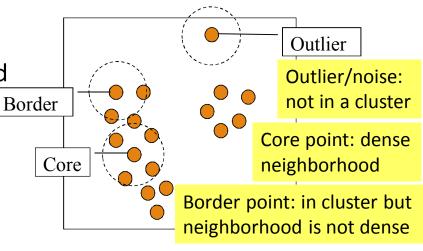
Data Mining Fundamentals Chapter 10. Cluster Analysis: Basic Concepts and Methods

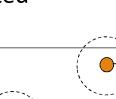
Density-Based and Grid-Based Clustering Methods


- Density-Based Clustering
 - Basic Concepts
 - DBSCAN: A Density-Based Clustering Algorithm
 - OPTICS: Ordering Points To Identify Clustering Structure
- Grid-Based Clustering Methods
 - Basic Concepts
 - □ STING: A Statistical Information Grid Approach
 - CLIQUE: Grid-Based Subspace Clustering

Density-Based Clustering Methods

- Clustering based on density (a local cluster criterion), such as density-connected points
- □ Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan (only examine the local region to justify density)
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99)
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98) (also, grid-based)

DBSCAN: A Density-Based Spatial Clustering Algorithm


- DBSCAN (M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, KDD'96)
 - Discovers clusters of arbitrary shape: <u>Density-Based</u> Spatial <u>Clustering of Applications with Noise</u>
- A *density-based* notion of cluster
 - □ A *cluster* is defined as a maximal set of density-connected points
- Two parameters:
 - \Box *Eps* (ε): Maximum radius of the neighborhood
 - □ *MinPts*: Minimum number of points in the Eps-neighborhood of a point
- \Box The Eps(ε)-neighborhood of a point q:
 - □ $N_{Eps}(q)$: {p belongs to D | dist(p, q) ≤ Eps}

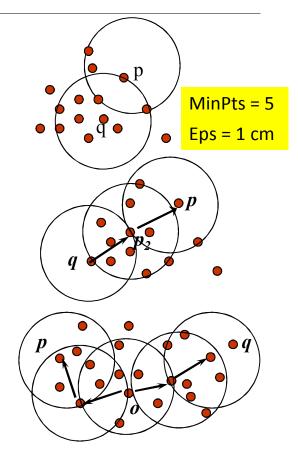
đ 🔵

MinPts = 5

Eps = 1 cm

DBSCAN: Density-Reachable and Density-Connected

Directly density-reachable:

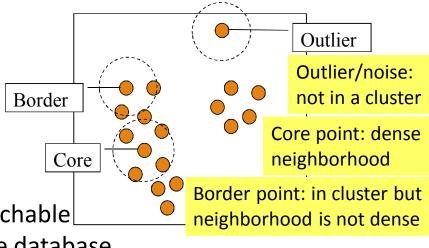

- □ A point *p* is directly density-reachable from a point *q* w.r.t. *Eps* (ε), *MinPts* if
 - $\Box p$ belongs to $N_{Eps}(q)$
 - □ core point condition: $|N_{Eps}(q)| \ge MinPts$

Density-reachable:

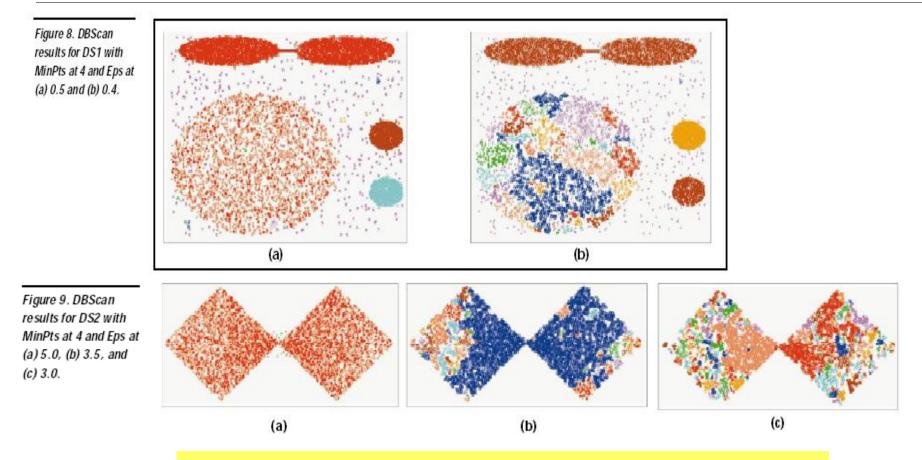
□ A point *p* is density-reachable from a point *q* w.r.t. *Eps*, *MinPts* if there is a chain of points $p_1, ..., p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected:

 A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both p and q are density-reachable from o w.r.t. Eps and MinPts


63

DBSCAN: The Algorithm

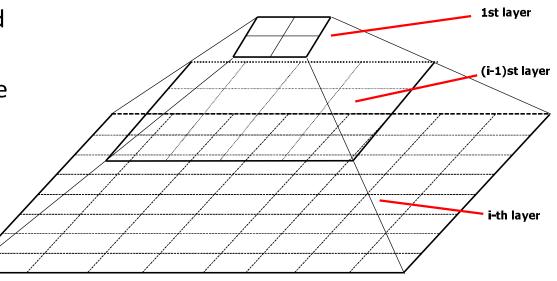

Algorithm

64

- Arbitrarily select a point p
- Retrieve all points density-reachable
 - from p w.r.t. Eps and MinPts
 - □ If *p* is a core point, a cluster is formed
 - □ If *p* is a border point, no points are density-reachable from *p*, and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed
- Computational complexity
 - If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), where n is the number of database objects
 - Otherwise, the complexity is O(n²)

DBSCAN Is Sensitive to the Setting of Parameters

Ack. Figures from G. Karypis, E.-H. Han, and V. Kumar, COMPUTER, 32(8), 1999


65

Grid-Based Clustering Methods

- Grid-Based Clustering: Explore multi-resolution grid data structure in clustering
 - Partition the data space into a finite number of cells to form a grid structure
 - □ Find clusters (dense regions) from the cells in the grid structure
- Features and challenges of a typical grid-based algorithm
 - Efficiency and scalability: # of cells << # of data points</p>
 - Uniformity: Uniform, hard to handle highly irregular data distributions
 - Locality: Limited by predefined cell sizes, borders, and the density threshold
 - Curse of dimensionality: Hard to cluster high-dimensional data
- Methods to be introduced
 - **STING** (a STatistical INformation Grid approach) (Wang, Yang and Muntz, VLDB'97)
 - **CLIQUE** (Agrawal, Gehrke, Gunopulos, and Raghavan, SIGMOD'98)
 - Both grid-based and subspace clustering

STING: A Statistical Information Grid Approach

- STING (Statistical Information Grid) (Wang, Yang and Muntz, VLDB'97)
- The spatial area is divided into rectangular cells at different levels of resolution, and these cells form a tree structure
- A cell at a high level contains a number of smaller cells of the next lower level
- Statistical information of each cell is calculated and stored beforehand and is used to answer queries
- Parameters of higher level cells can be easily calculated from that of lower level cell, including
 - count, mean, s(standard deviation), min, max
 - type of distribution—normal, uniform, etc.

