbf{Z}_{\text {start }}$ and $\mathbf{Z}_{\text {fininh }}$ is:

$$
\Delta N_{H}=N_{H}\left(Z_{\text {start }}\right)-N_{H}\left(Z_{\text {finish }}\right)=58 \cdot 0.43103-55 \cdot 0.41818=2
$$

Thereby, two of three atoms appearing in acetyl-CoA from $\mathbf{Z}_{\text {start }}$ are hydrogen atoms. Oxygen or carbon can be the third atom lost by $\mathbf{Z}_{\text {start. }}$ In the former case, $\mathbf{Z}_{\text {start }}$ loses $\mathrm{H}_{2} \mathrm{O}$, and in the latter case CH_{2}-group, which is formally equivalent to substituting a CH_{3}-group with 1 hydrogen atom.

Both variants can be rewritten in a form of equations (4) and (5):

$$
\begin{aligned}
& \mathrm{Z}-\mathrm{CH}_{3}+\mathrm{CoA}-\mathrm{SH}+\mathbf{E} \rightarrow \mathbf{Z}-\mathrm{H}+\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{SCoA}(4) ; \\
& \mathrm{H}-\mathrm{Z}-\mathrm{OH}+\mathrm{CoA}-\mathrm{SH}+\mathbf{E} \rightarrow \mathbf{Z}+\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{SCoA}
\end{aligned}
$$

Equation (5) is invalid with any \mathbf{E}, whereas equation (4) is correct, if \mathbf{E} is carbon monoxide CO formed via enzymatic reduction of CO_{2}.

Since bacteria cultivation proceeds in the presence of isotope-labeled CO_{2}, the number and isotope distribution of nitrogen atoms in acetyl CoA are not influenced. Thus, the molecular mass of acetyl-CoA isotopologues is:

$$
M(\text { labeled } A c C o A)=\frac{100 \cdot 14.01 \cdot 7}{12.08}=811.8 \mathrm{~g} / \mathrm{mol}
$$

Molecular mass of unlabeled acetyl-CoA is 809.5. With account of rounding of nitrogen mass fractions, the difference is of $2 \mathrm{~g} / \mathrm{mol}$. Two hereunder variants are possible:

1) $\quad \mathrm{CO}_{2}$ labeled with ${ }^{13} \mathrm{C}$ enters the reaction, thus giving acetyl residue with two ${ }^{13} \mathrm{C}$ atoms;
2) CO_{2} labeled with two ${ }^{18} \mathrm{O}$ enters the reaction, thus giving acetyl residue with ${ }^{18} \mathrm{O}$ atom.

It is impossible to distinguish between $\mathbf{D} 1$ and $\mathbf{D} 2$ basing on the available data:

$$
\text { D1 }-{ }^{13} \mathrm{CO}_{2} \text { or } \mathrm{C}^{18} \mathrm{O}_{2} ; \mathbf{D} 2-{ }^{13} \mathrm{CO}_{2} \text { or } \mathrm{C}^{18} \mathrm{O}_{2} .
$$

The above considered acetyl-CoA biosynthesis is referred to as the Wood-Ljungdahl pathway.

For your information. Exact attributing of D1 and D2 is possible using physico-chemical methods of analysis. Both isotopes are stable, which makes the radioactivity based methods useless. The suitable methods include mass-spectrometry (different patterns are formed for molecular fragments) and ${ }^{13} \mathrm{C}$-NMR spectroscopy (${ }^{18} \mathrm{O}$ isotope is not used in NMR spectroscopy).
7. The initial nucleotide ratio is $1: 1$, thus the probability of finding G or C at any position equals $1 / 2$. Hence, the probability of any of eight possible codons is of $1 / 2 * 1 / 2 * 1 / 2=1 / 8$. Four amino acids are each encoded by two codons composed of only G and/or C. Thus, the ratio
between Pro, Arg, Gly, and Ala is 1:1:1:1. However, with account of the limited length of the oligopeptide (about 33 amino acid residues), there could be significant deviations from the above ratio. So, variant 6 is the most correct choice.
8. Using the table of genetic code, one can write down the nucleotide sequences of the initial and mutant mRNA fragments (see designations of N and $\mathrm{N} 1 / \mathrm{N} 2$ in Problem 22, i. 6):

$$
\begin{gathered}
\text { UGG-CAU/C-AUG-GAA/G-UAU/C (initial); } \\
\text { UGG-ACN-UAU/C-GGN-GUN (mutant). }
\end{gathered}
$$

Comparison of two sequences suggests that the mutation (insertion of A) occurred right after the first codon. Mutations influencing polypeptide biosynthesis are classified into two groups: the substitution of base pairs and the frameshift. The latter happens upon deletion or insertion of nucleotides in a number not multiple of three. Then, the initial sequence can be rewritten as:

UGGCAUAUGGAGUAU/C

If the mutant protein ends up with the $234^{\text {rd }}$ amino acid residue, the biosynthesis is terminated by a STOP codon present next. Since STOP codons always start with U, the completely deciphered sequence of nucleotides is:

UGGCAUAUGGAGUAU

Problem 26. Analysis of complex formation

1. $\quad \mathrm{K}_{b}=\frac{[\mathbf{A b} * \mathbf{A g}]}{[\mathbf{A b}] \cdot[\mathrm{gg}]}$
2. $\quad \bar{n}=\frac{[\mathbf{A b} * \mathbf{A g}]}{[\mathbf{A b} * \mathbf{A g}]+[\mathbf{A b}]}=\frac{\mathrm{K}_{b}[\mathbf{A b}] \cdot[\mathbf{A g}]}{\mathrm{K}_{b}[\mathbf{A b}] \cdot[\mathbf{A g}]+[\mathbf{A b}]}=\frac{\mathrm{K}_{b}[\mathbf{A g}]}{\mathrm{K}_{b}[\mathbf{A g}]+1}$

As seen, the titration curves are strongly non-linear, which makes their analysis complicated.
3. $\quad \mathrm{K}_{b}=\frac{[\mathbf{A b} * \mathbf{A g}]}{[\mathbf{A b}] \cdot[\mathbf{A g}]} \Rightarrow \frac{[\mathbf{A b} * \mathbf{A g}]}{[\mathbf{A g}]}=\mathrm{K}_{b}\left(\mathrm{C}_{\mathbf{A b}}-[\mathbf{A b} * \mathbf{A g}]\right)$

Thus, a plot in such coordinates (referred to as the Scatchard ones) should be a straight line with the slope of $-\mathrm{K}_{\mathrm{b}}$ and the intercept of $\mathrm{C}_{\mathbf{A b}} \mathrm{K}_{\mathrm{b}}\left(\mathrm{C}_{\mathbf{A b}}\right.$ is the total $\mathbf{A b}$ concentration).

This is proved by plotting Set A data, point \#6 is seemingly an outlier:

From the experimental data, $K_{\mathrm{b}}=2 \cdot 10^{4} \mathrm{~L} / \mathrm{mol}$.
According to the above equation, with a 10 times higher K_{b}, values for both the intercept (1.64 from the original data) and the slope should be 10 times higher:

4. If all the binding sites are independent, and K_{b} does not depend on the fraction of occupied binding sites, mathematically there is no difference between x molecules of antibody with valence N and $\mathrm{N} \cdot \mathrm{x}$ molecules of antibody with valence 1 . Thus, the above mentioned Scatchard equation is only slightly modified to account for several binding sites per antibody:

$$
\frac{[\mathbf{A b} * \mathbf{A g}]}{[\mathbf{A g}]}=\mathrm{K}_{b}\left(\mathrm{~N} \cdot \mathrm{C}_{\mathbf{A b}}-[\mathbf{A b} * \mathbf{A g}]\right) .
$$

The experimental data fit a straight line with a slope of -0.0660 (corresponding to $K_{\mathrm{b}}=6.6 \cdot 10^{4}$ $\mathrm{L} / \mathrm{mol}$) and an intercept of 1.46 . Thus, $1.46=\mathrm{K}_{b} \cdot \mathrm{~N} \cdot \mathrm{C}_{\mathbf{A b}}=6.6 \cdot 10^{4} \cdot N \cdot 1.1 \cdot 10^{-5} \Rightarrow N=2$.
5. A clear way to determine $\mathrm{C}_{\mathbf{A b}}$ follows from the fact that the K_{b} value influences both the slope and the intercept of the plot in Scatchard coordinates. As soon as K_{b} is determined from the slope of the curve, $\mathrm{C}_{\mathbf{A b}}$ can be immediately calculated, provided the antibody valence N is known. For instance, for the set $\mathrm{A}, \mathrm{N}=1, K_{\mathrm{b}}=2 \cdot 10^{4} \mathrm{~L} / \mathrm{mol} ; \mathrm{C}_{\mathbf{A b}}=1.64 / 2 \cdot 10^{4} \approx 82 \mu \mathrm{~mol} / \mathrm{L}$, which reasonably corresponds to the given value of $80 \mu \mathrm{M}$. It can be concluded, thus, that the ADP protein does not contain any functionally inactive antibodies or other impurities.

The same analysis for the set B is impossible, because the real enzyme valence is not known a priori. (Value $\mathrm{N}=2$ determined above has been obtained under assumption of 100% enzyme purity.)

Problem 27. Inorganic polymers: polyphosphates and polysilicones

1. Well known examples are: C (acethylenic carbon), S (various forms of polymeric sulfur), Se (grey selenium), P (red phosphorus), As (black arsenic), Sb (black antimony). Not all of these substances consist of perfectly linear chain molecules, but for sure these elements are capable of forming quite long polymers.
2. $2 \mathrm{HPO}_{4}^{2-} \rightleftarrows \mathrm{P}_{2} \mathrm{O}_{7}^{4-}+\mathrm{H}_{2} \mathrm{O}$ (ionization state of the phosphate precursor depends on pH).
3. With P_{i} standing for a polyphosphate with the degree of polymerization of i, for the reaction

$$
\mathrm{P}_{\mathrm{m}} \mathrm{OH}+\mathrm{P}_{\mathrm{n}} \mathrm{OH} \rightleftarrows \mathrm{P}_{\mathrm{m}} \mathrm{OP}_{\mathrm{n}}+\mathrm{H}_{2} \mathrm{O}
$$

$$
K=\frac{\left[\mathrm{P}_{\mathrm{m}+\mathrm{n}}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{P}_{\mathrm{m}} \mathrm{OH}\right]\left[\mathrm{P}_{\mathrm{n}} \mathrm{OH}\right]} .
$$

As polyphosphates of various degrees of polymerization are not distinguishable, each of concentrations $\left[P_{m}\right],\left[P_{n}\right],\left[P_{m+n}\right]$ can be substituted with the total concentration of all phosphate species, thus,

$$
K=\frac{\left[\mathrm{P}_{\mathrm{m}+\mathrm{n}}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{P}_{\mathrm{m}} \mathrm{OH}\right]\left[\mathrm{P}_{\mathrm{n}} \mathrm{OH}\right]}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{P}_{\mathrm{i}}\right]}
$$

4. The following reasons should be taken into account. First, the free energy of hydrolysis is strongly negative, which means that the free energy of condensation (the reverse reaction) is positive. Thus, the equilibrium constant of an elementary condensation stage is low (less than 1), which is not consistent with the high-polymeric phosphate species. In general, lower equilibrium concentration of (poly)phosphate molecules means that more individual condensations have taken place, which is equivalent to the higher average degree of polymerization of the product. This is true for process ii): lower water concentration (at a certain equilibrium constant value) corresponds to lower equilibrium concentration of phosphate molecules (from the expression derived in i. 3). Thus, process ii) is more favorable than i). However, process iii) is the most favorable. According to the equation

a highly volatile HCl is formed, which is efficiently removed from the reaction mixture by heating. As a result, the equilibrium is shifted rightwards.

Indeed, only route iii) can be applied in practice for the preparation of polyphosphoric acids. Condensation in concentrated solutions (process ii)) is quite slow, and yields significant amounts of polyphosphoric acids only upon heating (molten $\mathrm{H}_{3} \mathrm{PO}_{4}, 230-250^{\circ} \mathrm{C}$). Direct condensation in dilute solution (process i)) is so unfavorable that may come true only when coupled with a certain exoergic reaction (for instance, substrate phosphorylation in various biochemical processes) with the actual mechanism much more complicated than direct condensation.
5.

A1

A2

The main chain of the polymer molecule is composed of Si and O atoms:

6, 7. The $\mathrm{Si}-\mathrm{Cl}$ bond is much more reactive than the $\mathrm{C}-\mathrm{Cl}$ one in hydrolysis and condensation reactions. Thus, A2 can be considered bifunctional in polycondensation reaction, giving a nonbranched polymer with the cyclic giant macromolecule of poly(chlorodimethylsiloxane) as the final product when absolutely all $\mathrm{Si}-\mathrm{Cl}$ bonds are reacted:

A1 is trifunctional, thus giving rise to a branched polymer:

If hydrolysis of $\mathrm{Si}-\mathrm{Cl}$ bonds is incomplete, some Cl residues are present in the polymeric product. Incomplete condensation retains a number of OH-groups in the product.

Problem 28. Determination of copper and zinc by complexometric titration

1. $\mathrm{Cu}+4 \mathrm{HNO}_{3 \text { (conc.) }}=\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{Zn}+4 \mathrm{HNO}_{3 \text { (conc.) }}=\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{Cu}^{2+}+\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{EDTA}=\mathrm{CuH}_{2} \mathrm{EDTA}+2 \mathrm{Na}^{+}
$$

$$
\mathrm{Zn}^{2+}+\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{EDTA}=\mathrm{ZnH}_{2} \mathrm{EDTA}+2 \mathrm{Na}^{+}
$$

2. Cu^{2+} ions present in the aqueous solution are reduced to Cu^{+}by thiosulfate. Moreover, the latter forms with Cu^{+}a soluble complex $\left[\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{3}\right]^{5-}$, which is more stable than $\mathrm{Cu}_{2} \mathrm{H}_{2}$ EDTA:

$$
2 \mathrm{Cu}^{2+}+8 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}=2\left[\mathrm{Cu}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}\right]^{5-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}
$$

3. Metal ions can be titrated with EDTA if the conditional stability constants β ' of the metal - EDTA complexes are not less than $10^{8}-10^{9}$. The β, values are connected with the real constants β as

$$
\beta^{\prime}=\alpha_{\text {EDTA }} \alpha_{\mathrm{M}} \beta,
$$

where $\alpha_{\text {EDTA }}$ and α_{M} are molar fractions of H_{2} EDTA $^{2-}$ and free metal ion, respectively. As the values of $\alpha_{\text {EDTA }}$ and α_{M} significantly depend on pH of the solution, there is an optimal pH range for the titration of metals. In the case of Cu^{2+} and Zn^{2+}, the pH value within 5 to 6 is optimal. In such slightly acidic medium both metals do not form hydroxy complexes (α_{M} is high), whilst H_{2} EDTA $^{2-}$ is not further protonated ($\alpha_{\text {EDTA }}$ is high).
4. $\quad \mathrm{a}\left(\mathrm{H}_{2} \mathrm{EDTA}^{2-}\right)=\mathrm{K}_{1} \mathrm{~K}_{2}\left[\mathrm{H}^{+}\right]^{2} /\left(\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3} \mathrm{~K}_{4}+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\left[\mathrm{H}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}\left[\mathrm{H}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}^{+}\right]^{3}+\left[\mathrm{H}^{+}\right]^{4}\right)$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=10^{-6} \mathrm{M}, K_{1}=1.0 \cdot 10^{-2}, K_{2}=2.1 \cdot 10^{-3}, K_{3}=6.9 \cdot 10^{-7}, K_{4}=5.5 \cdot 10^{-11}} \\
\alpha\left(\mathrm{H}_{2} \mathrm{EDTA}^{2-}\right)=0,59
\end{gathered}
$$

5. The first titration (B) gives the volume of titrant $\mathrm{V}_{\mathrm{Cu}+\mathrm{Zn}}$, whilst the second one (\mathbf{C}) gives $\mathrm{V}_{\mathrm{Zn}} . \mathrm{Zn}^{2+}$ concentration is calculated as follows:

$$
\begin{gathered}
\mathrm{c}\left(\mathrm{Zn}^{2+}\right)=\left(\mathrm{V}_{\mathrm{Zn}} \mathrm{~mL} / 1000 \mathrm{~mL} \mathrm{~L}^{-1}\right) \cdot \mathrm{c}_{\text {EDTA }} \mathrm{mol} \mathrm{~L}^{-1} \cdot 100 \mathrm{~mL} / 10.00 \mathrm{~mL} \cdot 65.39 \mathrm{~g} \mathrm{~mol}^{-1} / 0.1000 \mathrm{~L} \\
\mathrm{c}\left(\mathrm{Zn}^{2+}\right) \mathrm{g} \mathrm{~L}^{-1}=\mathrm{V}_{\mathrm{Zn}} \mathrm{~mL} \cdot \mathrm{c}_{\text {EDTA }} \mathrm{mol} \mathrm{~L}^{-1} \cdot 65.39 \mathrm{~g} \mathrm{~mol}^{-1} \cdot 0.1 \mathrm{~mL}^{-1} \\
\mathrm{c}\left(\mathrm{Cu}^{2+}\right)=\left(\left(\mathrm{V}_{\mathrm{Cu}+\mathrm{Zn}}-\mathrm{V}_{\mathrm{Zn}}\right) \mathrm{mL} / 1000 \mathrm{~mL} \mathrm{~L}^{-1}\right) \cdot \mathrm{c}_{\text {EDTA }} \mathrm{mol} \mathrm{~L}^{-1} \cdot 100 \mathrm{~mL} / 10.00 \mathrm{~mL} \cdot 63.55 \mathrm{~g} \mathrm{~mol}^{-1} / \\
0.1000 \mathrm{~L} \\
\\
\mathrm{c}\left(\mathrm{Cu}^{2+}\right) \mathrm{g} \mathrm{~L}^{-1}=\left(\mathrm{V}_{\mathrm{Cu}+\mathrm{Zn}}-\mathrm{V}_{\mathrm{Zn}}\right) \mathrm{mL} \cdot \mathrm{c}_{\text {EDTA }} \mathrm{mol} \mathrm{~L}^{-1} \cdot 63.55 \mathrm{~g} \mathrm{~mol}^{-1} \cdot 0.1 \mathrm{~mL}^{-1}
\end{gathered}
$$

The mass ratio of the metals in alloy is calculated from $c\left(\mathrm{Cu}^{2+}\right)$ and $\mathrm{c}\left(\mathrm{Zn}^{2+}\right)$ values in $\mathrm{g} \mathrm{L}^{-1}$:

$$
\mathrm{m}(\mathrm{Cu}) / \mathrm{m}(\mathrm{Zn})=\mathrm{c}\left(\mathrm{Cu}^{2+}\right) / \mathrm{c}\left(\mathrm{Zn}^{2+}\right)
$$

Problem 29. Conductometric determination of ammonium nitrate and nitric acid

1. Equilibria in the system can be described by the following equations:

$$
\begin{align*}
& \mathrm{H}^{+}+\mathrm{OH}^{-} \leftrightarrows \mathrm{H}_{2} \mathrm{O} \tag{1}\\
& \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \tag{2}
\end{align*}
$$

2,3 . Conductivity of a solution is primarily dependent on the concentration of H^{+}and OH^{-} ions (species with the highest mobility) as well as on that of salts. Solutions A and \mathbf{B} contain the same amount of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ (solution \mathbf{A} with an excess of ammonia reveals a bit higher conductivity). On the titration curves, there are monotonously descending portions reflecting the displacement of the weak base $\left(\mathrm{NH}_{3}\right)$ from its salt (reaction 2). Minimum conductivity is reached when the concentration of protons appearing from $\mathrm{NH}_{4}{ }^{+}$hydrolysis is minimal (reaction 2 completed). This is further changed by a sharp rise corresponding to the increasing excess of alkali.

In the case of solution \mathbf{C}, the first descending portion is steeper (than those for \mathbf{A} and \mathbf{B}) and is associated with diminishing concentration of free protons coming from HNO_{3}. The first equivalence point causes a sharp break of the curve (reaction 1 completed). The second descending portion characterized by a lower slope reflects the displacement of the weak base from its salt (reaction 2). Minimum conductivity is also reached when reaction 2 is completed, which is followed by a sharp rise of conductivity due to the alkali excess.

Titration of solutions of HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$ diluted with deionized water (C), distilled water (D), and deionized water containing $\mathrm{NaCl}(\mathbf{E})$.

The difference between cases \mathbf{C}, \mathbf{D}, and \mathbf{E} is due to various levels of conductivity caused by the salts that are not titrated with NaOH .
4. Calculations can be done in the same way as for a regular acid-base titration, using titrant volumes in inflection points $V_{\mathrm{NaOH}(1),} V_{\mathrm{NaOH}(2)}$:

$$
c_{\mathrm{H}^{+}} V_{\text {sample }}=c_{\mathrm{NaOH}} V_{\mathrm{NaOH}(1)}, \quad c_{\mathrm{NH} 4+} V_{\text {sample }}=c_{\mathrm{NaOH}} \cdot\left(V_{\mathrm{NaOH}(2)}-V_{\mathrm{NaOH}(1)}\right)
$$

Examples.

A and B: if 2.45 mL of 0.9987 M NaOH spent until the inflection point, then $c_{\mathrm{NH} 4+}$ is: $0.9987 \times$ $2,45=c_{\mathrm{NH} 4+} \times 25 ; c_{\mathrm{NH} 4+}=0.0979 \mathrm{M}$.
C-E: if 2.40 mL of 0.9987 M NaOH spent until the first inflection point (neutralization of HNO_{3}) in a 25.0 mL sample aliquot, then $c_{\mathrm{HNO}}=0.0895 \mathrm{M}$. If the second inflection point reached at 4.85 mL , then $c_{\mathrm{NH} 4+}$ is: $0.9987 \times(4.85-2.40)=c_{\mathrm{NH} 4+} \times 25 ; c_{\mathrm{NH} 4+}=0.0979 \mathrm{M}$.
5. HCl first neutralizes the strong base, is followed by neutralization of the weak one. titration curve of a mixture of two bases reveals breaks. NaOH neutralization is accompanied by linear decrease of conductivity due to lowering concentration of highly mobile hydroxyl ions. the first equivalence point, conductivity starts increasing due to the formation of a well dissociating salt (a strong electrolyte) as a result ammonia (a weak electrolyte) neutralization.
 the second equivalence point, conductivity of the solution sharply increases due to the excess of hydrogen ions.

Problem 30. Analysis of fire retardants by potentiometric titration

1. Titration curves for a polyprotic acid (such as phosphoric acid) or a mixture of acids are characterized by more than one endpoint if $K_{a 1}: K_{a 2} \geq 10^{4}$ and the equilibrium constant of acidity of the weak acid is more than $n \times 10^{-9}$. The equilibrium constants of acidity of phosphoric acid are: $K_{\mathrm{a} 1}=7.1 \times 10^{-3}, K_{\mathrm{a} 2}=6.2 \times 10^{-8}, K_{\mathrm{a} 3}=5.0 \times 10^{-13}$. Thus, there are two breaks on the titration curve of phosphoric acid (Fig. 1). The third break is not observed due to very low value of $K_{\mathrm{a} 3}$.

Fig. 1. Titration of a mixture of hydrochloric and phosphoric acids with sodium hydroxide.

During titration of a mixture of hydrochloric and phosphoric acids, the proton of hydrochloric acid and the first proton of phosphoric acid react with sodium hydroxide simultaneously. By the second endpoint $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is converted into $\mathrm{HPO}_{4}{ }^{2-}$.
2. The first and second equivalence points of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are observed at pH of about 4.7 and 9.6 , respectively. For determination of hydrochloric and phosphoric acids in their mixture, one can use indicators with color change around these pH values (for example, bromocresol green and thymol phthalein for the first and second titrations, respectively).
3. The following reaction takes place on addition of HCl to the sample:

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}+2 \mathrm{HCl}=2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{3} \mathrm{PO}_{4}
$$

Formaldehyde reacts with ammonium salts to form hexamethylene tetrammonium cation:

$$
4 \mathrm{NH}_{4}^{+}+6 \mathrm{H}_{2} \mathrm{CO}=\left(\mathrm{CH}_{2}\right)_{6}\left(\mathrm{NH}^{+}\right)_{4}+6 \mathrm{H}_{2} \mathrm{O}
$$

The equations describing the titration of hexamethylene tetrammonium salt, hydrochloric and phosphoric acids with sodium hydroxide:

$$
\begin{gathered}
\left(\mathrm{CH}_{2}\right)_{6}\left(\mathrm{NH}^{+}\right)_{4}+4 \mathrm{OH}^{-}=\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}+4 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{HCl}+\mathrm{NaOH}=\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaOH}=\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{NaOH}=\mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

4. A typical analysis of potentiometric titration data is shown in Fig. 2. The most steeply rising portion on the curve (a) corresponds to the endpoint, which can be found more precisely by studying dependences of the first (maximum on curve (b)) or second (zero value on curve (c)) derivatives. In the presence of ammonium salts, the reaction corresponding to the second end point in $\mathrm{H}_{3} \mathrm{PO}_{4}$ titration

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}=\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}
$$

is overlaid by the process

$$
\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}=\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O},
$$

which makes the potential rise gradually rather than sharply (ammonium buffer).

Fig. 2. Typical plots of potentiometric titration:
(a) titration curve of an acid with a base;
(b) curve of the first derivative;
(c) curve of the second derivative.

5. (a) Calculation of phosphate amount

With $V_{\mathrm{NaOH}, 1}$ designating the volume of sodium hydroxide used in titration \mathbf{A}, the amount needed to neutralize hydrochloric acid and the first proton of phosphoric acid is:

$$
n_{\mathrm{PO} 4}+n_{\mathrm{HCl}}(\text { titrated })=c_{\mathrm{NaOH}} \times V_{\mathrm{NaOH}, 1}
$$

At the same time,

$$
c_{\mathrm{HCl}} \times V_{\mathrm{HCl}}(\text { added })=n_{\mathrm{HCl}}(\text { titrated })+2 n_{\mathrm{PO} 4}\left(\mathrm{HCl} \text { spent for the reaction with }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}\right)
$$

Then,

$$
n_{\mathrm{PO} 4}=c_{\mathrm{HCl}} \times V_{\mathrm{HCl}}(\text { added })-c_{\mathrm{NaOH}} \times V_{\mathrm{NaOH}, 1}
$$

Since $n_{(\mathrm{NH} 4) 2 \mathrm{HPO}}=n_{\mathrm{PO4}}$, one finally gets:

$$
\omega_{(\mathrm{NH} 4) 2 \mathrm{HPO} 4}=10 \times n_{\mathrm{PO} 4} \times \mathrm{M}_{(\mathrm{NH} 4) 2 \mathrm{HPO} 4} / m_{\text {mixture }}
$$

(b) Calculation of the total amount of diammonium hydrophosphate and ammonium chloride

With $V_{\mathrm{NaOH}, 2}$ designating the volume of sodium hydroxide used in titration \mathbf{B} (that is, spent for the neutralization of hexamethylene tetrammonium cation $\left(\mathrm{CH}_{2}\right)_{6}\left(\mathrm{NH}^{+}\right)_{4}$ obtained from the ammonium salts), one gets:

$$
n_{\mathrm{NH} 4 \mathrm{Cl}}+2 n_{\mathrm{PO} 4}=c_{\mathrm{NaOH}} \times V_{\mathrm{NaOH}, 2}
$$

The amount of phosphate $n_{(\mathrm{NH} 4) 2 \mathrm{H} 3 \mathrm{PO}}$ was determined in experiment \mathbf{A}, which allows calculating the amount of $\mathrm{NH}_{4} \mathrm{Cl}$

$$
n_{\mathrm{NH} 4 \mathrm{Cl}}=c_{\mathrm{NaOH}} \times V_{\mathrm{NaOH}, 2}-2 \cdot\left(c_{\mathrm{HCl}} \times V_{\mathrm{HCl}}-c_{\mathrm{NaOH}} \times V_{\mathrm{NaOH}, 1}\right)
$$

and its content in the mixture:

Problems 31-33. Melting points and yields of the products

Problem \#	Product	Melting point, ${ }^{\circ} \mathrm{C}$	Yield, $\%$
31	$N-[(E)$-Phenylmethylene $]$ aniline	$51-53$	85
32	Osazone of D-glucose	$205-207$	62
33	Acetone derivative of mannose	$118-120$	79
33	Acetone derivative of cysteine	$148-150$	68

Problem 31. Formation of double carbon-nitrogen bond

1. Hemiaminal.

The rate-determining steps are:

The amine attack at the carbonyl carbon atom at low pH , since most of the amine molecules are protonated;
Dehydration of the tetrahedral hemiaminal intermediate at high pH , since this requires protons.
2. Both reactions proceed through the positively charged intermediates, iminium and oxonium ions, respectively. While the former just loses the proton to form the final product, the later acts as an electrophile adding another molecule of alcohol to become the full acetal.
3.

pyridoxamine phosphate,

pyridoxal phosphate,
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{OPO}_{3} \mathrm{H}^{\ominus}$
4.

5.

Problem 32. Osazone of glucose

1.

2. $\quad D$-Glucose, since phenylhydrazine is taken in an excess.
3. The appropriate phenyhydrazone of aldehyde.
4.

It is one and the same product for all the starting substances. These means the stereochemistry of C3, C4 and C5 of the starting sugars is the same. The initial difference in nature and/or stereochemistry at $1^{\text {st }}$ and $2^{\text {nd }}$ carbon atoms of the monosaccharides is equalizes by hydrazone formation.
5. a), b), d) are different; c) are the same.

Problem 33. Acetone as a protecting agent

Ninhydrine test. The spot with the product will show no color change, whilst that with the starting amino acid will become colored (blue-violet to brown-violet).
1.

Transformation of hemiketal into full ketal needs the acid catalysis to protonate hydroxyl group, which is further removed in the form of water molecule. The resulting positively charged carbocation-type intermediate is stabilized by electron donation from oxygen lone pair.
2.
trans

cis

cis-Fused six- and five-membered rings in the resulting product of cis-cyclohexane-1,2-diol are more stable than trans-fused rings. The reason is the higher bond and angles distortion in transfused bicycles.
3. In the furanose form of D-mannose, there is a possibility to form two rather than one (in the pyranose from) 1,3-dioxolane rings, which is more thermodynamically favorable. Pyranose furanose transformation proceeds via the open aldehyde form of the carbohydrate.
4. Aqueous hydrochloric acid.
5.

Acid catalysis enhances the electrophilicity of carbonyl carbon atom (enhancing carbonyl activity). Thiol group reacts first due to higher nucleophilicity compared to that of amino group.
6.

Problem 34. Determination of molecular mass parameters (characteristics) by viscometry

1. The viscosity values calculated from the flow times of polystyrene solutions (2 to $10 \mathrm{~g} / \mathrm{L}$) determined with the Ubbelohde viscometer at $25^{\circ} \mathrm{C}$ are given in the hereunder tables. Each flow time value is an average of three measurements. Note that your experimental values may significantly differ from those in the tables, since the flow times depend on the molecular properties (mainly molecular weight distribution) of a particular polystyrene sample.

Polystyrene/toluene, the solvent flow time $t_{0}=24.4 \mathrm{~s}$

Concentration of the polymer $c, \mathrm{~g} / \mathrm{L}$	Flow time $t, \mathrm{~s}$	$\eta_{\text {rel }}=\frac{t}{t_{0}}$	$\eta_{\text {sp }}=\frac{t-t_{0}}{t_{0}}$	$\frac{\eta_{\text {sp }}}{c}, \mathrm{~L} / \mathrm{g}$
10	72.8	2.98	1.98	0.198
5	41.0	1.68	0.68	0.136
3.3	34.0	1.39	0.39	0.119
2	29.8	1.22	0.22	0.111

Polystyrene/methyl ethyl ketone, the solvent flow time $t_{0}=26.0 \mathrm{~s}$

Concentration of the polymer $c, \mathrm{~g} / \mathrm{L}$	Flow time $t, \mathrm{~s}$	$\eta_{\text {rel }}=\frac{t}{t_{0}}$	$\eta_{\text {sp }}=\frac{t-t_{0}}{t_{0}}$	$\frac{\eta_{\text {sp }}}{c}, \mathrm{~L} / \mathrm{g}$
10	36.0	1.38	0.38	0.0385
5	30.8	1.18	0.18	0.0369
3.3	28.8	1.11	0.11	0.0326
2	27.7	1.07	0.07	0.0327

2,3,4. The intrinsic viscosity $[\eta]$ can be found by either graphical extrapolation to 0 concentration (as the Y-intercept), or by linear fitting (as an absolute term) of the reduced viscosity data.

Analysis of the data given in i. 1) leads to [η] equal to 0.0840 and $0.0313 \mathrm{~L} / \mathrm{g}$ for the toluene and methyl ethyl ketone solutions, respectively. (Three significant digits are left in both cases based on the typical amplitude of the measured flow times).
5. The viscosity-average molecular weights as calculated from the Mark-Kuhn-Houwink equation are of 226000 and $125000 \mathrm{~g} / \mathrm{mol}$ for the toluene and methyl ethyl ketone solutions, respectively.
6. The polydispersity index equals $226000 / 125000=1.81$.

Problem 35. Cooperative interactions in polymer solutions

1. Experimental flow times and the calculated specific viscosities are given in the hereunder table.

Note 1. The molecular weights of the repeating units of PMMA and PEG are of 86.06 and 44.05 $\mathrm{g} / \mathrm{mol}$, respectively. Mixing of equal volumes of a $2 \mathrm{~g} / \mathrm{L}$ PMMA and a $1 \mathrm{~g} / \mathrm{L}$ PEG (of any molecular weight) solutions results in a reaction mixture with the molar ratio of the PMMA and PEG units of approximately 1:1.

Note 2. The final concentration of PMMA in the resulting mixtures and its aqueous solutions is of $1 \mathrm{~g} / \mathrm{L}$.

Composition	Temperature, ${ }^{\circ} \mathrm{C}$	Flow time $t, \mathrm{~s}$	Specific viscosity of the solution $\eta_{\text {sp }}$
Water	25	44.0	-
PMAA, $1 \mathrm{~g} / \mathrm{L}$	25	60.2	0.368
PMAA+PEG-1000	25	60.0	0.364
PMAA+PEG-2000	25	58.3	0.325
PMAA+PEG-3000	25	49.6	0.127
PMAA+PEG-6000	25	46.3	0.052
Water	40	31.2	-
PMAA, 1 g/L	40	41.8	0.340
PMAA+PEG-1000	40	40.2	0.288
PMAA+PEG-2000	40	35.6	0.141
PMAA+PEG-3000	40	31.8	0.019
PMAA+PEG-6000	40	31.6	0.013

2.

3. The reaction scheme of the complex formation is given below. A decrease of the specific viscosity of the PMAA solution upon addition of the equimolar amount of PEG is observed, which reflects that that polymer coils in the interpolymer complex are more compact than those in the initial solution. The compaction is due to hydrophobization of the PMAA chain with PEG.

Dramatic changes in the density of the complexes are observed within a rather narrow range of PEG molecular weights (of about $1500 \mathrm{~g} / \mathrm{mol}$ at $40^{\circ} \mathrm{C}$ and $2500 \mathrm{~g} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$). Such processes are often referred to as cooperative.

The enthalpy change in PMAA-PEG complex formation being negligible, the entropy gain due to the release of water molecules is the driving force of the reaction.

As positions of the repeating units in a polymer chains are constrained, the total entropy of the polymer coil is less than that of the same number of unbound monomer units. For longer polymer chains such entropy loss is more significant. Consequently, the entropy gain as a result of PMAA-PEG complex formation ($\Delta \mathrm{S}=\mathrm{S}$ (complex) $+\mathrm{S}($ water $)-\mathrm{S}($ PMAA $)-\mathrm{S}($ PEG $)$) is increasing with an increase of the PEG chain length (total entropies of released water molecules, the complex, and the initial PMAA molecules are nearly the same). This is why the PMAA-PEG interaction proceeds efficiently only starting with a certain molecular weight of PEG (<1000 $\mathrm{g} / \mathrm{mol}$ at $40^{\circ} \mathrm{C}$ and of about $1000-2000 \mathrm{~g} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$).

Higher efficiency of the complex formation at elevated temperatures (PEG with a lower molecular weight is needed to provide for a noticeable viscosity drop) contributes to the consideration that the entropy gain is behind the process.

[^0]: ${ }^{1} 0.1 \%$ solution of Xylenol orange indicator may be used instead of PAR

[^1]: ${ }^{2}$ Can be done by a lab assistant. Students need not be trained in rotary evaporation.

