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Preface to the 1996 Edition 


We have used Measure Theory and Probability as our standard text in 
the basic measure theory courses at M.LT. and the University of Georgia for over 
ten years and have been agreeably surprised at the enthusiasm with which students 
have reacted to the 5-3 mix of measure theory and probability. It is not clear that 
we've converted lots of aspiring mathematicians into probabilists, but we do seem 
to have left the non-mathematicians, our students from electrical engineering and 
computer science, feeling upbeat about the Lebesgue theory and its practical uses. 
On the down side, our students have been annoyed at the plethora of typos and 
silly mistakes in the first edition. (For instance the absence of a superscript bar on 
the right hand side of identity 

(v, w) = (w. v) 

made a travesty of our definition of Hilbert space!) This edition has been ridded 
of these errors thanks to the efforts of the editorial staff at Birkhauser, our former 
students, Leonard Shulman, Roy Yates, Gregg Wornell, and Mastafa Terab. and. 
in particular, thanks to Professor Bo Green and a diligent group of his students at 
Abilene Christian University (who went through the book with a fine tooth comb 
and assembled a pretty definitive list of errata). To them our warmest thanks. 

vii 



Preface to the First Edition 


Probability theory became a respectable mathematical discipline only 
in the early 1930s. Prior to that time it was viewed with scepticism by some 
mathematicians because it dealt with concepts such as random variables and 
independence, which were not precisely and rigorously defined. This situation 
was remedied in the early 1930s largely thanks to the efforts of Andrei Kolmo­
gorov and Norbert Wiener, who introduced into probability theory large infusions 
of measure theory. In retrospect, it was fortunate that the kind of measure theory 
they needed was already available; it had, in fact, been created some thirty years 
earlier by Henri Lebesgue, who had not been led to the invention of Lebesgue 
measure by problems in probability but by problems in harmonic analysis. It 
seems strange that it took more than 30 years for this fusion of probability and 
measure theory to occur. In fact, since that time, probability theory and measure 
theory have become so intertwined that they seem to many mathematicians of 
our generation to be two aspects of the same subject. It also seems strange that 
the basic concepts of the Lebesgue theory, to which one is naturally led by 
practical questions in probability, could have been arrived at without probability 
theory as their main source of inspiration. 

Saddled as we are with the fact that the theory of measure didn't develop 
along these lines, this doesn't mean we cannot teach the subject as if it had 
developed this way. Indeed, we believe (and this is the reason we wrote this 
book) that the only way to teach measure theory to undergraduates is from the 
perspective of probability theory. To teach measure theory and integration theory 
without at the same time dwelling on its applications is indefensible. It is unfair 
to ask undergraduates to learn a fairly technical subject for the sake of payoffs 
they may see in the distant future. On the other hand, the applications of measure 
theory to areas other than probability (e.g., harmonic analysis and dynamical 
systems) are fairly esoteric and not within the scope of undergraduate courses. 
Of course probability theory, taught in tandem with measure theory, is also not 
thought of as being within the scope of an undergraduate course, but we feel this 
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is a mistake. Discrete probability theory is taught at many institutions as a fresh­
man course (and at some high schools as a senior elective). The kinds of problems 
we will be interested in here, i.e., the amorphous set of problems that go under 
the rubric of the law of large numbers, are lurking in the background in these 
discrete probability courses, and are often so bothersome to bright students that 
they arrive, unaided, at quite original ideas about them. By formulating these 
problems in measure theoretic language, one is often doing little more than 
vindicating for undergraduates their own intuitive ideas and, at the same time of 
course, convincing them that the measure theoretic methods are worth learning. 

By now we have probably given you the impression that this book is basically 
about probability. On the contrary, it is basically about measure theory. Sections 
1.1 and 1.2 nominally discuss probability, but primarily discuss why measure 
theory is needed for the formulation of problems in probability. (What we hope 
to convey here is that had the Lebesgue theory of measure not existed, one would 
be forced to invent it to contend with the paradoxes of large numbers.) Sec­
tion 1.3 deals with the construction of Lebesgue measure on RU (following the 
metric space approach popularized by Rudin [see References, p. 199]. In §1.4 
we briefly revert to probability theory to draw some inferences from the Borel­
Cantelli lemmas, but §§2.1-2.5 are straight measure theory: the basic facts about 
the Lebesgue integral. Only to illustrate these facts do we return to probability 
at the end ofthe chapter and discuss expectation values, the law oflarge numbers, 
and potential theory. 

Sections 3.1-3.5 are also consecrated entirely to measure theory and inte­
gration: 5£1,5£2, abstract Fourier analysis, Fourier series; and the Fourier integral. 
Fortunately, the last two items have some beautiful probabilistic applications: 
Polya's theorem on random walks, Kac's proof of the classical Szego theorem, 
and the central limit theorem. With these we end the book. All told, taking into 
account the fact that we have packed quite a few applications to probability into 
the exercises, the ratio of measure theory to probability in the book is about 5 
to 3. 

The notes on which this book is based have served for several years as material 
for a course on the Lebesgue integral at M.LT. and for a similar course at 
Berkeley. They have been the basis for a leisurely semester course and an inten­
sive quarter course and have proved satisfactory in both (though in using these 
notes in a quarter course, we had to delete most of the material in §§2.6-2.8 and 
§§3.6-3.8). We divided the book into the three chapters not just for aesthetic 
reasons, but because we found that in teaching from these notes we were devoting 
approximately the same amount of time to each ofthese three chapters, i.e., four 
weeks in a typical twelve-week semester course. Incidentally, we found it very 
effective, for motivational purposes, to devote the first three class periods of the 
course to the material in §§ 1.1 and 1.2, even though in principle this material 
could be covered in a much more cursory fashion. We discovered that with these 
ideas in mind, the students were much better able to endure the long arid trek 
through the basics of measure theory in §1.3. 

Preface 

We would like to thank Marge Zabierek for typing the notes on which this 
book is based, and we would like to thank our students at Berkeley and M.LT., 
in particular, Tomasz Mrowka, Mike Dawson, Harold Naparst, Mike Conwill, 
Christopher Silva, and Ken Ballou for suggestions about how to improve these 
notes and for weeding out what seemed to have been an almost endless number 
of errors from the problem sets. 

We have dedicated this book to Jon Bucsela, to whom we owe an exhaustive 
revision of the manuscript before we had the final version typed. His untimely 
death in the spring of 1984 was a source of acute grief to all who knew him. 

Malcolm Adams 

Victor Guillemin 



Suggestions for 
Collateral Reading 

For background in probability theory, we recommend Feller, An 
Introduction to Probability Theory and Its Applications. * We feel that at the 
undergraduate level, this is the best book ever written on probability theory. Its 
charm resides in the fact that there are literally hundreds of illustrative examples. 
This makes it hard to read through from cover to cover, but it is a gold mine of 
ideas. 

Another beautiful book, though more advanced than Feller, is Kac's 96-page 
monograph in the Carus series, Statistical Independence in Probability, Analysis 
and Number Theory. Our treatment of Bernoulli sequences and the law of large 
numbers in § 1.1 was largely borrowed from this book, and one can go there to 
find further ramifications of these topics. 

There are several treatments ofmeasure theory in conjunction with probability 
written for graduate students. In our opinion, the best of these is Billingsley's 
book Probability and Measure, which a bright undergraduate will, with a little 
effort, find accessible if he or she ignores the more technical sections toward 
the end. 

Finally, for material on metric spaces and compactness, we have attempted 
to remedy the fact that we presuppose a nodding acquaintance with these topics 
by summarizing the main facts in the appendix. To learn this material, however, 
we recommend either Hoffman (Analysis in Euclidian Space) or Rudin (Princi­
ples ofMathematical Analysis). 

*For complete bibliographic information for the titles listed here, see the Reference section on 
page 202. 
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Chapter 1 

Measure 

Theory 


§l.l Introduction 

In this section we will talk about some of the mathematical ma­
chinery that comes into play when one attempts to formulate precisely what 
probabilists call the law oflarge numbers. 

Consider a sequence of coin tosses. To represent such a sequence, let H 
symbolize the occurrence of a head and T the occurrence of a tail. Then a 
coin-tossing sequence is represented by a string of H's and T's, such as 

HHTHTTTHHT ... 

Now, let SN be the number of heads seen in the first N tosses. The law of large 
numbers asserts that for a "typical" sequence we should see, in the long run, 
about as many heads as tails. That is, we would like to say that 

. SN 1
(1) 11m = 

N~oo N 2 

for the "typical" sequence of coin tosses. 
We do not expect this assertion to be true for all sequences, because 

it is possible, for instance, for our sequence of coin tosses to be all heads. 
Experience tells us, however, thats.u.ch~~9ue.l1ce is nottypicaL...._ .. 

In what follows, we describe a mathematical model of coin tossing in which 
we precisely define what is meant by a "typical" sequence of coin tosses. With 
this model, the law oflarge numbers can be rigorously demonstrated. 

Because James Bernoulli first stated the law of large numbers, in the 
seventeenth~century,we\Vill call a sequence of coin tosses a Bernoulli sequence. 
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Let fJIJ represent the collection of aU possible Bernoulli sequences. Notice that 
fJIJ is an uncountable set. (See exercise 1.) This fact is also clear from the 
following proposition. 

Proposition 1. Ifwe delete a countable subset from !!J, we can index what is 
left by points on the real interval 1 = (0,1]. 

Proof. We construct a map 1 .... fJIJ that is one to one and fails to be onto by 
a countable set. The map is constructed as follows. 

Every WEI can be written in the form 

00 aj
(2) ai 0,1

W i~2! 
Because the a/s determine w, we introduce the notation 

W = . a l az a3'" 

which is called the binary expan~ion of w. From this representation we 
produce a Bernoulli sequence by putting an H in the nth term of the sequence 
if an = 1 or a T if an = O. Unfortunately, this does not give a well-defined map 
1 .... fJIJ because W does not necessarily have a unique binary expansion. For 
example, W t has the two binary expansions 

.1000 ... and .0111. .. 

To avoid this problem we prescribe that, if W has a terminating and a 
nonterminating expansion, we give it the nonterminating one. \ 

This convention gives a one-to-one map 1 .... !!J that is not onto because it 
misses out on' those Bernoulli sequences that end in all tails. Let fJlJdeg denote 
the collection of Bernoulli sequences that, after a certain point, degenerate to 
all tails. We claim that fJlJdeg is countable. 

Proof Let fJIJ~eg be the Bernoulli sequences that have only tails after the 
kth toss. Then fJIJ~eg is finite and 

cc 

fJIJdeg = U!!J~eg 
k=l 

is a countable union of finite sets. Thus fJlJdeg is countable. 
Because fJlJdeg is a countable subset of the uncountable set fJIJ, we consider 

it to be negligible in our consideration of "typical" elements of !!J. Thus, fo~ 
all intents and purposes, we can consider !!J to be identified with 1. .....~ 

In order to describe other features of our model of fJIJ, we need some 
familiarity with the idea of Lebesgue measure. We will not yet attempt to define 
Lebesgue measure precisely, but we will describe some of the properties it 

§l.llntroduction 

should have. We ask the reader to believe that it exists until we examine it .J 

more rigorously. 
A measure p. on a space X is a nonnegative function defined on a prescribed 

collection of subsets of X, the measurable sets. If A is a measurable set, 
the nonnegative number p(A) is called the measure of A. Of course we will 
require that p have certain properties so that it behaves as our intuition tells 
us a measure should behave. For example, we will require additivity: If A and 
B are measurable and disjoint, then Au B is measurable and p(A u B) 
p(A) + p(B). This and other properties of measures will be discussed in §l.l 

The particular measure in which we are interested here is called Lebesgue 
measure (denoted pd and is defined on certain subsets of the real line R. For 
the intervals 

(a, (a, [a,b], [a,b) 

the Lebesgue measure is just the length, b - a. More generally, by the pro­
perty of additivity, if 

A=U
n 

i=1 

is a finite disjoint union of finite intervals Ai, then A is Lebesgue measurable 
and 

pdA) L
n 

pdA;) 
;=1 

Using the concept of Lebesgue measure, we can now formulate what we 
will call the Borel principle. 

Borel principle. Suppose E is a probabilistic event occurring in certain 
Bernoulli sequences. Let fJlJE denote the subset of fJIJ for which the event occurs. 
Let BE be the corresponding subset of 1. Then the probability that E occurs, 
Prob(E), is equal to pdBE)' 

Let us show that this principle works for some simple probabilistic events. 

1. E is the event that H appears on the first toss. 

BE {WEI;w=·l. .. }=H,I] 

so PL(BE ) = 1­
2. E is the event that the first N tosses are a prescribed sequence. 

BE = {w E 1; W = .ala2a3 ... aN ••• } 

where at, ... , aN are prescribed and everything else is arbitrary. Let s = 

. a l az . .. aN 0 0 ... , then BE = (s, s + (1/2N)] so that PL(BE) = 1/2N as expected. 
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3. E is the event that H occurs in the Nth place. 

BE = {roE I; ro .a1 a2 ... aN-11 aN+1"'} 

Fix a particular s = .a1 ... aN - 1 1000.... Then BE contains the interval 
(s, s + (1/2N

)]. We can choose the aI' ... , aN - 1 in 2N
-

1different ways, and each 
of these intervals is disjoint from the others; so 

PL(BE ) 2N - 1 (~) _ I2N -2 

I 5 J 
484 


The shaded region is BE for the event that H occurs on the third toss. 


4. E is the event that, in the first N tosses, exactly k heads are seen. 

BE = fro E I; ill = .ala2'" aN ... , where exactly k of the first N ai's are I} 

Fix .al, ... ,aN, k of which are 1. Let s = .a1a2".aNOOO ... , so that BE 
contains (s,s + (1/2N)]. There are (~) such intervals, all mutually disjoint, so 

,tL(Bp;) = (;N)(~) 
5. Start with X dollars and bet on a sequence of coin tosses. At each toss 

you win $1.00 if a head shows up and you lose $1.00 if a tail shows up. What 
is the probability that you lose all your original stake? To discuss this event 
we introduce some notation. 

Rademacher Functions 

For roEI we define the kth Rademacher function Rk by 

(3) Rk(ro) = 2ak 

where ro = . a 1 a2 ••• is the binary expansion of roo Note that 

if ak = 1
(4) Rk(ro) = {+ 1 

-1 if ak = 0 

so Rk(ro) represents the amount won or lost at the kth toss. 
To familiarize ourselves with the Rademacher functions, we graph the first 

three, R1(ro), R2(ro), and R3(ro). 

§1.1 Introduction 

R,(w) 

o •+1 

-1 $ • 

R,(w) 

o • o •+1 

J 
4 


-1 Ell • o • 


R.,(w) 

o---e o---eo---e o---e+1 

--~~--+--+--+--+--r--r--r-W 
I 3 7 
'2 4 8' 

o---e-1 Ell • o---e o---e 

Using the R;,'s, we can describe BE for event 5. First consider the event Ek , 

representing loss of the original stake at the kth toss. Let 

(5) Sk(ro) = L R/(ro) 
/";k 

Sk(ro) gives the total amount won or lost at the kth stage of the game. Then 

BE. = fro E I; S/(ro) > -X for l < k, and Sk(ro) = -X} 

and 
00 

BE = U BEk 
k=l 



6 7 Chapter 1 Measure Theory 

We will postpone the computation of IldBE) to §IA because BE is not a finite 
union of intervals. 

Now we return to the law of large numbers. Our assertion is that "roughly 
as many heads as tails turn up for a typical Bernoulli sequence." We formulate 
this statement mathematically as follows. 

For wEI, with w=.a 1 ••• aN... , let sN(w)=al+a2+"'+aN' This 
sum gives the number of heads in the first N terms of the Bernoulli sequence 
corresponding to w. Now fix e > 0 and consider 

SN(W) 11 }BN = {wEI; ---,;;- :2 > eI 

This set represents the event that, after the first N trials, there are not "roughly 
as many heads as tails." We can restate our assertion as follows. 

Theorem 2. (Weak law oflarge numbers) 

IlL(BN) -+ 0 as N -+ co 

Proof. We first describe BN using Rademacher functions. Recall that 

Rk(w) 2ak - 1 

where W = . a1 az ... ak' ... Thus 

N 

SN(W) = L Rk(w) = 2(a 1 + a2 + ... + aN) - N = 2sN(w) - N 
k=l 

Now 

SN(W) 11N -:2 > e$>12sN(w) - NI > 2eN 

which is equivalent to ISN(W)I > 2eN. So, by altering e slightly, we restate the 
theorem as follows. 

Let AN {wEI; ISN(W) I > Ne} 

Then IlL(AN) -+ 0 as N -+ co 

To prove this form of the theorem, we will need the following special case 
of Chebyshev's inequality. 

Lemma 3. Let f be a nonnegative, piecewise constant function on (0,1]. Let 
IX > 0 be given. Then 

§l.llntroduction 

IlL({weI;f(w) > IX}) < -111 fdx 
IX 0 

(Here the integral f6 f dx is the usual Riemann integra!.) 
Notice that we knowhow to compute Ild{WEI;f(w) > IX}) because {wEI; 
> IX} is a finite union of intervals. 

Proof of lemma. When f is piecewise constant, there exist x 1'" . , Xk with 
0= Xl < ... < X k 1 and f Ci on (Xj,Xi+tl i 1, ... ,k - 1. (This is what 
we mean by piecewise constant.) Then 

1 k-1 
fdx L - Xi) ;;:::L' - X;) 

i=l 

where l:;' means sum over the i's such that Ci > IX. Therefore, 

L' Ci(Xi+1 - Xi) > IX L'(Xi+l - Xi) = IXIlL( {w EI;f(w) > IX}) 

so 

1 I1 fdx > E I;f(w) > \l 
IX 0 

Now we continue with the proof of our theorem. Notice that 

AN = {wEI; > Ne} 

= {w E I; SN(w)2> N2(?} 

An application of the preceding lemma gives 

11= Ild{wEI; ISN(WW > N 2e2 
}) < 1 

0 S~dx 

To exploit this inequality we need to compute nS~ dx. However 

11 s~ dx = 11 {L Rk)2 dx LN 11 R~ dx + 11 R;Rj dx 
o 0 k=l 0 0 

Because R~ 1, each of the first N terms is equal to one. What about 

1 

RiRjdx i #j? 

Suppose i < j. Let J be an interval of the form (I/2;, (l + 1)/2i J, 0 ~ I < 2i. 
Then Ri is constant on J and Rj oscillates 2(j - i) times so that 



8 Chapter 1 Measure Theory 

l Rjdx =O 

Thus 

RjRjdx 0 

which proves that 

f S~dx = N 

Thus 

1 
J1.dAN)S(N!e2 )N = Ne2 -1-0 as N-I-oo o 

The astute reader has probably noticed that we haven't proved exactly 
what we said we intended to prove at the beginning of this section. Namely, 
we wanted to prove that, for a "typical" Bernoulli sequence, 

1 SN(W) ~ 0 as N ~ 00(6) 
2 N 

By "typical" we should mean equation 6 fails on a set of zero probability. 
By the Borel principle, an event E has probability zero if the corresponding 
set BE c I has Lebesgue measure zero. The only sets we know thus far with 
zero Lebesgue measure are finite collections of points. When we extend 
Leb~sgue measure to a collection of sets much bigger than the collection of 
intervals, we will find many more sets of measure zero. In fact we can describe 
these sets now without developing the general theory of Lebesgue measure. 

Given a subset A c R and a countable collection of sets {Aj}~l' we will 
say the A/s are a countable covering of A if A c U~l A j • 

Definition 4. A set A c R has Lebesgue measure zero if, for every e > 0, there 
exists a countable covering {Ad of A by intervals such that 

(7) 	 J1.L(A j ) < e 

Remarks. 

I. 	 In this definition we can allow the A/s to be finite unions of intervals. 
2. 	 IfA has Lebesgue measure zero and B c A, then B has Lebesgue measure 

zero. 

§l.l Introduction 	 I} 

3. 	 A single point has Lebesgue measure zero. 
4. 	 If A 1 , ••• is a countable collection of sets, each having Lebesgue mea­

sure zero, then U~l Ai has Lebesgue measure zero. [n particular, count­
able sets have Lebesgue measure zero. 

Proof. (Remarks 1, 2, and 3 are clear.) To prove remark 4, choose e > O. 
Because AI has Lebesgue measure zero, there exists a countable collection of 
intervals Ai• 1 ,Ai•2 , ... covering Ai such that 

00 e
L J1.L(A;) < 2i 
j=l 

The collection is countable, it covers AI, and 

00 00 e 
J1.L(A i•j ) = i~ j~ J1.L(A i ) < 2i = e \l 

Now let N {w E I; (snCW )/n) -I- 1/2 as n -I- oo}. N is called the set of normal 
numbers. Let NC denote the complement of N. 

Theorem 5. (Strong law oflarge numbers) Nt has Lebesgue measure zero. 

Remark. NC is uncountable; in fact, NCcontains a "Cantor set." 
Consider the map (j : I -I- I defined by 

0;". Co ,0"0\ 0 I J 1 
(j(W) = . alII a2 11 a311.., 

for W = . a 1 a2 a3 •••• This map is one to one, so its image is uncountable. 
Notice also that the image is contained in N C

, In fact, if W/ = (j(w), then 
S3n(W/) ;;::: 2n; so 

2 
>­

3n - 3 

Now we will prove theorem 5, Let 

An = {WEI', > EI; >e4n4} 

Then, by Chebyshev's inequality, 

1 	 fl< __ S4 where f1S: dx = fl (f Rk)4 dxe4n4 0 n dx o 0 k=l 

Multiplying out the integrand, we obtain five kinds of terms: 

1. 	 R: a = 1, ... ,n 
2. 	 R;R~ a #-[3 
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3. 	 R;RpRy a. =f!3 =fy 
4. 	 R;Rp a.=f!3 
5. 	 R"RpRyR6 a.=f!3=fy=fo 

Because R4 1 and R2R2 = 1 f1 R4 dx = f1 R2R2 dx = 1a a p , 0" 0 a. p • 
We claim that the other terms all integrate to zero. In fact, 

R;RpRydx I
1 

RpRydx = 0 

and 

rR;Rpdx = I1 R"Rpdx = 0 

What about R"RpRyRI)? Assume a. < !3 < y < 0 and consider an interval of 
the form (lI2Y, (1 + 1 )/2Y]. Ry is constant on J and, because a. < !3 < y, R"RpRy 
is constant on J as well. Finally, RIl oscillates 2(0 - y) times on J, so 

LR"RpRyR/ldx 0 

and rR"RpRyRodx 0 

Because there are n terms of the form R: and 3n(n - 1) terms of the form 
R;Ri, 

3n 2rS: dx = 3n2 
-	 2n ~ 

and 

J.tdAn) ~ ()e4 ) 3n2 ~ 3 

Lemma 6. Given 0 > 0, there exists a sequence e1' e2"" such that en -> 0 and 

CIJ 

(8) 	 L 3 
-<0 

,,=1 n2e~ 

Proof. Choose, for instance, en such that 

en-1/2e~ = for some constant e. 

§I.l Introduction 	 11 

Then 

00 3 3
L42'=n=1 e"n e 

If e is chosen large enough, this quantity is less than O. \I 
Finally, for each n, set 

Bn = {w; IS,,(w)1 > enn} 

J.tL(Bn) < 3/e:n2 
, hence L~l J.tdBn) < O. Notice that the Bn's are finite unions 

of intervals since Sn is piecewise constant. Thus, if we can show that N C c 
Bn , the theorem will be proved. 

Now N C 
c U~l Bn if N :::l n~1 B~. But, if we n~l~' then, for each 

n, ,S,,(w)1 ~ enn; that is, ISn(w)/n 1~ e". Because en -> 0, we conclude that 
\1 Sn(w)/n 1-> 0; that is, weN. 0 

\ 
Remarks. 

I. 	We have just proven theorem 5 by showing that 

(9) 	 =0 

Notice that we needed a relatively sophisticated definition of "measure zero" 
to make sense ofthis statement, because N C is such a bad set. In particular N C 

is uncountable. (The only intervals of length zero are points, and N C is not 
even a countable union of such sets.) Later, when we discuss the connection 
between measure and integration, we will see that this example provides a 
good illustration of why Riemann integration is inadequate for probability 
theory. 

2. Notice that the strong law of large numbers (theorem 5) does not 
indicate at what point we can expect about as many heads as tails. In §3.8 we 
will discuss the central limit theorem, which has some bearing on this question. 

Exercises for §l.l 

1. 	 Prove that the set fljj of Bernoulli sequences is uncountable by the Cantor 
diagonal argument. 

2. 	 a. Let weI = (0, 1]. Show that w can be written in the form L~l ai2i
, 

ai 0, 1. Show that this expansion is unique when we restrict to 
nonterminating series. 

b. 	 Show that, for any integer k, WEI can be written in the form L~1 aik i
, 

where ai = 0,1, ... ,k - 1. Show that the expansion is unique when we 
restrict to nonterminating series. 

3. A gambler has an initial stake of one dollar. Calculate the probability of 
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ruin at times 1, 3, and 5. Show that the chance of eventual ruin is at least 
70%. 

4. 	 Show that 

f R R ... R dx = 0 or 1
Yl 	 'Yz ')In 

for any sequence Yl ~ Y2 ~ ... ~ Yn' When is the answer one? 
5. Define the Rademacher functions 	on the whole real line by requiring 

them to be periodic of period one- that is, by setting Rk(x + 1) Rk(X). 
With this definition, show that Rk+1 (x) = Rk (2x) and, by induction, that 
Rk(X) R 1 (2

k - 1X). 
6. Show that 

R.(x) = - sgn[sin(2n2n-l x)] 

except at a finite number of points. (Notation: For any number a, sgn a is 
one if a is positive and minus one if a is zero or negative.) We will see later 
in the text that some interesting analogies exist between the Rademacher 
functions and the functions sin(2n2n-l x). 

+1 

-I I >..< 

7. 	 Prove that 

2t - 1 L
00 

Rk (t)2-k 
k=l 

8. 	 Every number WE(O, 1] has a ternary expansion 

L 	airiW 

with ai = 0, 1, or 2 (see exercise 2). We can make this expansion unique 
by selecting, whenever ambiguity exists, the nonterminating expansion­
that is, the expansion in which not all ai's from a certain point on are equal 
to O. With this convention, define 

Ik(w) = ak 1 

Draw the graph of Ik for k 1, 2, 3. Can you discern a general pattern? 

§1.1 Introduction 

9. 	 Obtain a recursion formula for the Ik's similar to the recursion formula 
for the Rk'S in exercise 5. 

10. Let C be the set of all numbers on the unit interval [0,1], which can be 
written in the form 

00

L ak 3-k 

k=l 
W 	 = 

with ak = 0 or 2. Show that C is uncountable. (C is called the Cantor set.) 
(Hint: Use the Cantor diagonal process.) 

11. 	Prove that the Cantor set (see exercise 10) can be constructed by the 
following procedure: From [0, 1] remove the middle third, (1, i); from the 
remainder-that is, the intervals [0, t] and [i, 1]-remove the middle 
thirds, and so on, ad infinitum. The remainder is the Cantor set. 

o 

o ij 
2 

9 
7 

1......Il..,.j L......!I....-J l..-JI......I L......J.L.....J 

I Io 9 '3 

12. Show that the Cantor set is ofJDeasure zero. 
13. Describe geometrically the ~a(II3iscussed on page 9. 
14. 	 Show that the nonnormal n.imoers are dense in the unit interval. 
15. 	 ft. Show that a positive number C3 exists such that, for all N, 

10
1 

[SN(x)]6 dx :5 C3N3 

b. 	 Let A. be the set {wEI; ISn(w) I > 8n}. Show that the Lebesgue measure 
of An is less than C38-6n-3. 

16. 	More generally, show that a positive number CK exists such that, for all N, 

10
1 

[SN(x)]2K dx :5 cKNK 

17. 	 Prove a refinement of the strong law of large numbers, which says that 

--+0 as N --+ 00 

http:1......Il
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for any {) > 1· (Hint: Use exercise 16. We will see later that, for {) t, the 
situation is much more interesting.) 

18. 	 Prove that 

t 

etSn(X) dx e~ e-ty 

(Hint: By induction. Write 

fOI etSn(X) dx = e tSn ~1(X)etRn(x) dx 

Break up the unit interval into 2n 
-

1 equal subintervals on each of which 
Rn- 1 is constant. Show that 

(et + e-t)f
J etSn(x) dx = --2- ~ J e tSn- 1(x) dxf 

if J is one of these intervals.) 
19. 	From exercise 18, derive the formula 

il 2K _(~)2K (et + e-I)nlSll(x) dx - d 2 
o t 1=0 

20. 	 Let f be a nonnegative monotone function defined on the unit interval. 
Prove Chebyshev's inequality 

1 1 

f.-lL({weI;f(w) > a}) < fdx 
a 

with the integral on the right being the Riemann integral. 
21. 	 We have already defined Lebesgue measure for two kinds of sets: finite 

unions of intervals and sets of Lebesgue measure zero. Show that these 
two definitions are not contradictory; that is, show that the interval [a, b], 
a < b, is not a set of measure zero. (Hint: Use the Heine-Borel property 
of compact sets.) 

§1.2 Randomness 

In §1.1 we saw how to identify the set :?J of Bernoulli sequences 
with the set of points on the unit interval I. In terms of this identification, a 
probabilistic event E, associated with Bernoulli sequences, gets identified with 
a subset BE of I. We saw that, at least for simple events, the Borel principle 

§1.2 Randomness 

applies; that is, 

(1 ) 	 Prob(E) f.-ldBE) 

We will attempt in this section to describe some slightly more complicated 
probabilistic events in measure theoretic terms. 

Example 1. Gambler's Ruin 

A gambler has X dollars and bets at even odds on a coin flip. What is the 
probability of his ruin? 

We discussed this event already in §1.1. We showed that 

00 

BE = BEk 

where 

BEt = {w E I; S/(w) > -X for 1 < k, and Sk(W) = -X}. 

After developing some measure theoretical tools, we will see that 

(2) 	 f.-ldBE) I 
co 

f.-l(BEJ = 1 
k=1 

In other words, with probability one, if a gambler bets long enough, he will 
eventually lose all his money no matter how big his initial stake. 

Example 2. Random Patterns 

Pick a finite pattern of coin tosses, for example, T H H T. Let E be the event 
that T H H T occurs in a given Bernoulli sequence. Then 

BE = {weI; there exists no 

with Rno(w) = -1, Rno+l (w) = 1, Rno +2 (w) 1, and Rno +3 (w) -1} 

We will prove in §1.4 that this set is of measure one. In fact we will prove 
that, if one fixes any finite pattern, this pattern appears infinitely often in a 
Bernoulli sequence with probability one. 

This result can be -interpreted as follows. Put a monkey in front of a 
telegraph key and let him punch a series of dots and dashes as he pleases. 
With probability one, the monkey will eventually tap out in Morse code all 
the sonnets of Shakespeare infinitely often. 
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Example 3. Random Variables 

In example 1 let R" be the amount of money won or lost at the nth toss. R" 
can be thought of as a function on the set f!J or, via the identification [!i) +-l- I, 
as a function on the unit interval. It is, of course, just the nth Rademacher 
function, discussed in §1.1. R" is a typical example of what probabilists call a 
random variable. It is a variable-that is, a quantity that one can measure each 
time one performs a sequence of Bernoulli trials-and it is random, because 
the values it assumes are a matter of hazard or chance. Another example of a 
random variable is the sum 

" Sn = L Rk 
k=l 

which is the total amount won or lost by the nth stage of the game. Notice 
that the set BEk in example 1 is completely described by the S;s. This is 
not surprising. Most interesting random events are describable by random 
variables. For instance, consider winning streaks. Suppose that, starting at time 
t = n, a gambler tosses an unbroken sequence of heads for a certain length of 
time. The relevant random variable connected with this phenomenon is the 
variable In' which counts the number of times H occurs consecutively starting 
with the nth toss. 

Example 4. Expectation Values 

Let f!J be the set of Bernoulli sequences. A random variable associated with 
the Bernoulli process is, by definition, a function f : g(J -j. R. Thanks to the 
identification of f!J with I, we can also think of f as a function on I. In Chapter 
2 we will address the question of what kinds of functions correspond to the 
"physically interesting" random variables. For these functions we will be able 
to define the Lebesgue integral 

(3) L/dJlL 

The probabilists call equation 3 the expectation value of the random variable 
f· Roughly speaking, it is the value that f is "most likely" to assume in a series 
of frequently repeated experiments. To use a simplistic example, for the 
Rademacher function R n, the integral in equation 3 turns out to be just the 
usual Riemann integral 

Sol R"dx 

which, as we saw in the previous section, is zero; that is, the "most likely" value 

§J.2 Randomness 

ofRn is zero (even though Rn takes only the values +1 and -I). We will justify 
this somewhat paradoxical assertion in §2.6. 

Example 5. Random Walks 

A Bernoulli sequence, that is, a sequence of coin tosses, can be considered to 
describe a random walk on the real line. That is, a particle is placed at the 
origin; a flip of a head causes the particle to move one step forward, and a 
tail moves it one step backward. As one tosses the coin an infinite number of 
times, the particle moves erratically backward and forward along the real line. 
We will call the path traced out by such a particle a random path and the 
sequence of motions itself a random walk. Obviously each Bernoulli sequence 
gives rise to a random path and vice versa. Ifwe denote by fJt the set of random 
paths, we can identify fJt with f!I and, by means of binary expansions, both fJt 
and f!J with the unit interval!. Probabilistic events associated with fJt can be 
reinterpreted as events associated with f!J and vice versa. For example 

gambler's ruin +-? passing through - X for the first time 

In probability jargon the space of all possible outcomes of a probabilistic 
process is called the sample space. For Bernoulli sequences, the sample space 
is f!J; for random walks the sample space is fJt. For all intents and purposes, 
.t1t and /!lJ are identical, even though one thinks of fJt in connection with the 
motion of particles and f!I in connection with games of chance. 

Example 6. Random Walks with Pauses 

To perform a random walk with pauses, one needs a gadget of the type 
depicted in the figure below. Place a particle at the origin of the real line and 
spin the pointer. If it lands on + 1, move the particle one unit to the right; if 
it lands on -1, move the particle one unit to the left; and, if it lands on 0, 
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leave the particle fixed. By repeating this operation infinitely often, we get a 
random walk with pauses. Let f1?1p be the sample space of this process. Identify 
f1?1p with I using ternary expansions of points, wEI; that is, each wEI can be 
written as 

(4) 00 a
kw=I- ak = 0,1,2 

k=t 3k 

The ternary expansion of W is then 

W = . at a2 a3 ... 

Notice that t = .10°0 ... or .°2 22 ...; so, in order to make ternary expan­
sions unique, we will always choose the non terminating expansion in cases 
like the one above (see §1.1, exercise 2). Now make the identification 

+ 1+-->1 

0+->0 

-1+->2 

to identify a random walk with pauses with the digits in such a ternary 

expansion. This identification gives a map I ---+ [ljjp. The Borel principle in this 

instance says that, if an event E associated with this random process corre­

sponds to the subset BE of I, then, just as before, 

(5) Prob(E) = IlL(BE ) 

We suggest you check equation 5 for a few simple events. (See exercise 4.) 

Example 7. Random Walks in the Plane 

For two-dimensional random walks, we need a gadget similar to the one 
we used on the previous page: 

§1.2 Randomness 

Let Z2 = {(m, n); m, n integers} denote the integer lattice in the plane. 
Place a particle at (0,0) E Z2 and spin the pointer. If it lands on N, move the 
particle to (0,1) E Z2; if it lands on E, move the particle to (1,0) E Z2, and so 
on. By repeating this operation ad infinitum, one produces a random walk, 
the successive stages of which are indexed by an infinite sequence such as 

(6) NSSEWE ... 

Let [ljjplane be the sample space of this process-that is, the set of all sequences 
like the one in display 6. We can identify each sequence with a point wEI 
using base-four expansions; that is, wEI can be written as 

00 a
(7) W= I 4k 

k 
ak = 0,1,2,3 

k=t 

The base-four expansion of W is then. at a2 a3 •.. , which can be identified with 
a sequence like the one in display 6 by means of the correspondence 

o+-> East 

1+-> West 

2+-> North 

3 +-> South 

Of course we must deal with the problem of nonuniqueness in this identifica­
tion as above, by selecting non terminating rather than terminating expansions 
whenever ambiguity exists. Just as in example 6, to every event E associated 
with this process there corresponds a subset BE of I. We urge you to check that 

Prob(E) = IldBE ) 

for a few simple, typical events. (See exercise 5.) 

Example 8. The Discrete Dirichlet Problem 

Let n be a smooth, bounded region in the plane with boundary B. An 
important problem in electrostatics is the Dirichlet problem: Given a con­
tinuous function f on B, find a function u satisfying 

~u = ° in n 
(8) 

u = f on B 

where ~u = (a2 ja2x)u + (a 2 ja 2 y)u. 
This problem has a discrete analogue that is itself quite interesting. Let n 
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be a finite subset of Z2. A point p = (m, n) of n is an interior point if its four 
next-door neighbors 

(m,n+t), (m+l,n), (m,n and (m - l,n) 

are also in n; otherwise, p is a boundary point. For instance, in the figure below, 
P1 is an interior point and P2 a boundary point of the shaded region. 

For a function u on Z2, we define AdiscreteU by the formula 

(Adiscreteu)(m, n) 

(9) 	 u(m,n + 1) + u(m,n 1) + u(m + t,n) + u(m t,n) ( ) 
u m,n 

[Notice that the first term on the right is just the average of u over the 
next-door neighbors ofthe point (m, n).] The discrete analogue of the Dirichlet 
problemj£ to find a function u : Z2 --+ R such that 

(10) 
AdiscreteU 0 

at the interior points ofn, and 

(11) u=f 
on the boundary, an, ofn, f being a given function on an. One can solve this 
problem elegantly by using the random walk described in example 7: Given 
a point pen and a random path w starting at p, let F(w,p) be the value of f 
at the first point at which w hits an. [If w never hits the boundary, set 
F(w, p) = 0.] Ifwe fix p and regard F as a function of the random path w alone, 
then F is a random variable in the sense of example 3. We will show in §2.8 
that its expectation value is the value at p of the solution of the Dirichlet 
problem described in equations to and 11. 

§J.2 Randomness 

Example 9. Randomized Series 

Probabilistic considerations have another way of entering into classical 
analysis. Consider the series 

00 t I 1)"I- and 
n=1 n n=1 n 

The first of these series diverges, whereas the second converges. We can enrich 
this problem by adding a probabilistic component. Consider a general series 

00 + 1I=-­
"=1 n 

where the plus or minus is determined by the flip of a coin; that is, for each 
weI we get a series 

Rn(w)(12) 
n 

with Rn being the nth Rademacher function. Now let E be the event that this 
series converges: 

00 Rn(w) }
BE = { wEI; ~ -n- converges 

What is JlL(Bd? 
In §3.3 we give a series of exercises in which we sketch a proof that 

JlL(BE) 1. The intuition behind this result is that a typical Bernoulli sequence 
has roughly as many pluses (heads) as minuses (tails). 

Example 10 

We end this section by considering a collection of sample spaces that includes 
all of those we have considered up to this point. 

Take n marbles of k various colors. Say the colors are labeled C1, C2, .•• , Ck 

and suppose that, of the N marbles, ~ of them have the color Cj' 1 ~j ~ k. 
Now put all of the marbles into a cylindrical wire cage that can be spun on 
its axis to mix the marbles fairly well within the cage. After the marbles are 
mixed, a blindfolded assistant removes one marble from the cage. If the marble 
has the color cj ' one gets as a reward a preassigned number, rj, of dollars. 
(Incidentally, we will allow rj to be positive or negative.) After the color ofthe 
marble is recorded, the marble is returned to the cage and the process is 
repeated. 

The probability that the color cj will be chosen is 
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~ 
Pj= N 

and 

k 	 k 

(13) r. Pj = 1 because L~=N 
J=l 	 )=1 

Notice that this game can serve as a model for coin tossing (and random walks) 
by allowing only two colors of equal number, say Cl = red and C2 = white, 
and setting the rewards at +$1.00 for a red marble and -$1.00 for a white 
marble. 

With three colors of equal number, say c1 = blue, C2 = white, and c3 = 
red, and rewards'l = +$1.00, '2 = 0, and '3 = -$1.oo,'we get a model for 
the random walk with pauses. 

If we alter our process slightly by allowing the ,/s to be vectors in R2, we 
can model random walks in the plane; namely, take four colors of equal 
numbers with'l {O, 1)"2 = (1,0)"3 = (-1,0), and'4 = (0, -1). 

In §2.6 we will develop a measure theoretic model for this process based 
on a "Borel principle" similar to that in the preceding examples. 

Exercises for §1.2 

1. 	Under the correspondence iJd ~ /, describe the subset of / corresponding 
to the event that a run of 15 heads will occur before a run of 11 tails. 

2. 	 Describe the subset of / corresponding to the event that no run of heads 
longer than 15 occurs in a Bernoulli sequence. 

3. 	 Prove that the pattern H T has to occur infinitely often in a Bernoulli 
sequence (with probability one) using the Borel principle. 

4. 	 With the ternary numbers as a model for the random walk with pauses, 
test the Borel principle by using it to compute the probability of 
a. 	 a pause at time t = 1. 
b. 	 a pause at time t = n. 
c. 	 forward motion at times t 1,2,3, ... , n. 
d. 	 forward motion at times t = k, k + 1, ... , k + n. 

5. 	 With the quaternary numbers as a model for the random walk in the 
plane, test the Borel principle by using it to compute the probability that 
a. 	 the first move is due east. 
b. 	 the nth move is due east. 
c. 	 the first n moves lie on a straight line. 

6. 	 With the ternary numbers as a model for the random walk with pauses, 
prove that with probability one an infinite number of pauses occur. (Hint: 
See §L1, exercise 12.) 
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7. 	Sum the series 

1 


L±2" 

by the following procedure. For each Bernoulli sequence, put a (+) sign 
in the kth place if a head comes up and a (- ) sign if a tail comes up. What 

is the sum? (Hint: See §1.1, exercise 7.) 
8. 	 Let n be the subset 

{(O,O), (1,0), (0, 1), (-1,0), (0, -I)} 

of Z 2• (That is, n consists of the origin and its four next-door neighbors.) 
Check directly that the recipe described in example 8 for solving the 
"discrete Dirichlet problem" on n is correct. 

9. 	For the process described in example 10, show that, if one uses an equal 
number of marbles of each color, the sample space of the process can be 
identified with the unit interval using expansions in base k. 

10. 	For the ordinary random walk starting at the origin, show that the 
probability of a particle's being in position k at time t = n is 

o if Ikl > n or if n + k is odd 

where, = n + k otherwise 
(*) 

Gn)(:). 2 

11. 	(On Markov processes.) Let P = (Pij), - 00 < i,j < 00, be an infinite 
matrix with the following properties: 

(i) Pij ~ 0 

(**) (il) LjPij = 1 for all i 


(iii) 	For fixed i, Ptj = 0 for all but finitely many j's. 

For the "generalized random walk" associated with P, a particle moves 
along the line according to the following probabilistic rule: If the particle 
is at position i at time t n, then at time t = n + 1 it can be at any position 
j for which Pij ::j:. 0, and the probability of its being there is Pi). (For 
instance, if P = 1 and Pi) = 0 for i ::j:. j, then the particle stays forever u 
at its initial position.) The matrix P is called the matrix of transition 
probabilities associated with the process. 
a. 	 Show that the process described in example lOis a process of this kind. 

(Think of the position of the particle as being the total number of 

dollars won or lost by time t = k.) 
b. 	 For the process described in example 10, show that the matrix of 

transition probabilities is of the form Pi) = Pi - j' 

c. 	 Show, conversely, that if Pi) = Pi - j the corresponding process is a 
process of the kind described in example 10. 
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12. 	a. Show that, if P and Q are matrices of the form in equation (**), the 
usual matrix product PQ is well-defined and is of the same form. 

b. 	 Show that, for the generalized random walk associated with P, if the 
position of a particle at time zero is i, the probability that its position 
at time t = n is j is just the i - jth entry of the matrix pn. 

13. 	 Showthat,forthematrixPj,i+l = ~+1,j = t,~,j 0; otherwise, the gener­
alized random walk is the usual random walk. Derive the formula (*) of 
exercise 10 by computing directly the i - jth entry of pn. (Hint: Consider 
the vector space V consisting of all finite sums: 

LCkekt Ck ER 

On this vector space consider the linear mapping "multiplication by 
(e- t + et)j2." Show that, if we take for a basis of V 

kt'" e- , ... e-t, 1, et, ... , ekt, ... 

then, in terms of this basis, this linear mapping has P as its matrix.) 
14. 	Can you construct a measure theoretic model for random walks in space 

similar to the measure theoretic model for random walks in the plane? 
(Hint: Expansions in base six.) 

§1.3 Measure Theory 

We mentioned earlier that Lebesgue measure assigns to each set 
A, belonging to a certain collection of subsets of R, a nonnegative number 
IldA) called the Lebesgue measure of A. We also mentioned that ilL has certain 
additivity properties. We will now study these properties in more detail. We 
need to begin with a large number of technical definitions. Keep in mind the 
vague notion of Lebesgue measure we have already discussed so as to put 
these technicalities in perspective. 

Let X be a fixed set. Suppose A and B are subsets of X. We recall the 
following notation: 

Notation Meaning 

o empty set 
Au B = {XEX; xEA or xEB} union of A and B 
An B {XEX; XEA and xEB} intersection of A and B 
AC = {XEX; x¢ complement of A 
B - A = {XEX; XEB and x¢A} B minus A 
S(A,B) = (A B) u (B A) symmetric difference of A and B (see figure, 

page 25) 
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A ring of sets in X is a nonempty collection 9t of subsets of X satisfying the 

following two properties 

1. 	 A u BE 9t whenever A, BE 9t 
2. 	 ABE 111 whenever A, B E 9t 

since
Remark. 0 E9t since A - A = 0. Also if A, BE9t then A n BEI1I 
A n B is obtained from A U B by deleting A - B and B - A. 

Two examples with which we will soon be very familiar follow. 
x

Example I. Let 2x denote the set of all subsets of X; 2 is a ring. 

Example 2. Let X = R". Suppose (aI"'" an) and (bI,···, bn) are given, with 

each aj:$; bi' i = 1,2, ... ,n. 

Let A be the set of points x ERn such that 


ai :$; Xi :$; bi i = 1, . .. ,n(1) 

A is called a multi-interval. More generally, a multi-interval is a set of the form 

shown with perhaps some of the :$;'s replaced by a <. 
j ,Define 	9t by A E9t

Leb 
¢> A = Uf=l A where the A/s are a disjoint

Leb 

collection of multi-intervals. We let the reader check that I1ILeb is a ring. 


Now, fix a ring 9t of subsets of X. Let Il be a nonnegative set function on 
9t; that is, to each A E 111, Il assigns a nonnegative number Il(A). 

Definition 3. Il is additive if Il(A u B) = Il(A) + Il(B) whenever A, BE i:PI are 

disjoint. 

Example 4. 9t I1I • Suppose A E9tLeb is a multi-interval described by the
Leb

a

inequalities 


j :$; Xi :$; bi 
1, ... ,n 


(Again, some :$;'S may be replaced by <'s.) We define 

(2) 	 Il(A) = (b i a1)(b2 - a2)" ·(bn - an) 



26 Chapter 1 Measure Theory 

More generally, if A U~1 AI is a disjoint union of multi-intervals, we define 

N 
(3) 	 Jt(A) = I Jt(A I)

i=1 

Then Jt is a well-defined additive set function on BiLeb• 

Proposition 5. Let .tJIl be a ring of subsets ofX and Jt an additive, nonnegative 
set function on Bi. Then 

1. 	 Jt(0) = o. 
2. 	 (monotonicity) If A, B E~ with A £; B, then Jt(A) :,5; Jt(B). 
3. 	 (finite additivity) If A 1 ,A2 , ... ,An EBi are mutually disjoint, then 

Jt(Ui=1 A;) = If=1 Jt(AJ 
4. 	 (lattice property) If A, BE Bi then ft(A u B) + Jt(A n B) Jt(A) + ft(B). 
5. 	 (finite subadditivity) For any AI"", AnE Bi, Jt(U?=1 Ai) :,5; II=1 ft(AJ 

Proof. 

1. 	 AE Jt(A) = Jt(A u 0) = + Jt(0), so Jt(0) O. 
2. 	 B (B - A) u A is disjoint, so Jt(B A) + Jt(A) ~ Jt(A).
3. 	 Induction on n. 
4. 	 A = (A - B)u(A nB) 

B = (B - A)u (A n B) 
A u B = (A - B) u (B - A) u (A n B) 

so ft(A) = Jt(A - B) + Jt(A n B) 
Jt(B) = ft(B - A) + Jt(A n B) 

Jt(A u B) = ft(A - B) + ft(B - A) + Jt(A n B) 

= ft(A) + Jt(B) ft(A n B) 


5. 	 Induction on n; case n = 2 follows from item 4. o 
So far we have done nothing very deep. We have just given an abstract 

setting for the situation in example 4. Our eventual purpose is to extend the 
definition of the set function in example 4 to a much larger ring of subsets of 
R. For instance, this ring should contain the sets of measure zero described 
in §1.1. In order to carry out this extension in a natural way, we will need the 
following refinement of additivity. As the proof of theorem 7 will suggest, this 
property is much more intricate than finite additivity. 

Definition 6. 

1. 	 Let Bi be a ring of subsets of X and ft an additive set function on ~. 
We say ft is countably additive on Bi if, given any countable collection 
{A;}~1 c Bi with the A/s mutually disjoint and such that A = U~1 Ai is 
also in Bi, then 
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(4) 	 ft(A) = I
00 

ft(A;)
i=1 

2. 	 A countably additive, nonnegative set function f.J., on a ring.tJIl in X is called a 
measure. 

Warning. Equation 4 makes no sense unless we assume A E.tJIl. 

Theorem 7. IfX = Rn
, Bi = ,tJIlLeb, and ft is the set function in example 4, then 

Jt is a measure. 

Lemma 8. Let A EBiLeb, and let 8 > 0 be given. There exist F, G E BiLeb such 
that F is closed, G is open, F £; A £; G, and 

ft(F) ~ Jt(A) 8 

Jt(G) :,5; Jt(A) + 8 

Proof. Suppose A is a multi-interval given by the inequalities 

ai :,5; Xi:,5; bi 1, ... ,n 

where some ofthe :,5;'s may be replaced by <'so We can find a b such that 

n 	 n nn [(bi - b) - (a; + b)] Il (bi a; - 2b) ~ Il (bi - al) - 8 
1=1 	 1=1 ;=1 

and 

n 	 n n

Il [(bl + b) - (a. - b)] Il (bi - a j + 2b) ~ Il (bi - all + 8 
i=1 i=1 i=1 

Let F be given by the inequalities 

ai + b ~ Xi ~ bi - b i = 1, ... ,n 

and G by the inequalities 

at b < Xi < bl + b i = 1, ... ,n 

We then have 

~ -8 

, ~ urAl + 8 

Now, if A = U~=1 Ai is a disjoint union ofmuIti-intervals, find for each an 
F; and Gi such that 
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e 
~ 

k 

J.l(Gi ) :=::;; +­
e 
k 

Then, with F = F/and G Gb we have 

k k [ eJ1-l(F) = i~ I-l(F/) ~ i~ I-l(A/) - Ii = I-l(A) - e 

k k [ eJ1-l(G) :=::;; i~ I-l(Gi ):=::;; i~ I-l(A i ) + Ii = I-l(A) + e v 

Now, take {Ai} ~1 to be a disjoint collection of sets in 9lLeb , and suppose 
A = U~1 Ai is also in 9lLeb• Notice that Uf=1 Al c A, so 

(5) I-l(A) ~ I-l CQ A) I-l(A/) for every N 

Thus 

(6) I-l(A) ~ I-l(A/) 

Choose a closed set F f,; A such that J.l(F) ~ I-l(A) - e, and for each Ai 
choose an open set Gi containing Ai with J.l(Gi ):=::;; I-l(A

i 
) + 13/2/. 

Because F is closed and bounded, it is compact. Because it is covered by 
the G/s, it must be covered by a finite number ofthem, say G

1
, G

2
, ••• , G • Then

N 

N ) N· N [ C(J'eJI-l(A) - e :=::;; J.l(F) :=::;; I-l ( /~ Gi :=::;; i~ I-l(G/) :=::;; i~ I-l(A1) + 2i :=::;; i~ I-l(A;) + 13 

Being true for all e, this yields 

(7) I-l(A) :=::;; I
C(J 

I-l(Ai) 
1=1 

Putting inequality 7 together with inequality 6 shows that I-l is a measure. D 

We have now constructed a measure on a collection of subsets ofR". The 
sets on which this measure is defined, .9lLeb, are very simple, however. As 
remarked above, the property of countable additivity will allow us to extend 
this measure to a much larger ring of sets. 

Let I-l be a measure on a ring 91 in X. We attempt to extend I-l to the ring 
2x by mimicking the definition of measure zero in 
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Definition 9. Let A be a subset of X. A number I ~ 0 will be called an 
approximate outer measure of A if there exists a covering of A by a countable 
collection of sets AI' A 2 , A3, ... with each Ai E91 such that 

(8) I
C(J 

I-l(AJ:=::;; I 
1=1 

Remark. 1is allowed to be + 00. 

Definition 10. Let A be a subset of X. The outer measure of A, 1-l*(A), is the 
greatest lower bound of the set {I: I is an approximate outer measure of 
If this set is empty, then 1-l*(A) + 00. 

We now have a set function, I-l*, on the ring 2X. Unfortunately, I-l* 
is not generally a measure for example, exercise 1, or, for a more 
rewarding example, Appendix C). We will show, however, that J.l* is a 
measure on a large ring of subsets of X; this ring will be called the ring of 
measurable sets in X. 
Proposition 11. 

1. If AE91, then 1-l*(A) = I-l(A). 
2. If A f,; B, then 1-l*(A) :=::;; 1-l*(B). 
3. I-l* is countably sub additive; that is, if Al , A2 , A3, ... are subsets of X, then 

1-l*(U~1 AJ :=::;; I~11-l*(AJ 

Proof. 

1. Covering A by the sequenceAl = A, A.2 0, A3 = 0, ... , we see that 
I-l(A) is an approximate outer measure for A, so 

(9) 1-l*(A) s 
To prove the other inequality, let e > 0 be given. Because 1-l*(A) is the greatest 
lower bound of all approximate outer measures of A, a cover {A;} ~1 c [Jt 

must exist such that 

1-l*(A) + e ~ I
00 

I-l(A;)
1=1 

Let A~ AI' A~ = A2 - A1, A~ = A3 - (A1 U A 2 ), and so on. Then the 
A;'s are mutually disjoint and 

(11) 1-l*(A) + e ~ I
00 

I-l(A;) 
/=1 

If we let A7 A; Il A, we have that A7 f,; A for all i, the A7's are mutually 
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disjoint, and still 

(12) 	 {l*(A) + e ;::: I:
00 

{l(A7) 
i=1 

Now, since A~ £ A for all i and U~l Ai ::) A, we must have U~1 A;' = A. So 
{l(A) = L~l {l(A?) and thus 

(13) 	 {l*(A) + e ;::: {l(A) 

Because this inequality is true for all e, we have 

(14) 	 {l*(A) ;::: {l(A) 

2. 	If I is an approximate outer measure for B, then surely it is for A. Thus 

{l*(A) :s;; {l*(B) 

3. 	Givene > O,foreach iwecanfind a cover, {A i.J;1 c 9l,ofA;suchthat 

e 00 

(15) 	 {l*(A;} + 2i;::: ; {l(A;) 

Then the countable collection {Ai)0=1 covers A = U~1 Ai so that 

00 00 00 

{l*(A):S;; L {l(A i•j ) = L I: {l(A;,j) 
tj=l ;=1)=1 

(16) 
:s;; it [{l*(AJ + ~] 

= e + I:
00 

{l*(Aj) 
i=1 

This holds for all e > 0, so 

(17) {l*(A}:S;; L
00 

{l*(A;} 	 o 
i=1 

Remark. This proof is essentially the same as that used in §1.1 to show that 
a countable union of sets of measure zero is itself of measure zero. 

Now our original ring, 9l, is a subset of 2x. We wish to find a larger ring, 
.A, containing 9l, that will be the measurable sets. Our strategy will be to 
think of 2x as a metric space and define a distance function on it, so that, 
roughly speaking, .A will be the closure of9l in 2x with respect to this distance 
function. (For a quick review of metric spaces, see Appendix A.) 
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For A, B c X we define the distance from A to B by 


d(A, B) = {l*[S(A, B)]
(18) 


where S(A, B) is the symmetric difference S(A, B) = (A - B) u (B - A). 


If A and B are the unit squares pictured, then dCA, B) = 1~'. 

Caution. 

1. 	 d(A, B) may be + 00. 
2. 	 Although we are calling d a distance function, d(A, B) = 0 does not neces­

sarily imply A = B. 

Proposition 12. Suppose A, B, CE2
x

. Then 

1. 	 d(A, B) = d(B, A) 
2. 	 d(A, A) = 0 
3. 	 d(A, B) + d(B, C) ;::: d(A, C) 

Proof. 
Lemma 13. 1. S(A, B) = S(B, A) 

2. 	 S(A,A) = 0 
3. S(A, B) u S(B,C) ::2 S(A, C) 

Items 1 and 2 are obvious. To see item 3 we have Proof. 

S(A,B) = (A - B)u(B - A) 


S(B,C) = (B C)u(C - B)
and 


S(A,B)uS(B,C) = (A - B)u(B - A)u(B - C)u(C B)
so· 


A - C £ (A - B) u (B - C)
But 
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and 	 C - A S; (B A) u (C - B) 

so SeA, C) = (A - C) u (C A) s; SeA, B) u S(B, C) \7 

The proposition follows from the lemma. o 

Note. dCA, B) = 0 if Jl*(S(A, B» 0; that is, A and B symmetrically differ by 
a set of outer measure zero. 

Although the preceding note says that d is not quite a distance function 
in the standard sense, we can still use d to define the notion of convergence in 
2x. That is, we say a sequence {At} ~l E2x converges to A E2x, written Ai -+ A, 
if d(A;,A) -+ O. 

Proposition 14. The Boolean operations in 2x are continuous with respect 
to d. That is, if An -+ A and Bn -+ B in 2x, then 

AnuBn-+A uB 

An n Bn -+ A n B 

An Bn-+A - B 

and A~ -+ A C 

Proof. 
Lemma 15. If AI' A2, B I , B2 E2K, then 

1. 	 S(A~,BD = S(AI,Bd 
2. 	 SeAl uA2,B1 UB2)S;S(Al,Bl)US(A2,B2) 
3. 	 seAl nA 2 ,BI nB2 ) S(AJ, BduS(A 2,B2) 
4. 	 SeAl A2,BI-B2)S;S(AJ,Bl)US(A2,B2) 

Proof. 

1. 	 SeA, B) = (A B) u (B - A) = (A n K) u (B n AC) 
so SeA", B") = (A" n B) u (Be n A) = SeA, B) 

2. 	 SeAl u A2, BI uB2 ) [(AI u A z) - (BI u B2 )] U [(BI u B ) - (AI u
2 

= [(AI uA2)n(Bl uB2 YJ U[(BI uB2)n(AI uAzYJ 
= [(AI u Az) n (BJ. nBz)] u [(BI u B2 )n (A1 n A2)] 
<;;; (AI nB1)u(Az nB2)u(BI n AD u (B2 nAz) 
= S(A I ,B1 )uS(Az,B2) 

3. 	 SeAl nA2 ,B1 nBz) S(A~ uA2,B'l uB2) 
<;;; S(A~,BU u S(A2,B2) 
= S(AI,Btl uS(Az,Bz) 

4. 	 SeAl - Az,B1 - B 2 ) = seAl n A2,BI n Bz) 
S; S(Al>B1 )uS(Az,B2) 
= S(AI,Bd u S(Az,B2 ) \7 
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From the lemma we have the immediate corollary 

1. 	 d(A,B) = d(Ae,B") 
2. 	 deAl u A 2 ,BI u Bz) ~ d(AI,BI ) + d(A z,B2 ) 

3. 	 deAl nA 2 ,BI nB2 ) ~ d(AI,BI) + d(Az,Bz) 
4. 	 deAl - Az,BI B l ) ~ d(AI,Bl) + d(Al,Bz) 

from which the proposition follows. 	 o 

Proposition 16. Jl* is continuous in the following sense: Let A, BE 2x and 
suppose either Jl*(A) or Jl*(B) is finite, then 

(19) 	 IJl*(A) - Jl*(B)I~ dCA, B) 

Proof. Suppose Jl*(B) < 00; also assume Jl*(B) ~ Jl*(A). Then 

Jl*(A) d(A,0) 

~ d(B,0) + deB, A) 

= Jl*(B) + d(B,A) 

Thus 

IJl*(A) - Jl*(B) I Jl*(A) - Jl*(B) ~ d(B, 

Definition 17. Let.AF be the closure of f!Il in 2x. That is, A E.AF if and only 
if there exists a sequence of sets {Ai}~l c f!Il such that d(AI, A) -+ 0 as i -+ 00. 

Theorem 18. 1. .AF is a ring. 
2. 	 For A E.AF, Jl*(A) < 00. 

3. 	 Jl* is a measure on .AF· 

Proof. 

1. Assume A, BE .AF' We need to show that A u B and A - B are in .AF' 
Now, because A, BE there are sequences {AJ~1 and {Bi}~l in f!Il such 
that A; -+ A and Bi -+ B. By the continuity of the Boolean operations 

AiuBi-+AuB 

B;-+A - B 

so .AF is a ring. 
2. A E.AF implies that there is a sequence {A;}~l c f!Il with Ai -+ A. For 

some n, then, d(An,A) < 1. 
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Thus 

J.l*(A) ::; J.l*(An) + 1 < 00 

3. We first show that J.l* is additive, or-what amounts to the same 
thing-we will prove the lattice property; that is, if A, BEAtf then 

(20) J.l*(A u B) + J.l*(A n B) J.l*(A) + J.l*(B) 

Choose An -+ A and Bn -+ B in rJf. Because on rJf, J.l* = J.l, J.l* is additive on rJf. 
Thus 

J.l*(Anu Bn} + J.l*(Ann Bn) = J.l*(An) + J.l*(Bn) 

But An u Bn -+ A u B and An n Bn -+ A n B, so the continuity of J.l* implies 

J.l*(A u B) + J.l*(A n B) = J.l*(A) + J.l*(B} 

We now prove countable additivity. Let {Ai}f;1 be a mutually disjoint se­
quence in AtF with A = Ui':,1 Ai also in AtF • By the subadditivity of J.l* we 
know that 

(21) 	 J.l*(A) ::; I
CX) 

J.l*(Ai) 
i=1 

Furthermore 
N 

UAicA 
1=1 

so J.l*(A) ;;::: J.l* (Q Ai) = it J.l*(A1} for all N 

That is, 

(22) J.l*(A) ;;::: I
CX) 

J.l*(A;) 	 o 
i=1 

Definition 19. A is a measurable set, A e At, if there exist {A;}~1 c AtF such 
that A = U~1 Ai' 

Theorem 20. If AeAt then A eAtF<=>J.l*(A) < 00. 

Proof. Part 2 of theorem 18 gives "=", so to establish the theorem we must 
show that, if J.l*(A) < 00 and A e At, then A eAtF' 

Because A e At, there exist Ai e AtF such that A = Ui':,1 Ai' We can assume 
this union is disjoint for, if it isn't, we can replace the Ai'S by A/s as follows: 

Al = Al 
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A2 = A2 A1 

A3=A3 (A 1 uA 2 ) 

and, because AtF is a ring, we know Ai E AtF' Thus we can assume A U~1 Ai 
is a disjoint union. 

Now consider J.l*(A). First, subadditivity gives J.l*(A) ::; I~1 J.l*(A,). We 
claim that, in fact, J.l*(A) = I~1 J.l*(A,). To see this, notice that 

N 

UAicA 

I 

1=1 

so J.l* (Q A) ~ J.l*(A 1) ::; J.l*(A) 

Because this equality holds for any N, we have 

CX) 

J.l*(AI) ::; J.l*(A) 
1=1 

and thus 

(23) 	 I
OC; 

J.l*(A j ) J.l*(A) 
i=1 

Now, fix /; > 0and let BN = Uf=1 AI; then BNeAtF , and 


d(A,BN} = J.l*(A - BN) = J.l*( U Aj)

j>N

(24) 

::; I J.l*(Aj) < /; for N large 


j>N 

because I~1 J.l*(A,) is convergent. Thus A eAtF because BN -+ A and AtF is 

closed. 
We now consider properties of the collection At. 

Definition 21. Let 9" be a collection of subsets of a set X. 9" is called a a-ring 

if 

1. 	 it is a ring and 
2. 	 given {Ai}~1 in 9", AI is also in 9". 

Theorem 22. At is a a-ring. 

Proof. 	 First we will show property 2. 
Suppose A 

I 
,A2 , ... are elements of At. Let A U~l AI' Because each 

A,eAt, there must be {Aij}r;=l in AtF such that 
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00 

Ai = l ) Aij 

Then A = U;:"i=l Aij' a countable union, so A e.#l. 
Now we will show that .#I is a ring. It suffices to show that if A, Be.#l 

then A Be.#l. 

First, suppose A e.#lF and write B = U~l Bi with Bje.#lF' Because.#lF is 
a ring, AnBie.#lF so AnB U~1AnBj is a member of .#I. Moreover, 
.u*(A n B) ~ .u*(A) < 00, so An Be.#lF' Now A B = A (A n B) and, 
because .#IF is a ring of which A and A n B are members, we have A - Be.#lF' 

Now let A be a general element of.#l and write A = U~1 Ai with Ai e .#IF' 
Then 

00 

A B = U(A1 - B) 
1=1 

but from the discussion above, Ai - BE.#IF' so we are done. o 

Theorem 23. IfA 1, A 2 ,· •• is a countable collection of disjoint sets in .#I, then 

.u* (Q A) = It .u*(Aj) 

Proof. Let A Ai' A E.#I. We consider two cases separately. 

1 . .u*(A) < 00 

Because Ai c A, .u*(A.1) < 00 so A and all of the A;'s are elements of .#IF' 
Because.u* is a measure on .#IF' we have then 

.u*(A) = L
00 

.u*(AI) 
i=1 

2 • .u*(A) = 00 

In this case subadditivity tells us that 

00 .u*(A) ~ L
00 

.u*(A;)
1=1 

so L
00 

.u*(AI) = 00 
i=1 

Now that we have constructed measurable set~ in the abstract case, let us 
return to the example of Lebesgue measure in Rn. 

Example 24. X = Rn, ffi = ffiLeb = finite unions of multi-intervals, and .u is 
as given in example 4. Here we call .#I the set of Lebesgue measurable sets in 
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Rn, and the extension of.u to .#I (the restriction of .u* to .#I) is called Lebesgue 
measure .uL' 

What do the sets in .#I look like? First we remark that Rne.#l. Indeed let 

IN = {xeRn; -N ~ Xi ~ N, i = 1, ... ,n} 

Then 

00 

Rn = U IN and each INEfll c .#IF 
N=l 

Proposition 25. Every open subset of Rnis in .#I. 

Proof. Let c = (a 1, a2 , ••• , an' b1, b2 , ••• , bn)e R 2n with the a:s and b;'s rational 
and ai < bl' Let Ie = {x eRn; ai < Xi < bi> i = 1,2, ... , n} . The collection {Ie} is 
countable. 

Now let (9 be any open subset of Rn; (9 is equal to the union of all sets Ie 
such that Ie C (9. (If X E (9 we can find a c such that X e Ie C (9.) Because such 
a union is countable, (!) e.#l. 

Corollary 26. Every closed subset of Rnis in .#I. 

Proof. A is closed so AC is open. A = Rn - N and, because .#I is a ring and 
Rn, Aee.#l, we have Ae.#l. 

Corollary 27. All countable unions and intersections ofclosed and open sets 
are measurable. 

We have shown that the measurable sets are a a-ring containing the open 
subsets of Rn. Are they the smallest a-ring with this property? That is, if one 
starts with the closed and open sets, forms countable unions and intersections, 
and then from these forms further countable unions and intersections, and so 
on, does one eventually end up with all measurable sets? The answer is no, 
unfortunately; so we are forced to make the following definition. 

Definition 28. The Borel sets are the smallest a-ring containing the open sets. 
Although not all measurable sets are Borel (for an example see Halmos, 

P. Measure Theory. [Van Nostrand: Princeton, NJ] p. 67), the following 
theorem says that any measurable set is close to being a Borel set. 

Theorem 29. IfA e.#l there exists a Borel set B s A such that .u*(A - B) = 0; 
that is, A can be written as A = (A - B) u B, where B is Borel and 
.u*(A - B) = o. 
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Lemma 30. IfA E A and if e > 0 is given, then there exists a Borel set G such 
that G :::l A and J1.*(G A) < e. 

Proof. First suppose J1.*(A) < 00. Then by definition of J1.* we can find a cover 
A c U~lAj such that 

LJ1.(A i ) $; J1.*(A) + 6 

where each of the Ai ',s is a multi-interval; so we take G = U~l Ai, which is Borel. 
More generally, if A EA we can write A = U~l Ai where each A;EAF' 

By the preceding argument we can find Borel sets Gj with Ai c G and 
J1.*(Gj Ai) < el2i, Then with G I Gj we have 

i 

J1.*(G A) < 6 \1 

Lemma 31. If A E ,.$I there exists a Borel set F A with 

J1.*(A F) < e 

Proof. Choose a Borel set G such that ACc G and J1.*(G - AC) < eby lemma 
30. Let F = G'. Then A F = G - A' and 

J1.*(A F) J1.*(G - A') < e \1 

Now we prove theorem 29. Take A EA. For every N choose a Borel set 
FN c A such that J1.*(A - F/V) < lIN. Let F I J~=1 FN; then F is Borel and 

J1.*(A F) $; J1.*(A FN ) < Iv1 
for every N 

Thus J1.*(A F) = O. 

We conclude this section with a few remarks about notation. Let X be a 
set, f!Il a ring of subsets of X, and J1. a measure on f!Il. By theorem 18 J1. 
extends to a measure on a much larger ring of sets, A F. In fact J1. can be 
regarded as a measure on the a-ring A, providing we define it to take the 
value + 00 on sets A that are in A but not in A F • Note that proposition 5 is 
then still true if one observes the usual addition conventions for + 00, namely 

(+00) + a = +00 for aER 

and (+00)+(+00)= +00 

Moreover, J1. is countably additive on A by theorem 23. Note that, if X itself 
is in A F , these problems with infinity don't arise; that is, AF A. For all 
examples of measures that we will encounter in this text, the set X is either in 
,.$IF or in A-that is, X satisfies the conditions of the following definition. 
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Definition 32. X is a-finite if there exist sets Xi E A F, i = 1,2, ... , with 

X U~lXi' 
For example, Rn is a-finite because 


00 


Rn = I I B j 

with Bi being the ball of radius i about the origin. 

Exercises for §1.3 

1. 	 Let X be an uncountable set. Let f!Il be the collection of all finite subsets of 
X. Given A E f!Illet J1.(A) be the number of elements in A. Show that f!Il is a 
ring and that J1. is a measure on f!Il. Identify J1.*. What are A and AF? Is 
every subset of X measurable? 

2. 	 Let X be an infinite set and let f!Il be the following collection of subsets: 
A E f!Il if and only if A is finite or AC is finite. Let J1. be the following function 
on f!Il: J1.(A) = 0 if A is finite, and J1.(A) = 1 if AC is finite. Is J1. a measure? 

3. 	a. Let X be an infinite set and f!Il the collection of all countable subsets 
of X. Is f!Il a a-ring? 

b. 	 Let J1. be a measure on f!Il. Show that there exists a function f: X ~ 
00) such that 

(*) 	 J1.(A) = L f(x) 
xeA 

for all A E f!Il. 
c. 	 Show that the function f in part b has to have the following 

two properties: (1) The set {x EX;f(x) #- O} is countable and (2)

Lex f(x) < 00. 

d. 	 Show that, if f has the properties in part c, the formula (*) defines a 
measure on f!Il. 

4. 	 Let X be the real line and f!Il f!IlLeb' (That is, finite unions of intervals.) 
Given A Ef!Illet J1.(A) = 1 if, for some positive e, A contains the interval 
(0, e). Otherwise let J1.(A) = O. Show that J1. is an additive set function but is 
not countably additive. 

5. 	Let F be a continuous, monotone increasing function on the real line. IfA 
is an interval with endpoints a and b, let 

J1.F(A) F(b) - F(a) 

More generally, if A is a disjoint union of intervals 

N 

A= UA; 
;=1 
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let liF(A) = ZJ=l liF(Ai)' Show that liF is a measure on the ring ,IjILeb; that is, 
prove it is countably additive. 

Remark. If one takes for F an antiderivative of the function 
(l/J2;)e-

x2 
/ 
2, liF is called the Gaussian measure. We will encounter it 

several times later on. 
6. 	 a. Let A be a measurable subset of R. One says that the density of A is 

well defined if the limit 

D(A) 	 lim liL {A n [ T, TJ} 
T-+oo 2T 

exists. If the limit exists, this expression is called the density of A. Can 
you produce an example of a measurable set A whose density is not 
defined? 

b. 	 Show that, if AI and A2 have well-defined densities and are disjoint, 
then Al U A2 has a well-defined density and 

D(A I U 	A 2) D(AI) + D(A2) 

c. 	 Show that there exist sets A and Ai' i 1,2, ... , with well-defined 
densities such that 

00 

A UAi (disjoint unions) 
i=1 

but 

D(A) 1= I D(Ai) 

7. 	 Let X be a set, §t a a-ring of subsets of X, and iii and li2 measures on §to 

Let 2:' be the family of all those sets A e §t for which iii (A) = li2(A). As­
sume X e [Jt and iii (X) li2(X) < 00. Show that 2:' has the following 
properties: 

X e 2:'. 

(**) (ii) If A, Be 2:' and B A, A - Be 2:'. 


(iii) 	If Ai e 2:', i = 1,2, ... and A U~I Ai (disjoint union) 
then Ae2:'. 

Remark. A collection of sets .P having the properties listed in (**) is 
called a A-system. 

8. Let X be the three-element set {PI,P2, P3 }, and let §t be the ring of subsets 
of X. Let iii and li2 be measures on!?l. When is the set .f/! a ring? Show that 
.P doesn't always have to be a ring. 

9. 	 Show that the example described in exercise 1 is not a-finite. 
10. Remember that a metric space is complete if every Cauchy sequence 
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has a limit. Show that, with respect to the distance function d(A, B) = 
1i*(S(A, B», 2x is complete. 

11. 	 a. Given any collection C(j of subsets of a set X, show that there is a 
smallest ring of sets §t containing C(j. (That is, §t has the property that it 
contains C(j, and any ring that contains C(j contains .1jI.) Describe ex­
plicitly how to construct !?l from C(j. 

b. 	 Show that the ring !?lLeb is the smallest ring containing the multi­
intervals. 

12. 	 Given any collection C(j of subsets of a set X, show that there exists a 
smallest a-ring of sets §tq containing C(j. This justifies definition 28. 

13. 	 Show that for any <1 > 0 there exists an open dense subset U of R with 
liL(U) < <1. 

14. 	 Let ceRn. Given any subset A of Rn, let A + c = {weRn; w - ceA}. 
Prove that, if A is measurable, then A + c is measurable and 

(**) 	 lidA + c) 

(Hint: First, prove this for multi-intervals. Next, show that in equation (**) 
the outer measures are equal.) 

15. Let f: R ~ R be the linear mapping x ~ ax + b, a and b being constants 
with a > O. Show that, if A is measurable, f(A) is measurable and 

liLU(A» aliL(A) 

16. 	 Let A be a Lebesgue measurable subset of R and let 

CA {(x,y)eR2;xeA} 

.' Such sets are called cylinder sets. Show that the collection of these sets 
forms a ring !?le. Show that the set function lie dermed by 

lidCA ) = liL(A) 

is a measure on this ring. Show that, if S is a proper subset of Rand 
liL(A) 1= 0, the set 

A x S = {(x,y); xe A,yeS} 

is not a measurable subset of R2 with respect to the measure lie. (Hint: 
What is its outer measure, computed with respect to lie?) 

17. 	 Let f: Rm ~ Rn be a continuous map. Show that, if A is a Borel subset of 
Rn, then f-I(A) is a Borel subset of Rm. Define 

lif(A) = liLU-1(A» 

Show that lif is a measure on the Borel subsets of R". 
18. 	 Let!?l be a ring and Ii a measure on!?l. Prove that, if A 1 ,A2, ... ,An are 

in!?l then 
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U ... U An) = L
n 

J.t(AJ - L J.t(A; II Aj) 
i=1 i<j 

+ 	 L J.t(AjIlAjIlAk )+··· 
i<j<k 

+( 1t+1J.t(A 1 II···IIA n) 

19. 	 Let X be a set, f!il a ring of subsets of X, and J.t a measure on f!il. Let 
J.t* be the corresponding outer measure. Show that if A E . .$IF then. for all 
E~X, 

(t) 	 J.t*(A II E) + J.t*(AC 
II E) J.t*(E) 

(Hint: First check this for A E 9t.) 
20. 	Prove the converse result; that is, suppose J.t*(A) is finite and A satisfies 

property (t) for every subset E of X. Prove that A E (Hint: Show that, 
for every set A and every I:: > 0, there exists a set E E At such that E :::J A 
and J.t*(E):-:;; J.t*(A) + c. Use property (t) to conclude that d(E,A) < 

Remark. In many textbooks the property (t) is used as the definition of 
a measurable set. 

§1.4 Measure Theoretic Modeling 

Now that we have developed the basic notions of measure theory 
we can examine a little more closely the ideas involved in what we have called 
the "Borel principle." First we provide some definitions. 

Definition t. Let X be a set and ff a ring of subsets of X. 

t. ff is afield if X Eff. 
2. ff is a O"-field if X Eff and if ff is a O"-ring. 

Definition 2. Let X be a set and .'F a field of subsets of X. Suppose J.t is a 
measure defined on ff. Then J.t is a probability measure if J.t(X) 1. In this case 
the triple {X, .'F, J.t} is called a probability space. 

Example 3. Let X be the unit interval I, and let ff be the measurable subsets 
contained in 1. Then ff is a O"-field and the Lebesgue measure is a probability 
measure. 

Now iet X be the sample space of a probabilistic process. A measure 
theoretic model of the process is a O"-field .'F of subsets of X and a probability 
measure J.t defined on :? so that, for any "plausible" event E in X, we have 
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BE E ff and Prob(E) = J.t(BE), where BE is the set of points in X for which E 
occurs. 

Of course this definition is not precise; the word plausible is left to be 
interpreted by the modeler. We need to include the plausibility qualification 
because the desired measure may not be defined on all subsets of X. For 
example, as we show in Appendix C, not every subset of the unit interval is 

Lebesgue measurable. 
Let us consider some examples of measure theoretic models. 

I. 	 Discrete Prohahility Theory 

Suppose the sample space X is finite or countable, say X {Xl' X 2 , X3' ... }. 

Further, suppose that each point Xi has the probability Pi of occurring and 
that LPi = 1. The measure theoretic model for this process is given by letting 
ff be the collection of all subsets of X and by defining J.t as 

(1) 	 J.t(A) L Pi for A c X 
xi€A 

It is left as an exercise for the reader to check that J.t is a measure. (See exercise 
3 in §1.3.) 

Notice that in this case we need not interpret the word plausible because 
.~ contains all subsets of X; that is, all events are considered plausible. 

II. Bernoulli Sequences and Random Walks 

In this case the sample space can be identified with the unit interval I, and the 
measure theoretic model is given by the Borel principle. In §1.2 we saw that, 
for many "plausible" events BE is a finite union of intervals (and thus 
measurable) and that Prob(E) = J.t(BE) in these cases. The events considered 
there were rather simple; let us now confirm that BEEff for some more 
complicated, yet still "plausible," events. 

t. Let E be the event that a prescribed finite pattern, for example, H T T H, 
occurs infinitely often. To describe BE we let En be the event that the pattern 
occurs beginning at the nth step. Because BEn is described by a finite number 
of conditions on the Rademacher functions, it is a finite union of intervals. 
(If the pattern is HTTH, then BEn = {WE I; Rn(w) = 1, Rn+1(w) = -1, 
R +2 (w) = 1, Rn+3 (w) = n.) Thus, because n

(2) 	 BE = BEn 

it is Borel. 
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2. (Law of large numbers) Let E be the event that a Bernoulli sequence 
obeys the law oflarge numbers. That is, with S..(w) = L;;=1 Rk(w), 

S..(w) }BE = wEI;-n-~Oas n~ 00{ 

We know thi!! is measurable because we showed its complement has 
measure zero. However, let us describe BE as a Borel set. 

Recall that the statement 

Sn(W) ~ 0 as n ~ 00 

n 

means that, for every integer r > 0, there is a k > 0 such that 

ISn~W) I< ~ whenever n ;::: k 

If we let 

(3) A",r = EI;ISn~W)I<H 
we can write 

00 00 

(4) BE = nun An.r 
r=1 k=1 n?2:k 

which is Borel, because each An.• is a finite union of intervals. 
3. Let E be the event that L(R,,(w)/n) converges. We claim BE is Borel. Let 

n RK(w) 
(5) 1;,(w) = L k 

k=l 

Then the Cauchy condition tells us that L(R,,(w)!n) converges if, for every 
integer r > 0, there is a k > 0 such that 

I1;,(w) - Tm(w) I<-
1 

for all m, n ;:::: k 
r 

Ifwe let 

Am ... = {WEI; 1 Tm(w) - 1;,(w) 1 <~}• . r 

we see that 

00 00 

(6) BE = nun Am,,,,r 
r=1 k=1 m.n?2:k 

which is Borel, because Am....r is a finite union of intervals. 

§1.4 Measure Theoretic Modeling 

We have now shown that these "plausible" events correspond to mea­
surable sets. Thus, if we assume that the Borel principle holds, we can deter­
mine the probability ofthese events by finding the measure of these sets. We 
know already that, for the law oflarge numbers, the set described has measure 
one. We now develop the necessary tools to determine the measure ofthe set 
described in event 1. 

This example is a special case of the following general situation: Start with 
a countable collection ofevents 

{E1 ,E2 , ... } 

and define a new event E to be the event that infinitely many of the events E j 

occur. Can we determine Prob(E) if we know Prob(E j ) for all i? Two theorems 
address this problem; they are called the Borel-Cantelli lemmas. In order to 
formulate them, we first restate the problem in measure theoretic terms. 

Let X be the sample space of our process, equipped with a a-field !IF and 
a measure p.. Let B j denote the subset of X on which E j occurs. We assume 
that Bj E!IF and that Prob(Ea = p.(Bj)' If we let BE denote the subset of X 
corresponding to the event E, then, in terms of the B/s, 

00 

(7) BE = n U Bn 
k=1 n?2:k 

We give this a name. 

Definition 4. Given sets B 1 , B2 , B3 , ••• in .'F, then 

00 

(8) {B j ; i.o.} limsupBn n UBn 
k=I .. ?2:k 

is called "B;, infinitely often" or the limes supremum of the B;'s. 

Theorem 5. (First Borel-Cantelli lemma) Given B 1 , B2 , ••• in let B = 

{Bj ; Lo.}. Then p.(Bj ) < 00 implies that p.(B) = O. 

Proof. Let Ak = Un?2:k Bn so that B = Ak ; in particular, B ~ Ak for all 
k. Now, by subadditivity 

::;: L p.(Bn) 
.. ?2:k 

Thus, because L::'=1 p.(Bn) < 00, for e > 0 there is a k> 0 such that 

p.(Ak)::;: L p.(Bn) < e 
n?2:k 

Because B £ Ak we have that p.(B) < e, and because e is arbitrary we must 
have p.(B) = O. D 
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Application. (Run lengths) For OJEI define the nth run-length function In 
by letting In(OJ) be the number of consecutive l's in the binary expansion 
of OJ starting at the nth place. That is, In (OJ) = k if Rn(OJ) = 1, Rn+l (OJ) = 
1, ... ,Rn+k-l(OJ) = 1, and Rn+k(OJ) = L 

Now take a sequence of non-negative integers, TI, r2, r3, ... , and let 
En denote the event that In(w);::: Tn. Let E = {En ji.o.}. Then 

BEn = {OJ E I; Rn(OJ) = Rn+1 (OJ) = ... = Rn+rn - 1(OJ) = I} 

so Jl(BEJ = (1)''' and we can use theorem 5 to conclude the following. 

Corollary. IfL~l (1/2)''' < co then Jl(BE) = O. 
The second Borel-Cantelli lemma supplies a partial converse to the first. 

It is restricted by applying only to independent events. 

Definition 6. Two events El and E2 are independ~nt if the outcome of El 
tells us nothing about the outcome of E2 • 

Let us try to make this definition more precise by restating it in measure 
theoretic terms. Knowing that the event El occurs means that the elements 
of the sample space in which we are interested are already in BE" Now, for 
what proportion of the elements in BEl does the event E2 occur? Clearly the 
answer is 

JI(BEI n BE2 )(9) 
Jl(BE) 

This ratio is called the conditional probability of E2 given E1 • Now, if E2 
is independent of E 1 , this conditional probability is just the probability of E2 
computed without prior knowledge of E 1-that is, Jl(BE,); hence 

(B ) = Jl(BEI n BE,) 
Jl E, JI(BE) 

This leads us to the following measure theoretic definition. 

Definition 7. Let X be a sample space with a-field §l and probability mea­
sure JI. Two sets AI' A 2 E<'F are independent if 

(to) Jl(A l n A2) = Jl(A 1 )JI(A2 ) 

Example 8. Given X =1, Jl = Lebesgue measure, At {OJEI; Rt(OJ) ='1}, 
andA 2 = {OJEI;R 2 (OJ) = I}, then 

= (1,1] and A2 = (1, tJ u (1, 1] 
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Al n A2 = (i, IJ 

Thus, Jl(A I n A2 ) = 1= H)2 = Jl(A 1 )Jl(A 2 } 

Definition 9. More generally, A 1 ,A2 , ... ,An are independent if, for any se­
quence ofintegers 1 ~ il < i2 < ... < ik ~ n, we have 

(11) Jl(Ai, n Ai2 n'" n AiJ = Jl(Ai,)Jl(A i )'" Jl(A1J 

Further, a countable collection of sets is independent if every finite subcollec­
tion is independent. 

Example 10. Let Ai = {OJE I; Ri(OJ) = I}. It is left as an exercise to prove that 
the collection At, A 2, ... is independent. 

Theorem 11. (Second Borel-Cantelli lemma) Let (X,§l,Jl) be a probability 
space and let AI' A z, ... be an independent collection of sets from §l. Suppose 
that 2".:1l(A.) = co; then Jl({Ai; 1.0.}) = L 

Lemma 12. Let At, A 2 , • •• be an independent collection of sets in §l. Then 
A~, A'l, A~, ... is an independent collection of sets in §l. 

The proof of the lemma is left to the reader. (See exercise 10. We suggest 
that the reader give this exercise a few moments of thought before continuing 
the chapter.) 

Proofoftheorem. Let A {Ai; i.o.}. Then 

00co 

A = n U An so At = U nA~ 
k=1 n~k k=1 n:2:.k 

To show that Jl(A) = 1, it is enough to show that Jl(AC
) = 0; and, to establish 

this fact it is enough to show (by subadditivity) that 

JI(n A~) =0 
n:2:.k 

Now, by independence, 

JI(n A~) ftJl(A~) 
but Jl(A~) = 1 Jl(A ), which in tum is less than or equal to e-1t(A,,) becausen 
it is true in general that 1 x ~ e-X 

• (Prove this inequality yourself!) Thus 
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(12) J1.(n A~) s ne-/l(An) = e-I~='/l(An)
n=k lI=k 

But e-I~='/l(A") -+ 0 as 1-+ 00, because L~l J1.(An) = 00. Thus J1.(nn??:k A~) = O. 

o 

Example 13. Let H" denote the event of a head at the nth toss ofa Bernoulli 
sequence. The corresponding subset of I is 

A" = {mEl; Rn(m) = I} 

In exercise 11 the reader will show that these sets are independent. Further­
more, J1.(An) t for each n, so LJ1.(A,,) = 00. Thus a head occurs infinitely 
often in a Bernoulli sequence with probability one. (This result can be proved 
much more trivially. What is the proof?) 

Example 14. Example 13 is an example of a finite pattern (the pattern H) 
occurring infinitely often in Bernoulli sequences. More generally we now show 
that any finite pattern occurs infinitely often in Bernoulli sequences with 
probability one. For simplicity of notation, consider the particular pattern 
HTTH. 

Proposition 15. The pattern H T T H occurs infinitely often in a Bernoulli 
sequence with probability one. 

Proof. Let En be the event that H T T H occurs starting at step n, and let Bn 

be the corresponding subset of 1. Because the A,,'s are independent and Bn = 

An () A~+l () A~+2 () An+3 , we have J1.(Bn) (t)4 = so L~1 J1.(B,,) = 00. 


Unfortunately, Bn and Bn+l are not independent, so the second Borel-Cantelli 

lemma does not apply. However, the sets B", Bn+4' Bn+8 , •• _ are independent; 

in particular, B1 ,Bs,B9 , ... ,B4k+l>'" are independent and 


00 

L JlI1:J........ , I 00 

k=1 

so the second Borel-Cantelli lemma applies to give 

J1.({ B4k+l; i.o.}) 1 

But {B4k+l; i.o.} c: {B,,;i.o.} so 

1 = J1.({B4k+l; i.o.}) s J1.({B,,; i.o.}) s 1 

Thus J1.({B,,; i.o.}) = 1. 
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Remark. This same proof works for any finite pattern of H's and T's-for 
example, Shakespeare's sonnets translated into Morse code, with the dots and 
dashes changed to H's and T's. 

Exercises for §1.4 

1. 	 We will say that an event E involving Bernoulli sequences is plausible if 
the subset BE of the unit interval corresponding to it is a Borel subset. 
Show that the following events are plausible: 
a. 	 A gambler quadruples his initial stake. (Beware: he will not quadruple 

his initial stake if he gets wiped out beforehand.) 
b. 	 In an infinite sequence of trials, a gambler breaks even an infinite 

number of times. 
c. 	 In an infinite sequence of trials, arbitrarily long run lengths occur. 
d. 	 In an infinite sequence of trials, H comes up "on the average" more 

often than T. 
(Incidentally, event d shows that "plausible" does not necessarily mean 
"probable.") 

2. 	 Show that, for random walks on the line, the following events are 
plausible: 
a. 	 The origin is visited infinitely often. 
b. 	 Every integer point on the real line is visited infinitely often. 

3. Show that, for 	random walks in the plane, the following events are 
plausible: 
a. The origin is visited infinitely often. 

h.' Every point (m, n) is visited infinitely often. 


4. 	 Let f be a function from the integers to the real numbers. Show that, for 
random walks on the line, the event 

L
00 

f(nJ < 00 
'=1 

is plausible, n, being the position at time i. 
S. 	 Let S = L~I ±2-1 be the series obtained by flipping a coin to decide 

whether a plus sign or a minus sign goes into the ith place. Show that the 
event lSI < e is plausible, and compute its probability_ (Hint: See §1.2, 
exercise 7.) 

6. 	 Let X be a set,.tT a u-field of subsets of X, and J1. a probability measure on 
.'F. Let A 1,Az,AJ , ••• be a sequence of subsets of X belonging to.'F. 
a. 	 Show that, if Al A3"', then 

J1.(.f\ Ai) = !imJ1.(A j ) 
l=l 1-+00 
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b. 	 Show that, if Al A2 s:;; A3"', then 

JlI (00) Ai) = ~im Jl(A;) 
'-00 

7. 	 Let X be a set and ... a sequence of subsets of X. The set 

is denoted as lim inf An or as {An; a.a.} (abbreviations for limes infimum of 
An and "An' almost always," respectively). Show that {A~; a.a.} is the 
complement of {An; Lo.}. If X is a probability space and the An's are 
measurable, conclude that the probability of {A~; a.a.} is zero if and only 
if the probability of {An; i.o.} is one. 

8. 	 Let X be a set, ff a u-field of subsets of X, and Jl a probability measure on 
ff. Show that, if AI' A2 , A 3 , ..• are in ff, then 

~ lim inf Jl(An) ~ lim sup Jl(An) ~ Jl(lim sup An) 

9. 	 a. Let X be a set and let A I and A2 be subsets of X. Show that the smallest 
u-field containing Al and A2 consists of at most 16 sets. (Hint: Take 
unions of the four sets: Al n A 2 , A~ n A2, n A2,A'l n A~n 

b. 	 Let A I ,A2 , ... ,Ak be subsets of X. Let be the smallest u-field 
containing the A/s. Show that ~ has at most members. 

c.' 	Show that the upper bound in part b cannot be improved. (Hint: Let 
M be the k-element set {PI"" ,Pk}' and let X 2M be the set of subsets 
of M. Let Ai be all subsets of M that contain the point Pi' 

to. 	 Let X be a set,.'F a u-field of subsets of X, and Jl a probability measure on 
.'F. Suppose that AI"'" An are independent sets belonging to ff. 
a. 	 Show that A~, A2 , .•• , An are independent. 
b. 	 Let A be anyone of the sets Al n A2 , A'l n A2, Al n A2, Al n A .

2Show that A, A3, A4 , ••• , An are independent. 
c. 	 Let be the smallest subfield of.'F containing AI' ... , A • Show that if 

A E then A, Ak +I, ... , An are independent. 
k 

d. 	 Let be the smallest subfield of ff containing A l' ... , Ak and '~-k be 
the smallest subfield containing Ak+1 , • •• , An. Show that, if A E.~ and 
A' E~-k' then A and A' are independent. 

11. 	 a. Let Ai be the subset of the unit interval corresponding to the event 
"H at the ith trial" in a Bernoulli sequence. Show that the A;'s are 
independent. 

b. 	 Let Bi be the subset of the unit interval corresponding to the event 
"H THat the ith, i + lstand i + 2nd trial." Show that B , B , B , BID,

1	 4 7 ... are independent. 

12. 	 a. For the random walk with pauses, let Ai be the subset of the unit 
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interval corresponding to the event "a pause at time i." Show that the 
A;'s are independent. 

b. 	 For the random walk in the plane, let Ai be the subset of the unit 
interval corresponding to the event "an eastward move at time i." 
Show that the A;'s are independent. 

13. 	 Let N be a large positive integer. Prove that in a Bernoulli trial run lengths 
oflength N occur infinitely often with probability one. 

14. 	 Prove that run lengths of arbitrary length occur infinitely often with 
one. (Hint: Consider the random pattern: 

THTHHTHHHT ... TH ... HT 

with the last term involving n H's. Let En be the event that this PUHClll 

occurs infinitely often and let E be the intersection of the events En. 
15. 	 For the random walk with pauses, prove that with probability one there 

are infinitely many pauses. Use the Borel-Cantelli lemma. (An alternative 
proof of this fact was suggested in §1.2, exercise 6.) 

16. 	 Let N be a large integer. Prove that the random walk on the line, starting 
at zero, passes either through the point N or the point - N with prob­
ability one. Conclude that it passes through N with probability at least 1. 

17. 	 Let Z2 be the integer points in the plane, and let n be a finite subset of 
Z2 containing the origin. Prove that a'random path starting at the origin 
hits an in a finite time with probability one. 

The path depicted hits an on the ninth step. 

18. 	 In proving the law of large numbers in §l.l, we used Chebyshev's in­
equality to prove 

Jl( {w; IS"~W)I > B}) ~ 3n-2f,-4 
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Choose a sequence 8. - 0 such that 2::;"1 n-z8;;4 is finite and let An be the 
set 

. jSn(CO)/ }co, > 8"{ n 

Use the first Borel-CantelIi lemma to prove that 1t({A.; i.o.}) 0 and 
deduce from this the law of large numbers. 

19. Let 	X = {xbXZ, ••• } be a countable set, P1,P
Z
"" a sequence of non­

negative numbers such that 2: Pi = 1, and It the measure 

It(A) = 2: Pi 
XjEA 

Show that X cannot contain an infinite sequence of independent sets 
Ai,Az ,··. such that, for all i, It(A t ) =!. (Hint: Start by observing that 
every point XE X must lie in one of the four sets Ai r. A , Ai r. A , 

z zAi r. Az, or Al r. Az· Thus the measure of the one-point set {x} is less 
than or equal to i· Notice, by the way, the moral of this exercise: A discrete 
measure theoretic model for the Bernoulli process does not exist. Just let 
Ai be the subset of X corresponding to the event "an H at the ith trial.") 

Chapter 2 

Integration 

Now that we have the tools of measure theory, we are ready to 
discuss integration. The student of the Riemann integral is accustomed to 
considering only integrals over subsets of R·. However, we will see that 
integrals can be defined whenever we have a triple (X,$',It), where X is a set, 
$' is a u-field of subsets of X, and It is a measure defined on $'. Such a triple 
is called a measure space. Our basic example of a measure space is, of course, 
Lebesgue measure on the Borel sets of [0,1] or of the whole real line. The 
last section of Chapter 1 suggests that the theory of probability is rife with 
other examples. Notice that for the real line some sets have infinite measure­
for instance, ItdR) = 00. We will allow this to occur in general. (See the 
comme'nts at the end of §1.3.) 

§2.1 Measurable Functions 

In the study of integration, it is convenient to allow functions to 
assume the values + 00 and - 00. To make this notion concrete, we define the 
extended real number system to be the set R u { + oo} U { oo}. 

The elements + 00 and 00 in the extended reals have the special 
properties 

1. 	 -00 < a < +00, aER 
2. 	 a+(±oo)= ±oo, aER 
3. 	 a'(± (0) ±oo, aER, a > 0 
4. 	 -l'(±oo) +00 

Now let (X, $', It) be a measure space. Let f be a function on X with values 
in the extended real numbers. 
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Definition 1. The function f is measurable if, for all a E R, the set {x EX;
f(x) > a} is an element of .'iF. 


Measurable functions can be characterized in various ways. 


Proposition 2. The following are equivalent: 

1. For all aER, {x; f(x) > a} E% 
2. For all aER, {x; f(x);;:: a} E.'iF 
3. For all aER, {x; f(x) < a} E.'iF 
4. For all aER, {x; f(x):s; a} E% 


Proof. 


1<:>4: The sets in items 1 and 4 are complementary and, because % is a 
(I-field, we know that AE% <:>AC E%. 

2 <:> 3: Same as above. 
1 => 2: For all aE R 

{x; f(x);;:: a} = n{x; f(x) > a _~}
n=l n 

By item 1each set {x; f(x) > a lin} E%. Because % is a (I-field, the count­
. able intersection is in %. 


2=>1: ForaER 


{x; f(x) > a} = C) {x; f(x);;:: a + 

By item 2 each set {x; f(x) ~ a + lin} E%. Because % is a (I-field, the count­
able union is in %. 

In keeping with our notion of extended real numbers, we define the 

extended Borel sets as the collection of subsets of R v { + 00} u { _ oo} having 

one of the following forms: 


A, Au {+ oo}, Au {- oo}, A v { + 00, 


where A is a Borel set. One can easily see that the extended Borel sets form a 

(I-field. 

Theorem 3. Conditions 1 through 4 of proposition 2.are equivalent to 

5. For every extended Borel set B 

{x; !(x)EB} E% 

Proof. It is obvious that 5 => 1, 2, 3,4. We will show that 1,2, 3, 4 => 5. 
Let <C be the collection of all subsets C of R v { + oo} v { _ oo} with the 

property that 

§2.1 Measurable Functions 

(2) {x; f(X)E Cl E% 

We need to show that the extended Borel sets are contained in <C. 
Note that, by items 1,2, 3,and 4, the sets (a, + 00], [a, + 00], [- oo,a), and 

[- oo,a] are members of <C. 
Also notice that <C is a (I-field. Indeed, if AiE<C, 1 :s; i < 00, then 

EA;}E%{x; f(X)E Ai} {l {x; 

so nr;l AiE<C. Similarly, ur;l A;E<C. 
Now notice that the extended Borel sets are the smallest (I-field containing 

all the infinite intervals mentioned above. Thus the extended Borel sets must 
be contained in <C. 

Example 4. Let X = R", and let % = Jt be the Lebesgue measurable sets. 
If f :R" -;. R is continuous, then f is measurable. Indeed, if aE R, then {x E R"; 
f(x) > a} is open and thus is a Borel set. 

Example 5. Let X = !!IJ, the sample space for the Bernoulli process. As usual, 
identify fJ4 with I, the unit interval. 

Consider Rn(ro), the Rademacher functions. These are measurable because 
they are piecewise constant; namely, for any subset A ofRu {+ oo} u { 
we have that {WE I; Rn(w) E A} is a finite union of intervals. 

Similarly, if we let Sn(w) = LI:=l Rk(w), we see that Sn is also piecewise 
constant and hence measurable. 

Notation. In §L2 we used the term random variable for a function f: X -;. R 
when (X, %, ft) is a probability space. The interesting functions on X are 
always measurable. For this reason we use the name random variable inter­
changeably with measurable function when discussing probabilistic notions. 

Example 6. Let T(w) be the number of times the random walk correspond­
ing to w returns to 0, and let In(w) be the number of consecutive H's beginning 
at the nth toss of w. As an exercise, show that T and In are random variables. 
(See exercise 4.) 

Remark. The variables In and T are pathologically discontinuous. The possi­
bility of integrating such functions, that is, computing their expectation values, 
vindicates the work we are about to put into the theory of integration. For 
example, we will show in Chapter 3 that T + 00 with probability one; that 
is, with probability one a random walk returns to 0 infinitely often. 

We continue now with the study oftheproperties of measurable functions. 
Let (X,%,ft) be a measure space. 
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Theorem 7. Let f and 9 be measurable functions on X. Let max(f, g) be 
the function on X defined by max(f,g)(x) max [f(x), 9(x)J. Then max{f,g) 
is measurable. Similarly, if min(f,g)(x) = min[f(x),g(x)J, then min(f,g) ismeasurable. 

Proof. {x; max(f,g)(x) > a} = {x; f(x) > a} u 9(x) > a} and is thus anelement of $F. 

Similarly, min(f,g)(x) > a} = {x; f(x) > a} n {x; g(x) > a} is also 
~~ 0 

Coronary 8. Let f be a measurable function on X. Let 

f ( ) = f f{x) if f(x) 2 0 d 
+x lo iff(x)<o an f-(x) {- f(x) if f(x) =:;; 0 

o if f(x) > 0 
Then f+(x) and f-(x) are measurable. 

Proof. f+(x) = max(f,O) and f-(x) = max(- f, -f' 0 
Notice that f(x) = f+(x) f-(x), so we havejust shown that every measur­

able function can be written as the difference of two nonnegative measurable 
functions. (See the figure below.) 

II " 1+ r- \. 
1- ;- ( , 

supJ;{x) = sup{J;(x); 1 =:;; i < OJ}(3) i~l 

infJ;(x) = inf{ J;(x); 1 =:;; i < <Xl}
i:;:l 

Theorem 9. 1ff1,f2,'" is a sequence of measurable functions, thensuPi>oJ; 
and infi>o J; are also measurable. 

Proof. For a E R, 

00 

{x; sup J;(x) > a} = U{x; J;(x) > a} E$F 
1=1 

§2.1 Measurable Functions 

Similarly, 

{x; infJ;(x) ~ a} = n{x; J;(x) ~ a} E.tF D 

Now, if f1,f2,'" is a sequence offunctions, let 9k = sUPn>kfn' Notice that 
91 ~ 92 ~ 93 ~ .. , so that 

lim 9k(X) = inf gk(X) 
k-+oo k>O 

Recall that 

lim sup J; = inf gk
k>O 

is called the "lim sup (limes supremum) of the sequencef1,f2' ...." Similarly, 

lim infJ; sup hk where hk inf J,.
k>O n~k 

Theorem 10. If f1'/2,'" is a sequence of measurable functions on X, then 
lim sup fn and lim inf fn are measurable. 

Proof. From the previous theorem, 9k = SUPn~kJ,. and hk = infn~kJ,. are 
measurable. Applying theorem 9 once again, we have that 

lim sup J,. = inf 9k and lim infJ,. = sup hk 
k>O k>O 

are also measurable. D 


Corollary 11. Let f1,f2"" be a sequence of measurable functions on X. 

Suppose that the fn's converge pointwise to a function f; then f is also 

measurable. 


Proof. f = lim sup J,. = lim infJ,. 

Thus we see that we can generate new examples of measurable functions by 

taking pointwise limits. Another way of getting new measurable functions is 

by composition. 


Theorem 12. Let f :X -» R be a measurable function. Let 9 be a continuous 

function on R. Then 9 0 fis measurable. 


Proof. Note that we are not allowing f to take the values of + <Xl or <Xl 


so that go fis defined. 

Now, for all aER, let {!}a = {tER; get) > a}. Then {XEX; gof(x) > a} 

{XE X; f(x) E {!}a}. Because 9 is continuous, {!}a is a Borel set. So {x E f(X)E 
(l]J (':.¥. hecall~e f i~ mea~llrahle n 
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Example 13. IfI: X -+ R is measurable, then ei?.f, e- f212, sin f,
are measurable. 	 and so on 4. 	 The examples below describe some random variables that occur naturally 

in the theory of Bernoulli trials. Show that these random variables are In a similar vein we have the following theorem. 
measurable functions on the unit interval I. (As usual we make the 
identification [/4 = Bernoulli sequences I.) 

Theorem 14. Let 11,/2"'" f" be measurable functions on X with ii :X -+ R, a. R = ruin time = the time it takes a gambler with an initial stake of N 
1 :s; i :s; n. Let G :R" -+ R be continuous. Then GU1,' .. ,f,,) is measurable. dollars to be reduced to penury. 


We leave the proof to the reader as an exercise. 
 b. 	 1" the number of successive heads that appear beginning with the 
nth toss. 

c. T = the number of times a random walk returns to the origin. Example 15. Let ii: X -+ R, i = 1, 2, be measurable functions. Since x + y 
d. lim sup S,,/n, where S" is the sum of the first n Rademacher func­and xy are continuous functions from R2 to R, /1 + 12 and 11/2 are

measurable. tions. This random variable measures "violation of the law of large 
numbers." 

5. Let T be the random variable in part c of exercise 4. Show that the set 
Exercises for §2.1 


EI; T(w) < oo} 

1. Given a set X and subsets A

1
, A , ••• , let

2 is uncountable and dense in I. (We will show in Chapter 3 that this set is 
of measure zero.) 

A+ = lim sUPAn = . i.o.} = n'" 6. a. Let S be the random variable in part d of exercise 4. Show that, for 
k=l every subinterval of the unit interval and for every real number a with

and -1 < a < 1, Sew) a un count ably often. (Hint: Suppose that w = 
. a1 a2 a3 ••• is a sequence for which 8(w) a. Let 

00 

A_ = IiminfA" = {A,,; a.a.} = U (l An w' = a1 h1 a2 a3 b2a4 as a6b3a7as a9 alO b4 ••• 
k=l 

Show that Sew') = a no matter what the b;'s are.)Let 1+, f. and f" be the characteristic functions of the set A+, A_ and An, 
respectively. Prove that 1+ = lim sup f" and = lim inf f". b. 	 On the other hand, show that the set {w EI; Sew) =F O} is of measure 

zero.2. a. Let X be a set, !iF a a-field of subsets of X, and f1. a measure on !iF. A 
7. a. Let n be a finite subset of Z2 containing (0,0) as an interior point. (Seemap I (It,· .. ,f,,) of X into Rn is said to be measurable if each of the 

§1.2, exercise 8.) Let H be the time at which a random walk starting coordinate functions, ii, is measurable. Show that I is measurable if 
and only if 1-1

(B)E!iF for every Borel set B s Rn. at the origin hits an. (H is called the "hitting time.") Show that H, 
regarded as a function on the unit interval, is measurable and is finiteb. 	 Let 9 be a real-valued function on Rn. Then 9 is Borel measurable if, 

except on a set of measure zero. (Hint: See §1.4, exercise 17.)
for all numbers a, the set {xERn; g(x) > a} is a Borel set. Prove that, 

b. Assume that the points (1,0) and (0, 1) are also interior points. Show if I: X -+ R" is measurable and g: Rn -+ R is Borel measurable, then 
go I: X -+ R is measurable. that the set 

3. a. Let f" :X -+ R, n = 1,2, ... , be a sequence of measurable functions. EI; H(w) +
Show that the set of points, XE X, where the sequence ff,,(x); n 1,2,

' ... } converges, is measurable. is uncountable. 
b. From part a deduce that the set of points, wEI, for which the "ran­ 8. Let I :R -+ R be monotone increasing. Show that I is measurable. 

domized harmonic series" 9. 	 A function I: R -+ R is upper-semicontinuous at x iffor every e > 0 there 
exists a 0 > 0 such that I(y) < I(x) + e when Ix yl < O. Show that if I£, R,,(w) is upper-semicontinuous at all points of R, it is measurable. 

n=l n 10. Two functions I and 9 are said to be equal almost everywhere if 1= 9 

converges, is a measurable subset of 1. except on a set of measure zero. Show that if I = 9 almost everywhere 
and if I is measurable, 9 is also measurable. 
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11. 	 Let (X, ff, J1.) be a measure space with J1.(X) < 00. A sequence of measur­
able functions In: X ---? R, n = 1,2, .. " is said to converge to zero in 
measure if for all a > 0 

limJ1.{XEX; Ifn(x)1 > a} = 0 
n"'oo 

a. 	 Prove that, if In converges to zero pointwise except on a set of measure 
zero, then fn converges to zero in measure. 

b. 	 Show that the converse of part a is not true. (Hint: Let X = I, ff be 
the Borel subsets of I, and J1. be Lebesgue measure. Let Al = [0, !], 
A2 = [!, 1], A3 = [0, tJ, A4 = [t,n As = [i, i], A6 = [i, 1], A7 = 
[0,U As = [1, i], and so on. Let fn be the function that is 1 on An 
and 0 elsewhere.) 

§2.2 The Lebesgue Integral 

Let (X,ff,J1.) be a measure space and s: X -+ R be a measurable 
function. The function s is called a simple function if it takes on only a finite 
number of values. 

Example 1. Let E E ff and define 

lE(X) = {~ 

N 

s(x) = L ct 1E,(x) 
t~1 

It is easy to define the integral of nonnegative simple functions. 

Definition 2. Let s : X -+ R be a nonnegative simple function and let E E 9'. 
Let Cl'" .,eN be the distinct nonzero values of s and let E; = S-I(C I), 1 sis N. 
Define the integral of s over E with respect to J1. as the sum 

N 

(1) 	 lEtS) = L CIJ1.(E n EI ) 
1=1 

Remark. This value mav be + 00 because tlCE n £;) can be + 00. 

§2.2 The Lebesgue Integral 

Proposition 3. Let St : X -+ R, i = 1, 2, be nonnegative simple functions and 

let EEff. 

1. 	 (linearity) 
a. 	 lE(CS l) = clE(Sl) for CE R, C~ 0 
b. 	 lE(SI + S2) = lE(SI) + lE(s2) 

2. 	 (monotonicity) If S1 S S2 then l E(SI) s l E(s2) 

Proof. la is clear. 
1 b: Let C1'" • ,C be the distinct values of S 1 and d1, ... ,dn be the distinct 

m 
values of S2' Let Ei == si 1(Ct), 1 sis m, and Pj = S21(d), 1 sj s n. The E/s 

form a mutually disjoint cover of X and so do the Fj's. Thus E; n Fj

, 1 sis m 

and 1 sj s n, also form a mutually disjoint cover of X, and S1 + S2 has the 


constant value Ci + dj on Ei n Fj • Hence 

lE(s1 + S2) = L (Ct + dj}f,t(Et n Pj n E) 
i,j 

= L CtLJ1.(Et nPjnE) + LdjLJ1.(EtnFj nE) 
t j 	 j i 

= L CtJ1.(Et nE) +Ldj J1.(FjnE) 
i j 

= l E(s1) + lE(s2) 

2: S2 _ S1 is a nonnegative simple function, ~nd S2 = S1 + S2 - S1' so 

l(s2) = l(s1) + l(s2 - SI)' 	 0
We 	noW extend our notion of integration to nonnegative measurable 

functions by approximation with simple functions. 

Definition 4. Let f be a nonnegative measurable function from X into the 
(nonnegative) extended real numbers and let E E 9'. Then the integral of f on 

E with respect to J1. is defined by 

Lf dJ1. = SUP{IE(S); 0 s S s f. S simple} 
(2) 

The following proposition shows that this definition of the integral is 
consistent with our previous definition when f is a simple function. 

Proposition 5. l (s) = !£s dJ1. if S is a nonnegative simple function. E

Proof. Clearly l (s) S IEsdJ1. because S is a simple function with s S s. To
E

show equality let Sf be any simple function with 0 S 1 :$ s. By monotonicity 
l (1) S l (s). Hence sup{IE(1); 0 s 1 s S, Sf simple} S lE(S). 0 
E EAt this point the reader is probably asking why the integral of nonnegative
mp.~R1IT~hle functions should be aooroximated bv the integrals of simple 
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functions. We justify this by showing that nonnegative measurable functions 
can themselves be approximated by nonnegative simple functions. 

Theorem 6. Let I be a nonnegative measurable function on X with values 
in the (nonnegative) extended real numbers. There exists a sequence of non­
negative simple functions 

o ,::; 8 1 ,::; 82 ,::; ... ,::; I 

such that SI -t Ipointwise. Moreover, if I is bounded, then Si -t luniformly. 

Proof. We begin by defining So' Consider the interval [0, n) on R. Divide this 
interval into n2" subintervals of length 1/2n; namely, let 

iIi}(3) 1·= tER,--<t<- 1<i<n2" 
I { , 2. - 2" - ­

Let Ei = 1- 1 (1,) and F, = I-l([n, + ooJ). Together the E;'s with F, form 
a mutually disjoint cover of X (n is fixed). 

Define 

.2" (i 1)(4) s.(x) = i~ 2" - l Ei(x) + n1dx) 

Notice that on Ei we have 

iIi i-I
2"'::; 1< 2" and 2.8. = 

Thus, S.(x),::; I(x) for x E Ei , i = 1, ... , n2" 

Similarly, on Fn 

n,::;1 and s. = n 

so 

S.(x) ,::; I(x) for xEF. 

Hence 

Sn'::; I on all of X 

[ 
i)I - 1Notice also that s. ,::; Sn+ 1- Indeed, let I be one of the intervals 2"' 2. . 

Notice that I = l' u 1" where 

§2.2 The Lebesgue Integral 

, [2i - 2 21 - 1) /I [21 1 21)
I = 2.+ 1 ' 2"+l and I = 2,+1 '2"+1 

Let E = 1- 1(1), E' 1-1(1'), and E" 1-1 
(1"). Then 

i-I 
for xEEs.(x) = Tn 

whereas 

i-I Sn+1(X) = 21 - 1 for xEE" 
s.+l(x) = 2" for xEE' and 

Then, because 
1-121-1 

E = E'uE" and 2' < 

we have shown that 

forallxEES,(x) ,::; S.+ 1(x) 

This argument is clearly independent of which Ii we began with. It also works 

with minor changes on En, + ooJ, so 

for all XEXS,(x) ,::; S,,+1 (x) 

We now show that S. -t I pointwise. Two separate cases are involved. 

Case 1. I(x) = + 00 
In this case x E F. for all n, so s.(x) = n for all n. That is, s,(x) -t + 00. 

Case 2. I(x) is finite 
Say I(x) < no. Then, for all n > no, I(x) lies on one of the intervals Ii; that 

is, 


i 1 . 

2:" ,::;/(x)<~2· 

But then 
11-1 

so I/(x} - s,,(x)1 < 2;;s,,(x) = 2" 

for n > no, proving that s,(x} -t I(x}. 
Finally, suppose that I is bounded, say I(x) < no for all XEX. The pre­

ceding argument shows that for n > no 

1 
forallxEXI/(x) - s,,(x)I < 2. 

o 
That is, s" -t I uniformly on X. 
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Remark. Hidden in this proof is a crucial ingredient of the Lebesgue theory. tl dp::;; tgdp
In the Riemann theory one approximates a function I by simple functions by 
dividing the domain of the function into small intervals, as shown in part (a) 

2. If E c F thenof the figure. In the Lebesgue theory one approximates by dividing the range 
of the function into small intervals, as shown in part b of the figure. t ldP ::;; tldP 

y 

3. If p(E) 0 then 

I dp = 0 

Proof. 

1. This is obvious because, if s is a simple function and s ::;; I, then s ::;; g. 

2. We first verify this for 
~ ~ ~ ~ ~ ~L-______L-__ __ __ __ __ __ ____ x 

1= la where GE§
a CI Cz C3 c. Cs b 

Then lE(la)dp = IE(la) = p(E (\ G) and likewise fF(la)dp = p(F (\ G).(a) 

y But E (\ G s;; F (\ G, hence 

b 

Cz 

CI 

p(E (\ G) ::;; p(F (\ G) 
C. 

Now, by the linearity of IE we know that lE sdp ::;; SFsdp when s isa simple 
function. But, by the definition of lE I dp and SF I dp, the statement has to 

be true in general. 

C3 

3. If I = s is a simple function, this assertion is clear; thus 

sup{IE(s); 0::;; s::;; f ~ = 0 

x Remark. We will defer to §2.3 the proof that, for nonnegative measurable 
(b) functions, 


Graph off. (The dark lines represent the approximating function.) 
 L(/1 + 12)dp t 11 dp + t 12 dp 

The second procedure has two conspicuous advantages. First, the x axis Unfortunately, this fact, which looks as though it should be practically obvi­
no, longer has to be the real line; it can be any measure space X. Second, one ous, requires a somewhat delicate proof. 
gets a good approximation of I by simple functions without assuming I to We can also now prove Chebyshev's inequality in full generality. 
be continuous. 

We now look at some properties of the integral. Theorem 8. (Chebyshev) Let I be a nonnegative measurable function. For 
EE§ and c > 0, let E;/(x);;:: c}. Then 

Proposition 7. Let E, FE.'iF and let I and g be nonnegative measurable 
1functions. 

(5) PV;'cJ ::;; - t I dp
c 

1. (monotonicity) If I ::;; g then 
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Proof. Because I ;<;: C on Ec, 

r cdJl S; I dJl (by monotonicity) 
JEc 

But L< cdJl ldc) = cJl(Ec) 

Thus 
cJl(Ec ) S; L/dJl ~ I I dJl 

Corollary 9. If I is a nonnegative measurable function with fEI dJl < 00, 

then {x EE; I(x) = +oo} has measure zero. 

Notation. If a property holds on a set E E,1;; except for a subset of measure 
zero, we say that the property holds almost everywhere on E (abbreviated as 
a.e.). Thus corollary 9 can be restated as 

(6) LI dJl < 00 => I(x) < 00 a.e. on E 

Proof. Let An {xEE;J(x)~n}, and let A {xEE;/(x) +oo}. By
Chebyshev 

Jl(An) S; I r I dJl 
n JE 


But A c An for all n, so 


Jl(A) S; Jl(An) S; I r I dJl for all n 
n JE 

Because fE I dJl < 00 we must have Jl(A) = O. o 
Corollary 10. Let I be a nonnegative measurable function and let E E,1;;. If 

fE I dJl = 0, then I 0 a.e. on E. 


Proof. Let A = {XE I(x) =f. OJ, and let An = {xEE; I(x) > lin}. Because 
A = U~ 1 An it is enough to show that Jl(A n) O. By Chebyshev 

S; nJ I dJl = 0 
E 

o 
Another property we can now prove is that the integral behaves nicely on 

disjoint unions of sets. 

§2.2 The Lebesgue Integral 

Theorem 11. Let I be a nonnegative measurable function on X. Let A1 , A2 , 

... be a sequence of pairwise disjoint members of,1;;. Let A = U~l Ai' Then 

fA 
I dJl f 

Ai 
I dJl 

Proof. First we prove the theorem in the case that I(x) IE(x) for some 
E E ,1;;. In this case 

t lEdJl Jl(A f1 E) and Jl(A; f1 E)ti 
By countable additivity of Jl, we know that 

Jl(A f1 E) = L
00 

Jl(A; f1 E) 
;=1 

That is, 

f lEdJl =I f lEdJl 
A .=1 Ai 

By the linearity of IA and lk' the theorem is now automatically true for all 
simple functions. We prove th~ general case with I being an arbitrary non­
negative measurable function as follows. 

For [; > 0 pick a simple function s S; I with 

I dJl S; lACS) + [; 

Because the theorem is true for simple functions, we have that 

lACS) L
00 

;=1 s; J1 t. I dJl 

so I dJl S; I dJl + [; 

Because [; is arbitrary, we must have 

(8) I dJl S; ;~1 ti I dJl 

To prove the opposite inequality, first consider two disjoint sets A1 , A2 E,1;;. 
Let Sl and S2 be simple functions with 0 S; s, S; I and 

(9) f - ~ for i = 1,2Si dJl I dJl 
Ai Aif 
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Let s max(sl, 52); then 0 ~ s ~ f, and s is a simple function. Also SI ~ sand 
S2 ~ S, so we can replace Sl by S in inequality 9; namely, 

for i 1,21/dJl ~1/dJl ~ 
Adding these inequalities gives 

r s dJl + f s dJl ~ r f dJl + r f dJl - e
JA, A2 JA, JA

2 

or 
S dJl ';;!:. r f dJl + f f dJl - efA JA I A2 

because the theorem is known to be true for simple functions. 

Now SA f dJl ~ SA s dJl, so 


f f dJl ~ r f dJl + i f dJl I> 
A JA1 A2 


Because e is arbitrary, 


f f dJl ';;!:. f f dJl + i f dJl 
A Al A2 


Thus we have the inequality for A1 and Az. An induction argument gives 


(lO) f dJlIluA2 •. 'UA f dJl ';;!:.u n 


Returning to the general situation-that is, A = 
 Ai-we have 

f dJl ';;!:.ItuA2u",uAn f dJl 

because Al v Az V'" v Anc: A. Hence, by inequality lO, 

for all nf dJl ';;!:. i~ 1/dJl 

That is, 

If dJl ~ I~ I, f dJl o 

Application. Theorem 11 tells us that we can use the integral to define new 
measures. For example, we define Gaussian measure, JlG' on the measurable 

§2.2 The Lebesgue Integral 

subsets of R by 

1 
e-X2(11) JlG(A) = fo / 

Z dJlL 

Theorem 11 says that this is countably additive and so is indeed a measure. 
In fact, JlG is a probability measure because 

--1 e-x
2/zdJlL-- 1

fo 
i 

R 

The theorem also has the following corollary. 

Corollary 12~ Suppose f and g are nonnegative measurable functions and 
E E:F. Then, if f = g a.e. on E, 

I 

f fdJl = f gdJl
E JE 

Proof. Let Al {xEE; f(x) = g(x)} and Az = {xEE; f(x) =1= g(x)}. Clearly 
and A z are disjoint. Moreover, by assumption Jl(A z) = 0, so 

r f dJl r g dJl = 0
JA 2 JA2 

Also SAl f dJl = SA, g dJl because f = g on AI' Thus 

fdJl= r fdJl+ f fdJl= f gdJl+f gdJl= gdJl
JA, JA2 JA, A2 

o 

Exercises for §2.2 

1. Let I be the unit interval. Show that 

1 
XdJlL ="2 

using only properties of the Lebesgue integral discussed in this section. 
(Hint: Approximate x from above and from below by simple functions.) 

2. Let J be the interval 1 ~ x < 00. Show that 

1(~)dilL = + 00 

using only properties of the Lebesgue integral discussed in this section. 
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3. 	 Let (X, /1', J1) be a probability space. Let f: X ~ [0, + 00) be a random 
variable (that is, measurable function). The integral 

E LfdJ1 

is called the expectation value of f (or "most likely value" of f) and the 
integral 

v I (f E)2dJ1 

is called the variance off. Show that, if the variance offis small, f deviates 
from its expectation value with very small probability. Explicitly, show 
that the probability that f deviates by 8 from E-that is, 

EX, > 

is less than or equal to V. 
4. 	 Let Htl be the number of heads occurring in the first n trials of a Bernoulli 

sequence. Compute its expectation value and variance. 
5. Consider the "random" series 

1 1 I1+-+-2-4-8-+-+ ... 

with the assignment of a plus or minus in the nth term being decided by 
the toss of a coin. Compute its expectation value and variance. 

6. 	 Let (X, J1) be a measure space andfa nonnegative measurable function. 
For all aE(O, 00), let 

<})(a) = J1({XEX; f(x) > a}) 

Suppose Ix fk dJ1 < 00, k> 0. Show that there exists a constant C > ° 
such that 

<})(a) ::;; Ca-k 

That is, show that <}) goes to zero at least as fast as a-k as a ~ + 00. 
7. Let J be a finite subinterval of the real line and f: J -+ R a simple 

function taking on values C1 , .•. 'Cn' The functionfis called a step function 
is a finite union of intervals for each i. Given a simple function 

s: J ~ R and a positive number 8, show that there exists a step functionf 
such that 

(*) 	 Is- <e 

§2.2 The Lebesgue Integral 

(Hint: Show that, if A is a measurable subset of J, there exists a finite 
union of intervals B such that d(A, B) J1(S(A, B» < e. Now prove the 
inequality (*) for S lA' Proceed.) 

8. 	 Let X be a countable set; that is, 

X {Xl,X2'X 3 ,· .. } 

and let P ,P ,P
3 

, ... be a sequence of nonnegative numbers such that 
1	 2

IPj 	 1. For A X let 

/l(A) = L Pi 
x'iEA 

We saw in §lA that J1 is a probability measure on the a-field of all subsets 
of X. Prove that every function f : X ~ R u { ± oo} is measurable, and 
prove that, for f nonnegative,

Lf dJ1 = I P;!(Xi) 

9. 	 Let f: R ~ [0,00) be measurable. Given a ER, let fa(x) = f(x - a). Show 
fa is measurable and that 

= 	 ffdJ1L 

(Hint: See §1.3, exercise 14.) 
10. Let (X,.JIii'",J1) be a measure space and A and B b~ measurable subsets of 

X. Show that, if J1(S(A,B» = 0, then, for every nonnegative measurable 

function f, 

Lf dJ1 = In f dJ1 

11. 	 Let (X,ff,/l) be a measure space and f and g positive measurable 
functions. Show that, if g is simple, then, for all E E 

L(f + g)dJ1 = LfdJ1 + L g dJ1 

12. 	 Let (X, ff, J1) be a measure space with J1(X) < 00. Let f be a bounded 
nonnegative measurable function and let {sn} be the sequence of simple 
functions constructed in theorem 6. Show that, for E E ff, 

L sn dJ1 ~ LfdJ1 


(Hint: The sequence Sn converges uniformly to f Moreover, 
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L(f sJdft + I Sndft = I I dft 

by exercise 11.) 

§2.3 Further Properties of the Integral; Convergence 
Theorems 

The reader has probably noticed that the definition of the integral 
does not make evaluation of integrals easy. The set of simple functions s with 
o~ s ~ I is a formidably large set. In this section we will develop some 
effective techniques for computing integrals and for manipulating integrals 
and limits. The three key results are the monotone convergence theorem, 
Fatou's lemma, and the Lebesgue dominated convergence theorem. 

Let 11,/2"" be a sequence of measurable functions with 

0~/l~/2~'" 

Note that I = limj->oo h exists and is measurable. 

Theorem 1. (Monotone convergence theorem) Let I and h' i = 1,2,3, ... , be 
as above. Then 

f I dft = ~im I h dft for EE!FJE t-+(Q 

To prove this theorem we need the following lemma. 

Lemma 2. Let I be a nonnegative measurable function on X and let E1 , 

E3, ... be a sequence of sets in !F with El c E2 C E3 c .... Set E = U~t E1; 

then 

f I dft = ~imi I dft JE ,-+00 E j 

Proof. Let Al = El 

A2 -El 

A3 = E3 E2 

and so on. Then the A;'s are pairwise disjoint and 

00 n 

UA;=E and Ai En 
1=1 
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So by countable additivity 

IdftLldft = i~ 

= !~~ itl L. I dft 

\1= lim f Idft 
n-w En 

We now prove the monotone convergence theorem. We have 


0<1 < I" <"'''''1= lim I"
- 1 - J2 -.:::. JII
n"'oo 

By monotonicity 

L L L
11 dft ~ 12 dft ~ ... ~ I dft 

so limn-+oo h f" dft exists and must be less than or equal to JEI dft. Let a = 
limn...oo JE In dft· We must establish that 

m a~L/~ 
Let s be any simple function, with 0 ~ s ~ I, and let C E R, with 0 < C < L 

Let 

En {x f,,(x) ~ cs(x)} 

Notice that El C C •.. because 11 ~ 12 ~ .... Also notice that 
E. Indeed, if x E E with s(x) = 0, then x E En for all n, and, if x E E 
then because c < 1 

I(x) ~ s(x) > cs(x) 

So, for some n, In(x) ~ cs(x) because 

f,,(x) -+ I(x) 

that is, x E En. 
Taking integrals, we get 

a lim f"dft ~ i f"dft ~ i IlIdft ~ i csdft 
n"'", E Eh En 

because f" ~ cs on En. We apply the lemma to E = U::;'1 Ell to get 
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a?:: lim f es(x)dp. f es(x)dp. e f s(x)dp. 
n~oo JEn JE JE 

Because this is true for all e with 0 < e < 1, it must also be true that 

a?:: LSdP. 

By now taking the supremum over all simple s with 0 :-::; S :-::; f, we get in­
equality 2. D 

Remark. Thanks to the monotone convergence theorem, we can apply 
theorem 6 of §2.2 to the evaluation of integrals. If I is a nonnegative measur­
able function and Sn is the sequence of simple functions constructed in theorem 
6 of §2.2, then 

(3) 	 f sndP. ~ f I dp.
JE JE 

We will use this formula to clear up some matters that we left dangling in §2.2. 

Theorem 3. Let I and g be nonnegative measurable functions and let e > 0 
be a real number. For E e IF we have 

1. 	 Lei dp. = eLIdp. 

2. 	 L(f+g)dp. = LldP.+ LgdP. 

Proof. 

1. 	 The first part is clear because we know that, if s ?:: 0 is a simple function, 
then Ides) cIE(s) and also that s :-::; I if and only if es :-::; 

2. 	 Again we know that, if SI and S2 are nonnegative simple functions, then 

l E(SI + S2) l E(s1) + l E(s2) 

Now, choose a monotone sequence of simple functions 

o :-::; Sl :-::; S2 :-::; ... 

with Sn ~ I pointwise. Similarly, choose simple functions 

O:-::;s'I:-::;S~:-::;'" 

with s'n ~ g pointwise. 
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Note that 

o:-::; Sl + S'l :-::; S2 + s~ :-::; ... 

and Sn + s~ ~ I + g pointwise. By formula 3 

f (f + g)dp. = lim f (sn + ~)dp. 
E n-+ooJE 

= lim (f sndP. + f S~dP.)
n-oo E E 

= lim f sndP. + lim f s~dp. 
n-co JE n-co JE 

= tldP. + tgdp. 	 D 

Corollary 4. Let 11,/2"" be a sequence of nonnegative measurable func­
tions. Then L;;1 /; is a nonnegative measurable function and 

for EeIFt(J1 fn)dP. = ntl Lfndp. 

Proof. Let Fn = Lk~ 1 k Then Fl :-::; F2 :-::; ... , and the F:s are all measurable. 
Now apply the monotone convergence theorem and theorem 3. 0 

So far we have integrated only nonnegative measurable functions. When 
extending our definition to more general measurable functions, we must 
beware of the problem of adding + 00 to - 00. 

Let I be an arbitrary measurable function from X into the extended real 
numbers. Recall that 

1+ = max(f,O) and 1- = max(-f,O) 

are nonnegative measurable functions with 

I 1+ 1­

Lemma 5. The following two conditions are equivalent. 

1. 	 LI/'dP. < 00 

2. 	 LI+ dp. < 00 and LI- dp. < 00 
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Proof. Notice that III = 1+ +1-, so 

(4) L III dp = L 1+ dp + L 1- dp 	 v 

Definition 6. A measurable function I is integrable over E if either of the 
equivalent conditions of lemma 5 holds. In this case we write IE .P(p, E) or 
IE .P(p) on E. If E = X we write IE .P(p). For IE .P(1:4 E) we define 

(5) 	 L I dp L 1+ dp - L 1- dp 

Theorem 7. (Linearity) Let f, gE .P(p, E) and c E R. Then 

a. 	 cIE.P(1:4 E) and L ci dp = c LI dp 

b. 	 I + gE .P(p, E) and L (f + g) dp = L I dp + L g dp 

Proof. 

a. 	 If c ;:::: 0, then C(f+) (cI)+ and (cf)- = c(f-), so 

L ci dp L cI+ dp - L cI- dp 

= c L 1+ dp c L 1- dp 

=c LidP 

A similar argument treats the case of c < O. 
b. 	 Let h = I + g. We first deal with the special case that none of I, g, or h 

changes sign on E. The six subcases are: 
t. 	 I;:::: O,g ~ O,h:;;;::. OonE 
2. 	 I::;; 0, g ::;; 0, h ::;; 0 on E 
3. 	 I;:::: 0, g ::;; 0, h ;:::: 0 on E 
4. 	 I;:::: 0, g ::;; 0, h ::;; 0 on E 
5. 	 I::;; 0, g ;:::: 0, h ;:::: 0 on E 
6. 	 I::;; 0, g ;:::: 0, h ::;; 0 on E 

Case 1 has been dealt with previously. Case 2 can be reduced to case 1 
because we can rewrite the formula as 

§2.3 Further Properties of the Integral; Convergence Theorems 

L( h)dp= t(-f)dP+ t(-g)dP 

Case 3: rewriting h 1+ g as I = h + ( - g) reduces this to case 1. 
Similarly, cases 4, 5, and 6 can be reduced to case 1. 

Now to complete the proof we write E = E1 U E2 u··· U E6 so that E; 
is the set for which case i holds, i = 1,2, ... ,6. Then, because fE I dp = 
Ir=l fEi I dp, and similarly for g and h, the theorem follows by applying it to 
each separately and summing. 0 

Corollary 8. (Monotonicity) Let I, g E .P(p, E) with I ::;; g. Then 

gdP(6) 	 IdPt ::;; t 

Proof. Because f ::;; g, g - f ;:::: 0, so 

o::;; f (g f) dp = f gdp - f f dp 
E E E 

by linearity. o 

Corollary 9. If f E .P(1:4 E), then 

(7) 	 ItfdPI::;; tlfldP 

Proof. Because f ::;; by monotonicity 

LfdP::;; LlfldP 

Similarly, - f ::;; IfI, so 

-1 fdp::;; 1Ifldp
E E 

That is, 

oItfdPI::;; tlfldP 

We end this section with the other convergence theorems mentioned 

above. 
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Lemma 10. (Fatou's lemma) Let f1.f2"" be a sequence of nonnegative 
measurable functions, and let f = lim inf fn. Then 

(8) 	 L f dll :S lim inf L J; dll 

Proof. Let 9k = infn<::k fn and ak = infn<::k JE fn d/l-. Then 

91 :S 92 :S ... and a1 :S a2 :S ... 

By definition 

f = lim 9k and lim infi fn dll = lim ak 
k~co 	 E k-oo 

Notice that ak ~ JE9k dll because 9k :S fn for n ~ k. Hence, by the monotone 
convergence theorem, 

I f dll = lim I9k dll :S lim ak lim infl fk dll D 
E k->oo E k-oo E 

Theorem 11. (Lebesgue dominated convergence theorem) Let f1 .f2.f3'''' 
be a sequence of measurable functions, and let EEg;:, Assumptions: 

1. 	 limn~oo fn(x) exists for all x E E. 
2. 	 There is a nonnegative measurable function 9 E 2(11, E) with 9 ~ on 

E, n = 1,2, .... 

Conclusion: The function f(x) = limn->", fn(x) is integrable and 

I lim fn dll = lim I fn dll 
En-+w n-oo E 

Proof. By Fatou's lemma, 

L If Idll L lim inflfnl dll 

:S lim inf L Ifni dll :SiE9 dll 

Hence f E 2(11, E). 
Now we note that 9 + fn is nonnegative, so by Fatou's lemma 

L lim inf(9 + fn) dll :S lim inf L (9 + fn) dll 
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But lim inf(9 + fn) = 9 + lim fn = 9 + f 
n~oo 

and liminf r(g + fn)dll f gdll + liminff fndll 
JE E E 

so we have L f dll :S lim inf L fn dll 

Repeating this argument, with 9 + fn replaced by 9 - fn> we get 

Lfdll:S liminf( J/ndll) 

= -lim sup (L fn dll) 

so L f dll ~ limsup(L fndll) 

Combining these results 

lim sup (L fn dll):S L f dll :S lim inf(L fn dll) 

But it is always true that lim inf :S lim sup, thus we get equality: 

f dll = liminf(Lfndll) = lim sup(L fndll) = lim (Lfn dll) D 

Corollary 12. Let f1 .f2,'" be a sequence in 2(11, E) with 


n~l L Ifni dll < 00 


Then 


1. 	 I~l fn converges absolutely a.e. on E and is integrable on E. 

2. hI:'=tfndll I~dEfndll. 


Proof. Let 9 = I~l Ifni. Corollary 4 tells us that 


L gdll = nt1 LIfni dll < 00 


so 9 E 2(11, E). In particular, 9 is finite a.e. on E, so I:'=l fn converges 
absolutely a.e. on E. To prove part 2 let Fn = D=l k Then IFni :S D=l I (.1 :S 
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o SO, by the dominated convergence theorem, L;,";1 In = limn-+ oo Fn is in 
ft?(Il, E) and 

r(f In) dll f lim Fn dp. lim rFn dp. = f rIn dllJE 	 n=1 E n-+oo n-+oo JE n=1 JE 

Exercises for §2.3 

1. 	 Let (X,~, Il) be a measure space and fbe a bounded nonnegative measur· 
able function. Show that 

n2" (k 1) ({ k- 1 k})fdllfx = !~~ k~ ~ P. XEX; -s;.f(x) < 2n 

This formula is Lebesgue's original definition of the Lebesgue integral. 
(Hint: See formula 3, page 74.) 

2. 	 Let In :R -+ R be lin times the characteristic function ofthe interval (0, n). 
Show that In -+ 0 uniformly but that JIn dilL 1. Why isn't this example a 
counterexample to the Lebesgue dominated convergence theorem? 

y 

nux 
o 	 n 

3. Compare Jlim inf In dP.L and lim inf JIn dP.L for the sequence In in exercise 
2. Can the inequality in Fatou's lemma be replaced by an equality? 

4. 	 For n = 1,3,5, ... let In be the characteristic function of the interval (0,1), 
and for n 2, 4, 6, ... let In be the characteristic function of the interval 
(t, 1). Compare JIim infIn dilL and Jim infJ In dilL' 

5. Let 	(X,~, Il) be a measure space. A measurable function f: X -+ R is 
mean·square integrable if ff2 dp. < 00. Show that, if Il(X) < 00, every 
mean·square integrable function is integrable. (Hint: Consider separately 
the integral of IfI over the set where IfI 2: 1 and the integral over the set 
where IfI < 1.) 

6. 	 Let X = 1, ~ the Borel sets, and p. Lebesgue measure. Show that there 
exists an integrable function on X that is not mean·square integrable. 

7. 	 Let X = R, ~ the Borel sets, and Il Lebesgue measure. Show that there 
exists a mean·square integrable function on X that is not integrable. 
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8. 	 Let (X,~,Il) be a measure space and In, n = 1,2, ... , a sequence of 
measurable functions. Then In is said to converge to zero in measure if, 

for all e > 0, 

Il( {x EX; IIn(x) I > e}) -+ 0 

as n -+ 00. (Compare with exercise 11 of §2.1.) Show that, if JIfni dll-+ 0, 
then In converges to zero in measure. Show that the converse is not true. 

(Hint: See exercise 2.) 
9. 	 Let f :R -+ R be an integrable function. Show that, if 

Ifdll=O 

for every subinterval 1 of the real line, then f = 0 a.e. 
to. 	Let J be a finite subinterval of the real line and f: J -+ R an integrable 

function. Show that for every e > 0 there exists a step function 0 such that 

tlf Oldll < e 

(Hint: See §2.2, exercise 7.) 
11. Let (X, ~,p.) be a measure space and f and 0 measurable functions. 

Show that, If f is integrable and 0 is bounded and measurable, then fo is 

integrable. 
12. Let 	(X,~,Il) be a measure space and f a nonnegative measurable 

function. For AE.~ let 

IlJ(A) = f dll L 
Show that IlJis a measure on~. Moreover, show that, if 0 is a nonnegative 
measurable function, then for E E~ 

todllJ = tatdll 

13. 	 a. In exercise 12, let A E ~ and let f be the characteristic function of the 
set A. Describe the measure IlJ' 

b. Suppose, more generally, that f is a simple function; that is 

k 

f= 	LC)A;(*) 
1=1 

Describe the measure IlJ' 
14. 	a. In exercise 12, show that, if fis bounded, ft?(E,IlJ) contains ft?(E,Il)· 

Moreover, show that, for 9 E ft?(E, Il) 
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L = Lgfd{tg d{tf 

b. 	 Show that !l'(E, {tf) need not necessarily contain !l'(E, {t) if f is not 
bounded. 

15. 	 a. Let (X,S#,{t) be a measure space and f: X ----? R a measurable 
function. For every Borel set A s R, let 

vf(A) = {t(f-l(A» 

Show that this formula defines a measure vf on the Borel sets of R. 
Moreover, show that, if {t is a probability measure, so is vf' 

b. 	 If f is the function (*), describe the measure 
16. 	 A function g : R ----? R is Borel measurable if, for every Borel set A S R, 

g-l(A) is a Borel set. Let vf be the measure in exercise 15 and let g be a 
nonnegative Borel-measurable function on the real line. Show that 

(**) 	 t g dVf =Ix g(f(x»d{t 

(Hint: What does equation (**) say when g is a simple function?) 

§2.4 Lebesgue Integration versus Riemann Integration 

By the results of §2.3 we can now integrate complicated limits and 
sums of series. What about simple integrals? We will show that in the Lebesgue 
theory, just as in the Riemann theory, these integrals can be evaluated by the 
second fundamental theorem of calculus; that is, for the Riemann integral one 
has the following theorem. 

Theorem. Let g be a continuous function on an interval [a,b] R. Then g 
has an antiderivative G and 

rgdx = G(b) - G(a) 

where J~g dx denotes the Riemann integral of g on the interval [a, b]. 
We will show that the same is true for the Lebesgue integral when our 

measure space (X, S#, {t) is X [a, b], {t ttL' and S# is the field of Lebesgue­
measurable subsets of X. Rather than prove the fundamental theorem of 
calculus directly for the Lebesgue integral, we prove a much more general 
theorem, as follows. 

§2.4 Lebesgue Integration versus Riemann Integration 

Theorem 1. Let f be a bounded Riemann-integrable function on [a, b] with 
Riemann integral J~fdx. Then f E !l'({tL, [a, b]) and 

(1) 	 fb fdX = r fd{tL 
a [a,b]J 

Before proving this theorem, let us recall how the Riemann integral is 

defined. 

Riemann Integral 

A partition P of [a, b] is a finite, ordered sequence of points 

a = 	Xo < Xl < Xz < ... < XN = b 

The maximum of the numbers Xi+ 1 - Xi' i = 0, ... ,N - 1 is denoted m(P) and 
is called the mesh width of the partition. 

Fix a partition P of [a, b], and let f be a bounded function on [a,b]. Let 

Mi = sup {f(x); Xj-l ~ X ~ Xi} 

and 

mi = inf{f(x); Xj-l ~ X ~ x;} 

Define 

U(f,P) = 
N

L Mi(Xi
i=1 

- Xi-1) 

and 
N 

L(f,P) = L mj(xi ­ Xi-I) 
1=1 

to be the upper and lower Riemann sums, respectively. 
Notice that L(f, P) ~ U(f, Pl. In fact, it is true that, if P1 and Pz are any 

two partitions of [a, b], then L(I, P1) ~ U(f, Pz)· To see this we introduce the 
notion of refinement. A partition pi is called a refinement of P if the ordered 
sequence of points comprising pi contains the points of P as well as some 
additional points; that is, pi = P plus additional points. Clearly, if pi is a 
refinement of P, then L(f,P/) ~ L(f,P) and U(f,P') ~ U(f,P). Now, if P1 and 
P are two partitions of [a,b], let P be a partition of [a,b] that refines both 

z 
P

1 
and Pz simultaneously. Then 

(2) L(f, P1) ~ L(f, P) ::; U(I, P) ~ U(I, Pz) 



84 
85 Chapter 2 Integration 

We define 

Lb f dx = inf{U(f, P); P is a partition of [a, bJ} 

(3) rf dx = sup{L(f,P); P is a partition of [a,bJ} 

Note that by inequality 2 

(4) rf dx::; rf dx 

Definition 2. The function f is Riemann integrable if J! f dx = S: f dx. In this 
case we define ­

(5) r r r
f dx = f dx = f dx 

To compare the Riemann integral with the Lebesgue integral, we will first 
show the following lemma. 

Lemma 3. There exists a sequence of partitions Pl , P2 , P3 , ••• such that 

1. Pk is a refinement of Pk - 1 • 

2. The monotone sequence 

U(f,P1) 2: U(f,Pl ) 2: '" 

converges to J! f dx. 
3. The monotone sequence 

L(f, Pl) ::; L(f, Pl ) ::; ... 

converges to .I:; f dx. 

4. The mesh width m(Pk ) ~ 0 as k ~ 00. 

Proof. We describe how to define Pk • Let Pfc be a partition with 

b 1 
U(f,P~)::; a f dx + kf 

and Pk' a partition with 

§2.4 Lebesgue Integration versus Riemann Integration 

L(f,Pt) 2: rf dx ~ 

We know that Pfc and Pfc' exist by the definition of J! f dx and I; f dx. Let Pk 

be a partition with m(Pk ) < 11k refining P~, Pt:, and Pk - 1 all at once. Then 

b 1 
L(f,PJ 2: L(f,Pt) 2: ~ f dx - kf 

and 

b 1 
U(f,Pk)::; U(f,P!.)::; a fdx + kf 

b 

So lim L(f, PJ = r f dx and lim U(f,Pk) fb f dx \l 
k-co ak-oo J" 

For a fixed partition P, define the simple functions 

f(a) at x = a 

on Xo < x ::; Xl 

on Xl < X ::; Xl 

mt 

Lp(X) = i~2 

mN on XN- 1 < x::; XN 

and 

f(a) at x a 

Ml on Xo < x ::; Xl 

Up(x) = ~ Ml on Xl < X ::; X2 

MN on XN-l < x ::; XN 

Notice that Lp(x) ::; f(x) ::; Up(x) and 

r Lp(x)dflL = f. m.(x. - Xi-l) = L(f,P)
J~.~ 1-1 

r Up(x)dflL f. MI(xl Xi-l) = U(f,P)
J~.~ i=1 

See figure on page 86. 
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Graph of} 

m.ml 

Jj 

II" m2 II" mJ 

x 
Xo a XI Xz X3 Xn-I Xff b 

y 

of Lp 

m.ml I r m, I r m3 

1.1 X 

Xo a XI Xz X3 Xn-I Xff = b 

Also, if P' is a refinement of P, then 

Ur(x) ~ Up(x) and Lr(x) 2: Lp(x) 

Now choose a sequence of Pk's as in lemma 3 and let 

Lk L pk and Uk = UP. 

Then 

L ~L2";::''--"'<f<"'<U- 2-<u1 - - 1 

Let L(x) = limn--+oo Ln(x) and U(x) = limn--+oo Un (x). By construction, L(x) ~ 
f(x) :5 U(x), and, by the dominated convergence theorem, 

§2.4 Lebesgue Integration versus Riemann Integration 

lim f Ln dJ1L r L dJ1L 
n--+ooj[a,"] j[a,b] 

and 

lim f .Un dJ1L U dJ1L 
n--+oo J[a,b] 

Now we know that 

i Ln dJ1L = L(f, Pn) and i UndJ1L = U(f,Pn) 
[a,bl [a,b] 

and we chose the Pn's so that 

andlim L(f,PJ ff dX !~~ U(f,PJ = f fdx 
n--+OO 

Hence, we conclude 

i LdJ1L = rfdx and i U dJ1L = rf dx 
~,~ a[a,bl ~ 

To prove the theorem, we assume that f is Riemann integrable; that is, 

ff dX ff dX 

In other words, 

f L dJ1L 
J~~ 

= (
J~~ 

U dJ1L = (" f dx 
Ja 

Thus J[a.b)(U - L)dJ1L = O. But U 2: L so U - L 2: 0; hence, U - L 0 a.e. 

Now L~f~U so f = U = L a.e. 

and f is Lebesgue integrable with 

( 
J[a.b) 

fdJ1L (b fdx
Ja 

\l 

Remark. The standard notation for the Riemann integral of a function f 
over an interval [a, b] is the notation we have been using-namely, rf(x)dx 
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Unfortunately, the Lebesgue integral has no such standard notation. 
Heretofore we have been using the notation 

(7) 	 r f dflLJ[a,b] 

or 

(8) If dflL 

with 1 denoting the interval [a,b]. 
Now that we've shown that the Lebesgue integral and the Riemann 

integral are identical for Riemann-integrable functions, we will be less me­
thodical with our notation. We will sometimes use display 6 for Lebesgue 
integrals and will sometimes use displays 7 and 8 with the subscript deleted 
from flL when it is clear from the context that fl is flL' 

Exercises for §2.4 

1. 	 Compute the Lebesgue integral 

If dflL 

of the following functions: x 2, Xl, sinx, eX, x logx. (You are encouraged to 
use the tools of elementary calculus in making these computations.) 

2. 	 In the proof of theorem 1, choose an XE [a,b] that is not equal to any of 
the partition points of any of the Pk'S. Show that f is continuous at x if 
and only if U(x) = L(x). 

3. 	 Conclude from exercise 2 that, if a bounded function f on the interval 
[a,b] is Riemann integrable, then it is continuous almost everywhere. 

4. 	 a. Conversely, suppose that f is a bounded function that is continuous 
almost everywhere on the interval [a, b]. Conclude from exercise 2 that 

lim U(f, Pk ) = lim L(f, Pk ) 

b. 	 Deduce that, if f is bounded and continuous a.e. on [a, b], then it is 
Riemann integrable. 

5. 	 (Improper integrals) 
a. 	 Let f be a nonnegative measurable function on the interval J = (0, 1]. 

Suppose that f is Riemann integrable on all of the intervals [a, 1], 
o< a < 1. Show that 

f f dflL lim II f(x)dx 
J a-+O a 

with the integral on the right being the Riemann integral. 
b. Compute the Lebesgue integral over J of the function f(x) l/jX. 

§2.5 Fubini Theorem 

6. 	 a. Let f be a nonnegative measurable function on the interval J = [1,(0). 
Suppose that f is Riemann integrable on aU of the intervals [1, a], 

a> 1. Show 

f f dflL = lim fa f(x) dx 
J Q-+C() 1 

b. Compute the Lebesgue integral over J of the function f(x) = 1/X2. 

7. 	 Let f(x) = (sin xl/x. Show that 

lim fa f(x)dx 
a-+oo 1 

exists. On the other hand, show that f(x) is not Lebesgue integrable over 
the interval [1, (0). 

8. 	 Let f :R ~ R be continuous and have a continuous first derivative f' that 
is positive everywhere. If fl is Lebesgue measure on R, show that the 
measure vf of §2.3, exercise 15, is of the form 

L where l/g(x) = f'(f-l(X))viA) = gdfl 

§2.5 Fubini Theorem 

Section 2.4 and the convergence theorems of §2.3 allow us to 
compute a number of integrals on subsets of R. In order to compute integrals 
on subsets of R", we must justify the use of iterated integrals. This is the 
purpose of Fubini's theorem. 

The general situation is as follows: Let (X,..$(, fl) and (Y, .AI, v) be two 
measure spaces. Let X x Y denote the space 

(1) 	 X x Y = {(x,y); XEX, yE Y} 

If A X and B Y, then A x Be X x Y. On the other hand, you should 
notice that most subsets of X x Yare not of this form. 

Definition 1. A x B c X x Y is called a product set if A e..$( and B e.H. The 
smallest a-field in X x Y containing all product sets A x B is denoted..$( x 

.H. 
In a moment we wi11 define a measure on ..$( x .H. First we must describe 

sets in ..$( x .H in terms of .-It and .H. 

Definition 2. For E c X x Y and xeX fixed, let Ex = {ye Y; (x,y)eE}. 
Then E_ is called the x-slice of E. 



90 91 Chapter 2 Integration 

Notice that, if E and F are subsets of X x Y, then 

(E n F)x = Ex n Fx 

(2) (E F)x = Ex - Fx 

E~ = (£<)x 

and, if E)> E2 , E3 , ... are subsets of X x Y, then 

00 

00 En)", (Ent" 

Proposition 3. If E E ,A x .AI, then .AI. 

Proof. Fix x E X and let ~ be the collection of all sets E s X x Y with 
Ex E .AI. Note that 

1. ~ contains all product sets A x B. 
2. ~ is a a-field. 

Thus ~ contains the smallest a-field containing all product sets-namely, 
.A x .AI. 

Corollary 4. Let I: X x Y -+ R u { ± be measurable with respect to 
.A x .AI. For XoEX fixed, define 1"'0: Y -+ R by Ixo(Y) = l(xo,Y). Then, for 
each Xo E Ixo is a measurable function on Y. 

Proof. Fix Xo E X. If a E R we need to show that 

EY;lxo(Y) < a}E.AI 

Let E {(X,Y)EX x Y; I(x,y) < a}. EE.A x.AI because 1 is measurable 
and {y E Y; Ixo(Y) < a} = Exo E.AI by proposition 3. 0 

Remark. We could just as easily have studied y-slices as x-slices. The corre­
sponding proposition and corollary are obviously true for y-slices as well. 

Thus far we have made no assumptions about the measure spaces (X, 
and (Y,.AI, v). We will now assume that both ofthese spaces are a-finite. (Recall 
that a measure space (X, ,.$I,p,) is a-finite if there exist Xi E i = 1,2,3, ... 
with p,(X;) < 00 and 

00 

X;=X 

(See defmition 32 in §1.3.) 

§2.5 Fubini Theorem 

We now use the measures p, and v to define a measure on.A x .AI. First 
let's recall how one computes the areas of regions in the plane in elementary 
calculus. Consider the region in the figure below. 

y 

YI~-

~--~------~----------~--~---x 
a x b 

For each point x on the interval [a, b], we let tPE(X) be the length ofthe interval 
Ex; that is, tPE(X) Y2 - Yl' For reasonable-looking regions, such as the one 
we've drawn here, tPE(X) is a continuous function of x, so the Riemann integral 

(3) tPE(x)dxr 
is well defined. In elementary calculus one proves that display 3 gives the area 
of the region E (or uses the integral as the definition of area). To define a 
measure on the product a-field, ,A x .AI, we will mimic this process. Let 
E E.A x ,K. For each x E X, ExE.AI, so we can define a function tPE: X -+ R by 

(4) tPE(X) = v(Ex) 

We would like to define the measure of E to be the integral 

(5) Ix tPE(x)dp, 

To use this, we have to check that tPE(X) is a measurable function on X. Proof 
of this fact requires a general argument about a-fields called the n-A. theorem. 

Definition 5. Let Z be a set and let [/' be a collection of subsets of Z. [/' is 
called a A.-system if the following three properties hold. 

1.1. Z E[/'. 

1.2. If E1 ~ E2 ~ E3 ~ ... is an increasing sequence with each En E [/', then 

00 

U EnE[/' 
n=l 

1.3. If E. FE[/' and E c F. then FEE [/'. 
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Definition 6. A collection d of subsets of Z is called a n-system if 

n1. 	A, BEd=AnBE.r;;f. 

Theorem 7. (n-A theorem) If .r:;> is a A-system and d is a n-system with 
d ~ [1', then the smallest a-field containing d, a(d), is contained in [1'. 

Proof. * First notice that, if a collection I of subsets of Z is both a A-system 
and a n-system, then it must be a a-field. 

Now let l(d) be the smallest A-system containing d. If we can show that 
l(d) is also a n-system, then we will know it is a a-field. Because a(d) is the 
smallest a-field containing d and l(d) is the smallest A-system containing d, 
we will have 

a(d) ~ l(d) ~ .r:;> 

which proves the theorem. 
To see that l(d) is a n-system, we need to show that if A,B E l(d) then 

A nBEl(d). 
For A Z let 

~A = {B c Z; An BEl(d)} 

Notice that if A E l(d), then ~A is a A-system. Indeed, the three properties 
are satisfied as follows. 

U. 	If A E l(d), then Z E ~A' because A n Z = A. 
A.2. 	 If A E l(d) and El E2 c E3 ... are in then (A n E 1 ) (A n E2) 

... is an increasing sequence in l(d), so (A n En) An (U::'=l En) is 
also in l(d); that is, U::'=l E~§A­

A.3. 	 If A E l(.r;;f) and E, F E ~A with E c F, then A nAn FE l(.r;;f), and 
n E) c (A n F). So An (F E) (A n F) (A n E)El(d); that is, 

F EE~A' 

Furthermore, if A, BEd, then A n BEd c l(d), so B E~A; that is, d t.§,4 

when A Ed. Thus we see that l(d) c t.§A when A Ed, by the minimality of 
l(d). In other words, we now know that. if A Ed and BE Ud). then A n BE 
l(d). 

Thus, if B E l(d) we have shown that d c ~§B' Again using the minimality 
of l(.r;;f), we get l(d) c ~B for BE l(d); that is, A n BE l(d) when A and Bare 
elements of l(d). This is property nl for l(d). 0 

With the n-A theorem we can now prove the following proposition. 

*This proof is rather technical, and you might want to skip it when reading this material for the 
first time. 

§25 Fubini Theorem 

Proposition 8. IfE EJ!t x .K and tPE: X -+ R is defined by tPE(X) = v(Ex), then 
is measurable. 

Proof. First assume that v(Y) < 00. By the n-A theorem, the proposition 
will follow from the following three facts. 

a. 	 Let g' be the collection of sets E such that tPE is measurable. Then g' is a 
A-system. 

b. 	 All product sets, A x B, with A E J!t and BE .;V', are in [1'. 

c. 	 The collection d of product sets is an-system. 

We prove these statements as follows. 

a. 	 U. tPx x y(x) v(Y) for all x; hence, is clearly measurable. 
A.2. 	 Let E1 E2~ ... be an increasing sequence with En E [1'; that is, tPE (x) 

is measurable. Let E = U::'=1 En. We need to show that tPE(X) is ~ea­
surable. 

Now 

tPix) = v(Ex) vLVl (En)x] ~~~ v[(E.)x] = !~~ tPE.,(X) 

Thus tPE is the pointwise limit of measurable functions and so is 
measurable as well. 

A.3. 	 Let E, FE [I' with E c F. Then F = E u (F - E) is a disjoint union, 
and Fx = u (F E)x is also disjoint. Thus v(Fx) = v(Ex) + v[(F 
E)x]; that is 

tPF-E(X) tPF(X) - tPE(X) 

Because tPE and tPF are measurable, tPF-E is too. 
b. 	 Let E = A x B be a product set. Then 

B ifxEA 
Ex = { tP ifx¢A 

so 

V(B) if XEA 
(6) 	 tPE(X) = { 0 ifx¢A 

That is, tPE(X) = v(B)IA(x), which we know to be measurable. 
c. 	 Let A x B and A' x B' be two product sets. Then 

(A 	x B) n (A' x B') = (A n A') x (B n B') 

so the collection of product sets is an-system. 
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Now, what happens if we drop the assumption that v(Y) < oo? Because Y 
is a-finite we can find a sequence of subsets Y1 , Y

2
, Y , ••• of Y with ~EJV, 

v(~) < 00, and 3 

co 

Y= U ~ (disjoint union) 
'=1 

Let E E.A x JV.. Then 

co 

E= UEi (disjoint union) 
i=l 

where E, = E (\ (X x ~) and 


co
(7) ¢E(X) = L ¢E,(X) 
i=1 

We proved above that ¢EI is measurable, so by equation 7, ¢IE is measurable. 

oWe can now use display 5 to define a measure on.A x .¥. 


Definition 9. Let E E.A x JV' and define 


(8) 
n'(E) = Ix ¢E(x)d/l 

to be the product measure of E. 


Proposition 10. n' is a measure. 


Proof. We must check that n' is countably additive. Let E1> E , ... be a 
2

pairwise disjoint family ofsets in.A x JV. Let E = U::,= 1 En. We need to show 
that 

n'(E) = L
00 

n'(E,,) 
n=1 

Now, E" = U~1 (E"),, is a disjoint union, so 

co 
veE,,) = L v[(E,,),,] 

n=1 

that is, 	
00 

¢E(X) = L ¢lE.(X) 
n=1 

We can now apply the monotone convergence theorem to get 

§2.5 Fubini Theorem 

t ¢E d/l = n~1 t ¢En d/l 

that is, n'(E) = L
00 

n'(E,,) 	 o 
,,=1 

Notice that we could repeat this whole procedure using y-slices instead of 
x-slices. Ostensibly this method gives a different measure n" on Jf x JV'. Our 
first version of Fubini's theorem is that these two methods yield the same 
measure. 

Theorem 11. (Fubini, version 1) 

n' = n" 

Proof. First assume that Jl(X) and v(Y) are finite. By the n-)" theorem, it is 
enough to establish the following three assertions. 

a. Let f/' = {E E.A x JY"; n'(E) = n"(E)}. Then f/' is a A-system. 
b. The product sets are in f/'. 
c. The product sets form an-system. 

We proved assertion c above. Let us look at assertions a and b. 

a. 	 U. n'(X x Y) = Jl(X)v(Y} = 1TI/(X x Y), so X x Y Ef/'. 
12. 	Let E1 £ E2 £ ... be an increasing sequence with EnEf/'. We wish to 

show that E = U::;"1 E" Ef/'. It is clear that limn_ n'(E,,) = n'(E) andoo 

limn_co n"(E,,} = n"(E). But n'(E,,) = n"(En), because E" E f/'. Hence 
n'(E) = n"(E); that is, E E f/'. 

13. 	Let E, FE f/' with E c F. Then F = E u (F - E) is a disjoint union, 
so n'(F) = n'(F - E) + n'(E) and n"(F) n"(F E) + n"(E). Hence 
n'(F - E} = n"(F - E), because n'(F) = n"(£) and n'(E) = n"(E). 

b. Let E A x B be a product set. Then tPE(X) = v(B)lA(x), so 

n'(E) = Ix ¢E(x)dJl = v(B)/l(A) 

Reversing the procedure gives 

n"(E) = Jl(A)v(B) 


Thus EEf/'. 


Now, what happens if /leX) and v(Y) are not finite? Because X and Yare 
a-finite, we can find subsets XiEJIt, i = 1,2,3, ... , and ljEJV,j = 1,2,3, ... , 
such that Jl(X,) and v(lJ) are finite and 
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00 	 00 

X = UXi (disjoint union) and Y = U lj (disjoint union) 
i=1 	 j=l 

IfEE.I( x ,IV let 

Ei,j = E n(X; x lj) 

Then 

00 

(9) 	 E = U E;,i (disjoint union) 
i,j=l 

By what we proved above, 

n'(E;) = n"(Ei,j) 

so, by equation 9, n'(E) = n"(E). 	 o 

Definition 12. The measure n' = nil is denoted fl x v and is called the product 
measure on .I( x fl. 

Example 13. Let X = Y = R and .I( = fl = @iI' the Borel sets in R. Also 
let fl = v = fll, Lebesgue measure on R. We claim that .I( x fl = @iz, the 
Borel sets in R Z

, and fl x v = flz, Lebesgue measure on R2. 

Proof. Notice that, if I and J are intervals in R, then I x J is a product set 
so 1 x J E.I( x fl. Now, fJIz is the smallest O'-field containing sets of the form 
1 x J, so !!I)z c .A x fl. 

We now show .I( x 	fl C .'112 : Fix an interval I c R. Let 

811 = {B c R; I x BE!!I)2} 

Note the following. 

1. .'111 contains all intervals J c R. 
2. !!I)I is a O'-field. Indeed, suppose B1 , B2, ... are elements of !!iJI , then 

I x C9 Bn) = .9 (1 x B.)e!!l)2 
1 1 

so U::'=l B. e !!I)I' 

Because !!iJ1 is the smallest O'-field containing the intervals, items 1 and 2 
imply that!!iJl c !!I)I; that is, if BE!!I)I we have I x BE.'1Iz. 

Now fix a Borel set BE!!iJl . Let !!I)B = {A c R; A x BE!!I)2}' Note the 
following. 
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1. !!I)B contains all intervals I c R by the above result. 
2. @i is a O'-field by an argument just like the one above. 

B 

Because @i is the smallest O'-field containing all of the intervals, we have 

@i c: @iB; thatl is, A x BE@iz for any A, Be@il • But @il x !!I)l is the smallest 


1 x @i c
O'-field containing all sets of the form A x B, so we have shown that@il l 


fJ8 and thus @il x {fijI = @i2 • 

2 

We noW show that III x III = flz· Let 


KN = {(x,y)eR2 ; -N ~ x, Y ~ N} 


It is enough to shoW that, for all N, fll x fll = flz on Borel subsets of K N • 

(Why?) To establish this fact, let [/N be the Borel subsets B of KN for which 

fll x fll (B) = flz(B) 

[/N is a A-system: 

4N 
Zl.1. fll X III (KN) = = Ilz(KN)·

),,2. Let Bl c: Bl C ... be an increasing sequence with each Bn E [/N' Let B = 

U::'= I Bn; then 

(Ill x Ill)(B) = lim (Ill x IlI)(B.) = lim fl2(Bn) = fll(B) 
n-oo n-oo 

)..3. Let E and F be elements of [/N with E c: F. Then F = E u (F - E), so 

fll x IlI(F - E) = III x IlI(F) - fll x fll(E) 

= 1l2(F) - Ilz(E) = 1l2(F - E) 

Next, let s4 = {I x J; I, J subintervals of [-N,N]}. d N is a n­
N 

system because 


(II x J ) n (l x J2) = (II n 12 ) x (Jl n Jz)
z1

Furthermore, .91N c 	 [/N because 


fl2 (I x J) = (length I)' (length J) 


(fll x fll)(I x J) = fll (I)' III (J)whereas 
= (length 1)' (length J) 

From the n-A theorem we conclude that [/N contains the smallest O'-field 

containing .91N' Hence flz = fll X fll on all Borel subsets of K N • 0 

nd
Exercise. WriteR3 = R2 x RI and show that{fiJ3 = {fiJz x @i1 a fl3 = Ilz x 

Ill' 
We return now to the general situation: (X,.I(, fl) and (Y,fl, v) are O'-finite 
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measure spaces and (X x Y,.H x JiI', p. x v) is the measure space constructed 
above. 

Theorem 14. (Fubini, version 2) Let f: X x Y-. R be a nonnegative mea­
surable function. Then 

1. a. For each XE X, f(x, y) is a measurable function of y. 
b. For each YE Y, f(x,y) is a measurable function of x. 

2. a. fr f(x, y) dv is a measurable function of x. 
b. Sx f(x, y) dp. is a measurable function of y. 

3. L[I f(x,y)dvJdp. = fJL f(x,y)d,u JdV = Lxy /(x,y)d(,u x v) 

Proof. Part 1 was proved at the beginning of the section. 
To prove parts 2 and 3, first note that they are true for f(x, y) = lE(x, y) if 

E E.H x JiI'. Indeed 

I lE(x,y)dv = v(Ex) = ~E(X) 

which we have shown to be measurable, and similarly 

L lE(x, y) dp. = p.(Ey ) = l/JE(y) 

is also measurable. The fact that 

L[I 1E(x,y) dvJ d,u = fJL lE(x,y)dp. JdV = Lxy lE(x, y) d(p. x v) 

is version 1 of the Fubini theorem. 

Now, because parts 2 and 3 are true for characteristic functions, they 
must be true for simple functions by linearity. To prove the theorem in gen­
eral, let f(x, y) be a general nonnegative measurable function and choose 
an increasing sequence of nonnegative simple functions 

Os S1 S S2 s .. · 

with s" -. f pointwise. Then, for x E X fixed, 

I s,,(x,y)dv ...... Lf(X,Y)dV 

by the monotone convergence theorem. Thus Sy f(x, y) dv is a measurable 
function of x, because we know that frs,,(x,y)dv is measurable. Similarly, 
Sxf(x, y) dp. is a measurable function of y. 
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Furthermore, part 3 holds for all s,,; that is, 

L[tS,,(x,Y)dVJdP. = fJL s,,(x,y)d,uJdV = Lx/"(x,Y)d(P. x v) 

Applying the monotone convergence theorem to each of these terms sepa­

rately yields 

L[t f(X,y)dV]d,u = fJL f(x,y)dp.]dV = Lxy f(x, y) d(p. x v) 0 

Theorem 15. (Fubini, version 3) Let f be integrable on X x Y. Then 

1. a. For almost all x, f(x,y) is integrable as a function of y. 
b. For almost all y, f(x, y) is integrable as a function of x. 

2. a. Sy f(x,y) dv is equal a.e. to an integrable function of x. 
b. fx f(x, y) dp. is equal a.e. to an integrable function of y. 

3. L[Lf(X,Y)dvJdP. = LlL f(x,Y)dP.] dv = LXyf(X,Y)d(P. x v). 

Proof. Write f = f+ - f- where f+ and f- are nonnegative. Because f is 
integrable with respect to P. x v, we know that fxxyf+(x,y)d(p. x v) and 
SxXy f_(x,y)d(p. x v) are finite. Version 2 of Fubini then gives 

Lxy f+(x,y)d(p. x v) = L[tf+(X,Y)dV]dP. < 00 

Thus h f+(x,y)dv is finite a.e., and similarly Sx f+(x, y) dp. is finite a.e. This 
gives part 1. Parts 2 and 3 follow by applying version 2 of Fubini tof+ andf­

separately and then adding. 0 

A Final Remark. Instead of considering only products of two measure 
spaces, we could have considered products of three or more measure spaces. 
For instance, let (X".Hi> p..), i = 1,2,3, be measure spaces. One can define a 

product a-field 

.Hi X .Hz X .H3 

by defining it as either 


or .H1 X (.H2 X .H3)
(.AI x .Hz) X .H3 

or as the smallest a-field containing the product sets 

Ai x A2 X A3 
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with Ai E Jlti , i = 1,2,3. It turns out that these three definitions give the same 
a-field. (See exercise 3.) 

Moreover, we can define on Jlt1 x Jltz X Jlt3 a product measure J-t1 x 
J-t2 X J-t3 with the property that, on product sets, 

(to) (J-tl X J-tz X J-t3)(A l X Az x A3) = J-tl (A I )J-tz(A2)J-t3(A3) 

That is, we can define this measure as 

J-tl X (J-t2 x J-t3) or (J-tl x J-t2) X J-t3 

You will be asked in exercise 3 to show that these definitions are the same. 
By simply using the Fubini theorem twice, we get analogous statements 

for this triple product. In particular, if f is integrable on Xl x X z X X3 (with 
respect to J-tl x J-tz x J-t3)' then the various partial integrals make sense a.e. and 

(11) f fd(J-tl x J-t2 x J-t3) f [f (J" fdJ-tl) dJ-t2] dJ-t3
X,xx 2 xx, 	 x, X2 x, 

What we have said about products of three measure spaces applies equally 
well to products of any finite number of measure spaces. (See exercise 4.) Here 
the Fubini theorem looks like 

(12) f d(J-t1 X '" x J-tn} f··· [f f dJ-tI]'" dJ-tn 
X 1 X···XXn 	 Xlf X l1 

Exercises for §2.5 

1. Let R be the region 

R= {(x,y); 1 ~x~ 1, -1 ~y~ I} 

in the plane. Compute the Lebesgue integrals 

2	 XYandt xy dJ-t2 t (x2 + y2) dJ-t2 t ye dJ-t2 

2. 	 Let (X,JIt,J-t) and (Y,.Ai, v) be a-finite measure spaces. Call a product set 
A x B finite if ,u(A) < 00 and v(B) < 00. Show that the product measure 
J-t x v is the only measure satisfying 

(J-t x v)(A x B) = ,u(A)v(B) 

for aU finite product sets A x B. (Hint: Use the n-A theorem.) 
3. a. Let (Xi' Jlti , J-ti), i = 1, 2, 3, be a-finite measure spaces. Show that 

(Jlt1 x Jl(2) X .A3 = Jltl X (Jlt2 x Jl(3) 

101§2.5 Fubini Theorem 

and that these equal the smallest a-field containing the product sets 
x A2 x A3, where Ai E Jlti> i 1,2, 3. 

b. 	 Show that (J-t1 x J-t2) X J-t3 = J-tt X (J-t2 x J-t3)' 
c. 	 Call a product set At x A2 X A3 finite if J-ti(A;) < 00, i = 1,2,3. Show 

that the measure in part b is the only measure satisfying 

(J-tl 	 x J-t2 X J-t3)(A1 X A2 x A3) = J-ti (A 1)J-t2(A2}J-t3(A3) 

for all finite product sets Al x A2 X A3· 
4. 	 Generalize exercise 3 to n-fold products. 
5. 	 In part a of exercise 3, let Xl = X2 = X3 = R, Jltl = Jlt2 Jlt3 = the 

Borel sets of R, and J-tl J-t2 = J-t3 = Lebesgue measure. Show that ,A1 x 
Jlt X Jlt is the Borel sets ofR3 and J-tl x J-tz X J-t3 is Lebesgue measure. 

2 3 
Can you prove an equivalent statement for R4? for Rn? 

6. Let (X,JIt,J-t) and (Y,.Ai, v) be a-finite measure spaces, and let E be in 
JIt x .Ai. Show that E is of measure zero if and only if Ex is of measure 
zero for almost all x E X. 

7. a. Let (X, JIt, J-t) and (Y,.Ai, v) be a-finite measure spaces, and let f: X -l> 

Rand g: Y -l> R be measurable functions. Let h(x, y) f(x)g(y). Show 
that h is a measurable function on X x Y. 

b. 	 Iff and g are integrable, show that h is integrable and that its integral 

is 

(tfdJ-t) (LgdV) 

8. (The integral as "area under the curve.") Let (X,JIt,J-t) be a a-finite 
measure space, and let f: X -l> R be a nonnegative measurable function. 

Let 

AI {(x,t)EXxR;O~t~f(x)} 

Show that AI is a measurable subset of X x R (that is, belongs to JIt x 
ti'l) and that the measure of AI with respect to the product measure 

J-t X J-tLeb is equal to Ix f dJ-t. 
9. 	 Show that property A2 of a A-system can be replaced by the property 

1..2'. If AI' A2, ... are disjoint subsets of g, then U~ 1 Ai is in g. 
10. 	 Let X be a set and :IF a a-field of subsets of X. Let J-tl and J-tz be finite 

measures on:IF with the property that ,ul(X) J-t2(X), Show that the 

collection of sets 
{AE:IF; J-t1(A) J-t2(A)} 

is a A-system. 
11. Show that Lebesgue measure is the only measure on the Borel sets of the 

interval [0,1] with the property that, for all subintervals J, J-t(J) length 
of J. (Hint: Use exercise to and the n-A theorem.) 
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12. 	a. Show that for the function 

xy
J(x,y) = + y 

the iterated integrals 

Lil [f:l J(x,y)dyJdX and f:l [LI1J(x,y)dxJdY 

exist and are equal. 

h. 	 Show that J is not integrable over the square 1 ~ x ~ 1 and 1 ~ 
y ~ 1. 

13. Let X 	= Y = R and .A = % = Borel sets. Let /1 be Lebesgue measure, 
and let v be counting measure; that is, 

v(B) = number of elements in B 

Let E E • .8 x % be the set 

E = {(x,y)eX x Y; x = y} 

Recall that I,6E(X) v(Ex) and t/lE(y) /1(E,). Show that I,6E and t/lE are 
measurable but that 

Ix I,6E(x)d/1 0/= Lt/lE(y)dv 

§2.6 Random Variables, Expectation Values, and 
Independence 

In the next two sections we will discuss some probabilistic appli­
cations of the material in §2.5. Let X be a set, iF a u-field of subsets of X, 
and It a probability measure on X. A random variable f is, by definition, a 
measurable function f: X ~ R u {± oo}. For instance, let X = I = {fJ and let 

(1) 	 J=~(n+JIRk) 
Interpreted probabilistically, J is the number of times H comes up in the first 
n stages of a Bernoulli sequence. It is a "random quantity" or "random 
variable" that can be measured each time we perforni a sequence of BernouIli 
trials. 

The expectation value of a random variable is its integral 

E(J) = Ixfd/1 
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Of course, the expectation value need not always be defined; that is, f need 
not always be integrable. H.owever, all the random variables we will consider 
do have well-defined expectation values. For instance, if we integrate equation 
lover the unit interval we get 

f f d/1 = E(f) ~ 
x 2 

representing the fact that nl2 is the number of heads "most likely" to turn up 
in a sequence of n Bernoulli trials. (This meaning of expectation value will 
become clearer in §2.7.) 

Given a random variable f: X ~ R and a Borel subset A £: R let 

(2) 	 /1f(A) = /1[f- I (A)] 

The right-hand quantity is well defined because f-I(A)eiF. (See §2.1.) We 
leave it for the reader to check that equation 2 defines a measure on the Borel 
subsets of R. (See §2.3, exercise 15.) We will call this measure the probability 
distribution associated with the random variable f. If, for two random vari­
ables f and g, Itf = ltg, we will say that f and g are identically distributed. The 
essential property for us of the measure /1f is the following. 

Theorem 1. Let 1,6 be a nonnegative Borel-measurable function on R. Then 

(3) 	 Ix 1,6(f)d/1 = t I,6d/1f 

Proof. First, suppose that 1,6 is the characteristic function of a Borel subset 
A£: R. Then 1,6(1) is the characteristic function of f-I(A), so the left-hand 
side ofequation 3 is It(f-I (A)] and the right-hand side is /1f(A). By equation 
2 these quantities are equal. Next observe that equation 3 holds for finite linear 
combinations of characteristic functions of sets-that is, for simple functions. 
Finally, by theorem 6 of §2.2 there exists an increasing sequence s" of non­
negative simple functions with Sn ~ 1,6. Then s,,(I) ~ 1,6(f); so equation 3 fol­
lows from the monotone convergence theorem. 0 

Corollary 2. Let 1,6 be a Borel-measurable function on R. Then 1,6 is integrable 
with respect to the measure Itf if and only if 1,6(1) is integrable with respect to 
/1. When such is the case, equation 3 holds. 

Proof. Let 1,6 = 1,6+ - 1,6- and apply theorem 1 to 1,6+ and 1,6- separately. 0 
Notice that if l,6(x) = x, then equation 3 becomes 

fR Xd/1f = Ix f d/1 E(f) 
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This shows that, il random variables I and g are identically distributed, they 
have the same expectation value. More generally, if I and g are identically 
distributed, then, for every Borel-measurable function f/J on R, 

f f/Jd,uf = f f/Jd,ug 

so by equation 3 

(4) Ix f/JU)d,u = Ix f/J(g)d,u 

For instance, taking f/J(x) = X2 we get 

fr d,u = fg2 d,u 

Given several random variables II""'!", let F: X _ Rn be the map 
F(x) = (fl(X), ... ,!,.(x». If A is a Borel subset ofRB, set 

(5) ,fJA) ,u[F-1 (A)] 

This formula defines a probability measure on the Borel subsets of Rn (check 
this!) called the joint probability distribution associated with 11>''''!,.' The 
analogue of equation 3, 

(6) Jf/JU1>··.,!,.)d,u r f/Jd,ufl .....fn 
x JRn 

holds for any nonnegative Borel-measurable function f/J on Rn and is proved 
in exactly the same way .. 

A set of random variables II'''',!" is said to be independent if, for any 
sequence of Borel subsets AI' A2, ... , An of R, the sets 

11- 1(AI)' ... , !,.-I(An) 

are independent as subsets of X. An infinite sequence ofrandom variables 11> 
12"" is said to be independent if every finite subsequence is independent. A 
very simple criterion for independence in terms of the joint probability distri­
butions of the Ji's is the following. 

Theorem 3. The random variables 11" .. , In are independent if and only if 
the probability measure ,uf" ....fn is equal to the product measure,ur, x ,ur, x 
... x ,ufn' 

Remark. The product is, of course, defined as in §2.5. 
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Proof. To check that the measures agree, it is enough, by the 1C-1l theorem, 
to check that they agree on sets of the form A1 x ... x An. By definition 

/k/l, .... fn.(A1 x ... x An) = ,u[fI-l(A1)n'" nln-I(AJ] 

and by independence the right-hand expression is equal to ,u[/I- I(A1)] x 
... x /k[fn- 1 (An)] which equals /kfj (AI) x " . x (An) which equals (Jl.1t x ... X 

/kfJ(At x ... x An)· 0 
One consequence of theorem 3 is the identity 

x ... x !,. d,u = EUI) x ... x E(!,.) 

Indeed, if we apply equation 6 to the function f/J(x l , ... , Xn) Xl'" Xn we get 
" 

f 11 x .. · x !,.d,u f X1X2· .. xn d/k/I, ....fnX JRn 

= i X X 2 ... X dll n rf, X· .• XI dllrfn 
Rn 

= (t X1 d,ur,)(t X2d,uf2) .. ·(tXnd,ufn) 

by Fubini's theorem. However, the ith term on the right is just E(Ji). 
A remark about independence that will be useful below is the following. 

Let /1" .. ,!,. be independent, and let f/Jl" .. , f/Jn be Borel-measurable functions 
on R. Then 

(8) f/JI (1), ... , f/Jn(!,.) 

are independent. In fact, let AI"'" An be Borel subsets of R, and let 
f/Ji- 1 (AJ Then the Ai's are also Borel subsets, and 

[f/Ji(Ji)]-l(A j ) = Ji-l(A;) 1, ... ,n 

B:y assumption, the sets on the right are independent; hence, so are the sets on 
the left. 

Example 4. If 11 and 12 are independent, then Nand 1/21 are independent. 
The notion of independence plays a central role in measure-theoretic 

models of probabilistic processes. For instance let's go back to the gambling 
process described at the end of §L2. Recall that this process involves a cage 
filled with colored marbles. There are assumed to be k different colors, with 
N, marbles of each color i and N = Lf= 1 Nj marbles in all. The process consists 
of mixing the marbles, then drawing a marble out of the cage. If the color of 
the marble is i, the player receives a reward (or penalty) of r i dollars. The 



106 Chapter 2 Integration 

marble is then replaced, the marbles are again thoroughly mixed, another 
marble is drawn, and the game continues. If f,. is the amount of the reward or 
penalty at the nth draw, then f,. takes on the values of r1, ... , rk with the 
probabilities of Pl"",Pk, where Pi = NdN. What is an adequate measure­
theoretic description of this situation? We claim that the data needed to 
"model" this process are: (a) a set X, a a-field YF of subsets of X, and a 
probability measure p, on YF; and (b) an infinite sequence of random variables 
fl' f1' ... with the following properties: 

(9) The /;,'s are independent 

and 

(10) p,f.(A) L Pj 
'jeA 

for every Borel subset A of R. Indeed, the /;,'s give an identification of points 
x E X with infinite sequences of draws from the cage, i.e''/k(x) describes what 
happens in the sequence corresponding to x at the kth draw. Property 9 just 
says that what happens at the nth draw is independent of what happens at any 
of the other draws. This is justified by the fact that the marbles are thoroughly 
mixed after each draw. If one sets A = {rm}, then, by equation 10, the proba­
bility that at stage n the reward or penalty incurred will be r m is 

p,dA) = Pm 

which is what we expect because of the number of marbles of color m in the 
cage. Notice that equation 10 implies that the /;,'s are identically distributed. 

We will now show that a probabilistic model with all the above features 
does exist. In fact, we will show that we can even take for X the unit interval 
I, for YF the Borel subsets of I, and for the probability measure on YF ordinary 
Lebesgue measure. 

Theorem 5. There exist bounded measurable functions fl' fl, ... on I such 
that property 9 and equation 10 hold with p, = P,L Lebesgue measure. 

Proof. Decompose the unit interval into k disjoint subintervals 11" .• , Ik such 
that II is of length PI> and define fl by setting 

fl = 71 on II i=l, ... ,k. 

Next decompose each of the intervals II into k disjoint intervals I" m' m = 1, ... , 
k, such that Il,m is oflength PIPm' (Because II is oflength PI and LPm 1, such 
a choice of II,m's is clearly possible.) Define f2 by setting 

f2 7m onI/,m 
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Notice that, if AI = {7l} and Am {7m}, 

fl- 1(A,) () fl- 1(Am) = II,m 

so P,[fl-1(A,) () Il-l(Am)] PIPm 

On the other hand, 

k 

fl- 1(AI) = II and Il-l(Am) = U (disjoint union) 
1=1 

k 

so P,[fl-l(A I)] = PI and P,[fl-l(Am)] = L P,Pm = Pm 
1=1 

From these computations we conclude that 

P,[fl- 1(A I) () Il-l(Am)] = P,[fl- 1(A I)]p,[f2- 1(A m)] 

or, in other words, fl- 1(A z) and f2- 1(A m) are independent. Now, suppose that 
Bl and B2 are arbitrary Borel subsets of R. Then 

Bl = B~ u A) and B2 = B; U ( U Am)
'm eB2 

with Bl and B; containing none of the 71'S. Then fl-1(B~) and 12- 1(B2) are 
empty; so 

fl- 1(B1) = U fl- 1(A,) (disjoint union) 
r,eB. 

and 

f2- 1(B2) = U fl- 1(Am) (disjoint union) 
'm EB2 

are independent. (Why?) Because Bl and B2 are arbitrary, fl and 12 are 
independent. We let the reader check that 11 and f2 satisfy equation 10 and 
move on to the construction of f3' Decompose II,m into k disjoint subintervals 
I"m,,., n = 1, ... ,k, of length PIPmP,. and define 13 by setting 

f3 = r" on II,m,1I 

One checks that fl' f2' and f3 are independent in exactly the same way as 
above. It is also clear by now how to construct f4' fs, and so on. We leave 
details to the reader. 0 

Remark. Let k = 2,71 = 1, r2 = 1, PI = t, and P1 = t. Then the functions 
constructed above are exactly the Rademacher functions! 
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Stage I 	 Stage 2 
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This figure indicates the first two stages in the construction ofthe./i's with the data k =3"1 = 1,
'2 = 0"3 = -1, and P1 = P2 =P3 =}. 

Exercises for §2.6 

1. Let v be a probability measure on the Borel sets of the real line, Then v 
is said to be supported on the Borel set A if v(AC) = O. Using theorem 1, 
show that, if A is a Borel set containing the image off, then J.lf is supported 
on A. In particular, if I is a simple function taking on the values r 1, ..• , rk> 
then J.lf is supported on {r1, ... , rk}' 

2. 	 Let X = I be the unit interval, and let J.l be Lebesgue measure. D~scribe 
the measure J.lf for the function I(x) Xl, 

3. 	 If, for i = 1,2, t. Ri is the ith Rademacher function, what is the measure 
J.lf,? Verify directly that J.lJ"j, = J.lfl x J.lj,' 

4. 	 (The unfair coin.) Using theorem 5, let k = 2, r1 = 1, r2 -1, P1 = P, and 
P2 = 1 p. Describe the first three of the functions 11, Il. 13.' ... 

5. 	 In exercise 4, let 8" = 11 + ., . + f". Compute the expectation value Eof 
8" and the variance 

V(8,,) = f(8" - E)l dJ.lL 

6. (The random walk with pauses,) Using theorem 5, let k 3, r1 = 1, r2 = 0, 
r3 = -1, and PI = Pz = P3 = l We have already drawn the graphs of 11 
and 12' Draw the graph of 13' Can you discern a pattern? 

7. 	 a. Let Ri be the ith Rademacher function, and let 

h(X) = it (~)Ri(X) 

Compute 

L
e1fk{x)dx 

(Hint: Use independence.) 
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b. 	 Using the formula 

2x - 1 = lim h(X) 
k-+oo 

(proved in exercise 7 of §1.1) deduce Vieta's formula 

sinht n°O h( t)--= cos 2k 
t k=1 

8. 	a. Let 11 ,f2"" be as in theorem 5, and let 8" 11 + ... + f". Prove that 

eISn(X) dx L Prob(8" = r)e1r 

b. 	 Conclude from part a that 

(*) 	 LProb(8" = r)e lr = (f Pielrl)" 

r 1=1 


(Hint: Write the integral on the left in part a as 

x etfn dxII etfte1j, x , .. 

and use independence.) 
9. Let 11,12,/3" .. be independent, identically distributed random variables 

taking on the value of 1 with probability P and the value of 0 with 
probability 1 - p, where 0 :5; P :5; 1. (That using theorem 5, take k = 2, 
r1 1, r2 = 0, PI = p, and pz = 1 - p.) Let 8" 11 + ... + f". Show that 

(**) Prob(8" r) = (~) pr(1 _ p),,-r 

if 0 :5; r :5; n and is zero otherwise. (Hint: Use exercise 8.) 
10. Let {r1, r2, ... }be a countable subset ofR, and let P1'PZ'''' be a countable 

sequence of nonnegative numbers with 

Pi = 1 

For every subset A ofR, let 

(t) 	 = L Pi 
ri eA 

Show that there exists a sequence 11,/2"" of independent, identically 
distributed random variables on the unit interval such that J.lfl = J.lh = 
... = v. 

11. 	For i = 1, ... , n let .Ai> J.li} be a probability space, let .AI X ... x .An 
be the product of the .A/s, and let J.lI x ... x J.l" be the product measure 
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on Al x '" X A". For each i let I; be a measurable function on XI' 
Consider I; as a function on Xl x ... X XII by setting 

J;(XI'''''X,,) = I;(Xi) 

Show that the I;'s, regarded as functions on Xl x ... X Xn> are inde­
pendent. 

§2.7 The Law of Large Numbers 

Let's now return to the question posed at the beginning of §2.6. 
What does the expectation value of a random variable really represent? 
Consider a simple probabilistic process (such as the toss of a coin) and a 
numerical quantity Q associated with the process. (For instance, for the toss 
of a coin let Q = 1 if an H occurs and Q= -'-1 if a T occurs.) Now repeat 
the process and again measure the quantity Q; repeat it a third time and 
again measure Q, and so on ad infinitum. Let A v,,(Q) be the average value of 
Q, averaged over the first n stages of this infinite sequence of experiments. 
Does A v,,(Q) tend to a limit as n tends to infinity? The answer is yes, provided 
that, each time the experiment is repeated, the conditions under which it is 
performed are not biased by the results of the preceding trials. (For instance, 
if the experiment consists of drawing a marble from a cage, recording its color, 
and then replacing, it, the marbles must be thoroughly mixed each time.) We 
will show that, if these experimental requirements are met, then, not only does 
A v,,(Q) tend to a limit as n --? 00, but in fact 

(1) 	 lim A v,,(Q) = E(Q) 
"-00 

is the expectation value of Q. (We mean, of course, that equation (1) holds 
with probability one.) To see this, let's first describe the experimental set­
up above in somewhat more precise terms. Let III be the measured value of 
the quantity Q at the nth stage of the sequence of experiments. Then, under 
the hypotheses above, the fn's are independent, identically distributed random 
variables. The underlying space X on which they are defined is, technically 
speaking, the totality of "all infinite sequences of repetitions ofthe experiment." 
For instance, if the experiment consists of the toss of a coin, X is the set 
f1I of all Bernoulli sequences as in §1.1. Actually it isn't terribly important 
to describe X this explicitly. What is important are the i.i.d. (independent, 
identically distributed) random variables 11,12,' .. and their common proba­
bility distribution PI. = Ph = .. '. For instance, for the experiment described 
in §2.6 (a colored marble drawn from a cage) we showed that X could be taken 
to be a very simple set: the unit interval. The important point was that on the 
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unit interval we could produce a sequence of independent random variables 
11 ,f2"" all with the probability distribution of equation 10 in §2.6. 

The following result is what is traditionally called the law oflarge numbers. 
Fix a set X, a a-field :F of subsets of X, and a probability measure P on :F. 

Theorem 1. Let 11 ,f2"" be a sequence of bounded random variables on X 
that are independent and identically distributed. Let E E(ft> = E(f2) = ... 

be the common expectation value of the I;'s. Let Xo be the set of points x E X 

for which 

11 (x) + ... + fn(x) --? E 
(2) n 

as n --? 00. Then fl(Xo) = 1. 

Remark. The assumption that the J;'s are bounded is not essential, but it 

simplifies some details of the proof. 

Proof. Replacing I; by I; E, we can, without loss ofgenerality, assume that 

E O. Let 

v (f 1;
2 

dflY and W === f1;4 dfl 

Because the J;'s are identically distributed, these quantities are the same for 
all i's. The first step in the proof will be to establish the following inequality 

for aile> 0: 

11(X) + ... + fn(x) \ }) 	 3n(n - l)V + nW> e::;; 4 .(3) fl n 	 e n\ 

The left-hand side of inequality 3 is equal to 

4 4p({X (f1 + .. , + fnt 2 n e }) 

and, by Chebyshev'S inequality, this is less than 

+ .. , + fn)4 dp()e 4 ) 

so inequality 3 reduces to 

f(fl + .. , + 1,,)4dfl::;; 3n(n - I)V + nW 

If we multiply out the expression on the left, we five sorts of terms-

namely, 

(4) 
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Jf~ dJl 

Jf~f~dJl ai=f3 

Jf~ftd-ydJl ai=f3i='Y 

J"~f{3f-yfodJl ai=f3i='Yi=1i 

Jf~f{3dJl 
The first integral is equal to W, and the second integral is equal to 

(J f; dJl) (J f~ dJl) V 

by equation 7 of §2.6. Similarly, the third integral is equal to 

(J f~ dJl) (J f{3 dJl) (J f-y dJl) 

and the fourth and fifth integrals are equal to 

(J fa dJl) (J f{3 dJl) (J f-ydJl) (J fodJl) and Jf~dJl Jf{3dJl 

Because the expectation values are zero, these three terms are zero. Be­
cause there are exactly n integrals of the first type and 3n( n 1) integrals 
of the second type §l.l), the sum of all these integrals is the right-hand 
side of inequality 4. 

Now choose a sequence of numbers e1 ,e2 ,1]3,'" such that en ~ 0 and 

~ 3n(n - 1) V + n W 
nfi a4n4 < 00 

n 

(See lemma 6 in §1.1.) Let 

An = {xex; If1(X) + ... + fn(x) I }
n > I::n 

Then, by inequality 3,2::=1 Jl(An} < 00. So, by the first Bore1-Cantelli lemma, 
Jl(A n; i.o.) = O. This result means that, ifwc cxcludea set of measure zero from 
X, then for x in the complement 

(x) + .~. + I< 6 
n 
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for all but finitely many values of n. This clearly implies that 

f1(X) + ... + f,,~x) ~O 
as n ~ 00 	 D 

n 

Exercises for §2.7 

1. 	 Show that, if the f,,'s in theorem 1 are the Rademacher functions, then 
equation 2 is the strong law oflarge numbers formulated in §U. 

2. 	 Let (X,fF, Jl) be a probability space. Recall (§2.3, exercise 8) that a sequence 
of measurable functions f", n 1,2, ... converges to zero in measure if for 
alle>O 

Jl( {x eX; >6})~0 as n~oo 

Show that, if {f,,} converges pointwise to zero almost everywhere, then f" 
converges to zero in measure. (Hint: Let An = {xeX; 1J;,(x)1 < dork;:::: n}. 
Show that Al £; A2 £; A3 £; .•• and that X - U;;;'l An is of measure zero.) 

3. 	 Deduce from exercise 2 and theorem 1 the weak law oflarge numbers. Show 
that, if f1 ,f2" .. are a sequence of bounded independent, identically dis­
tributed random variables and ifE is their common expectation value, then 
for aU 6> 0 

Prob +.~.+f" EI>e)~o as n~ 00 

4. 	 Show if f1' f2' ... are as in exercise 3, then 

Prob (If1 + .~. + f" E I> 
2S(.~)V

e n 

where Vis the common variance ofthe/;'s, i.e., V HI. - E)2dJl. Use this 
to give another proof of the weak law of large numbers. 

5. 	 Let f1'/2,'" be bounded, independent, identically distributed random 
variables with E = E(f1) = E(f2) = ... O. Let Sn = f1 + ... + fn. Show 
that if a > 0 then 

Sn(x)jn(1/2)+" ~ 0 a.e. as n ~ 00 

(Compare with exercise 17 in §1.l.){Hint: Show that there exists a constant 
such that 

fS2k dll < C nk 
n t'" - k 

for every integer k > 0.) 
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6. 	 Let fl, f2,' .. be independent, identically distributed random variables on 
the unit interval. Suppose that the common probability distribution of 
the j;'s is given by equation 9 of §2.6, with k = 2, r1 1, r2 = 0, PI = p, 
and P2 1 P (p being any number between zero and one). Let Sn = 
fl + ... + In· Show that, if ¢J is any bounded measurable function on the 
interval ro. 1], 

(*) E[¢J(;)] = f ¢J(;)dJl = kto ¢J(~)G)pk(1- pr-k 

(Hint: See section 2.6, exercise 9.) 

Remark. We will denote the right-hand side of equation (*) by B,,(¢J,p). 
Notice that it is a polynomial of degree n in p. We will call it the nth 
Bernstein polynomial associated with ¢J. 

7. 	 Show that for n very large Sn(x)/n is very close to p for most values of x. 
Explicitly show that for all 15 > 0 

(**) E [0, 1]; ISn~X) - pi > t5}) ::;; (t5;n)P(l - p) 

(Hint: See exercise 4.) 
8. 	 Let ¢J be a continuous function on the interval [0,1]. Show that 

E[¢J(;)J~ as n ~ 00 

(Hint: Given £ > 0 choose 15 so that 1¢J(s) - ¢J(t)1 < B when 0 ::;; s, t ::;; 1 and 
Is - tl < 15. Let 11 be the subset of 0 ::;; x ::;; 1 on which I(Sn(x)/n) - pi < 15, 
and let 12 be the complementary set. Show that 

t I¢JCn~») - ¢J(p)1 dx < B 

and estimate 

121¢JCn!X») 69(0)1 dx 

using inequality (**) and the fact that ¢J is bounded.) 
9. 	 Show that the convergence in display (t) is uniform in p. By equation (*) 

conclude that, as functions of p, the Bernstein polynomials Bn(¢J) converge 
uniformly to ¢J on the interval [0, 1]. (The result we have asked you to prove 
is a constructive form of the Weierstrass approximation theorem: Given a 
continuous function ¢J on the interval [0,1], there exists a sequence of 
polynomials Bn converging uniformly to ¢J as n ~ 00.) 

§2.8 The Discrete Dirichlet Problem 

§2.8 The Discrete Dirichlet Problem 

Let (!) be an open set in R2. A twice-differentiable function f: (!) ~ 
R is called harmonic on (!) if 

a2f a2f on (!)ax2 + ay2 = 0 

Now let 0 be a compact subset ofR2with a continuous boundary a~. Suppose 
that g : ao ~ R is continuous. The classical Dirichlet problem asks one to find 
f: 0 ~ R such that f is harmonic on Int 0 and f = g on a~. 

Many solutions to this problem have been discovered, some of which are 
quite ingenious. In particular, in Two dimensional Brownian motion and har­
monic functions (Tokyo: Proc. Imp. Acad.,20, 706-714 [1944]), S. Kakutani 
showed how to construct f using probabilistic methods. He used a kind 
of limit of the random walk in R2 called the Wiener process or Brownian 
motion. Although the theory of the Wiener process is beyond the scope of this 
book, we can understand the ideas behind Kakutani's construction by looking 
at a discrete version of the Dirichlet problem due to Courant (Courant, R., 
Friedrichs, K. 0., and Lewy, H. Ueber die partiellen DifJerenzengleichungen 
der mathematischen Physik. Math. Ann. Vol. 100. pp. 32-74 [1928]). (In fact, 
Courant showed that the solution to the classical problem can be obtained 
as a limiting case of the solution of the discrete problem described below!) 

Before we describe this discrete version of the Dirichlet problem, we need 
to translate the definition ofharmonic functions into a form that is easily dealt 
with measure theoretically. 

Theorem. (Mean value property) Let (!) c R2 be open and let f: (!) ~ R be 
harmonic. Let Xo E (!) and assume that the circle of radius a around Xo lies 
entirely in (!). Then 

(1) 	 f(xo} = (2~) L2" f(xo + ae i9 )dO 

Conversely, if f: (!) ~ R is continuous and equation 1 holds for all Xo and a 
such that the circle of radius a around Xo lies entirely in (!), then f is twice­
differentiable and harmonic in (!). 

For a proof of this theorem see, for example, L. Ahlfors, Complex AnalYSis 
(New York: McGraw-Hill [1953]). 

Using this characterization of harmonic functions, we can formulate a 
plausible discrete analogue of the Dirichlet problem. The space R2 is replaced 
by the integer lattice 

Z2 = {(m, n); m, n are integers} 

and the compact region 0 becomes a finite subset of Z2. 
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For x E Z2, there are four nearest neighbors, XN, Xs, XE' and xw, as pictured 

below. 

XN 
e 

Xw e ex eXE 

e 
Xs 

Ifx dl we say x E lnt n if XN' XS, XE' and Xw are all in n as well. We then define 

an = n lntn. 

To define harmonic functions on lntn, the integral in equation 1 is 


translated to be the average over the nearest neighbors. Namely, if f: n ...... R 


we say f is harmonic on lnt n if 


f(x) = 41[f(XN) + f(xs) + f(XE) + f(xw)] 

for all x E lnt n. 

Now let's consider the following problem. 


Discrete Dirichlet Problem 

Given 9 : an ...... R find f: n ...... R such that f is harmonic on lnt nand f = 9 

on an. 
We ask you to solve this problem by yourself. The following three exercises 

should be of some help. 

1. 	 Let .r?lxo denote the set of all random walks on Z2 with Xo as the starting 
point. This set can be identified with the set of all sequences of N's, Es, 
8's, and W's (for example, N W WE S N ... ). Assign to N, E, 8, and W the 
numerical values 0,1,2, and 3. Let I = (0, 1] = the half-dosed unit interval. 
If wEI, the quaternary expansion of W gives rise to a sequence of O's, 1's, 
2's and 3's and hence to a sequence such as that above. Therefore, we can 
identify I with ~xo' (For the details of this identification, see §1.2.) Now 
suppose Xo En. Consider the random walk r (j) E {!lXo indexed by WE 1. Two 
possibilities exist: Either r (j) stays inside lnt n forever, or it eventually gets 
to a boundary point x,,(w). (For instance, if Xo eon, then Xb(W) = xo·) 
a. 	 Show that the first of these two possibilities occurs with probability 

zero. (See §lA, exercise 17.) 
b. 	 Let fxo(w) g[xb(w)]. Show that fxo is a measurable function of We 1. 
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2. 	 Let {!l~o be the set of all random walks starting at Xo that move directly 
to X N on the first step. Define {!l~o'~~o' and ~: similarly. 
3. 	 Show that ~xo = ~~o U ~o U ~~o U ~~ (disjoint union) and show 

that, under the correspondence ~xo "'" I, ~~o corresponds to the inter­
val (0, t], ~;o to the interval (t, i], and so on. 

b. 	 There is an obvious bijective map p : ~~o ...... •r?lx 
N

' Namely, take the 
random walk whose first position after Xo is xN and think of it as a 
random walk starting at XN' Show that, if we identify ~XN with (0,1] 
as in exercise 1 and identify ~~o with (O,!] as in part a above, the 
mapping p becomes the mapping W ...... 4w. 

c. 	 Show that, with the identifications in parts a and b, 

(*) 	 fXN(W) = fxo (~) 
Obtain comparable identities for fxEJxs' andfxw' 

3. 	 Define f :n ...... R by setting 

f(xo) f/xo(W)d,u 

for all Xo En, with ,u being Lebesgue measure. Prove that f is harmonic 
and equal to 9 on an. 



119 Chapter 3 

Fourier 

Analysis 


§3.1 21_Theory 

Let (X,:IF, p,) be a measure space and let f: X -i> C be a complex­
valued function. We can write fa= u(x) + iv(x), where u and v are real­
valued functions on X and i = .J- 1. 

Definition 1. f u + iv is measurable if u and v are both measurable. 

Note. Iff = u + iv is measurable, then If I = J'u2 + v2 is measurable by 
Theorem 14 in §2.1. 

Proposition 2. Let f = u + iv be measurable. The following two statements 
are equivalent. 

1. LlfldP, < 00 

2. L lui dp, < 00 and L Ivldp, < 00 

Proof: Notice that lui + Ivl :::: (u 2 + V2)1/2 :::: lui (or But I fI = (u 2 + V2)1/2,
so integration yields 

Llu1dP,+ L,v,dP,:::: LlfldP, 

§3.1 !l:'l-Theory 

and 

LlfldP,;::: LluldP, (or L IVldP,) 

The first of these inequalities shows that statement 2 implies statement 1; the 
second inequality shows that statement 1 implies statement 2. 

Definition 3. If f = u + iv is a complex-valued measurable function on X, 
we say f is integrable if 

LlfldP, < 00 

In this case we define the integral of f to be the complex number 

(1) L f dp, = L u dp, + i L v dp, 

We denote by y1(X,p,) the set of all such functions: 

(2) 21 (X, p,) = {f: X -i> C, measurable; L IfIdp, < 00 } 

Proposition 4. Let f, gE yl(X, p,), c E C, then 

1. f+gEyl(X,p,) and L(f+g)dP,= LfdP,+ LgdP, 

2. CfEy1(X,p,) and L (cf)dp, = c LfdP, 

3. LfdP, = Lldp, 

4. ILfdP,l::; L Ifldp, 

Proof. We leave proofs of 1, 2, and 3 as exercises. To prove 4 let a = Ix f dp,. 
Then (alia!) Ix f dp, = lal is a positive real number. Let g (alla!)f and write 
g = u + iv, where uand v are real valued. Then 

ILfdP,1 lal = 1:1 LfdP, = L gdp, 

L udp, + i L vdp, 118 
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Thus Ix vdp, = 0 because the left-hand side is real. Therefore 

IIx I dp, i= Ix u dp, ~ Ix dp, ~ Ix luldp, =Ix dp, 

since III = lui· 0 

Parts 1 and 2 of proposition 4 are a proof that the space 21(X, p,) is a 
vector space over the complex numbers. In fact, Sf1(X, p,) is a normed vector 
space. 

Definition 5. Let V be a vector space over C. A norm on V is a function 
/I . II : V -+- R with the following properties: 

3. II v II ;;:: 0, V E V 
b. /Iv!! =O¢>v=O 
c. Ilcvll = /elI/vII, CEe, VE V 
d. Ilv + wI! ~ IIvll + IIwll 

Given a norm 11·1) on a vector space V, we can define a metric d(., .): 
V x v-+- R on V by d(v, w) = /Iv - wI!. It is easy to check that d satisfies the 
properties of a metric; that is, 

1. d(v, w) = d(w, v), v, WE V 
2. d(v, w) + d(w, u) 2 d(v, u), u, v, WE V 
3. d(v, w) = 0 if and only if v = w 

(See Appendix A for a review of metric spaces.) 

There is a natural candidate for a norm on the space Sf1(X,p,). 


Definition 6. Let Sf 1 (X, P.). We define II.fIII = Ix II Idp, to be the Sf 1_ 
norm off 

Unfortunately, lI· III does not quite satisfy property b. Instead it satisfies 
property b': 

1 = o¢>1= 0 a.e. 

This statement means that two functions I and gin Sf1(X, p,) have to be 
considered the same if they are equal a.e. With this convention, it is easy to 
show the following theorem. 

Theorem 7. 1/ '111 is a norm on Sfl(X,p,). 

Proof. Properties a, b', and c are obvious. Property d follows by integrating 
the inequality 

!/(x} + g(x)I ~ I/(x)1 + Ig(x)1 o 

§3.1 9'1_Theory 

We will say that a sequence offunctions fnESf1(X,p.), n = 1,2, ... , con­
verges to a function f E Sf1 (X, p.) in the Sfl-norm (or simply converges in 
Sf1) if 

(3) II/" - fill -+- 0 as n -+- Ct:) 

Convergence in this sense is not the same as pointwise convergence almost 
everywhere. In the exercises, you will find examples of sequences that converge 
in one of these two senses but fail to converge in the other. (See exercises 1 
and 2.) The best one can conclude about the relationship between these two 
notions of convergence is the following. 

Theorem 8. Suppose /", n = 1,2, ... , converges to f in the Sfl-norm. 
Then there exists a subsequence fn" i = 1,2, ... , that converges to f almost 
everywhere. 

We will, in fact, prove a somewhat stronger result. Recall that, for a metric 
space (V, d), a sequence Vn E V, n = 1,2, ... , is said to be a Cauchy sequence if 
d(v""v.) -+- 0 as m, n -+- Ct:). In particular, a sequence offunctionsfnESf1(X,p,), 
n = 1,2, ... , is a Cauchy sequence if 

(4) II f", I. III -+- 0 as m, n -+- Ct:) 

Theorem 9. Let /", n = 1,2, ... , be a Cauchy sequence in Sf1. Then there 
exists a subsequence fn" i = 1,2, ... , that converges almost everywhere to an 
Sfl function f In addition, the original sequence converges to f in the 
Sfl-norm. 

Proof. Choose n1 such that, for m, n > n1 , IIf", - fnlll < t. Next choose 
n2 > n1 such that, for m, n> n2 , Ilf", - /,,111 < i. Continuing inductively, 
choose nj > ni-l such that, for m, n> nj, IIfm 1.111 < 1/2i+l. We will show 
that the subsequence {/"J converges pointwise almost everywhere. By 
construction 

1 
(5) II fni+l - fn, 111 < 2i+1 

Let gl = fn, and let Uj = fn,_, for i 2 2. Then 

i 

(6) I., = L gr 
r=1 

and Ilg,lil < t/2'. Thus 

,~ Ix IUrl dp, < Ct:) 
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so, by the corollary of the Lebesgue dominated convergence theorem (corollary 
12 of §2.3), the series 

co 

.L g,
,=1 

converges pointwise almost everywhere; and, in view of equation 6, the se­
quence {in.} converges almost everywhere. Let f be the pointwise limit of the 
in/so By assumption,jis defined for almost all XEX, and we can define it at 
the remaining points of X by setting it equal to zero at these points. It remains 
for us to show that in""'" I in f£1. Given 8> 0, there exists an no such that 

film - inldp. < 8 

for m, n > no. Fixing n > no and letting m""'" 00, we get 

s;;::: liminf film - inldp.;;::: fliIlJ.inflfm - fnldp. 

;;::: f'f-inldP.= !If-fn111 

by Fatou's lemma. Hence in converges to I in the f£1-norm. 0 
Recall that a metric space (V, d) is complete if every Cauchy sequence Vn E V 

has a limit v E V. (Intuitively speaking, there are no "holes" in V.) A normed 
vector space (V, 11'11) that is complete with respect to the metric 

d(v,w) = IIv-wll 

is called a Banach space. By theorem 9, f£l(X, p.) has this property, so we 
conclude the following. 

Theorem to. f£1 (X, p.) is a Banach space. 

Exercises for §3.t 

t. 	 Let I be the unit interval 0::; x ::; 1, and let I k•n be the subinterval 

k k + 1 
-<x<-­O::;k<nn-	 - n 

Let f1 be the characteristic function of 10 • 1 , 12 and f3 the characteristic 
functions of 10.2and 11,2, 14, is, and i6 the characteristic functions of 
10 ,3,11,3, and 12 •3, and so on. Show that the sequence {in} converges to 
oin f£1 (I) but does not converge pointwise anywhere. 

§3.1 !i!1.Theory 

2. 	 Let fn be the function on the interval (0,1] that is equal to zero for 
lin::; x ::; 1 and is equal to n for 0 < x < lin. Show that In converges 
pointwise to zero everywhere as n ....". 00 but does not converge in !]?l. 

3. 	 In exercise I extract a subsequence of the sequence {fn} that converges 


pointwise almost everywhere. 

4. 	 Let X be a finite interval and p. Lebesgue measure on X. Show that 


there exists a countable family of functions {};; i = 1,2,3,,..} with the 

property that the Rs are dense in !]?1(X,p.). That is, given any function 

f E ,!l'l(X, p.) and any numbere > 0, then, for some f., II}; - fill < 8. (Hint: 


See §2.2, exercise 7.)
5. 	 Let X be a set, and let 88(X) be the set of all bounded, complex-valued 


functions on X. For f E88(X) let 


1\ 	 = sup If(x)1 
xeX 

Show that II' 1\ is a norm, and show that 88(X) is a Banach space with 

respect to this norm. 
6. 	 In exercise 5 suppose the set X is infinite. Show that, if f1 .f2'''· is a 

sequence of functions in 88(X), there exists a function f E 88(X) such that 

- };II ;;::: 1 

for all i. (Compare with exercise 4.) 
7. 	 a. Let p and q be numbers greater than 1 with (lip) + (l/q) = 1. prove 

that 

bq 

ab::;- +­
aP 

p q 

for any pair of nonnegative numbers a and b. 
b. 	 Let (X,~,P.) be a measure space, and let f and 9 be nonnegative 

measurable functions. Prove that 
qJfg dp. ::; (J fP dp.yIP (J gq dp.r

(*) 

(Hint: Let IX = (S fP dp.)llp and {J = <s gq dp.)1IQ. At each point x E X, apply 
the inequality in (a) with a = f(x)/1X and b = g(x)/{J, and integrate with 

respect to x.) 
8. 	 Let f and 9 be as in exercise 7. Show that 

(J(f + gfd")", ,,(JI'd"r + (fg'd"r 
(Hint: Write (.f + g)P = f(f + g)P-l + g(.f + g)p-l and apply equation (*) 

to each of the two products f(.f + gy-l and g(.f + g)p-l.) 
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9. a. Let 1 ::s;; p < 00. A complex-valued measurable function I: X -l> C is 
said to be SfP-integrable if Sl/lP dp, < 00. Denote by gP(X, p,) the set 
of all such functions. Show that gP(X, p,) is a vector space. That is, 
show that, if I and g are in SfP(X,p,), so is 1+ g, and that, if I is in 
SfP(X, p,), any constant mUltiple of I is in gP(X, p,) as well 

b. IfI ESfP(X, p,), let 

IIfllp = (IIIIPdP,yIP 

Show that II' IIp is a norm on !£,P(X,p,). 

§3.2 :£2_ Theory 

Let (X,.9', p,) be a measure space. A measurable function I :X -l> C 
is said to be !£,2-integrable or square-integrable if 

(1) Ix 1/12 dp, < 00 

We denote by Sf
2 
(X, p,) the set of all such functions; that is, 

(2) g2(X, p,) = {I: X -l> C, measurable; Ix 1/12 dp, < oo} 

Definition 1. The quantity 

(3) 
fIIz = (Ix 1/12 dp,yl2 

is called the !£,2-norm ofI Eg2(X, p,). 

We will see in a moment that equation 3 does indeed define a norm and 
that Sf2 is a Banach space with respect to this norm. First, however, we will 
establish a few elementary facts about !£,2. 

Theorem 2. IfI and g are in !£,2(X, p,), 10 is in Sfl (X, p,). 

Proof. Let Xl = {XEX; II(x)1 > 10(x)I} and let X2 = {XEX; Ig(x)1 21/(x)/}. 
Then, on Xl' 1/01:::;; 1/12; and, on Xl, 1101:::;; 1012. So 

r Iioldp,:::;; r 111 2 dp, + f Igj 2 dp,Jx JX1 Xl 

:::;; + Ijoll~ 
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Corollary 3. If p,(X) < 00, then !£,2(X, p,) is contained in !£,l(X, p,). 

Proof. If p,(X) < 00, the constant function 1 is in !£,l(X, p,). D 

Corollary 4. IfI and g are in gl(X, p,), so is 1+ g. 

Proof. It is enough to show that II + gl2 is in Sfl, but II + 01" :::;; 11/," + 
21/1101 + Ig12. 0 

Corollary 4 says that Sf 2 (X, p,) is a vector space over the complex numbers. 
We will soon show that it has some other nice properties as well. First, 
however, we need to discuss briefly the subject of inner product spaces. 

Definition 5. A vector space V over the complex numbers is an inner product 
space if it is equipped with a mapping 

<','):Vx V-l>C 

such that 

1. <VI + V2' w) = <VI' w) + <V2. w) 
2. <CV, w) = C<v, w) 
3. <V, w) = ( w, v ) 
4. <v,v)20and<v,v) Oifandonlyifv=O 

An example of an inner product space with which you are already familiar 
is the fmite dimensional space en. If v = (al,"" an) Een and w = (b 1 , ••• , bn)E 

Cn
, the inner product of V and w is 

(4) L
n 

a;b; 
;=1 

We will show that the much more complicated space g2(X,p,) is also an 
inner product space. Indeed, by theorem 2, the quantity 

(5) <1,0) = Ix.fii dp, 

is well-defined for I, g E g2(X, p,); and it is obvious from proposition 4 of §3.1 
that it satisfies properties 1- 3. It doesn't quite satisfy property 4; in fact, if 

<1,/) = f1/12 dp, = 0 

the most we can conclude is that I = 0 a.e. But, if we put in force the 
convention that an g2 function is zero "in the g2 sense" when it is zero a.e., 
then property 4 is reinstated and we have proved the following theorem. 
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Theorem 6. 2'2 (X, J1), equipped with the inner product given by equation 5, 
is an inner product space. 

We now prove a few facts that are true for inner product spaces in general 
and, thus, for 2'2(X, J1) in particular. Given an inner product space (V, < , »)
and vE V, let 

(6) vii 

By property 4 this is well-defined and is zero if and only if v = 0. We call II v II 
the norm of the vector v E V. 

Theorem 7. (Schwarz's inequality) If v, WE V, then 

(7) <v,w)1 ~ !Ivllllw 

Proof. If w = 0, the inequality is obvious. If w :f. 0, consider, for 1 E C, 

°~ <v + 1w, v + )~w) = <v, v) + l<v, w) + l<v, w) + 111 2 <w, w) 

Letting A = - <v, w)/<w, w), this inequality implies 

o~ <v, v) _ I«v, w)1 2 

w, 

or, equivalently 

w)1 2 ~ v)<w,w) o 
Corollary 8. (Triangle inequality) For v, WE V 

(8) II v + w II ~ II v II + 

Proof. Squaring equation 8 we get 

(9) v + w Ii 2 ~ II V il2 + 211 villi wII + II w[[2 

But 
2= <v + W,v + w)=<v,v)+<v, w)+<w,v) +<w, w) = Ilv 2+

2Re + II w11 
2

, so equation 9 reduces to the inequality 

2Re<v,w) ~ 2Uvilllwil 

which is an immediate conseq uence of inequality 7. o
From this corollary we conclude the following. 

Corollary 9. The norm 11'11 on V is a nOrm in the sense of definition 50f§3.1; 
that is, (V, II . II) is a normed vector space. 

In particular, we restate this result for the vector space 2'2(X, 

§3.2 Sf2. Theory 

Corollary 10. ;l'2(X, J1) is a normed vector space. 
Moreover, applying Schwarz's inequality to ;l'2(X,J1), we deduce the 

following. 

Corollary 11. If I and yare in , then 

(10) 1\ fg III ~ II f 112 Ii 9 I: 2 

An inner product space (y, < , ») that is complete with respect to the norm 
'11 (that is, one that is a Banach space with respect to this norm) is called a 

Hilbert space. For example, en is a Hilbert space. 
We will show that 5£2(X,J1) is a Hilbert space. To simplify the proof we 

will make an assumption about the underlying measure space (X,§,u). We 
recall from the last paragraph of §1.3 the following definition. 

Definition 12. A measure space (X, J1) is a-finite if there exists a sequence 
Xn E 17, n = 1,2, ... with Un=l Xn = X and J1(Xn) < IX). 

Without loss of generality, one can assume that Xl S X2 S .. , . 

Theorem 13. ~2(X, J1) is complete with respect to the norm \I'\! 2; that is, it 

is a Hilbert space. 

Proof. Assume that X is a-finite. (Sec exercise 9 for a way to get rid of this 
assumption.) Let {f,.} be a Cauchy sequence in 5£2(X,J1). Choose X.'s as in 
definition 12. By corollary 3, {J~} is a Cauchy sequence in .Y'l(Xl ,J1)· So, by 
theorem 9 of§3.1, we can extract from {f,.} a subsequence {Il..} that converges 
a.e. on Xl' Repeating the process, extract from this subsequence a smaller 
subsequence {Iv.} that converges a.e. on X 2 • Continuing inductively, one 
obtains for each i a subsequence tft,n} of {h-l,n} that converges a.e. on 
Xi' Now apply the Cantor diagonal process: The subsequence j~,l' 12,2,'" 
converges a.e. on X and its pointwise limit is equal a.e. to a measurable 
function y. Let Y1 = fl.!' 92 = 12.2, and so on. Because the y:s are a 
subsequence of the /,,'s, they are also a Cauchy sequence in ;l'2(X, J1). So, for 
any [; > 0, there exists an no such that 119m - gnli~ < e when m, n > no· 

By Fatou's lemma, with n > no fixed and m -> 00, 

f lim inf\9m dtl ~ lim inf fIgm - dJ1 ~ f; 

But the term on the left is 

fig Ynl 2 dJ1 

because Ym converges to 9 pointwise a.e. Hence, we conclude that 9 is m 
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g>2(X, /1) and that 9n converges to 9 in g>2(X, /1). Finally, if a subsequence of 
a Cauchy sequence converges, the sequence itself converges as well, so In also 
converges to 9. 0 

The following general fact about inner product spaces will be useful in §3.3. 

Theorem 14. Let V be an inner product space. Then the inner product (', . ) 
is continuous in both variables with respect to the norm given by equation 6. 
In other words, if Vn -+ v and Wn -+ W, then (vn' wn ) -+ (v, w). 

Proof. If Vn -+ v with respect to 11'11, then II Vn v II ::s; 1 for n large, so 

IIvnll ::s; Ilvn - vii + Ilvli ::s; 1 + Ilvll 

for n large. Then 

I(vn , wn) - (v, w)1 ::s; I(vn, wn) - (vn' + I(vn , w) (v, w)1 

::s; I(vn, Wn - w)1 + I(vn - v, w) 

::s; IIvnllllwn - wll + Ilvn vllllwil 

::s; (1 + II v II) II Wn W II + II vn v II 1/ w II 

Hence i(vR) wn ) - (v, w)1 tends to zero as n -+ 00. 	 o 

Exercises for §3.2 

1. Let V be an inner product space. Show that Schwarz's inequality 

I(v, w) I ::s; II v jill w II 

is an equality if and only if w = 0 or v = cw for some complex number c. 
2. Let V be an an inner product space. Show that 

(*) IIv + wll2 + IIv - wl12 = 2(llvIl 2 + Ilwll 2) 

(Geometrically, the sum of the squared lengths of the diagonals in the 
figure below is equal to the sum of the squared lengths of the sides.) 

b:::-, ,///-""'"
./t.'\.:-/"",,-'r VI 

/'/' "­
/""....... "­

",-- "-"­
II 

w 
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3. 	 Let V be a normed vector space whose norm satisfies the identity in 

equation (*) in exercise 2. Show that there exists an inner product on V 


such that 

Ilvil J(V, v) 

(Hint: Show that 

-lIw ll2 
2Re(v,w) = Ilv + wll 2 -1!vII 2 

if an inner product exists.) 
4. 	 Let X = (0, 1J, equipped with Lebesgue measure. Show that the function 

I(x) = X- 3/4 is in g>l(X,/1) but not in g>2(X,/1). 3f4 
5. Let X = [1,(0), equipped with Lebesgue measure. Show that I(x) = X­

is in g>2(X,/1) but not in g>1(X,/1). 
6. 	 Let a , a2"" be a sequence of positive numbers with 2.:~1an = 00. Let 

1 

Sn = 2.:7=1 ai' Show that 

00 a n2.: =oo 
n=l sn 

but that 
00 	 a
2.:-i<00 

n=1 sn 

(Hint: Let In = 2.:7=1 adsi and let 9n = 2.:7=1 adsr· Compare In with logsn 

and 9n with l/sn ·)
7. 	 Let (X,,~,/1) be a measure space that is a-finite but not finite. Show that 

g>2(X, /1) is not contained in g>l(X, /1). (Hint: Use exercise 6.) 
8. Let (X,JF,/1) be a measure space and IIJ2,'" a sequence of g>2 

functions on X. Let 

X' = {xeX; fi(x) 1= °for some i} 

Show that X' is a-finite; that is, show that it is a countable union of 
measurable sets of finite measure. (Hint: Let Em•n {xeX; IIn(x)1 > 1Jm}. 

Show that X' = Um.n Em,n')
9. Using exercise 8, show that theorem 13 is still true without the hypothesis 

that X is a-finite. 
10. Let (X, /1) be a measure space. Prove that g>P(X, /1) is a Banach space-

that is, complete with respect to the norm 1I'll p ' (See §3.1, exercise 9.) 
11. (Sobolev's inequality) Let I be a function on the interval [0,1J that is 

continuous and has a continuous first derivative f'. Show that 

sup II(x) I(y) I ::s; II f' 112 
O";x.y";l 



130 131 Chapter 3 Fourier Analysis 

§3.3 The Geometry of Hilbert Space 

In this section we will discuss some of the geometric properties of 
a Hilbert space 2 with inner product < , ). When we apply this material in 
the later sections of this chapter, 2 will always be 2 2 (X,Il) where (X, ff, 11) 
is a measure space. 

Definition 1. If f, g E 2, we say f is orthogonal to g (written f ..l g) if <f, g) = o. 

Theorem 2. (Pythagoras) If f, g E 2 with f..l g, then II f 112 + II g 112 = 
Ilf + g112. 

Proof. 

II f + g 112 = <f + g,f + g) 

=<f,f)+<f,g)+<~f)+<~g) 

= IIfl12 + IIgl1 2 D 

More generally, suppose that f1,f2' ... ,fn E 2 with I; ..l./j, i =1= j. Then by 
induction it is easy to prove that II f1 + f2 + ... + fn 112 = I?=l III; 112. 

One basic example of a Hilbert space you should always keep in mind is 
en with the inner product given by equation 4 of §3.2. This Hilbert space has 
finite "dimension." We will see, however, that some Hilbert spaces are "infinite 
dimensional"; in fact, these are the spaces that are most interesting to us. 

Definition 3. A sequence ¢J1' ¢J2' ¢J3' ... in 2 is called orthonormal if 

1 if i = j
(1) 

/1<¢Ji,¢Jj )= { 0 ifi=l=j 

Example 4. Let 2 be en with the inner product given by equation 4 of §3.2. 
Let v1 = (1,0, ... ,0), V2 = (0,1,0, ... ,0), ... , Vn = (0, ... ,0,1). Then v1, ... , Vn is 
an orthonormal sequence. 

Example 5. Let X = [ - 11:, 11:], 11 = Lebesgue measure, and 2 = 2 2 (X,Il). 
Let ¢Jk = (1/~)eikX, - 00 < k < 00. It is easy to check that the ¢Jk'S form an 
orthonormal sequence. Indeed 

f ¢Jk(h dll = _1 f" ei(k-j)x dll 
x 211: -" 

_{1 = jif k 
- 0 ifk=l=j 

§3.3 The Geometry ofHilbert Space 

Recall now that an orthonormal basis in en is, by definition, an orthonor­
mal sequence ofvectors V1, V2, ... , Vn. This definition depends on the dimension 
of en. Another characterization of orthonormal basis in en allows us to turn 
the tables and determine the dimension from the length of the basis: Namely, 
if V1'V2' ... 'Vn is a basis of en, then there are no nonzero vectors that are 
simultaneously orthogonal to all the v/s. This motivates the following definition. 

Definition 6. An orthonormal sequence ¢J1' ¢J2' ... is called complete if, for any 
f E 2, the conditions 

f..l ¢Ji i = 1,2, ... 

imply f = o. 

Remark. If 2 = 2 2 (X,Il), we must interpret f = 0 as f = 0 a.e. 

Definition 7. Let 2 be a Hilbert space, and suppose that ¢J1' ¢J2' ... ' ¢In is a 
complete orthonormal sequence in 2. Then 2 is said to have dimension n. If 
2 contains an infinite orthonormal sequence ¢J1' ¢J2' ... , 2 is said to be infinite 
dimensional. 

We leave it to the reader to check that the dimension of a Hilbert space 
is well-defined (see exercise 1). 

Remark. Example 5 shows that, if X = [ - 11:,11:] and 11 = ilL> then 2 2 (X,Il) 
is infinite dimensional. We will see in §3.4 that the ¢Jk'S described in example 
5 are complete. 

In infinite dimensions the notion of completeness of an orthonormal 
sequence replaces the notion of an orthonormal basis for finite dimensions. 
We now study some of the properties of a complete orthonormal sequence 
in 2. 

Let ¢J1' ¢J2' ... be a complete orthonormal sequence in 2. Given f E 2, let 
Ci = <f, ¢J); this is called the ith Fourier coefficient of f with respect to the 
sequence ¢J1' ¢J2' .... The formal series I'f'=l Ci¢Ji is called the Fourier series of 
fwith respect to the sequence ¢J1'¢J2 .... 

Theorem 8. Let ¢J1,¢J2' ... be a complete orthonormal sequence in 2. Let 
f E 2 and let Ci = <f, ¢Ji). Define Sn = I?=l Ci¢Ji to be the nth partial sum of 
the Fourier series of f. Then Sn --+ f in 2. 

Proof. Write f = f - Sn + Sn· Notice that <f - Sn, ¢J) = 0 as long as i ~ n 
because 

<f, ¢Ji) = Ci = <Sn, ¢Ji) for i ~ n 
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Thus (f Sn) ..L Sn because Sn is a linear combination of rP;'s with i s n. Then, 
by theorem 2, 

11/112 - Sn 112 + II Sn 112 

2:: II Sn 112 

Now, Snl1 2 
(Sn,Sn> (t CirPi, 

n 

= 2: Ic;l2
i=l 

So, we have shown that 

(2) S 11/112 for all n 

That is, 2:~1Ic;l2 converges. 
Now consider Sn Sm for n > m. Sn - Sm 2:1=m+1 CirPi, so by theorem 2 

n 

II Sn- SmIl 2 2: Ictl2 
i=m+1 

Because we have shown that 2:;:;'1Ici I2 converges, we can conclude that 
the sequence of Sn's is Cauchy. Because Y is complete, we know that there is 
agE Y such that Sn --jo 9 in Y. 

To finish the proof we need to show that I = g. Notige that, by theorem 
14 of §3.2, (g,rP;) = limn_co (Sn,rPi) Ci. Thus (I g,¢);) = Ci Ci = 0 for 
all i. Because the rP/s are complete, we conclude that I =i/ g. D 

Theorem 9. (Plancherel) Let rP1, rP2"" be a complete orthonormal sequence 
in 2'. For Y, let Ci (J,rPi)' Then 11/112 = 2:;:;'1Ic;l2. 

Proof. Sn --jo I in 2' so, by the continuity of the inner product, 

(Sn, Sn> --jo (/,/) II I 

But (Sn,Sn> = 2:1=1 , so we conclude that 

2: 11/112 D;=1 

You may have noticed that the proof of theorem 8 did not use the 
completeness of the orthonormal sequence until the final line. When the 
sequence is not necessarily complete, we get the following. 

,93.3 The Geometry ofHilbert Space 

Theorem 10. Let rP1, rP2"" be an orthonormal sequence in 2. For Ie.Y!, let 
Ci= (/,rPi) and Sn 2:1=1 CirPi' Then Sn is Cauchy in 2' and thus converges 
to a limit gEY. Moreover, (g,rPi) = (f,rPi) for all i. 

Proof. This proof is the same as the proof of theorem 8 with the last sentence 
~~ D 

If the sequence {rPn} is not complete, we get the following in place of the 
Plancherei theorem. 

Theorem 11. (Bessel's inequality) Let I and Ci be as in theorem 10. Then 

II I 112 2:: 

Proof. This inequality is a direct consequence of equation 2. D 

Corollary 12. The Fourier coefficients Ci tend to zero as i --jo 00. 

An important example of a Hilbert space is the space whose elements are 
infinite sequences 

(3) s = (a 1,a2 ,a3 , ... ) 

of complex numbers satisfying 

GO 

(4) 2: lai l2 < 00;=1 

The set of all such sequences is denoted [2 (read as "little y 2 "). It is easy to see 
that it is a Hilbert space. In fact, it is a Hilbert space of the form y2(X,/1). 
Take for X the set of positive integers~that is, X {I, 2, 3, ... }. Let.'F be the 
a-field of all subsets of X, and let /1 be the counting measure: 

/1(A) number of points in A 

A function on X is just a sequence such as in equation 3.1n the exercises we will 
ask you to show that such a sequence is in Y2(X, /1) if and only if equation 4 
holds. We will also ask you to show that for two such sequences 

s (a 1 ,a2 ,a3 , ... ) 

and 

t= b2 , b3 ,· .. ) 

their inner product is 

00 
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(5) 	 a.bi 

(Compare with equation 4 of§3.2.) Notice that Schwarz's inequality for [2 says 
that 

(6) 	
)1/2 ( )1/200 <Xla};; S i~ la;12 i~ Ib;l2I 	( 

We will use this fact in §3.4. 
Notice that, if we are given any Hilbert space st and a complete ortho­

normal sequence ¢JI' ¢J2,'" in st, then, by the Plancherel formula, the sequence 
of Fourier coefficients 

S (C1,C2,''') 

is in 12. Conversely, we claim that, given a sequence 

(c 1 ,c2,c3,···)eI2 

the sequence of partial sums 

" 
S" = L Ci¢Ji 

i~l 

converges in st to a limiting element f Indeed, for m > n 

m 

IISm ~ S,,1I 2 = L Ici l2 

;=,,+1 

so S" is a Cauchy sequence and the assertion follows from the completeness 
of st. Thus, if we have a complete (infinite) orthonormal sequence in st, we 
get a bijective map of st onto P. This statement is rather surprising in view of 
the fact that st can be, in principle, a much more complicated space than 
F~for example, the space of square-integrable functions on R" 

Exercises for §3.3 

1. 	 Show that the dimension of a Hilbert space is well-defined. 
2. 	 Let X be the set of positive integers and J1. the counting measure on X. 

Show that st2(X, J1.) = 12. Moreover, show that the st2 inner product on 
st2 (X,J1.) is the inner product given by equation 5. 

3. Let f be an function on the interval n, n]. Show that 

f(x)e- inX dx -> 0 as n -> 00 

(Hint: See corollary 12.) 

§3.3 The Geometry of Hilbert Space 

4. 	 Let (X,ff,J1.) be a measure space. A sequence!nest2(X,J1.), n = 1,2, ... , is 
said to converge in the st2 sense to f e st2(X, J1.) if II f - !n112 -> 0 as 
n -> 00. Prove that, if fn -> f in the sense, there exists a subsequence fn" 
i = 1,2,3, ... , that converges to f a.e. 

5. 	 Let X be the unit interval and J1. Lebesgue measure. Show that 
convergence in st2 (X, J1.) does not imply pointwise convergence a.e., and 
vice versa. 

6. 	 (st2-convergence of the randomized harmonic series) Let J1. be Lebesgue 
measure on the unit interval, and let R" be the nth Rademacher function. 
Let 

Sn = i (~)Ri
;=1 I 

Show that S" converges in the st2 sense to a function He st2 (I, J1.). 
7. 	 For fixed m and n with m > n, let A be the set 

{weI; Sn(w)1 > 10 for some k between m and n} 

Prove that 

J1.(A) s e12 f(Sm - Sn)2 

Here are some hints: 
(i) With k fixed, let J c I be a union of intervals of the form i/2k < t s 

(i + 1)j2k, with i between zero and 2k - 1. Show that, if n s k < m, 

JJ RmRn dJ1. = o. 
(ii) If J is as in part i, show that 

L(Sm - Sk)(Sk S,,) du = 0 

and also show that 

L(Sm - S,,)2 dJ1. 2:: L(Sk Snf dJ1. 

(iii) For n s k s m, let Ak be the set 

eI; ISj(w)- s dor n sj < k and ISk(w) - S,,(w) I > e} 

Show that A U~=n Ak (disjoint union) and 

J1.(A k ) S 1012 
f (Sm - Sn)2 dJ1. 

Ak 
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8. Using exercise 7 prove that the randomized harmonic series 

i~ G) Ri(W) 

converges almost everywhere to the function H of exercise 6. 
9. 	 (The Gram-Schmidt process) 

a. 	 Let g be an inner product space and fl'/2, ... ,1n elements of g. 
Show that, if ft, ... ,In are linearly independent, then there exists an 
orthonormal sequence <Pt, .. ,<PII such that, for all i, 

(*) 	 ifJi L aij/j 
j9 

with au > O. 

(Hint: Let <Pt = Cdl where is the length of ft. Let <P2 C2 [f2 

(f2, <Pt)<Pt] where ci l is the length of f2 (f2' <Pd<Pl' Continue.) 


b. 	 Let ft'/2' ... be an infinite sequence of elements of g. Suppose that, 
for all n, fl, ... ,1n are linearly independent. Show that there exists an 
orthonormal sequence <Pt><P2"" such that equation (*) holds for all i. 

210. 	 a. Let g = g2([ 1,1]). Letfl = 1,12 = x,f3 x , and so on. Apply 
the Gram·· Schmidt process to this sequence (see exercise 9). Show 
that the resulting <p/s are polynomial functions of x. (These functions 
are called the Legendre polynomials.) Compute the first few of these 
functions. 

1 
Answer: <P2 =.ji 	 Ax 

3 i XifJ3 = ~(~X2 -~) ~2fi(52x 3)
<P4 = 

b. 	 Use the Weierstrass approximation theorem (see §2.7, exercise 9) to 
show that the Legendre polynomials are a complete orthonormal 
sequence in g2([ 1, 

11. 	 a. Show that the Haar functions, 

Ho,o(x) = 1 for 0 s x S 1 


and 


k-l k-t 
for <x<····­

2" - 2" 

HII,k(X) k-t k2"/2 
for 2" S x < 2" 

o 	 elsewhere 

§3.4 Fourier Series 

where n :?: 1 and 1 s k s 2", are an orthonormal sequence in g2{[0, 
1]). 

b. 	 Suppose that g2{[0, 1]) and (J,HII•k) = 0 for all n, k. Show that, if 
A is an interval of the form [k/2n, 1/2"], with 0 s k < 1 S 2n, then 

(**) 	 LfdJl=O 

c. 	 Show that equation (**) holds for every subinterval A of [0, Con­
clude that {Hn,d is a complete orthonormal sequence. 

d. 	 Let Rn+l be the n + 1st Rademacher function. Show that 

2n1 
Rn+1 	 2n I H",k

k=1 

§3.4 Fourier Series 

We pointed out in §3.3 that the functions 

1 	 ) inx oo<n<oo<P1I = ( fo e 

form an orthonormal sequence in the space g2 [-1i, 1i J. We will show in this 
section that this orthonormal sequence is complete. In the course of proving 
this result, we will also prove a number of classical results about convergence 
of Fourier series. To begin, note that, by corollary 12 of §3.3, 

(1) 	 Cn = (J,<Pn) = 1 I"_"f(x)e- lIIX. dx 

tends to zero as Inl ~ 00, provided that f is an function on the interval 
[ -n, n]. 

Let f be a measurable function defined on the whole real line. We will say 
that f is periodic of period 2n if 

(2) 	 f{x + 2n) f{x) a.e. 

Given any measurable function defined on the interval ( -n, n], one can extend 
it uniquely to a periodic function on the whole real line by requiring that 
equation 2 hold. Moreover, if f is periodic of period 2n and integrable over 
the interval [ n, n], then by equation 2 it is integrable over every compact 
subinterval of the real line. In fact, if I is a subinterval oflength 2n, then 

(3) 	 f fdx = I" fdx 
JI -" 



138 
139 Chapter 3 Fourier Analysis 

To see this, suppose that J is of the form ra n,a + n]. Then 

if(X)dX = J,.',+a f(x)dx + I~"f(X)dX r-,:,+a f(x)dx 

But by periodicity the first term and third term cancel. 
We will first study convergence of Fourier series for functions that are 

rather nicely behaved. Let f be a continuous function periodic of period 2n, 
and let Xo be a point on the interval [ -n, n]. Suppose that the right and left 
derivatives of f exist at xo; that is, the limits 

, f(x)­
(4)+ I1m 


X-(Xo)+ X - Xo 


and 

, f(x) f(xo}(4)_ I1m 

x-+(xol- x - Xo 


exist. We will prove the following theorem. 

Theorem 1. The series 

inxcne
-00 

converges at x = Xo and its limit is f(xo}. 

Proof. Let SN(f)(XO) be the Nth partial sum of this series. By equation 1 

1 N . 
SN(f)(XO) = L ckeikxo 

k=-N 

= 1 I" f{x) ( f eik(XO-X») dx 
2n _" ..' k=-N 

Setting 

(5) DN(x) = 
1 

L
N 

e ikx 
2n k~-N 

we get for SN(f)(XO) the formula 

SN{f)(xo) = I~" f(x)DN{x O x) dx 

§3,4 Fourier Series 

Making the change of coordinates Xo x -jo x, this integral becomes 

fxo+"JXo-" f{xo - X)DN{X) dx 

So, by equation 3 we get finally 

(6) SN(f)(XO) f~" f{x o - X)DN{X) dx 

To estimate the right-hand side of this formula, we note first the following 
properties of DN(X): 

(7) f~" DN{x) dx = 1 

and 

D () 1 ei(N+l)x -' N X =_ - e ,Nx(8) 
2n - 1 

Proof ofproperties 7 and 8. To obtain equation 7, just integrate equation 5 
term by term and note that all terms except k = 0 have integral zero. To obtain 
equation 8, rewrite DN{X) as 

~e-iNX(I eikx)
2n k=O 

ixand note that, with IX = e , the second factor is just 

2N o:2N+1 _ 1L o:k, which equals ---­
k=O 

Next we note that the denominator in equation 8 has a zero of first order 
at x = O. In fact, 

ixe - 1 d ,
lim = _(e'X) Ix=o = i 
x-+O x dx 

ixand e - 1 has no zeroes on the interval [ -n, n] except at x = 0; so the 
function 

x 

1 

is continuous on this interval providing we define it to be i at x 0, 
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We now return to the proof of theorem 1. By equation 7 

f(xo) = f:"f(xo)DN(X)dX 

Subtracting this from equation 6, we get 

(9) SN(!)(XO) - f(xo) = f:" [f(xo - x) - f(xo)]DN(X)dx 

Set 

g(x) = f(xo x) - f(xo) f(xo x) - f(xo) (_._X_) 
1 x e'x - 1 

The second factor on the right is continuous on the interval [-n, n], as we 
just observed. The first factor is continuous except at x 0, and at x = 0 it is 
continuous on the left and on the right by assumptions 4+. Hence 9 is 
piecewise continuous and afortiori in 22. By equations 8 and-9 

SN(f)(XO) - f(xo) = -J f'" g(x)e,(N+1)X dx - -1 f" g(x)e-'NX. dx 
2n _" 2n _~ 

The first term on the right is the -(N + l)st Fourier coefficient of g, and the 
second term is the Nth Fourier coefficient; so by equation 1 both these terms 
tend to zero as N -t 00. 0 

A continuous function f is called piecewise differentiable if its domain 
of definition is a finite union of closed intervals and if, on each of these 
intervals, df / dx exists and is continuous. It is clear that, if f is piecewise 
differentiable, it satisfies assumptions 4± at all points in its domain of defi­
nition. We will show that for such functions theorem 1 can be considerably 
improved. 

Theorem 2. Let f be a continuous function that is periodic of period 2n. If 
f is piecewise differentiable on the interval [ -n, n], then SN(f) converges to 
f uniformly and absolutely on this interval. 

Proof. Let 9 be the derivative off. By assumption, 9 is defined and contin­
uous on the interval [ n, n] except at a finite number of points, and we will 
define it everywhere by defining it arbitrarily at these points. We will first show 
that, if cn(f) and cn(g) are the nth Fourier coefficients of f and g, respectively, 
then 

(10) Cn(g) = incn(f) 

Proof of equation 10. We can find ao = -n < a1 < a2 < ... <ar = n such 
that 9 is continuous on (ai,aHd. Then 
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1 " f + . fDi+l (df ) .ge- inX dx = L ge-,nX dx = L - e-mx dx 
_ ~ ~ bf 

Qi


Qi+l fDi+! 

fe- inx D, 

J 
L + in D, fe-in" dx [ \ 

= fe-inX[" + in f"fe-inxdx 

However, the first term vanishes because f is periodic. 

Remark. Integration by parts is justified on [ai' ai+1] because this integral 
equals the Riemann integral. 

To prove theorem 2 it is enough to show that L Icn(!)1 < 00. Indeed, 
because we already know by theorem 1 that Sn(f) -t f pointwise, this fact will 
imply that the convergence is absolute and uniform. Because 9 is in 2 

2
, 

Llcn(gW < 00; so by equation 10 

Ln2lcn(fW < 00 

Therefore, by Schwarz's inequality for 12 (see equation 6 of §3.3), 

L Ici!)1 L (-I-~I)lnIICnl.:5: (I: :2)2 
1 

(I:n2I cn 12)'1 
I 

n,,/,O n,,/,O n njO 

Because both terms on the right are finite, so is their product. 0 
Let's now return to the proof that the functions ¢In = (l/fo)e

inx 
form a 

complete orthonormal sequence. We have to show that, if f is an 22 function 
with <f,¢ln> = 0 for all n, then f = 0 a.e. We will first show that, if f has this 
property, then 

(11) rfdx =0 

for every subinterval [a,b] of [-n,n]. Let 13 > 0 and let XE be the function 
indicated in the following figure: 

_ f = 0 
a a + t 
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This function is piecewise differentiable. So, by theorem 2, SN(Xc)'" Xc uni­

formly and, hence, afortiori in fi12. Thus 


0= (f,SN(Xc» -> (f,Xc> 

that is, (f, Xc> = O. As f, tends to zero, Xc converges in .5!?2 to the characteristic 

function of the interval [a, b]. So, by a repetition of the preceding argument, 


limf" 	fXe dx = fb fdX 0 
e-O ~n a 

Thus, we have established eq uation 11. 

Consider now the collection of all measurable subsets of the interval 
[ n, n] for which 

(12) 	 {fdX = 0 

This collection contains all the subintervals of [-1T, 1T] and is a A-system; 
so, by the 1T A theorem (theorem 7 of §2.5), it contains all Borel subsets of 

1T]. Because every measurable set is a disjoint union of a Borel set and 
a set of measure zero, equation 12 holds for all measurable sets A. From 
now on we will assume that f is real-valued. (If not replace f by its real 
and imaginary parts.) Let A+ be the set where f > 0 and A._ be the set 
where f ~ O. Then 

7r Ifldx = r f dx - r f dx 0j
-7r lAc lA_ 

so f = 0 a.e. 
The Plancherel theorem now gives us 

(13) 	 l2dx = Icn 
-cof"

with 

(14) 	 Cn -- J2n1 f".1f f(x)e -inx dx 

for f E !i'2( -n, n). We will discuss some applications of this identity in the 
exercises. 

Exercises for §3.4 

f1. 	 a. Let f be an integrable function on the interval [ -n, n]. Let f' 

i 
~ 

f(X) when ~M 
fM(X) { 0 when >M 

Show that J d/1 -> 0 as M -> co. 

§3.4 Fourier Series 

b. 	 Show that the nth Fourier coefficient off tends to zero as n -> cr.). (II int: 
What can you say about the nth Fourier coefficient of fM?) 

2. 	 Let f be a periodic function of period 2n possessing continuous derivatives 

up to order k. Show that 

.(~kf) = (in)kcnU) 
Cn dx k 

3. 	 a. Let f be the function 

for-n ~ x < 0 
f(x) 	 {~ for 0 ~ x ~ n 

What are its Fourier coelTicients? 
b. 	 Prove that 

2 ."" I n 2
1 	 n 

- and L n2 6~ (2n -1)2 8 n::::.ln-1 

4. 	 The zeta function 

((5) Lx' 

n-' s > 1 
11 00-1 

is of considerable importance in number theory. By judicious use of the 
Plancherel theorem, evaluate this function at s 2 and s = 4. Can you 
devise a method for evaluating Us) at all even integers? (Hint: See exer­

cise 2.) 
5. 	 a. Let f = f(x, t) be a function that has continuous second derivatives in 

x and t and is periodic of period 211: in x. Let cn(t) be the nth Fourier 
coefficient of f(x, t), regarded as a function of x (that is, with t fixed). 
Show that, if f is a solution of the heat equation 

of 
(*) 

then cn(t) = e-nl,cn(O). 
b, Given a function fo(x) that is periodic of period 2n and has continuous 

second derivative, show how to construct a solution of the heat equa­
tion (*) with initial data: f(x, 0) = fo(x). 

6. 	 The Weierstrass approximation theorem says that, jf f is a continuous 
function on the interval [a, b] and (; > 0, there exists a polynomial p with 

sup If(x) - nlxll < f, 

as;x~b 

We sketched a proof of this theorem in exercises 8 and 9 of §2.7. Deduce 
from theorem 2 a second proof. Here are some hints: 

(i) Show that one can assume n < a < b < n. 
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(ii) Show that every continuous function Ion the interval [a,b] can be 
extended to a continuous function on [-n, nJ that is periodic of 
period 2n. 

(iii) 	Show that, if I is a continuous function that is periodic of period 2n, 
there exists a piecewise differentiable function fo that is periodic of 
period 2n and is 1:/4 close to f; that is, 

I: 
sup II <­

-1f':::;x~n 4 

(Hint: See figure.) 

1T 1T 

(iv) 	Let Sn(x) = '[.l!.N cneinX, the Nth partial sum of the Fourier series for 
fo· Show that, for N sufficiently large, 

e 
sup ISN­<2-1rS::x5n 

(v) In the formula for SN, replace einx by B=o (l/r!)(inx), with k large. 
7. 	 Show that in theorem 1 it is enough to assume that I is continuous and 

differentiable from the left and from the right at Xo and is piecewise 
continuous elsewhere. 

8. 	 a. Compute the Fourier series of the sawtooth function 

X 	 n for 0 < x :::;; n 
sex) 

{ x + n for - n < x :::;; 0 
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h. 	 Show that the series 

1 . 
'[. _e JrlX 

n,",on 

converges everywhere on the interval n:::;; x :::;; n except at the origin. 
9. 	 Let I and 9 be !l'2 functions on the interval (-- n, n]. Extend them to 

functions on R by requiring that they be periodic of period 2n. Show that 

the convolution 

(f* g)(x) = 2n1 f"_/(y)g(x y)dy 

is in !l'1 (- n, n) and that its Fourier coefficients Cn are just 

Cn anb" 

and g.where an and bit are the Fourier coefficients 

§3.5 The Fourier Integral 

Let I be a complex-valued integrable function defined on the real 

line. Its Fourier transform is the function 

ley) = Jl(x)e- iXY dx(1) 

Notice that this function is well-defined because the absolute value of the 

integrand is I f"(X)1. Indeed 

ixy
Il(y)1 = \ JI(x)e- dx 1 :::;; fI ((x)1 dx 

so ley) is bounded by the 2'l-norm of f (In exercise 2 you will be asked to 
show that ley) is continuous and that ley) -> 0 as y -> ± C().) 

On the interval ( n, n), 2'2-integrable functions are automatically . .2"'1_ 
integrable; however, for functions defined on the real line, this is no longer 
the case (see §3.2, exercise 5). Therefore, equation 1 does not make sense if 
the integrand is an arbitrary ,p2 function, Nevertheless, we will show that 
equation 1 can be appropriately defined for 2'2 functions and that, just as for 
Fourier series, the 2'2-theory of the Fourier integral is remarkably simple and 

elegant.
We will start by studying the Fourier transform for a very well-behaved 

class of functions. 
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Definition 1. Let f be a complex-valued function defined on the real line 
whose derivatives of all orders-that is, df/dx, d 2f/dx 2, and so on-exist and 
are continuous. Then f is called a Schwartz function if, for each pair of 
nonnegative integers m and n, there exists a constant C (depending on m and 
n) such that 

(2) Ixm(:~)1 ~ C 

We will denote by S the set of all Schwartz functions. If f and g are in S, 
so is f + g; and, iff is in S, constant mUltiples of f are in S and so are xf and 
df/ dx. Also, equation 2 implies that, given N, there is a constant C, depending 
on N, so that 

(3) If(x) I ~ C(l + IxI2)-N 

So Schwartz functions go to zero very rapidlyas x --+ ± 00. The basic example 
of a Schwartz function, about which we will have much to say in the next two 
sections, is the function e-(x2/2). 

By equation 3 Schwartz functions are .,PI-integrable; so their Fourier 
transforms are defined. We will prove that the Fourier transform of a Schwartz 
function is again a Schwartz function. To see this fact we need a fundamental 
property of the Fourier transform. 

Lemma 2. 

1. Letf E S and let g(x) = xf(x). Then g(y) = Fl(d/dy)J(y). 

2. LetfES and let h = df /dx. Then h(y) = FlyJ(y). 

In other words, up to factors ofFl, the Fourier transform interchanges 
the operations "differentiation by x" and "multiplication by x." 

Proof. By definition 

J(y) = If(x)e- ixy dx 

The integrand on the right is differentiable with respect to y, and the derivative 
is again integrable; so the left side is differentiable with respect to y, and 

dJ(y) = f(~) [f(x)e- ixy ] dx 
dy dy 

= -iIxf(x)e- ixy dx 

= -ig(y) 

§3.5 The Fourier Integral 

which proves part 1. To prove part 2 we note that 

h(y) = f(~ !(x))e- iXY dx 
dx 

f d· = - !(x)(dx e-IXY 
) dx 

= iy f f(x)e- ixy dx 

The integration by parts is justified by the fact that f is going to zero very 
rapidly as x --+ ± 00. 'V 

It follows from the lemma that, if f is a Schwartz function, then (d/dy)j 
and yj are the Fourier transforms of Schwartz functions, and by induction 
ym(dn/dyn)j is the Fourier transform of a Schwartz function for all m and n. 
In particular, ym(dn/dyn)]is bounded; so Jis a Schwartz function. 

2Example. Let f = e-(x /2). We will show that 

(4) J(y) = fo e-(y2/2) 

That is, up to a constant, fis its own Fourier transform. 

Proof. Notice that f satisfies the differential equation 

df 
(5) dx + xf = 0 

Indeed, up to a constant factor, f is the only solution of this equation, for, if 

dh 
dx + xh = 0 

x2then (d/dx)e x2/2h = e x2/2[(dh/dx) + xh] = O. So e /2h is equal to a constant C 
2and h = Ce-(x /2). By lemma 2, J satisfies equation 5 if f Goes; so J(y) is a 

constant multiple of e-(y2/2). All that remains to check is that this constant is
fo. But, if J(y) = Ce-(y2/2), then 

C = J(O) = fe-(y2/2) dy 

The integral on the right can be evaluated by elementary means and shown 

to be fo. D 
We can now state the first main result of this section. 
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Theorem 3. The mapping f -+ Jmaps S bijectively onto itself. Moreover, if 
f E Sand 9 = J, then f = gwhere 

ixy(6) g(x) = 2~ fg(y)e dy 

Remarks. 

1. The function g in display 6 is called the inverse Fourier transjorm of g. 
Notice that it is very simply related to the Fourier transform of g-namely, 

(7) g(y) = (;n)d(-y) 

From this identity it is clear that the inverse Fourier transform maps the 
Schwartz space into itself. 

2. Equation 6 implies that the Fourier transform is injective as a map of 
S into S. (That is, iff E Sand 9 = J = 0, then, by equation 6,/ = 0.) It also 
implies that the inverse Fourier transform is surjective as a map of S into S. 
(That is, iff E Sand 9 = J, then f = g.) But, because of the simple relation 
(equation 7) between the Fourier transform and its inverse, we conclude that 
both the Fourier transform and the inverse Fourier transform are injective 
and surjective. So, if we can prove equation 6, we will have automatically 
proved the rest of theorem 1. Incidentally, equation 6 is usually referred to as 
the Fourier inversion formula. 

For the proof of equation 6 we will need some additional properties of the 
Fourier transform. 

Lemma 4. Let f and 9 be Schwartz functions. Then 

(8) fJ(y)g(y) dy = ff(x)g(x) dx 

Proof. By Fubini's theorem 

fJ(y)g(y)dy = f (f f(x)e 
l

-
iXY dx)9(Y)dY 

= f (f g(y)e- iXY dY)f(X)dX 

,.
Jg(x)f(x) dx 

The interchange of integrations is justified by equation 3. \l 

§3.5 The Fourier Integral 

Lemma 5. Let f E S and let a be a real number. Then, if fa(x) f(x + a), 

J~(y) = eiaYJ(y)(9) 

Proof. By definition 


iXY
Ja(Y) = Jf(x + a)e- dx 

So, if we make the change of variables x = s - a, this becomes 

\lJa(Y) eiay Jf(s)e- isy ds eiaYJ(y) 

Lemma 6. Let f E S and let a be a positive number. Then, if j~(x) = f(x/a), 


laCY) = al(ay)
(10) 

Proof. By definition 


ixy

laCY) = Jj"(~) e- dx 

So, if we make the change of variables x = as, this becomes 

iasy \lJa(Y) = a Jf(s)e- ds = al(ay) 

We will now prove equation 6. Let f = f(x) be an arbitrary Schwartz function, 
and let 9 = e-(y2/2a2l. Then, combining equations 4, 8, and 10, we get 

2Jl(y)e-(y2/2a2) dy = J2n a Jf(x)e-(a x>/2) dx
(11) 


When we make the substitution ax = s, the right side becomes 


S2 2 

(12) .j2~ JfG)e- / dS 

Now let a -+ + 00. Then e-(y2/2a2) tends to eO = 1 uniformly on compact sets; 
so the left side of equation 11 tends to Jley) dy. On the other hand, by display 

12, the right side of equation 11 tends to 

.ji;' f(O) Je-(·2/2 ) ds = 2nf(0) 

and we obtain 
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(13) f(O) = 2n1 fAf(y)dy 

Now let g be the function g(x) = f(x + a). Replacing f by g in equation 13 
and taking into account equation 9 we get 

f(a) = g(O) = 2 
I 
n f g(y)dy = 2 

I 
n f I(y)e

iay 
dy o 

Next we will show that the Fourier transform preserves ,9'2-norms up to 
a scalar factor. 

Theorem 7. Let f be in S. Then 

(14) II I Ii ~ = 2n II !II ~ 

Proof. If we take complex conjugates of both sides of the identity 

f(x) = ~feiXYI(Y)dY
2n 

we get 

f(x) = .2.. fe-iXy[/(y)JdY
2n 

That is, 2nJ is the Fourier transform of J Let g = J. so (j = 2nf Then, by 
lemma 4 

fl/12dY = f I]dy = f Jqdy = f fgdx 

= f f(2nJ)dx = 2n f Ifl2 dx o 

Remark. This identity is called the Plancher~l formula for the Fourier 
transform. ! 

Using theorems 3 and 7 we can now define! the Fourier transform of an 
arbitrary ,9'2 function. The idea for this definition is based on a theorem about 
metric spaces: Suppose M and N are metric spaces and A is a dense subset of 
M. A map f: A --+ N is called uniformly continuous if, for everye > 0, there 
exists a b > Osuch that dN(f(x),J(y»< ewheneverdM(x,y) < 8. The theorem 
we will need is the following. 

Proposition 8. Iff: A --+ N is uniformly continuous and N is complete, there 
exists a unique continuous mapping g : M --+ N extending f. 

§3.5 The Fourier Integral 

A proof of this fact is outlined in Appendix A. 
By the Plancherel theorem, III - gll~ = 210llf - gll~; so the Fourier 

transform is uniformly continuous as a map of S into ,9'2. Moreover, as we 
saw in §3.2, ,9'2 is complete. Therefore, if we can show that S is dense in ,9'2, 
then, by proposition 8, there is a unique extension of the Fourier transform 
from S to 2!2. In other words, if we can show that S is dense in ,9'2, we 
will have succeeded in our goal of extending the Fourier transform to ,9'2 

functions. 
To show that S is dense in 2!2, we need to show that there is a large supply 

of Schwartz functions. The results that we describe next make this point. We 
say that a function f: R --+ R is COO if all of its derivatives-that is, dfldx, 

d 2fldx 2 , and so on~-exist and are continuous. 

Lemma 9. There exists a Coo function fo that is zero for x s 0 and positive 

for x> O. 

Proof. The function 
e-(lIX ) for x > 0 

fo(x) = { 0 for x sO 

\l 
has this property. 

Lemma 10. Given an interval (a, b), there exists a Coo function fl such that 

f1 ofor x¢(a,b) andfl >OforxE(a,b). 

Proof. Let fo be as in lemma 9 and let 
\lfleX) = fo(x - a)fo(b - x) 

Lemma 11. Given an interval (a, b), there exists a Coo function f2 such that 
f2(X) = 0 for x s a, f2(X) = 1 for x z b, and 0 < f2 < 1 on the interval (a, b). 

Proof. Let 

roo fl.(S) ds 
\l 

fz(x) = J~c/l(S)dS 

Lemma 12. Given e > 0, there exists a Coo function f of the type depicted in 

the following figure. 
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Jl 	 [\' 

a a + € 	 b b 

Proof. By lemma 11 there exists a Coo function g such that g = 0 for x s a, 
g = 1 for x ;:::: a + e, and 0 < g < 1 on the interval (a, a + e). Similarly, there 
exists a Ceo function h such that h 0 for x b e, h 1 for x ;:::: band 
o < h < 1 on the interval (b - 8, b). Now let I(x) g(x) [1 h(x)]. \l 

Let S be the closure of S in !£,2; that is, IE S if and only if there exists a 
seq uence In E S, n 1, 2, ... , such that II In - 1112 .... O. It is clear that, if g and 
h are in 5, then 9 + h is in 5 and constant multiples of 9 are in 5. 

Proposition 13. Let A be a finite union of intervals. Then the characteristic 
function 1A of A is in S. 

Proof. It is enough to prove this proposition for an interval A = [a,b]. 
Given e > 0, let I be as in lemma 12. Because I is Ceo and is zero outside [a, b], 
I is in S. Moreover, 11- lAI < 1 on (a,a + 8) and (b e,b), and 1= lA 
elsewhere, so 

III-lAI 2 dx < 28 

Proposition 14. Let A be a measurable set of finite measure. Then the char­
acteristic function lA of A is in S. 

Proof. Choose 8> O. By the definition of .41p (see §1.3), there exists a finite 
union of intervals B such that f1(S(A, B)) < e. Then 

- tAI2 dx f1(S(A, B» < 8 D 

Now let I be a nonnegative !£,2 function. By theorem 6 of§2.2, there exists 
an increasing sequence of simple functions s. ;:::: 0 such that s ..... f By proposi­
tion 14, Sn E S. Moreover 

dx .... 0 as n .... 00II/­
by the monotone convergence theorem, so IE S. Finally, let I be a complex­

§3.5 The Fourier Integral 

valued ,p2 function. Then 

I = Re(f)+ Re(f)- + ~ Im(f)+ ~ Im(f)_ 

so I is in S. Thus we have proved the following theorem. 

Theorem 15. S is dense in !£,2. 

We can now prove the second main result of this section. 

Theorem 16. There is a unique linear mapping 

(15) 	 ~ : !£,2 .... !£,2 

and a unique linear mapping 

(16) 	 ~ : se2 .... !£'2 

such that, restricted to S, equations 15 and 16 are the usual Fourier transform 
and inverse Fourier transform. These mappings are bijective and satisfy the 
Fourier inversion formula 

I (J)~ 

and the Plancherel formula 

II~ 2nllfll~ 

Proof. We have already indicated how the Fourier transform can be ex­
tended to ,p2. The inverse Fourier transform can be extended the same way. 
Moreover, the Fourier inversion formula and the Plancherel formula hold on 
S; so, by continuity, they hold on !£,2. D 

Remark. For a general !£,2 function J, the integral in equation 1 doesn't 
make sense. How then do you evaluate J? Ofcourse, you have to approximate 
I by functions for which equation 1 does make sense, and then take limits. 
See exercise 4 for an explicit way to carry out this manipulation. 

Exercises for §3.5 

1. 	 Show that, if I E !£,1 (R), then for every 8 > 0 there exists a Schwartz 
function g such that II I - gill < e. 

2. 	 H/is in !£,l(R), show thatJis continuous andJ(.;) .... 0 as.; .... ±00. (Hint: 
These assertions are true when IES. Now use exercise 1.) 

3. 	 Show that, if I is both in !£,l(R) and in !£,2(R), the two definitions of 
J-that is, equation 1 and the definition by continuity-coincide. 
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4. 	 a. For fE£p2 (R) and M > 0, let 

Ii (x) {f(X) when Ixl ~ M 
M 0 when Ixl > M 

Show that II fM f 112 -jo 0 as M -jo 00. 

b. 	 Show that, if f E£P2(R), then 

lim fM f(x)e- iXy dx 
M"'oo 	 -M 

exists, in the sense of £P2, and is equal to /. (Equation (*) is often used 
as the definition of the fl:'2 Fourier transform.) 

5. 	 Show that, if f, g E£P2(R), then . . 

(f,g) = (2~) (],g) 

(This identity is called Parseval's identity.) (Hint: The real part of (f,g) 
is equal to-Hllf + gll~ - ilfll~ -lIgll~)') 

6. a. Compute the Fourier transform of xe-x2
/2 and of x 2 e-X2/2. Can you 

devise a scheme for computing the Fourier transform of x me-:x;2/2 for 
anym? 

b. 	 Show that for every integer m there exists a polynomial Hm(x) of 
order m such that the Fourier transform of H m(x)e-xl/2 is a constant 
mUltiple of itself. Moreover, show that one can choose the Hm's so that 
the sequence Hme-x2/2, m = 1,2, ... , is orthonormal. (The polynomial 
Hm(x) is called the mth Hermite polynomial.) (Hint: Use exercise 5.) 

7. 	 a. Let c be a positive number and let !c be the function 

!c(x) = 	fe-ex for x ~ 0 
o 	 for x < 0 

Show that its Fourier transform is l/(c + iy). 
b. 	 Use the Planche rei formula to compute the integral 

fOO dy 

_'" c2 + y2 

8. 	 a. Let f be the characteristic function of the interval [ - 1, 1]. Show that 
its Fourier transform is (2 sin y)/y. 

b. 	 Use the Plancherel formula to compute 

f:oo Ci:x)2 dx 

9. 	 a. Iff and g are in fl:'1, the convolution of f and g is the function 

§3.5 The Fourier Integral 	 ISS 

(f *g)(x) ff(x y)g(y) dy 

Show thatf*g is in £P1(R) and that II f *g lit ~ IIflllll g lit. (Hint: Use 
the Fubini theorem.) 

b. 	 Show that the Fourier transform of f *g is the product j{j, 
c. 	 Conclude from part b that the convolution operation is associative 

and commutative. 
10. 	 a. Show that the function 

g(x, t) = /
4t(_1_) e-x2 

fort 
satisfies the heat equation ag/at = a2 g/ax2 for 0 < t < 00 and 00 < 
x < 00. 

b. 	 Show that, iff ES, the function 

/lex, t) = gt *f f get, x y)f(y) dy 

satisfies the heat equation for 0 < t < 00 and 00 < x < 00. 

c. 	 Show that, as t -jo 0 +, /leX, t) -jo f(x). (Hint: Using part b of the previ­
ous exercise, show that JIJlrCY) - j(y)Idy -jo 0 as t -jo 0 +, Here /It(x) = 
/lex, t).) 

11. 	a. Let X be a set, §i be a O"-field of subsets of X, and /l a probability 
measure on X. Given a random variable f: X -jo R, the function 

XI(t) = 	 Ix eitl d/l 

is called the characteristic function of f Show that XI is continuous 
and IXI(t)1 ~ 1. 

b. Suppose f is bounded. Show that all the derivatives-(d/dt)Xj, 
(d2 /dt 2 )xj, and so on-exist and are continuous. Show that 

GY C;t~)(0) Ixf"d/l 

12. 	a. Let (X,§i,/l) be as in exercise 11. Show that, if two random variables 
f and g are identically distributed, then 'X.r = XII' 

b. 	 Conversely, show that if XI = XII then f and g are identically distri­
buted. (Hint: Let hex) be a Schwartz function and h(t) be its Fourier 
transform. Using the Fourier inversion formula, show that 

I 
2Te f~oo XI(t)h(t)dt = Ix h(f)d/l 
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and interpret the right-hand side as 

fR hdv/ 

where vr is the probability distribution off) 
13. 	Let (X,!J', j,t) be as in exercise 1L Show that, if f and g are independent 

random variables, then X/+!J = X/XII' (Hint: See equation 6 of §2.6.) 
14. 	 a. Let X be the unit interval, !J' the Borel sets, and /l Lebesgue measure. 

Show that, iff = R" is the nth Rademacher function, then Xr cos t. 
b. 	 Let S" :D=l R i • Show that the characteristic function of S" is (cos tr. 
c. 	 Using part b of exercise 11, show that 

f d2k 
S;k d/l = (_t)kdt2k [(cos 

(Compare with §1.1, exercise 19.) 

15. 	 Let H = I:;l (l/n)R" be the randomized harmonic series. Let X be its 
characteristic function. Show that 

X(t) = II cos G) 

§3.6 Some Applications of Fourier Series to 
Probability Theory 

Let p", 00 < n < 00, be a sequence of nonnegative real numbers 

with the following three properties: 


(1) 
p" =P-" 

(2) p" = 0 for all but finitely many ks 

and 

(3) LPn = 1 

We will consider in this section a generalized version of the random walk 
in which a point-mass moves randomly along the real line with transition 
probabilities Pi-j' To be more specific, suppose that, at time k, the position of 
the point-mass is the integer point i. At time k + 1 the point-mass is allowed to 
move to any integer positionj for which Pi-j is nonzero and the probability of 
its moving to this position is assumed to be Pi-j' (For instance, if Pi P-1 t 
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and the other Pk'S are zero, the process we have just described is the usual 
random walk) To normalize, we will assume that the position at time zero is 
the origin. 

The basic random variables associated with this process are for each k, 

(4) 	 the difference between the positions at time k and time k + 1 

Notice that the probability distributions v associated with these random 
variables do not depend on k; in fact, they are all just the measure 

(5) 	 I Pr 
reA 

for every Borel subset A of R. Indeed, if A is the one-element set consisting of 
the integer r, then v(A) p" the probability that the point-mass moves r units 
to the right (or left) at time k. 

Now let X = / be the unit interval, !J' B] the Borel sets, and /l = /lL' In 
§2.6 we showed that there exist independent, identically distributed random 
variables J; : / --io R, i = 1,2, ... , such that equation 5 is their common prob­
ability distribution. If we take (X, .'F, /l) to model the sample space of the 
process described above and the fi:s to model the random variables described 
in display 4, it is clear that we get an adequate measure theoretic model of 
this process. In this model the sum 

n 

(6) 	 S" = L J;
;=1 

is the position of the point-mass at time n. 
Let's consider the question of when and how often the point-mass returns 

to its initial position. In our model the probability that the point-mass returns 
to its initial position at time n is the measure of the set 

E /; S,,(w) = O} 

In the remainder of this section, we will show that 

(7) 	 /l({S" 0; i.o.}) = 1 

That is, with probability one the point-mass returns infinitely often to its initial 
position. (Incidentally, we will assume from now on that the transition prob­
ability Po is less than one, for otherwise equation 7 is trivially true: The 
point-mass stays at the origin forever with probability one.) 

The first step in the proof will be to get a simple description of the measure 
of the set where S" = O. This step will be done using Fourier series. Consider 
the sum 

Pn eillt(8) 	 g(t) = L
co 

n= -00 
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By equation 2 this sum is finite; so there are no problems of convergence. We 
will show the following proposition. 

Proposition 1. The measure of the set 

{weI; Sn(w) = r} 

is the rth Fourier coefficient of the function gn. 

Proof. 	 We claim that for all k 

(9) 	 g(t) = E(e ltIk ) = LeitIk dJ.1. 

Indeed, display 4 tells us that he is an integer-valued function, taking on only 
a finite number of integer values. In addition, it tells us that the measure of 
the set 

E", {weI;fk(w) m} 

is just P"" Thus the right-hand side of equation 9 is 

LeitmJ.1.{fk = m) = LP",eit
'" = g(t) 

itIn ; soas claimed. Because f1, ... ,fn are independent, so are e III" ... , e

E(eitSn ) = E(eitJ. x ... x eltIn) = E(eitJ.) x ... x E(e itIn) 

by equation 6 of §2.6. By equation 9 the right-hand side is g(tt. On the other 
hand, because Sn is also an integer-valued function, taking on only a finite 
number of integer values, 

E(e itSn ) = LeitSn dJ.1. LJ.1.(Sn = r)eit• 

Comparing the Fourier coefficients of this series with those of g(tf, we see 
that J.1.(Sn = r) is the rth Fourier coefficient of g(tr· D 

Before continuing with the proof of equation 7, we point out a few 
properties of the function 9 that we will use in our proof: 

(to) 	 9 is real-valued, 

(11) g(O) = 1, g'(O) = 0, and g"(O) < 0, 

(12) Ig(t)1 :s; 1, 

and 

(13) Ig(t)1 < 1 except at a finite number ofpoints on the interval [ -n, n] 
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Proofof properties 10-13: By equation 1 

g(t) = LPne-int = LPne,nt = g(t) 

so 9 is 	 real-valued. Differentiating equation 8, 

g(O) = LPn, g'(O) iLnp., and g"(O) = - Ln 2 Pn 

By equation 3 the first sum is 1, and by equation 1 the second sum is zero. 
Finally, the third sum is negative, because, by equation 3, P. =1= Ofor some n =1= 0 
(because we are assuming that Po =1= 1). To prove inequalities 12 and 13, note 

that 

g(t) = Reg(t) = LPn cos nt 

so 

Ig(t)l:S; LP.lcosntl:S; LP. = 1 

vwith equality holding if and only if cos nt ±1 whenever Pn =1= O. 

Using these facts we will prove the following proposition. 


Proposition 2. The sum 

co 

L J.1.({weI; Sn(w) = O})(14) 
n=O 

is infinite. 

Proof. 	 By proposition 1 this sum is identical to the sum 

1 00 j1f ( 1 ) f" 2N-1-2: g·dJ.1. lim - L g"dJ.1.
21T.=o 	 -1f N~ro 2n -" n=O 

The integrand in the integral on the right is nonnegative and monotone­

increasing (why?) and converges to the limit 

1 


1 g(t) 


except at those points where g(t) = - 1. Because the points with this property 
are finite in number, by equation 13, we get from the monotone convergence 

theorem 

ro 	 dt1 f"
L J.1.(S. = 0) = - ­

.=0 2n -1t 1 - g(t) 

Because the integrand on the right is nonnegative, we can show that the 
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left-hand side is infinite by showing that 

e dt 
----:-:-= +00J-e y(t) 

for some e > O. Let C be a constant with 

g"(O) > -2C 

Because g(O) 1 and g'(O) 0, we get from Taylor's formula with remainder 
that 

g(t) ~ 1 Ct2 > 0 

on a small interval, - e < t < e. Hence 

e dt

J dt> Ie 
- +00 o-e 1 _e Ct2 

If the events Sn = 0 were independent, we would now be finished: We 
could deduce that fl({Sn = 0; i.o.}) = 1 from proposition 2 using the second 
Borel-Cantelli lemma. However, because these events are not independent, we 
have to resort to a slightly more complicated argument. Let k be a positive 
integer and, for every positive integer I, let 

It' = fk+l 


Let Bk be the set of weI where 


(15) L
r 

It(w) =I- 0, r < k, and L
k 

ft(w) 0
;=1 i=1 

Similarly, let Bi be the set of weI where 

(16) IL 
r 

H(w) =I- 0, r < I, and Lft'(w) 0
;=1 ;=1 

Because the !'S in display 15 and the f' 's in display 16 are independent, Bk 
and B; are independent. 

Let Pi. = fl(Bk)and P; fl(B;). We claim that, for k = I, Pk = pI. Indeed, let 
n be the joint probability distribution associated with f1,'" ,k and let n' be 
the joint probability distribution associated with fI, .. .,f~. By \~heorem 3 of 
~~ \ 

k 

r--A---.. 
n = flJI x flh x ... X flJk = V X '" x v 

and a similar identity holds for n', so 

n n' 
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Now Pk is the measure with respect to fl of the set in display 15. But, by the 
definition of n, this measure is the same as the measure with respect to n of 
the set 

{(Xl'" "xn)eRn; it Xi =I- 0, r < k, and it Xi o} 
Similarly pI, is the measure of this set with respect to nt. Because n n', 
Pk = pic as claimed. By definition, Bk is the set of random paths that return 
for the first time to the origin at time k; so the sum 

P = L 
00 

Pk 
k=1 

is the probability that a random path returns at least once to the origin. 
Similarly Bk ('\ B; is the set of random paths that return to the origin for 
the first time at time k and for the second time at time k + I. Because Bk and
B, are independent, the probability of this event-that is, the measure of 
Bk ('\ Bi-is PkPt; and the probability that a random path returns at least twice 
to the origin is 

k.~/kPI Ct Pk) (~ p) p2 
We leave for the reader to show, by a similar argument, the following 

proposition. 

Proposition 3. IfP is the probability of a random path returning to its initial 
position at least once, the probability of its returning at least k times is pk. 

We will deduce from this proposition that P must equall. In fact, suppose 
that P < 1. Let 

Ak {weI; Sk(W) = O} 

and let 

(17) h = L 
00 

lAk 
k=l 

Notice that, for m < 00, the set 

(1&) {WEI; h(w) m} 

is the set of random paths that return to the origin exactly m times; so, by 
proposition 3, the measure of this set is pm - pm+l or pm(1 - p). For m = 00, 

the set in display 1 &is the set of paths that return to the origin infinitely often; 
so, by the proposition, its measure is less than pk for all k; in other words, it 
is zero (assuming that P < 1). Thus 
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fh dfl = L mpm(l - p) < 00 
I m<C() 

On the other hand, by equation 17 

Lhdfl = ~l fl(Ak) 

and the quantity on the right is infinite, by proposition 2; so we get a con­
tradiction and conclude that p = 1. 

Let Ck be the set of paths that return to the origin at least k times. Because 
p = 1, fl(Ck ) = 1 by proposition 3. Because C I :::> Cz :::> C3 ···, 

flea Ck ) = 1 

Hence, we conclude that random paths return to the origin infinitely often with 
probability one. 

Exercises for §3.6 

1. 	 Show that, for the classical random walk (P-I = PI = H, every integer 
point n E Z is visited at least once with probability one. (Hint: Suppose 
that the random walk visits the integer point n with probability P < 1. 
If n > 0, consider the set of random walks having the following two 
properties: (i) The first n moves are to the left. (ii) The origin is never 
revisited. Prove that the probability that a random walk belongs to this set 
is (1 - p)(lj2n) > 0, contradicting equation 7.) 

2. 	 Show that, for the classical random walk, every integer point is visited 
infinitely often. (Hint: Let q be the probability that the point n is visited 
at least once, and let P be the probability that the random walk returns 
at least once to the origin. Show that the probability that n is visited at 
least k times is qpk-l. (Compare with proposition 3.) Now use the fact that 
P = q = 1.) 

3. 	 a. For the generalized random walk with transition probabilities satisfy­
ing equations 1 through 3, let n1 , ••• , nk be those integers for which 
Pn '" O. Let A be the set of those integers that can be written in the 
form r 1 n1 + ... + rAnk' with integers r 1" •. ,rk' and let n be ~he greatest 
common divisor of nI , ... ,nk • Show that A consists of!all integer 
multiples of n. \ 

b. 	 We will call an integer point a on the real line accessible if dE A. Show 
that a is visited with probability greater than zero if and only if it is 
accessible. 

4. 	 Show that, if an integer point a is accessible, then with probability one it 
is visited infinitely often by the generalized random walk. (Compare with 
exercises 1 and 2.) 

§3.6 Some Applications of Fourier Series to Probability Theory 

5. 	 a. Let g(t) be the function given by equation 8. Show that g(t) = 1 if and 

only if t is a multiple of 2njn (the n here being the same n as in exercise 


3, part a).
b. 	 Conclude that g(t) = 1 if and only if cos kt = 1 for all admissible k's. 

c. 	 Show that if g(t) = 1 then 
2g"(t) = - L n Pn 

Conclude that g"(t) < 0 when g(t) = 1. 

6. 	Let 


and TN(r) = L
N 

Prob(Sk = r)

TN(O) = L

N 

Prob(Sk = 0) k=l 
k=1 

Show that, ifr is admissible, lim[TN(O) - TN(r)] is finite as N -+ 00 and is 

equal to 

(*) ~J1t 1 cosrt dt 
2n -1t 1 - g(t) 

(Hint: Use part b of exercise 5 to show that the integrand in equation (*) 

is a bounded function of t.) 
7. 	 a. Show that, for the classical random walk (P-I PI t), 

1 (2n)Prob(Szn = 0) = 4n n 

b. By Stirling's formula (see S. Lang, A Complete Course in Calculus. 
Reading Mass., Addison-Wesley, 1968), there exists a number 0, with 

o< 0 < 1, such that 

n! = ~ nRe-ne6/12R 


Deduce from Stirling's formula that 


1 

0)-	 - ­Prob(S2n '" - Fn 

for n large. 
c. 	 Prove from part b that 

L00 

Prob(S2n = 0) = 00 
n=1 

[Notice that Prob(S2n+1 = 0) = O. Why?] 

For the "unfair coin" [the process described in theorem 5 of §2.6


8. 	a. 
with k = 2, r1 = 1, rz = -1, PI = P it, and P2 = (1 - p) '" t], let 

Sn = II + ., . + In· Prove that 

Prob(S2n+1 = 0) = 0andProb(S2n = 0) = e:)pn
(1- pf 
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b. 	 Using Stirling's formula show that 

L probeS. 0) < 00
.=1 

and conclude (by the first Borel-Cantelli lemma) that ProbeS. = 0; 
i.o.) = O. Why doesn't this contradict equation 7? 

9. 	 Suppose that the transition probabilities P., - 00 < n < 00, satisfy equa­
tions 1 and 3 but not eq uation 2. Show that if I n2 P. < 00, proposition 2 is 
still valid. 

10. 	 a. 
For the generalized random walk with transition probabilities satisfy­
ing equations 1 through 3, let N.(k) be the number of times the point k 
is visited during the interval of time 0 ~ l ~ n. Show that the expec­
tation value of Nn(k) is 

n 

L Prob(SI k) 
/=0 

(Hint: Let Br be the set of paths that visit the point k exactly r times 
during the period 0 ~ t ~ n. Show that 

N.(k) = IrI B, 

Let Al = {w; SleW) Show that 

n 

IIA,.) 
1=0 

b. 	 Show that the expectation value of N.(k) is 


1 fit 
 I gn+! 
-It cos kt I _ g dt 

c. Using exercise 6 show that, if k is admissible, the expectation value of 
N.(k) differs from the expectation value of N.(O) by a quantity that 
tends to a finite limit as n ~ 00. 

§3.7 An Application of Probability Theory to Fourier S~ries 

In this section we are going to discuss a classical theorem about 
Fourier series due to G. Szego. This theorem not only is of considerable 
theoretical interest, but also has a number of practical real-life applications. 
For those who want to learn about these applications, we recommend the 
very readable book by Grenander and Szego (Toeplitz Forms and Their 
Applications. Berkeley, Calif.: University of California Press, 1958). 

§3.7 An Application ofProbability Theory to Fourier Series 

Szego proved his theorem in 1916, and since then several other proofs of 
it have been discovered. The proof described below is due to Mark Kac and 
consists of reversing one of the key arguments of the previous section. 

We begin by making a few definitions: Let f!4 be the Borel subsets of the 
real line. Suppose we are given a probability measure Jl and a sequence of 
probability measures Jl1' Jl2"" on f!4. We will say that Jl" converges weakly to 
Jl if, for every bounded continuous function f, 

(1) ffdJl,,--' 

The notion of weak convergence will play an important role, not only in the 
following discussion, but also in the formulation of the central limit theorem 
in the next section. 

The second notion we will need involves some elementary linear algebra. 
Let T = (au). 1 ~ i,j ~ N, be an N x N matrix of complex numbers with 

(2) 	 = ajl 

It is a standard theorem in linear algebra that T has N real eigenvalues; that 
is, the equation 

det(l- T) 0 

has N real roots AI,"" ).N (potentially occurring with multiplicities). For every 
subset A E f!4, let Jl(A) be the number of l;'s contained in A, counting multi­
plicities. The measure Jl defined by this recipe is called the spectral measure of 
T. If f is a bounded continuous function then 

ff dJl = i~ !(Aj ) 

Having the notions of weak convergence and spectral measure, we can 
state a provisional form of the Szego theorem. Let a., - 00 < n < 00, be a 
sequence of complex numbers satisfying 

a_n = 

and 

I
00 

la_I < 00 
n= -00 

Associated with these numbers is the infinite matrix 

T= with am. = am-. oo<m, n<oo 

Matrices of this form are called ToepUtz matrices. Notice that, by equation 4, 
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T satisfies the symmetry condition in equation 2. Let 

(6) TN = «(I",-n) Osm,nsN-1 

be the N x N principal minor of this matrix. The Szego theorem in its 
provisional form says that, if J.lN is the spectral measure of TN, then J.lN/N has 
a weak limit as N -+ 00. We will identify this limit shortly, but before doing 
so let's observe an interesting tie-in between Toeplitz matrices and Fourier 
series. Let 

,no(7) q(O) = L
00 

ane 
n= -00 

By equation 5, q is continuous. Moreover, by equation 4 

q(O) = La_neinO = Iane inO = q(O) 

That is, q is real-valued. Let 22 be the space of 2 2-integrable functions on 
the interval [-n, n] and let 

Tq : 22 -+ 22 

be the linear mapping that sends f E22 to qf E22. Then, by equation 7 

co 00 

(8) T e,mO = " a ei(n+m)8 = "a einO 
q ~ n ~ n-m 

n= -00 n=-oo 

That is, an- m is the matrix associated with Tq in terms of the basis elnO, 

- 00 < n < 00, of 22. The matrix TN has a similar description: Let VNbe the 
vector subspace of 22 spanned by the functions einO, 0 S n S N - 1, and let 

P: 22 -+ VN 

be the orthogonal projection of 22 onto VN • In other words, if f is in 22 and 
its Fourier series is 

'"I cne/no 
-00 

then 
N-l \ 

Pf = I cne in8 
o 

Let 

(Tq)N: VN-+ VN 

be the linear mapping 

(9) (Tq)Nf = PTqf 

§3.7 An Application of Probability Theory to Fourier Series 

Then, for 0 s rn s N - 1, 
N-l 

inO 
q N = "an-m(T) e imO 

L., e 
n=O 

inO
 
by equation 8; so the matrix associated with (Tq)N in terms of the basis e , 


oS n S N - 1, is exactly TN' 
Consider the probability measure 

(;X)J.lL 

on the interval [-x, n]. If we think of the function q: [-n, n] -+ R as a 

random variable, its probability distribution J.l is defined by the formula in 

equation 3 of §2.6; that is, for every Borel function j, 


(10) r f dJ.l -2= 
1 J" f[q(O)] dJ.lL

JR n -" 

We can now state the Szego theorem in its sharp form. 

Theorem 1. Let J.lN be the spectral measure of TN, and let J.l be the measure 

in equation 10. Then 

J.lN -+ J.l
(11) N 

weakly as N -+ 00. 

Let us see what equation 11 says in concrete terms: Let 


A~N) i = 1, ... ,N, 

be the eigenvalues of TN' and let f be a bounded continuous function on the 

real line. Then by equation 3 

Jf dJ.lN = it f(A}NI) 

so equation 11 is equivalent to the assertion that 


1 J"

(12) N1 i~lN f(A\Nl) -+ 2x _" f[q(O)] dO 

as N -+ 00, for every bounded continuous function f· 
We will now give a heuristic justification of equation 12 in terms of 

probability theory. Suppose that 

-oo<n<ooan = Pn 
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with the Pn's being transition probabilities satisfying equations 1 through 3 of 
§3.6. As in §3.6 we will consider the random walk based on these transition 
probabilities; but, instead of assuming that the random path starts at the 
origin, we will assume that it starts at one of the points x = 0, ... ,N _ 1 and 
that all these points are equally likely as starting points. We will confine 
ourselves to a fixed finite interval of time 0 ~ t ~ m. Thus a sample path can 
be described as a zigzag line consisting of m segments. An example of a path 
for m = 3 is shown in the following figure. The t coordinate indicates time, 
and thex coordinate indicates position. 

(2,3) 

(2,2) 

(3, I) 

~--------~~------------x 
(2,0) 

We will compute the return-time probabilities for this process as in §3.6 
but with a "confinement" condition imposed: What is the probability that a 
random path returns to its initial position at time t m and stays confined in 
the box 0 ~ x ~ N - 1 and 0 ~ t ~ m? (For instance, in the figure the con­
finement condition says that, at times t = 0, t = 1, t = 2, and t = 3, the x co­
ordinate of the path has to lie in the interval 0 ~ x ~ N 1.) Let us denote 
the probabilities in question by p(m, N). We claim that 

(13) p(m, N) = -
1 IN 

(AjNl)m
N ;=1 

Proof. We will prove the case of m 3, the general case being essentially no 
more difficult. Let k be a point on the interval 0 ~ x ~ N 1. Because our 
random path has to start at some point in this interval and because all N 
points are equally likely, the probability that it starts at k is liN. What is the 
probability that at t = 0 its position is k, at t 1 its position is t, at t = 2 its 
position is n, and at t == 3 its position is again k? Clearly this is 

(~ ) PI-kPn-IPk-n 

The probability p(3, N) is therefore the sum 
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(14) (!)I PI-kPn-IPk-n 

over 0::: k, I, n ::: N - 1. But the sum in display 14 is also just times the 
trace of the matrix TJ; that is, 

(15) p(3, N) = (~)trace TJ 

In terms of the eigenvalues A!Nl, this trace is just 

I
N 

(A!Nl)3 
;=1 

establishing equation 13 for m 3. D 
Let's now drop the constraint condition--that is, no longer require the 

random path to be constrained to lie on the interval 0 ~ x ~ N - 1 but only 
require that its initial position lie on this intervaL What is the probability, 
for an unconstrained random path, that its positions at time t = 0 and at 
time t = m coincide? Clearly this is just the "return at time m" probability 
computed in §3.6; that is, it is just 

p(m) = q(B)mdB1 I"
211: -n 

where q(B) = I Pnein9 by proposition 1 of §3.6. Now it is intuitively clear that 
as N ~ 00, with m fixed, p(m,N) ~ p(m). Indeed, if we make the interval 
[0, N - 1] extremely large relative to m, relatively few paths with an initial 
point in this interval leave it before t = m in view of property 2 of §3.6. Hence, 
we conclude 

(16) 1 N 1 I"N i~ f(A\N» ~ 211: _" f[q(B)] dB 

for f(x) = xm. By taking linear combinations of xm's we see that equation 16 
is true for any polynomial function f, and a simple application of the Weier­
strass approximation theorem shows that it is true in general. 

The following series of exercises will give you a chance to strip the prob­
abilistic scaffolding from this proof. Henceforth, am - 00 < n < 00, will be an 
arbitrary sequence of complex numbers satisfying equations 4 and 5; that is, 
the an's will not necessarily be the transition probabilities associated with a 
random walk. 

1. Show that 

1 I" q3 dB = I a,aSa f
211: _" ,+s+I=O 
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2. 	 Suppose that all but finitely many of the an's are zero. Show that 

(~) trace TJ -. 2~ fi q3 dO 

3. 	 Let a~, - 00 < n < 00, be another sequence of numbers satisfying equa­
tions 4 and 5. Suppose that, for all n, Ian a~1 < e. Let M be the larger of 
the two sums 

Ilanl and I 

Show that 


I a,a5a, I a;a~a:I< 3eM2 

\'+5+,=0 '+5+,=0 

4. 	 Similarly, show that 

(*) (~}trace TJ - trace (TN)31 < 3eM2 

S. 	 Show that equation (*) is true without the assumption that all but finitely 
many of the an's are zero. 

6. 	 Prove equation (*) with the power 3 replaced by the power m. 
7. 	 Let a = min q and b = max q. Show that the eigenvalues of TN lie on the 

interval a :::;; A :::;; b. (Hint: Use equation 9.) 
8. 	 Let f be a continuous function on the interval [a,b]. By the Weierstrass 

approximation theorem, there exists for every e > 0 a polynomial function 
p such that sup If - pi < 1;;. (See §2.7, exercise 9, or §3.4 exercise 6.) Use 
this theorem in conjunction with exercise 7 to prove that PN converges 
weakly to p. 

9. 	 (Szeg6's original version of the Szeg6 theorem) Let DN be the determinant 
of TN' Show that, if q is bounded below by a positive number, then DN > 0 
and 

lim Dlr = exp [-21 fn 10gq(O)dO] 
N~oo TC -n 

§3.8 The Central Limit Theorem 

In §2.7 we proved the following version of the law oflarge numbers. 

Theorem t. Let f1,fz, ... be a sequence of bounded random variables on X 
that are independent and identically distributed. Let E = E(];) be the common 
expectation value of the /;'s. Let Xo be the set of points x E X for which 

§3.8 The Central Limit Theorem 

+ ... + fn(X)-.E 
(1) n 

as n -. 00. Then p(Xo) = 1. 

In other words, if 

Sn(X) = f1 (x) + ... + f ..(x) - nE 

then 

Sn(~) -.0 
(2) n 

as n -. 00 with probability one. In many practical problems, one would like 
to know how fast this convergence is. A close look at the proof of theorem 1 

gives the following theorem. 

Theorem 2. Letf1 ,f2,'" be as in theorem 1, and let ex > 0 be given. Then 

Sn(x) 
(3) 	 n(1{2)+<x -. 0 

as n -. 00 with probability one; that is, Sn(x)/n -.0 faster than n-(1/2)+« with 

probability one. 

Proof. The first step of the proof is to verify the following lemma. 

Lemma 3. For each k > 0 there is a Ck > 0 such that 

kJS2k dp < C n(4) 	 n - k 
X 

This lemma can be proved by induction. The case of k = 2 is done in the 
proof of theorem 1. The induction step is fairly messy but straightforward, 
and we leave it to the reader. (See §2.7, exercise 5.) 

Now, given ex > 0, choose k so that 11k < ex; notice that equation 2 and 

Chebyshev's inequality give 

P({\n(l~;)H\ > e}) P(t~::ka > eZk}) 

:::;; eZk n:+2k<X Ix S;k dp(5) 

Ck Ck< __. < ~.--:o--c-=­
- 1;;2k 2ka - e2kn 2 +fJ n 

___1... ___ f} _ '")1"" _ '") _ ,.,hilV _ 1/1"., -,. f\ 



172 
173 

Chapter 3 Fourier Analysis 

Now, as in §1J, choose a sequence e1>e2 , ... with en --j. 0 and 

~ Ck 
L., <00 
.=1 

Let 

IS.(x) I } A.= {xeX; n(1/2 )+« >e. 

Then, by equation 5, L:.oo=l jL(An) < 00. So, by the first Borel-Cantelli lemma, 
jL({An; i.o.}) O. But, for x in the complement of {An; i.o.}, we must have 

ISn(x) I 
n(1/2 )+« < en 

for all but finitely many n's. Hence, we conclude 

Six)
n(1/2 )+« --j. 0 n --j. 00as 

with probability one. 
A natural question to ask at this point is "What happens to Snln 112 as n 

--j. oo?" To fonnulate the answer to this question, we need a definition. Let 
f be a bounded random variable with expectation value E. The integral 

V(f) = E)2 djLIx (f ­

is called the variance of f. It is regarded by probabilists as a good mea­
sure of "deviation of f from its expectation value," because by Chebyshev's 
inequality, 

(6) jL{xeX; If - EI > M} s ~2 f(f - E)2djL = ~) 

For instance, inequality 6 says that the set where f deviates by one unit from 
its expectation value is less than V(f). If V(f) is very small, so is this 
deviation. 

Notice that, if v is the probability distribution associated with f, then by 
equation 3 of §2.6 

V(f) t (x - E)2 dv 

So, if two random variables are identically distributed, they have the same 
variance. 

Let's now return to the question posed earlier. BecauseflJ2"" are identi­
cally distributed, V( f, ) = V( f,) 

§3.8 The Central Limit Theorem 

Theorem 4. Let (J = V(fd = V(f2) = .... Then, for every pair of numbers a 

and b, with a < b 

Sn(X)} 1 Jb t2/2
--j.-­(7) jL xeX;a< <b e- "dt

{ .JiM a 

as n tends to infinity. 

This theorem is called the central limit theorem. It is sometimes stated as 
saying that, if the deviations of the /;'S from their expectation value E, for 

U21 sis n, are rescaled by the factor n , then these deviations tend to be 

normally distributed for n large. 
Notice that, if we denote by jL. the probability distribution of the random 

variable S./n112 and by J the interval (a, b), the left-hand side of equation 7 is 
jL.(J). The right-hand side, on the other hand, is 

(8) jLAJ) ~Je-
t2j2 

(1 djLI, 
v 211:(J J 

The measure jL" defined by equation 8 is called the Gaussian or normal 
distribution with variance (J. The central limit theorem says that, for every 

interval J, 

jLi J) --j. jL(1 (1) as n --j. 00(9) 

Proofoftheorem 4. Replacing it by J; - E, we can assume that E = O. We 
will first prove a statement similar to equation 9 for the Fourier transforms 

of jLn and jL". 

Lemma 5. Let 

Xn(t) Le-ixt djL. 

Then, for fixed t, Xn(t) --j. e-(1t2/
2 as n --j. 00. 

Proof. By equation 3 of §2.6, 

X.(t) = t e-ixt djL. = Ix e-it(Sft/.fi) djL 

= Ix e-(itl.fi)(J,+"·+fnldjL 

= (I/-itfl/.fidjL) x ... X (I/-itfnl.fidjL) 

http:e-it(Sft/.fi
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by independence. Because the /;'s are identically distributed, equation 30f§2.6 
tells us that 

Ix e-itfll.Jndfl Ix e-ithl.Jndfl = ... = Ix e-itf~/.Jndfl 
In fact, each of these expressions is equal to 

fR e-itx1Jn dv 

where v IS the common probability distribution of the /;,s. Therefore, letting 
J be anyone of the /;'s, we get for Xn the formula 

(10) Xn(t) (Ix e-itflJndfly 
Now notice that, for t fixed, 

e-itfl.Jn = 1 	 itf + (;!)(~y -G')(/n)3 + ... 

'':/ (t2) 2 
= 1 - J~ 	 2n J (1 + rn) 

where rn is a bounded function that tends to zero uniformly as n -+ 00. Inte­

grating the right-hand side, taking into account the fact that E = fJ dfl = 0, 

we get 


(11) Ix e-itflJn dfl = 1 - (~~)(1 + en) 

where 

Ii 2en 	 - J rndfl 
Cf X 

The Lebesgue dominated convergence theorem implies that 

(12) en -+ 0 as n -+ 00 

If we substitute equation 11 into equation 10, we get 

Xn(t) = [1 (~~)(1 + 8n)]" 

§3.8 The Central Limit Theorem 

Therefore, the proof of lemma 5 reduces to showing that 

(13) 	 [1 -(~:)(1 + 8n)]" -+ e-at'(l 

as n -+ 00. For this proof, set a = Cft2/2 and take the log of both sides. The 
left-hand side becomes 

nlog[l + (~)(1 + en)] 

or, with s = (1 	+ en)/n, 

(1 + Bn) 10g(1 + as) 
s 

In view of equation 12, the limit of this expression as n tends to infinity is 

. loge! + as) =!£ loge! + as)1 s=O = a
hm s ds 
s~o 

which is exactly the log of the right-hand side of equation 13. \l 
We now return to the proof of theorem 4. We begin by proving an 

essentially equivalent statement. We will show that, if J is a Schwartz function, 
then 

(14) LJ dfln -+ fR J dflu 

as n -+ 00. To see this, note that 

LJdfln = 2~ L(L j(t)eixtdt )dfln 

1 f A 

= 211: J/(t)Xn(t)dt 

The last expression, however, limits to 

~Lf(y)e-y2/2u dy 

by lemma 4 of §3.5 and lemma 5 of this section. Hence, we have established 
equation 14. 

To show that equation 14 is essentially equivalent to equation 9, consider 
a Schwartz function f. of the form indicated in the following figure. (We 
showed in §3.5 that Schwartz functions of this type do exist.) 

http:e-itfl.Jn
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y 

y 

fI' • • "- x 
a a + t b - t b 

Let J be the interval (a, b). It is clear that 

If. dJ1.n =5; J1..(J) 

so by equation 14 

lim inf J1.n(J) ~ lim If. dJ1.. = If. dJ1.a 
n~CX) 

f
b-e 

>_ e-x2
/ 2a dx 

a+e 

The last inequality holds for all e > 0, so we obtain 

lim inf J1..(J) ~ e-x2
/ 
2

" dx = J1.,,(J)r 

A similar argument shows that 

lim sup J1.n(J) =5; J1.,,(J) 

so we conclude that the limit exists and is equal to the expression on the 
ri~ D 

Another formulation of the central limit theorem is that the sequence of 
measures J1.n converges weakly to the measure J1." as n -+ 00. Recall from §3.7 that 
this statement means that 

(15) fR f dJ1.n -+ IR fdJ1.a 
\ 

\ 

for every bounded continuous funct'ion f. By equation 14 we know this fact 
to be true when f is a Schwartz function; and, by approximating by Schwartz 
functions, one can easily show it to be true for any bounded continuous 
function. 

Example: coin tossing. Suppose that in theorem 4 the /;'s are the Rademacher 
functions R i . The strong law of large numbers says that (S.ln)(w) -+ 0 as 

§3.B The Central Limit Theorem 

n -+ 00. A gambler might want to know how many trials it takes to be 
reasonably sure this quantity is near zero. For example he or she might want 
to know that IS.lln < .01 with a probability of 99%. Because (j = V(Rd = 
V(R 2 ) = ... 1, one gets from equation 7 the estimate 

.99 = J1.({XEX; 1;1 <.01}) 

J1.( {XEX; Jl < .00Jn})(16) 

1 S·OlJn:::::; __ e-t2 /2 dt 

fo -.OlJn 
By numerical methods one can show that, if 

_1_ fa e-t2/2dt = .99
fo -a 

then a = 2.57.... Hence, by equation 16, .01Jn >:::; 2.57 or n >:::; 66,000; that is, 
after 66,000 tosses one can be 99% sure that IS.l/n < .01. 



Appendix A 
Metric Spaces 

We collect here, in a minimal sense, the important facts about 
metric spaces used in the text. This exposition is in no way complete and is 
meant only as an easy reference for the reader who is already familiar with 
these concepts. For a more thorough treatment of this matter, see W. Rudin, 
Principles ofMathematical Analysis. 3rd Ed. (New York: McGraw-Hill, 1976). 

Let M be a set. 

Definition 1. A metric on a set M is a map d( " . ) : M x M ...... R satisfying the 
properties 

1. d(x, y) = dey, x) 
2. d(x,y) ~ 0 
3. d(x,y) = 0 if and only if x = Y 
4. d(x, y) ~ d(x, z) + d(z, y) 

If d is a metric on M, the pair (M, d) is called a metric space. 

Example 2. Let (V, 11'11) be a normed vector space (see §3.l). Then V is a 
metric space with metric 

d(x,y) = IIx 

Metric spaces are nice because they allow us to define the basic topological 
objects we are used to considering in Rn-for example, open and closed sets, 
compactness, convergence, and so on. We first discuss convergence. 

Metric Spaces 179 

Definition 3. Let (M, d) be a metric space. Let Xl' X2, X 3 , . .• be a sequence in 
M. We say {XII} is a Cauchy sequence if 

(1) d(xn, xm) ...... 0 as n, m ...... 00 

We say x" converges to x e M (written x" ...... x), if 

(2) d(x, XII) ...... 0 as n ...... 00 

Proposition 4. If X 1,X2,'" is a sequence in M with x" ...... x e M, then the x/s 
form a Cauchy sequence. 

Proof. d(xn,xm) S d(xn,x) + d(x'xm) ...... 0 as n, m ...... 00 0 
Thus, just as in R", every convergent sequence in (M, d) is a Cauchy 

sequence. The converse, however, is not true in general. 

Example 5. Let M = R {O} and let d(x,y) Ix - yl for x, yeM. Clearly 
the sequence x" lin is Cauchy, and yet there is no x e M such that x" ...... x. 

Experience in R" tells us that it is nice to be able to use display 1 as a 
criterion for convergence. This motivates the following definition. 

Definition 6. (M, d) is called complete if every Cauchy sequence in M con­
verges to an element of M. 

Example 7. Rn with the metric 

n )1/2
(3) d(x, y) ( j~ (Xi Yi)2 

is a complete metric space. We leave this fact for the reader to check. It follows 
from the fact that R with the metric in example 5 is complete. 

When we consider convergence of sequences, it is sometimes useful to 
know if a subsequence converges. One check for this is that the sequence be 
contained in a compact set. To define compactness in a metric space, we need 
to study the open and closed sets. 

Let (M, d) be a metric space and let A c M be a subset. We say x e M is a 
limit point of A if for every 8 > 0 there is an x. e A with x, "# x and d(x, x.) < 8. 

The set A is called closed if it contains all its limit points. In general, if A c M, 
the closure of A, A, is the smallest closed set containing A. It is easy to check 
that A consists of the points in A together with all the limit points of A. A set 
U c M is called open if its complement is closed. 

Proposition 8. If U c M is open, then for each Xo e U there is an r > 0 such 
that the ball 

178 
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(4) Br{xo) = {xEM; d(x,xo) < r} 

is contained in V. 

Proof. By definition, V is open if and only if VC is closed. Now Xo 1: V C, 
so it is not a limit point of V C• Hence there exists an r > 0 such that 
Br(xo) fl VC O. 

A set K c M is called compact if, whenever {V,,} is a collection of open sets 
covering K, there is a finite subcollection V"l' Val'" ., Van covering K. (A 
collection {V,,} of sets covers K if K c UVa.) 

Proposition 9. Let (M,d) be a metric space and let X l ,X2,'" be an infinite 
sequence in M. Suppose there is a compact set K c M such that Xn E K for all 
n. Then there is a subsequence xn" x"" . .. of the XII'S that converges. 

Proof. It is enough to show that the set A {x1, X2' ... } has a limit point. 
Suppose this is not true. Then for each y E K there is an e)/ such that, if 
By = {x; d(x, y) < ey}, then By contains at most one point of A. The collection 
{BY}YEK is an open cover of K with no finite subcover. This fact contradicts 
the compactness of K. 0 

This proposition gives a nice criterion for existence of convergent sub­
sequences. The rub is that compactness is generally hard to check. However, 
in the case that the metric space is R" with the usual metric given by equation 
3, the Heine-Borel theorem gives a simple criterion for compactness. 

Theorem 10. (Heine Borel) Every closed, bounded subset of R" is compact. 

Remark. A set A c R" is bounded if there is a number M > 0 such that 
d{x,y) < M for all x, yeA. 

Warning. The Heine-Borel theorem is not true in a general metric space. 
To prove theorem 10 we need the following lemma. 

Lemma 11. Let (a 1 ,a2, ... ,all ) and (b1, .. ,b,,) be elements in R" with aj :=; bj 

for all j = 1,2, ... , n. Then the closed multi-interval J = {x E Rri; ai :=; Xi :=; b;} 
is compact. 

Proof. Suppose, on the contrary, that J is not compact. Then there must be 
a cover of J by open sets {V,,} that has no finite subcover. 

If we. let Ii c R be the interval Ii = [ai' b;J, we note that J 11 X 12 X 

... x I". Let Ci = t(ai + bi ) and let 

11- = [ai' c;J It = [ci,b;] i = t, .. .,n 

Metric Spaces 

Then there are 2" multi-intervals of the form 

l"f x rt- x ... x If 

all of which are covered by the V,,'s. At least one of these multi-intervals must 
not allow a finite subcover because J doesn't. Choose one such multi-interval 
and call it J • Now repeat this process ad infinitum to get a sequence of 

1 

multi-intervals 
J::::> J ::::> ::::> ...1 J2 

none of which can be covered by finitely many of the Va's. 
For each k take XkeJk' Notice that the sequence {Xk}k"=l is a Cauchy 


sequence because the size of Jk decreases as k -l> 00. Because J1 is closed there 

is a limit point Xo e J

1 
• Also, for each 1the tail of the sequence {Xk}k'=1 is in the 


closed set J • Hence Xo e Jz for each I; that is, Xo En~1 J1• Choose (xo so that 

1 

Xo E VitO' By proposition 8 there is an r > 0 such that Br(xo) c V"o' We claim 

that, for some k, Jk C Br(xo}. This claim contradicts the construction of the 

Jk's and thus proves the lemma. To prove this claim let 


n )1/2
A= r. (aj - bj )2

( 
J=l 

and note that for x, y E Jk> d(x, y) :=; },/2k
• Now, Xo e Jkfor all k, so we have that, 

if x E J , then d(x, xo) :=; A/2k; that is, Jk BA/2k(XO)' Choosing k large enough 
k 

so that A/2k < r we are finished. V 

Proof oftheorem 10. Let C be a closed, bounded subset of R". Because C is 
bounded, it is contained in some closed multi-interval J. Because C is closed, 
the set R" C = Vo is open. Now let {Va} be an open cover ofC; the collection 
{Va} U {Vol is then an open cover of J. By the lemma, J is compact so 
there is a finite subcover. If Vo is among these, throw it out; what's left still 

covers C. 
Finally, we can combine proposition 9 with theorem 10 to get the 

Bolzano-Weierstrass property. 

Theorem 12. (Bolzano-Weierstrass) Every bounded infinite set in R" has a 

limit point. 
Now suppose that (M,dM) and (N,dN) are two metric spaces. A function 

f: M -l> N is continuous at Xo E M if for every e > 0 there exists (j > 0 such 
that dM(xo,y) < (j implies that dN(f(xo),!(y)) < e. The function f is called 
continuous if it is continuous at each point of M. Notice that when checking 
continuity the (j may vary depending on Xo. The function f is called uniformly 
continuous if the (j can be chosen independently of Xo; namely, f is uniformly 
continuous if for every e > 0 there is a (j > 0 such that dN(f(x),f(y)) < e 

whenever dM(x,y) < (j. 
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Proposition 13. Letf: M ...... N be uniformly continuous and let Xl> X2,'" be 
a Cauchy sequence in M. Thenf(x l ),f(X2)"" is a Cauchy sequence in N. 

Proof. Given e > 0 we need to find K such that dN(f(Xi),f(xj » < e when­
ever i, j > K. Because f is uniformly continuous, there is a () > 0 such that 
dM(x, y) < () implies that dN(f(x),f(y» < e. Because the x/s are a Cauchy 
sequence, we can find K such that dM(Xj, Xj) > () whenever i,j < K. This is the 
K we sought. 0 

Now let (M,dM ) be a metric space and let A c:: M be a subset. A is 
automatically a metric space with the metric induced from dM • In §3.5 we 
encounter a continuous function f: A ...... N and we wish to extend it to a 
continuous function g: M ...... N. Whenfis uniformly continuous, we can make 
this extension if we assume that N is complete and that points in M can be 
"approximated" by points in A in the following sense: A subset A c M is called 
dense if A = M. 

Theorem 14. Let (M,dM ) and (N,dN ) be metric spaces. Let A c:: M bea dense 
subset of M, and let f: A ...... N be uniformly continuous. Assume that N is 
complete. Then there exists a unique continuous map g: M ...... N such that 

g(X) = f(x) for all xEA 

Proof. We begin by definingg. Let xEM. IfxEA we set g(x) f(x). If x¢:A 
then, because A is dense in M, x must be a limit point of A. Choose a sequence 
Xl>X2 ,'" in A with Xi ...... X in M as i ...... 00. By proposition 13 the sequence 
f(x i ) in N is Cauchy. Because N is assumed to be complete, we know that 
this sequence has a limit; define this limit to be g(x). Notice that this definition 
is independent of the choice of sequence Xl ,X2"" because, if X'1>X~"" is 
another such sequence, then f(xD ...... g(x). In this fashion it is also easy to see 
that, given e > 0, there exists a () > 0 such that, if dM(X, y) < () for XE M and 
YEA, then dN[g(x), g(y)) < e. To prove continuity of g, take x, y E M with 
dM(x, y) < ()/2. Because A is dense in M, we can find z EA with dM(x,z) < ()f2. 
Then dM(y,z) S;; dM(y,x) + dM(x,z) < () and so 

dN[g(x), g(y)] S;; dN[g(x), g(z)J + dN[g(z), g(y)] < 2e 

whenever dM(x,y) < ()/2. 

The uniqueness of g is a direct consequence pf its continuity. 


Appendix B 
On,;t'P Matters 

You recall that in §3.8 we proved the following improved version 

of the law oflarge numbers. 

Theorem. Let fl ,f2"" be bounded, independent, identically distributed 
random variables on the probability space (X, Il)· Let E be the common 
expectation value of the /;,s, and let Sn(x) = f1 (x) + .,. + fn(x) - nE. Then, 

for any IX > 0, 
Sn(x) 

(1) nOI2)+a ...... ° 
as n ...... 00 with probability one. 

To prove this theorem we assumed that the [;'S were bounded so that we 
wouldn't have to worry about the integrability of the functions S;k. Actually, 

if IX> 11k it is easy to see that equation 1 holds as long as 

(2) <00J 
Indeed, in order to get the estimate in inequality 4 of§3.8, all you need to know 

is that 

(3) JI r:ll r.l2 x .. , x r:1jl < 00 when 1 + ... + l. = 2k
lit Jiz Jij 1 J 

It turns out that inequality 3 follows from inequality 2 once we have some 
basic facts about 2 P-spaces, which you have already proven in the exercises 
of§3.1 (see corollary 5 of this appendix). Here we first review those basic facts 
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(don't peek until you've looked at exercises 7, 8, and 9 of§3.1 and exercise 10 
of§3.2) and then we develop some ffP analogues of some of the ff2-theory in 
Chapter 3. 

Basic Theory 

Let (X, f-l) be a measure space. Recall that, for p ;;:: 1, ffP(X, f-l) (or just ffP 
if X, f-l is understood) is the set of complex-valued measurable functions 
I: X ~ C such that 

(4) LI/IPdf-l < 00 

The value 

(5) II flip (LI/IPdf-lY'P IEffP 

is called the ffP-norm of I. 

Theorem 1. ffP(X, f-l) is a vector space and II' lip is a norm on ffP(X, f-l). 
To prove theorem 1 we will need the following lemma of calculus. 

Lemma 2. Let ¢>(t) be a convex function on the interval (a, b); that is, ¢>"(t) ;;:: 0 
for all t E(a, b). Let x, y E(a, b) and let IX and Pbe nonnegative numbers with 
o:+p=l.Then 

¢>(ax + py) ~ a¢>(x) + M(Y) 

Proof. Suppose this lemma is not true. Then, for some 0:, p, x, and y as above, 
we have 

¢>(IXX + py) > IX¢>(X) + p¢>(y) 

or 

a[¢>(o:x + py) ¢>(x)] > P[¢>(y) ¢>(o:x + py)] 

because 0: + p = 1. Dividing by o:P(y x), we get 

¢>(ax + py) ¢>(x) ¢>(y) - ¢>(ax + py)
--,:---'-::--:--'---'- > -'-"-'----'--'--=--':-'­

(o:x + - X y - (o:x + py) 

By the mean value theorem there exist ~ and" with x < ~ < ax + py < " < y 
such that ¢>'(~) > ¢>'(,,). This contradicts ¢>"(t) > O. V' 

18S 
On!{!P Matters 

Proofoftheorem 1. First, to check that ffP(X, f-l) is a vector space, we need 
to see that, if/,gEffP(X,f-l), then JII + glP < 00. To do this, notice that for 
p;;:: 1 the function ¢>(t) = tPis convex; hence, with a = p= t, we conclude from 

lemma 2 that 

1 l)P 1 pIp
+ 21g1

( "21/1 + 2: lg1 ~ 21/1 

pointwise in X. Integrating this inequality gives 

fIf + .I'dp s 2'fGIfI + ~Igl)' dp s 2'-' (f Ifl'dp + J191'dP) 

Hence,f + g E ffP(X, f-l). 
To show that II' lip is a norm on ffP(X,f-l), we need to prove the triangle 

inequality; that is, \I I + g lip ~ II flip + \I g lip· (The rest of the norm properties 
are obvious.) To prove this inequality, we need the following. 

Lemma 3. Let I and g be nonnegative measurable functions on X, and let 
p and q be numbers greater than 1 with (lip) + (l/q) = 1. Then 

fIgdf-l ~ (f fP df-lyIP (f gq df-lYlq(6) 

Proof. Let a and b be positive numbers. Define the numbers x and y by 
a = exlp and b = eYlq.Then, because et is convex and (lip) + (1/q) = 1, we have 

from lemma 2 that 

111 1
ab = e(Xlp)+(y/q) ::S _ex + -eY -aP+ -bq 

p q p q 

Now let 

I(x) and b=-(fg(x) 

)l/q
a = (f fPdf-lyIP gqdf-l 

V'and integrate to get inequality 6. 

To prove the triangle inequality, consider 


fII + glP df-l::S f(III + IgW df-l 

= f 1/1(1/1 + loW-1 df-l + f Igl(1/1 + IgW- df-l 
1 
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Apply lemma 3 with q = p/(p - 1) to get 

l/P (f )(P-1)/P(III + Igl)PdJl:5:, I/lPdJl Oil + Igl)PdJl)f (f 

l/P(f )(P-1)/P
+ 

(f 
IglPdJl) (III + Igl)PdJl 

so 

lip
(7) I +gllp:5:, II + Igl)PdJl) s 1I/IIp + Ilglip o 

Remark. The triangle inequality for II' lip, inequality 7, is called Minkowski's 
inequality. 

We can now give an argument to show that inequality 2 implies inequality 
3. First, we have the following proposition. 

Proposition 4. (Holder's inequality) Let p and q be numbers greater than 1 
with (l/p) + (l/q) 1. Let IE!.l'P(X,Jl) and gE!.l'q(X,Jl). Then jqE!.l'l(X,Jl) 
and 

:5:, 1I/11pIIg 

Proof. By lemma 3 we have 

f Ijql dJl = f 1/IIgi dJl :5:, II gllp 

so Ig E!.l'l(X,Jl) and 

IfIgdJlI :5:, f dJl:5:, IIfllpllg o 

/
Corollary 5. Let PI and P2 be gr€;ater than 1, and let II E !.l'P'(X, u) and 
12 E !.l'PZ(X, Jl). Then 1112 E !.l'P,P2/(Pl +Pzl(X, u) and 

II Id2I1 p,pz/(P'+pz) S II 11 lip, II 1211pz 

Proof. Consider 

f 1/1/2 IP1Pz/(p,+pzl dJl = JI/dP1Pz/(P,+pzII/2IP'P2/(Pl+Pz)dJl 

On fi'P Matters 

Notice that/I E !.l'Pl(X, Jl) implies that/ p,P2/(p, +pz) E !.l'(p, +P2)/P2, and, similarly,1 
12P'P2/(P' +pz) E !.l'(p, +P2)/P,. Now [P2/(P1 + P2)] + [Pt!(Pl + P2)] 1, so we can 
apply proposition 4 to conclude that 

P2/(P'+P2)(f )Pt/(Pt+PZ)
(1/111/2I)p,pz!(Pt+P2)dJl:5:, I/IIPtdJl 1/21 p2 dJl)f (f 

so 

IIp,pz/(P, +P2) :5:, II II II p ,lI 12 

Now take k functions in !.l'k, 11'/2"" ,he. By corollary 5, Id2 E 
Applying corollary 5 again givesld2/3 (fd2)/3 E!.l'k/3. Continuing in this 
fashion, we getld2 x ... x it E !.l'1; hence inequality 2 implies inequality 3. 

Notice also that corollary 5 gives the following. 

Corollary 6. Suppose Jl(X) < 00. Then !.l'P(X, Jl) c: !.l"(X, Jl) for t :5:, r :5:, P 
and 

(8) IIfII,:5:,C for IE!.l'P(X,Jl) 

where c [Jl(X)](p-')fp'. 

Proof. Because Jl(X) < 00 the constant function 1 is in !.l'S(X, Jl) for all s ;;::: 1. 
Let s = pr/(p - r), Then, by corollary 5,/E !.l'ps!(P+S) = !.l" and 

:5:, II flip 11111. o 
To continue now with the basic properties of !.l'P-spaces, recall that a 

normed vector space is called a Banach space if it is complete in the metric 
topology. 

Theorem 7. !.l'P(X,Jl) is a Banach space. 

Proof. We will prove this theorem in the case that X is IT-finite; that is, 
X = U~l Xi with Xl :5:, X2 :5:, ••. and Jl(Xj ) < 00 for all i. We leave the more 
general case to the reader (see exercises 8 and 9 in §3.2). 

Let {/"}~l be a Cauchy sequence in !.l'P(X,Jl); that is, given I> > 0 there is 
an N such that II /" - 1m II P < I> whenever n, m > N. We wish to show that there 
is a function IE !.l'P(X, Jl) such that /" -. I in !.l'P; that is, given e > 0 there is 
an N such that II In - flip < I> when n > N. 

We proceed as in the proof of theorem 13 of §3.2. Because Jl(X1 ) < 00 
we get from corollary 5 that !.l'P(X1 , Jl) c: !.l'l(Xl' Jl), and the In's form a 
Cauchy sequence in !.l'l (Xl' Jl). Thus, from theorem 9 of §3.1, we can extract a 
subsequence {/l.n}~l that converges a.e. on Xl' Similarly, because Jl(X2) < 00 
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we can extract a subsequence {f2,n},~~1 from the sequence {fl,n}~l that con­
verges a.e. on X 2 • Continuing inductively we extract a subsequence {.t;,n}~l 
from {.t;-l,n}~l that converges a.e. on Xi' By the Cantor diagonal process, 
the subsequence f1,1 '/2.2"" converges a.e. on X to a measurable function f 
on X. Let gl fl,l, gz = f2.2, and so on. The sequence {gn}:'=l is Cauchy in 
.!l'P(X, J.l); that is, for s > 0 there is an N such that II gm - gn II; < s when 
m, n > N. 


By Fatou's lemma, with n > N fixed and m ~ 00, 


Iliminflgm - gnIPdJ.l::;; liminfIIgm - gnIPdJ.l:S s 

The term on the left is JIf - gnlP dJ.l, so this inequality shows thatf E .!l'P(X, J.l) 
and that gn ~ f in .!l'P(X, J.l). Because {gn}~l is a subsequence of {J..}~1' it 
follows that J.. ~ f in .!l'P as well. D 

Representation Theorems 

Recall that, for the Hilbert space .!l'2(X,J.l), we have Schwarz's inequality 

for f, g E .!l'2(X, J.l)II fgdJ.l/::;; IIgll2 

The generalization ofthis inequality to .!l'P-spaces is Holder's inequality 

II fgdJ.l/::;; IIfllpllgll q , .!l'P(X,J.l), gE.!l'q(X,J.l), ~ + ~ = 1 

This inequality can be interpreted in the following way: For g E .!l'q(X, J.l) 
consider the linear map 

(9) Ig : .!l'P(X, J.l) ~ C where Ig(f) = Ifg dJ.l 

It is an immediate consequence of H§lder's inequality that this map is 
continuous. Indeed, to show that a mapF: .!l'P(X, J.l) ~ C is continuous at fa, 
we need to show that, given 8 > 0, there is a 0 > 0 such that II f - fa II P < 0 
implies that IF(f) F(fo) I < 8. In this case 

I/g(f) - Ig(fo) I = - fo)I::;; Ilf - follplig 

so, if we take 0 = gllq, we are done. 
The purpose of this section is to convince you that, in fact, every continu­

ous linear map 1: .!l'P(X,J.l) ~ C is of the form Ig for some gE .!l'q(X,J.l) where 
(l/p) + (l/q) = 1. We wiIl not prove this fact in general; we will just prove some 
special cases of it. If you want to see the general proofs, we recommend the 
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treatment in Reed and Simon (Methods of Modern Mathematical Physics: 
Functional Analysis, vol. 1. New York: Academic Press, 1980). 

We first introduce some nomenclature. Let (V, 11'11) be a normed, complex 
vector space. A continuous linear map I : V ~ C is called a continuous linear 
functional. The dual space V* is the space of all continuous linear functionals 
I : V ~ C. Notice that V* is a vector space. 

Proposition 8. Let I : V ~ C be a linear functional. I is continuous if and only 
if there is a constant c > 0 such that 

(10) l(v)::;; cllvll for all VE V 

Proof. The argument that inequality 10 implies continuity is the same as the 
argument that Ig is continuous. To show that continuity of Iimplies inequality 
10, notice that, because I is continuous at zero, if we choose e > 0 there is a 
o> 0 such that II v II < 0 implies II(v)I < s. Let c 28/0. Then for vE V notice 
that 

so l(~)!- 0211vll - 2I1vll l/(v)1 < sI
 
Hence II(v)1 < (2e/o)lIvll = clivi I· o 

Now let H be a Hilbert space with inner product <',' ). If v E H we define 
Iv EH* by Iv(w) = (w, v), WE H. (Iv is continuous by Schwarz's inequality.) This 
definition gives a map 

L:H~H* by L(v) = Iv 

It is easy to see that Lis one to one. Indeed, if L(v) = 0 then lv(w) = (v, w) 0 
for all w; hence v = O. The surprising fact is that L is onto. 

Theorem 9. The map L: H ~ H* defined by L(v) = Iv is bijective. 

Remark. We call this theorem a representation theorem because it "repre­
sents" the abstract space H* in terms of the known space H. 

To prove theorem 9 we will need a geometric result on Hilbert spaces, 
which is interesting in its own right. Let V c H be a vector subspace of H. If 
V is also a closed subset of H (in the norm topology), then it is automatically 
a Hilbert space itself; in this case V is called a Hilbert subspace of H. If w E H 
we write w 1. Vif (w,v) = 0 for all VE V. Let V-.l be the set of all WEH such 
that W 1. V. Notice that V-.l is a vector subspace of H. 

Proposition 10. Let V c H be a Hilbert subspace of the Hilbert space H. 
Assume that V #- H. Then there exists WE V.L such that W #- O. 
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Proof. Because V '# H there is an x EH such that x ¢ V. Let 

a inf Ilx - vII 
veV 

We claim that there is ayE V such that II x - y II = a. To see this fact choose 
v. EV such that II x Vn II ..... a as n ..... 00. Then 

IIv. - vm ll
2 211vn - Xll2 + 211vm - Xll2 - 411!(vn + vm ) - Xll2 

:s; 211vn - xll 2 + 211vm Xll2 4a2 

Hence the vo's form a Cauchy sequence in H. Because V is closed in H, the 
sequence of v.'s converges to y E V and 

II x - y II = lim II x v. II a 
n~oo 

Now let W x - y, W'# 0, because YE V and x¢ V. We claim that WE v-'-. 
If this claim is not true, then there is a Vo E V such that (w, Vo) '# O. Let 

, (W, VO) 

y = y + "voll2 Vo 


Then y' E V and 

'112 \'\ (W,Vo) 112x - Y = x - Y II Vo 112 Vo 

2 I<w, >12 <W,VO) (W,VO> 
= Ifx-YII + "" II voll 2 (x Y,VO) ilv ll 2 <VO,X y)o 

2 l<w,vo>1 2 

X - yll - ---;;V 11 2 -­
o 


<lIx-yIl2 

This inequality contradicts the fact that II x - y II = a. 0 
We now prove theorem 9. Let IE H~/Wewant to find VE H such that 1= Iv' 

If I=:O we can take v = 0, so we will assume I ¢ 0 from now on. Let K c H 
be the subspace of H defined by 

K = {wEH; I(w) = O} 

Note that K '# H because I ¢ O. If {v.} is a Cauchy sequence in K, then V...... v 
for some v EH. By the continuity of I, we see that l(vn ) ..... l(v) so I(v) O. Hence 
v E K. Thus we have seen that K is closed. From proposition 9 there exists 
W '# 0 in K-'-. Let 
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I(w) 
v = IIwl12w 

Then 

Let x be any element of H. Notice that 

l(X»)1 X IIvll2v = I(x) -l(x) = 0( 
so 

I(x) 

x-liv vEK 


But vEK-'-, so 

I(x) )
0= x-lIvllzv,v =(x,v)-/(x)( 

Thatis,l(x) <x,v) for all xEH. 0 
Now let's return to 2P-spaces. In the beginning of this section, we showed 

that, if 9 E2 q with (lIp) + (l/q) = 1, then 9 defines a continuous linear func­
tionall E2 P* given by lif) Jfg df.1 for f E2 P

• This definition gives a map 
g 

L: 2 q ..... 2 P*' by L(g) = Ig 

This map is one to one because if Ig 0 then, in particular, 19(1A) = JA 9 df.1 = 0 
for all measurable sets A with f.1(A) < 00. This implies 9 = 0 a.e. 

In fact, when X is a-finite, it is also true that L is onto; that is, L is an 
isomorphism. We won't prove this in full generality; instead we'll prove the 

following special case. 

Theorem 11. Assume that f.1(X) < 00 and let 1 < p s 2 and q = p/(p - 1). 
Then L : 2 q ..... 2 P* is an isomorphism. 

Proof. Let IE 2 P*. We want to find 9 E!l'q such that 1= Ig. Recall that, 
because f.1(X) < 00, corollary 6 implies that 2 2(X,f.1) 2 P(X,f.1) and that 

there is a constant a > 0 such that 

for fE22II flip sa 2 

Now, by proposition 8, there is a constant c > 0 such that 

s cllfll p for fE2P 
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Thus 

II(f)Isell .s ea II! 112 for fE22 

Applying proposition 8 again we see that, if we restrict I to 2 2, we get 
something in 22*. By theorem 9 there is a gE22 such that 

IU) = ffgd,u for fE22 

We claim that g is actually in 2'1. To see this, fix K > 0 and set 

hex) = {lg(X)14
-

1 
if Ig(x) I .s K 

o if Ig(x)1 > K 

Then hex) is bounded, so he 22(X,,u) and 

II(h)I = r Iglqd,u.s ell 
Jlg(Xll";K 

IP 
e ( r Ig(X)I(q-1)P d,u)I 

J1g(Xll";K 

1-(1/'1) 

= e Ig(x)lq d,u(1 )
Ig(xll";K 

So 

Ig(x)I'I d,u)I/'1 .s e(r 
Jlg(Xll";K 

This bound holds for all K, so, by the monotone convergence theorem, we 
conclude that g(x) e 2'1. 

Finally, because 22(X,,u) is dense in 2 P(X,,u) (e.g., the simple functions 
are dense in 2 P 

), it is clear by continuit~ that 

/ 
/ 

l(f) = fi?ld,u 	 for aU fe2P(X,,u) o 

Remark. It is an easy exercise to extend this result to the case when X is 
a-finite. 

Convolution 

In the exercises of §3.5, we defined the convolution of f and g when f and g 
are in 21(R) by 
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(11) f *g(x) = t f(x - y)g(y)dy 

In those exercises you proved the following proposition. 

Proposition 12. f * gE21(R) and 

f*glll.s IIflll11g111 

Proof. 	 Consider the iterated integral 

tIR If(x - y)g(y)ldxdy = 1If11111g1l1 

By Fubini's theorem (theorem 15 of §2.5), the integral 

tf(X y)g(y)dy 

makes sense for almost aU x and is equal a.e. to an 21 function. Thus 
f * g e 21 (R) and a second application of Fubini's theorem gives 

IIf*glll tIIRf(X y)g(Y)dyldX 

.s ttlf(X-y)g(y)ldydx 

= IRt If(x y)g(y)Idxdy 

1If11111g111 	 o 

Corollary 13. Convolution is a continuous map from 21 x 21 -+ , that 
is, iff" -+ fin 21 and gn -+ g in 21, thenfn * gn -+ f *gin 21. 

Proof. Choose n large enough so that II f - fn 111 < 1. Then II f" 111 .s 
(1 + IIf11d. Now 

Ilf*g - fn*gnl11 IIU - fn)*O + fn*(g gn)1I1 

.s II r fn II til gill + II f" 111 "g - On 111 

.s IIf - fnlltlloll1 + (1 + d II g On II -+ 0 as n -+ CIJ 

D 



194 
Appendix B 

Proposition 14. Let f, g, hEg'l(R). Then 

I.f*g=g*f 
2. (f*g)*h=f*(g*h) 


Proof. 


1. f * g(x) = t f(x - y)g(y) dy 

fR f(s)g(x - s) ds, s=x-y 


= 9 * f(x) 


2. (f*g)*h(x) = fRfRf(X z - y)g(y)dy h(z) dz 

= fR fR f(x - s)g(s - z) ds h(z) dz, s=z+y 

= fR f(x s) J~ g(s z)h(z) dz ds 

= f*(g*h)(x) o 
One of the main strengths of the convolution is that it tells us what 

corresponds to a product in Fourier transform land. 

Proposition 15. (f *g) A = J(j for f, 9 E g'1(R). 

Proof. (f *g) 'W = fR e-ix~ fR f(x y)g(y) dy dx 

= r r !-iXo/(X - y)g(y)dxdyJRJR I 

= t t e-i(s+Ylo/(s)g(y) ds dy 

= J@ te-iY~g(y)dy 

= JWgW 

The convolution can be extended to g'P-spaces in various combinations. 
For instance, if f e g'P and 9 e g'q for (lip) + (llq) = 1, then f(x _ y)g(y) Eg'1 
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for each fixed x; so equation 11 makes sense. In fact by Holder's inequality 
we have 

(12) f*g(x)1 ~ IIfllpllgll q for all x 

Hence, f *9 is a bounded function when g'P and 9 Eg'q, (lip) + (l/q) 1. 

Proposition 16. Let feg'P, gEg'q, and (lip) + 1. Then f *9 is a 
bounded, uniformly continuous function on R. 

Proof. Let I) > 0 be given. We need to find (j > 0 such that if 1x - yl < (j then 
If *g(x) - f *g(y)1 < 8. Notice that 

1/* g(x) f *g(y)1 = If [f(x - z) f(y - z)]g(z)dz I 
~ IIfx - fvll"lIgll q 

where fAz) = f(x - z). Now let ¢> be a compactly supported continuous 
function with 

IIf-<blln<B 

(You can prove that such ¢>'s exist.) It is easy to see that there is a (j > 0 such 
that if Ix - yl < (j then 

pyllp < I) 

Then Ilfx - fyllp ~ Ilfx - Pxllp + Ilpx pyllp + IIi;. - Py < 38 0 
Another combination for which the convolution can defined is f Eg'P 

and gEg'1. 

Proposition 17. Let f E g'P, I ~ p, and 9 E g'1. Then f *9 is well-defined and 
is in :!l'p. Moreover 

*gllp ~ Ilfllpl!glll 

Proof. Let q = pl(p 1) and notice that 

f(x - y)1 dyf If(x - y)g(y) Idy = f 
Now, by proposition 12, Ig(y)11 f(x - y)IP is integrable for almost all x, because 
Igi and IflPare both in !ill. Thus, Ig(y)11/Plf(x - y)1 is in g'P for almost all x. 
Hence, for almost all x we have by HOlder's inequality 

1/PfIf(x dY~(f If(x - y)IPdy
) 

Ilgllt,q 
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Thus we have that f *9 is defined for almost all x; furthermore, we get 

,q
*g(x)IP::;; (J If(x - Y)lPdY}191If

By Fubini's theorem 

II f *9 Il~ ::;; (JJ Ig(Y)llf(x - dx dY) II 9 II f,q 

::;; IIfll~llglIl+p,q 

so f*gllp::;; Ilfllpllglll 

Another important use of the convolution is that it allows us to give 
explicit smooth approximations to 2?P functions. We describe this in the 
following. 

Proposition 18. Let f E2?1 and let t/J be a Schwartz function. Then t/J * f is 
Coo. 

k k 

Proof. dxd k (t/J * f)(x) d Jt/J(x y)f(y)dx k 

dk 

Jdx k t/J(x y)f(y) dy 

where the differentiation under the integral can be justified by the dominated 
convergence theorem. 

Now let t/Jo(x) be a smooth function with support in (-1,1) and such that 

(/IPQ(x)dx 1
~JR 

Let rA(x) kt/Jo(kx), k 1,2,.... Then rA(x) is smooth, supported in 
(-11k, 11k), and 

Lt/Jk(x)dx 1 

Theorem 19. Let f E 2?P. Then rA * f converges to f in 2?P, as k -+ 00. 

Proof. Let 9 be a smooth, compactly supported function with II f - 9 lip < e. 
Then 

rA * f - f II p ::;; II t/Jk * f rA *9 II p + II t/Jk * 9 gil p + II 9 f 
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By proposition 17, lIt/Jk*(f g)llp::;; Ilf - gllp because II t/Jk II 1 = 1. Thus 

IlrA* f ::;; 2e + II rA *9 - 9 lip 

Now notice that 

IrA*g(x) - g(x)1 = IJ[g(x - y) g(X)]rA(Y)dyl 

because SrA(y)dy = 1. Because 9 is compactly supported, it is uniformly 
continuous; that is, given e > 0 there is a c5 > 0 such that if lyl < c5 then 
Ig(x y) - g(y)l < e. Now rA is supported in 11k, 11k), so, if we take k large 
enough, we can make 

It/Jk *g(x) - g(x)1 < e when x E supp 9 

Furthermore, if 9 is supported in (a, b), then t/Jk *9 is supported in (a - 11k, 
b + 11k). Thus" for large enough k, we can conclude 

II t/Jk *9 - gil p < e 

Fourier Transform in !l'P(R) 

In §3.5 we defined the Fourier transform 

ley) = ff(x)e- ixY for f E 2?l(R) 

We then used the density of the Schwartz space S in 2?2, along with 
the Planche rei formula, to extend the Fourier transform to an isomorphism of 
2?2 onto . The same techniques can be used to extend the Fourier trans­
form to 2?P functions for 1 ::;; P ::;; 2. We need the following two results. 

Proposition 20. The Schwartz space S is dense in 2?P(R), P 2 1. 
We leave the proof of this proposition to the reader as an exercise. It is 

essentially the same as the proof for P 2 (theorem 15 of §3.5). 
The other ingredient we need is an 2?P replacement for the Plancherel 

formula. 

Theorem 21. (Hausdorff-Young inequality) Let 1 < p ::;; 2 and q = pI(p - 1). 
Then, for Schwartz functions/, 

(13) 11/110::;; Cllfll p for some constant C 

A good reference for the proof of this is the book by Reed and Simon (see 
the reference section, page 202). 
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This result tells us that the Fourier transform is uniformly continuous as a 
map from the dense set S c oPpeR) into the space oPq(R). By theorem 14 of 
Appendix A we can then extend it to a map of oPpeR) into oPq(R), and 
inequality 13 still holds for allf E oPpeR). 

Appendix C 
A Non-Measurable Subset 
of the Interval (0,1] 

Let Sl be the set of complex numbers of modulus one (complex num­
bers of the form, C = a + ib, a, bE R, with a2 +b2 = 1.) This set forms a group 
under complex multiplication: If CI, C2 E Sl then CICZ and CI/C2 E Sl. As a set 
one can identify Sl with the interval, I = (0,1], by means of the map 

21fil(1) f: I~SI. f(t) = e . 

(Notice that this map is both one-one and onto.) We will use the identification (1) 
to transport the Lebesgue outer measure. J.l .... on subsets of I to subsets of S I; in 
other words if A is a subset of SI we will define J.l*(A) to be J.l*(f-I (A». (Thus, 
to show that there exists a non-measurable subset, U', of L it will suffice to show 
that there exists a non-measurable subset, U, of Sl and then take U' = f- I (U).) 

Let Qnl be the set ofration al numbers in the interval, I, and let Sb = f(Qnl). 
We claim 

Lemma 1. Sb is a subgroup of Sl . In other words, if CI and C2 are in Sb so are 

CICZ and CI/C2' 

21fil1 and CzProof. By assumption CI = e = eZ1fil2 with tl, t2 E Q n I. Choose Sl 

and Sz in Q n I so that (tl + tl) s) and (tl tz) - Sz are integers. It's clear that 

21fis1 and CI/C2 
21fiS2

CI C2 = e = e • 

o 

Given a subset, A, of Sl and w E Sl let wA = {wa, a E A}. We leave the 
following as an exercise 

199 
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Lemma 2. For all subsets, A. ofSl and all W E Sl 

(2) J.L*(wA) J.L*(A). 

Hint: §1.3 exercise 14. 

Since the rational numbers on the interval, I. are a countable set, so are the 
points of Sb. Let 

{Wi,; = 1,2, ",;Wi E Sh} 

be a sequence to which every element of Sh belongs. Without loss of generality 
we can assume that Wj :I Wj for; :I j. We will say that a subset, B, of Sl has the 
coset property (with respect to Sb) if the sets 

Bj = wjB, j = 1,2, ... , 

are mutually disjoint: Bj n Bk = ¢ if j :I k. It is clear that sets with this property 
exist. In fact let c be any point in S' and let B be the one element set consisting 
of c. Then Bi n B j :I ¢ implies CWi CWj or, dividing by C. Wi = Wj. Le. ; = j. 

Let's pick a set. Bmax. with the coset property which is as "large as possible," 
i.e. which is so large that if we add one more point to it, it no longer has the coset 
property. t We claim that one of the sets 

(3) Bk =WkBmax. k = 1,2, .. ,. 

is non-measurable. Indeed. by assumption. these sets are mutually disjoint; and 
the fact that Bmax is "as large,.as possible" implies that 

/."/-' 

(4) UBk = st, 

(Proof: if this were not the case, there would exist acE st not in the union of the 
Bk 's; and by adding C to Bmax we would get a larger set with the coset property.) 
Suppose now that the Bk'S are all measurable. Then, since the union (4) is disjoint: 

(5) 'EJ.L*(Bk) =J.L*(SI) = J.£*(I) = 1. 

But, by (2), 

(6) J.L*(Bk) = J.L*(Bllwx)' 

, Our naive intuition tells us that such a set has to exist; however, the existence of such a set involves 

some delicate issues in set theory (such as the axiom of choice and Zorn's lemma). Suffice it to say 

that the standard axioms of set theory permit us to assert that such a set exists, confirming our naive 

intuition. 

A Non-Measurable Subset ofthe Interval (0,11 

so the left hand side of (5) is either zero orinfinity depending on whether J.L*(Bmax) 
is zero or greater than zero. This argument by contradiction proves that one of the 
Bk 's has to be non-measurable. 

Exercise. In fact show that all the Bk'S are non-measurable and that Bmax is also 
non-measurable. 

Hint: See the exercise in §1.3 cited in the previous hint. 

http:large,.as
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