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Preface to the 1996 Edition

We have used Measure Theory and Probability as our standard text in
the basic measure theory courses at M.LT. and the University of Georgia for over
ten years and have been agreeably surprised at the enthusiasm with which students
have reacted to the 5-3 mix of measure theory and probability. It is not clear that
we’ve converted lots of aspiring mathematicians into probabilists, but we do seem
to have left the non-mathematicians, our students from electrical engineering and
computer science, feeling upbeat about the Lebesgue theory and its practical uses.
On the down side, our students have been annoyed at the plethora of typos and
silly mistakes in the first edition. (For instance the absence of a superscript bar on
the right hand side of identity

(v, w) = {w, v}

made a travesty of our definition of Hilbert space!) This edition has been ridded
of these errors thanks to the efforts of the editorial staff at Birkh&user, our former
students, Leonard Shulman, Roy Yates, Gregg Wornell, and Mastafa Terab, and,
in particular, thanks to Professor Bo Green and a diligent group of his students at
Abilene Christian University (who went through the book with a fine tooth comb
and assembled a pretty definitive list of errata). To them our warrest thanks.

vit



Preface to the First Edition

Probability theory became a respectable mathematical discipline only
in the early 1930s. Prior to that time it was viewed with scepticism by some
mathematicians because it dealt with concepts such as random variables and
independence, which were not precisely and rigorously defined. This situation
was remedied in the early 1930s largely thanks to the efforts of Andrei Kolmo-
gorov and Norbert Wiener, who introduced into probability theory large infusions
of measure theory. In retrospect, it was fortunate that the kind of measure theory
they needed was already available; it had, in fact, been created some thirty years
earlier by Henri Lebesgue, who had not been led to the invention of Lebesgue
measure by problems in probability but by problems in harmonic analysis. It
seems strange that it took more than 30 years for this fusion of probability and
measure theory to occur. In fact, since that time, probability theory and measure
theory have become so intertwined that they seem to many mathematicians of
our generation to be two aspects of the same subject. It also seems strange that
the basic concepts of the Lebesgue theory, to which one is naturally led by
practical questions in probability, could have been arrived at without probability
theory as their main source of inspiration.

Saddled as we are with the fact that the theory of measure didn’t develop
along these lines, this doesn’t mean we cannot teach the subject as if it had
developed this way. Indeed, we believe (and this is the reason we wrote this
book) that the only way to teach measure theory to undergraduates is from the
perspective of probability theory. To teach measure theory and integration theory
without at the same time dwelling on its applications is indefensible. It is unfair
to ask undergraduates to learn a fairly technical subject for the sake of payoffs
they may see in the distant future. On the other hand, the applications of measure
theory to areas other than probability (e.g., harmonic analysis and dynamical
systems) are fairly esoteric and not within the scope of undergraduate courses.
Of course probability theory, taught in tandem with measure theory, is also not
thought of as being within the scope of an undergraduate course, but we feel this
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is a mistake. Discrete probability theory is taught at many institutions as a fresh-
man course (and at some high schools as a senior elective). The kinds of problems
we will be interested in here, i.e., the amorphous set of problems that go under
the rubric of the law of large numbers, are lurking in the background in these
discrete probability courses, and are often so bothersome to bright students that
they arrive, unaided, at quite original ideas about them. By formulating these
problems in measure theoretic language, one is often doing little more than
vindicating for undergraduates their own intuitive ideas and, at the same time of
course, convincing them that the measure theoretic methods are worth learning.

By now we have probably given you the impression that this book is basically
about probability. On the contrary, it is basically about measure theory. Sections
1.1 and 1.2 nominally discuss probability, but primarily discuss why measure
theory is needed for the formulation of problems in probability. (What we hope
to convey here is that had the Lebesgue theory of measure not existed, one would
be forced to invent it to contend with the paradoxes of large numbers.) Sec-
tion 1.3 deals with the construction of Lebesgue measure on R" (following the
metric space approach popularized by Rudin [see References, p. 199]. In §14
we briefly revert to probability theory to draw some inferences from the Borel-
Cantelli lemmas, but §§2.1-2.5 are straight measure theory: the basic facts about
the Lebesgue integral. Only to illustrate these facts do we return to probability
at the end of the chapter and discuss expectation values, the law of large numbers,
and potential theory.

Sections 3.1-3.5 are also consecrated entirely to measure theory and inte-
gration: &', £, abstract Fourier analysis, Fourier series, and the Fourier integral.
Fortunately, the last two items have some beautiful probabilistic applications:
Polya’s theorem on random walks, Kac’s proof of the classical Szégo theorem,
and the central limit theorem. With these we end the book. All told, taking into
account the fact that we have packed quite a few applications to probability into
the exercises, the ratio of measure theory to probability in the book is about 5
to 3.

The notes on which this book is based have served for several years as material
for a course on the Lebesgue integral at M.I.T. and for a similar course at
Berkeley. They have been the basis for a leisurely semester course and an inten-
sive quarter course and have proved satisfactory in both (though in using these
notes in a quarter course, we had to delete most of the material in §§2.6-2.8 and
§§3.6-3.8). We divided the book into the three chapters not just for aesthetic
reasons, but because we found that in teaching from these notes we were devoting
approximately the same amount of time to each of these three chapters, i.e., four
weeks in a typical twelve-week semester course. Incidentally, we found it very
effective, for motivational purposes, to devote the first three class periods of the
course to the material in §§1.1 and 1.2, even though in principle this material
could be covered in a much more cursory fashion. We discovered that with these
ideas in mind, the students were much better able to endure the long arid trek
through the basics of measure theory in §1.3.

Preface xi

We would like to thank Marge Zabierek for typing the notes on which this
book is based, and we would like to thank our students at Berkeley and M.IT.,
in particular, Tomasz Mrowka, Mike Dawson, Harold Naparst, Mike Conwill,
Christopher Silva, and Ken Ballou for suggestions about how to improve these
notes and for weeding out what seemed to have been an almost endless number
of errors from the problem sets.

We have dedicated this book to Jon Bucsela, to whom we owe an exhaustive
revision of the manuscript before we had the final version typed. His untimely
death in the spring of 1984 was a source of acute grief to all who knew him.

Malcoim Adams
Victor Guillemin



Suggestions for
Collateral Reading

For background in probability theory, we recommend Feller, An
Introduction to Probability Theory and Its Applications.* We feel that at the
undergraduate level, this is the best book ever written on probability theory. Its
charm resides in the fact that there are literally hundreds of illustrative examples.
This makes it hard to read through from cover to cover, but it is a gold mine of
ideas.

Another beautiful book, though more advanced than Feller, is Kac’s 96-page
monograph in the Carus series, Statistical Independence in Probability, Analysis
and Number Theory. Our treatment of Bernoulli sequences and the law of large
numbers in §1.1 was largely borrowed from this book, and one can go there to
find further ramifications of these topics.

There are several treatments of measure theory in conjunction with probability
written for graduate students. In our opinion, the best of these is Billingsley’s
book Probability and Measure, which a bright undergraduate will, with a little
effort, find accessible if he or she ignores the more technical sections toward
the end.

Finally, for material on metric spaces and compactness, we have attempted
to remedy the fact that we presuppose a nodding acquaintance with these topics
by summarizing the main facts in the appendix. To learn this material, however,
we recommend either Hoffman (Analysis in Euclidian Space) or Rudin {Princi-
ples of Mathematical Analysis).

*For complete bibliographic information for the titles listed here, see the Reference section on
page 202,
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Chapter 1

Measure
Theory

§1.1 Introduction

In this section we will talk about some of the mathematical ma-
chinery that comes into play when one attempts to formulate precisely what
probabilists call the law of large numbers.

Consider a sequence of coin tosses. To represent such a sequence, let H
symbolize the occurrence of a head and T the occurrence of a tail. Then a
coin-tossing sequence is represented by a string of H’s and T’s, such as

HHTHTTTHHT...

Now, let sy be the number of heads seen in the first N tosses. The law of large
numbers asserts that for a “typical” sequence we should see, in the long run,
about as many heads as tails. That is, we would like to say that

s 1
(1) lim ¥ =~

N> oy 2

for the “typical” sequence of coin tosses.

We do not expect this assertion to be true for all sequences, because
it is possible, for instance, for our sequence of coin tosses to be all heads.
. Experience tells us, however, that such a sequence is not typical. . _

In what follows, we describe a mathematical model of coin tossmg in which
we precisely define what is meant by a “typical” sequence of coin tosses. With
this model, the law of large numbers can be rigorously demonstrated.

Because James Bernoulli first stated the law of large numbers, in the
seventeenth centur y, ‘we will call a sequence of coin tosses a Bernoulli sequence.
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Let 2 represent the collection of all possible Bernoulli sequences, Notice that
4 is an uncountable set. (See exercise 1) This fact is also clear from the
following proposition.

Proposition 1. If we delete a countable subset from %, we can index what is
left by points on the real interval I = (0,1].

Proof. We construct a map I — & that is one to one and fails to be onto by
a countable set. The map is constructed as follows.
Every we I can be written in the form

2) w=z-a—§ a;,=0,1
S"—‘12

Because the a;’s determine o, we introduce the notation
w = .al a2a3.-.

which is called the binary expansion of w. From this representation we
produce a Bernoulli sequence by putting an H in the nth term of the sequence
ifa, = 1 ora Tif g, = 0. Unfortunately, this does not give a well-defined map
I — 2 because o does not necessarily have a unique bmary expansion. For
example, « = 4 has the two binary expansions

.1000... and 01t

To avoid this problem we prescribe that, if @ has a terminating and a
nonterminating expansion, we give it the nonterminating one. ¢

This convention gives a one-to-one map I — & that is not onto because it
misses out on'those Bernoulli sequences that end in all tails. Let #,,, denote
thé collection of Bernoulli sequences that, after a certain point, degenerate to
all tails. We claim that 4, is countable.

Proof. Let %%, be the Bernoulli sequences that have only tails after the
kth toss. Then B, is finite and

gdeg U ‘@ gcg

is a countable union of finite sets. Thus %, is countable. 1
Because %, is a countable subset of the uncountable set 2, we consider
it to be negligible in our consideration of “typical” elements of #. Thus, for
all intents and purposes, we can consider 4 to be identified with 1.
In order to describe other features of our model of %, we need some
familiarity with the idea of Lebesgue measure. We will not yet attempt to define
Lebesgue measure precisely, but we will describe some of the properties it

$§1.1 Introduction 3

should have. We ask the reader to believe that it exists until we examine it
more rigorously.

A measure y on a space X is a nonnegative function defined on a prescribed
collection of subsets of X, the measurable sets. If 4 is a measurable set,
the nonnegative number pu(A) is called the measure of A. Of course we will
require that x have certain properties so that it behaves as our intuition tells
us a measure should behave. For example, we will require additivity: If 4 and
B are measurable and disjoint, then AU B is measurable and p(4 U B) =
u(A) + u(B). This and other properties of measures will be discussed in §1.3.

The particular measure in which we are interested here is called Lebesgue
measure (denoted y;) and is defined on certain subsets of the real line R. For
the intervals

(@b), (a,b], [ab], [ab)

the Lebesgue measure is just the length, b — a. More generally, by the pro-
perty of additivity, if

is a finite disjoint union of finite intervals A;, then A is Lebesgue measurable
and

al) = 3 ()

Using the concept of Lebesgue measure, we can now formulate what we
will call the Borel principle.

Borel principle. Suppose E is a probabilistic event occurring in certain
Bernoulli sequences. Let 4 denote the subset of 4 for which the event occurs.
Let Bg be the corresponding subset of 1. Then the probability that E occurs,
Prob(E), is equal to u,(Bg).

Let us show that this principle works for some simple probabilistic events.

1. E is the event that H appears on the first toss,
By ={welo=.1...} =(3,1]

B =21
so pr(Bg) = 7.
2. E is the event that the first N tosses are a prescribed sequence.

Bp={wel,o=.aa0a..ay...}

where a,,...,ay are prescribed and everything else is arbitrary. Let s =
.a;a,...ay00...,then By = (5,5 + (1/2%)] so that u; (B;) = 1/2" as expected.
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3. E is the event that H occurs in the Nth place.
Be={welbw=.aya,...ayy1ay,...}

Fix a particular s =.4a,...ay_,1000.... Then B; contains the interval
(5,5 + (1/2%)]. We can choose the ay, ..., ay_, in 2¥ 7! different ways, and each
of these intervals is disjoint from the others; so

1 1
pur(Bg) =2V (5&) =%

b r—e o o— O ——c——
O L
8 4 8 2 g 4 8

The shaded region is By for the event that H occurs on the third toss.

4. E is the event that, in the first N tosses, exactly k heads are seen,

Bp={wel; w=.a1ay...ay..., where exactly k of the first N a;’s are 1}

Fix .ay,...,ay, k of which are 1. Let s = .4a,4a,...a4000..., so that B,
contains (s, s + (1/2%)]. There are (}) such intervals, all mutually disjoint, so

= (5)(%)

5. Start with X dollars and bet on a sequence of coin tosses. At each toss
you win $1.00 if a head shows up and you lose $1.00 if a tail shows up. What
is the probability that you lose all your original stake? To discuss this event
we introduce some notation.

Rademacher Functions

For w &1 we define the kth Rademacher function R, by
3) Ry(w) = 2a, — 1
where w = .4, 4,... is the binary expansion of w. Note that

+1 ifa, =1

@ Rele) = {~1 ifa, =0

so R,{w) represents the amount won or lost at the kth toss.
To familiarize ourselves with the Rademacher functions, we graph the first
three, R, (w), Ry{(w), and R;(w).

§1.1 Introduction 5
R (w}
+1— o— —e
!
§ T w
‘ g
i 1
—1 ®
Ry(w}
+1 1 L O fo e
| |
il { I 1 w
: 3
ilt 2 3 1
o B ey [ e ]
Ry{w)
/ i+ o—e o—e O—ae O—e
| | i L
1 i ‘1 } ! I I i @
5 3 7
3 i : 3 3 3 i 1
—1 ~gp——= O ® e, . o3 ]

Using the R.’s, we can describe Bg for event 5. First consider the event E,,
representing loss of the original stake at the kth toss. Let

&) Si(w) = l;k R/(w)

S, () gives the total amount won or lost at the kth stage of the game. Then
Bg, ={wel;, S(w)>—-X for! < k, and Sp(w) = —X}

and

BE _— U BEk
k=1
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We will postpone the computation of u,(Bg) to §1.4 because B; is not a finite
union of intervals.

Now we return to the law of large numbers. Qur assertion is that “roughly
as many heads as tails turn up for a typical Bernoulli sequence.” We formulate
this statement mathematically as follows.

For wel, with @w=.a,...ay..., let syl®w)=a, + a, + -+ ay. This
sum gives the number of heads in the first N terms of the Bernoulli sequence
corresponding to w. Now fix ¢ > 0 and consider

> }

This set represents the event that, after the first N trials, there are not “roughly
as many heads as tails.” We can restate our assertion as follows.

sy(w) 1

N 2

By = {we];

Theorem 2. (Weak law of large numbers)

Ur(By)—=0 as N - oo

Proof. We first describe By using Rademacher functions. Recall that
Rk(ﬂ)) = 2ak b 1
where w = .a,4a,...a,.... Thus
N
SN(('O) = Z R;‘(a}) == 2(a1 + Gy 4+ aN) — N = 2SN(CO) — N
k=1
Now

sy(w) 1
N T3

> g |25{w) — N| > 2eN

which is equivalent to |Sy(w)| > 2eN. So, by altering ¢ slightly, we restate the
theorem as follows.

Let Ay = {wel;|Sy(w)| > Ne}
Then y;(Ay)—0 as N-ow
To prove this form of the theorem, we will need the following special case

of Chebyshev’s inequality.

Lemma 3. Let f be a nonnegative, piecewise constant function on (0, 17]. Let
a > 0 be given. Then

§1.1 Introduction 7

1
wwel; flo) > a}) < éL fdx

(Here the integral | fdx is the usual Riemann integral )
Notice that we know how to compute y; ({we L; f(w) > a}) because {wel;
f(w) > «} is a finite union of intervals.

Proof of lemma. When f is piecewise constant, there exist x,,...,x; with
O=x, < <x=1and f=c on (x;,x;4)i=1...,k—1 (This is what
we mean by piecewise constant.) Then

1 k—1
J‘ fdx == Z C"(x".;.i - xi) = Zl ci(xi'i-l - xi)
0

i=1

where T’ means sum over the i's such that ¢; > «. Therefore,
Zﬁ ci(Xie1 — X)) > azt(xiu —x) = ap ({wel; flw) > 0‘})
SO

/ ;j fix > p({wel; f(w) > a}) v
O

Now we continue with the proof of our theorem. Notice that
Ay = {wel;|Sy(w)| > Ne}
={wel; Sy(w)®> N%?)

An application of the preceding lemma gives

I i
ui(Ay) = m({we L 1Sy(@)1? > N%?}) < Nzng Sy dx

0
To exploit this inequality we need to compute [ S7 dx. However
1 1 N 1 . 1
J .‘5’,.2,,dxzjv (YR dx = Zj RZdx+ Y, | R;R;dx
0 4] k=140 ixjJjo
Because R} = 1, each of the first N terms is equal to one. What about
1
J R;R;dx i#j?
]

Suppose i < j. Let J be an interval of the form (I/2,(I + 1)/2'],0 <1 < 20
Then R; is constant on J and R, oscillates 2(j — i) times so that
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Thus
1
j RiR;dx =0
0
which proves that
1
J SZdx =
0
Thus
1 1
Ay < NZ N= N2~+0 as N-ow O

The astute reader has probably noticed that we haven’t proved exactly
what we said we intended to prove at the beginning of this section. Namely,
we wanted to prove that, for a “typical” Bernoulli sequence,

1 sy(w)

—0 as N —» o

(©)

(3]

By “typical” we should mean equation 6 fails on a set of zero probability.
By the Borel principle, an event E has probability zero if the corresponding
set B; = I has Lebesgue measure zero. The only sets we know thus far with
zero Lebesgue measure are finite collections of points. When we extend
Lebesgue measure to a collection of sets much bigger than the collection of
intervals, we will find many more sets of measure zero. In fact we can describe
these sets now without developing the general theory of Lebesgue measure,

Given a subset A = R and a countable collection of sets {4,;}72,, we will
say the A;’s are a countable covering of 4 if 4 = | J2, 4.

Definition 4. A set A < Rhas Lebesgue measure zero if, for every ¢ > 0, there
exists a countable covering {4;} of 4 by intervals such that

(7 T ) <

i=1

Remarks.

1. In this definition we can allow the 4;’s to be finite unions of intervals.
2. If A has Lebesgue measure zero and B < A, then B has Lebesgue measure
Zero.

1.1 Introduction 9

3. Assingle point has Lebesgue measure zero.

4, If A,, A4,,...1s a countable collection of sets, each having Lebesgue mea-
sure zero, then | J{2; A; has Lebesgue measure zero. In particular, count-
able sets have Lebesgue measure zero.

Proof. (Remarks 1, 2, and 3 are clear.) To prove remark 4, choose ¢ > 0.
Because 4, has Lebesgue measure zero, there exists a countable collection of
intervals A4; {, A; 5,... covering A, such that

® &
2 (A < 5
=1 2
The collection {4, ;} is countable, it covers Ug'?__l A, and

X o xX 8
N NuA ) =3 Y wl(A) < 5 =g \Y
7 == =1

1\ Nowlet N = {wel; (s,(w)/n) » 1/2asn — oo}. N is called the set of normal
numbers. Let N¢ denote the complement of N.

Theorem 5. (Strong law of large numbers) N° has Lebesgue measure zero.
Remark. N°is uncountable; in fact, N° contains a “Cantor set.” -
Consider the map ¢ : I — I defined by .-
LT &O D[o!o] ] 1
olw)=.a,11a,11a;11... ’ ‘

for w =.a,a,a;.... This map is one to one, so its image is uncountable.
Notice also that the image is contained in N° In fact, if @ = ¢(w), then
Sa(@) = 2n; s0

SSn(a)’)
3n

2
3

Now we will prove theorem 5. Let
A, = {wel;|S, ()] > en} = {wel, S(w) >&*n*}

Then, by Chebyshev's inequality,

1 1 1 1 n 4
1A < J S dx where j St dx =j (Z Rk) dx
[¢] 0 \k=1

Multiplying out the integrand, we obtain five kinds of terms:

1. R} a=1,...,n
2. RIR? o+ B
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3. R2R,R, aABAY
4. R3R, o B

5. R,RyR,R; a#[#y#d

Because R? = 1 and RZR} = 1, [§ Rt dx = [§ RZR} dx = 1.
We claim that the other terms all integrate to zero. In fact,

1 r1
RﬁRﬁR), dx =1 RyR,dx=0
v O O
and
r1 r1
. RIRgdx = , R,Rzdx =0

What about R,RzR,R;? Assume o < f§ < y < & and consider an interval of
the form (I/27,{I + 1)/2"]. R, is constant on J and, because a < f# <y, R,RyR,
is constant on J as well. Finally, R; oscillates 2(d — y) times on J, 50

J’ RaRﬁR},Radx == 0
J
and

1
J\ RaRpR},Ra d.x = 0
0 <
Because there are n terms of the form R} and 3n(n — 1) terms of the form

R2R},

1

j. Stdx = 3n? — 2n < 3n?
0

and

1 3
H(A,) < ("1—4?> In? < ;1“2“87

Lemma 6. Given é > 0, there exists a sequence &, &,,... such thate, - O and

© 3
®) )

<0
n*ey

Proof. Choose, for instance, ¢, such that

gt =cn~Y2  for some constant c.

§1.1 Introduction 11

Then
3 3&a 1

2_”2"’5}2

&tn csn

«
2,
n=1

If ¢ is chosen large enough, this quantity is less than 4, v
Finally, for each n, set

B, = {(D; [Sa(w)] > gnn}

pr(B,) < 3/egn?, hence ) 2, u(B,) < 8. Notice that the B,’s are finite unions
of intervals since S, is piecewise constant. Thus, if we can show that N° <
=, B,, the theorem will be proved.

Now N )2 B, if N> 2, B.. But, if we (|2, B:, then, for each
n, 1S,(w)| < ¢,n; that is, |S(w)/n] < ¢,. Because g, — 0, we conclude that

IS{w)/n] — O; that is, we N. (]

Remarks.
1. We have just proven theorem 5 by showing that
&) (N =0

Notice that we needed a relatively sophisticated definition of “measure zero”
to make sense of this statement, because N° is such a bad set. In particular N¢
is uncountable. (The only intervals of length zero are points, and N°¢ is not
even a countable union of such sets.) Later, when we discuss the connection
between measure and integration, we will see that this example provides a
good illustration of why Riemann integration is inadequate for probability
theory.

2. Notice that the strong law of large numbers (theorem 5) does not
indicate at what point we can expect about as many heads as tails. In §3.8 we
will discuss the central limit theorem, which has some bearing on this question.

Exercises for §1.1

1. Prove that the set # of Bernoulli sequences is uncountable by the Cantor

diagonal argument.

2. a. Let wel =(0,1]. Show that w can be written in the form 3 2, a,/2',
a; = 0,1, Show that this expansion is unique when we restrict to
nonterminating series.

b. Show that, for any integer k, w € I can be written in the form } 2, a,/k’,
whereg; = 0,1,...,k — 1. Show that the expansion is unique when we
restrict to nonterminating series.

3. A gambler has an initial stake of one dollar. Calculate the probability of
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ruin at times 1, 3, and 5. Show that the chance of eventual ruin is at least
70%,

. Show that

JRHR},Z---thx:o or 1

for any sequence y; <y, < +* < 7,. When is the answer one?

. Define the Rademacher functions on the whole real line by requiring

them to be periodic of period one—-that is, by setting Ry (x + 1) = Ry {x).
With this definition, show that R, ., (x) = R,(2x) and, by induction, that
R.(x) = R, (2¥x).

6. Show that
R, (x) = —sgn[sin(2n2"1x)]
except at a finite number of points. (Notation: For any number a, sgna is
one if a is positive and minus one if a is zero or negative.) We will see later
in the text that some interesting analogies exist between the Rademacher
functions and the functions sin(2n2" *x),
1+
| ' |
| | !
| | |
!
: E i !
! ! |
—1 — }
7. Prove that
o0
k=1
8. Bvery number we (0, 1] has a ternary expansion

w = Z 033—i

with g; = 0, 1, or 2 (see exercise 2). We can make this expansion unigque
by selecting, whenever ambiguity exists, the nonterminating expansion—
that is, the expansion in which not all a;’s from a certain point on are equal
to 0. With this convention, define

Tilw) =g, —1

Draw the graph of 7, for k = 1, 2, 3. Can you discern a general pattern?
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9.

10.

11.

12.

13.

14.

15.

16.

17.

Obtain a recursion formula for the T.’s similar to the recursion formula
for the R,’s in exercise 5.

Let C be the set of all numbers on the unit interval {0, 1], which can be
written in the form
o=y a3™*
k=1

with g, = 0 or 2. Show that C is uncountable. (C is called the Cantor set.)
(Hint: Use the Cantor diagonal process.)

Prove that the Cantor set (see exercise 10) can be constructed by the
following procedure: From [0, 1] remove the middle third, (1, %); from the
remainder—that is, the intervals [0,4] and [%, 1]—remove the middle
thirds, and so on, ad infinitum. The remainder is the Cantor set.

e

Gime B
CUCI o
wire ¥
=1y
Wi
—

=3
S
s
o
wir
[ETNY
wioe
—

Show that the Cantor set is of measure zero.

Describe geometrically the sgt a(I@iscussed on page 9.

Show that the nonnormal nunibers are dense in the unit interval.
a. Show that a positive number ¢, exists such that, for all N,

1
/ [Sn (@) dz < csN®
0
b. LetA,betheset {wel;|S,(w)| > en}. Show that the Lebesgue measure

of 4, is less than ¢4 %73,
More generally, show that a positive number ¢, exists such that, for all N,

1
f Sy (@) de < e N¥
o
Prove a refinement of the strong law of large numbers, which says that

hY
A%——»O as N-— o
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for any 6 > 3. (Hint: Use exercise 16. We will see later that, for § = , the
situation is much more interesting.)

18. Prove that
1etsn(x) iy — ot + e \"
Q 2

(Hint: By induction, Write

1 1
I ets,,(x)dx =J etS,,..,(x)ezR,,(x)dx

] [}

Break up the unit interval into 2"™! equal subintervals on each of which
R,-; is constant. Show that

1 1
J eBSnl) dy — (e te ) f Sn-109
J 2 J

if J is one of these intervals.)
19. From exercise 18, derive the formula

1 d 2K e! +e-t n
S 2K [ i
Josermas= (&) (555

20. Let f be a nonnegative monotone function defined on the unit interval.
Prove Chebyshev’s inequality

t=0

p{eel; flw) > a}) < éjlfdx
0

with the integral on the right being the Riemann integral.

21. We have already defined Lebesgue measure for two kinds of sets: finite
unions of intervals and sets of Lebesgue measure zero. Show that these
two definitions are not contradictory; that is, show that the interval [a, b],

a < b, is not a set of measure zero. (Hint: Use the Heine—Borel property
of compact sets.)

§1.2 Randomness

In §1.1 we saw how to identify the set # of Bernoulli sequences
with the set of points on the unit interval 7. In terms of this identification, a
probabilistic event E, associated with Bernoulli sequences, gets identified with
a subset Bg of 1. We saw that, at least for simple events, the Borel principle
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applies; that is,
1) Prob(E) = p.(Bg)

We will attempt in this section to describe some slightly more complicated
probabilistic events in measure theoretic terms.

Example 1. Gambler’s Ruin

A gambiler has X dollars and bets at even odds on a coin flip. What is the
probability of his ruin?
We discussed this event already in §1.1. We showed that

BE == U BE&
k=1

Bg, ={wel; Si(w)>—Xforl <k, and Sg(w) = ~X}.

After developing some measure theoretical tools, we will see that

@ bu(Be) = 3 (By,) =1

In other words, with probability one, if a gambler bets long enough, he will
eventually lose all his money no matter how big his initial stake.

Example 2. Random Patterns

Pick a finite pattern of coin tosses, for example, THHT. Let E be the event
that THH T occurs in a given Bernoulli sequence. Then

By = {wel, there exists n,
with R, (w) = —1, R, 4 (@) = I, R, (@)= 1,and R, ,3(@) = —1}

We will prove in §1.4 that this set is of measure one. In fact we will prove
that, if one fixes any finite pattern, this pattern appears infinitely often in a
Bernoulli sequence with probability one.

This result can be-interpreted as follows. Put a monkey in front of a
telegraph key and let him punch a series of dots and dashes as he pleases.
With probability one, the monkey will eventually tap out in Morse code all
the sonnets of Shakespeare infinitely often.
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Example 3. Random Variables

In example 1 let R, be the amount of money won or lost at the nth toss. R,
can be thought of as a function on the set & or, via the identification &« I,
as a function on the unit interval. It is, of course, just the nth Rademacher
function, discussed in §1.1. R, is a typical example of what probabilists call a
random variable. It is a variable—that is, a quantity that one can measure each
time one performs a sequence of Bernoulli trials—and it is random, because
the values it assumes are a matter of hazard or chance. Another example of a
random variable is the sum

S,= YR,
k=1

which is the total amount won or lost by the nth stage of the game. Notice
that the set By, in example 1 is completely described by the S.’s. This is
not surprising. Most interesting random events are describable by random
variables. For instance, consider winning streaks. Suppose that, starting at time
t = n, a gambler tosses an unbroken sequence of heads for a certain length of
time. The relevant random variable connected with this phenomenon is the
variable /,, which counts the number of times H occurs consecutively starting
with the nth toss.

Example 4. Expectation Values

Let 4 be the set of Bernoulli sequences. A random variable associated with
the Bernoulli process is, by definition, a function f : % — R. Thanks to the
identification of % with I, we can also think of f as a function on I. In Chapter
2 we will address the question of what kinds of functions correspond to the
“physically interesting” random variables. For these functions we will be able
to define the Lebesgue integral

3 L fduy,

The probabilists call equation 3 the expectation value of the random variable
/. Roughly speaking, it is the value that £ is “most likely” to assume in a series
of frequently repeated experiments. To use a simplistic example, for the
Rademacher function R,, the integral in equation 3 turns out to be just the
usual Riemann integral

1

f R, dx
0

which, as we saw in the previous section, is zero; that is, the “most likely” value

g AR

i i

T
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of R, is zero (even though R, takes only the values + 1 and — 1). We will justify
this somewhat paradoxical assertion in §2.6.

Example 5. Random Walks

A Bernoulli sequence, that is, a sequence of coin tosses, can be considered to
describe a random walk on the real line. That is, a particle is placed at the
origin; a flip of a head causes the particle to move one step forward, and a
tail moves it one step backward. As one tosses the coin an infinite number of
times, the particle moves erratically backward and forward along the real Iine.
We will call the path traced out by such a particle a random path and the
sequence of motions itself a random walk. Obviously each Bernoulli sequence
gives rise to a random path and vice versa. If we denote by £ the set of random
paths, we can identify # with # and, by means of binary expansions, both #
and # with the unit interval I. Probabilistic events associated with 2 can be
reinterpreted as events associated with # and vice versa. For example

gambler’s ruin < passing through — X for the first time

In probability jargon the space of all possible outcomes of a probabilistic
process is called the sample space. For Bernoulli sequences, the sample space
is 9, for random walks the sample space is £. For all intents and purposes,
# and # are identical, even though one thinks of £ in connection with the
motion of particles and £ in connection with games of chance.

Example 6. Random Walks with Pauses

To perform a random walk with pauses, one needs a gadget of the type
depicted in the figure below. Place a particle at the origin of the real lit}e anfl
spin the pointer. If it lands on + 1, move the particle one unit to the right; if
it lands on — 1, move the particle one unit to the left; and, if it lands on 0,



18
Chapter 1 Measure Theory

leave the partigle fixed. By repeating this operation infinitely often, we get a
random walk with pauses. Let %, be the sample space of this process. Identify

g
¢4 , QO -I’

Ay

@ o=y % 4=01,

Mg
(93]

k=1

The ternary expansion of w is then
W=.4ya,4a,...

: 1
Notlce tbat 3=.1 QOO. ..or.0222..; s0, in order to make ternary expan-
S1ons unique, we will always choose the nonterminating expansion in cases
like the one above (sce §1.1, exercise 2). Now make the identification

+1e1
00
—1e2

to 1deqt1fy a random walk with pauses with the digits in such a ternar
expansion. This identification gives a map I — %,. The Borel principle in thiz
Instance says that, if an event E associated with this random process corre-
sponds to the subset B of I, then, just as before,

) | Prob(E) = p,(B,)

We suggest you check equation 5 for a few simple events. (See exercise 4)

Example 7. Random Walks in the Plane

For two-dimensional random walks, we need a gadget similar to the one
we used on the previous page:

$§1.2 Randomness 19

Let Z2 = {(m,n); m,n integers} denote the integer lattice in the plane.
Place a particle at (0,0)e Z? and spin the pointer. If it lands on N, move the
particle to (0, 1)e Z2; if it lands on E, move the particle to (1,0)e Z?, and so
on. By repeating this operation ad infinitum, one produces a random walk,
the successive stages of which are indexed by an infinite sequence such as

6) NSSEWE...

Let %100 be the sample space of this process—that is, the set of all sequences
like the one in display 6. We can identify each sequence with a point wel
using base-four expansions; that is, w € I can be written as

& a
(7 wo=Y =% =0123

=14

The base-four expansion of wis then.a, a, a, ..., which can be identified with
a sequence like the one in display 6 by means of the correspondence

0« East
1 West
2+ North
3 < South

Of course we must deal with the problem of nonuniqueness in this identifica-
tion as above, by selecting nonterminating rather than terminating expansions
whenever ambiguity exists. Just as in example 6, to every event E associated
with this process there corresponds a subset B of I. We urge you to check that

Prob(E) = p,(Bg)

for a few simple, typical events. (See exercise 5.)

Example 8. The Discrete Dirichlet Problem

Let Q be a smooth, bounded region in the plane with boundary B. An
important problem in electrostatics is the Dirichlet problem: Given a con-
tinuous function f on B, find a function u satisfying

®)
u=f on B

where Au = (9%/6°X)u + (6%/0°y)u.
This problem has a discrete analogue that is itself quite interesting. Let Q
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be a finite subset of Z2. A point p =

(m,n) of Q is an interior point if i
next-door neighbors p its four

(mn+1), (m+ Ln), (mn-—1), and m-—1,n

are also %n Q; ‘other\”vise, pis a boundary point. For instance, in the figure below,
Py 15 an 1nterior point and p, a boundary point of the shaded region,

» )

For a function u on Z2, we define Agisererett by the formula

(Adiscrete u) (m1 n)

©) _ ulm,n + 1) + u(m,n —-‘1) +ulm + 1,n) + u(m — 1,n)

7 - uf{m, n)

[Notice that the first term on the right is just the average of u over the

next-door neighbors of the point (m, n).] The discrete anal iri
: , 1) ogue of the Dirichl
problem is to find a function u : Z? — R such that : o

(1 0) Adiscreteu =0

at the interior points of Q, and
(11) u=f

on the boundary, 4Q, of Q, f being a given function on 8Q. One can solve this
prob-lem elegantly by using the random walk described in example 7: Given
a point peQ and a random path o starting at p, let F(w, p) be the value of f
at the first point at which  hits 90, [If @ never hits the boundary, set
F(w, p) = 0.]If we fix p and regard F as a function of the random path al)one
then F is a random variable in the sense of example 3. We will show in §2.8’

that its expectation value is the value at i iri
: p of the solution of the D
problem described in equations 10 and 11. © Dirichlet
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Example 9. Randomized Series

Probabilistic considerations have another way of entering into classical
analysis. Consider the series

= 1

Y- and 3
n=1

n=18

=1
n

The first of these series diverges, whereas the second converges. We can enrich
this problem by adding a probabilistic component. Consider a general series

1

1 R

gL
H-

[

where the plus or minus is determined by the flip of a coin; that is, for each
wel we get a series

12 _ 2 Ry (@)

n

with R, being the nth Rademacher function. Now let E be the event that this
series converges:

oo Rn
Bg = [w el; Z @) cenvergcs}

What is g, (Bg)?

In §3.3 we give a series of exercises in which we sketch a proof that
1y (Bg) = 1. The intuition behind this result is that a typical Bernoulli sequence
has roughly as many pluses (heads) as minuses (tails).

Example 10

We end this section by considering a collection of sample spaces that includes
all of those we have considered up to this point. :

Take n marbles of k various colors. Say the colors are labeled ¢,,¢5,...,6
and suppose that, of the N marbles, N; of them have the color ¢, 1 <j <k
Now put all of the marbles into a cylindrical wire cage that can be spun on
its axis to mix the marbles fairly well within the cage. After the marbles are
mixed, a blindfolded assistant removes one marble from the cage. If the marble
has the color c;, one gets as a reward a preassigned number, r;, of dollars.
(Incidentally, we will allow 7; to be positive or negative.) After the color of the
marble is recorded, the marble is returned to the cage and the process is
repeated.

The probability that the color ¢; will be chosen is
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N,
i
pi= N
and
k k
(13) Y p=1 because Y Nj=N
j=1 j=1

Notice that this game can serve as a model for coin tossing (and random walks)
by allowing only two colors of equal number, say ¢, = red and ¢, = white,
and setting the rewards at +$1.00 for a red marble and —$1.00 for a white
marble.

With three colors of equal number, say ¢, = blue, ¢, = white, and ¢; =
red, and rewards r, = +8$1.00, 7, = 0, and r, = —$1.00, we get a model for
the random walk with pauses.

If we alter our process slightly by allowing the r/’s to be vectors in R?, we
can model random walks in the plane; namely, take four colors of equal
numbers with r, = (0, 1), r; = (1,0}, r3 = (—1,0), and r, = (0, —1).

In §2.6 we will develop a measure theoretic model for this process based
on a “Borel principle” similar to that in the preceding examples.

Exercises for §1.2

1. Under the correspondence % « I, describe the subset of I corresponding
to the event that a run of 15 heads will occur before a run of 11 tails.

2. Describe the subset of I corresponding to the event that no run of heads
ionger than 15 ocours in a Bernoulli sequence,

3. Prove that the pattern HT has to occur infinitely often in a Bernoulli
sequence (with probability one) using the Borel principle.

4. With the ternary numbers as a model for the random walk with pauses,
test the Borel principle by using it to compute the probability of
a. apauseattimet=1.
b. apauseattimet = n.
¢. forward motion at times ¢t = 1,2,3,...,n.
d. forward motion attimest =k, k + 1,...,k + n

5. With the quaternary numbers as a model for the random walk in the
plane, test the Borel principle by using it to compute the probability that
a. the first move is due east. 4
b. the nth move is due east.
¢. the first n moves lie on a straight line.

6. With the ternary numbers as a model for the random walk with pauses,
prove that with probability one an infinite number of pauses occur. (Hint:
See §1.1, exercise 12))

T L e

i s
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7. Sum the series
1
+ ——
Tty

by the following procedure. For each Bernoulli sequence, put a (+) sign
in the kth place if a head comes up and a (— ) sign if a tail comes up. What
is the sum? (Hint: See §1.1, exercise 7)

8. Let Q be the subset

{(09 O)a (1,0), (O’ 1)a ('— 1’0)7 (09 - 1)}

of Z2. (That is, Q consists of the origin and its four next-door neighbors.)
Check directly that the recipe described in example 8 for solving the
“discrete Dirichlet problem” on € is correct. .

9. For the process described in example 10, show that, if one uses an equal
number of marbles of each color, the sample space of the process can be
identified with the unit interval using expansions in base k.

10. For the ordinary random walk starting at the origin, show that the

probability of a particle’s being in position k at time ¢ = nis

0 if1k1>n0rifn+kisodd

1\/n n+k
e , wherer=

11. (On Markov processes.) Let P=(P), —© <ij<©, be an infinite
matrix with the following properties:

(=

otherwise

@ P20

xx) (i) Y ;P;=1foralli ‘ i
( (iiiy For fixed i, P; = O for all but finitely many J’s.

For the “generalized random walk” associated thh P, a particle moves

along the line according to the following probabll}stlc rule: If the pa1:t1.cle

isat positioniattimet = n, thenat timet =n + 1it can beat any position

j for which P; # 0, and the probability of its being Fhere is P;. (For

instance, if P; = 1 and P; =0 for i # j, then the partlcl'e stays fox:ejfer

at its initial position.) The matrix P is called the matrix of transition

probabilities associated with the process. ‘ o

a. Show that the process described in example 101s a process of this kind.
(Think of the position of the particle as being the total number of
dollars won or lost by time ¢t = k.) .

b. For the process described in example 10, show that the matrix of
transition probabilities is of the form P; = P . _

¢. Show, conversely, that il Py=F_; the corresponding process 15 @
process of the kind described in example 10.
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12. a. Show that, if P and Q are matrices of the form in equation (++), the
usual matrix product PQ is well-defined and is of the same form.
b. Show that, for the generalized random walk associated with P, if the
position of a particle at time zero is i, the probability that its position
at time t = n is j is just the i — jth entry of the matrix P".

13. Show that, for the matrix P; ;,; = Py ; = 3, F; = 0; otherwise, the gener-
alized random walk is the usual random walk. Derive the formuia (x} of
exercise 10 by computing directly the i — jth entry of P". (Hint: Consider
the vector space V consisting of all finite sums:

Z Ckek’ Ck (= R

On this vector space consider the linear mapping “multiplication by
(e + e*)/2.” Show that, if we take for a basis of ¥V

—kt

LeB et e, M

then, in terms of this basis, this linear mapping has P as its matrix.)

14. Can you construct a measure theoretic model for random walks in space
similar to the measure theoretic model for random walks in the plane?
(Hint: Expansions in base six.)

§1.3 Measure Theory

We mentioned earlier that Lebesgue measure assigns to each set
A, belonging to a certain collection of subsets of R, a nonnegative number
s, (A)called the Lebesgue measure of A, We also mentioned that u, has certain
additivity properties. We will now study these properties in more detail. We
need to begin with a large number of technical definitions. Keep in mind the
vague notion of Lebesgue measure we have already discussed so as to put
these technicalities in perspective.

Let X be a fixed set. Suppose A and B are subsets of X. We recall the
following notation:

Notation
(4] empty set
AUB = {xeX;xeAorxeB}  unionof Aand B
AnB={xeX;xeAdand xe B} intersection of A and B
A= {xeX;x¢ A} complement of A
B—A={xeX;xcBand x¢ A} BminusA
S(A4,B)=(4 — Byu(B ~ A) symmetric difference of A and B (see figure,

page 25)

Meaning
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A ring of sets in X is a nonempty collection # of subsets of X satisfying the
following two properties

1. AuBeZ
2. A—Be#

whenever A, BEZ#
whenever 4, Be #

Remark. JeRsince A — A= Alsoif A, Be® then AN Be# since
AN B is obtained from A U B by deleting A — B and B —A.
Two examples with which we will soon be very familiar follow.

Example 1. Let 2¥ denote the set of all subsets of X; 2% is a ring.

Example 2. Let X = R" Suppose (ay...»an) and (by,..., b,) are given, with
eachq; <b,i=12...,n
Let A be the set of points x € R” such that

(1) aiﬁxiﬁb,- i=1...,n

A is called a multi-interval. More generally, a multi-interval is a set of the form
ith perhaps some of the <’s replaced bya <. , o
ShOVI&;I;f_::*’IB .%E)L b br;r AeRy <> A=), A, where the 4/'s are a disjoint
€ € X .
collection of multi-intervals. We let the reader check that £, ., 15 a nng.

Now, fix a ring 2 of subsets of X. Let x be a nonnegative set function on
A that is, to each Ae &, assigns a nonnegative number u(A).

Definition 3. u is additive if u(A L B) = p(4) + pu(B) whenever 4, Be & are
disjoint.

Example 4. # = %y, Suppose 4 € &, ., is a multi-interval described by the
inequalities

aisjc;ﬁb; i=1,...,n
(Again, some <’s may be replaced by <’s.) We define

@) u(A) = (by — a)) by — az) " (ba — @)
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More generally, if 4 = Uﬁ‘;l A;is a disjoint union of multi-intervals, we define
N
€) HA) = Zi u(4;)

Then p is a well-defined additive set function on %,

Proposition 5. Let Z be a ring of subsets of X and y an additive, nonnegative
set function on #. Then

L u(@)=0.

2. (monotonicity) If 4, Be # with A € B, then p(A) < ui(B).

3. (finite additivity) If A,,4,,..., A,eZ are mutually disjoint, then
N(U?=1 A) = Z?=1 wA).

4. (lattice property) If 4, Be % then u(A U B) + (4 N B) = pu(A) + u(B).

5. (finite subadditivity) For any 4,,...,4,e &, p(| Ji; 4)) < Y 1(Ay).

Proof.

L Aed, p(A) = pAv @) = w(A) + p(&),  so u(F) = 0.

2. B=(B— A)u A is disjoint, so u(B) = B — A) + u(A) = u(A).
3. Induction on n.

4. A=(A—~-Bu(AnB)

B=(B—-Au(AnB)
AUB=(A~-B)U(B— A)u(4nB)
80 W(A) = w(A — B) + p(An B)
#(B) = u(B — A) + (A n B)
H(A U B) = (4 ~ B) + u(B — A) + (AN B)
= u(A) + u(B) — (A n B)
5. Induction on n; case n = 2 follows from item 4. |

So far we have done nothing very deep. We have just given an abstract
setting for the situation in example 4. Our eventual purpose is to extend the
definition of the set function in example 4 to a much larger ring of subsets of
R. For instance, this ring should contain the sets of measure zero described
in §1.1. In order to carry out this extension in a natural way, we will need the
following refinement of additivity. As the proof of theorem 7 will suggest, this
property is much more intricate than finite additivity.

Definition 6.

1. Let 2 be a ring of subsets of X and u an additive set function on 4.
We say p is countably additive on # if, given any countable collection
{4321 © Z with the A;’s mutually disjoint and such that 4 — Ug, 4, is
also in 4, then
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@ WA = 3wy

2. A countably additive, nonnegative set function p on aring # in X is called a
measure.

Warning. Equation 4 makes no sense unless we assume A€ Z.

Theorem 7. X = R", % = 4, ,,, and pis the set function in example 4, then
His a measure.

Lemma 8. Let Aed,.,, and let & > 0 be given. There exist F, Ge %, ., such
that Fis closed, Gisopen, F € A = G, and

WF) = u(4) — ¢

wG) < u(A4) +e¢

Proof. Suppose A4 is a multi-interval given by the inequalities
aiﬁxiﬁbi i=1,...,n

where some of the <’s may be replaced by <’s. We can find a 6 such that

| [(b;—é)-—(a;wn=‘_f;(b;-—ai—25)zlj<bi—a‘-)~s

n
i=1

and
[TE6+ 9 — (@ = 0] = [T~ a,+ 20) < [[(bi— a) + &

Let F be given by the inequalities
a+d<x; b~ 0 i=1,...,n
and G by the inequalities
a;—~d<x;<b+8 i=1,...,n
We then have
#(F) z p(4) — ¢
MGy < u(A) +¢

Now, if A = { &, 4, is a disjoint union of multi-intervals, find for each 4; an
F, and G; such that
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HE) 2 u(d) — 7
BG) < (4) +
Then, with F = { &, F;and G = | %, G,, we have
k k &
u(F) = Zl HF) = ; [ﬂ(Ai) - d =p(d)—e

k
u@s%M@sg@mH{me+a v

Now, tak\? {A‘};l to be a disjoint collection of sets in Ry 0> and suppose
A=), 4;is also in #,,. Notice that UK 4, 4,50

N

(5) u(d) = u (U A;) = 5_1{ u(4;)  forevery N
i=1 =

Thus

©) TCESWIZY

Choose a closed set F < A such that u(F) > u(A4) — ¢, and for each A.
choose an open set G, containing A; with p(G) < p(4;) + ¢/2%. '
Because F is closed and bounded, it is compact. Because it is covered by
the G’s, it must be covered by a finite number of them, say G, G,,..., Gy. Then

N N« , 0
MA)—e<pF)<p (_U Gi) < 3 u(G) < i [M(Ai) + ﬂ < X u(A) +e
i=1 = i=1

fom

Being true for all , this yields
0] wA) < Y u(dy)
i=]1

Putting inequality 7 together with inequality 6 shows that xis a measure. [J

We have now constructed a measure on a collection of subsets of R* The
sets on which this measure is defined, #,,,, are very simple, however. As
remarked above, the property of countable additivity will allow us to extend
this measure to a much larger ring of sets.

Let u be a measure on a ring # in X, We attempt to extend p to the ring
2% by mimicking the definition of measure zero in §1.1.
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Definition 9. Let 4 be a subset of X. A number [ > 0 will be called an
approximate outer measure of A if there exists a covering of A by a countable
collection of sets 4, 4,, As,... with each 4;€ % such that

Q0

)] >, u4) <1

i=1
Remark. |is allowed to be + oo.

Definition 10. Let A be a subset of X. The outer measure of 4, u*{A), is the
greatest lower bound of the set {I: [ is an approximate outer measure of 4}.
If this set is empty, then u*(4) = + co.

We now have a set function, p*, on the ring 2%. Unfortunately, p*
is not generally a measure {see, for example, exercise 1, or, for a more
rewarding example, Appendix C). We will show, however, that u* is a
measure on a large ring of subsets of X; this ring will be called the ring of
measurable sets in X.

Proposition 11.

1. f Ae A, then u*(A4) = u(A).

2. If A = B, then u*(A4) < u*(B).

3. u*iscountably subadditive; that is, if 4,, 4,, 4,,... are subsets of X, then
(U 4) < Y2, u¥(4).

Proof.

1. Covering A by the sequence 4, = 4,4, = J, 43 = &,..., we see that
u(4) is an approximate outer measure for 4, so ‘

) ~ #¥A4) < p(A)

To prove the other inequality, let ¢ > 0 be given. Because u*(4) is the greatest
lower bound of all approximate outer measures of 4, a cover {4;}2, < &
must exist such that

(10) ;mm+szzmm)

Let A=A, A5 =A4,—A4,, Ay =A4,— (4, v A4,), and so on. Then the
A}’s are mutually disjoint and

8

an H*A) + e = i u(4;)

It
-

If we let A7 = A, A, we have that 47 < 4 for all i, the A/’s are mutually
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disjoint, and still
(12) HHA) + &= }_:1 HAY)

Now, since A7 < A for all i and { )2, 4; > 4, we must have [ J2, 4] = 4. So
u(A4) = Y2, u(A}) and thus ‘

(13) p*(A) + € > p(A)
Because this inequality is true for all &, we have
(14) pHA4) = u(A)
2. If lis an approximate outer measure for B, then surely it is for 4. Thus
wHA) < u*(B)

3. Givens > 0,foreachiwe can find a cover, {4, ;} 2, = &, of A;such that
3 a0
(15) uwHA) + 5= ):3 A, ;)
jw

Then the countable collection {4, ;}7%_, covers 4 = | 2, 4, so that

i
™s

ws 3ot = ¥ 5 )

i=1

(16) i

<¥ [u*ma . g}]
=1

=g+ ip*ui)

This holds for all ¢ > 0, so

(17) iH(4) < gu*(,q,.) g

Remark. This proof is essentially the same as that used in §1.1 to show that
a countable union of sets of measure zero is itself of measure zero.

Now our original ring, #, is a subset of 2%, We wish to find a larger ring,
A, containing £, that will be the measurable sets. Our strategy will be to
think of 2¥ as a metric space and define a distance function on it, so that,
roughly speaking, .# will be the closure of Z in 2* with respect to this distance
function. (For a quick review of metric spaces, see Appendix A)

i
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For A, B < X we define the distance from A4 to B by

(18) d(A,B) = p*[5(4, B)]

where S(A, B) is the symmetric difference S(A,B)=(A — B)v (B — A).

1
If .4 and B are the unit squares pictured, then di4, By = 1;.

Caution.

1. d(A,B) may be + . ~ .
2. Although we are calling d a distance function,

sarily imply 4 = B.

d(A, B) = 0 does not neces-

Proposition 12, Suppose 4, B, C €2%. Then

1. d(A4,B) = d(B.A)
2. d(4,A)=0
3. d(A,B) + d(B,C) > d(4,0)

Proof.
Lemma 13. 1. S(4,B) = 5(B, 4)
2. S(4,4) =&
3. S(4,B)uS(BC)= S(4,0)

Proof. Items 1 and 2 are obvious. To see item 3 we have
S(4,B)=(4—Buv(B—4)
S(B,C)=(B— C)u(C— B)

and
S0 S(A,B)uS(B,C)=(A-—B)u(B—A)u(B——C)u(C—B)
But A—CE(A*B)U(B-—-C)
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and C—Acs(B—-A)u(C—B
$0 $(A,C)=(4 - C)u(C— A) = S(4,B)u S(B,C) v
The proposition follows from the lemma. 0

Note. d(A,B) = 0if p*(S(A, B)) = 0; thatis, 4 and B symmetrically differ by
a set of outer measure zero.

' Although the preceding note says that d is not quite a distance function
in the standard sense, we can still use d to define the notion of convergence in

?:"‘. That is, we say a sequence {4}, €2¥ converges to Ae 2 written 4, —» A
if d(A,, 4) - 0. -

Proposition 14. The Boolean operations in 2% are continuous with respect
to d. That is, if 4, - A and B, — B in 2%, then

A,uB,-AUB

A,"B,>ANB

A,—B,~+A—~B
and A — A°

Proof.
Lemma 15. If 4,, A,, B,, B, 2%, then

1. S(A5,B{) = S(4,,B,)

2 S(4,uUA4,,B,UB,)c S(A4,,B,)u S(4,,B,)
3. S5(4;04,,B, " B,) < S(A,, B,) U S(d,. B,)
4. S(4, - 4,,B, — By)c S(Ay, By) U §(4,,B,)

Proof.

1. S(A,B)=(4 —B)U(B—A4)=(4 NBYU (BN A9
80 S(A By = (A" B)yu(B°'n A) = S(A4,B)
2. S(4;VA,,B, UB,)=[(4,UA4,) - (B, v B,)] U[(B,uB,)—(4, v A,)]
= [(4; L A4,;)n(B, U B, ) Tu(B, UB)Nn (A4, uA,)]
= [(4; v A,)"(BI N B5)JUL(B, UB,) N (A5 A%)]
S (A, nBY)U(A;nB5)U(B, nAS) U (B, M A5)
= S(A1a31)US(A2;Bz}
3. S(4,nA4,,B, N B,) = S(A] U 4%, B5 U BY)
S 5(43,B7) U S(45, BS)
= S(AlaBl)US(AZ’BZ)
4. S(4,— A4,,B, — B,)=S8(A, n A5, B, N BY)
S S(Ay, B,)u S(45, B)
= S(Az»Bl)US(Az:BZ) v
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From the lemma we have the immediate corollary

1. d{(4,B)=d(A°,B")

2. d(A, U Ay, By U B,) < d(A;,B,) + d(4,,B,)
3. d(A;n Ay, B, nB,) <d(4,,B,) + d(4;,B;)
4. d(4, — Ay, B, — B;) <d(A4;,B,) + d(4,,B)

from which the préposition follows. 1

Proposition 16. u* is continuous in the following sense: Let 4, Be2¥ and
suppose either u*(4) or u*(B) is finite, then

(19) |u*(4) — p*(B)| < d(4, B)

Proof. Suppose p*(B) < oo; also assume pu*(B) < u*(A). Then
wH(A) = d(4, &)
< d(B, &) + d(B, 4)
= p*(B) + d(B, 4)
Thus
|u*(A) — p*(B)| = p*(4) — p*(B) < d(B, 4) O

D;ﬁnition 17. Let .#; be the closure of # in 2%, That is, A€ 4 if and only
if there exists a sequence of sets {4;}2, = % such that d(4;,4) >0 as i — co.

Theorem 18. 1. .#yis a ring.
2. For Ae #y, p*(A) < 0.
3. u* is a measure on #p.

Proof.

1. Assume A, Be .#;. We need to show that AU Band 4 — B are in #y.
Now, because A, Be .# there are sequences {4,;}{2, and {B;}{‘i} in # such
that 4, » A and B; — B. By the continuity of the Boolean operations

A,uB, > AUB
A;_Bi—)A—B

80 .y is a ring. '
2. Ae.#;implies that there is a sequence {4;}2; < # with 4, - A. For
some 1, then, d(4,, 4) < 1.
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Thus
pHA) < p*4,) + 1< 0

3. We first show that u* is additive, or—what amounts to the same
thing—we will prove the lattice property; that is, if A, Be .4 then

(20) w*A U B) + uX(A N B) = p¥(4) + p*(B)

Choose 4, — A and B, —» B in #. Because on %, pu* = p, p* is additive on 4.
Thus

p*A, v B,) + p*(4, N B,) = p*(4,) + 1*(B,)
But A,uB,—» AuBand A, n B, — 4 n B, so the continuity of u* implies
#*A U B) + p¥(A 0 B) = p*(A) + p*(B)

We now prove countable additivity. Let {4;}2, be a mutually disjoint se-
quence in #; with 4 = | J2, A, also in .#;. By the subadditivity of u* we
know that

@1 WA < 3 )
Furthermore
Q 4;c A
50 urA4) = p* ({Ul Ai) = 2;1*(/1,-) forall N
That is,
@) pA) > 3 () O

Definition 19. A4 is a measurable set, A€ 4, if there exist {4,}2, < J#; such
that A = UE";I Ai'

Theorem 20. If A/ then A e .#p < pu*(A) < 0.

Proof. Part 2 of theorem 18 gives “==", 50 to establish the theorem we must
show that, if y*(4) < co and Ae . #, then Ae Ay

Because 4 € 4, there exist 4;e #p such that 4 = {2 4;. We can assume
this union is disjoint for, if it isn’t, we can replace the 4,.s by 4;’s as follows:

leAl
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ZzzAz—Al
Ay =A4;— (4, v 4,)

and, because # is a ring, we know A€ M. Thus we can assume 4 = Uz 4
is a disjoint union. ' ‘ o

Now consider p*(A4). First, subadditivity gives p*(4) < Y2, uMA,;). We
claim that, in fact, g*(4) = ¥ 2, #*(4;). To see this, notice that

N
JdicA
i=1
N N
50 w (U Ai) =3, WHA) < p*(4)
i=1 i=1

Because this equality holds for any N, we have

S WA < g

i=1

and thus

(23) i p¥(4,) = pX(4)

i=1

Now, fix ¢ > 0 and let By = | Ji, 4;; then By #, and

‘ d(A4, By) = wHA — By) = #*( U Aj)
| o
(24) o
< Y p*A4) <& for Nlarge
i»N

because Y 2, u*(4;) is convergent. Thus A e.#; because By — 4 and 4 is

closed. ‘ 0
We now consider properties of the collection .#.

Definition 21. Let & be a collection of subsets of a set X. & is called a o-ring
if

1. itis a ring and .
2. given {4;}2,in &, | 2, Ajis also in &.
Theorem 22. .# is a o-ring.

Proof. First we will show property 2.
Suppose 4,,4,,... are elements of ./#. Let A= |, 4; Because each
A, e M, there must be {A4;}2, in Ay such that
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Then 4 = | J{-; A;, a countable union, so Ae.4.
Now we will show that .# is a ring. It suffices to show i
. that
then A — Be 4. aid e
.Flrst, suppose 4 € .4y and write B = | 2, B, with B;e #¢. Because 4 is
a*nng, AnBedlyso ANB = U;‘il AN B; is a member of .#. Moreover,
u¥AnB) S’,u*(f‘i) <, 50 AnBeslp. Now A —B=A — (A~ B) and,
because .# is a ring of which A and 4 ~ B are members, we have 4 — Be . #,.
Now let 4 be a general element of .# and write A — iy A; with A; € #,,

Then
o
A-B=\J(4;, - B)
i=1
but from the discussion above, 4, — Be Mg, 30 we are done. 1

Theorem 23, IfA,, 4,,...1is acountable collection of disjoint sets in .#, then

u* (U Af> = iZ wHA;)

i=1

Proof. letd = U;‘;l A;, Ae M. We consider two cases separately,
L p*Ad)< o

Because 4, < A, u*(4;) < o so A4 and all of the A/’s are elements of 4.
Because p* is a measure on My, we have then

W) = 3 ut(4)

2 uMA)= oo ‘
In this case subadditivity tells us that

0 = uH4) < ;i *d,)

5o ; p¥(A4;) = oo 0

Now that we have constructed measurable sets in the abstract case, let us
return to the example of Lebesgue measure in R”.

Exavmple. 24. X =R", # = AR, ,, = finite unions of multi-intervals, and p is
as given 1n example 4. Here we call .# the set of Lebesgue measurable sets in
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R", and the extension of it to . (the restriction of u* to .#) is called Lebesgue
measure .
What do the sets in . look like? First we remark that R"e.#. Indeed let

Iy={xeR; —N <x, < N,i=1,...,n}

Then

and each Iye# < My

Proposition 25. Every open subset of R" is in .#4.

Proof. letc ={(a,,a,,...,8,,b.,b,,...,b,)e R with the a’s and b;’s rational
anda; < b;. LetI. = {xeR"; ¢; < x; < b, i = 1,2,...,n}. The collection {I } is
countable.

Now let @ be any open subset of R”; ¢ is equal to the union of all sets I,
such that I, = @. (If xe® we can find a ¢ such that xe I, = 0.) Because such
a union is countable, 0 & .#.

Corollary 26. Every closed subset of R"is in ..

Proof. A isclosed so A°is open. A = R” — A° and, because .# is a ring and
R", A°e.#, we have Ae 4.

)

Corollary 27. All countable unions and intersections of closed and open sets
are measurable.

We have shown that the measurable sets are a o-ring containing the open
subsets of R™. Are they the smallest o-ring with this property? That is, if one
starts with the closed and open sets, forms countable unions and intersections,
and then from these forms further countable unions and intersections, and so
on, does one eventually end up with all measurable sets? The answer is no,
unfortunately; so we are forced to make the following definition.

Definition 28. The Borel sets are the smallest g-ring containing the open sets.

Although not all measurable sets are Borel (for an example see Halmos,
P. Measure Theory. [ Van Nostrand: Princeton, NJ] p. 67), the following
theorem says that any measurable set is close to being a Borel set.

Theorem 29, If Ae . # thereexistsa Borelset B € A suchthat u*(4 — B) =0;
that is, A4 can be written as 4 = (A — B)uwB, where B is Borel and
p*A — B) = 0.
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Lemma 30. IfAe.# andife > 0is given, then there exists a Borel set G such
that G > 4 and p*(G — A) < &.

Proof. First suppose u*(4) < oo. Then by definition of 4* we can find a cover
A < ({2, 4, such that

u(A) < pHA) + ¢

where each of the A;’s is a multi-interval; so we take G = U2, 4;, which is Borel.
More generally, if Ae.# we can write A = Uz, 4; where each A,e.#,.

By the preceding argument we can find Borel sets G; with 4, < G, and

uXG; — A4;) < &/2". Then with G = | J&£1 G; we have ‘

MG~ A) < v

Lemma 31. If 4e.# there exists a Borel set F A with
pA—-Fy<e

Proof. Choose a Borel set G such that A° = G and u*G — A°) < e by lemma
30.Let F =G Then A — F = G — A and

PHA — F) = u¥(G — A9 < ¢ v

Now we prove theorem 29. Take A e .#. For every N choose a Borel set
Fy = A such that u*(4 — F,) < 1/N. Let F = (%= Fy; then F is Borel and

KA — F) < u¥(A4 — Fy) < 1

N

Thus p*(4 - F) = 0. O
We conclude this section with a few remarks about notation. Let X be a
set, Z a ring of subsets of X, and y a measure on %. By theorem 18 u
extends to a measure on a much larger ring of sets, .#. In fact 4 can be
regarded as a measure on the o-ring .4, providing we define it to take the
value + oo on sets A that are in .# but not in . Note that proposition § is
then still true if one observes the usual addition conventions for + o, namely

for every N

(+o)+a=+w foraeR
and (+oo)+(+oé)=+oo

Mf)reover, 14 is countably additive on .# by theorem 23. Note that, if X itself
1s in .#p, these problems with infinity don’t arise; that is, My = M. For all
examples of measures that we will encounter in this text, the set X is either in
My or in # —that is, X satisfies the conditions of the following definition,
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Definition 32. X is o-finite if there exist sets X;e.#p, i=1,2,..., with
X = U?:l Xi'
For example, R" is o-finite because

with B, being the ball of radius i about the origin.

Exercises for §1.3

1. Let X be an uncountable set. Let 2 be the collection of all finite subsets of
X. Given A€ # let u(A) be the number of elements in 4. Show that Zisa
ring and that u is a measure on &. Identify u*. What are .4 and #;? Is
every subset of X measurable?

2. Let X be an infinite set and let & be the following collection of subsets:
AeRif and only if A is finite or A°is finite. Let u be the following function
on & u(A) = 0if 4 is finite, and u(A4) = 1 if A° is finite. Is x4 a measure?

3. a. Let X be an infinite set and #2 the collection of all countable subsets

of X.Is # a g-ring?

b. Let u be a measure on %. Show that there exists a function f: X —
[0, o) such that
(%) A = ZA J(x)
forall Ae Z.

¢. Show that the function f in part b has to have the following
two properties: (1) The set {xeX;f(x)# 0} is countable and (2)
Drex f(X) < 0.

d. Show that, if f has the properties in part ¢, the formula (x) defines a
measure on #.

4. Let X be the real line and & = %, ... (That is, finite unions of intervals.)
Given Ae let u{4) = 1 if, for some positive ¢, A contains the interval
{0, &). Otherwise let u(4) = 0. Show that u is an additive set function but is

not countably additive.

5. Let F be a continuous, monotone increasing function on the real line, If A

is an interval with endpoints a and b, let

ur(A) = F(b) — F(a)

More generally, if 4 is a disjoint union of intervals
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let pr(A) = 3 X, pup(A;). Show that py is a measure on the ring 2, ., ; that is,
prove it is countably additive.

Remark. If one takes for F an antiderivative of the function
(l/\/ﬁ)e"":”z, py is called the Gaussian measure. We will encounter it
several times later on.

. a. Let 4 be a measurable subset of R. One says that the density of A is
well defined if the limit

D(A) = lim #eid mz,[; .11}
T—w

exists. If the limit exists, this expression is called the density of A. Can

you produce an example of a measurable set A whose density is not
defined?

b. Show that, if A, and A, have well-defined densities and are disjoint,
then A; U A, has a well-defined density and
D(Ay; U Ay) = D(A;} + D(4,)

c. Show that there exist sets 4 and A4, i = 1,2,..., with well-defined
densities such that

A=1{]A

s

; (disjoint unions)

i

i=1

but
D(A) # Y. D(4;)

. Let X be a set, Z a o-ring of subsets of X, and u, and p, measures on 4.
Let £ be the family of all those sets 4 € # for which y,(A4) = p,(A4). As-
sume Xe# and p,(X) = p,(X) < co. Show that £ has the following
properties:

i) Xez.
(x%) (i) If 4, Be Xand BS A, 4 — Be %.
(i) f4,e¥,i=1,2,...and A = Ufil A; (disjoint union)
then Ae 2.

Remark. A collection of sets . having the properties listed in (x%) is
called a A-system.

. Let X be the three-element set { P;, P,, Py}, and let & be the ring of subsets
of X. Let u; and u, be measures on 2. When is the set .# a ring? Show that
& doesn’t always have to be a ring.

9. Show that the example described in exercise 1 is not o-finite.
10. Remember that a metric space is complete if every Cauchy sequence
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11.

12,

13.

14.

15.

16.

17.

18.

has a limit. Show that, with respect to the distance function d(A4, B) =

u*(S(A, B)), 2% is complete.

a. Given any collection € of subsets of a set X, show that there is a
smallest ring of sets # containing €. (That is, # has the property that it
contains ¥, and any ring that contains % contains #.) Describe ex-
plicitly how to construct # from €.

b. Show that the ring %, ., is the smallest ring containing the multi-
intervals.

Given any collection % of subsets of a set X, show that there exists a

smallest o-ring of sets #, containing ¥. This justifies definition 28.

Show that for any § > 0 there exists an open dense subset U of R with

n(U) <d.

Let ceR" Given any subset 4 of R", let 4 + ¢ = {weR% w—ceAd}.

Prove that, if 4 is measurable, then 4 + ¢ is measurable and

(%) (A + ) = py(4)

(Hint: First, prove this for multi-intervals. Next, show that in equation (x#)
the outer measures are equal.)

Let R — R be the linear mapping x — ax + b, a and b being constants
with a > 0. Show that, if 4 is measurable, f(4) is measurable and

p#(f(A)) = ap (4)
Let 4 be a Lebesgue measurable subset of R and let
C, = {(x,y)eR?% xe A}

’Such sets are called cylinder sets. Show that the collection of these sets

forms a ring #,.. Show that the set function g defined by
#c(Cy) = pi(A)

is a measure on this ring. Show that, if § is a proper subset of R and
1 (A) # 0, the set

AxS={xy;xedyeS}

is not a measurable subset of R? with respect to the measure pc. (Hint:
What is its outer measure, computed with respect to u:?)

Let f:R™ - R” be a continuous map. Show that, if 4 is a Borel subset of
R”, then f~1(A4)is a Borel subset of R™ Define

e A4) = uy(f ()

Show that g, is a measure on the Borel subsets of R".
Let # be a ring and pu a measure on 4. Prove that, if 4,,4,,..., 4, are
in & then
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HA U A, = Z wA;) = 3 plA; 0 4)

i<j

+ Z u(AiﬁAijk)+‘.‘

i<j<k
(=) pAy nn A,)

19. Let X be a set, # a ring of subsets of X, and u a measure on #. Let

u* be the corresponding outer measure. Show that if 4 € .4 then, for all
EcX,

(1) pHA N E) + p*(A°n E) = p*(E)

{(Hint: First check this for 4 %)

20. Prove the converse result; that is, suppose u*(A) is finite and A4 satisfies
property (1) for every subset E of X. Prove that A e .#. (Hint: Show that,
for every set 4 and every £ > 0, ther¢ exists a set Ee .4 such that Eo> A
and p*(E) < p*(A) + & Use property (1) to conclude that d(E, 4) < &).

Remark. In many textbooks the property (1) is used as the definition of
a measurable set.

§1.4 Measure Theoretic Modeling

Now that we have developed the basic notions of measure theory
we can examine a little more closely the ideas involved in what we have called
the “Borel principle.” First we provide some definitions.

Definition 1. Let X be a set and F a ring of subsets of X,

1. Fisafieldif Xe#.
2. Fisao-fieldif Xe# and if # is a o-ring.

Definition 2. Let X be a set and # a field of subsets of X. Suppose yis a
measure defined on #. Then p is a probability measure it u(X) = 1. In this case
the triple {X, %, u} is called a probability space.

Example 3. Let X be the unit interval I, and let # be the measurable subsets
contained in [. Then # is a o-field and the Lebesgue measure is a probability
measure.

Now iet X be the sample space of a probabilistic process. A measure
theoretic model of the process is a o-field # of subsets of X and a probability
measure ¢ defined on F so that, for any “plausible” event E in X, we have
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Bge # and Prob(E) = u(Bg), where By is the set of points in X for which E
oceurs.

Of course this definition is not precise; the word plausible is left to be
interpreted by the modeler. We need to include the plausibility qualification
because the desired measur¢ may not be defined on all subsets of X. For
example, as we show in Appendix C, not every subset of the unit interval is
Lebesgue measurable.

Let us consider some examples of measure theoretic models.

1. Discrete Probability Theory

Suppose the sample space X is finite or countable, say X = {x1,X3,X3,...}.
Further, suppose that each point x; has the probability p; of occurring and
that ) p; = 1. The measure theoretic model for this process is given by letting
F be the collection of all subsets of X and by defining y as

(0 wA) = Y p fordc X
x;eAd
It is left as an exercise for the reader to check that u is a measure. (See exercise
3in §1.3.)
Notice that in this case we need not interpret the word plausible because
F contains all subsets of X; that is, all events are considered plausible.

II. Bernoulli Sequences and Random Walks

In this case the sample space can be identified with the unit interval I, and the
measure theoretic model is given by the Borel principle. In §1.2 we saw that,
for many “plausible” events E, By is a finite union of intervals {and thus
measurable) and that Prob(E) = u(Bg) in these cases. The events considered
there were rather simple; let us now confirm that Bye # for some more
complicated, yet still “plausible,” events.

1. Let E be the event that a prescribed finite pattern, for example, HT T H,
occurs infinitely often. To describe By we let E, be the event that the pattern
occurs beginning at the nth step. Because By_is described by a finite number
of conditions on the Rademacher functions, it is a finite union of intervals.
(If the pattern is HTTH, then By = {wel; Ry(w)=1, R,y (0)=—1,
R,.2{w) = —1, R,.3(w) = 1}.) Thus, because

2 By =

s

U B,
nzk

k

L]

1

it is Borel.
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2. (Law of large numbers) Let E be the event that a Bernoulli sequence
obeys the law of large numbers. That is, with S,(w) = o1 Ryl(w),

Sa(w)
n

BE={wel; —>0asn—+oo}

We know this is measurable because we showed its complement has
measure zero. However, let us describe By as a Borel set.
Recall that the statement

Sa(@)
n

-0 as n-co

means that, for every integer r > 0, there is a k > 0 such that

S, () 1
— <~ whenever n > k
n r
If we let
&) Ay = {wel; S"(w)l < 1}
n r
we can write
(4) BE = m An'r
r=lg=ynzk

which is Borel, because each 4, , is a finite union of intervals.
3. Let E be the event that > (R,(w)/n) converges. We claim By is Borel. Let

“ Ri(w)

) ' T(w) = X

k=1

Then the Cauchy condition tells us that Y (R,(w)/n) converges if, for every
mteger r > 0, there is a k > 0 such that

1
[ T(@) — T} < " foralimn>k

If we let
A, = {wel; IT() — Tyw)| < 1}
;
we see that
o o
©) By = () N Amnr
k=1mn>k

i

1

r

which is Borel, because Ap w15 a finite union of intervals,
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We have now shown that these “plausible” events correspond to mea-
surable sets. Thus, if we assume that the Borel principle holds, we can deter-
mine the probability of these events by finding the measure of these sets. We
know already that, for the law of large numbers, the set described has measure
one. We now develop the necessary tools to determine the measure of the set
described in event 1.

This example is a special case of the following general situation: Start with
a countable collection of events

{E\,E,,...}

and define a new event E to be the event that infinitely many of the events E;
occur. Can we determine Prob(E) if we know Prob(E,) for all i? Two theorems
address this problem; they are called the Borel-Cantelli lemmas. In order to
formulate them, we first restate the problem in measure theoretic terms.

Let X be the sample space of our process, equipped with a ¢-field # and
a measure y. Let B; denote the subset of X on which E; occurs. We assume
that B,e # and that Prob(E;) = u(B,). If we let B, denote the subset of X
corresponding to the event E, then, in terms of the B/’s,

8

k

i

Ynzk

We give this a name.

Definition 4. Given sets By, B,,B,,...in &, then

® {Bsio} =limsupB, = () | B,

k=1n>k

is called “B;, infinitely often” or the limes supremum of the B;’s.

Theorem 5. (First Borel-Cantelli lemma) Given B, B,,... in #, let B =
{B;;i.0.}. Then ¥ 2, u(B;) < oo implies that u(B) = 0.

Proof. Let A, =|),» B, so that B = (2, A;; in particular, B = 4, for all
k. Now, by subadditivity

pA) < 3, wB,)
n>k
Thus, because Y 24 u(B,) < oo, for & > 0 there is a k > 0 such that
B4 < ;k KB, <e

Because B € A4, we have that u(B) < &, and because ¢ is arbitrary we must
have u(B) = 0. O
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Application. (Run lengths) For wel define the nth run-length function I,
by letting I,(e) be the number of consecutive 1’s in the binary expansion
of w starting at the nth place. That is, [ (@) =k if R {w)=1, R, {w)=
L....,R, (wy=1,and R, (w})= —~ L.

Now take a sequence of non-negative integers, r1,72,73,..., and let
E,, denote the event that I, (w) > r,. Let E = {Ey;i.0.}. Then

BE,, = {(DEI; Rn(a}) = Rn+1(w) == RrH—r,,—l(a}) = 1}

so u(Bg, ) = () and we can use theorem 5 to conclude the following.

Corollary. If 322, (1/2)» < co then u(Bg) = 0.
The second Borel-Cantelli lemma supplies a partial converse to the first.
1t is restricted by applying only to independent events,

Definition 6. Two events E, and E, are indepenciént if the outcome of E,
tells us nothing about the outcome of E,.

Let us try to make this definition more precise by restating it in measure
theoretic terms. Knowing that the event E, occurs means that the elements
of the sample space in which we are interested are already in By, . Now, for
what proportion of the elements in B, does the event E, occur? Clearly the
answer is

F»(Bzzl N BEQ)
© W(Bg,)

This ratio is called the conditional probability of E, given E,. Now, if E,
is independent of E,, this conditional probability is just the probability of E,
computed without prior knowledge of E;—that is, u(Bg,); hence

w(Bp, N Byg)
B, ) = 1 2
w Ez) N(BEJ

This leads us to the following measure theoretic definition.

Definition 7. Let X be a sample space with g-field # and probability mea-
sure p. Two sets A,, A, € F are independent if

(10) Ay nAy) = p(A)u(4,)

Example 8. Given X = I, y = Lebesgue measure; A, = {wel; Ry(w) =1},
and A, = {wel; Ry(w) = 1}, then

A4,=G1  and A, =@E3vE 1]
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/41 f\442 - (%91]
Thus, wA N Ay) == 3)? = u(A,)ul4,)

Definition 9. More generally, A,,A4,,..., A, are independent if, for any se-
quence of integers 1 < iy < i, < ' <, < n, we have

(11 PA, N A O AL ) = (A AL) - A)

Further, a countable collection of sets is independent if every finite subcollec-
tion is independent.

Example 10. Let 4; = {we[; R(w) = 1}.1tis left as an exercise to prove that
the collection A, , A,,... is independent.

Theorem 11.  (Second Borel-Cantelli lemma) Let (X, #, u1) be a probability
space and let 4, 4,, ... be an independent collection of sets from #. Suppose
that 3" u(4,) = oo; then p({4;;i0.}) = L.

Lemma 12. Let A, A,,... be an independent collection of sets in #. Then
A, A5, A5,. .. is an independent collection of sets in #.

The proof of the lemma is left to the reader. (See exercise 10. We suggest
that the reader give this exercise a few moments of thought before continuing
the chapter.)

Y

Proof of theorem. Let A = {A;;10.}. Then

A= U4, so A= )4
k=1n2k

k=1nzk

To show that u(A) = 1, it is enough to show that u(A4°) = 0; and, to establish
this fact it is enough to show (by subadditivity) that

{a9)-
nzk
Now, by independence,

i
u(ﬁ Af,) — T wdS)
n=k n=k

but u(4¢) = 1 — u(A,), which in turn is less than or equal to e™*~ because
it is true in general that 1 — x < e™*. (Prove this inequality yourself!) Thus
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! !
(12) u(ﬂ Af,) < [[ &4 = e~ Tomenttn
a=k

=k

But e™ 2442 1, 0 25 | - o0, because Yo #(A,) = 00, Thus ({5, AS) = 0.
O

Example 13. Let H, denote the event of a head at the nth toss of a Bernoulli
sequence. The corresponding subset of [ is

A, = {wel; R (w) = 1}

In exercise 11 the reader will show that these sets are independent. Further-
more, ud,) =14 fqr each n, s0 Y p(A,) = oo. Thus a head occurs infinitely
often in a Bernoulli sequence with probability one. (This result can be proved
much more trivially. What is the proof 7

Examl?le 1.4. ‘Example %3 is an example of a finite pattern (the pattern H)
occurring 1nﬁn1tely often in Bernoulli sequences. More generally we now show
that any finite pattern occurs infinitely often in Bernoulli sequences with

goTb;}glity one. For simplicity of notation, consider the particular pattern

Proposition_ls. The pattern HTTH occurs infinitely often in a Bernoulli
sequence with probability one.

Proof. Let E, be the event that H TT H occurs starting at step n, and let B
be the corresponding subset of I. Because the A,’s are independent and B =
Ay An 0 Asiz 0 Apyy, we have wB,) = (%)4 = -1%; so Z:?—*l u(B,) =="OO.
Unfortunately, B, and B, ,, are not independent, so the second Borel—Cantelli
%emma.does not apply. However, the sets B,, B,, 4sBuig, ... are independent;
in particular, By, Bs, B,,..., By, ... are independent and

™ig

; #(Bagsy) = 0

If

1
so the second Borel-Cantelli lemma applies to give
B({Bygsy;i0}) = 1
But {By,,;1.0.} < {B,;i0.} so
1= u{Bypsr3i0)) < u({B,;iod) < 1
Thus p({B,;i0.}) = 1. |

E
:
i
3
|
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Remark. This same proof works for any finite pattern of H’s and T’s—for
example, Shakespeare’s sonnets translated into Morse code, with the dots and
dashes changed to H’s and T’s.

Exercises for §1.4

1. We will say that an event E involving Bernoulli sequences is plausible if
the subset By of the unit interval corresponding to it is a Borel subset.
Show that the following events are plausible:

a. A gambler quadruples his initial stake. (Beware: he will not quadruple
his initial stake if he gets wiped out beforehand.)

b. In an infinite sequence of trials, a gambler breaks even an infinite
number of times.

¢. In an infinite sequence of trials, arbitrarily long run lengths occur,

d. In an infinite sequence of trials, H comes up “on the average” more
often than T.

(Incidentally, event d shows that “plausible” does not necessarily mean

“probable.”)

2. Show that, for random walks on the line, the following events are
plausible:

a. The origin is visited infinitely often.
b. Every integer point on the real line is visited infinitely often.

3. Show that, for random walks in the plane, the following events are
plausible:

a. The origin is visited infinitely often.
b. "Every point (m, n) is visited infinitely often.

4. Let f be afunction from the integers to the real numbers. Show that, for

random walks on the line, the event

S fin) < o
i=1

1s plausible, n; being the position at time i.

5. Let =312, +27 be the series obtained by flipping a coin to decide
whether a plus sign or a minus sign goes into the ith place. Show that the
event |S| < ¢ is plausible, and compute its probability. (Hint: See §1.2,
exercise 7.)

6. Let X beaset, # a o-field of subsets of X, and u a probability measureon
F.Let Ay, A,,A4,,... be a sequence of subsets of X belonging to #.

a. Showthat,if 4, 2 4, = 4A;---, then

u(ﬁAJ=HmM&)

i=1 =
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b. Show that, ifA; € 4, € A5+, then

ﬂ(@ Ai) = lim pu(4;)

i~

7. Let X be a set and Ay, A3, As,... a sequence of subsets of X. The set

I(n)

is denoted as lim inf 4, or as {4,; a.a.} (abbreviations for limes infimum of
A, and “4,, almost always,” respectively). Show that {4;; 2.} is the
complement of {4,;i.0.}. If X is a probability space and the A’s are
measurable, conclude that the probability of {4¢; a.a.} is zero if and only
if the probability of {4,; 1.0.} is one.

8. Let X beaset, # a o-field of subsets of X, and p a probability measure on
. Show that, if Ay, Ay, Ay, ... arein Z, then

uliminf 4,) < liminf u(4,) < limsup u(4,) < u{limsup 4,)

9. a. LetX beasetandlet A, and A, be subsets of X. Show that the smallest
o-field containing 4, and A, consists of at most 16 sets. (Hint: Take
unions of the four sets: 4, ~ Ay, AT OV Ay Ay N A5, A5 A Ag)

b. Let 4,,4,,..., A, be subsets of X. Let . be the smallest ¢-field
containing the 4,’s. Show that % has at most 22“ members,

¢.” Show that the upper bound in part b cannot be improved. (Hint: Let
M be the k-element set {P1s--., i}, and let X = 2M be the set of subsets
of M. Let A, be all subsets of M that contain the point p;.

10. Let X bea set, # a o-field of subsets of X, and u a probability measure on

# . Suppose that 4,,. .., A, are independent sets belonging to #.

a. Show that 49, 4,,..., 4, are independent.

b. Let A be any one of the sets Ay Ay, AS v AS, Ay N A5, M A,
Show that 4, 45, 4,,.. ., A, are independent.

¢. Let # be the smallest subfield of # containing 4,, ..., A,. Show thatif
A€ F then 4,4,,,,..., A, are independent.

d. Let %, be the smallest subfield of # containing 4,,..., 4,and %,_, be
the smallest subfield containing A4,,,,..., 4,. Show that,if 4 e F, and
A'e#, ., then A and A’ are independent.

11. a. Let 4, be the subset of the unit interval corresponding to the event
“H at the ith trial” in a Bernoullj sequence. Show that the 4,’s are
independent. ‘

b. Let B; be the subset of the unit interval corresponding to the event
“HTHattheith,i + Istandi + 2nd trial” Show that B, B,, B, By,
... are independent.

12. a. For the random walk with pauses, let A; be the subset of the unit

i
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interval corresponding to the event “a pause at time i.”” Show that the
A/'s are independent. -
b. Fé)r the random walk in the plane, let A; be the subset of t}}e UI%l’t,
interval corresponding to the event “an eastward move at time i.
Show that the A;’s are independent. . o
13, Let N be alarge positive integer. Provethatina Bemoulh trial run lengths
of length N occur infinitely often with probability one. "
14. Prove that run lengths of arbitrary length occur infinitely often wit
probability one. (Hint: Consider the random pattern:

THTHHTHHHT.. TH...HT

with the last term involving n H's. Let E, be tl?e event that this pattern
occurs infinitely often and let E be the intersectlpn of the events E,.

15. For the random walk with pauses, prove that w1t.h probability one th?re
are infinitely many pauses. Use the Bozrelear}tellg )lemma. (An alternative

this fact was suggested in §1.2, exercise 6. . '

16. Ef;t)cz:\t; (l))fe alarge integer.glgrove that the random walk on the lme', startu{)g
at zero, passes either through the point N or th‘e point — N w1th1 pr: l-
ability one. Conclude that it passes through N with probablh.ty at leas Zf

17. Let Z? be the integer points in the plane, and let Q be a finite subse't o
Z? containing the origin. Prove that a random path starting at the origin
hits 0Q in a finite time with probability one.

The path depicted hits 5 on the ninth step.

18. In proving the law of large numbers in §1.1, we used Chebyshev’s in-

equality to prove
H({a); S,,(w)l > 8}) <3n %74
n




19.
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Choose a sequence ¢, — 0 such that 21 ™% % is finite and let A, be the
"

set
{co; > sn}

Use the first Borel-Cantelli lemma
‘ to prove that ;i =
deduce from this the law of large numbelr)s. Hldiiop =0 and

- 3 X250 a countable set, P,,P,,... a sequen
négative numbers such that ¥ P, = 1, and ’ lthezmcasure quence of non-

wA)= 3% P,

x;6.4

Salew)
n

jl;o:: thatsfc }::z;rﬁgi)tfcontl?ip aFAinﬁnilte sequence of independent sets

y A, , for all i, = 5. (Hint: i

every point xe X must lie in Honf;) of ;tlhéHf:J}:Jtr i::?;t: yr:) iser‘j{?g ti]lat

:}1: N A5, or A5 QA‘;. T hus the measure of the one—poilnt :@et2 ’{x}l i(s: le;;

man orequal to 2 Notice, by the way, the moral of this exercise: A discrete
easure theoretic model for the Bernoulli process does not exist. Just let

A; be the subset of X corresponding to the event “an H at the itfl trial E)

Chapter 2
Integration

Now that we have the tools of measure theory, we are ready to
discuss integration. The student of the Riemann integral is accustomed to
considering only integrals over subsets of R". However, we will see that
integrals can be defined whenever we have a triple (X, %, ), where X is a set,
F is a o-field of subsets of X, and u is a measure defined on #. Such a triple
is called a measure space. Our basic example of a measure space is, of course,
Lebesgue measure on the Borel sets of [0, 1] or of the whole real line. The
last section of Chapter 1 suggests that the theory of probability is rife with
other examples. Notice that for the real line some sets have infinite measure—
for instance, u; (R) = oco. We will allow this to occur in general. (See the
comments at the end of §1.3.)

§2.1 Measurable Functions

In the study of integration, it is convenient to allow functions to
assume the values + oo and — oo, To make this notion concrete, we define the
extended real number system to be the set R U {+c0} U {— o0}

The elements +oo and —oo in the extended reals have the special

properties

. —w<a< +w, aeR
a+(tw)= +ow, aeR
a{+w)=+w, acR,a>0
—1(£o0)= Fo0

B

Now let (X, #, u) be a measure space. Let f be a function on X with values
in the extended real numbers.
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Measurable functions can be characterized in various ways.

Proposition 2. The following are equivalent:

1. ForallaeR, (x5 f(x) > ale F
2. ForallgeR, {x; f{x) > aje F
3. ForallaeR, {x; flx) < aleF
4. ForallaeR, {x; f(x) < aeF

Proof.

1<>4: The sets in items 1
and 4 are compl i
o-field, we know that 4 eEF A ,912" ISRy and, becauso & is 2
2<+3: Same as above. ’

1=2: ForallaeR

(x5 02 af = () {x; 6> a— 3}

n=1 n

By item 1 each set {x; /) > a—

¢ 1/n i
able mtersaninm 5 1 /n} e F. Because # is a a-field, the count-

2=1: ForgeR

t: flx) > a} = O{x;f(x)z;a+1}
n

n=1

By item 2 each set {x; f(x) > 4 ~
able unijon is in 9’_{ f() = a + 1/n}e #. Because #

In keeping with our notio
n of extended real numbe
extended Borel sets as the collection of subsets of R U { + }I‘Sa (= oo e
one of the following forms: Pivi=

is a o-field, the count-

o} having

4, Au{+w}, Av{—~o}, Au{+00, —wn}

where A is a Borel set. On

o-field. € can easily see that the extended Borel sets form a

Theorem 3. Conditions 1 through 4 of proposition 2.are equivalent to

5. For every extended Borel set B
) ‘ {x; f(x)eB}eF

Proaof. 1t is obvious that § =
Let € be the collection of
property that

1,2,3,4 We will show that 1,2,3,4=5,
all subsets C of R L { + 00} U {~ o0} with the
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@) {x; f(x)eC}eF

We need to show that the extended Borel sets are contained in .
Note that, by items 1, 2, 3, and 4, the sets (g, + 0], [a, + o], [ — 0, q), and
[~ o0, d] are members of €.
Also notice that % is a o-field. Indeed, if 4,6%, 1 <i < oo, then
oG o0
{x; e Ai} = () {x; fx)ed;}eF
i=1 i=1
so (|21 A;€%. Similarly, | J2, 4;€%.
Now notice that the extended Borel sets are the smallest o-field containing
all the infinite intervals mentioned above. Thus the extended Borel sets must
be contained in €. .|

Example 4. Let X = R", and let & = .# be the Lebesgue measurable sets,
If /: R" - Ris continuous, then f is measurable. Indeed, if a e R, then {xeR";
f{x) > a} is open and thus is a Borel set.

Example 5. Let X = 4, the sample space for the Bernoulli process. As usual,
identify Z with [, the unit interval.

Consider R,{w), the Rademacher functions. These are measurable because
they are piecewise constant; namely, for any subset A of Ru {+ o0} U {— o0},
we have that {wel; R, (w)e A} is a finite union of intervals.

Similarly, if we let S,(w) = ) j-; R,(w), we see that S, is also piecewise
constant and hence measurable.

Notation. 1In§1.2 we used the term random variable for a function f: X - R
when (X, #,u) is a probability space. The interesting functions on X are
always measurable. For this reason we use the name random variable inter-
changeably with measurable function when discussing probabilistic notions.

Example 6. Let T{(w) be the number of times the random walk correspond-
ing to w returns to 0, and let /,{w) be the number of consecutive H’s beginning
at the nth toss of w. As an exercise, show that T and /, are random variables.

(See exercise 4.)

Remark. The variables ], and T are pathologically discontinuous. The possi-
bility of integrating such functions, that is, computing their expectation values,
vindicates the work we are about to put into the theory of integration. For
example, we will show in Chapter 3 that T'= + oo with probability one; that
18, with probability one a random walk returns to 0 infinitely often.

We continue now with the study of the properties of measurable functions.
Let (X, %, u) be a measure space.
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and inf,.., f; are also measurable,
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‘ db B - Let max(}, g) be
1S measurable. Slmllarly . y max(f; g)(X) - maX[f(X), g(x)]. Then maX(f; g)

measurable. > i min(f, )9 = min[f(x),g(x)], then min(f, g) is

Proof.  {x; max
element of &

(£9)(x) > a} = {x; f(x) > a} U {x;

3 9(x) > a} and is thus an

Similarly, X, mi
in #. b min(f, g)(x) > 4 ={x (> a} {x g9(x)>a} is also
]
Corollary 8. L¢¢ fbea measurable function on X. Let
ful) = {ﬂx} if ) > 0 i
0 iff<o 2 L= { ({(x) l‘:ﬁ"; 53
x) >
Then f,(x) and J-(x) are measurable,
Pro:{(".) . c}jt(g)t: max(f,0) and f (x) = max(~ f, ()
a S e
able functiop o 52(32 /- +(X) ~ f_(x), s0 we have Jjustshown that eve O
funct; € written as the difference of two no Ve ma I
1ons. (See the figure below,) rfiegative measurable

£0ow consider surab .
) n o
J1> f2,.. . are functions on X , define func 0s behave under limits. First, if

tions sup £ and jnf Jion X by

o SUPA) = {9 1 < o)

1:11“ Jlo) = inf{ fi(x); 1 < i < 0}

sequ i
quence of measurable functlons, then sup; Qf
>0/

Proof. ForaeR,

{x; sup fi(x) > a) = G {x; fix) > ale F
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Similarly,.
(x;inffi(x) = a} = [) {x: fi(x) = a} e F O
=1

Now, if f}, f2,... 18 a sequence of functions, let g, = sup,., f,. Notice that
g1 = g = g3 = -+ so that

lim g, (x) = inf g,(x)
ko0 k>0

Recall that

limsup f; = inf g,
k>0

is called the “lim sup (limes supremum) of the sequence f, f,,....” Similarly,

liminf f; = suph, where h, = inf f,
k>0 n2k

Theorem 10. If f,, f,,... is a sequence of measurable functions on X, then
lim sup f, and liminf f, are measurable.

Proof. From the previous theorem, g, = sup,., f, and h, = inf, f, are
measurable. Applying theorem 9 once again, we have that

limsup f, = inf g, and liminf f, = suph,
k>0 k>0

are also measurable. O

Corollary 11. Let f,, f5,... be a sequence of measurable functions on X.
Suppose that the f,’s converge pointwise to a function f; then f is also
measurable,

Proof. f =limsup f, = liminff, |
Thus we see that we can generate new examples of measurable functions by
taking pointwise limits. Another way of getting new measurable functions is
by composition.

Theorem 12. Let f: X — R be a measurable function. Let g be a continuous
function on R. Then g- fis measurable.

Proof. Note that we are not allowing f to take the values of + o0 or —
so that go f'is defined.

Now, for all aeR, let ¢, = {teR; g(t) > a}. Then {xe X; gof(x) > a} =
{xe X; f(x)e@,}. Because g is continuous, ¢, is a Borel set. So {xe X; f(x)e
OYe F bhecanse fis measurable ml
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Example 13. If /X - Ris measur
are measurable,

In a similar vein we have the following theorem

abl 8, g1 i
¢, then '/ ¢ ”2,sin £, | f1, and so on

Th
1 geczlrfa:n; IE. t (Ift 1:1, foseiis £ be}measurable functions on X with fiirX >R
W_I et G:R" - R be continuous, Then G(f,,..., S is measﬁl;able ’
¢ leave the proof to the reader as an exercise. " '

Example 15. Lot it X =R, i
3 i » 1 =1, 2 be measu i i
and xy are continuous functio R ntions. Since x o

2
measurable, ns from R* to R, £, + /2 and f,f, are

Exercises for §2.1

1. Given a set X and subsets 4, 4,,..., let

Ay =limsupd, = {4,; io} = ﬁ ()4
k=1 nzy "
and

A =lminfd, = {4,; aa.} =

s

I

() 4,
nzk

Let f,, f. and /. be the characteristi i
5 A teristic functions of th
) respectively. Prove that f+ =limsup J.and f_ : lin: ifﬁ‘th
. A nth;t X lf: aset, # a a-ﬁel_d of subsets of X, and Ha mena;sure on#, A
coo;; C{: r;--t( f;{ s fJofx ‘mto R"is said to be measurable ifeach of £he
° ate u_nlcuons, fi» 1s measurable. Show that f is measurable if
and only if f~Y(B)e # for every Borel set B < R”.

b. Let g be a real-valued function on R”. Then g is Borel measurable if

foralln ; i
umbers g, the set {xeR% g(x) > a} is a Borel set. Prove that,

f f N X R 1 as . 'y

3. a Let - =
fiiX>R n=1, 2,...,bea sequence of measurable functions.

Show that the set of poj
points, xe X, where the SR o=
...} converges, is measurable, sequence {4y n =12,

b. From part a dedu i
' ce that the set of points w i “
domized harmonic series” P e for which the *ran-

k=1

+A_and 4,,

R, (o)
n

s

"

il
-

converges, is a measurable subset of 1.

6.

8

9.

10.
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The examples below describe some random variables that occur naturally

in the theory of Bernoulli trials, Show that these random variables are

measurable functions on the unit interval I. (As usual we make the

identification # = Bernoulli sequences = 1)

a. R =ruin time = the time it takes a gambler with an initial stake of N
doliars to be reduced to penury.

b. I, = the number of successive heads that appear beginning with the
nth toss.

¢. T = the number of times a random walk returns to the origin.

d. limsup$S,/n, where S, is the sum of the first n Rademacher func-
tions. This random variable measures “violation of the law of large
numbers.”

. Let T be the random variable in part ¢ of exercise 4. Show that the set

{wel; T(w) < o}

is uncountable and dense in I. (We will show in Chapter 3 that this set is

of measure zero.)

a. Let § be the random variable in part d of exercise 4. Show that, for
every subinterval of the unit interval and for every real number a with
—1 < a <1, S{w) = a uncountably often. (Hint: Suppose that w =
.4y d,a,...18 a sequence for which S(w) = a. Let

W = a; blaza3b2a4a5¢16b3a—;agagalob4...

Show that S(w') = @ no matter what the b;’s are.)

b. On the other hand, show that the set {weI; S(w) # 0} is of measure
Zero.

a. LetQbe a finite subset of Z2 containing (0, 0) as an interior point. (See
§1.2, exercise 8.) Let H be the time at which a random walk starting
at the origin hits 8Q. (H is called the “hitting time.”) Show that H,
regarded as a function on the unit interval, is measurable and is finite
except on a set of measure zero. (Hint: See §1.4, exercise 17.)

b. Assume that the points (1,0) and (0, 1) are also interior points. Show
that the set

{wel; Hw) = +wo}

is uncountable.
Let f: R — R be monotone increasing. Show that f is measurable.
A function f: R — R is upper-semicontinuous at x if for every ¢ > 0 there
exists a § > 0 such that f(y) < f(x) + ¢ when |x — y| < . Show that if f
is upper-semicontinuous at all points of R, it is measurable.
Two functions f and g are said to be equal almost everywhere if f =g
except on a set of measure zero. Show that if f = g almost everywhere
and if f is measurable, g is also measurable.
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11. Let (X, %, i) be a measure space with u{X) < co. A sequence of measur-

Cltons f . ,X R, n= g Aoy xaey 18 s4l O converge 10 zero in

lim p{xeX;|f(x)]>¢e} =0

Fand ]

a P . o
rove that, if £, converges to zero pointwisc except on a set of measure
. zero, then f, converges to zero in measure.

Show that the converse of i
part a is not true. (Hint: Let X = I, # b
ixe _f}oicl subsets of I, and u be Lebesgue measure. Let A, - [o l{]e
2= [ 11, A, = (03], 4, = [13) Ag=[2.3), 4o =B, 11, 4, =

[0,41, 45 = [}.%], and so on. Let £, b i i
a0t O slsomins) £, be the function thatis 1 on 4,

§2.2 The Lebesgue Integral

Let (X, &, ) be a measure space and s : X — R be a measurable

f . p Y
a f

Example 1. Let Ec# and define

1 ifxeE
1g(x) =
) {0 if x¢E

TheIn 1e(x) is c?llefl the.chamcteristic Junction of E; it is clearly simple
n general, if s is a simple function taking on the values ¢ LreeesCx l;:t

E;=s5"'c) = {xeX;s(x) = ¢} {1<i<N}
‘We then have that

N
s(x) = }::1 cilEi(x)

It is easy to define the integral of nonnegative simple functions.

! A
‘ Il?:tﬁnltlon 2. lets X = R be a nonnegative simple function and let Ee &
) C1aeeer Cx be the distinct nonzero valuesof sandlet E; = s7'(¢;)), 1 < i < N.
fine the integral of s over E with respect to u as the s.lum v

0 159 = ¥ au(ENE)

Remark. This value mav be + oo because u(E ~ E.) can be + oo
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Proposition 3. Let s;: X >R, i=12be nonnegative simple functions and
let Ee #.

1. (linearity)
a. Ig(esy) = clg(s,) for ceR,e=>0
b, Igls; +s2) = Ie(50) + Ig(s2)
2. (monotonicity) If s; <5, then Ig(s;) < Ig(s2)

Proof. laisclear.

{b: Let ¢q,---,Cm b the distinct values of s, and dy,..., d, be the distinct
values of s,. Let E; = siie) 1 <ism, and F; = s3'(d;), 1 < j<n The Es
form a mutually disjoint cover of X and so do the F;’s. Thus E;n F,l €ism
and 1 <j < n, also form a mutually disjoint cover of X, and s; + s, has the
constant value ¢; + d;on E;0 F;. Hence

IE(SI + 52) = Z(C; + d,)u(ElﬂijE)
Li
= Zc;zu(EimF}mE) + Zdeu(EiijmE)
T T T 5
= Zciy(EimE) +'Zd,-u(F,~n E)
i i

= I(sy) + Ig(s2)

25, — 5 15 a nonnegative simple function, and S, = 8y + 52— 51> SO
I(s;) = I(sy) + I(s2 — $1)- ) ) )

We now extend our notion of integration to nonnegative measurable
functions by approximation with simple functions.

Definition 4. Let f bea nonnegative measurable function from X into the
(nonnegative) extended real numbers and let E e % . Then the integral of f on
E with respect to § is defined by

2) L f dy = sup{Ig(s); 0 < s < f, s simple}

The following proposition shows that this definition of the integral is
consistent with our previous definition when fisa simple function.

Proposition 5. [ o(s) = [gsdu if s is a nonnegative simple function.

Proof. Clearly Ig(s) < fgsdp because s is a simple function with s < 5. To
show equality let s” be any simple function with 0<s <s By monotonicity
Ix(s) < Ig(s). Hence sup{Ig(s) 0 <5 <5, s simple} < Ig(s). O

At this point the reader is probably asking why the integral of nonnegative
measrahle functions should be approximated bv the integrals of simple
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functions, We justify this by showing that nonnegative measurable functions
can themselves be approximated by nonnegative simple functions.

Theorem 6. Let f be a nonnegative measurable function on X with values
in the (nonnegative) extended real numbers. There exists a sequence of non-
negative simple functions

0<s, <5, << f

such that s; — f pointwise. Moreover, if f is bounded, then s; — funiformly.

Proof. We begin by defining s,. Consider the interval [0, n) on R. Divide this
interval into n2" subintervals of length 1/2"; namely, let

3 Is={t€R;%lsx<§%},1_<_iSn2"

Let E; = f~(I;)and F, = f "*([n, + w]). Together the E;’s with F, form
a mutually disjoint cover of X (n is fixed),

Define
ne (i1
4) 5,(x) = Zl wa 1g,(x) + nlg (x)
Notice that on E; we have
i—1 i i—1
'“""5;;‘“ < f < on and 8, = ——i;‘-
Thus, 5.(x) < f(x) forxeE,i=1,...,n2"

Similarly, on F,
n<f and S, =1

S50

s.(x) < f(x) for xe F,

Hence

SnSf onall of X

Notice also that s, < s5,,.¢1. Indeed, let I be one of the intervals [%;—1-, él?)

Notice that I = I’ U I” where

§2.2 The Lebesgue Integral

. . Y
2—22i—1 . [2 1'_>
I'= [-2—,;—1““5_‘;;3‘) and I -[ a1 2t
Let E= (), E = f'(I)and E" = F£1{1"). Then

i—1
S,(x) = T forxe E

whereas
2i —1 "
5 H(x)——-l for xe E' and Spr1(X) = a for xe E
Then, because
i—1 2i—1

E=FEuE' and 2n~<—27+—1m

we have shown that

$p(%) < Sps1(X) forall xeE

This argument is clearly independent of which I; we began with. It also works
with minor changes on [, + o], s0

$,(X) < Spa3(X) for all xe X

We now show that s, — f pointwise. Two separate cases are involved.

Case 1. f(x)= +®© .
In this case x e F, for all n, 80 s,(x) = n for all n. That is, 5,{x) = +C.

2. f(x)is finite w -
Casgay ﬁx; < ng. Then, for all n > no, f(x) lies on one of the intervals I;; that
is,

%—,;1‘ < fix) < —g;
But then
i 1
s =g so fR-sml<z

for n > ng, proving that s,(x) — f(x). ]
Finali}y, suppose that f is bounded, say f(x) < n, for all xe X, The pre

ceding argument shows that for n > ng
1
Lf(x) — su(x)] < 2 forallxeX

That is, 5, — f uniformiy on X.
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Remark. Hidden in this proof is a crucial ingredient of the Lebesgue theory.
In the Riemann theory one approximates a function f by simple functions by
dividing the domain of the function into small intervals, as shown in part (a)
of the figure. In the Lebesgue theory one approximates by dividing the range
of the function into small intervals, as shown in part b of the figure.

Lg frmmm o e e o e e e e e s
g o o e e e e s
O [ e T g e e e S, s s

Cypmm—— — ———

®)
Graph of £, (The dark lines represent the approximating function.)

The second procedure has two conspicuous advantages. First, the x axis
no-longer has to be the real line; it can be any measure space X. Second, one

gets a good approximation of f by simple functions without assuming f to
be continuous.

We now look at some properties of the integral.

Proposition 7. Let E, Fe# and let f and g be nonnegative measurable
functions.

1. (monotonicity} If f < g then

65
§2.2 The Lebesgue Integral

deusj gdn
E E
deu*s[ fdu
E F

jfdu=0

2. IfE < F then

3. If u(E) = O then

Proaf.

1. This is obvious because, if sis a simple function and s < f,thens<g.
2. We first verify this for

f=1g where Ge F

Then [z(lg)dp = Ig(lg) = pEN G) and likewise fg(lg)dp = pF G).
But EnG < F G, hence
WENG) < u(FnG)

Now, by the linearity of Ip we know that Lz sdu < {psduwhens isa s}i‘mple
function. But, by the definition of {¢ f du and {& f dp, the statement has to

be true in general. . o .
3. If f = sis a simple function, this assertion is clear; thus

sup{lg(s;0<s< f} =0 0

Remark. We will defer to §2.3 the proof that, for nonnegative measurable
functions,

J. (fi + fdu= j‘ frdu + J' frdu
E E E
Unfortunately, this fact, which looks as though it should be practically obvi-

ous, requires a somewhat delicate proof. ) o o
Weqcan also now prove Chebyshev’s inequality in full generality.

Theorem 8. (Chebyshev) Let f be a nonnegative measurable function. For
EeF and ¢ > 0, let E, = {x€E; f(x) > c}. Then

1
5 HE) s;Lfdu
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Proof. Because f > ¢ on E,,

L cdy < f fdu (by monotonicity)
F. E,

But J\ cdp = Iy (c) = cu(E,)
E

3

Thus c;z(Ec)gf fdusf fdu EI
E, E

Corollary 9. If fis a nonnegative measurable functi i
ction with dp < o,
then {x€ E; f(x) = + 0} has measure zero. Je dn

Notation. 1f a property holds on a set Ee % except for a subset of measure
zero, we say that the property holds almost everywhere on E (abbreviated as
a.e.). Thus corollary 9 can be restated as

6) Lfd;u: 0 = f(x) < w0 ae.onE

Proof. Let A,={xeE; f(x)>n), and let 4 = E; =
Chebyshev } ek 1 = ook By

wayst ra
E

But 4 < A, for all n, so
1
uA4) < p(4,) < . J fdu  foralln
E

Because [, fdu < oo we must have ulA) = 0. .

Corollary 10. Let fbea nonnegative measurable function and let E e # I
gfdu=0,then f = 0ae. onE.

Proof. wLet A = {x€E; f(x) # 0}, and let 4, = {x€E; f(x) > 1/n}. Because
A=\ J=, A4,itis enough to show that #(4,) = 0. By Chebyshev

A) < =
#( )<"Lfdﬂ 0 O

. .A.nothe_r property we can now prove is that the integral behaves nicely on
disjoint unions of sets.
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Theorem 11.  Let f be a nonnegative measurable function on X, Let A, A,,
... be a sequence of pairwise disjoint members of #. Let A = | &2, 4;. Then

i=]

) Lfdsz Jdu

Proof. First we prove the theorem in the case that f(x) = 1,(x) for some
Ee #. In this case

f 1gdy = u(A n E) and [ 1pdu = u(A4;~ E)
A N

A;
By countable additivity of u, we know that

WANE) = Y w4, )
That is,

A i=1 JA,;

By the linearity of I, and I, the theorem is now automatically true for all
simple functions. We prove the general case with f being an arbitrary non-
negative measurable function as follows.

For ¢ > 0 pick a simple function s < f with

ff@saw+s
A

Because the theorem is true for simple functions, we have that

&@=2%®£2Li@

o0
SO J\ fdu< Y | fdu+e
A i=1 Jd;
Because ¢ is arbitrary, we must have

(®) jfdusijfdu
A i=1J4,

To prove the opposite inequality, first consider two disjoint sets 4, 4, € #.
Let s, and s, be simple functions with 0 < 5; < f and

© sdpz | fdu—3  fori=1,2
A; Aq 2
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Let s = max(s;,s,); then0 < s < f,and sisa simple function. Also 5, < sand
$2 < 8, 80 we can replace s; by s in inequality 9; namely,

Jsduzjfdp—f fori=1,2
4 A 2

Adding these inequalities gives

j sdu-i—f 3ép2f fdu—f—f fdu—¢
4, A, Ay A,

or jsd,uzj fd;z+f fdu—e¢
A A, Ay

because the theorem is known to be true for simple functions.
Now [, fdp > [,sdu, so

ffduzf fd[t+f fdu—¢
A A A,

Because ¢ is arbitrary,
ffdu?zf fdﬂ+f fdu
A Ay Az

Thus we have the inequality for 4, and A,. An induction argument gives

(10) f fde=3 | fau
Alquu“»uAn P= 1 A;

Returning to the general situation—that is, 4 — UR, A;—we have

f fdp> f fdu
A Apudyueud,
because A, LA, U U A, = A, Hence, by inequality 10

s

ffdﬂzz fdu  foralln
A =1 Ju4,
That is,
j fdp= 3 | fdu O
A =1 Ja;

Application. Theorem 11 tells us that we can use the integral to define new
measures. For example, we define Gaussian measure, g, on the measurable

§2.2 The Lebesque Integral ]

subsets of R by

1
1 Ay=—=| e>"d
( ) auG( ) \/2—75 J‘A € .uL

Theorem 11 says that this is countably additive and so is indeed a measure.
In fact, ug is a probability measure because

1
J2m )

The theorem also has the following corollary.

—x2j2 d“l. — 1

Corollary 12. Suppose f and g are nonnegative measurable functions and
Ec % Then,if f =gae onkE, ‘

\
deu=Jgdu
E E

Proof. Let A = {xeE; f(x) = g(x)} and A4, = {xe€ E; f(x) # g(x)}. Clearly
A, and A, are disjoint. Moreover, by assumption u{4,) = 0, so

f fdﬂzj gdu=0
A Al

Also {,, fdu = [, gdubecause f = g on A;. Thus

deﬂ=f fdﬂ+J fdu=f gdu+_f gdﬂ=[gdu O
E Ay A, Ay Ay E

Exercises for §2.2

1. Let I be the unit interval. Show that

1
xduy, =2
=

using only properties of the Lebesgue integral discussed in this section.
{Hint: Approximate x from above and from below by simple functions.)
2. Let J be the interval 1 < x < oo. Show that

(oo

using only properties of the Lebesgue integral discussed in this section,
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3. Let (X, %, 1) be a probability space. Let f: X — [0, + o) be a random

variable (that is, measurable function). The integral
E=jfw
X

is called the expectation value of f (or “most likely value” of f) and the
integral

V=[(f—EP@
X

is called the variance of f. Show that, if the variance of f is small, f deviates
from its expectation value with very small probability. Explicitly, show
that the probability that f deviates by ¢ from E—that is,

u{xeX;|f(x) — E| > &})

is less than or equal to g72V.

. Let H, be the number of heads occurring in the first » trials of a Bernoulli

sequence. Compute its expectation value and variance.

. Consider the “random” series

1

pedpty by
S e

B |

with the assignment of a plus or minus in the nth term being decided by
the toss of a coin. Compute its expectation value and variance.

. Let (X, .#, 1) be a measure space and f a nonnegative measurable function.

For all ae(0, w), let
®(a) = u({xe X; f(x) > a})

Suppose [y f*du < oo, k > 0. Show that there exists a constant C > 0
such that

®(a) < Ca™*

That is, show that ® goes to zero at least as fast asa * as a — + oo,

. Let J be a finite subinterval of the real line and f:J— R a simple

function taking on values ¢,,.. ., ¢,. The function f'is called a step function
if f 7*(c;) is a finite union of intervals for each i. Given a simple function
s:J — R and a positive number &, show that there exists a step function f
such that

(*) fls—flduL<8
J
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10.

11.

12.

(Hint: Show that, if 4 is a measurable subset of J, there exists a finite
union of intervals B such that d(4, B) = u(S(4, B)) < &. Now prove the
inequality (¥) for s = 1,. Proceed.)

Let X be a countable set; that is,

X = {x1,%3,X3,.--}

and let P,,P,, Ps,... be a sequence of nonnegative numbers such that
Y P =1.Ford< X let
wA)y =3 P

x;6 4

We saw in §1.4 that u is a probability measure on the o-field of all subsets
of X. Prove that every function f: X > R U {+ 00} is measurable, and
prove that, for f nonnegative,

jfhﬂ=2ﬂﬂm)

. Let f: R — [0, o) be measurable. Given a€R, let f,(x) = f(x — a). Show

that f, is measurable and that

j\ﬁz dy; = deﬁf,

(Hint: See §1.3, exercise 14.)
Let (X, %, 1) be a measure space and A and B be measurable subsets of
X. Show that, if u(S(4, B)) = 0, then, for every nonnegative measurable

function f,
ffw=ff@
A B

Let (X,%,u) be a measure space and f and g positive measurable
functions. Show that, if g is simple, then, for all Ee #,

jU+mM=JfM+j9M
E E E

Let (X, %, u) be a measure space with u(X) < co. Let f be a boqnded
nonnegative measurable function and let {s,} be the sequence of simple
functions constructed in theorem 6. Show that, for E€ F,

fam»ffw
E E

(Hint: The sequence s, converges uniformly to f. Moreover,
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f(f“sﬂdﬂ+fsndﬂ=ffdﬂ
E E E

by exercise 11.)

§2.3 Further Properties of the Integral; Convergence
Theorems

The reader has probably noticed that the definition of the integral
does not make evaluation of integrals easy. The set of simple functions s with
0 <s < f is a formidably large set. In this section we will develop some
effective techniques for computing integrals and for manipulating integrals
and limits. The three key results are the monotone convergence theorem,
Fatou’s lemma, and the Lebesgue dominated convergence theorem,

Let f1, f5,... be a sequence of measurable functions with

0<fi<f,<
Note that f = lim,..,, f; exists and is measurable.

Theorem 1. (Monotone convergence theorem) Let fand f,i = 1,2,3,...,be
as above. Then

1) ‘ J fd,u:lim'{ fdu for Ee #

i~ JE
To prove this theorem we need the following lemma.
Lernma 2. Let f be a nonnegative measurable function on X and let E, , E,,

E;,... be a sequence of sets in & with E;, c E, c E; -+, Set E = 2, E;
then

f fdu= llm fd;z
Proof. let Ay =E
A2 = Ez - EI
A3 b E3 bt Ez

and so on. Then the 4;’s are pairwise disjoint and

s

Ai=E and UAI':EN

1 i=1

-
It
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S0 by countable additivity

jf@=§ fdu
E =1 Ja,

= lim Z fd;x,

=limJ fdu v

We now prove the monotone convergence theorem. We have

O0<fi<fh< < f=lmf,

Land o]

By monotonicity

Jﬁ@SLAWSWSLNu

so lim,_,, {¢ f,du exists and must be less than or equal to 55 fdu Let a=
lim,.., {z f, du. We must establish that

2 az f Sfdu
E
Let s be any simple function, with 0 < s < f,and letceR, with0<c< 1.
Let

= {xeE; fo(x) = es(x)}

Notice that E, = E, © --- because f; < f, < ---. Also notice that  Ji=, E, =
E. Indeed, if xe E with s(x) = 0, then x € E, for all n, and, if x € E with s(x) # 0,
then because ¢ < 1

f(x) > s(x) > es{x)
So, for some n, f,(x) = cs(x) because
Lix) = f(x)

that is, xe E,,.
Taking integrals, we get

a=ﬁm[f,,duxfﬁ,d,u2j f,,d;tzj. csdp
n-w JE E E, E,

because f, > cs on E,. We apply the lemma to E = | Jix, E, to get
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a>lim j es{x)du = J es(x)dy = cf s(x)du

A0

Because this is true for all ¢ with 0 < ¢ < 1, it must also be true that

azj sdu
E

By now taking the supremum over all simple s with 0 < s < f, we get in-
equality 2. 7

Remark. Thanks to the monotone convergence theorem, we can apply
theorem 6 of §2.2 to the evaluation of integrals. If f is a nonnegative measur-
able function and s, is the sequence of simple functions constructed in theorem
6 of §2.2, then

(3) j&@ﬂjfw
E E

We will use this formula to clear up some matters that we left dangling in §2.2.

Theorem 3. Let f and g be nonnegative measurable functions and let ¢ > 0
be a real number. For E€ % we have

1. fcfduch fdu
2.‘U+m@=jf@+fg@

Proof.

1. The first part is clear because we know that, if s > 0 is a simple function,
then Ig{cs) = clg(s) and also that s < f if and only if ¢s < ¢f.
2. Again we know that, if 5; and s, are nonnegative simple functions, then

Iglsy + 53) = Igls,) + Ig(sy)
Now, choose a monotone sequence of simple functions
0<s;, €5y <
with s, — f pointwise. Similarly, choose simple functions
0<sy <sh -

with s, - g pointwise.
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Note that
0<s, +51 <5, + 5,5

and s, + s, = f + g pointwise. By formula 3

Ju+mw=mn(%+m@
E

8~® JE

= lim (J s, du + j s;du)
n—ro E E

= limj s, dp + Iim[ s,dp
E E

nr o nos

=jf@+ng U
E E

Corollary 4. Let fi, f5,... be a sequence of nonnegative measurable func-
tions. Then Y 2, f; is a nonnegative measurable function and

f(if,,)du-: i fodp  forEe#F
EA\n=1 n=1 JE

Proof. LetF,= Y7, f,.ThenF; < F, <---,and the F,’s are all measurable.
Now apply the monotone convergence theorem and theorem 3. |
So far we have integrated only nonnegative measurable functions. When
extending our definition to more general measurable functions, we must
beware of the problem of adding + o0 to —o0.
Let f be an arbitrary measurable function from X into the extended real
numbers. Recall that

fi = max(f,0) and f-. = max{~£,0)
are nonnegative measurable functions with

f=rf- -
Lemma 5. The following two conditions are equivalent.
1. f [fldu < oo
E

2. qui;m:oo and ff..dy<oo
E E
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Proof. Notice thatifl=f. +f._,s0

@ Jlﬂ@=ffdu+jﬁdu v
E E E

Definition 6. A measurable function f is integrable over E if either of the
equivalent conditions of lemma 5 holds. In this case we write e % (i, E) or
feZ(won E. If E =X we write fe %(u). For fe ¥ (u, E) we define

) deﬂ=ff+du—jf_du
E E E

Theorem 7. (Linearity) Let f, ge # (1, E) and ce R. Then
a. cfe P(uE) and J cfdu:c.f fdu
E

E
b. f+geL(u,E) and J(f+g)dy=f fdp+Lgd“
£ E

Proof.
a. Ifc =0, then ¢ f,) = (¢f ), and {¢f)_ = c(f.), s0

ijdn=J0f+dn—fo~du
E E E

A similar argument treats the case of ¢ < 0.

b. Let h = f + g. We first deal with the special case that none of f, g, or h
changes sign on E. The six subcases are:

f=0,g>20,h=00nE

f<£0,g<0,h<0Oo0nkE

[=20,g<0,h>00nE

[=0,g<0,h<0onkE

f<0,g=20,h=00nE

f=<0,9=20h<0o0nkE

NPT R NN -

Case 1 has been dealt with previously. Case 2 can be reduced to case 1
because we can rewrite the formula as
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f (—hydu = J (—f)dp + J (—g)du
E E E

Case 3: rewriting h=f+g as f=Hh+(—g) reduces this to case I
Similarly, cases 4, 5, and 6 can be reduced to case 1.

Now to complete the proof we write E = E; U E;w v E¢ so that E;

is the set for which case i holds, i = 1,2,...,6. Then, because jE f d{z =

8, g, f du, and similarly for g and h, the theorem follows by applying it to

each E; separately and summing. i)

Corollary 8. (Monotonicity) Let f, ge £(u, E) with f < g. Then

(6) Lf du < Lgdu

Proof. Because f <g,9— f 20,50

osf@~ﬁ@=jg@-[f@
E E E

by linearity. (]
Corollary 9. 1f fe Z(u E), then

jfh%gfku
E E

Proof. Because f < |f|, by monotonicity

Jf@sjuwu
E E

O]

Similarly, —f < | fl, so

“J fdu<| |fldp
E OE

[

We end this section with the other convergence theorems mentioned
above,

That is,

.

< | Ifldu O

b
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Lemma 10. (Fatou’s lemma) Let f|, f;,... be a sequence of nonnegative
measurable functions, and let f = liminf f,. Then

(8) f fdp < liminf j fidn
E E

Proof. Let g, =inf,,, f, and g, = inf,, ¢ fadp. Then
g1 S g, = and a, <a; <

By definition

koo koo

f=limg, and lim inf v[ fady = lim q,
E

Notice that g, > [zg, du because g, < f, for n > k. Hence, by the monotone
convergence theorem,

J\fd;z'—- limJ gpdp < im akzliminfj. fdu |
E k- JE E

k—+ oo

Theorem 11. (Lebesgue dominated convergence theorem) Let f4, f5, f3....
be a sequence of measurable functions, and let E e #. Assumptions:

1. lim,., f,(x) exists for all xe E.
2. There is a nonnegative measurable function ge ¥ (u, E) with g > | f,| on
En=12....

Conclusion: The function f(x} = lim,..,, f,(x) is integrable and

flimf,,dg=limj‘ Sodp
E E

n— oo n oo
Proof. By Fatou’s lemma,

f fldu = j liminf|f,|du
E E

ﬁliminff | ful du gf gdu
E E

Hence f e ¥(u, E).
Now we note that g + f, is nonnegative, so by Fatou’s lemma

J liminf(g + fydu < liminfj (g + fodu
E E
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But Iiminf(g+ﬁ,)=g+:ir2ﬁ,=g+f
and liminfj (g + fydu= Lgd,u + liminfo,,d,u
E ;
so we have Lfd,u < liminfo,,dp

Repeating this argument, with g + f, replaced by g — f,, we get

—deusliminf(—j‘ﬁdp>
E E
= ——1imsup<J~ f,,d,u)
S0 j'fduzlimsup({ f,,d,u)
E E

Combining these results

limsup(j f,,d;z),_éj fdyéliminf(j f,,d,u)
E E E

But it is always true that liminf < lim sup, thus we get equality:

de,u:]iminf(.f f,,d@:]imwp(jfndu)=lim(Lf,,du> [

Corollary 12. Let f,, f,,... be a sequence in £(u, E) with

Zj [fldp < o0
n=1 JE

Then

1. Y2, f, converges absolutely a.e. on E and is integrable on E.

2. IEZ:% Sfedp = 2311 jfif;!d)u'
Proof. Letg =2, !f,]. Corollary 4 tells us that

fgdu= ‘Ef ildu < 0
E n=1JE

so ge%(u E). In particular, g is finite a.e. on E, so 3, f, converges
absolutely a.e. on E. To prove part 2let F, = Yu_; f. Then |F,| < Y5 1fil <
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g so, by the dominated convergence theorem, ), f, = lim,., F, is in
(1, Ey and

J(an)dﬂ—*j lianduﬁlimJ F dy = i'{fndﬁ 0]
E \n=1 En—+w a0 S E =1 JE

Exercises for §2.3

1. Let(X,#, u) be ameasure space and f be a bounded nonnegative measur-

3.

4.

able function. Show that

[ S5 (520 <8)

This formula is Lebesgue’s original definition of the Lebesgue integral.
(Hint: See formula 3, page 74.)

Let £, : R — R be 1/n times the characteristic function of the interval (0, n).
Show that f, — 0 uniformly but that | f, du, = 1. Why isn’t this example a
counterexample to the Lebesgue dominated convergence theorem?

B 4

Compare | liminf f, dp; and liminf | f, dy, for the sequence £, in exercise
2. Can the inequality in Fatou’s lemma be replaced by an equality?
Forn = 1,3,5,... let f, be the characteristic function of the interval (0,3),
and for n = 2,4,6,... let f, be the characteristic function of the interval
(3, 1). Compare { liminf f, dy;, and lim inf | £, dy;.

Let (X, %, ) be a measure space. A measurable function f: X - R is
mean-square integrable if [ f?dp < co. Show that, if u(X) < oo, every
mean-square integrable function is integrable. (Hint: Consider separately
the integral of | f| over the set where | f] > 1 and the integral over the set
where | f] < 1)

Let X = I, # the Borel sets, and u Lebesgue measure. Show that there
exists an integrable function on X that is not mean-square integrable.
Let X = R, # the Borel sets, and u Lebesgue measure. Show that there
exists a mean-square integrable function on X that is not integrable.
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10.

11.

12

13.

Let (X,#,u) be a measure space and f, n=1,2,..., a sequence f’f
measurable functions. Then f, is said to converge to zero in measure if,
foralle >0,

p({xeX; | f,(x)] > ¢e}) -0

as n — o0. (Compare with exercise 11 of §2.1.) Show that, if | l. fildu—0,
then f, converges to Zero in measure. Show that the converse is not true.

(Hint: See exercise 2.) .
Let f: R — R be an integrable function. Show that, if

jfdp=0
I

for every subinterval I of the real line, then f =0ae. .
Let J be a finite subinterval of the real line and f:J — R an integrable
function. Show that for every ¢ > 0 there exists a step function g such that

Jlf—gldﬂ<8
J

(Hint: See §2.2, exercise 7.) ‘
Let (X,#,u) be a measure space and f and g measurable functlonts.
Show that, if f is integrable and g is bounded and measurable, then fg is

integrable. ) "
Let (X,%,u) be a measure space and f a nonnegative measuraple

function. For Ae & let
u(A) = j fdp
A

Show that si is a measure on & . Moreover, show that, if g is a nonnegative
measurable function, then for Ee &

j gdu, = Lafdﬂ

a. Inexercise 12,let Ae# and let f be the characteristic function of the
set A. Describe the measure up. ‘ .
b. Suppose, more generally, that fis a simple function; that is

k
* = ;1.
(= f ;C A;

Describe the measure ;.

14. a. In exercise 12, show that, if fis bounded, #£(E, u,) contains Z(E, ).

Moreover, show that, for ge Z(E, i)
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J gdu;=f af du
E E

b. Show that #(E, i) need not necessarily contain Z(E, u) if f is not
bounded.
15. a. Let (X,#,u) be a measure space and f:X — R a measurable
function. For every Borel set A € R, let

vp(d) = p(f7(4))

Show that this formula defines a measure v, on the Borel sets of R.
Moreover, show that, if u is a probability measure, so is v;.
b. 1f f is the function (x), describe the measure v,.
16. A function g: R — R is Borel measurable if, for every Borel set A = R,
g (A) is a Borel set. Let v, be the measure in exercise 15 and let g be a
nonnegative Borel-measurable function on the real line. Show that

(+*) J g dvy xj g(f(x)) du
R X

{Hint: What does equation (#*) say when ¢ is a simple function?)

§2.4 Lebesgue Integration versus Riemann Integration

By the results of §2.3 we can now integrate complicated limits and
sums of series. What about simple integrals? We will show that in the Lebesgue
theory, just as in the Riemann theory, these integrals can be evaluated by the

second fundamental theorem of caiculus; that is, for the Riemann integral one
has the following theorem.

Theorem. Let g be a continuous function on an interval {a,b] < R. Then g
has an antiderivative G and

b
j gdx = G(b) — Gla)
where j’; ¢ dx denotes the Riemann integral of g on the interval [a, b].

We will show that the same is true for the Lebesgue integral when our
measure space (X, #,u)i8 X = [a,b], u = yy, and # is the field of Lebesgue-
measurable subsets of X. Rather than prove the fundamental theorem of

calculus directly for the Lebesgue integral, we prove a much more general
theorem, as follows.

. . 83
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Theorem 1. Let f be a bounded Riemann-integrable function on [a, b] with
Riemann integral {5 f dx. Then fe £ (u,[4, b]) and

b
dx = d
(1) Lf X J‘[a,b]f 153

Before proving this theorem, let us recall how the Riemann integral is
defined.

Riemann Integral

A partition P of [a,b] is a finite, ordered sequence of points
a=x0<x1<x2<"'<xx=b

The maximum of the numbers x;.; — X;, i =0,..., N — 1 isdenoted m(P)and
is called the mesh width of the partition. .
Fix a partition P of [a, b], and let f be a bounded function on [a,b]. Let

M; = sup{ f(x); X;-1 S X < Xy

and
m, = inf{ f(x); xi—y < X < X}
Define
N
uif.py= Z M(x; — Xi—1)
i=1
and

L(f,P) = i s — Xict)

to be the upper and lower Riemann sums, respectively. .

Notice that L(f, P) < U(f, P). In fact, it is true that, 11”‘ P, az}d P, are any
two partitions of [a, b], then L(f,P) < U(f, Pp). Tosee this we lmtroduce the
notion of refinement. A partition P’ is called a refir'tement of P if the ordered
sequence of points comprising P’ contains the points of P as well.as §qme
additional points; that is, P’ = P plus additional points. Clearly, 1f Pisa
refinement of P, then L(f, P') = L(f, Pyand U(£, P") < U( £, P). Now, if P, and
P, are two partitions of [a,b], let P be a partition of [a, b] that refines both
P, and P, simultaneously. Then

@ L, P) <L, PSULP)<ULP)
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We define

T

J fdx = inf{U(f, P);, P is a partition of [a,b]}
3) §

J f dx = sup{L(f, P), P is a partition of [a,b]}

Note that by inequality 2

4 f}fdxgj‘bfdx

a

Definition 2. The function f is Riemann integrable if E fdx = [} f dx. In this
case we define -

b b i
8] J‘fdx::‘[fdx={fdx

To compare the Riemann integral with the Lebesgue integral, we will first
show the following lemma.

Lemma 3. There exists a sequence of partitions P, P,, P,, ... such that

L. Py is a refinement of P,_,.
2, The monotone sequence

U(f,PJZ U(f,Pz)Z

converges to ]-,',; fdx.
3. The monotone sequence

L(f,P) < L(fiP) < -

converges to [g f dx.
4. The mesh width m(P) —» 0 as k — 0.

Proof. We describe how to define B,. Let P, be a partition with

U(ﬁPé)sjbfdx +% ’

@

and B a partition with
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b
L(LP;’)ZJ fdx -—%

We know that P, and P/ exist by the definition of E fdx and L’; fdx. Let B,
be a partition with m(P,) < 1/k refining P;, Py, and P,_, all at once. Then

b 1
L(f,P)z L(f,F) 2 J fdx—

and
IG 1
U(B) < ULR) < J fix+ L
b -3
So lim L(f,P) = j fdx and lim U(f,P) = j fdx v
koo va ko0 @

For a fixed partition P, define the simple functions

fla) atx=a
my on Xy < X < x4
Lp(x) = sy on xl <x < Xy

my onXxXy_; <Xx= Xy

and
flay atx=a
M, onxy<x=<x
Us(x)=< M, onx;<xxx;

My onxy.; <X =Xy

Notice that L,(x) < f(x) < Up(x) and
J Lp(x)dpy = % my(x; — x;1) = L(f. P)
{a,b) i=1

j‘ Up(x) dpy, = i Mi(x; —x;-,) = U(/, P)
{a, ] i=1

See figure on page 86,
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Y n ~
lim L dy; = Ld
/ Graph of f > Jla, bl e J1a,b] He
p—
/ R and
AT ~ lim U,du, = Udyu,
s~ Jla,b] Jla,b]
Now we know that
ry bemg, | omy >,
J L,dy, = L(f,P)  and f U,dp, = U(f, F)
[a, B} {a,b]
x and we chose the F,’s so that
Xp=da x; X X3 Xy X, =0 b Th
limL{(f,Py={ fdx and lim U(f,P) = J. fdx
n—o _9“ nor ol a
y Hence, we conclude
Graph of £, b g
protLe j Ld,.tL=[ fdx  and f UduL-—:j fdx
- [a,b] Ja [a,b] a
To prove the theorem, we assume that f is Riemann integrable; that is,
b b
J’ fdx = J fdx
_a &
by | oy Ly omy m, In other words,
b
J Ld/,a,_=J. UduL=dex
J J {a.h] fa,b] a
————— —— x

Xp=a x X3 X3 Xpey X, =&

Thus [, (U — L)dp, =0.But U > Lso U — L > 0; hence, U —~ L=0ae.

Also, if P’ is a refinement of P, then Now L<f<sU S0 f=U=L ae

Up(x) < Up(x) and Lp(x) > Lp(x) and f is Lebesgue integrable with

Now choose a sequence of F’s as in lemma 3 and let fapy, = fb fx v
Ly = Lp, and U, = UPk fa,b] a

Th

en Remark. The standard notation for the Riemann integral of a function f
Lisl<<f<-—<Uz<U, over an interval [a, b] is the notation we have been using—namely,
Let L{x) = lim,_,, L,{x} and U{x) = lim,..., U,(x). By construction, L(x) <

b
6) I flx)ydx
f(z) < U(z), and, by the dominated convergence theorem, ( a )




88 Chapter 2 Integration

Unfortunately, the Lebesgue integral has no such standard notation.
Heretofore we have been using the notation

U j fdy,
{a,b]

or

®) fdu

with I denoting the interval [a, b].

Now that we’ve shown that the Lebesgue integral and the Riemann
integral are identical for Riemann-integrable functions, we will be less me-
thodical with our notation. We will sometimes use display 6 for Lebesgue
integrals and will sometimes use displays 7 and 8 with the subscript deleted
from yu, when it is clear from the context that pis u;.

Exercises for §2.4

1. Compute the Lebesgue integral

ffd”L
I

of the following functions: x?, x%, sin x, ¥, x log x. (You are encouraged to
use the tools of elementary calculus in making these computations.)

2. 1In the proof of theorem 1, choose an x € [a,b] that is not equal to any of
the partition points of any of the P’s. Show that f is continuous at x if
and only if U(x} = L(x).

3. Congclude from exercise 2 that, if a bounded function f on the interval
[a, b] is Riemann integrable, then it is continuous almost everywhere.

4. a. Conversely, suppose that f is a bounded function that is continuous

almost everywhere on the interval [a, b]. Conclude from exercise 2 that

Em U(f, B) = lim L(f, P

b. Deduce that, if f is bounded and continuous a.e. on [a,b], then it is
Riemann integrable.
5. (Improper integrals)
a, Let f be a nonnegative measurable function on the interval J = (0, 1].
Suppose that f is Riemann integrable on all of the intervals [a,1],
0 < a < 1. Show that

jfd‘u,‘ = Hm lf(:x)dx
J

a0 ja

with the integral on the right being the Riemann integral.
b. Compute the Lebesgue integral over J of the function f(x) = 1/\/;.
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6. a. Let f beanonnegative measurable function on the interval J = [1, o).
Suppose that f is Riemann integrable on all of the intervals [1,a],
a > 1. Show

I fdu, = lim j flxydx
J arwo J1

b. Compute the Lebesgue integral over J of the function flx) = 1/x%
7. Let f(x) = (sin x)/x. Show that

lim J f(x)dx

a—»roo i
exists. On the other hand, show that f(x) is not Lebesgue integrable over
the interval [1, o). o

8. Let f: R — R be continuous and have a continuous first derivative f” that
is positive everywhere. If p is Lebesgue measure on R, show that the
measure v, of §2.3, exercise 15, is of the form

vl(4) = J gdp  where 1/g(x) = f'(f 71 (x)
A

§2.5 Fubini Theorem

Section 2.4 and the convergence theorems of §2.3 allow us to
compute a number of integrais on subsets of R. In order to compute integrals
on subsets of R", we must justify the use of iterated integrals. This is the
purpose of Fubini’s theorem.

The general situation is as follows: Let (X,.#, u) and (Y, .47, v) be two
measure spaces. Let X x Y denote the space

8] X xY={(xy;xeX,yeY}

IfAc X and B Y, then 4 x B< X x Y. On the other hand, you should
notice that most subsets of X x Y are not of this form.

Definition 1. A x B « X x Yiscalled a product set if Ae .# and Be A" The
smallest o-field in X x Y containing all product sets A4 x B is denoted .4 x
A

In 2 moment we will define a measure on .# x .#". First we must describe
sets in .# x A" in terms of .4 and A"

Definition 2. For Ec X x Y and xeX fixed, let E, = {yeY:(x,y)eE}.
Then E. is called the x-slice of E.
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Notice that, if E and F are subsets of X x Y, then
(EnF),=E_nF,
2 (E—-F),=E,-F,
ES = (B,
and, if E,, E,, E,,... are subsets of X x ¥, then

(V&) - U,
a=1 x n=1
Proposition3. If Ee . # x &, then E e A

Proof. Fix xeX and let &, be the collection of all sets E < X x Y with
E, € 4. Note that

1. ¥, contains all product sets 4 x B.
2. %, isa g-field.

Thus &, contains the smallest o-field containing all product sets—namely,
M N o

Corollary 4. Let f:X x Y ->Ru{+w} be measurable with respect to
M x N For x,€ X fixed, define f, : Y >R by feo(¥) = f(x0, ). Then, for
each x,e X, fx, 18 a measurable function on Y.

Proof. Fix x,eX.If aeR we need to show that
{reY, [ (W <alen

Let E = {(x,y)e X x Y; f(x,y) < a}. Ee #/ x & because f is measurable
and {yeY; f, (y) < a} = E, e .4 by proposition 3. .

Remark. We could just as easily have studied y-slices as x-slices. The corre-
sponding proposition and corollary are obviously true for y-slices as well.

Thus far we have made no assumptions about the measure spaces (X, .4, u)
and (Y,.#, v). We will now assume that both of these spaces are o-finite. (Recall
that a measure space (X, .#, u) is o-finite if there exist X; € .#,i=1,2,3,...
with u(X,) < o and

C s
>

I

]

-
]
oy

(See definition 32 in §1.3)
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We now use the measures x and v to define a measure on .# x 4. First
let’s recall how one computes the areas of regions in the plane in elementary
calculus. Consider the region in the figure below. V

Yo ———

hi—

|
|
I |
I I
| |
| ] . ] x
a X b

For each point x on the interval [g, b], we let ¢z(x) be the length of the interval
E,; that is, ¢p{x) = y, — y,. For reasonable-looking regions, such as the one
we've drawn here, ¢(x) is a continuous function of x, so the Riemann integral

5
3 j dp(x) dx

is well defined. In elementary calculus one proves that display 3 gives the area
of the region E (or uses the integral as the definition of area). To define a
measure on the product o-field, .4 x A", we will mimic this process. Let
Ee & x & . Foreachxe X, E e .4, s0wecan define a function ¢, : X — Rby

4) $e(x) = v(E,)
We would like to define the measure of E to be the integral

) f Pelx) dy
X

To use this, we have to check that ¢z(x) is a measurable function on X. Proof
of this fact requires a general argument about o-fields called the n—A4 theorem.

Definition 5. Let Z be a set and let % be a collection of subsets of Z. & is
called a A-system if the following three properties hold.

A, Zes.
A2 If E; C E, C E3 C -+ is an increasing sequence with each E, ¢ %, then

J E,es
n=1

3 HWE Feand Ec F.then F — Ee%.
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Definition 6. A collection o7 of subsets of Z is called a n-system if

nl. A, Bes/=>AnBe.

Theorem 7. (n-4 theorem) If & is a A-system and of is a n-system with
s < &, then the smallest g-field containing o7, o(s#), is contained in &.

Proof * First notice that, if a collection I of subsets of Z is both a A-system
and a n-system, then it must be a g-field.

Now let I(/) be the smallest A-system containing &7. If we can show that
l(o#) is also a n-system, then we will know it is a o-field. Because o(sf) is the
smallest o-field containing &/ and [(«¢) is the smallest A-system containing ¢,
we will have

o =lsd)e S

which proves the theorem.

To see that («f) is a n-system, we need to show that if A,Bel(s/) then
AnBel(sf).

Ford o Zlet

%, ={Bc Z;AnBel(#)}

Notice that if Ael(s), then ¥, is a A-system. Indeed, the three properties
are satisfied as follows.

AL I Ael(F), then Ze ¥, because ANZ = A.

22 WAel(of)and E, c E; c Fy o rarein %, then(AnE)c(dnE) <
-++ is an increasing sequence in I(s7), so U;‘,‘;l {(ANE)=An (U;,“;l E,)is
also in I(&#); that is, | Jie, E,€%,.

M3 If Ael(sf) and E, Fe¥, with Ec F, then AnE, AnFel(s«), and
(AnE)yc(AnF). So ANn(F—E)y=(ANnF)—(An Eyel{«/), that is,
F—Eec¥%,.

Furthermore, if 4, Be of, then 4 " Be o < (o), 50 Be ¥,; thatis, o < %,
when A e /. Thus we see that (o) « ¥, when A e/, by the minimality of
(o). In other words, we now know that, if Ae s/ and Bel(o/), then A~ Be
(o).

Thus, if Be /(7)) we have shown that o/ < %;. Again using the minimality
of I(s), we get l{of) < % for Be l{«¥); that is, 4 » Bel(s/) when A and B are
elements of I(e/). This is property 1 for I(). O

With the n—A theorem we can now prove the following proposition.

*This proof is rather technical, and you might want to skip it when reading this material for the
first time,

§2.5 Fubini Theorem 93

Proposition 8. IfEc.# x 4 and ¢;: X — Ris defined by ¢s(x) = v(E,), then
¢y Is measurable.

Proof. First assume that v(Y) < co. By the n—A theorem, the proposition
will follow from the following three facts.

a. Let . be the collection of sets E such that ¢, is measurable. Then & is a
A-system.

b. All product sets, A x B, with Ae.# and Be ./, are in &.

¢. The collection o of product sets is a n-system.

We prove these statements as follows.

‘a AL ¢y y(x) = v(Y) for all x; hence, is clearly measurable.

A2. Let E, < E, < -~ beanincreasing sequence with E, € &; that s, ¢y (x)
is measurable. Let E = | J&, E,. We need to show that ¢g(x) is mea-
surable.

Now

#u(x) = v(E = v[ U (En)x] = lim v[(E,),] = lim ¢5, ()
=1 n—oo n—oo
Thus ¢ is the pointwise limit of measurable functions and so is
measurable as well.
A3. Let E, Fe ¥ with E = F. Then F = E U (F — E) is a disjoint union,
and F, = E, U (F — E), is also disjoint. Thus v(F,) = v(E,) + v[(F —
E).]; that is

dp-g(x) = Pp(x) — $p(x)

‘Because ¢5 and ¢y are measurable, ¢y 1S t00.
b. Let E = A x B be a product set. Then

{B ifxed
E. =

¢ ifx¢A
sO

B) ifxed
© wo={57 e

That is, ¢g(x) = v(B)14(x), which we know to be measurable.
¢. Let A x Band A" x B be two product sets. Then

(A x Byn(4' x BYy=(An4A) x (BN B)

so the collection of product sets is a n-system.
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Now, what happens if we drop the assumption that v(Y) < o0? Because Y

is o-finite we can find a sequence of subsets Y, Y i
oy e e« 1, 15, Y5, 0of ¥ with Ye r,

Y = U Y, (disjoint union)

=1

-

Let Ee # % 4. Then

E=1{JE, (disjoint union)

T8

where E; = En(X x Y;)and

™ $ol) = 3. e ()

We proved above that #e, is measurable, so by equation 7, ¢; is measurable

a

We can now use display 5 to define a measure on .4 x A,
Definition 9. Let Ec.# x .4 and define
® 7(E) = L #e(x)dp
to be the product measure of E.
Proposition 10. 7' is a measure.

Proof. We must check that 7’ is countably additive. Let E ,E,,... be a

pairwise disjoint famil i
pair ] amily ofsetsin # x 4. Let E = (Jey E,. We need to show

T(E) =} 7'(E,)
n=1
Now, E, = (=, (E,), isa disjoint union, so
VE) =}, v[(En]
n=1

that is 409 = . 5,09

We can now apply the monotone convergence theorem to get
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[ =5, [t

that is, n'(E) = 7'(E,) O
1

L

8

[

Notice that we could repeat this whole procedure using y-slices instead of
x-slices. Ostensibly this method gives a different measure n” on .# x 4. Qur
first version of Fubini’s theorem is that these two methods yield the same
measure.

Theorem 11.  {Fubini, version 1)

# "

n="r

Proof. First assume that u(X) and v(Y) are finite. By the n—2 theorem, it is
enough to establish the following three assertions.

a. Let & = {Ee.# x 457 (E) = n"(E)}. Then & is a A-system.
The product sets are in &
¢. The product sets form a n-system.

I

We proved assertion ¢ above. Let us look at assertions a and b.

a. M (X X Y)=pu(XW(Y)=n"(X xY),s0X xY €&,
)2, Let E; € E, < - be an increasing sequence with E, e . We wish to
show that E = | 2, E, e %. It is clear that lim,_,, 7'(E,) = 7'(E) and
lim,_,, n"(E,)) = n"(E). But n'(E,) = n"(E,), because E,e%. Hence
'(E) = n"(E); that is, E€ ¥.
33, Let E, Fe % with E « F. Then F = E U (F — E) is a disjoint union,
s0 T(F) = w'(F — E) + #'(E) and #n"(F) = #"(F — E) + n"(E). Hence
7'(F — E) = n"(F — E), because n'{(F) = n"(F} and 7'(E) = n"(E).
b. Let E = A x B be a product set. Then ¢g(x) = v(B)1 4(x), s0

7(E) = L #e(x) dp = v(B)u(4)

Reversing the procedure gives
n"(E) = u(4)v(B)
Thus Ee &.

Now, what happens if 2{(X) and v(Y) are not finite? Because X and Y are
o-finite, we can find subsets X;e.#,i=1,2,3,...,and Ye 4, j=1,2,3,...,
such that u(X;) and v(Y)) are finite and



96 Chapter 2 Integration

il
8
o

X ={J X; (disjoint union) and Y (disjoint union)

=1

[,
i
-

HWEel x A let
Ei,j - E('\(X; X YJ)
Then
)] E= {) E.; (disjoint union)
Li=1

By what we proved above,
’-’IJ(E.',;) = n"(E,, j)

so, by equation 9, n'(E) = n"(E). 0

Definition 12. The measure ' = 7" isdenoted p x v and is calied the product
measure on A X A,

Example 13. lect X = Y = R and .# = A" = %, the Borel sets in R. Also
let u=v = pu,, Lebesgue measure on R. We claim that .4 x 4 = 4,, the
Borel sets in R?, and u x v = p,, Lebesgue measure on R,

Proof. Notice that, if I and J are intervals in R, then [ x J is a product set
sol x Je# x A . Now, #, is the smallest o-field containing sets of the form
I xJ,50%, <. x AN

We now show 4 x A" « #,: Fix an interval I <« R. Let

B, ={BcR;1 x Be#,}
Note the following.

1. %; contains all intervals J < R,
2. %, 1s a o-field. Indeed, suppose B,, B,, ... are elements of 4,, then

Ix(DB,,):'— G(IxBn)e@?Z

n=1
30 U:O=l anﬁl.

Because 4, 1s the smallest o-field containing the intervals, items 1 and 2
imply that #, < %;; thatis, if Be #, we have [ x Be %,.

Now fix a Borel set Be#®,. Let %y = {4 < R; 4 x Be%,}. Note the
following.
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the above result.

; intervals I = R by
1. 45 contains all inte ¢ like the one above.

2. #Byis a o-field by an argument jus

st o-field containing all of the inteh
for any A, Be #,. But B, % HB 18 the smallest
‘A % B, so we have shown that 8, x #, <

rvals, we have
Because 4, is the smalle 3

B, < Bp that is, 4 x Be %,

s-field containing all sets of the form

A, and thus B, x B, = B,
We now show that gty X fy

Ky={(x,y)eR} —N=x7 < N}

— 11, on Borel subsets of Ky.
i h to show that, for all N, py X = Ha '
%\Ili;;;?l?f establish this fact, let ¥ be the Borel subsets B of Ky for which

pg % w(B)= 1a(B)

= 11.2. LCt

Fy is a A-systern:

= 4N? = p,(Ky)-

1. x py(Ky) = 4N oKy )

:2 ﬁat B;flc: BNZ < --- be an increasing sequence
{1 By; then

x py)(B) = lim (py % p2)(B) = 11_{2 1o(B,) = 12(B)

with each B, € %y. Let B=

(14

i = — E), s0
23. Let E and F be clements of # with E = F. Then F = EU(F )

py X p(F — E) = iy X 1y (F) — #y % i (E)
= }lz(F) - 112(5) = py(F — E)
) sy is an-

Next, let oy ={I x I3 L, J subintervals of [-N,N]

system because
(I, x J))ynily x )y=0on L) x (U nJz)

Furthermore, .oy © H, because

oI x J)= (length 1) (length J)

(p x I % )= (D) pa D)
= (length 1)-(length J)

at & contains the smallest o-field
Borel subsets of Ky. O

whereas

From the n—A theorem we conclude tg
containing .oy. Hence jiy = k1 X M1 ona |
x B, and s = P2 X

Exercise,. WriteR® = R? x R!and show that #; = A,

Ha-

ituati are o-finite
We return now to the general situation: (X, H,pyand (Y, )
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measure spaces and (X x Y,.# x A4, u x v} is the measure space constructed
above.

Theorem 14. (Fubini, version 2) Let f: X x Y — R be a nonnegative mea-
surable function. Then

1. a. Foreach xe X, f(x, y) is a measurable function of y.
b. Foreach yeY, f(x, y)is a measurable function of x.
2. a. fy f(x,y)dvis a measurable function of x.
b. [x f(x,y)du is a measurable function of y.

> L’[Lﬂx,y}d{l = J-Y[f f(x’y)dﬂ]dv = J SO, yyd(p x v)

Proof. Part 1 was proved at the beginning of the section.

To prove parts 2 and 3, first note that they are true for f(x, y) = 1z(x, y) if
Ee #l x A Indeed '

L Lg(x, y)dv = v(E,) = ¢g(x)

which we have shown to be measurabie, and similarly

J 1 3)du = (E)) = i)

is also measurable. The fact that

J [ f 1E<x,y)dv}du=f [ f lg(x,ywu]dw f 509} d(p x ¥
X Y Y X XxY

is version 1 of the Fubini theorem.

Now, because parts 2 and 3 are true for characteristic functions, they
must be true for simple functions by linearity. To prove the theorem in gen-
eral, let f(z,y) be a general nonnegative measurable function and choose
an increasing sequence of nonnegative simple functions

Ogsl S32£"'

with s, — f pointwise. Then, for xe X fixed,

j Sn(x’ y) dv— j‘ f(x, v} dv .
Y Y

by the monotone convergence theorem. Thus [y f(x,y)dv is a measurable
function of x, because we know that [y s,(x,y)dv is measurable. Similarly,
§xf(x, y) du is a measurable function of y.

§2.5 Fubini Theorem 99

Furthermore, part 3 holds for all s,; that is,

[[ [saan [[ L= [ st
X Y Y X X xY

Applying the monotone convergence theorem to each of these terms sepa-
rately yields

j U f(x,y)dV]dn =J ” f(x,y)d,u]dv = L foaydpxv) O
X Y YLJX XY

Theorem 15. (Fubini, version 3) Let f be integrable on X x Y. Then

1. a. For almost all x, f(x, ) is integrable as a function of y.

b. For almost all y, f(x, ) is integrable as a func}ion of x.
2. a. [y f(x,y)dvisequalac. toan integrable function of x.
b. {xf(x,y)dpis equal ae. to an integrable function of y.

3. LUYf(x»J’)d\’]du = LUX f(x,Y)du]dv = nyf(x,y) d(p x v).

Proof. Write f = f, — f- where f. and f_ are nonnegative. Because fis
integrable with respect to p X v, we know that {y.y fﬁ(x, y)d{u x v) and
[xxy f-(x, y)d(p % v) are finite. Version 2 of Fubini then gives

j fi0e y)d(u x v) =J U f+(x,y)dv]du < @
Xy X Y

Thus fy f4(x,y)dv is finite a.e., and similarly {x }?(x, y)ydu is .ﬁpite a.c. This
gives part 1. Parts 2 and 3 follow by applying version 2 of Fubini to frandf_
separately and then adding. O

A Final Remark. Instead of considering only products of two measure
spaces, we could have considered products of three or more measure Spaces.
For instance, let (X, 4, i), i = 1,2,3, be measure spaces. One can define a

product ¢-field
My x My X M
by defining it as either
(M, x M) % M or My X (Mo X M)
or as the smallest o—ﬁéld containing the product sets

Ay x Ay X A
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with 4;e.#,,1 = 1,2,3. 1t turns out that these three definitions give the same
o-field. {See exercise 3.)

Moreo_ver, we can define on .#, x .#, x .#4 a product measure y, X
iy X Us with the property that, on product sets,

(10) (1 X py x pa)(A; X Ay X Az} = py (A1) pz(A5) 13 (43)

That is, we can define this measure as

B X (g X pg) o (g X fip) X g

You will be asked in exercise 3 to show that these definitions are the same.
By simply using the Fubini theorem twice, we get analogous statements

for this triple product. In particular, if f is integrable on X; x X, x X, (with

respectto 4y, X iy X fi;3), then the various partial integrals make sense a.e. and

i1 = |
A0 xr= [ L], )

What we have said about products of three measure spaces applies equally
well to products of any finite number of measure spaces. (See exercise 4.) Here
the Fubini theorem looks like

(12 f fd(ulx---xu,,)zj U fdm]-.-d#,,
Xy xoex Xy X, X,

Exercises for §2.5

1. Let R be the region

R={{x,yy ~1<x<1,-1<y<1}

in the plane. Compute the Lebesgue integrals

nyzd.uz J (x*+yHdp, and J yeY du,
R R R

2. Let (X, Ji H ’and (Y, A, v) be o-finite measure spaces. Call a product set
A X B. Sinite if p(A) < oo and v(B) < oo. Show that the product measure
# x v is the only measure satisfying

(s x v)(4 x B) = u(A)v(B)

for all finite product sets A x B. (Hint: Use the n—A theorem.)
3. a. Let(X,, #,u)i=1,2,3, be o-finite measure spaces. Show that

(yﬂl X ﬂz) X .ﬂ3= Ml X (./5{2 X Jf{-‘;)

$2.5 Fubini Theorem L)1
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and that these equal the smallest o-field containing the product sets
A, X Ay x Ay, where A;e 4,1 =1, 2,3

b. Show that (4y X pa) X pz = pty X (2 X K3}

¢. Callaproduct set 4; x A, x Ay finite if p(4;) < o0, i=1,2,3 Show
that the measure in part b is the only measure satisfying

(g X g x ps (A X Ay X As) = (A 2(A5) 13(A3)

for all finite product sets A; x A4, X A4;.
Generalize exercise 3 to n-fold products.
In part a of exercise 3, let X; = X, = X3 = R, M, = My = My = the
Borel sets of R, and pt, = y, = y3 = Lebesgue measure. Show that 4, x
M, % My is the Borel sets of R? and g, x p, X H3is Lebesgue measure.
Can you prove an equivalent statement for R*? for R™?
Let (X,.#, ) and (Y, 4", v) be o-finite measure spaces, and let E be in
# x A". Show that E is of measure zero if and only if E, is of measure
zero for almost all xe X.

. a. Let(X,.#,y) and (Y, .#,v) be o-finite measure spaces, andlet f: X —

Rand g: Y — R be measurable functions. Let hix,y) = f(x)g(y). Show
that h is a measurable function on X x Y.
b. If f and g are integrable, show that h is integrable and that its integral

m (L))

(The integral as “area under the curve”) Let (X, #,1) be a o-finite
measure space, and let : X — R be a nonnegative measurabie function.
Let

A ={(xneX xR0t < fx)}

Show that A risa measurable subset of X x R (that is, belongs to .# x
4,) and that the measure of A, with respect to the product measure

X fies is equal to {x fdu.

. Show that property 42 of a A-system can be replaced by the property

22 If A,, A,,... are disjoint subsets of &, then { JiZ 4;is in &

. Let X be a set and # a o-field of subsets of X. Let u; and pu, be finite

measures on F with the property that pi(X) = p2(X). Show that the
collection of sets
{AeF; 1y (4) = py(4)]

is a A-system.

Show that Lebesgue measure is the only measure on the Borel sets of the
interval [0, 1] with the property that, for all subintervals J, u(J) = length
of J. (Hint: Use exercise 10 and the 7—A theorem.)
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12, a. Show that for the function

xy
x’ — ———.|
fx, ) o 1 7
the iterated integrals

ﬁl [f_lf(x,y)ddex and fl [fl f(x,y)dx]dy

exist and are equal.

b. Show that f is not integrable over the square —l < x < land —1 <
y< L h

13. Let X = Y =R and .# = .# = Borel sets. Let i be Lebesgue measure,
and let v be counting measure; that is,

v(B) = number of elements in B

Let Ee.# x .4 be the set
E={(x,y)eX x Vix =y}

Recall that ¢gz(x) = v(E,) and Ye(y) = p(E,). Show that ¢r and Y are
measurable but that

f Pu(x)dp # J Ye(y)dv
X Y

§2;6 Random Variables, Expectation Values, and
Independence

' In the next two sections we will discuss some probabilistic appli-
cations of the material in §2.5. Let X be a set, # a o-field of subsets of X
and y a probability measure on X. A random variable fis, by definition, a,
measurable function f: X - R U {+ c0}. For instance, let X = I — % and let

) r=3(r+ 5w,
¥=1

Interpreted probabilistically, f is the number of times H comes up in the first
n stages of a Bernoulli sequence. It is a “random quantity” or “random

variable” that can be measured each time we perform a sequence of Bernoulli
trials.

The expectation value of a random variable is its integral

E(f)=j fdy
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Of course, the expectation value need not always be defined; that is, f/ need
not always be integrable. However, all the random variables we will consider
do have weli-defined expectation values. For instance, if we integrate equation
1 over the unit interval we get

j fdu=E(f) =%

representing the fact that n/2 is the number of heads “most likely” to turn up
in a sequence of n Bernoulli trials. (This meaning of expectation value will
become clearer in §2.7.)

Given a random variable f: X — R and a Borel subset 4 < R let

@) pr(A) = p[f7H(4)]

The right-hand quantity is well defined because f~*(4)e #. (See §2.1.) We
leave it for the reader to check that equation 2 defines a measure on the Borel
subsets of R. (See §2.3, exercise 15.) We will call this measure the probability
distribution associated with the random variable f. If, for two random vari-
ables f and g, u, = p,, we will say that f and g are identically distributed. The
essential property for us of the measure g, is the following,

Theorem 1. Let ¢ be a nonnegative Borel-measurable function on R. Then
(3 j P(f)du = f pdu,
x R

Proof. First, suppose that ¢ is the characteristic function of a Borel subset
A < R. Then ¢(f) is the characteristic function of f~1(4), so the left-hand
side of equation 3 is u[ f ~'(4)] and the right-hand side is u,(4). By equation

© 2 these quantities are equal. Next observe that equation 3 holds for finite linear

combinations of characteristic functions of sets—that is, for simple functions.
Finally, by theorem 6 of §2.2 there exists an increasing sequence s, of non-
negative simple functions with s, — ¢. Then s,(f) — ¢(f); so equation 3 fol-
lows from the monotone convergence theorem. |

Corollary 2. Let ¢ be a Borel-measurable function on R. Then 4 is integrable
with respect to the measure y, if and only if ¢( f) is integrable with respect to
u. When such is the case, equation 3 holds.

Proof. Let ¢ = ¢, — ¢_ and apply theorem 1 to ¢, and ¢_ separately. [
Notice that if ¢(x) = x, then equation 3 becomes

f *dpy = j fdu=E(f)
R X
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This shows that, if random variables f and g are identically distributed, they
hfwe the same expectation value. More generally, if f and g are identically
distributed, then, for every Borel-measurable function ¢gonR,

Jédufm f¢dug

@ j B du = f b(g)du
X X

50 by equation 3

For instance, taking ¢(x) = x? we get

ffzdu = fg"'du

Given several random variables f;,...,f,, let F: X —» R" be the map
F(x) = (f1(x),..., fo(x)). If A is a Borel subset of R”, set

) Hr.op(A) = u[F7H(A4)]

Tl}is formula defines a probability measure on the Borel subsets of R" {check
this!) called the joint probability distribution associated with Sisee s fue The
analogue of equation 3,

(6) fxé(flw‘wﬁa)d#=jl;n¢dﬂfx »»»»» Jn

holds for any nonnegative Borel-measurable function ¢ on R” and is proved
in exactly the same way. .

A set of random variables f;,..., f, is said to be independent if, for any
sequence of Borel subsets 4,, 4,,..., 4, of R, the sets

STHAD, - 7 (A

are independent as subsets of X. An infinite sequence of random variables f,,

2>--- 1s said to be independent if every finite subsequence is independent. A
very simple criterion for independence in terms of the Jjoint probability distri-
butions of the f;’s is the following,

Theorem 3.. ' The random variables f;,..., f, are independent if and only if
the probability measure Hs,.....5. 18 equal to the product measure e, X fp, X
X g

.....

Remark. The product is, of course, defined as in §2.5.
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Proof. To check that the measures agree, it is enough, by the n—A theorem,
to check that they agree on sets of the form 4, x - x A,. By definition

Hofin fa(Ay X 200 x Ag) = ul fTHAD N 0 fTHA)]

and by independence the right-hand expression is equal to p[ fi'(4,)] x
oo x pl £ (AR)] which equals pig, (A1) X - -+ x (A,) which equals (s, x -+ - X
pr (AL X o X Ag). O

One consequence of theorem 3 is the identity »

U] j\fl XX fudp = E(fy) x - X< E(f,)

Indeed, if we apply equation 6 to the function ¢(x,,...,x,) = x, - x, we get

J\ fi X x f;dﬂ=[ x1x2“'xnd”’f1w-vfn
X n

=f XyXoy  Xadpty X o X dpg

(o)) ()

by Fubini’s theorem. However, the ith term on the right is just E(f;).

A remark about independence that will be useful below is the following.
Let f,,..., f, be independent, and let ¢, ,..., ¢, be Borel-measurable functions
on R. Then

(8) ¢l(f1)’° :én(j;t)

are independent. In fact, let A4,,..., 4, be Borel subsets of R, and let 4} =
#: 1(A;). Then the A}’s are also Borel subsets, and

[A(]7HA) = f7H4)  i=1....n

By assumption, the sets on the right are independent; hence, so are the sets on
the left.

Example 4. If f, and f, are independent, then f® and | f,| are independent.

The notion of independence plays a central role in measure-theoretic
models of probabilistic processes. For instance let’s go back to the gambling
process described at the end of §1.2. Recall that this process involves a cage
filled with colored marbles. There are assumed to be k different colors, with
N, marbles of each coloriand N = 3 ¥_, N;marbles in all. The process consists
of mixing the marbles, then drawing a marble out of the cage. If the color of
the marble is i, the player receives a reward {(or penaity) of r; doliars. The
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marble is then replaced, the marbles are again thoroughly mixed, another
marble is drawn, and the game continues. If £, is the amount of the reward or
penalty at the nth draw, then f, takes on the values of ry,...,r, with the
probabilities of p,,...,p,, where p, = N,/N. What is an adequate measure-
theoretic description of this situation? We claim that the data needed to
“model” this process are: (a) a set X, a o-field # of subsets of X, and a
probability measure y on #; and (b) an infinite sequence of random variables
f1s f25 ... with the following properties:

)] The fs are independent
and
(10) H =3 p

'je

for every Borel subset A of R. Indeed, the fs give an identification of points
x € X with infinite sequences of draws from the cage, i.e., f,(x) describes what
happens in the sequence corresponding to x at the kth draw. Property 9 just
says that what happens at the nth draw is independent of what happens at any
of the other draws. This is justified by the fact that the marbles are thoroughly
mixed after each draw. If one sets 4 = {r,,}, then, by equation 10, the proba-
bility that at stage n the reward or penalty incurred will be r,, is just

f‘tf,,(A) = Pm

which is what we expect because of the number of marbles of color m in the
cage. Notice that equation 10 implies that the f7’s are identically distributed.

We will now show that a probabilistic model with all the above features
does exist. In fact, we will show that we can even take for X the unit interval
I, for & the Borel subsets of I, and for the probability measure on # ordinary
Lebesgue measure.

Theorem 5. There exist bounded measurable functions fi, f,,... on I such
that property 9 and equation 10 hold with y = y, = Lebesgue measure.

Proof. Decompose the unit interval into k disjoint subintervals I,,.. ., I, such
that [; is of length p,, and define f| by setting

fi=r onl I=1,....k.

Next decompose each of the intervals I, into k disjoint intervals I, ,,m = 1,...,
k, such that I, ,, is of length p,p,,. (Because , is of length p,and ¥ p,, = 1, such
a choiee of I /s is clearly possible.) Define f, by setting

f2 =TIy, On Il,m
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Notice that, if 4, = {r;} and 4,, = {r,},

STHA) N 7 (A =L
s0 HLTHAY O 71 (AR)] = pibm
On the other hand,

k
fi4)=1 and  f;YA4,) =) . (disjoint union)
=1

k
50 plfitA)]=p  and  plfi'(A4)]= ;; PiPm = Pm
From these computations we conclude that
pLATHAY O 7 (AD] = pLAT A IBLf7 (4]

or, in other words, f;"*(4,) and f; *(4,,) are independent. Now, suppose that
B, and B, are arbitrary Borel subsets of R. Then

Bl=B’1u(U A,) and B2=B’2u< U Am)

rneB, rm€B2

with B; and B, containing none of the r/’s. Then fiY(B)) and f; *(Bj) are
empty; so

f'BY= | fi(4) (disjoint union)

reB;

and

fiBy)= |J f2'4,) (disjoint union)

rneB;

are independent. (Why?) Because B; and B, are arbitrary, f; and f, are
independent. We let the reader check that f; and f, satisfy equation 10 and
move on to the construction of f;. Decompose I, ,, into k disjoint subintervals
L mms 1 =1,...,k, of length p,p,p, and define f3 by setting

f3 =Ty on Il,m,n

One checks that fi, f,, and f; are independent in exactly the same way as
above. It is also clear by now how to construct f, fs, and so on. We leave
details to the reader. |

Remark. Letk=2r, =1,r,= —1,p, =%, and p, = 3. Then the functions
constructed above are exactly the Rademacher functions!
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Stage 1 Stage 2

Wit

LT

b
—

Lo U uL

This figure indicates the first two stages in the construction of the fswiththedatak = 3,r, =1,

ry=0,r3=—Landp, =p, =p, =4
Exercises for §2.6
1. Let v be a probability measure on the Borel sets of the real line. Then v
is said to be supported on the Borel set 4 if v(A¢) = 0. Using theorem 1,
show that, if A is a Borel set containing the image of f, then - is supported
on A.In particular, if f is a simple function taking on the values r,,..., s
then y, is supported on {r,,...,7.}.
2. Let X = I be the unit interval, and let u be Lebesgue measure. Describe

6.

7.

the measure y, for the function f(x) = x2.
If,fori = 1,2, f; = R;is the ith Rademacher function, what is the measure
uy,? Verify directly that Bpypy = My, X iy,

- (The unfair coin.) Using theorem 5,letk = 2,7, = I,r, = —1, p, = p,and

p2 = 1 — p. Describe the first three of the functions f;, f;, fa.....
In exercise 4, let S, = f; + -+ + f,. Compute the expectation value E of
S, and the variance

V(S) = J(S.. — E)Ydp,

(The random walk with pauses.) Using theorem 5,let k = 3, r 1=LhLr, =0,
r3= —1l,and p; = p, = p; = 3. We have already drawn the graphs of h
and f;. Draw the graph of f;. Can you discern a pattern?

a. Let R; be the ith Rademacher function, and let

k71
JAGED) (5) Ri(x)

i=1

Compute

J‘ et i@ gy
I

(Hint: Use independence.)
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b. Using the formula

2x — 1 = lim fi(x)
k=

{proved in exercise 7 of §1.1) deduce Vieta’s formula

sinht

kel t
= h{—
; k];Il cos (2,‘)

8. a. Let f,f;,...beasintheorem 5,andlet S, = f; + - + f,. Prove that

j e dx =Y Prob(s, = r)e”
I r
b. Conclude from part a that
(*) Y Prob(S, = r)e" = (é; pie”*)”
(Hint: Write the integral on the left in part a as

j‘ erfletfz FEEREE S e‘fndx
I

and use independence.)

9. Let fi, f3, f4,... be independent, identically distributed random variables

taking on the value of 1 with probability p and the value of 0 with
probability 1 — p, where 0 < p < 1. (That is, using theorem 5, take k = 2,
ri=Lr,=0,p,=p,andp,=1—p)LetS,= f, + - + f,. Show that

(%) Prob(s, =7) = (:) p(l—py

if 0 < r < n and is zero otherwise. (Hint: Use exercise 8.)

., Let{ry,75,...} be acountable subset of R, and let p,, p,, ... be a countable

sequence of nonnegative numbers with

For every subset 4 of R, let
) vid)= Y p

red
Show that there exists a sequence fi, f3,... of independent, identically
distributed random variables on the unit interval such that p, = p,, =
R
Fori=1,...,nlet {X,, 4 u;} be a probability space, let .#; x -+ x #,
be the product of the .#’s, and let u, % --- x p, be the product measure
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on .#; x -+ x #, For each i let f; be a measurable function on X,.
Consider f; as a function on X; x -+ x X, by setting

ﬁ(xir' - -9xn) = f;'(xi)

Show that the f’s, regarded as functions on X, x --- x X,, are inde-
pendent.

§2.7 The Law of Large Numbers

Let’s now return to the question posed at the beginning of §2.6.
What does the expectation value of a random variable really represent?
Consider a simple probabilistic process (such as the toss of a coin) and a
numerical quantity Q associated with the process. (For instance, for the toss
of a coin let @ =1 if an H occurs and @ = —1 if a T occurs.) Now repeat
the process and again measure the quantity Q; repeat it a third time and
again measure Q, and so on ad infinitum. Let AV,(Q) be the average value of
Q, averaged over the first n stages of this infinite sequence of experiments.
Does AV,(Q) tend to a limit as n tends to infinity? The answer is yes, provided
that, each time the experiment is repeated, the conditions under which it is
performed are not biased by the results of the preceding trials. (For instance,
if the experiment consists of drawing a marble from a cage, recording its color,
and then replacing, it, the marbles must be thoroughly mixed each time.) We
will show that, if these experimental requirements are met, then, not only does
AV,(Q) tend to a limit as n - oo, but in fact

(1) lim AV,(Q) = E(Q)
n—an

is the expectation value of Q. (We mean, of course, that equation (1) holds
with probability one.) To see this, let’s first describe the experimental set-
up above in somewhat more precise terms. Let f, be the measured value of
the quantity Q at the nth stage of the sequence of experiments. Then, under
the hypotheses above, the f’s are independent, identically distributed random
variables. The underlying space X on which they are defined is, technically
speaking, the totality of “all infinite sequences of repetitions of the experiment.”
For instance, if the experiment consists of the toss of a coin, X is the set
4 of all Bernoulli sequences as in §1.1. Actually it isn’t terribly important
to describe X this explicitly. What is important are the iid. (independent,
identically distributed) random variables f,, f,,... and their common proba-
bility distribution u, = pu,, = ---. For instance, for the experiment described
in §2.6 (a colored marble drawn from a cage) we showed that X could be taken
to be a very simple set: the unit interval. The important point was that on the
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unit interval we could produce a sequence of independent random variables
fi>f2»- .- all with the probability distribution of equation 10 in §2.6.

The following result is what is traditionally called the law oflarge numbers.
Fix a set X, a o-field & of subsets of X, and a probability measure 4 on F.

Theorem 1. Let f;,/5,... be a sequence of bounded random variables on X
that are independent and identically distributed. Let E = E (fo=E(fy)=""
be the common expectation value of the fs. Let X, be the set of points xe X
for which

...+ 'l
2 OSSN

as n—» oo. Then p(X,) = 1.

Remark. The assumption that the f;'s are bounded is not essential, but it
simplifies some details of the proof.

Proof. Replacing f; by f; — E, we can, without loss of generality, assume that

E = 0. Let
2
V=(inzdu) and W = in“du

Because the f;'s are identically distributed, these quantities are thg same fpr
all 's. The first step in the proof will be to establish the following inequality

foralle > O:
3n(n— 1)V +nW
(3) u({xeX; >Er 1< nt

The left-hand side of inequality 3 is equal to
p({xeX; (fi + - + L) = net))

[ix) + -+ fix)

n

and, by Chebyshev’s inequality, this is less than
&%&ﬁﬂ+m+mwu

so inequality 3 reduces to

4 J(fl+"'+f,,)4du$3n(n—l)V+nW

If we multiply out the expression on the left, we get five sorts of terms—
namely,
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[ #tau

[ 2865 azs

[ Bpatvin akpta

[ fatatoistn  astBEvte
f 13 fadp

The first integral is equal to W, and the second integral is equal to

() 1)+

by equation 7 of §2.6. Similarly, the third integral is equal to

(f o) ([ 5e) ([ 1)

and the fourth and fifth integrals are equal to

() () ) )  f 0

Because the expectation values are zero, these three terms are zero. Be-
cause there are exactly n integrals of the first type and 3n{n — 1) integrals
of the second type (see §1.1), the sum of all these integrals is the right-hand
side of inequality 4.

Now choose a sequence of numbers ¢,,¢,, 5, ... such that ¢, — 0 and

2 3nn— DV + nW
<

(See lemma 6 in §1.1) Let

et

[i) + -+ (%)
n

A,,z{xeX;

>

Then, _by inequality 3, ¥ 2, u(A4,) < 0. So, by the first Borel-Cantelli lemma,
w(A,; i.0.) = 0. This result means that, if we exclude a set of measure zero from
X, then for x in the complement

Si) 4+ + f(x)

n

<&,
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for all but finitely many values of n. This clearly implies that

Six¥) 4+ -+ fulx)

n

-0 as n—> oo O

Exercises for §2.7

1. Show that, if the f.’s in theorem 1 are the Rademacher functions, then
equation 2 is the strong law of large numbers formulated in §1.1.

2. Let(X,#,p)bea probability space. Recall (§2.3, exercise 8) that a sequence
of measurable functions f,, n = 1,2,... converges to zero in measure if for
alle >0

p{ixe X;1f ()] >¢e})=0 as n—- o

Show that, if { f,} converges pointwise to zero almost everywhere, then f,
converges to zero in measure. (Hint: Let A, = {xe X; | fi(x)| < efork > n}.
Show that A4, € A, S 45 < -+ and that X — { J, 4, is of measure zero.)

3. Deduce from exercise 2 and theorem 1 the weak law of large numbers. Show
that, if f,,f,,... are a sequence of bounded independent, identically dis-
tributed random variables and if E is their common expectation value, then
foralle >0

Prob({"fl-'_—;.ié — B

4. Show that, if f,, f,,... are as in exercise 3, then

B g ) o(L)y
n &'n

where V is the common variance of the fs, i.e., V = [(f; — E)* du. Use this
to give another proof of the weak law of large numbers.
5. Let fi,/s,... be bounded, independent, identically distributed random
" variables with E = E(f})=E(fy)=--=0. Let S, = f; + - + f,. Show
that if & > 0 then

>£)——>O 4 n—> o0

Prob ( — E

S,(x)/niP** 5 0ae as n— o

(Compare with exercise 17 in §1.1.}(Hint: Show that there exists a constant
C, such that

JS,?" du < Cyn®

for every integer k > 0.)
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6. Let fi, f5,... be independent, identically distributed random variables on
the unit interval. Suppose that the common probability distribution of
the f's is given by equation 9 of §2.6, with k =2,r, = 1,7, =0, p, = p,
and p, = 1 — p (p being any number between zero and one). Let S, =
fi + -+ f.- Show that, if ¢ is any bounded measurable function on the
interval [0, 1],

o G- JoG -2

(Hint: See section 2.6, exercise 9.)

Remark. We will denote the right-hand side of equation (*) by B,(¢, p).
Notice that it is a polynomial of degree n in p. We will call it the nth
Bernstein polynomial associated with ¢.

7. Show that for n very large S,(x)/n is very close to p for most values of x.
Explicitly show that for all § > 0

Sa(%) 1
2ol of) = (g o
(Hint: See exercise 4.)

8. Let ¢ be a continuous function on the interval [0, 1]. Show that

) E[¢ (%)] S Hp) as o oo

(Hint: Given & > 0 choose 6 so that |¢(s) — @(f)] < ewhen0 < s,z < 1 and
Is — t] < é. Let I, be the subset of 0 < x < 1 on which |(S,(x)/n) — p| < 5,
and let I, be the complementary set. Show that

[, [o(32) - s
)

using inequality (+*) and the fact that ¢ is bounded.)

9. Show that the convergence in display (1) is uniform in p. By equation (*)
conclude that, as functions of p, the Bernstein polynomials B,(#) converge
uniformly to ¢ on the interval [0, 1]. (The result we have asked you to prove
is a constructive form of the Weierstrass approximation theorem: Given a
continuous function ¢ on the interval [0, 1], there exists a sequence of
polynomials B, converging uniformly to ¢ as n — o0.)

(+) #({xe [0,13;

dx < ¢

and estimate

dx

¢(-3‘—")) — )

n
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§2.8 The Discrete Dirichlet Problem

Let ¢ be an open set in R2. A twice-differentiable function f: €@ —
R is called harmonic on @ if

0  o*
5;1—; + % ={ on @

Now let Q be a compact subset of R? with a continuous boundary 3Q. Suppose
that g : 8Q — R is continuous. The classical Dirichlet problem asks one to find
f:Q - R such that f is harmonic on IntQ and f = g on Q.

Many solutions to this problem have been discovered, some of which are
quite ingenious. In particular, in Two dimensional Brownian motion and har-
monic functions (Tokyo: Proc. Imp. Acad., 20, 706-714 [1944]), S. Kakutani
showed how to construct f using probabilistic methods. He used a kind
of limit of the random walk in R? called the Wiener process or Brownian
motion. Although the theory of the Wiener process is beyond the scope of this
book, we can understand the ideas behind Kakutani’s construction by looking
at a discrete version of the Dirichlet problem due to Courant (Courant, R,
Friedrichs, K. O, and Lewy, H. Ueber die partiellen Differenzengleichungen
der mathematischen Physik. Math. Ann. Vol. 100. pp. 32-74 [1928]). (In fact,
Courant showed that the solution to the classical problem can be obtained
as a limiting case of the solution of the discrete problem described below!)

Before we describe this discrete version of the Dirichlet problem, we need
to translate the definition of harmonic functions into a form that is easily dealt
with measure theoretically.

Theorem. (Mean value property) Let ¢ = R? be open and let /: 0 —R be
harmonic. Let x,€ ¢ and assume that the circle of radius g around x, lies

entirely in @. Then

2%
) flxg) = (%) L f(xo + ae®)do

Conversely, if £: 0 — R is continuous and equation 1 holds for all x, and a
such that the circle of radius a around x, lies entirely in @, then f is twice-
differentiable and harmonic in 0.

For a proof of this theorem see, for example, L. Ahlfors, Complex Analysis
{New York: McGraw-Hill [1953]).

Using this characterization of harmonic functions, we can formulate a
plausible discrete analogue of the Dirichlet problem. The space R? is replaced
by the integer lattice

Z2 = {(m,n); m,n are integers}

and the compact region {2 becomes a finite subset of Z2.
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For x € Z2, there are four nearest neighbors, xy, Xs, X, and Xy, as pictured
below.

Xy
®
X oxg

.
Xs

If x € Q we say x € Int Qif xy, xs, Xg, and xy are all in Q as well. We then define
0Q = Q — IntL.

To define harmonic functions on IntQ, the integral in equation 1 is
translated to be the average over the nearest neighbors. Namely, if f: Q — R
we say f is harmonic on Int Q if

) = SLFen) + 055) + SC52) + S )]

for all xeIntQ.
Now let’s consider the following problem.

Discrete Dirichlet Problem

Giveng:0Q—Rfind f: Q>R such that f is harmonic on Int{ and f=g
on 6.

We ask you to solve this problem by yourself. The following three exercises
should be of some help.

1. Let 2, denote the set of all random walks on Z2 with x,, as the starting
point. This set can be identified with the set of all sequences of N’s, E’s,
s's, and W’s (for example, NWWESN.. .). Assign to N, E, S,and W the
numerical values 0,1,2,and 3. LetI = (0,1] = the half-closed unit interval.
If we I, the quaternary expansion of w gives rise to a sequence of 0s, I’s,
2's and 3's and hence to a sequence such as that above. Therefore, we can
identify I with #,,. (For the details of this identification, see §1.2.) Now
suppose xo € 2. Consider the random walk r,e R, indexed by wel. Two
possibilities exist: Either r,, stays inside Int Q forever, or it eventually gets
to a boundary point x,(). (For instance, if x, €0Q, then x,(®) = X,.)

a. Show that the first of these two possibilities occurs with probability
zero. (See §1.4, exercise 17.)
b. Let f, (@) = g[x,(w)]. Show that f, isa measurable function of we l.

f
|
’i
E

|

!
\
|
|

|
f
|
!
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2. Let #% be the set of all random walks starting at x, that move directly
to x, on the first step. Define 2% , %3 , and #Y similarly.

a. Show that &, = &Y U #% L &5 U R} (disjoint union) and show
that, under the correspondence 2, ~ I, A% corresponds to the inter-
val (0,11, 2% to the interval (},4], and so on.

b. There is an obvious bijective map p: %2’0 - A, . Namely, take the
random walk whose first position after x, is x and think of it as a
raqdom walk starting at xy. Show that, if we identify 2, with (0,1]
as in f:xercise 1 and identify % with (0,%] as in part ayabove, the
mapping p becomes the mapping @ — 4.

¢. Show that, with the identifications in parts a and b,

S @) = £, (%’)

- Obtain comparable identities for f, ., f. , and f,,.
3. Define f:Q — R by setting )

{
/
/

(*)

Slxo) = J‘ S lw)du
i

for all x,€€), with u being Lebesgue measure. Prove that f is harmonic
and equal to g on Q.
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Fourier
Analysis

§3.1 #-Theory

Let (X, #, 11) be a measure space and let f: X — C be a complex-

valued function. We can write f(x) = u(x) + iv(x), where u and v are real-
valued functionson X andi = ./ —1.

Definition 1.  f = u + iv is measurable if v and v are both measurable.

Note. If f = u + iv is measurable, then | fl= \/ u? + v? is measurable by
Theorem 14 in §2.1.

Proposi'tion 2. Let f = u + iv be measurable. The following two statements
are equivalent.

1. f [fldu < oo
X

2. fiu{d,u<oo and j}v}du<m
X X

Proof. Notice that Ju| + |v] > (u2 + v?)12 > lul (or ul). But [£] = (u? + v?)2,

so integration yields
f [uldp + J [o]dp 2J [fldp
X X X

118
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and

L!J’\du > Llu'l du (or Lquzd,l)

The first of these inequalities shows that statement 2 implies statement 1; the
second inequality shows that statement 1 implies statement 2. 0

Definition 3. If f = u + iv is a complex-valued measurable function on X,
we say f is integrable if

f |fldp < oo
X
In this case we define the integral of f to be the complex number
1)) ffdp:=Jud,u+ij vdu
X X X
We denote by £ (X, u) the set of all such functions:

)] LHX, p) = {f: X—»C,measurable;f Ifldu < oo}
X

Proposition 4. Let f, ge (X, u), ceC, then
L f+ge&'(X,p) and j (f+g)du=f fdﬂ'*‘.‘- gdp
X X X

2. ofePVX,p and J‘(cf)du=cf fdu
x x

3-~jfdu=jxfdﬂ
4. Lfdu!iifxlfldﬂ

Proof. Weleave proofs of 1, 2, and 3 as exercises. To prove 4let a = [y fdp.
Then (@/]al) {x fdp = |a| is a positive real number. Let g = (a/|al)f and write
g = u + iv, where u and v are real valued. Then

a
m— T e = d
Lfd.u lal laILfdﬂ Lg i

:fudu%—if vdyu
X X
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Thus fy vdu = 0 because the left-hand side is real, Therefore

fodufr-LudusL!u}duSLMW =Lif£du

since | f| = lgl.

Parts 1 and 2 of proposition 4 arc a proof that the space £!(X, u) isﬂg

vector space over the complex numbers, In fact, ZX(X, u) is a nor

space. med vector

Definition 5. Tet ¥ be 2 vector
_ space over C. i i
-1l : ¥ - R with the following properties: A norm on V'is & function

a o] =0, veV

b. o) =0wsp=0

& lev) =clfvl, ceC vey
d v +wl <o) + |w

Given a norm §-F on a vector space ¥V, we can define a metric d{-, -):
')

VXV“’ROHbed(vw)-—gu .
. W) = v — wil It )
properties of a metric; that is, | I+ Ttis easy to check that 4 satisfies the

1. div,w) = diw,v), v, we ¥V
2. d{v,w) + d(w,u) > d(v, u), u, v, wey
3. dlv,w)=0if and only ifv=w

(See Appepdix A for a review of metric spaces.)
There is a natural candidate for a norm on the space £1(X, u)

Definition 6. Let 1
normotr JELUX ). We define || £, = [41f]du to be the 1.

Unfortunately, | . . .
property b'; Y> Il - Il does not quite satisfy property b. Instead it satisfies
“f“’[ = 0‘¢=>‘f = a.e.

This statement means that two functions f and g in LY(X, 1) have to be

considered the same if they are equal a.e. With this conven

show the following theorem, tion, it is easy to

Theorem 7. |||, is a norm on ZY(X, ),

Proof. Properties a, b’, and . |
the inequality » anclcare obvious. Property d follows by integrating

) + gl < [ £()] + 1g(0)] O
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We will say that a sequence of functions f,e £'(X,u), n=1,2,..., con-
verges to a function fe (X, u) in the ¥ *-norm (or simply converges in
LYyif
3 I fa—flli—>0 as n—

Convergence in this sense is not the same as pointwise convergence almost
everywhere. In the exercises, you will find examples of sequences that converge
in one of these two senses but fail to converge in the other. (See exercises
and 2.) The best one can conclude about the relationship between these two

notions of convergence is the following.

Theorem 8. Suppose f,, n=1,2,..., converges to f in the #'-norm.
Then there exists a subsequence f,, i = 1,2,..., that converges to f almost
everywhere.

We will, in fact, prove a somewhat stronger result. Recall that, for a metric
space (V,d), a sequence v,e V, n=1,2,..., is said to be a Cauchy sequence if
d(v,,,v,) — 0 as m, n — oo. In particular, a sequence of functions f,e £ (X, w),
n=1,2,...,is a Cauchy sequence if

4 W fo— fulli =0 as mn— oo
Theorem 9. 1Let f,, n=1,2,..., be a Cauchy sequence in .#'. Then there
exists a subsequence f,, i = 1,2,..., that converges almost everywhere to an

&' function f. In addition, the original sequence converges to f in the
#l-norm.

Proof. Choose n, such that, for m, n > ny, ||/, — full, <1. Next choose
n, > n, such that, for m, n > n,, || f,, — f,Il; <4 Continuing inductively,
choose n; > n,_, such that, for m, n > n;, || f, — fi 1 < 1/27", We will show
that the subsequence {f,} converges pointwise almost everywhere. By
construction

‘ 1
) s = Juls < g
Let g1 = fy, and let g, = f, — f,,_ fori>= 2. Then
© fo= L0

and {gl, < 1/2". Thus
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s0, by the corollary of the Lebesgue dominated convergence theorem (corollary
12 of §2.3), the series

9r

s

i
-

r

converges pointwise almost everywhere; and, in view of equation 6, the se-
quence { f, } converges almost everywhere. Let f be the pointwise limit of the
Ja/s- By assumption, fis defined for almost all x € X, and we can define it at
the remaining points of X' by setting it equal to zero at these points. It remains
for us to show that f, —» fin #*. Given & > 0, there exists an ng such that

jlfm”ﬁidﬂ <e

for m, n > n,. Fixing n > n, and letting m — 00, we get

£ Hminfflfm ~ fldu = Jliminflfm —fldp ]

zfif—fnrdu: 0 = £l

by Fatou’s lemma. Hence f, converges to f in the .Z*-norm. 1

Recall that a metric space (V, d) is complete if every Cauchy sequence v, V
has a limit ve V. (Intuitively speaking, there are no “holes” in V) A normed
vector space (V, fj- ||) that is complete with respect to the metric

d(v,w) = flo — w]|

is called a Banach space. By theorem 9, #!(X, u) has this property, so we
conclude the following

Theorem 10. £(X, y) is a Banach space.

Exercises for §3.1

1. Let I be the unit interval 0 < x < 1, and let I, , be the subinterval

ngg_’f_t}_ O<k<n
n n

Let f; be the characteristic function of I, ,, f, and f; the characteristic

functions of I, ; and Iz, fa, fs, and fe the characteristic functions of
Io.3, Iy 3, and I, 3, and so on. Show that the sequence { f,} converges to
0in .Z*{I) but does not converge pointwise anywhere,
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. . .
2. Let f, be the function on the interval (0,1] that 18 icllluztﬂftoc ozii:rg;s
i/n<x<1andis equal to nfor 0 <x < 1/n. Show tha ;in b

poiwaise to zero everywhere as n — but does not con;eglga . convérges
3. In exercise 1 extract a subsequence of the sequence {fu

ointwise almost everywhere. N
4 iet X be a finite interval and p Lebesgue measure on X. Show th

i Ji= ith th
there exists a countable family ‘of ;ll‘lf;(lon)s r% J;,;E ; 1g,§/,;; an}y \g;l;tioz
that the f;'s are dense 1n s X on
?I; § fg( pc;land ar{y number ¢ > 0, then, for some folfi—fli<e (Hint:

cise 7.
5 iii §)2(‘21;: ?Zet ang.i let #(X) be the set of all bounded, complex-valued

functions on X. For fe #(X) let
ISl = sup!f¥)

xeX

Show that -]} is a norm, and show that #(X) 1s a Banach space with

espect to this norm. . . e
6 in Icjexercise 5 suppose the set X 18 infinite. ShO\fV that, if f1, fz(,:il. ; bllzt
. sequence of functions in #(X), there exists a function f e B(X) su

If—=fil=1

11 i. (Compare with exercise 4.) ’ ~
7 E:)r ?Jetl 15 andz be numbers greater than 1 with (1/p) + (1/g) = 1. Prove
that

a? bq
ab<—+—
p

i i bers a and b. ‘
for any pair of nonnegative num
b I(jet (}g I;J’, ) be a measure space, and let f and g be nonnegative
measurable functions. Prove that

ijp i/q
(*) jfg dp < Uf"@) (jg”‘du)

= 14 At each point x € X, apply
it Let a = ([ fPdp)¥? and B = (fg*du) : :
(tigéninequality irf (a) with a = f(x)/a and b = g(x)/B, and integrate with
respect’to X.) .
8. Let f and g be as in exercise 7. Show that

p ifp ifp
(j(f—l— g)"du>1 < (prdpz) + (Ig”du>

(Hint: Write (f + g = f(/ + gt +g(f + 9" anfj_aipply equation (*)
to each of the two products f(f + g tand g(f + 9 )
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9. a Letl<p< oo A complex-valued measurable function f:X-Cis

said to be #P-integrable if f1f1Pd,
' # < co. Denote by #7(X, ») th
of all such functions. Show that FPX, 1) is a vector sp(ace.u ?l‘h:t Si:t

sh(;w that, if f and ¢ are in LP(X,p), s0is f + g, and that, if f is in
ZLP(X, p), any constant multiple of f is in #?(X, 1) as well,

b. If fe #7(X, p), let
0l = (fmvdu)w

Show that || - ¢ 1S anorm on £7(X, ),

§3.2 £?-Theory

Let (X, #, u) be a measure s i
o L7 pace. A measurable function f:
is said to be #?-integrable or Square-integrable if fix=c

) f [fI?du < o .
X

We denote by #2(x, ) the set of all such functions; that is,

2) LHX, u) = {f:X - C,measurabie;j f12du < oo}
X

Definition 1. The quantity

) 1l = ( f |f12dg)”2

is called the #2-norm of fe X, ).
We will see in a moment that equation 3 does indeed define a norm and

2 - .
that #2 is a Banach space with respect to this norm, First, however, we will

establish a few elementary facts about %2,
Theorem 2. If f and g are in LX), fgisin LY(X, 1),

Pfoof: Let Xlz{XEX;lf(x),>}g(X)[ and let X, = )
Then, on X,. | fg| < |/1%; and, on X,, | ff;l S gp a2~ lxeXsiglol = 170,

Lffgldu < L [fI?dp + L lg|*du

2

<If1Z+ligh3 O
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Corollary 3. If u(X) < oo, then #2(X, y) is contained in .£(X, p).
Proof. If u(X) < oo, the constant function 1 is in £%(X, p). O
Corollary 4. If f and g are in £2(X, u), sois f + g.

Proof. Tt is enough to show that |f + g|? is in £, but |/ + gI* <|fP* +

2111191 + Ig/*. O
Corollary 4 says that (X, p) is a vector space over the complex numbers.

We will soon show that it has some other nice properties as well. First,
however, we need to discuss briefly the subject of inner product spaces.

Definition 5. A vector space V over the complex numbers is an inner product
space if it is equipped with a mapping

iV xV—C
such that

1o oy +oyw) = (0, W) + (v, W

2. {ev,w) =clp,w)

3. low) = {(w;w)

4. {v,v> > 0and {v,v) =0ifand onlyifv =0

An example of an inner product space with which you are already familiar
is the finite dimensional space C™. If v = (a4,...,a,)eC"and w = (b,,..., b, ) €
C", the inner product of v and w is

@) g a;b;

We will show that the much more complicated space #*(X, u) is also an
inner product space. Indeed, by theorem 2, the quantity

(5)‘ Sgy = Lfg—d“

is well-defined for £, ge L*(X, w); and it is obvious from proposition 4 of §3.1
that it satisfies properties 1--3. It doesn’t quite satisfy property 4; in fact, if

AS =Jlflzdﬂm0

the most we can conclude is that f =0 a.e. But, if we put in force the
convention that an %2 function is zero “in the %2 sense” when it is zero a.e,,
then property 4 is reinstated and we have proved the following theorem.
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'Fhemjem 6. £*(X, ), equipped with the inner
is an inner product space.

We now prove a few facts that are true for inn
and, thus, for #%(X, u) in particular.
and veV, let

6) vl = /(v vy

By property 4 this is well-defi
the norm of the vector ve V.

product given by equation 5,

‘ nner product spaces in general
Given an inner product space V. <, »

ned and is zero if and only if v = 0. We call |||

Theorem 7. (Schwarz's inequality) If v, we ¥, then
o [oawd ] < Joff fwl

Proof. 1w =0, the inequality is obvious. If w # 0, consider, for 1eC

0= ot Aww 4 dwy = (o) + A w) + 4o w) + (A2 (w, w)
Letting 2 = — (v, w)/{w, w, this inequality implies
0<uvd — 1<v, w2
or, equivalently
<o, wH1? < (v, o) Cw, w) O

Corollary 8. (Triangle inequality) For v, we V

(8) lo+wi < fof + jwi

Proof. Squaring equation § we get

g r . , .

9) o+ wi* < ol + 20w} lwi + [w]?
But v + w)j?

:<U+WU+W>:<UU>+<OW>+< ‘
i ? . ’ k) w, U -+ . . 12
2Re(v,w) + w2 s0 equation 9 reduces to the inequaligy (v = fol®+

2Re{v,w)y < 2fv] fiw]]

which is an %mmediate consequence of inequality 7.
From this corollary we conclude the following.

O

Corollary 9. The norm i : .
: .o i*} on ¥ is a norm in the sens initi X
that is, (¥, | ) is a normed vector space, e of definition 5 of §3.1;

In particular, we restate this result for the vector space ¥ 3(X, p)

§3.2 F*-Theory "

Corollary 10, #2(X, p) is a normed vector space.
Moreover, applying Schwarz’s inequality to0 .Z 2(X,m), we deduce the
following.

Corollary 11. If f and g are in .#2, then

(10) 1l < 1SNz lgle

Aninner product space (¥, , ))thatis complete with respect to the norm
|- (that is, one that is a Banach space with respect to this norm) is called a
Hilbert space. For example, C" is a Hilbert space.

We will show that Z2(X, p) is a Hilbert space. To simplify the proof we
will make an assumption about the underlying measure space (X ,F L ). We
recall from the last paragraph of §1.3 the following definition.

Definition 12. A measure space (X, &, ) is o-finite if there exists a sequence
X,eZ,n=12,. with{ 2, X, =X and p(X,) < .
Without loss of generality, one can assume that X; € X, €.

Theorem 13, .#?(X, p) is complete with respect to the norm -5, that is, 1t
is a Hilbert space.

Proof. Assume that X is o-finite. (See exercise 9 for a way to get rid of this
assumption.) Let { f,} be a Cauchy sequence in £ 2(X, ). Choose X,’s as in
definition 12. By corollary 3, { ,} is a Cauchy sequence in &’ HX1, 1) So, by
theorem 9 of §3.1, we can extract from { f, } a subsequence { f, ,} that converges
ae. on X,. Repeating the process, extract from this subsequence a smaller
subsequence { f; ,} that converges ae. on X;. Continuing inductively, one
obtains for each i a subsequence {f;,} of {fi-i,,; that converges ae. on
X,. Now apply the Cantor diagonal process: The subsequence f) 5, f3,2.---
converges ae. on X and its pointwise limit is equal a.c. to a measurable
function g. Let g, = fi.\, g2 = f2.,. and so on. Because the g,s are a
subsequence of the f,’s, they are also a Cauchy sequence in #*(X, u). So, for
any ¢ > 0, there exists an ng such that ||g,, — g, 2 < ewhenmn>ng.
By Fatou’s lemma, with n > n, fixed and m — o0,

Jllm iﬂﬂgm - gnlz d!-f < llm infflgm - (Jniz dlu <8

But the term on the left is

-~

j g — gal* dp

because g,, converges to g pointwise a.¢. Hence, we conclude that g is in
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2
Z£*X, ) and that g, converges to g in .#2(X, u). Finally, if a subsequence of

a Cauchy sequence conver i
ges, the sequence itself converges as w
converges to ¢. y el so s als[(])

The following general fact about inner product spaces will be useful in §3.3.

Theorem 14. Let V be an inner 1
‘ . . ‘ product space. Then the inner product -, -
is continuous in 'both variables with respect to the norm given gy equati<01’1 6>
In other words, if v, —» v and w, — w, then {v,, w,> — (B, w). ’
Proof. 1fv,— v with respect to |-}, then v, ~ v] < 1 for nlarge, so
ol < llog —oll + ol <1+ o]
for nlarge. Then
[<vm Wap — {0, W] < [C0p, W) ~ LU WH| + v, W) — (0, W)

=< }(U",Wn - W>l + {<vn - U,W>I

< Wl —wl + o, — ol ]|

<+ lelliw, —wll + jlo, — vl wli

Hence |[{v,,w,) — {v,w)| tends to zero as n — 0. O

Exercises for §3.2

1. Let ¥V be an inner product space. Show that Schwarz’s inequality
[Ko,w)l < Jufiliwll

is an equality if and only if w = 0 or v = ¢w for some
: = complex number c.
2. Let V be an an inner product space. Show that P e

(*) o +wi? + flo — wi* =2(l0* + [lw]?)

(Geometrical}y, the sum of the squared lengths of the diagonals in the
figure below is equal to the sum of the squared lengths of the sides.)
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3

10.

11.

. Let X = [1, c0), equipped with Lebesgue measure. Show that f(x) = x*

Let V be a normed vector space whose norm satisfies the identity in
equation () in exercise 2. Show that there exists an inner product on V

such that
loll = /<o.0>
(Hint: Show that
2ReCo.w) = o+ wi? = Jol> — Iwl*

if an inner product exists.)

. Let X = (0,17, equipped with Lebesgue measure, Show that the function

f(x)=x"*isin PYX, 1) but not in L*(X, p).

4
is in £2(X, p) but notin L1(X, p).

Let ay,4a,,... be a sequence of positive numbers with Y524, = co. Let
S, = 31—y @;. Show that

ips
2P
i
8

but that

< 00

il

18
R

n=1»

(Hint: Let f, = Y -1 a;/s; and let g, = Y, a;/s?. Compare f, with logs,
and g, with 1/s,.)

. Let (X, #,p) be a measure space that is o-finite but not finite. Show that

$2(X, ) is not contained in &£ (X, p). (Hint: Use exercise 6.)

. Let (X,4,y) be a measure space and fi,fs,..- & sequence of ¥#*

functions on X. Let
X' = {xeX; fi(x) # 0 for some i}

Show that X' is o-finite; that is, show that it is a countable union of
measurable sets of finite measure. (Hint: LetE, ,= {xeX;| .00} > 1/mj.
Show that X’ =| J.n Emn")

. Using exercise 8, show that theorem 13 is still true without the hypothesis

that X is o-finite.

Let (X, %, p) be a measure space. Prove that #7(X, u)is a Banach space—
that is, complete with respect to the norm |- || - (See §3.1, exercise 9.)
(Sobolev’s inequality) Let f be a function on the interval [0,1] that is
continuous and has a continuous first derivative f’. Show that

sup 1f(x) = fOI= /"2

Ogx,y<1
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§3.3 The Geometry of Hilbert Space

In this section we will discuss some of the geometric properties of
a Hilbert space . with inner product { , >. When we apply this material in
the later sections of this chapter, % will always be #?(X, u) where (X, Z, 1)
is a measure space.

Definition 1. If f, ge £, we say fis orthogonal to g (written f L g)if (f,g> = 0.

Theorem 2. (Pythagoras) If f, ge ¥ with flg, then |f|®>+ |g||®> =
If+ gl

Proof.
If+gl?=<f+af+a

=L+ LS9+ 9./ + 49,9
=1f1?+lgl? O

More generally, suppose that fi, f,,..., f,€ & with f; L f,, i # j. Then by
induction it is easy to prove that || f; + f, + - + f,12 = Y=, I fill %

One basic example of a Hilbert space you should always keep in mind is
C" with the inner product given by equation 4 of §3.2. This Hilbert space has
finite “dimension.” We will see, however, that some Hilbert spaces are “infinite
dimensional”; in fact, these are the spaces that are most interesting to us.

Definition 3. A sequence ¢,,¢,,¢s,... in ¥ is called orthonormal if
1 ifi=j
0 lfl #] ///

{
I

Example 4. Let .Z be C* with the inner product given by equation 4 of §3.2.
Let v, = (1,0,...,0), v, =(0,1,0,...,0),...,v, =(0,...,0,1). Then v,,...,v, is
an orthonormal sequence.

M {$ 9> = {

Example 5. Let X = [—=, 7], u = Lebesgue measure, and £ = £2(X, p).
Let ¢, = (1//27)e™, —00 < k < co. It is easy to check that the ¢,’s form an
orthonormal sequence. Indeed

— T (= . .
J‘X ¢k¢_} dﬂ 27'[ J_n e dﬂ

1 ifk=j
0 ifk#j
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Recall now that an orthonormal basis in C" is, by definition, an orthonor-
mal sequence of vectors vy, v,, .. ., v,. This definition depends on the dimension
of C". Another characterization of orthonormal basis in C" allows us to turn
the tables and determine the dimension from the length of the basis: Namely,
if v,,v,,...,0, is a basis of C" then there are no nonzero vectors that are
simultaneously orthogonal to all the v;’s. This motivates the following definition.

Definition 6. An orthonormal sequence ¢,,¢,,...is called complete if, for any
fe 2, the conditions

fLlé, i=12,...
imply f = 0.

Remark. If ¥ = #?(X, ), we must interpret f =0as f =0 a.e.

Definition 7. Let £ be a Hilbert space, and suppose that ¢, ¢,,...,4, is a
complete orthonormal sequence in .. Then % is said to have dimension n. If
£ contains an infinite orthonormal sequence ¢,, ¢,,..., £ is said to be infinite
dimensional.

We leave it to the reader to check that the dimension of a Hilbert space
is well-defined (see exercise 1).

Remark. Example 5 shows that, if X = [—=n, ] and u = y;, then ZL2(X, p)
is infinite dimensional. We will see in §3.4 that the ¢,’s described in example
5 are complete.

In infinite dimensions the notion of completeness of an orthonormal
sequence replaces the notion of an orthonormal basis for finite dimensions.
We now study some of the properties of a complete orthonormal sequence
in 2.

Let ¢, ¢,,... be a complete orthonormal sequence in #. Given f e %, let
¢; = {f,¢,>; this is called the ith Fourier coefficient of f with respect to the
sequence ¢;,¢,,.... The formal series Y 2, c;¢, is called the Fourier series of
f with respect to the sequence ¢, ¢,. ...

Theorem 8. Let ¢,,¢,,... be a complete orthonormal sequence in ¥. Let
fe# and let ¢; = {f,4,>. Define S, = Y 7, ¢;¢; to be the nth partial sum of
the Fourier series of f. Then S, — f in Z.

Proof. Write f = f — 8§, + S,. Notice that {f — §,,¢,> =0aslongasi<n
because

<f; ¢1> == <Sn5 ¢1> fOI' i<n
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¥

Thus (f — S,) L S, because S, is a linear combination of ¢;’s with i < n. Then
by theorem 2,

LA = 1S = Sa> + 18,02

= 8,02
NOW; l]Sn li2 = <Snasn> == < ci¢ia C£¢i>
= =1
= Z ICiIZ
i=1
8o, we have shown that
(2 YlelP<IfI*  foralln
=1

That is, Y 2, |¢;]* converges.
Now consider S, — S, for n > m. S, — S, = Y% .1 ¢;é;, 50 by theorem 2

m

n

I]Sn - Smuz = . Z icilz

i=m+1

Because we have shown that Y 12, c;|? converges, we can conclude that
the sequence of §,’s is Cauchy. Because .% is complete, we know that there is
age such that S, — g in &,

To finish the proof we need to show that f = g. Notice that, by theorem
14 of §3.2, {g,¢;> = lim,,, {S,, 4> = ¢;. Thus {f — g, ¢,> =c; — ¢, = 0 for
all i. Because the ¢/s are complete, we conclude that f = ¢. O

Theorem 9. (Plancherel) Let ¢,,¢,,... be a complete orthonormal sequence
in . For feZ, letc; = {f,¢;>. Then | f||*> = ¥ 2, |ci|%
Proof. S, — fin . so, by the continuity of the inner product,

S22 = LS =111

But ¢S,,S,> = Y%, l¢;] so we conclude that
Ylef =1/ D

You may have noticed that the proof of theorem 8 did not use the
completeness of the orthonormal sequence until the final line. When the
sequence is not necessarily complete, we get the following.
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Theorem 10. Let ¢, ¢,,... be an orthonormal sequence in #. For fe ¥, let
¢;=<{f,¢;y and S, = Y 7., ¢;¢;. Then S, is Cauchy in % and thus converges
to a limit ge &. Moreover, {(g,¢,> = {f,¢;> for all i.

Proof. This proof is the same as the proof of theorem 8 with the last sentence
omitted. 0

If the sequence {¢,} is not complete, we get the following in place of the
Plancherel theorem.

Theorem 11. (Bessel's inequality) Let f and ¢; be as in theorem 10. Then
1112 = Zl le;|?
Proof. This inequality is a direct consequence of equation 2. ]

Corollary 12. The Fourier coefficients ¢, tend to zero as i — <.
An important example of a Hilbert space is the space whose elements are
infinite sequences

(3) S=(a13a2963>'”)

of complex numbers satisfying
(4) 2 lal? <
i=1

The set of all such sequences is denoted 12 (read as “little #27). It is easy to see
that it is a Hilbert space. In fact, it is a Hilbert space of the form £*(X, p).
Take for X the set of positive integers—that is, X = {1,2,3,...}. Let # be the
o-field of all subsets of X, and let u be the counting measure:

u(A) = number of points in 4

A function on X is just a sequence such as in equation 3. In the exercises we will
ask you to show that such a sequence is in #%(X, p) if and only if equation 4
holds. We will also ask you to show that for two such sequences

§ = (alaazsaBD'”}
and
t= (bl9b27b3a--')

their inner product is
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5)

a;b;

[~1s

i

i=1

(Compare with equation 4 0f §3.2.) Notice that Schwarz’s inequality for /% says
©) Y. ab,
i=1

that
0 12 / o 1/2
< (Zl Eailz) (Zi |bi|2)
We will use this fact in §3.4.

Notice that, if we are given any Hilbert space .# and a complete ortho-
normal sequence ¢,, ¢,,...in &, then, by the Plancherel formula, the sequence
of Fourier coefficients

§ = (CI’CZ""')
is in 12, Conversely, we claim that, given a sequence
2
(61,02,03,...)61

the sequence of partial sums
n
Sn = Zl Ci¢i
converges in ¥ to a limiting element f. Indeed, form > n

e

so S, is a Cauchy sequence and the assertion follows from the completeness
of . Thus, if we have a complete (infinite) orthonormal sequence in &, we
get a bijective map of & onto 12, This statement is rather surprising in view of
the fact that % can be, in principle, a much more complicated space than
12— for exampie, the space of square-integrable functions on R”.

A

Exercises for §3.3

1. Show that the dimension of a Hilbert space is well-defined.

2. Let X be the set of positive integers and u the counting measure on X.
Show that #2(X, u) = I*. Moreover, show that the #? inner product on
%*(X, u) is the inner product given by equation 5.

3. Let f be an #* function on the interval [ — =, 7}. Show that

f f(x)e ™ dx -0 as n-

(Hint: See corollary 12.)
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4. Let(X,%,u) be a measure space. A sequence f, € LHX, w,n=12,...,is
said to converge in the %2 sense to fe (X, p) if | f— fll.—0 as
n — 0. Prove that, if f, — f in the #2 sense, there exists a subsequence f,,
i=1,2,3,..., that converges to f a.e.

5. Let X be the unit interval and p Lebesgue measure. Show that &>
convergence in £ (X, 1) does not imply pointwise convergence a.e., and
vice versa.

6. (& *-convergence of the randomized harmonic series) Let y be Lebesgue
measure on the unit interval, and let R, be the nth Rademacher function.

Let
n /1 ’
Sn e Z (';)Ri
i=1 \!

Show that §, converges in the #? sense to a function He L ).
7. For fixed m and n with m > n, let A be the set

{we LS, (w) — S,(w)] > ¢ for some k between m and n}

Prove that

1
wA) < I(Sm — §,)%dp

Here are some hints:

(i) With k fixed, let J < I be a union of intervals of the form iF<t <
(i + 1)/2*, with i between zero and 2¥ — 1. Show that, if n < k <m,
{sRnR,dp = 0.

(i) If J is as in part i, show that

f Sy — Sk)(Sk - n)dﬂ =0
J
and also show that
J\ (Sm - Sn)2 du = J‘ (Sk - Sn)2 d,Ll
J J

(iii) For n < k < m, let 4, be the set
{wel;|S{w) ~ S,(w)| < eforn < j<kand|S{w) — S)(w)| > &}
Show that A4 = { Ji.., 4, (disjoint union) and

1
Ay < &—zj‘

A

(Sy — S,)*dp
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8. Using exercise 7 prove that the randomized harmonic series

=1\ }

converges almost everywhere to the function H of exercise 6.
9. (The Gram—Schmidt process)
a. Let ¥ be an inner product space and f,,/,,...,f, elements of .
Show that, if f},..., f, are linearly independent, then there exists an
orthonormal sequence @i, .., 4, such that, for all i,

(*) $i= aifs
isi
with a; > 0. '
(Hint: Let ¢, = ¢, f; where ¢;" is the length of f,. Let ¢, = ¢,[ f, —
(f2,#1)9,] where c;' is the length of f, — (f3,4,)¢,. Continue.)

b. Let fi,f,,... be an infinite sequence of elements of . Suppose that,
forall n, f,,..., f, are linearly independent. Show that there exists an
orthonormal sequence ¢y, ¢,,. .. such that equation (*) holds for all i,

10. a. Let ¥ = *([—-1,1]). Letf, = 1, f, = x, f; = x? and so on. Apply
the Gram-Schmidt process to this sequence (see exercise 9). Show
that the resulting ¢;’s are polynomial functions of x. (These functions
are called the Legendre polynomials.) Compute the first few of these
functions.

1 3
Answer: = = /=
¢1 \/5 ¢2 \/; b

_[5(3, 1 7(5 , 3
*53‘\/;(?2“5) ¢4=\g(§x3"z")

b. Use the Weierstrass approximation theorem (see §2.7, exercise 9) to
show that the Legendre polynomials are a complete orthonormal
sequence in ¥*([—1,1]).

11. a. Show that the Haar functions,

Hy olx)=1 for0<x«1

and
e k — k . l
—2"2 <x <2
or o = x < 7

Hn k(x) =% }{ —4 k

> 2n/2 f() 2 M~

r X < x < o

0 elsewhere
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where n > 1 and 1 < k < 2", are an orthonormal sequence in ([0,
1]).

b. Suppose that fe £*([0,1]) and (f, H, ;) = O for all n, k. Show that, if
A is an interval of the form [k/2”,1/2"], with 0 < k < I < 2", then

(*) jfdu=0

¢. Show that equation (**) holds for every subinterval A of [0, 17, Con-
clude that {H, ,} is a complete orthonormal sequence.
d. Let R, be the n + 1st Rademacher function. Show that

1z

R,y = 2,, ;‘; Hn,k

§3.4 Fourier Series

We pointed out in §3.3 that the functions

1 .

By = | —== & -0 < H < 00
J2m

form an orthonormal sequence in the space &2 [—7, w]. We will show in this

section that this orthonormal sequence is complete. In the course of proving

this result, we will also prove a number of classical results about convergence

of Fourier series. To begin, note that, by corollary 12 of §3.3,

(1) &= <S> = \/—%f fee ™ x

tends to zero as |n| — oo, provided that f is an .#? function on the interval
[—n,n]

Let f be a measurable function defined on the whole real line. We will say
that f is periodic of period 2x if

2 flx + 2n) = f(x) ae.

Given any measurable function defined on the interval (— =, ], one can extend
it uniquely to a periodic function on the whole real line by requiring that
equation 2 hold. Moreover, if f is periodic of period 2n and integrable over
the interval [ — 7, ], then by equation 2 it is integrable over every compact
subinterval of the real line. In fact, if I is a subinterval of length 27, then

® [ Fdx = [ " fdx
1 [ 1
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To see this, suppose that [ is of the form [@ — 7,a + 7). Then

nta n -nta
J;f(x)dx = j J(x)dx + J Sx)dx — f Slxydx
But by periodicity the first term and third term cancel.

We will first study convergence of Fourier series for functions that are
rather nicely behaved. Let f be a continuous function periodic of period 2r,
and let x, be a point on the interval [ -z, 7]. Suppose that the right and left
derivatives of f exist at x,; that is, the limits

@. tim £09= /(o
x=xg)r X T Xg

and

@)- lim flx) - f(xo)

x—»(xo)‘ X — xo
exist. We will prove the following theorem.

Theorem 1, The series

1 © .
o inx
\/%FZOO c,e

converges at x = x, and its limit is f(x,).

Proof. Let Sy(f)(x,) be the Nth partial sum of this series. By equation 1

1 N
Sy xp) = —= cpeto
27 k=N
| B ¥ kxgmy
“5e | E e

Setting
) D LR R

v(x) = Ek__ZN [4

we get for Sy(f)(x,) the formula

Su(f)(xo) = f S0 Dy(xo — x)dx
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Making the change of coordinates x, — x — x, this integral becomes

7 f(xo — x)Dy(x)dx

xp—%

So, by equation 3 we get finally

© S0 = [ 00 = D05

To estimate the right-hand side of this formula, we note first the following
properties of Dy(x):

N F Dy(x)ydx =1
and

1 ei(N-H)x _ e—-iNx

(®) Dy(x) = w1

Proof of properties 7 and 8. To obtain equation 7, just integrate equation 5
term by term and note that all terms except k = O haveintegral zero. To obtain

equation 8, rewrite Dy(x) as
I & 'u)
—_priNx L
27’6 (kgo

and note that, with & = ¢™, the second factor is just

2N a2N+1 -1
Z o, which equals —
k=0

Next we note that the denominator in equation 8 has a zero of first order
at x = 0. In fact,
eix -

- 1 ix o
lim —— = 7 €m0 =i

and e™ — 1 has no zeroes on the interval [ —=, 7] except at x = 0; so the
function

x
e — 1

is continuous on this interval providing we define it to be —iat x = 0.
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We now return to the proof of theorem 1. By equation 7
flxo) = f S(xo)Dy(x}dx
Subtracting this from equation 6, we get

® Sn(f)x) — flxo) = J _ [f(xo = x) ~ flxo) 1 Dylx) dx

Set

s = L0 =9 = flx0) _ flxo =) — fxo) ( x )

e* 1 x e —1

The second factor on the right is continuous on the interval [ —=, ], as we
just observed. The first factor is continuous except at x = 0, and at x = 0itis
continuous on the left and on the right by assumptions 4.,. Hence g is
piecewise continuous and a fortiori in £*. By equations 8 and 9

k4 T
S50 = S50 = 5 | e — L[ gloge
21 2n

The first term on the right is the — (N + 1)st Fourier coefficient of g, and the
second term is the Nth Fourier coefficient; so by equation 1 both these terms
tend to zero as N — co. |

A continuous function f is called piecewise differentiable if its domain
of definition is a finite union of closed intervals and if, on each of these
intervals, df /dz exists and is continuous. It is clear that, if f is piecewise
differentiable, it satisfies assumptions 44 at all points in its domain of defi-
nition. We will show that for such functions theorem 1 can be considerably
improved.

Theorem 2. Let f be a continuous function that is periodic of period 2x. If

f is piecewise differentiable on the interval [ —=, ], then Sy(f) converges to
S uniformly and absolutely on this interval.

Proof. Let g be the derivative of f. By assumption, g is defined and contin-
uous on the interval [ —x, 7] except at a finite number of points, and we will
define it everywhere by defining it arbitrarily at these points. We will first show
that, if ¢,{ ) and ¢,(g) are the nth Fourier coefficients of f and g, respectively,
then

(10) cx(g) = inc,(f)

Proof of equation 10. Wecanfind gy = —n <a, <a, <-* <g, =7 such
that g is continuous on (a;, as4+1). Then

§3.4 Fourier Series 141

" —inx g — Z i ge—inx dx = Z o Ej_(_ e~ inx dx
. ge - " o \dx
a4 Bisy .
— z[fe—inx + inJ' fe—mx dx}

+ in J fe " dx

— fe—inx

However, the first term vanishes because f is periodic.

Remark. Tntegration by parts is justified on [a;, 4., ] because this integral
equals the Riemann integral.

To prove theorem 2 it is enough to show that Y |c,(f ).\ < 0. Indee_d,
because we already know by theorem 1 that 5,(f) — f pointwise, thl?. fe}ct w%l
imply that the convergence is absolute and uniform. Because ¢ is in %%,
T lea(g)l* < 0; so by equation 10

Y rle I < o0

Therefore, by Schwarz’s inequality for [ 2 (see equation 6 of §3.3),

o (52 ()
,,;O‘C"(f)l = ”;6(1;[)"‘1%1 = (; e Zn len |

Because both terms on the right are finite, so is their product. i

Let’s now return to the proof that the functions ¢, = (1(\/5 ei’”‘ forrp a
complete orthonormal sequence. We have to show that,if fisan ,99 functlo_n
with <f,¢,> = 0 for all n, then f = 0 a.e. We will first show that, if f has this

property, then

b
(1) ffdx=0

a

for every subinterval [a,b] of [—=,7]. Let & > 0 and let y, be the function
indicated in the following figure:

«
|

[ T

-
o
-~

o
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This function is piccewise differentiable. So, by theorem 2 Snlxe) > 7, uni-
formly and, hence, a fortioriin 2. Thus , ‘ '

0= <f'>SN{XC)> - <f:x:>

}hat tlb, x> = 0. As & tends to zero, , converges in .%2 to the characteristic
unction of the interval [a, b]. So, by a repetition of the preceding argument

n b
ling.( fzgdxzj fdx =10
Thus, we have established equation 11.

(12) J fdx =0
A

This collection contains all the subintervals of [—7, 7] and is a A-system:
s0, by the 7 — A theorem (theorem 7 of §2.5), it contains all Borel sub);eég 01’~
[~m, 7). Because every measurable set is a disjoint union of a Borel set a;,nd
a set of measure zero, equation 12 holds for all measurable sets A. From
now on we will assume that f is real-valued. (If not replace f by ‘its real

and imaginary parts.) Let Ay be the set wh
where f < 0. Then where f > 0 and A._ be the set

/:;{fld:n:/AFfda;-/ fdz =0

so f=0ae.
The Plancherel theorem now gives us

(13) f SRdx= 3 jep
with :

1 n
(14) o ﬁf ﬂf(x)e“”"dx

{OI fe"g ( :f,ﬂ:). Wwe lH dlscuss some a‘p llcatlons Of t 18 1dEIlt1() m €he
p h

Exercises for §3.4

L. a. Let f be an integrable function on the interval [—=m 7] Let

_ Sl when{f(x)| < M
Sl {0 when | f(x)] > M

Show that {|fyy — fldu—0as M — oo,
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b. Show that the nth Fourier coefficient of f tendsto zeroasn —+ <. (Hint:
What can you say about the nth Fourier coefficient of fy7)
2. Let f be a periodic function of period 27 possessing continuous derivatives

up to order k. Show that
&
Cp (d;’k> = (l?’é)k()n(f)

3. a. Let f be the function

0 for —-mr<x<0
f(x)‘{1 for0 < x <7

What are its Fourier coefficients?
b. Prove that

-
J‘
=
[
=
i e
— |
\?il{
ll
ool
[
=
S
[a%
X
i
= !_.
(]
i
i

4. The zeta function
sy = Zn‘” s> 1

is of considerable importance in number theory. By judicious usc of the
Plancherel theorem, evaluate this function at s = 2 and s = 4. Can you
devise a method for cvaluating {(s) at all even integers? {Hint: See exer-
cise 2.)

5, a. Let f = f(x,1) be a function that has continuous second derivatives in
x and t and is periodic of period 27 in x. Let ¢,(1) be the nth Fourier
coefficient of f(x, 1), regarded as a function of x {that is, with 1 fixed).
Show that, if f is a solution of the heat equation

of o3f

2

ot dx

(*)

then ¢, (1) = ¢ ""¢,(0).

b. Given a function fo(x) that is periodic of period 27 and has continuous
second derivative, show how to construct a solution of the heat cqua-
tion (*) with initial data: f(x,0) = fo(x).

6. The Weierstrass approximation theorem says that, if f 1s a continuous
function on the interval [a,b] and & > 0, there exists a polynomial p with

sup |f(x) —plx)l < e

asx<h
We sketched a proof of this theorem in exercises 8 and 9 of §2.7. Deduce

from theorem 2 a second proof. Here are some hints:
(i) Show that one can assume —~7 <d < b <.
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(ii) fS:h:)wdthdat every continuous function f on the intervat [a, b] can be
xtended to a continuous functi - is periodi
Nt tion on [ —m, 7] that is periodic of

(i) Show that, if f is a continuous function that is periodic of period 2n

there exists a piecewise difft i 1
~ s : crentiable function f; that is periodi
period 27 and is ¢/4 close to f; that is, S pertodic of

sup [f — fol <§

—rSxsn

(Hint: See figure.)

(iv) Let S,(x) =YY", c,e™, the N i
. N Cae™, th partial sum of the Fourier seri
Jo- Show that, for N sufficiently large, ° Fourier series for

sup [Sy — /] < &
CREXST 2

, S(}‘;/) In}:hf: formula for S,},, Feplace e™ by Yo (1/r!)(inx) with k large

. ow that in theorem 1 it is enough to assume that f is continuous a.nd

O

8. a. Compute the Fourier series of the sawtooth function

S(x)&{x—n for0<x<n
x+n for—nm<x<§

et s 755 v s e e
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b. Show that the series

Z _es'ux
nEOR

converges everywhere on the interval —n < x <7 except at the origin.

9. Let f and g be .Z* functions on the interval (-, 7). Extend them to

functions on R by requiring that they be periodic of period 27. Show that
the convolution

1 7
(froe) =5 j gl ~ 9y

isin %!(~x,m)and that its Fourier coefficients ¢, are just
¢, = a,b,

where a, and b, are the Fourier coefficients of f and g.

§3.5 The Fourier Integral

Let f be a complex-valued integrable function defined on the real
line. Its Fourier transform is the function

(1) fy) = j flx)e = dx

Notice that this function is well-defined because the absolute value of the
integrand is | f(x)|. Indeed

1f)l = {jf(x)e"""”dx < jff(X)ldx

i
so f(y) is bounded by the #*-norm of f. (In exercise 2 you will be asked to
show that f(y) is continuous and that f(y)»0asy—> )

On the interval (—x, ), £ 2-integrable functions are automatically &'~
integrable; however, for functions defined on the real line, this is no longer
the case (sec §3.2, exercise 5). Therefore, equation 1 does not make sense if
the integrand is an arbitrary 22 function. Nevertheless, we will show that
equation 1 can be appropriately defined for #? functions and that, just as for
Fourier series, the #?-theory of the Fourier integral is remarkably simple and
elegant.

We will start by studying the Fourier transform for a very well-behaved
class of functions.
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whose derivatives of all orders—that is, df, /dx, d*f/dx2, and so on—exist and

()
dx"

N ‘We wil? deno.te b.y S the set of all Schwartz functions. If f and garein S
18 f + g; and, if £ is in S, constant multiples of f are in S and so are xf' and,

df/ dx. Also, equation 2 impli : |
on N. 5o that plies that, given N, there is a constant C, depending

n) such that

@

<cC

3) /()] < €1+ [x]2)=V

g;)aSEhl\:/arti fl;nctions 80 to zero very rapidlyas x — + co. The basic example
Chwartz function, about which we will h h to say |
sections, is the function ¢~%2). e mueh (0 say in the next two

Lemma 2.

1. LetfeS and let 9(x) = xf(x). Then i) = /— l(d/dy)f(y).
2. LetfeSandleth = df /dx. Then h(y) = . /— 17 (y).

I N/
" n othgr wo‘r‘d.s, up to.fa(.:tors of ./ —1, the Fourier transform interchanges
¢ operations “differentiation by x” and “multiplication by x.”

Proof. By definition
fo) = f f(x)e™™ dx

iThe 1gtegrand on the right is differentiable with respect to y, and the derivative
§ again integrable; so the left side is differentiable with respect to y, and

w— d —ix
o - \@ Lf(x)e ™7 dx

_ifxf(x)e—ixydx

= —ig(y)
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which proves part 1. To prove part 2 we note that

~ d —ix
h) = f (- f e dx
=— f f(x)(:id;e""‘y) dx

= iy Jf(x)e_ixy dx

The integration by parts is justified by the fact that f is going to zero very

rapidly as x - + o0. Y
It follows from the lemma that, if f is a Schwartz function, then (d/dy)f

and yf are the Fourier transforms of Schwartz functions, and by induction
y™(d"/dy™)f is the Fourier transform of a Schwartz function for all m and n.
In particular, y™(d"/dy")f is bounded; so fis a Schwartz function.

Example. Let f = e~*"2 We will show that

@ fo) = fameo™

That is, up to a constant, f is its own Fourier transform.

Proof. Notice that f satisfies the differential equation

d
) £+xf=o

Indeed, up to a constant factor, f is the only solution of this equation, for, if

dh

P i xh=0

dx x '
then (d/dx)e**h = e*2[(dh/dx) + xh] = 0. So e*?h is equal to a constant C
and h = Ce™*", By lemma 2, f satisfies equation 5 if f does; so f(y) is a
constant multiple of e"®*?, All that remains to check is that this constant is

/27 But, if f(y) = Ce™0, then
Cc=10= jeﬂyzﬂ)dy

The integral on the right can be evaluated by elementary means and shown

to be \/ﬂ O

‘We can now state the first main result of this section.
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Theorem 3. The mapping f — f maps $ bijectively onto itself. Moreover, if
feSand g = [, then f = § where

1 .
(6) g(x) = E—Jg(y)e”‘” dy

¥ia

Remarks.

1. The function § in display 6 is called the inverse Fourier transform of g.
Notice that it is very simply related to the Fourier transform of g—namely,

o 0= (2 )at-»

From this identity it is clear that the inverse Fourier transform maps the
Schwartz space into itself.

2. Equation 6 implies that the Fourier transform is injective as a map of
Sinto 8. (That is, if feS and g = f = 0, then, by equation 6, f = 0)) It also
implies that the inverse Fourier transform is surjective as a map of § into §.
(That is, if fe S and g = f, then f = §.) But, because of the simple relation
(equation 7) between the Fourier transform and its inverse, we conclude that
both the Fourier transform and the inverse Fourier transform are injective
and surjective. So, if we can prove equation 6, we will have automatically

proved the rest of theorem 1. Incidentally, equation 6 is usually referred to as
the Fourier inversion formula.

For the proof of equation 6 we will need some additional properties of the
Fourier transform. ‘

Lemma 4. Let f and g be Schwartz functions. Then

(®) ff(y)g(y) dy = Jf ()g(x) dx

Proof. By Fubini’s theorem

/

f S0 dy (ff(x)e"‘”dx)g(wdy

= (jg(y)e""y dy)f (x)dx

= | §(x}f(x) dx

LY

il

The interchange of integrations is justified by equation 3. v
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Lemma 5. Let feSand let a be a real number. Then, if f,(x) = f(x + a),
©) Juy) = 1)
Proof. By definition
iy = jf(x + @) dx
So, if we make the change of variables x = s — @, this becomes

fily) =€ jf(S)E"” ds = e (y) v

Lemma 6. Let feSandletabea positive number. Then, if f.(x) = f(x/a),

(10) fuo) = af(@y)

70 = Jf(%)e dx

So. if we make the change of variables x = as, this becomes

Proof. By definition

Sy =a jf (s)e™ ds = af(ay) v

We will now prove equation 6. Let f = f(x) bean arbitrary Schwartz function,
and let g = ¢ 0%, Then, combining equations 4, 8, and 10, we get

(11) Jf(y)e““’mz’ dy=1/2na ff(x)e*(“’xzf'” dx
When we make the substitution ax =5, the right side becomes
(12) V- 2 J‘ f (—Z) e ds
Now et 4o T et | fordr O s hand. by dispay
12, the right side of equation 11 tends to

\/z;{ 1(0) je"“’m ds = 2nf(0)

and we obtain
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| S N
(13) JO) = ﬁff (n)dy

Now 1et. g t.)e the function g{x} = f(x + a). Replacing f by g in equation 13
and taking into account equation 9 we get

1

1
fla)=9(0) = —2—7;[.@()*) dy =+ Jj (Ve dy 0

Next we will show that the Fourier tr
ansform preserves %2-
a scalar factor. P norms up o

Theorem 7. Let fbein S. Then

(14) i fiz=2=lf13

Proof. 1f we take complex conjugates of both sides of the identity

1|,
ﬂﬂ“gfwﬂﬁ@

we get
_— 1 e e—
fx) = o fe"’”fif "ldy

That is, 2nf is the Fourier transform of f. Let g = f, so § = 2af. Then, b
lemma 4. ' -

ﬁma=fﬁ@=fﬁ@=jﬁm
=fﬂkfﬁx=2njUde O

Remark. This identity is called the Pl )
ancherel i
Remark. SJormula for the Fourier
'Usmg thzeorem§ 3 and 7 we can now deﬁne/the Fourier transform of an
arblt.rary ZL*function. The idea for this definition is based on a theorem about
metric spaces: Supposc? M and N are metric spaces and A is a dense subset of ‘
M. A map f: A4 — N is called uniformly continuous if, for every ¢ > 0, there

exists a & > 0 such that dy(f(x), f()) < ewhenever d
we will need is the following. u(:3) < The theorem

Pr.opositim‘l 8 Iff A -» N is uniformly continuous and N is complete, there
exists a unique continuous mapping ¢ : M — N extending f.
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A proof of this fact is outlined in Appendix A.

By the Plancherel theorem, | f —gli=2=lf—- gll3; so the Fourier
transform is uniformly continuous as a map of § into .#%. Moreover, as we
saw in §3.2, &7 is complete. Therefore, if we can show that S is dense in 22,
then, by proposition 8, there is a unique extension of the Fourier transform

from S to #2. In other words, if we can show that S is dense in %2, we
will have succeeded in our goal of extending the Fourier transform to £?

functions.

To show that S is dense in Z2, we need to show that there is a large supply
of Schwartz functions. The results that we describe next make this point. We
say that a function f:R — R is C® if all of its derivatives—that is, df/dx,
d%f/dx?, and so on—exist and are continuous.

Lemma 9. There exists a C* function f, that is zero for x < 0 and positive
for x > 0.
Proof. The function

e ™ forx >0
folx) = {0 forx <0

has this property. v

Lemma 10. Given an interval (a,b), there exists a C* function f; such that
fi = 0for x¢(a,b) and f, > 0for xe(a,b).
Proof. Let f;, be asin lemma 9 and let

f(x) = folx — a)folb — x) v

Lemma 11. Given an interval (a, b), there exists a C* function f, such that
falx)=0forx <a, folx)=1forx=hb,and 0 < f» < 1 on the interval (a, b).

Proof. Let

jxﬁwn

£ = v
J_ filsyds

Lemma 12. Given ¢ > 0, there existsa C¥ function f of the type depicted in
the following figure.
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y=1

|

| |

| {
o4 s
° .

a a-te b—¢ b

Proof. By lemma 11 there exists a C* function gsuchthatg=0forx <a
g= lfor x> a+¢and 0 < g < 1 on the interval (a,a + ¢). Similarly, th_erf;
exists a C* function h such that h =0 for x < b — g h=11for x>b and
0 < h <1 on the interval (b — ¢, b). Now let fx) = g(x)[1 — h(x)]. - v

Let S be the closure of S in #2; that is, fe S if and only if there exists a
sequencej,sS, n=12,..., suchthat | f, — f|l, > 0. It is clear that, if g and
h are in S, then g+ h is in § and constant multiples of ¢ are in 5.

Pmpgsition 13. Let A be a finite union of intervals. Then the characteristic
function 1, of A isin §.

Pr:aof. It is enough to prove this proposition for an interval 4 = [a,b].
Givene > 0, let f be as in lemma 12. Because fis C* and is zero outside [a, b],

fis in S. Moreover, |f — 14 <1 on {g,a + ¢ and (b—¢b), and f=1
elsewhere, so !

f!f—lAlzdx<2e 0

Pmpc‘lsi.tion 14, letA4dbea measurable set of finite measure. Then the char-
acteristic function 1, of 4 isin §.

Prgof. Choose ¢ > 0. By the definition of .#, (see §1.3), there exists a finite
union of intervals B such that u(S(4, B)) < &. Then

f]la — 1,%dx = p(S(4,B)) < ¢ /? O

‘Now lgt f be a nonnegative #2 function. By theorem 6 of §2.2, there exists
an increasing sequence of simple functions s, > 0 such that s, = f. By proposi-
tion 14, 5, & S. Moreover ’

J‘lf—s,,lde-—»O as n— oo

by the monotone convergence theorem, so fe§. Finally, let f be a complex-
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valued .¢? function. Then

f=Re(f)y — Re(f)- + /—1Im(f), — /—1Im(f)_

so fis in . Thus we have proved the following theorem.

Theorem 15, S is dense in £2.
We can now prove the second main result of this section.

Theorem 16. There is a unique linear mapping

(15) Tt g2

and a unique linear mapping

(16) Tt p?

such that, restricted to S, equations 15 and 16 are the usual Fourier transform

and inverse Fourier transform. These mappings are bijective and satisfy the
Fourier inversion formula

f=Uy
and the Plancherel formula

1713 = 2=l £113

Progf. We have already indicated how the Fourier transform can be ex-
tended to %2 The inverse Fourier transform can be extended the same way.
Moreover, the Fourier inversion formula and the Plancherel formula hold on
§; so, by continuity, they hold on .#2. |

Remark. For a general #? function f, the integral in equation 1 doesn’
make sense. How then do you evaluate /7 Of course, you have to approximate
f by functions for which equation 1 does make sense, and then take limits.
See exercise 4 for an explicit way to carry out this manipulation.

- Exercises for §3.5

1. Show that, if fe £'(R), then for every ¢ > 0 there exists a Schwartz
function g such that || f — g, <e.

2. If fisin £(R), show that f is continuous and f(¢) > Oas & —» =+ co. (Hint:
These assertions are true when f&S. Now use exercise 1.)

3. Show that, if f is both in #!(R) and in #>(R), the two definitions of
f—that is, equation 1 and the definition by continuity—coincide.



154

4. a. For feZ*R)and M > 0, let

_Jf(x) when|x| <M
ful) = ‘{0 when |x| > M
Show that || f,; — fll, =0 as M — 0.
b. Show that, if fe #2(R), then

M
(*) lim f f(x)e ™ dx
M=o J-p
exists, in the sense of %2, and is cqual to f {Equation (*) is often used
as the definition of the %2 Fourier transform.)
5. Show that, if f, ge #*(R), then

mm=eﬂdm
T

(This identity is called Parseval’s identit y.) (Hint: The real part of ¢ )

isequal to 3(Ilf + glZ — /13 — llg]2))

6. a. Compute the Fourier transform of xe=** and of x*e™*2_Can you
devise a scheme for computing the Fourier transform of x™e—*%2 for
any m?

b. Show that for every integer m there exists a polynomial H,(x) of
order m such that the Fourier transform of H,{(x)e ™" is a constant
multiple of itself. Moreover, show that one can choose the H,’s so that
the sequence H,.e™*"%, m = 1,2,..., is orthonormal. (The polynomial
H,(x) is called the mth Hermite polynomial) (Hint: Use exercise 5)

7. a. Let ¢ be a positive number and let J: be the function

e forx>0
0 for x < 0

ﬁw={

Show that its Fourier transform is (e + ip).
b. Use the Plancherel formula to compute the integral

i

A y?

8. a. Let f be the characteristic function of the interval [ 1, 1]. Show that
its Fourier transform is (2 sin iy
b. Use the Plancherel formula to compute

o : 2
J‘ (sm x) i
o\ X

9. a. If fand g are in %, the convolution of S and g is the function
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il. a.

“12. a.
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(f*g)(x) = ff (x — g dy

Show that f *gisin ¥ (R)and that | f*gll, < | f.llgl. (Hint: Use
the Fubini theorem.) ’

Show that the Fourier transform of f* g is the prod.uct fg, o
Conclude from part b that the convolution operation is associative
and commutative.

. Show that the function

1 ~x%j4t
g(-xac):(\/@)e ol

satisfies the heat equation 8g/dt = 8%g/0x*for0 <t < cwwand — o <

X < o0. ‘
Show that, if f € S, the function

plx, )y =g *f = fg(t,x - nfdy

satisfies the heat equation for 0 <t < oo and — 00 <X < 0. '
Show that, as ¢t = 0+, u(x, t) = f(x). (Hint: Using part b of the previ-
ous exercise, show that [{4,(y) — f()ldy — 0ast — 0+. Here y,(x) =

px, 1)) y
Let X be a set, # be a a-field of subsets of X, and u a prc?bablhty
measure on X. Given a random variable f: X — R, the function

xs(t) = J e dy
X

is called the characteristic function of f. Show that x, is continuous
and [y, (1) < L.

. Suppose f is bounded. Show that all the derivatives—(d/dt)xy,

(d?/dt?)xy, and so on—exist and are continuous. Show that

1N fd"x, _ B
(5 ()o=[ e

Let (X, #, u) be as in exercise 11. Show that, if two random variables
f and g are identically distributed, then y, = ,.

. Conversely, show that if y, = y, then f and g are identically distri-

buted. (Hint: Let h(x) be a Schwartz function and A(z) be its Fourier
transform. Using the Fourier inversion formula, show that

1 W
5 J' i XA de = L h(f)du
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and interpret the right-hand side as

J;( hdv,

where v, is the probability distribution of )
13. Let (X, %, u) be as in exercise 11. Show that, if f and g are independent
random variables, then Xr+g = XrXg- (Hint: See equation 6 of §2.6.)
14. a. Let X be the unit interval, # the Borel sets, and u Lebesgue measure.
Show that, if f = R, is the nth Rademacher function, then y, = cost.

b. LeF S, = Y"_, R, Show that the characteristic function of S, is (cos ).
¢ Using part b of exercise 11, show that

wa=FWQQWMﬂ
" d;Zk

=0
(Compare with §1.1, exercise 19.)

15. Let H = z,‘,’?_.l (1/mR, be the randomized harmonic series. Let x be its
characteristic function. Show that

x(t) = fj cos (%)

§3.6 Some Applications of Fourier Series to
Probability Theory

‘ Let Dy, —00 <1 < o0, be a sequence of nonnegative real numbers
with the following three properties:

1 Py=1p_,

2) D, =0 for all but finitely many s
and /
&) Yra=1

. er will consider in this section a generalized version of the random walk
in which a point-mass moves randomly along the real line with transition
probal.)ilities Pi—;- Yo be more specific, suppose that, at time k, the position of
the pomt—mafss is the integer point i. At time k + 1 the point-mass is allowed to
move t(? any integer position j for which p,_ ;18 nonzero and the probability of
1ts moving to this position is assumed to be pi-j- (Forinstance,if p, = p_, =1
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and the other p’s are zero, the process we have just described is the usual
random waik.) To normalize, we will assume that the position at time zero is
the origin.

The basic random variables associated with this process are for each &,

4) the difference between the positions at time k and time k + 1

Notice that the probability distributions v associated with these random
variables do not depend on k; in fact, they are all just the measure

) vd) =} p,

red
for every Borel subset 4 of R. Indeed, if 4 is the one-element set consisting of
the integer r, then v(4) = p,, the probability that the point-mass moves 7 units
to the right (or left) at time k.

Now let X = 1 be the unit interval, # = B, the Borel sets, and ¢ = y;. In
§2.6 we showed that there exist independent, identically distributed random
variables f;: I =R, i = 1,2,..., such that equation 5 is their common prob-
ability distribution. If we take (X, %, u} to model the sample space of the
process described above and the f;’s to model the random variables described
in display 4, it is clear that we get an adequate measure theoretic model of
this process. In this model the sum

© &=iﬁ

is the position of the point-mass at time n.

Let’s consider the question of when and how often the point-mass returns
to its initial position. In our model the probability that the point-mass returns
to its initial position at time » is the measure of the set

{wel; S,(w) = 0}
In the remainder of this section, we will show that
0 u({S, = 0;i0.}) = 1

That is, with probability one the point-mass returns infinitely often to its initial
position. {Incidentally, we will assume from now on that the transition prob-

~ability p, is less than one, for otherwise equation 7 is trivially true: The

point-mass stays at the origin forever with probability one.)

The first step in the proof will be to get a simple description of the measure
of the set where S, = 0. This step will be done using Fourier series. Consider
the sum

®) g)= 3 pae™

BT
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By equation 2 this sum is finite; so there are no problems of convergence. We
will show the following proposition.

Proposition 1. The measure of the set
{wel; S(w)=r}

is the rth Fourier coefficient of the function g”.

Proof. We claim that for all k
©) 9(t) = E(e") = f endy
I

Indeed, display 4 tells us that f, is an integer-valued function, taking on only

a finite number of integer values. In addition, it tells us that the measure of
the set

E, = {wel; fi(w) = m}
is just p,,. Thus the right-hand side of equation 9 is
2" ulf =m) =Y pne*™ = g(t)
as claimed. Because f,,...,f, are independent, so are e/, ..., e"/r; s0
E(e"Sn) = E(e™t x -+» x e} = E(e) x -+ x E(e™r)

by equation 6 of §2.6. By equation 9 the right-hand side is g(¢)". On the other
hand, because S, is also an integer-valued function, taking on only a finite
number of integer values,

E(eits,,) — J‘ eitS,, du o Z“(Sn —_ r)eitr
I

Comparing the Fourier coefficients of this series with those of g(t)", we see
that u(S, = r) is the rth Fourier coefficient of g(t)". ]

Before continuing with the proof of equation 7, we point out a few
properties of the function g that we will use in our proof:

(10 ¢ is real-valued, \\
1 g0 =1, g0=0 and gO<0
(12) lg@l <1,

and

(13) lg(nl <1 except at a finite number of points on the interval [ —m, n]
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Proof of properties 10—13: By equation 1
g@t) = Y ppe™" = Yppe™ = 9(0)
so gis real-valued. Differentiating equation 8,
g0 =Ypn gO=iYnp, and g0 =-Ynp,

By equation 3 the first sum is 1, and by equation 1 the second sum is zero.
Finally, the third sum is negative, because, by equaFion 3, Pn ;é Oforsomen % 0
(because we are assuming that p, # 1). To prove inequalities 12 and 13, note
that

g(t) = Reg(t) = Y, p,cosnt
s0
lg(t)l < ¥ palcosnt| <3 pa =1
with equality holding if and only if cos nt = + 1 whenever p, # 0. v

Using these facts we will prove the following proposition.

Proposition 2. The sum
(14) Y u({wel; S,(») = 0})
n=0

is infinite.

Proof. By proposition 1 this sum is identical to the sum

1 &7 1\ [ zzvz—i .
- g"dy = lim (——)J g du
27 nZ:O‘["” N— o 2r —g B=0
The integrand in the integral on the right is nonnegative and monotone-
increasing (why?) and converges to the limit

b
1 —g(t)

except at those points where g(t) = — 1. Because the points with this property
are finite in number, by equation 13, we get from the monotone convergence

theorem

@ 1 (" dt
LS =0= 275[ T=40

Because the integrand on the right is nonnegative, we can show that the
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left-hand side is infinite by showing that

J‘f dt N
== 0.0]
—s] "g(t)

for some ¢ > 0. Let C be a constant with

g"0) > —2C

I;ecause g(0) = 1 and ¢'(0) = 0, we get from Taylor’s formula with remainder
that

gy=1-Ct*>0

on a small interval, —s < t < & Hence

[ ¢ dt - & dt

T o= H
If the events S, = 0 were independent, we would now be finished: We

could deduce Fhat u({S, =0;i.0.}) = 1 from proposition 2 using the second

Borel-Cantelli lemma. However, because these events are not independent, we

have to resort to a slightly more complicated argument. Let k be a positive
integer and, for every positive integer /, let

= fin
Let B, be the set of w e I where
r k
(15) 21 Jlw)#0, r<k  and Y filw)=0
i= i=]
Similarly, let B; be the set of w e I where
(16) > 1) £ 0 " o) —
i;f(w);é ,  r<l,  and i;f,»(w)—o

Because th§: S’s in display 15 and the f’s in display 16 are independent, B,
and B are independent.

Let P = u(Bi) and p; = u(B;). We claim that, for k = L pe = p. Indeed, let
7 be the joint probability distribution associated with Jise oS and let 7 be

égeﬁjoint probability distribution associated with fis--- /. By theorem 3 of
.6, N

\
k N

f——)\"—_\

ﬁ:”fxXﬂsz"‘Xﬂfkr—VX"'XV

and a similar identity holds for =, so

7=

§3.6 Some Applications of Fourier Series to Probability Theory 161

Now p, is the measure with respect to u of the set in display 15. But, by the
definition of z, this measure is the same as the measure with respect to n of
the set

r k
{(xl,...,x,,)eR"; Yx;#0, r<k, and Y x;= 0}
i=1 i=1
Similarly p; is the measure of this set with respect to #'. Because n = 7/,
o = p; as claimed. By definition, B, is the set of random paths that return
for the first time to the origin at time k; so the sum

Dis -

p= P

k=1
is the probability that a random path returns at least once to the origin.
Similarly B, m Bj is the set of random paths that return to the origin for
the first time at time k and for the second time at time k + [ Because B, and
Bj are independent, the probability of this event—that is, the measure of
B, r Bi—is p,py; and the probability that a random path returns at least twice
to the origin is

Y o= (Z pac)(Z Pe) =p?
k=1 k=1 =1

We leave for the reader to show, by a similar argument, the following
proposition.

Proposition 3. If p is the probability of a random path returning to its initial
position at least once, the probability of its returning at least k times is p*.

We will deduce from this proposition that p must equal 1. In fact, suppose
that p < 1. Let

A, = {wel; Syw) = 0}

and let
(17) h=3% 1,
k=1
Notice that, for m < oo, the set
(18) {wel; h{w) = m}

is the set of random paths that return to the origin exactly m times; so, by
proposition 3, the measure of this set is p™ — p™*"* or p™(1 — p). For m = o0,
the set in display 18 is the set of paths that return to the origin infinitely often;
so, by the proposition, its measure is less than p* for all k; in other words, it
is zero (assuming that p < 1). Thus
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fhdﬂ-—— Y mp™(1—p) <
H

m<oo

On the other hand, by equation 17

j hdu = § ul(A)
1 e

and the quantity on the right is infinite, by proposition 2; so we get a con-
tradiction and conclude that p = 1.

Let C, be the set of paths that return to the origin at least k times. Because
p =1, ){C,) = 1 by proposition 3. Because C;, » C, > C5--*,

()1

Hence, we conclude that random paths return to the origin infinitely often with
probability one.

Exercises for §3.6

1. Show that, for the classical random walk (p_, = p; = %), every integer
point ne Z is visited at least once with probability one. (Hint: Suppose
that the random walk visits the integer point n with probability p < 1.
If n > 0, consider the set of random walks having the following two
properties: (i) The first » moves are to the left. (ii) The origin is never
revisited. Prove that the probability that a random walk belongs to this set
is (1 — pX1/2") > O, contradicting equation 7.)

2. Show that, for the classical random walk, every integer point is visited
infinitely often. (Hint: Let g be the probability that the point » is visited
at least once, and let p be the probability that the random walk returns
at least once to the origin. Show that the probability that n is visited at
least k times is gp* . (Compare with proposition 3.) Now use the fact that
p=g=1)

3. a. For the generalized random walk with transition probabilities satisfy-
ing equations 1 through 3, let n,,...,n, be those integers for which
7r # 0. Let 4 be the set of those integers that can be written in the
formryny, + -+ + nrny, with integers ry, ..., 1., and let n be the greatest
common divisor of ny,...,n,. Show that A consists of all integer
multiples of n. ‘\i

b. We will call an integer point a on the real line accessible if ae A. Show
that a is visited with probability greater than zero if and only if it is
accessible.

4. Show that, if an integer point a is accessible, then with probability one it
is visited infinitely often by the generalized random walk. (Compare with
exercises 1 and 2)
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ation 8. Show that g(f) = Lif and

i iven by equ : ‘
S Lot e e e of 27 (the ¥ re being the same n as In eXercise

only if ¢ is a multiple of 2n/n (the n he

3, part a).
b. Conclude that g(5}
¢. Show thatif g(t) = 1 then

g'(e) = — L "Pu

Conclude that g“(f) < 0 when g(t) = L
6. Let

— 1 if and only if cos kt = 1 for all admissible k’s.

N
N B _,
Ty(0) = 21 Prob(§, =0) and Ty() = ;‘; Prob(S, =7
i .
Show that, if r is admissible, im[ Ty(0) — Ty(r)] s finite as N — oo and is
equal to
1 {*1—cosrt
—— et
=) n L, 1= g0
{(Hint: Use part b of exercise 5 to show that the inte

:s a bounded function of t.) o
7 : Show that, for the classical random walk (p_; = P1 = ),

grand in equation ()

1 (2n
Prob(S,, =0) = 7 n

(see S. Lang, A Complete Course in Calculus.

b. By Stirling’s formula 1968), there exists a number 8, with

Reading Mass., Addison-Wesley,

0 < § < 1, such that
nl = /2nn nte et

Deduce from Stirling’s formula that

PrOb(SQ,, ~ 0) = 7__"

2y

for n large.
¢. Prove from part b that

3 Prob(S,, = 0) =

n=1

9
tice that Prob(Sy,+s = 0) = 0. Why?] ' .
8. a [lgf)? :;:; “unfair coiil’jl[the process degcrlbed in theorem 5 of §2.6

1
withk=2r=Lrn= -1,p1=p;é%, and p2=(1—-p)¢2}, let
S, = fy + -+ f,. Prove that

Prob(S,, = 0) = ("”’) (1 —py  and  Prob(Ss =0=0
2n n
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b. Using Stirling’s formula show that

Y Prob(s, = 0) < o

n=1

and conclude (by the first Borel-Cantelli lemma) that Prob(s, = 0;

i.0) = 0. Why doesn’t this contradict equation 7?
9. Suppose that the transition probabil

tions { and 3 but not equation 2. Sho

10. a. For the gt?neralized random walk with transition probabilitics satisfy-
Ing equations 1 through 3, let N, (k) be the number of times the point k

is visited during the interval of time 0 <
; <t=<n Sh _
tation value of N, (k) is ow that the expec

z;o Prob(s, = k)

(Hint: Let B, be the set of isi i
’ paths that visit the point k ex: i
during the period 0 < 1 < n. Show that ° eactly  times

N, (k) = 2"[3,
Let 4, = {w; S(w) = k}. Show that

N =3 1,)
=0

b. Show that the expectation value of N, (k) is

1 3 1 __,gn-i-l
2;\[-1[005,(!"'1‘::*9—*6&

Using exercise 6 show that, if & is admissible, the expectation value of

N, (k) differs from the expectation value i
n of Nn 0) b
tends to a finite limit as n — oo, Orbya quantity that

§3.7 An Application of Probability Theory to Fourier Series

In this section we are
Fourier series due to G. Sze
theoretical interest, but

r goipg to discuss a classical theorerﬁ about
, hgo. This theorem not only is of considerable
also has a number of practical real-life applicati
pplications.
For those who want to learn about these applications, we recommend the
I\‘llery_reafiable book by Qrenander and Szegd (Toeplitz Forms and Their
pplications. Berkeley, Calif.: University of California Press, 1958).

ities p,, — oo < n < oo, satisfy equa-
(g, S
tions Lan wthatif 3’ n’p, < o0, proposition 2 is
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Szeg6 proved his theorem in 1916, and since then several other proofs of
it have been discovered. The proof described below is due to Mark Kac and
consists of reversing one of the key arguments of the previous section.

We begin by making a few definitions: Let 4 be the Borel subsets of the
real line. Suppose we are given a probability measure u and a sequence of
probability measures p,, 4,,... on #. We will say that p, converges weakly to
uif, for every bounded continuous function f,

1) ff it = ff a

The notion of weak convergence will play an important role, not only in the
following discussion, but also in the formulation of the central limit theorem
in the next section.

The second notion we will need involves some elementary linear algebra.
Let T ={ay), 1 <i,j < N,bean N x N matrix of complex numbers with

@) =%

It is a standard theorem in linear aigebra that 7 has N real eigenvalues; that
is, the equation

&

det(A — T)=0

has N real roots 44, ..., Ay (potentially occurring with multiplicities). For every
subset 4 €4, let u{A) be the number of As contained in A4, counting multi-
plicities. The measure u defined by this recipe is called the spectral measure of
T.1f 1 is a bounded continuous function then

N
@3) ffdu = /09
Having the notions of weak convergence and spectral measure, we can

state a provisional form of the Szegd theorem. Let a,, —c0 <n < 0, be a
sequence of complex numbers satisfying

@ o =0
and
) f‘, la,| < oo

Associated with these numbers is the infinite matrix
T=(a,, with a,,=4a,., —00 < M, n<w

Matrices of this form are called Toeplitz matrices. Notice that, by equation 4,
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T satisfies the symmetry condition in equation 2. Let
(6} Tw=(lp,) O0<mn<N-1

be tl.le' N x N principal minor of this matrix. The Szegd theorem in its
provxsmr.)alA form says that, if u is the spectral measure of Ty, then puy/N has
2owie?,k h:jmt as N — oo. We will identify this limit shortly, but before doing
et’s observe an interesting tie-in between Toeplitz matri i
50 o o P atrices and Fourier

0] g0y= 3. ae™
By equation 5, ¢ is continuous. Moreover, by equation 4
G0y =} a-,e™ =3 a,e™ = q(0)

Tl - - 1 l 1 I gz ] ] f 03 : -
l . ] [ J l 1 :

T, %% - &*
be the linear mapping that sends f e ¥? to qf € #2. Then, by equation 7
(8) ;I;et‘mﬂ = i a“e;‘(n+m)6 = i a einﬂ

Th:Dt is, @, iS thezmatrix associated with T, in terms of the basis "’
<n<oo,of & .ZThe matrix Ty has a similar description: Let ¥}, be the
vector subspace of #Z spanned by the functions ™, 0 <n < N — 1, and let

Ptyz—aVN

be the orthogonal projection of #2
: r onto V,. In other words, if fis in %2
its Fourier series is ! s il isin £ and

Z cneinﬁ
-
then
N-1 3
P=Y e
0
Let
(T;)N: VN i d VN
be the linear mapping

©) (Twf = PT,f
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Then, for0 <m < N — 1,

N—1
(?';)Neim(} —_ 2 an_meine
n=0
by equation 8; so the matrix associated with (T})y in terms of the basis ™,
0 <n<N — 1,is exactly Ty-
Consider the probability measure

(3:)1

on the interval [—m, 7). If we think of the function g:[—= 7] — R as a
random variable, its probability distribution p is defined by the formula in
equation 3 of §2.6; that is, for every Borel function £

l T
(10 j fdu= 5—[ STqO)}dn
R T J—n
We can now state the Szegd theorem in its sharp form.

Theorem 1. Let py be the spectral measure of Ty, and let p be the measure
in equation 10. Then

My

11 =
(mn N _H

weakly as N — o0.

Let us see what equation 11 says in concrete terms: Let
AN i=1,....,N

be the eigenvalues of Ty, and let f be a bounded continuous function on the
real line. Then by equation 3

N
[ rau = 5,0
so equation 11 is equivalent to the assertion that

12 1~
(12 Wi E j  Sla@)d0

as N — oo, for every bounded continuous function f.
We will now give a heuristic justification of equation 12 in terms of

probability theory. Suppose that

a, = Du —00 << ©
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with the p,’s being transition probabilities satisfying equations 1 through 3 of
§3.6. As in §3.6 we will consider the random walk based on these transition
probabilities; but, instead of assuming that the random path starts at the
origin, we will assume that it starts at one of the points x = 0,..., N — 1 and
that all these points are equally likely as starting points. We will confine
ourselves to a fixed finite interval of time0 <t < m. Thus a sample path can
be described as a zigzag line consisting of m segments. An example of a path

for m = 3 is shown in the following figure. The t coordinate indicates time,
and the x coordinate indicates position,

@3
2,2

G h

2,0

We will compute the return-time probabilities for this process as in §3.6
but with a “confinement” condition imposed: What is the probability that a
random path returns to its initial position at time ¢t = m and stays confined in
thebox 0 <x<N—-1land0<; < m? (For instance, in the figure the con-
finement condition says that, at times ¢ = 0, t = Lt =2 and t = 3, the x co-
ordinate of the path has to lie in the interval 0 < x < N — 1.) Let us denote
the probabilities in question by p(m, N). We claim that

1 X
a3 Pim.N) = 3 Gy

Proof. We will prove the case of m — 3, the general case being essentially no
more difficult. Let k be a point on the interval 0 < x < N — 1. Because our
random path has to start at some point in this interval and because all N
points are equally likely, the probability that it starts at kis 1/N. What is the
probability that at ¢t =  its position is k, at t = 1 its position is Latt=2its
position is n, and at £ = 3 itg position is again k? Clearly this is

1
(ﬁ)?ﬁ—kpn—ipk—n

The probability p(3, N) is therefore the sum
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(14) (%) Y. Pr—k Pn—i Pk—n

over 0 <k,l,n < N — 1. But the sum in display 14 is also just 1/N times the
trace of the matrix T;?; that is,

(15 p(3,N) = (71\7) trace T,

In terms of the eigenvalues AN, this trace is just

N

Z ( igN))s
i=1
i O
establishing equation 13 for m = 3. - ' '

Let’s now drop the constraint condition—-that is, no longer require tllxe
random path to be constrained to lie on the interval 0 < x < N-—1 l})}u; cir; y
require that its initial position lie on this intervgl: What is the proba 1Cl 1 yt,
for an unconstrained random path, that its positions at. time ’z’t =0 arkn} '1'?
time t = m coincide? Clearly this is just the “return at time m” probability
computed in §3.6; that is, it is just

1

pm =5 | atorao

where g(f) = 3 p,e™ by proposition 1 of §3.6. Now it is intuitively clizar that
as N — oo, with m fixed, p(m, N) — p(m). Indeed, if we make.the mf[ef'\‘fa}
[ON — lj’extremely large relative to m, relatively few paths with an initia
pc;int in this interval leave it before t = m in view of property 2 of §3.6. Hence,
we conclude

1y 1 ("
(16) N2 SE) ~ o L; fla6)]46

for f{x) = x™ By taking linear combinations pf x™s we see _that ?ctlgatggg elf
is true for any polynomial function f, and a §1mple 'apphcatnim of the
strass approximation theorem shows t'hat .1t is true in general. N
The following series of exercises will give you a chance to strip '; ;;J >
abilistic scaffolding from this proof. Hencefc‘)rth', Gy, — 00 <1 < oo(,i \;n L et !
arbitrary sequence of complex numbers _sz.itlsfymg eqfl‘fit'lons ‘4 an t ;1 w?th a,
the a,’s will not necessarily be the transition probabilities associate
random walk.

1. Show that

—}—j ¢di= Y aaa,

2n - rts+t=0
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2. Suppose that all but finitely many of the a,’s are zero. Show that

1 1 ("
(ﬁ) trace Ty — I J:n,qz’ do

3. Leta,, —o0 < n< o0, be another sequence of numbers satisfying equa-

tions 4 and 5. Suppose that, for all n, la, — a,} < & Let M be the larger of
the two sums

Slag  and Y lal
Show that

Y aaa— Y aaal<3eM?

rtste=0 r+s+r=0

4. Similarly, show that

) (Fl\, ) |trace T — trace (Ty)?| < 3eM?

5. Show that equation (%) is true without the assumption that all but finitely
many of the a,’s are zero.

6. Prove equation (x) with the power 3 replaced by the power m.

7. Let a = ming and b = max g. Show that the eigenvalues of Ty lie on the
interval a < A < b. (Hint: Use equation 9.)

8. Let f be a continuous function on the interval [a, b]. By the Weierstrass
approximation theorem, there exists for every ¢ > 0 a polynomial function
p such that supjf — pl| < & (See §2.7, exercise 9, or §3.4 exercise 6.) Use
this theorem in conjunction with exercise 7 to prove that u, converges
weakly to g

9. (Szegd’s original version of the Szegd theorem) Let Dy be the determinant

of Ty. Show that, if ¢ is bounded below by a positive number, then Dy > 0
and

N—w T

lim DY¥ = exp [%-J‘ log g(6) dﬂ]
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L@+ B g
n

03]

as n — o0. Then u(X,) = L.
In other words, if
$,(x) = f10) + =+ + fulx) — nE
then
S.(x)
@ = 0

as n — oo with probability one. In many practical problems, one would like
to know how fast this convergence is. A close look at the proof of theorem 1
gives the following theorem.

Theorem 2. Let fi,fs,... be as in theorem 1, and let « > 0 be given. Then

5,00

3 ETRIRE 0

as n — oo with probability one; that is, S, (x)/n — 0 faster than (2 with
probability one.

Proof. ‘The first step of the proof is to verify the following lemma.
Lemma 3. For each k > 0 there isa €, > 0 such that
@) j S dy < Cn*
X
This lemma can be proved by induction. The case ofk=2 ig done in the
proof of theorem 1. The induction step is fairly messy but straightforward,

and we leave it to the reader. (See §2.7, exercise 5.) ‘ .
Now, given a > 0, choose k so that 1/k < o notice that equation 2 and

Chebyshev’s inequality give

SZk 2k
H({ n(mn)m > 5}) = l“({nm—zka > & })
§3.8 The Central Limit Theorem
1 2k d
. . 5) < srwe | S dB
In §2.7 we proved the following version of the law of large numbers. £n X
C G
Theorem 1. Letf,,f,,... be a sequence of bounded random variables on X = Szknkzéa = 376
that are independent and identically distributed. Let E = E(f;) be the common

expectation value of the f’s, Let X, be the set of points x & X for which

P T Y V. Y, T VR V) S
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Now, as in §1.1, choose a sequence ¢,,&,,... with ¢, — 0 and

Sy(x)

A” = {XEX; e

>l

Then, by equation 5, ) 22, (4,) < 0. So, by the first Borel-Cantelli lemma,
u({A4,:1.0.}) = 0. But, for x in the complement of {4,; i.0.}, we must have

S(x)

| <&
n(1/2)+a

n

for all but finitely many »’s. Hence, we conclude

Sa(x)

;{m—*o as n-— oo

with probability one. 0

A natural question to ask at this point is “What happens to S,/n*” as n
— 00?7’ To formulate the answer to this question, we need a definition. Let
f be a bounded random variable with expectation value E. The integral

Vif)= L(f —Eydu

is called the variance of f. It is regarded by probabilists as a good mea-

sure of “deviation of f from its expectation value,” because by Chebyshev’s
inequality,

1 4
(6) M{xeX;if—-E[>M}gmf(f_E)sz: A(l];)

For instance, inequality 6 says that the set where f deviates by one unit from

its expectation value is less than V(f). If ¥{f) is very small, so is this
deviation.

Notice that, if v is the probability distribution associated with f, then by
equation 3 of §2.6

V(f)=J (xiE}%iv
R

So, if two random variables are identically distributed, they have the same
variance.

Let’s now return to the question posed earlier. Because f, f5,. .. are identi-
callv distributed. V(f Y= V() = ---.
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Theorem4. Leto = V(f)=V(f2)=""". Then, for every pair of numbers a
and b, witha < b

$,(%) 1
(7) y{xeX,a<;—”i—<b}—>—\/:2,Kro ae dt

as n tends to infinity.

This theorem is called the central limit theorem. Itis sorgetimes stated as
saying that, if the deviations of the f;s from their expect?tlpn value E, for
1 <i < n, are rescaled by the factor n2, then these deviations tend to be
normally distributed for n large. S

Notice that, if we denote by g, the probability dlstnbu_tlon of the rgndor_n
variable S,/n*? and by J the interval (4, b), the'left-hand side of equation 7 is
i, (J). The right-hand side, on the other hand, is

j~ e dpy
7

®) o) =

2no

The measure p, defined by equation 8 is called the Gaussian or normal
distribution with variance ¢. The central limit theorem says that, for every
interval J,

)] pal ) = pe(J) as n—o
Proof of theorem 4. Replacing f; by f; — E, we can assume t}}at E =0. We
will first prove a statement similar to equation 9 for the Fourner transforms
of i, and .
Lemma 5. Let
Xa(t) =}‘ e ™ dy,
R

Then, for fixed 7, x,(t) = €~/ as n — co.

Proof. By equation 3 of §2.6,
Xa(1) =j’ e dyy = [ &SN dy
" R x

ZJ‘ e~ UNMU o+ 1 gy
X

_ (j e—itf,/ﬁdu) X e X ([ e-ftfn/ﬁdu)
X X
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by independence. Because the fi's are identically distributed, equation 3 of §2.6
tells us that

L e—itf;iﬁdu - L e-—i:f;;\/id# ——. L e—itf,./\/;d'u

In fact, each of these expressions is equal to
J‘ emi/m gy
R

where v is the common probability distribution of the J7's. Therefore, letting
S be any one of the £;’s, we get for y, the formula

(10) am=(jfwﬂaf
X

Now notice that, for ¢ fixed,

s B (-

: 2
—§%~C%yﬁl+m

where r, is a bounded function that tends to zero uniformly as n — 0. Inte-

grating the right-hand side, taking into account the fact that E = [fdu =0,
we get ’

11 ~uin/n gy = 1 _ (O
o (RS

where

1
go=—| f?
n aLf radp

The Lebesgue dominated convergence theorem implies that
(12) £, —0 as n—oow

y

If we substitute equation 11 into equatioﬁ 10, we get

wo=|1-(5)a+e]

83.8 The Central Limit Theorem 175

Therefore, the proof of lemma 5 reduces to showing that

ot? * Y
(13} [1 — (E;)(l + 8,0] — g2

as n — oo. For this proof, set a = —o¢2/2 and take the log of both sides. The

left-hand side becomes
a /
nlog{l + (;)(1 + 8,,)]

log(l + as)
s

or, with s = {1 + g,)/n,
(14¢&,)

In view of equation 12, the limit of this expression as » tends to infinity is

mlog(l + as) _ d

h —log(l + as)lsep = a
ds

s+0

which is exactly the log of the right-hand side of equation 13. \Y
We now return to the proof of theorem 4. We begin by proving an
essentially equivalent statement. We will show that, if f is a Schwartz function,

then
(14) J fdunﬂf fau,
R R

as n — o, To see this, note that

[t [(] )
R 2r Jr\ Jr

=%ff®n®ﬂ
T JRr

The last expression, however, limits to

1
o -y2/20 d
e Lf(y)e y

by lemma 4 of §3.5 and lemma 5 of this section. Hence, we have established
equation 14.

To show that equation 14 is essentially equivalent to equation 9, consider
a Schwartz function f, of the form indicated in the following figure. (We
showed in §3.5 that Schwartz functions of this type do exist.)


http:e-itfl.Jn
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| e

€ b—e b
Let J be the interval (a, b). It is clear that

ffg du, < p,(J)

so by equation 14

na;

b—e
> j e™ 29 gy

ate

liminf g (J) = lim fﬂdun = jﬁdﬂa

The last inequality holds for all ¢ > 0, so we obtain

b

liminfp (J) > f e R0 dy = #olJ)

a

A similar argument shows that
lim sup 11,(J) < p,(J)

so we conclude that the limit exists and is equal to the expression on the
right. |

Another formulation of the central limit theorem is that the sequence of
measures p, converges weakly to the measure p, asn — co. Recall from §3.7 that
this statement means that

(15) JRfdu.. - L fdu,

\
for every bounded continuous function f. By equation 14 we know this fact
to be true when f is a Schwartz funcﬂion; and, by approximating by Schwartz
functions, one can easily show it to be true for any bounded continuous
function.

Example: coin tossing.  Suppose thatin theorem 4 the fi’s are the Rademacher
functions R;. The strong law of large numbers says that (S,/n)(w) >0 as

177
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n— . A gambler might want to know how many trials it tal_ces to be
reasonably sure this quantity is near zero. For example he or she might want
to know that |S,|/n < .01 with a probability of 99%. Because o0 = V(R,) =
V(R,) =+ = 1, one gets from equation 7 the estimate

99 = u({xe X; l? < .01})

18,
(16) = “({XEX’ Jn 'Olﬁ})

. I—Olﬁ e " dt

NG ~.01/n

By numerical methods one can show that, if

1
N

then a = 2.57.... Hence, by equation 16, .01, /nx 257 0orn = 66,000; that is,
after 66,000 tosses one can be 99% sure that |S,|/n < 01

J' e~ dt = 99



Appendix A
Metric Spaces

_ We collect here, in a minimal sense, the important facts about
metric spaces used in the text. This exposition is in no way complete and is
meant only as an casy reference for the reader who is already familiar with
these concepts. For a more thorough treatment of this matter, sec W. Rudin,

Principles of Mathematical Analysis, 3rd Fd. (New York: McGraw-Hill, 1976).
Let M be a set.

Definition 1. A metriconaset Misa mapd(-,-}: M x M — R satisfying the
properties

1. d(x,y) = d(y,x)

2. dx,y»)=>0

3. d(x,y)=0if and only if x = y
4. d(x,y) < d(x,z) + d(z,y)

If d is a metric on M, the pair (M, d) is called a metric space.

Exatpple 2. Let (V,]|-]]) be a normed vector space (see §3.1). Then Vis a
metric space with metric <

d(x,y) = || x —y|
Metric spaces are nice because they allow us to define the basic topological

objects we are used to considering in R"—for example, open and closed sets
>
compactness, convergence, and so on. We first discuss convergence.

178

Metric Spaces 179

Definition 3. Let (M, d) be a metric space. Let x, x5, X3,... be a sequence in
M. We say {x,} is a Cauchy sequence if

(1) d(x,,x,) >0 as n,m-— o
We say x, converges to x e M (written x, — x), if

(2) d(x,x,)—»0 as n-ow

Proposition 4. If x,,x,,... is a sequence in M with x, — xe M, then the x;’s
form a Cauchy sequence.

Proof. d(x,,x,) < d(x,,x)+d(x,x,}—+0 as nm— 0 |
Thus, just as in R”, every convergent sequence in (M,d) is a Cauchy
sequence, The converse, however, is not true in general.

Example 5. Let M = R — {0} and let d(x, y) = |x — y| for x, ye M. Clearly
the sequence x, = 1/n is Cauchy, and yet there is no x e M such that x, — x.

Experience in R” tells us that it is nice to be able to use display 1 as a
criterion for convergence. This motivates the following definition.

Definition 6. (M, d)} is called complete if every Cauchy sequence in M con-
verges to an ¢lement of M.

Example 7. R”" with the metric

» 12
() d(x,y) = ( Zl (6 = ys)z)

is a complete metric space. We leave this fact for the reader to check. It follows
from the fact that R with the metric in example 5 is complete.

When we consider convergence of sequences, it is sometimes useful to
know if a subsequence converges. One check for this is that the sequence be
contained in a compact set. To define compactness in a metric space, we need
to study the open and closed sets.

Let (M, d) be a metric space and let A = M be a subset. Wesay xe M isa
limit point of A if for every & > O there is an x,€ A with x, # x and d(x, x,) < &.
The set A is called closed if it contains all its limit points. In general, if 4 < M,
the closure of A, A, is the smallest closed set containing A. It is easy to check
that A consists of the points in A4 together with all the limit points of A. A set
U < M is called open if its complement is closed.

Proposition 8. 1f U = M is open, then for each x, € U there is an r > 0 such
that the ball
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4) B,(xo) = {xe M; d(x,x;) < r}

is contained in U.

Pro_of.‘ By definition, U is open if and only if U° is closed. Now x,¢ U®
so it is not a limit point of U Hence there exists an r >0 such tha;
B {xg)nU* = 0. O
A set K « M is called compact if, whenever {U,} is a collection of open sets
covering K, there is a finite subcollection U, ,U,,,..., U, covering K, (A
collection {U,} of sets covers K if K = | | U,.) s " '

I’ropositiqn 9. Let (M,d) be a metric space and let x,, x,,... be an infinite
sequence in M . Suppose there is a compact set K < M such that x, € K for all
n. Then there is a subsequence x,, x,,,... of the x,’s that converges.

Proof. 1t is enough to show that the set 4 = {x,,x,,...} has a limit point
Suppose this is not true. Then for each ye K there is an ¢, such that ii‘
B, = {x .d(x, y) < ¢&,}, then B, contains at most one point of 4. yThe collecti’on
{B,},x is an open cover of K with no finite subcover. This fact contradicts
the compactness of K. |

This proposition gives a nice criterion for existence of convergent sub-
sequences. The rub is that compactness is generally hard to check. However
in the case that the metric space is R” with the usual metric given by equatiori
3, the Heine~Borel theorem gives a simple criterion for compactness.

Theorem 10. (Heine-Borel) Every closed, bounded subset of R" is compact.

Remark. A set A < R” is bounded if there is a number M > 0 such that
d(x,y) < Mfor all x, ye A.

Warning. The Heine—-Borel theorem is not true in a general metric space.
To prove theorem 10 we need the following lemma.

Lemm:.i 11. Let(a;,a,,...,a,) and (by,..,b,) be elements in R” with a; < b;
for allj = 1,2,...,n Then the closed multi-interval J = {xeR”; a; < x; < b-}f
is compact. A

Proof. Suppose, on the contrary, that J is not \éompact. Then there must be
a cover of J by open sets {U,} that has no finite subcover.

If we let I, = R be the interval I, = [a;, b,], we note that J =1, x I, x
- x I. Let ¢; = $(a; + b;) and let o

I =[a;c] I =[c;,b] i=1,...,n
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Then there are 2" multi-intervals of the form
I x IF x - x If

all of which are covered by the U,’s. At least one of these multi-intervals must
not allow a finite subcover because J doesn’t. Choose one such multi-interval
and call it J,. Now repeat this process ad infinitum to get a sequence of
multi-intervals

J - Jl - '}2 >

none of which can be covered by finitely many of the U,'s.

For each k take x,€J,. Notice that the sequence {x.}i2, is a Cauchy
sequence because the size of J, decreases as k — co. Because J, is closed there
is a limit point x, € J;. Also, for each I the tail of the sequence {x,}i>; is in the
closed set J,. Hence x, € J, for each [ that is, xo € }i21 Ji- Choose a, S0 that
xg€ U,,. By proposition 8 there is an r > 0 such that B,(x,) = U,,. We claim
that, for some k, J, © B,(x,). This claim contradicts the construction of the
J.’s and thus proves the lemma. To prove this claim let

i ( K; - bj)z)m

and note that for x, y € J, d(x, y) < /2% Now, x, € Ji forall k, so we have that,
if x e J,, then d(x, xo) < 4/2; that is, J, & B j2(%o). Choosing k large enough
so that /2% < r we are finished. v

Proof of theorem 10. Let Cbea closed, bounded subset of R". Because C is
bounded, it is contained in some closed multi-interval J. Because C is closed,
theset R" — C = U, is open. Now let {U,} be an open cover of C; the collection
{U,} u {Up} is then an open cover of J. By the lemma, J is compact so
there is a finite subcover. If U, is among these, throw it out; what’s left still
covers C. ]

Finally, we can combine proposition 9 with theorem 10 to get the
Bolzano—Weierstrass property.

Theorem 12. (Bolzano-Weierstrass) Every bounded infinite set in R™ has a
limit point.

Now suppose that (M, dy) and (N,dy) are two metric spaces. A function
f:M — N is continuous at xo€M if for every ¢ > O there exists & > 0 such
that dy(x,y) < & implies that dy(f(xo)f () < & The function f is called
continuous if it is continuous at each point of M. Notice that when checking
continuity the § may vary depending on x,. The function f is called uniformly
continuous if the 8 can be chosen independently of x,; namely, f is uniformly
continuous if for every & > 0 there is a 6 > 0 such that dy(f(x),f()) <&
whenever dy(x,y) < 3.
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Proposition 13. Let f: M — N be uniformly continuous and let x,, x;,... be
a Cauchy sequence in M. Then f(x,), f(x,),... is a Cauchy sequence in N.

Proof. Given ¢ > 0 we need to find K such that dy(f(x;), f(x;)) < & when-
ever i, j > K. Because fis uniformly continuous, there is a § > 0 such that
dy(x,y) < 6 implies that dy{f(x),f(y)) < & Because the x;’s are a Cauchy
sequence, we can find K such that dy(x;, x;} > & whenever i,j < K. This is the
K we sought. O

Now let (M.d,,) be a metric space and let 4 < M be a subset. 4 is
automatically a metric space with the metric induced from d,,. In §3.5 we
encounter a continuous function f: 4 —» N and we wish to extend it to a
continuous function g: M — N. When fis uniformly continuous, we can make
this extension if we assume that N is complete and that points in M can be

“approximated” by points in 4 in the following sense: A subset 4 < M is called
denseif A = M.

Theorem 14. Let{M,d,,)and (N,dy) be metric spaces. Let 4 « M be a dense
subset of M, and let f: A — N be uniformly continuous. Assume that N is
complete. Then there exists a unique continuous map ¢g: M — N such that

g{x) = fi(x) forallxe 4

Proof. Webeginbydefiningg. Let xe M. If xe A weset g{x) = f(x). I x¢ 4
then, because A4 is dense in M, x must be a limit point of 4. Choose a sequence
Xy,%5,... 10 4 with x; - x in M as i — oo. By proposition 13 the sequence
f{x;) in N is Cauchy. Because N is assumed to be complete, we know that
this sequence has a limit; define this limit to be g(x). Notice that this definition
is' independent of the choice of sequence x,,x,,... because, if x;,x%,... Is
another such sequence, then f(x!) — g(x). In this fashion it is also easy to see
that, given ¢ > 0, there exists a d > 0 such that, if dy(x, y) < é for xe M and
ye 4, then dy[g(x}), g(y)] < & To prove continuity of g, take x, ye M with
da(x, ¥y < §/2. Because 4 is dense in M, we can find ze 4 with dy(x, z) < J/2.
Then dy(y,2) < dp(y, x) + dpy(x,2) < 8 and so

dnlg(x)g(y)] < dylg(x),9(2)] + dxlg(2),9())] < 2¢

i .

whenever dy(x, y) < 6/2. !
The uniqueness of g is a direct consequence of its continuity. (]

Appendix B
On < Matters

You recall that in §3.8 we proved the following improved version
of the law of large numbers.

Theorem. Let fi,fz,... be bounded, independent, identically distributed
random variables on the probability space (X,u). Let E be the (g)rr%r;l:n
expectation value of the f7s, and let S,(x) = fi(x) + -+ fulx) — nE. 1,
for any a > 0,

Su(x)
H HiRe

as n — oo with probability one. ,
To prove this theorem we assumed that the f’'s were bo.unde(z kso that ;lve
wouldn’t have to worry about the integrability of the functions S2k, Actually,

if o > 1/k it is easy to see that equation 1 holds as long as

@ j‘ |fil* < 0

Indeed, in order to get the estimate in inequality 4 of §3.8, all you need to know
is that

N 1 T

It turns out that inequality 3 follows from inequality 2 once we have some
basic facts about FP-spaces, which you have already proven in the exercises
of §3.1 (see corollary 5 of this appendix). Here we first review those basic facts

183
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(dqn’t peek until you’ve looked at exercises 7, 8, and 9 of §3.1 and exercise 10
of §3.2) and then we develop some .#7 analogues of some of the & ?-theory in
Chapter 3.

Basic Theory

.Let (X, J‘u) be a measure space. Recall that, for p = 1, £P(X, u) {or just &7
if X,u is understood) is the set of complex-valued measurable functions
f: X — Csuch that

@ j P <
X
The value
) T ([ T dﬂ>w fewr

is called the #?-norm of f.

Theorem 1.  #?(X, p)is a vector space and || ||, is a norm on £7(X, p).
To prove theorem 1 we will need the following lemma of calculus.

Lemma 2. Let ¢(¢) be a convex function on the interval{a, b); thatis, ¢"{t) > 0

for all te{a,b). Let x, ye{a,b) and let x and § be nonnegative numbers with
o + fi =1.Then

glax + By) < ag(x) + fo()

Pro;:ﬁ Suppose this lemma is not true. Then, for some «, f, x, and y as above,
we have

$lax + By) > ap(x) + BS(y)
or
a[@lax + By) — ¢(x)] > BLP(y) — ¢lax + By)]
because o + § = 1. Dividing by afi(y — x), we get

dlax + fy) — d(x) _ Hy) — dlax + By)
e
(ox + By) — x y — (ax + By)

By the mean value theorem there exist £ and n wi
pwithx <f<ax+ fy<n<
such that ¢'(£) > #'(n). This contradicts ¢"(¢) > 0. ‘1;
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Proof of theorem 1. First, to check that ##(X, ) is a vector space, we need
to see that, if f,ge £7(X, p), then [|f + g’ < . To do this, notice that for
p > 1thefunction ¢(r) = t”isconvex; hence, witha = f = 4, we conclude from

lemma 2 that
1 1 71 1
— - — Fid — p
(2!fi+2lgl) <SP +3ldl

pointwise in X. Integrating this inequality gives

[ir+opans2 [ G+ 2ol an <27 [irraus [apan)

Hence, f + g€ £7(X, ).
To show that |||, is a norm on £P(X, u), we need to prove the triangle

inequality; thatis, [/ + gll, < i fl, + lgll, (The rest of the norm properties
are obvious.) To prove this inequality, we need the following.

Lemma 3. Let fand g be nonnegative measurable functions on X, and let
p and g be numbers greater than 1 with (1/p) + (1/q) = 1. Then

(6) Jfg dp < ( J fr du)m’(I g* duy/q

Proof. Let a and b be positive numbers. Define the numbers x and y by
a = e®? and b = ¢”%. Then, because e' is convex and (1/p) + (1/q) = 1, we have
from lemma 2 that

ab = 2HPTO < lex + 133' . lap + }.bq

p
Now let
Jx) g(x)
a=55——<15 and b=-+—""<m
(7o) (Joree)
and integrate to get inequality 6. v

To prove the triangle inequality, consider

~ j}f +glPdp éj(lﬂ + 191V dpn

= j A0S+ 1gh) dp + j lgl(Lf1 + 1gh" ™ du
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Apply lemma 3 with g = p/(p — 1) to get

1/p (r~1L)p
[(ifl +lgl)"d/vt$(f ifl"du) U(If] + lgl)"du)
ijp (r—1)jp
+(f Igl"dﬂ) (j(lfl +191)"dﬂ)

1/p
(7 ilf+gll,,..<_('((lf}+lgl)”du) <Ufl, +lgll, O

80

Remark. The triangle inequality for || - | »» inequality 7, is called Minkowski’s
inequality.

We can now give an argument to show that inequality 2 implies inequality
3. First, we have the following proposition.

Pf'oposition 4. (Hdlder’s inequality) Let p and ¢ be numbers greater than 1
with (1/p) + (1/g) = 1. Let fe #P(X, i) and ge LUX, p). Then fge LYX, )

and
] ffg du

Proof. By lemma 3 we have

<fllgll,

flf.qldu=flfllgldus 10,

$0 fge. (X, 1) and

Ufgdu‘ Sf}fgldﬂ‘—: 11 lgl, O

Corollary 5. 1Let p, and p, be grcatér than 1, and let f, e #%(X, ) and
f2 € gi’z(X, ,u). Then f1 sz _cgmpzi(pﬁpz)( X, ‘u) and

ll fl f2 ”Plh/(ﬂﬁ'?:) —‘—;- ” fl Ilpl ” f2 “p2
Proof. Consider

f [ffalrirdered dy = f | fyfpipallor 2| £ jpimsioatoa) gy,
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Notice that f; € £P(X, u) implies that f,P1P/P1+92) g PP1+PF2 gnd, similarly,
fhrlerrd e g@tedin Now [po/(p, + p2)] + [p1/(p; + p2)] = 1,50 wecan
apply proposition 4 to conclude that

p2/(py +p2) pi/(prFp2)
j(lfl[ Ifz])p’pzl(pﬁh) du < (J P d.u) (j' |fo1P2 dﬂ)

S0

}1f1f2||p,p,/(p,+p23$ "fl Hm”fz“pz D

Now take k functions in %%, f,,f5,...,f.. By corollary 5, f, f,e ¥
Applying corollary 5 again gives f, /5 3 = (f1 /2) /3 € 3. Continuing in this
fashion, we get f, f, % -+ x f,€ £*; hence inequality 2 implies inequality 3.

Notice also that corollary 5 gives the following.

Corollary 6. Suppose p(X) < oo. Then L X,y F'(X,p) for 1 <r<p
and ‘

@®) I, <clfll, for fe??(X,u)
where ¢ = [u(X)]® Ve,

Proof. Because p{X) < oo the constant function 1 is in £%(X, y)forall s = 1.
Let s = pr/(p — r). Then, by corollary 5, f € #PP*9) = & and

LA < AN t

To continue now with the basic properties of .#P-spaces, recall that a
normed vector space is called a Banach space if it is complete in the metric
topology.

Theorem 7. #¥(X, u) is a Banach space,

Proof. We will prove this theorem in the case that X is o-finite; that is,
X ={JZ, X, with X; <X, <--and u(X,) < oo for all i. We leave the more
general case to the reader (see exercises 8 and 9 in §3.2).

Let { f,};2, be a Cauchy sequence in #?(X, u); that is, given & > 0 there is
an N such that || f, — f,ll, < e whenevern,m > N. We wish to show that there
is a function fe.#¥(X, u) such that f, — f in #£7; that is, given ¢ > 0 there is
an N such that || f, — fll, <ewhenn > N.

We proceed as in the proof of theorem 13 of §3.2. Because p(X;) < w0
we get from corollary 5 that %P(X,,u) = LY X, 1), and the f’s form a
Cauchy sequence in % (X, ). Thus, from theorem 9 of §3.1, we can extract a
subsequence {f; ,}.=, that converges a.e. on X; . Similarly, because u(X,) < o



188 Appendix B

we can extract a subsequence {f, ,},%, from the sequence { S1.n}, that con-
verges a.e. on X,. Continuing inductively we extract a subsequence {f; .} 2,
from {f;_; .}, that converges ac. on X,. By the Cantor diagonal précess,
the subsequence f, |, f, ,,... converges a.e. on X to a measurable function f
on X.Letg, = f) 1, 9, = f3,,, and so on. The sequence {g,}., is Cauchy in
LP(X, p); that is, for £ > 0 there is an N such that [9m — gall2 < & when
m,n> N,
By Fatou’s lemma, with n > N fixed and m — 00,

flimim‘lgm — glfdu < liminff |gm — gulPdu < &

The term on the !eft is [| f— g,|” dy, so this inequality shows that feZP (X, W
and that g, - f in #?(X, ). Because {g.}2, is a subsequence of {fi}=y, it
follows that f, — f in #7 as well. O

Representation Theorems

Recall that, for the Hilbert space #%(X, u), we have Schwarz’s inequality

jfg du

The generalization of this inequality to ZP-spaces is Holder’s inequality

<Iflzlgll:  for f, ge LX)

<Uflllale  fee X, gewux,w, Lilog
P q

f Jgdu

This inequality can be interpreted in the following way: For ge #%X, p)
consider the linear map ,

9 L &P X,0) - C where [(f) = Jfg du

It is an immediate consequence of Holder’s inequality that this map is
continuous. Indeed, to show that a map F: #7(X, @) — Cis continuous at f,
we need to show that, given ¢ > 0, there is a & > 0 such that || f — foll, < &
implies that |F(f) — F(f,)| < &. In this case ‘ §

L0 = LU =1L(f — [l < 1f —foll,ligl,

s0, if we take & = ¢/)|g|| o We are done,

The purpose of this section is to convince you that, in fact, every continu-
ous linear map I: £?(X, u) — C is of the form I, for some ge #YX, i) where
(1/p) + (1/g) = 1. We will not prove this fact in general; we will just prove some
special cases of it. If you want to see the general proofs, we recommend the
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treatment in Reed and Simon (Methods of Modern Mathematical Physics:
Functional Analysis, vol. 1. New York: Academic Press, 1980).

We first introduce some nomenclature. Let (V, | - ||) be a normed, complex
vector space. A continuous linear map I: ¥V — C is called a continuous linear
functional. The dual space V* is the space of all continuous linear functionals
I:V — C. Notice that V* is a vector space.

Proposition 8. Let]:V — C be alinear functional. / is continuous if and only
if there is a constant ¢ > 0 such that

(10) l{v) < cljv forallveV

Proof. The argument that inequality 10 implies continuity is the same as the

argument that I, is continuous. To show that continuity of l implies inequality

10, notice that, because [ is continuous at zero, if we choose ¢ > O there is a

d > 0 such that ||v]] < ¢ implies |l{(v)| < &. Let ¢ = 2¢/6. Then for ve V notice
é

- SO 1 l (2 ) ‘2 v

Hence |I(v)] < (2¢/8)]|v]| = cl[v]|. O

Now let H be a Hilbert space with inner product (-, ). If ve H we define
l,e H* byl (w) = {w,v),we H.(l,is continuous by Schwarz’s inequality.) This
definition gives a map

) ov

Hv)l < ¢

L:H—-H* ©byLv) =1,

1t is easy to see that Lis one to one. Indeed, if L{v) = 0 then [,(w) = {v,w) =0
for all w; hence » = 0. The surprising fact is that L is onto.

Theorem 9. The map L: H — H* defined by L(v) = [, is bijective.

Remark. We call this theorem a representation theorem because it “repre-
sents” the abstract space H* in terms of the known space H.

To prove theorem 9 we will need a geometric result on Hilbert spaces,
which is interesting in its own right. Let V < H be a vector subspace of H. If
V is also a closed subset of H (in the norm topology), then it is automatically
a Hilbert space itself; in this case V is called a Hilbert subspace of H. If we H
we write w L V if (w,v> = 0 for all ve V. Let ¥ be the set of all we H such
that w L V. Notice that ¥ is a vector subspace of H.

Proposition 10. Let ¥V — H be a Hilbert subspace of the Hilbert space H.
Assume that V # H. Then there exists we V' such that w # 0.
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Proof. Because V # H there is an xe H such that x¢ V. Let

a=inf ||x — v
veV

We claim that there is a ye V such that || x — y|| = a. To see this fact choose
v, € V such that ||x — v, — a as n — o0, Then

1on = vl = 2l0, — x| + 20, — x> ~ 41 3(0, + 0,) — x]°
£ 200, — xI? + 2| vy — x|? — 4a?

Hence the »,’s form a Cauchy sequence in H. Because V is closed in H, the
sequence of v,’s converges to ye V and

fx=yl=lim|x~uv,|=a

n—rw

Now letw = x — y, w # 0, because ye V and x ¢ V. We claim that we ¥+,
If this claim is not true, then there is a vy € V such that {w,v,> # 0. Let

;o <W,l70>
I g
Then y'e V and
2 ‘ _ W, 00> ?
ey 1= ey =S,
= _ 2 i<W,vo>|2 . <W) UO> - . <W, UO) _
B g T gl T T g XY
N (O Y
P e
< Jx—yl? |
This inequality contradicts the fact that |x — y|l = a. 0

We now prove theorem 9. Let /€ H*/We want to find v€ H such that [ = I,.
If I = O we can take v = 0, so we will assume ! # 0 from now on. Let K <« H
be the subspace of H defined by

K = {weH; l(w) = 0}

Note that K # H because ! # 0. If {v,} is a Cauchy sequence in K, then v, » v
for some v e H. By the continuity of [, we see that I{n,) — I{v) so l(v) = 0. Hence

ve K. Thus we have seen that K is closed. From proposition 9 there exists
w #0in K+ Let
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W)
P wi
Then
_lwl® e
I e fiel

Let x be any element of H. Notice that
I(x _ ) v) — (%) — I(x) =0

floli?
$0
I(x)
ol?

vekK

x —
Butve K™, so
0— <x ”'(1[%1)_2”’”> = (o) — 1)

That is, l(x) = {x,v) for all xe H. o ' ‘ l:(]j
Now let’s return to #F-spaces. In the beginning of this §ect10n, we showe

that, if g€ %4 with (1/p) + (1/g) = 1, then g defines a contlng?us ll.near func-

tional I, € Z7* given by I,( f)= | fgdufor fe ZL*. This definition gives a map

L:21>%"  byLg =l

This map is one to one because if I, = Othen, in parti.cular, L(L)= fagdp=0
for all measurable sets A with p(A) < co. This 1mp113st g=~0ae '

In fact, when X is o-finite, it is also true that L is onto; tha’t is, L is an
isomorphism. We won’t prove this in full generality; instead we’ll prove the
following special case.

Theorem 11. Assume that p(X) < o andlet 1 <p<?2and g=p/(p—1)
Then L : %% — £P* is an isomorphism.

: hat | = [,. Recall that,
Proof. Let lc #7*. We want to find ge £ such t .
because u(X) < oo, corollary 6 implies that £*(X, ) = LPX, ) and that
there is a constant a > 0 such that

I, <alfl, forfe2?

Now, by proposition 8, there is a constant ¢ > 0 such that

Nl <clfl, forfeZ”
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Thus
HAO < clfl, <cal fl, for fe #?

Applying proposition 8 again we see that, if we restrict I to #?, we get
something in #?*. By theorem 9 there is a g €.%? such that

1) = jfﬁdu for fe ¥?

We claim that g is actually in #% To see this, fix K > 0 and set

_ gt iflgx)] < K
"= {0 if g0l > K

Then h(x) is bounded, so he #*(X, 1) and

Hh)| =j lgl*dp < cllhl,
lao <K

p
—o(] iacoreran)
g <K
(/g
=c f ig(x)lqdu)
g <K

1/4
(j {g(x))# d#) <c
latl<k

This bound holds for all K, so, by the monotone convergence theorem, we
conclude that g(x)e £4.

Finally, because #2(X, p) is dense in £7(X, p) (e.g., the simple functions
are dense in #?), it is clear by continuity that

So

P

1) = f fidp  forall fe 27X, ) 0

Remark. 1t is an easy exercise to extend this result to the case when X is
o-finite.

Convolution

In the exercises of §3.5, we defined the convolution of f and g when f and ¢
are in Z'(R) by
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(11 frglx)= J.Rf x = Y)g(y)dy
In those exercises you proved the following proposition.

Proposition 12. f*ge #'(R) and
Hf*gl <1 flcligly

Proof. Consider the iterated integral

JJIf(x—y)g(y)}dxdy=Hflhllglli
RJR

By Fubini’s theorem (theorem 15 of §2.5), the integral

L f&x—y)gy)dy

makes sense for almost all x and is equal ae. to an %! function. Thus
f*ge ¥ (R)and a second application of Fubini’s theorem gives

r

dx

i

1 *gl Lf(X~y)g(y)dy

JR
"

< L{ L flx — y)g(y) dydx

LY

.

= L Lf(x — y)g(y) dxdy

L%

If gl .|

I

Corollary 13. Convolution is a continuous map from ¥ x #*' — #*; that
is,iff, » fin ' and g, — g in ¥, then f,xg, > f*gin L.

Proof. Choose n large enough so that ||f — fll; <L Then [fil, <
(1 + If1l,)- Now

If*g— fixgulls = Wf — f)*g + fux (g — g1
< \If = fillilglly + 1 Al lig — galls

S = fuldllglly + (0 + 1S 1)Ig —9al 20 as n*@é
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Proposition 14. Let f, g, he #*(R). Then
L frg=g+f
2. (fxghrh=fx(g*h)

Proof.

L fxg(x)= Lf x — Yg(y)dy
=Lf(s)g(x—s)ds, S=Xx-—y
=g* f(x)

2. (f*g)xh(x) = LLJ”(?C =z = Y)g(y)dyh(z)dz
=LL}”(JC—s)g(s—z)dsk(z)dz, s=z+y

= J; flx — S)JR g(s — 2)h(z)dz ds
=f*(g*hx) O

One of the main strengths of the convolution is that it tells us what
corresponds to a product in Fourier transform land.

Proposition 15.  (f+g) " = fgfor f, ge #\(R).
Proof. (f*g) (8) = _L e’*"‘f f&x = p)g()dydx
'R
B L L ¢ (x — P)gly)dxdy
= f f e (s)g(y) ds dy
RJR

=1(¢) L e™g(y) dy

= f©4) -

’I"he convglution can be extended to .#?-spaces in various combinations.
Forinstance, if f € #?and ge %7 for (1 /P) + (1/g) = 1, then f(x — vg(v)e P!
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for each fixed x; so equation 11 makes sense. In fact by Holder’s inequality
we have

(12) [frgx)l < | fl,llgll, forallx
Hence, f * g is a bounded function when fe %7 and ge %% (1/p) + (1/g) = L.

Proposition 16. Let fe %?, ge ¥4 and (1/p) +{1/g)=1. Then f#*g is a
bounded, uniformly continuous function on R.

Proof. Let e > O be given. We need to find § > Osuch thatif {x — y| < & then
|f * g(x) — f*g{y)} < e Notice that

If*g(x) — f g = U Lfx—2) — fly — 2)19(z) dz
< i = £lslal,

where f,(z) = f{x — z). Now let ¢ be a compactly supported continuous
function with

"f —(Mip <é

(You can prove that such ¢'s exist.) It is easy to see that there is a 3 > 0 such
that if |[x — y] < é then

e — oyl <e
Then | f, — fil, < I fi — el + 16 — bl + 1L — Ml < 36 O

Another combination for which the convolution can be defined is f ¢ &7
and ge #1, .

Proposition 17. Let fe %7, 1 < p,and ge #*. Then f * g is well-defined and
is in .¥?. Moreover

If*gl, <1 fl,lgll

Proof. Let g = p/(p — 1) and notice that

f f(x — y)g)dy = f g™ f(x — Pl ign)*edy

Now, by proposition 12, |g(»] | f(x — y)? is integrable for almost all x, because
Ig| and | f]? are both in #*. Thus, [g(3)|?] f(x — y)| is in £ for almost all x.
Hence, for almost all x we have by Holder’s inequality

i/p
Jlf(x = Ygidy < (j lgON 1 f(x — y)l”dy> gl
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Thus we have that f g is defined for almost all x; furthermore, we get

If*g(0F < U lgWIflx — y)!”dy> Iglif
By Fubini’s theorem
If*gll} < (f lgWIflx — y)|? dx d)f) lgl$e

< fI5Hgli*?e
50 Fr=gll, <1 fllgl, o

Another important use of the convolution is that it allows us to give

explicit smooth approximations to .#” functions. We describe this in the
following,

g:;:)position 18. Let fe. %' and let ¢ be a Schwartz function. Then ¢* fis

dk k
Proof. x4+ 1) = o [ dx = ey

dk
= fmqi(x = nfndy

where the differentiation under the integral can be justified by the dominated
convergence theorem. O

Now let ¢o(x) be a smooth function with support in (—1,1) and such that

I,%(x) dx =1
_JR

Let ¢(x) = kdolkx), k=1,2,.... Then #(x) is smooth, supported in
(—1/k,1/k), and

J dlx)dx = 1
R

Theorem 19. Let f € #7. Then ¢, * f converges to fin #? ask - co.

ggoaﬁ Let g be a smooth, compactly supported function with (| f — gll, <e.
en

xS = fllp < ldxf — dexgl, + lbe*a—gl, + lg — 11,
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By proposition 17, |, x(f — g)ll, < | f— g, because | ¢, ||, = 1. Thus
Id*f— fllp <2+ ld*g—gl,
Now notice that

[ * g(x) — g(x)| = U[g(x —y) — g(x)1d(y)dy

because | (y)dy = 1. Because g is compactly supported, it is uniformly
continuous; that is, given ¢ > 0 there is a § > 0 such that if |y} < § then
lg(x — y) — g(y)] < &. Now ¢, is supported in {— 1/k, 1/k}, so, if we take k large
enough, we can make

le*g(x) —g(x)] <¢  when xesuppy

Furthermore, if g is supported in (a, b), then ¢, * g is supported in (a — 1/k,
b + 1/k). Thus, for large enough k, we can conclude

Nxg —gll, <e U

Fourier Transform in #?(R)

In §3.5 we defined the Fourier transform
fo) = J‘f(x)e”""’dy for fe Z1(R)

We then used the density of the Schwartz space S in %2, along with
the Plancherel formula, to extend the Fourier transform to an isomorphism of
%7 onto #* The same techniques can be used to extend the Fourier trans-
form to 7 functions for 1 < p < 2. We need the following two results.

Proposition 20. The Schwartz space S is dense in #*R), p = 1.

We leave the proof of this proposition to the reader as an exercise. It is
essentially the same as the proof for p = 2 (theorem 15 of §3.5).

The other ingredient we need is an %” replacement for the Plancherel

formula.

Theorem 21. (Hausdorff-Young inequality) Let | <p < 2 and g = p/(p — 1).
Then, for Schwartz functions £,

13 Ifl,<Clfl, forsome constant C

A good reference for the proof of this is the book by Reed and Simon (see
the reference section, page 202).
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This result tells us that the Fourier transform is uniformly continuous as a
map from the dense set S < #?(R) into the space Z(R). By theorem 14 of
Appendix A we can then extend it to a map of #?(R) into #7(R), and
inequality 13 still holds for all f € #P(R).

Appendix C

A Non-Measurable Subset
of the Interval (0,1]

Let S' be the set of complex numbers of modulus one (complex num-
bers of the form, ¢ = a +ib, a, b € R, witha? 4+ b* = 1.) This set forms a group
under complex multiplication: If ¢;, ¢; € S' then ¢jc; and ¢; /¢, € §'. As aset
one can identify $! with the interval, I = (0, 1], by means of the map

(1 fil— S8,  f@)y=e"n.

{Notice that this map is both one-one and onto.) We will use the identification (1)
to transport the Lebesgue outer measure, u*, on subsets of / to subsets of S!; in
other words if A is a subset of §! we will define ;1*(A) to be p*( f~Y(A)). (Thus,
to show that there exists a non-measurable subset, U7/, of I it will suffice to show
that there exists a non-measurable subset, U, of S! and then take U’ = f~'(U).)

Let QN1 be the set of rational numbers in the interval, /, and let § (‘2 = f(QNI).
We claim

Lemma 1. Sé is a subgroup of S'. In other words, if ¢\ and ¢, are in qu 50 are
c1¢3 and cl/cz.
Proof. By assumption ¢; = ¥ and ¢ = €¥™2 with 1), 1, € Q N I. Choose s;

and 53 in @ N 1 so that (t; 4 #1) — 57 and {t; — ) — 57 are integers. It’s clear that

c163 = ¥ and c1/62 i

]

Given a subset, A, of §! and w € §' let wA = {wa,a € A}. We leave the
following as an exercise

199
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Lemma 2. For all subsets, A, of S and all w € S!

2 K (@A) = p*(A).

Hint: §1.3 exercise 14,

Since the rational numbers on the interval, /, are a countable set, so are the
points of §},. Let

{wi,i=1,2,...;0; € §p)

be a sequence to which every element of Sb belongs. Without loss of generality

we can assume that w; # w; for i # j. We will say that a subset, B, of $' has the
coset property (with respect to S}) if the sets

BJH(I)JB, j=1,2,“..-,

are mutually disjoint: 8; N\ By = ¢ if j # k. Itis clear that sets with this property
exist. In fact let ¢ be any point in S! and let B be the one element set consisting
of ¢. Then B; N B; s ¢ implies cw; = cw; or, dividing by ¢, w; = wy, ie. | = j.

Let’s pick a set, B,,,,, with the coset property which is as “large as possible,”
i.e. which is so large that if we add one more point to it, it no longer has the coset
property. | We claim that one of the sets

3 By = wxBpas, k=1,2,...,

is non-measurable. Indeed, by assumption, these sets are mutually disjoint; and
the fact that By, is “as large as possible” implies that

T

C)) UB, = §'.

(Proof: if this were not the case, there would exist ac € S! not in the union of the
By’s; and by adding ¢ to B,,,, we would get a larger set with the coset property.)
Suppose now that the By’s are all measurable. Then, since the union (4) is disjoint:

5 Tut(By) = ur(SH =pu ) =1
But, by (2),
(6) ll/*(Bk) = u'*(Bmax)s

! our naive intuition tells us that such a set has to exist; however, the existence of such a set involves
some delicate issues in set theory {such as the axiom of choice and Zorn's lemma). Suffice it to say
that the standard axioms of set theory permit s to assert that such a set exists, confirming our naive
intition.

A Non-Measurable Subset of the Interval (0,1} 201

so the left hand side of (5) is either zero or infinity depending on whether * (Byax)
is zero or greater than zero. This argument by contradiction proves that one of the
B,’s has to be non-measurable.

Exercise. In fact show that all the By’s are non-measurable and that By, is also
non-measurable.

Hint: See the exercise in §1.3 cited in the previous hint.
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Fourier coefficient, 131
Fourier series, 131
Fourier transform, 137-145
Fourier transform in 7, 197198
Fubini’s theorem
version 1, 95-96
version 2, 9899
version 3, 99

gambler’s ruin, 15
Gaussian measure, 68—69, 173
Gram-Schmidt process, 136

Haar functions, 136-137
Hausdorff-Young inequality, 197-198
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Heine-Borel theorem, 180-181
Hermite polynomials, 154
Hilbert space, 127

Holder’s inequality, 186

identically distributed, 104
independent events, 46
independent random variables, 104
independent sets, 46—47
infinitely often (i.0.), 45
inner product, 125
integrable, 76
integral
of integrable functions, 76
of nonnegative measurable
functions, 61-63
of nonnegative simple functions,
60-62
inverse Fourier transform, 148

joint probability distribution, 104

A-system, 91-93
law of large numbers, 1-2, 44
strong, 9-11
weak, 6-9, 113
E(w), L, E), 76
P o118-124
$2,124-129
12, 133-134
£, 124, 184188
Lebesgue dominated convergence
theorem, 78-80
Lebesgue measure, 3, 36-39
Lebesgue measure zero, §-9
Legendre polynomials, 136
lim inf, 50, 56-57
lim sup, 45, 56-57
linear functional, 189

marbles, 21-22, 105106
Markov process, 23
measurable function, 53-58
measurable set, 34
measure, 27

space, 53

theoretic model, 4243
mesh width, 83

metric space, 178—182

Minkowski’s inequality, 186

monotone convergence theorem,
72-74

multi-interval, 25

Parseval’s identity, 154
partition, 8384

piecewise constant, 6—8
piecewise differentiable, 140
ar-A theorem, 92-94
a-system, 92

Plancherel formula, 132, 150
probability distribution, 103
probability measure, 42
product measure, 94, 96
product set, 89

Rademacher functions, 46
random variable, 16, 55, 102
random walk, 17

generalized, 156

with pauses, 17-18

in the plane, 18-19
refinement, 83
representation theorems, 188-192
Riemann integrable, 84
Riemann integral, 8388
Riemann sums (upper and lower),
ring, 25
run lengths, 46

sample space, 17
Schwartz function, 146
Schwarz’s inequality, 126
set function, 25
additive, 25-26
countably additive, 26-27
Shakespeare, 15, 49
o-field, 42
o-finite, 39
a-ring, 35, 42
simple function, 60
slice, 89
spectral measure, 165
square-integrable functions, 124
symmetric difference, 25
Szégo theorem, 165
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ternary expansion, 12, 17-18
Toeplitz matrix, 165
triangle inequality, 126

unfair coin, 108, 163~164
uniform continuity, 150, 182

variance, 70, 172
vector space norm, 120

Weierstrass approximation theorem,
114, 143-144
winning streaks, 16
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