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A Unified Approach to Least Squares
Adjustment

12.1. INTRODUCTION

In the different chapters of Part II of this book several techniques of least
squares were introduced. In all these techniques a distinction was made
between different groups of variables appearing in the mathematical formu-
lation. Observations were designated as those variables for which covariance
matrices are available a priori, and the parameters were the variables usually
unknown in the adjustment. It was specified further that condition equations
are those written as functions of both observations and parameters, and
constraint equations are written only in terms of the parameters. Such
classification of variables and equations follows what happens in reality and
is therefore quite adequate for formulating many of the adjustment problems
encountered in practice. However, recent rapid advances in the fields of
geodesy, surveying, and photogrammetry have made it desirable to have an
adjustment approach that can handle a mixture of input data in a more
general and unified manner. As an example, computational orbital photo-
grammetry problems may involve regular photogrammetric data, orbital
constraints, time measurements, auxiliary sensor information such as stellar
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334 A UNIFIED APPROACH TO LEAST SQUARES ADJUSTMENT

photomeasurements, laser altitude and doppler information, and gravity
information. Although it would be possible to handle such complex adjust-
ment problems by techniques developed in Part II, an approach in which
varying types of data can be handled with minimum effort and specialization
would certainly be more appropriate. It is the purpose of this chapter to
introduce and discuss such an approach, which is being progressively incor-
porated in many of modern photogrammetric and geodetic computational
systems.

The most important underlying factor to this approach is the assumption
at the outset that all variables involved in the mathematical formulation are
observations.

With this assumption no individual group classification becomes neces-
sary as long as we introduce into the concept some kind of mechanism by
which a differentiation can be made whenever necessary. Such a mechanism
is conveniently given by the covariance, or weight, matrix of the observa-
tions, which in this case are all the variables in the model. To demonstrate
the practicality of this approach, consider the following two extreme cases:

1. If an observation (in this case any variable in the model) is given an
infinitely large variance, that is, its weight is w = 0, then it is allowed to
vary freely in the adjustment and will therefore assume the role of an
unknown parameter in the classical sense.

2. If on the other hand the observation is given a zero variance, or a weight
that approaches infinity, w — o0, it is simply not allowed to change in the
adjustment, with the consequence that its residual will be zero and it
would assume the classical meaning of a constant.

Between the above two extremes lies a large set of possibilities within
which actual observations (in the classical sense) fit. Of course, one of the
most important points to watch is that when the covariances of a heterogen-
eous set of variables are all collected together, care must be exercised in
regard to units and dimensions. This is particularly important if we choose
to use cofactor matrices instead of covariance matrices. In such a case only
one common factor must be chosen to relate the different covariance
matrices together.

Having lifted up the distinction between observations and parameters,
the differentiation between condition equations and constraint equations
used in Part II no longer applies. This is because the parameters are now
considered as observations, thus rendering the constraints as conditions.
However, because the constraints usually refer to strict geometric or func-
tional relations (such as points lying on a straight line, circle, and so on),
their treatment is deferred until later. But first we shall consider the case of
adjustment of observations and independent parameters treated in Chapter
6 (Part II).
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12.2. FORMULATION

We begin by limiting consideration to linear functions. Let the classically
designated observational vector be / with a priori cofactor matrix Q and a
vector of residuals v. The variables, usually referred to by parameters, will in
the present case be treated as observations. For this purpose we use the
vector x with a priori cofactor matrix Q,, and a vector of “corrections” A.
There are n elements (observations) in / (and of course in v) and u elements
(parameters) in x (and in A). In the classical approach of Part II the redun-
dancy is r = n — n, and the total number of conditions is ¢ = r + u, remem-
bering that n, is the minimum number of variables necessary to specify the
problem. In the unified concept all variables are observations, thus a total of
(n + u) observed values. This is equivalent to adjustment of observations
only, given in Chapter 7, where the number of equations is equal to the
redundancy. In the present case the redundancy is equal to the total number
of observations (n + u) minus n,, or

(mn+u—ny)=r+u=c

Thus the new considerations under the unified approach lead to the same
situation as would be the case when the classical procedure is followed.
Let us write the ¢ originally linear equations in the form

A+ v)+B(x+A)=d (12.1)
where

Ais ¢ x n,rank (A)=c¢

Bis ¢ x u, rank (B)=u

discx1
all of which are coefficient matrices. Rearranging equation (12.1), gives

Av+BA=d— Al-Bx=T1 (122)

Equation (12.2) may be rewritten more concisely as

Av={ (12.3)
where

A=[A B] (12.4a)

v=[v A (12.4b)

and the corresponding a priori cofactor matrix is

Q- [3 (;’] (12.4c)
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where no correlation is assumed between the two vectors / and x. The least
squares solution for equation (12.3) is obtained by applying equations (7.4)
and (7.5) as follows: ‘

QA'(AQA’ + BQ,, B)~'f

or
vl _[Q 0 |[A N 17
=[5 o [w]ie - emmr
from which
v=QA/(Q, + BQ,, B) T (12.52)
A =Q,.B(Q. +BQ,,B) 'f (12.5b)

We first reduce equation (12.5b), by substituting for the inverse in it by its
equivalent as given in equations (A68) and (A69) (Appendix A):

A=0,BQ '[1-BBQ;'B+Q.) 'BQ '] (12.6a)
Realizing that W, = Q. ! and referring to the auxiliaries used regularly,
A=Qut— Q. NN+ W) 't (12.6b)

Now applying equation (A70) (see Appendix A) to the inverse in equation
(12.6b), then

A= Qxx t— Qxx NN~ I(N- ! + Qxx)_ lex t
= [Qxx - Qxx(N_ ! + Qxx)_ 1Qxx]t
which from equations (A69) and (A68) again leads to
A=(N+Q ) "t=(N+W,_) 't (12.7)

Equation (12.7) shows that the only difference between the classical
approach and the unified treatment is that the a priori weight matrix of the
parameters W, is added to N and in computing t the vector f of equation
(12.2) is used instead of the usual f of equation (6.6). When W_, =0and a
priori x = 0, that is, when A represents strictly unknown variables (par-
ameters), the unified approach immediately reduces to the “classical ” one.
Once A is computed from equation (12.7), the final estimate of the parameter
vector would be X = x + A, where x is the a priori value.

Returning to equation (12.5a) we may reduce it in a manner similar to
that used above. Thus

v=QAY(Q, + BQ, B)'T
= QA'Q; '[I - B(B'Q; 'B + Q.,')  'B'Q; 'If
= QA'W[f - B(N + Q.,')"'t]
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or
v=QA'W,(f — BA) (12.8)

Equation (12.8) is similar to the result obtained in Chapter 6 (Part IT) given
by equations (6.13) and (6.17). Therefore the relation for computing v re-
mains the same except for the fact that here f and A are computed from
equations (12.2) and (12.7) instead of equation (6.24).

12.2.1. Alternative Derivation In the foregoing development we treated the
case of having the classically designated parameters considered directly as
observations, and applied the results of adjustment of observations only to
derive equations (12.7) and (12.8). The same results can be obtained by
applying the minimum criterion of least squares to equation (12.2). Of basic
importance here is the fact that A in the present case plays a role equivalent
to that of “residuals.” In other words, although v is the vector of residuals
for I A is the vector of “residuals” for the “observations” x. Thus the scalar
to be minimized in this case is

® =vVWv + A'W__ A — 2K'(Av + BA — 1) (12.9)
and then,

0

i 2vW — 2k'A = O
and

%{? =2A'W,, — 2k'B = 0
or

Wy —Ak=0 (12.10a)

W, ,A—-Bk=0 (12.10b)
From equation (12.10a)

v = QA’k (12.10c)

and using it in equation (6.5) and solving for k

k = (AQA")~!(f — BA) = W,(f — BA) (12.10d)
Substituting equation (12.10d) into (12.10b) leads to

W, A —BW,(f—BA)=0
or

(N+ W JA=t (12.11)
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The solution of equation (12.11) for A gives equation (12.7), thus proving
that either of the two procedures given above leads to the same results.
Equation (12.8) can also be obtained from combining equations (12.10c) and
(12.10d).

12.2.2. Parameter/Observation Consideration The two methods given
above dealt with the case when the parameters, as classically designated, are
treated strictly as observations. At the end of each derivation we ended up
with a relation for computing the vector A. In practice, even though the
unified approach does not distinguish between observations and parameters,
the groups of variables do in fact present themselves in specific categories,
and the parameters are most often those variables that are required. On the
basis of this premise it is possible to have a third approach to the unified
concept.

We can begin by considering that /is an n x 1 vector of observations with
a cofactor matrix Q and a residual vector v, and x is a u x 1 vector of
parameters with a correction vector A. Thus ifr = n — n, is the redundancy,
we may as usual write ¢ = r + u conditions in terms of v, /, X, and A. We may
further consider that there are u “observations” x with a cofactor matrix
Q,, and a residual vector v,.. This makes the total number of observations
(n + u), which with the given minimum number of required variables n,
changes the redundancy to (n + u — ng) or (r + u). Given u parameters in
addition leads to a required total number of condition equations of (r + 2u)
or (¢ + u).

The first set of ¢ conditions is that usually available from the geometric or
physical conditions of the problem and formulated in equation (12.2). Added
to that we must have u more “conditions” to account for having a priori
“observations” on the parameters. These may be formulated by recognizing
that at the end of the adjustment, the value of the estimated parameters X
must be identical to the “estimated observations” for the same variables, or

X=x+A=x+v,
or

v,—A=0 (12.12)

Combining equations (12.2) and (12.12) gives

2l

Av+BA=f (12.13b)

or
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for which the total cofactor matrix is Q given by equation (12.4c). Least
squares may now be applied directly to equation (12.13b). Thus

o AQA' 0 0
Q.=AQA'= [ % QxJ = [?) Qxx} (12.14a)
N=BW,B=[BW,B+W,_]=(N+W,) (12.14b)
t=BW, f=BW, T=t (12.14c)
and thus
A=N"lt=(N+W,) 't (12.14d)

Equation (12.14d) is obviously identical to (12.7) and hence all three
methods of derivation are identical. Again, X = x + A.

In this linear case it is possible to assume that A is the total parameter
vector as has been the practice in Part II. Thus equation (12.12) becomes

v.—A=—x (12.15)

with x being the a priori “observational values” on the parameters, and f
changes to

, f

f= [_x} (12.16a)
Hence,

t=BW, f=[BW,f+W,_x]=(t+W,_x) (12.16b)

A=(N+W_ ) (t+ W, x) (12.16¢)

Note that the value of t in equation (12.16¢c) is computed on the basis of
f=d — Aland not f given in equation (12.2).

Example 12.1. Consider a very simple problem (Figure 12.1) of determining the
elevation of a point P by measuring the difference in elevation between it and two
reference points A4, B, the elevations of which are zero. The observations are
Iy =110 m and [, = 1.12 m with a covariance matrix £ = 10~ *I, m>. Let the a
priori value for the elevation of point P be 1.00 m with a variance of 0.01 m?.

P(x)

h

Figure 12.1
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The first procedure of solving the problem is to consider having three observa-
tions 1.10, 1.12, and 1.00 m with the covariance matrix

L = diag. {1074, 1074, 10~ %} = 10~ * diag. {1, 1, 100} = 63 Q
Since there is only one elevation to be determined, we write two conditions
vy —v,=(x—=1;)=—0.10 m
Vg —U,=(x—1)=—-0.12m
1 0 —1 -0.10
[0 1 —1]” B [—0.12]
Q. = [101 100] W, = ml)'r[ 101 - 100} _ [ 0.0094527]
100 101 —100 101 —0.0105472
(the k’s are computed to many decimal places for purposes of checking later). Next
[vi va v,]=[00094527 —0.0105472 0.10945] m

Thus
I, = 1.109453 m I, = 1.109453 m and X = 1.10945 m

which show the consistency of the results even to five decimal places. Practically
these values should be rounded to two decimal places only.

A second procedure would be to apply equation (12.7). However, we first write the
conditions

L+vy,—x—A=0 and L+vy,—x—A=0

-11A [x-1 —0.10 m
v+[_1} _[x—lz}_[—O.IZm] or v+BA =T

Then with

Q=W=1I and W,, = (100)"! =001

N=2 t=022m and A =(2+001)"(0.22) =0.109453 m
Hence

X=x+A=1.109453 m

The third technique allows for solving for the parameters directly rather than for a
correction vector A since the equations are linear. In this case

f=[-110 —L112]
t=22m

and
=t+ W, x=222+001=223m

Applying equation (12.16c) yields
A =(2+001)"1(2.23) = 1.109453 m

which is identical to those obtained before.
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12.3. THE UNIFIED APPROACH AND
NONLINEAR FUNCTIONS

In this section the following nonlinear conditions are considered
Fl, x)=0 (12.17)

Denoting by /° and x° two approximation vectors for the observations
and parameters, the linearization of equation (12.17) follows the procedure
given in Section 11.1.2 or

Av + BA = f° (11.8)
in which f° is given by
f°= —[F(l° x°) + A(l — )] (11.7)

In addition to the two approximation vectors, there are also two vectors of
observations, / and x, with a priori cofactor matrices Q and Q,,, respec-
tively. The estimate X of x is

x=x"+A=x+v,
from which
v, —A=x"—x="1, (12.18)

Equation (12.18) differs from equation (12.15) in that the latter does not
contain x°, because no approximations are needed if the conditions are
originally linear. Therefore if we replace x by (—f,) in equation (12.16c),
then the solution for equations (11.8) and (12.18) is

A=(N+W,)(t—W,_1) (12.19)

In evaluating t in equation (12.19) the appropriate value of f° must be used.

It is important to say a word about the value of f, during different
iterations of the nonlinear solution. At the beginning of the first iteration, it
is quite practical and convenient to take x° = x, or to assume that the
approximations for the parameters are equal to their a priori “observa-
tional ” estimates. This will obviously lead to the first f, being equal to zero.
After the first iteration is completed a value A, is computed, which when
added to x° gives an updated value for the vector of approximations. In the
meantime the “ observational” values x do not change all through the itera-
tive process. Consequently, for the second iteration, f, is no longer zero but
is equal to x° + A, — x = A,, since x° = x. At the beginning of the third
iteration, f, = A; + A,, and so on.

The same discussion applies also for the term A(/ — /°) in the computa-
tion f° from equation (11.7), when we iterate on the observations. Although
it may be zero at the beginning, it acquires finite values in succeeding
iterations.
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Example 12.2. It is required to fit a straight line with the equation y — mx =0
through the two points (1.1, 2.1) and (2.1, 4.0). The cofactor matrix for these coordin-
ates is the identity matrix. An a priori estimate for the one parameter (the slope of the
line) is m = 1.0, and its a priori cofactor is gq,, = 100. Compute the final estimate m for
the line slope from this data.

Solution: It would take one point with its two coordinates, in addition to the
origin, to determine the line. The second point is intended to lie on the line and
therefore only one coordinate is needed to fix its position on the line. Hence there is
one additional observation more than the minimum necessary to determine the
geometry of the problem, that is, 1 degree of freedom. In total, n = 4, no = 3, and
r = 1. With u = 1 for the parameter m, then ¢ = 2 conditions, one line equation for
each of the two given points,

yi—mx; =0 withi= 1,2

Denoting by m° the approximate value for the parameter, the linearized form of this
equation becomes (we choose not to iterate on the observed coordinates in this
problem)

—mCv, + v, — x; 6 = m°x; —
or
[-m° 1vi+[-x]A=f

Using the given data and choosing m® = m = 1, the matrices for the two condition
equations become

-1 1 00 ~11 ~10
A‘[ 00 -1 1} B—[—Zl] f=[—1.9}

2 0
0 2

with

W=1I W, =AA'= [ }, N = 28], and t = 2.545

Because m® = m, the value of f, for the first iteration is zero according to equation

(12.18). Thus with W, = 0.01 then

A, =(2.81 +0.01)1(2.545) = 0.902482

md =m° + A; = 1.902482

S = 0.902482
Using these values, the second iteration becomes

A, = (1.216598 + 0.01)~*(—0.005118) = —0.004172
For the third iteration,

md = 1.898310,  f,, = 0.898310, and A3 = 0.000025

which is considered to be sufficiently small to terminate the iterations. The final
estimate of the line slope is

m = 1.898310 + 0.000025 = 1.898335



124 THE UNIFIED APPROACH AND PARAMETER CONSTRAINTS 343

124. THE UNIFIED APPROACH AND
PARAMETER CONSTRAINTS

Any constraint is in a real sense a function reflecting some geometric or
physical relation between a number of variables. Therefore they can prac-
tically be viewed as “conditions” containing some type of “observations.”
For example, constraining a distance to a given value D can be done as
closely as the known value of D. In the treatments of Chapter 9 (Part II), in
which equations of the type CA = g were used, the distance D would be
assumed known perfectly, or with infinite weight (zero variance). In the
present situation under the unified concept, we would take D as an observed
quantity and choose a value for its weight commensurate with the reliability
of its known value. The higher the value of its weight, the closer we get to
perfect satisfaction of the constraint.

Although the example of a distance can be easily visualized, there are
many other instances in which constraints do not include variables that are
amenable to being considered as observations. As an example we refer to the
case of constraining a set of points to lie on a line or a circle. All variables in
such functions are what have been conventionally considered parameters.
The only other variable may simply be the numerical zero, which would
obviously be a constant. It is that constant which we now convert to an
“observation,” regardless of its numerical value. Consequently, in each
equation conventionally known as a “constraint,” the constant is replaced
by an observational variable that is denoted by I.. (This would replace the
distance D in the first example, and the “zero” in the second example.) In
addition to the total vector of “constraint observations” /,, the parameters x
would be the only other variables in the set of equations replacing the
constraints. These equations may in general be nonlinear and therefore take
the form

F(l,x)=0 (12.20)

which is the same form as equation (12.17). Thus we can appreciate how the
unified concept allows for only one general type of condition equations. In
fact, with x also treated as a vector of observable quantities, we may com-
bine equations (12.17) and (12.20) into one equation,

F(l)=0 (12.21)

in which /, represents the total vector variables. Equation (12.21) is essen-
tially the same as that given by equation (11.10). The only difference is that
in equation (11.10) the vector / denoted only the one set of variables conven-
tionally known as observations, whereas in (12.21) the vector /, includes
several subvectors each referring to one class of conventional variables (that
is, observations, parameters, and so on). It would be possible to develop a
solution directly from equation (12.21). However, as has been shown on
several occasions such a direct treatment invariably leads to undue complex-
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ities in the derivation. Therefore for practical reasons as well as for conve-
nience, it is prudent to partition the system of equation (12.21) and proceed
with the development such that groups of variables usually encountered
together in practice are treated as separate subsets.

Considering equations (12.17) and (12.20) together, the variables are

! nx 1 vector of conventionally designated observations (Q is its a

priori cofactor matrix.)

t x 1 vector of observations arising with the constraints (Q,, is its a

priori cofactor matrix.)

X u x 1 vector of variables conventionally known as parameters (Q,, is
its a priori cofactor matrix.)

l

(4

There are ¢ equations in (12.17) and s equations in (12.20). If /%, £, and x°
denote vectors of approximations, v, v., and v, denote vectors of residuals,
and A;, A,, and A represent vector of corrections to the approximate vectors,
then

I+v=1DP+ A (12.22a)
L+v,=0+A, (12.22b)
For the linearization of equations (12.17) and (12.20) we use the auxiliaries
A= g—}; is ¢ x n matrix of rank equal to ¢
B= g—i is ¢ x u matrix of rank equal to u
A, = a;;‘ is s x t matrix of rank equal to s
C= 21;‘ is s x u matrix of rank equal to s
Thus
Av + BA = f° (12.23a)
Av.+CA=1° (12.23b)
in which
= —[F(° x°) — A(l° - 1)) (12.24a)
f2 = —[FL, x°) — AL - 1)] (12.24b)
with

f,=x"—x (12.24¢c)
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then
A 0 O0}]v B fo
0 A, O]}v.|+] ClA=|f° (12.25)
0 0 If]|v, o | f.
Letting, as has been customary,
W, = (AQAY)™! (12.26a)
wec = (AL‘ QCC Az)_ ! (12'26b)

the normal equations for A from the conditions of equation (12.25) would be

W, 0 0 B
B C -1I|]0 W, 0 cla
~1

0 0 W,
w, 0 0| [f

=B c -1n]lo w, o] |f

0 0 W f

XX

or
[BW, B + C'W,, C + W,_]A
=[BW,f°+CW, f°—W_f] (1227)

Introducing new auxiliaries and repeating earlier ones for the sake of
completeness,

N=BW,B (12.28a)
t=BW,f° (12.28b)
N.=CW,.C (12.28c)
t.=CW,f? (12.28d)
equation (12.27) takes the shorter form,
[N+ N +W_ JA=[t+¢t. —W,_ 1] (12.29a)
from which
A=(N+N+W_ ) (t+t—W,_ 1) (12.29b)

Equation (12.29b) gives the vector of estimates for corrections to parameter
approximations when all variables have a priori values as well as a priori
cofactor matrices. The terms N and t reflect the contribution of the conven-
tionally known observations; the terms N, and t,, the contribution of con-
straints; and the remaining terms, the contribution due to a priori
knowledge of the parameters themselves.
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In the forgoing development allowance was made for linearization and
iteration on all variables in the model to make the analysis as general as
possible. It should now be shown how the iterative process proceeds on this
general case, and then the possible simplifications for special cases should be
pointed out.

Let x(,, &), and [, denote the initial approximation vectors, with, of
course, X, /, and [, being the a priori (observational) values that do not
change during the adjustment. With these values the matrices and vectors A,
B, A, C f° 0, and f, are numerically evaluated and used to form N, t, N,
and t., which in turn are substituted in equation (12.29b) to yield the first
vector A,,. This vector A, is then added to x{, to obtain an updated vector
of approximation x{,,. In order to get updated vectors of approximations [},
and I,,, we need to compute the two vectors v and v,. From equation (12.8)
we may easily write

v=QA'W,(f° — BA) (12.29¢)
and in a similar manner

v.=Q. Al W, (f — CA) (12.30a)
finally,

v,=x—x+A=1,+A (12.30b)

Using the value A ;, in equations (12.30a) and (12.30b), the first two values
v, and v,;, can be computed. These may be used in equations (12.22a) and
(12.22b) to compute the correction vectors A, and A, for the correspond-
ing approximation vectors [, and [3,, . These relations in recursive form are

Agry =1+ Va1 — 18’) (12.30c)
Aivry =1+ Veiu1) — L) (12.30d)

in which we must note that / and /, are the a priori “observations” that
remain constant all through the iterations. Equations (12.30c) and (12.30d)
may be rearranged to give a more convenient form from which the updated
approximations /° and £2 may be obtained directly.

iy =Ty + A1y =T+ Vi (12.30e)
Livny=o + Acge1y = L+ Va1 (12.30f)

Thus with v, and v, we can readily get, from equations (12.30e) and
(12.30f) the vectors [}, and [, ,, respectively. Given these, together with x{;,
computed before, we may proceed to re-evaluate all matrices and vectors
leading to computing a new vector A,,. The procedure of obtaining a new
X0y, I%), and [, is repeated in its entirety. At the end of each iteration a
criterion, established a priori, is checked to see if the process is to be con-
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tinued or stopped (see section 11.4). When such criterion is satisfied and the
iterations terminated, we get the final estimates,

J
I=1+vg, (12.31b)
L=1+v, (12.31¢)

(f) denotes final value.

12.4.1. Special Cases 1. If all functions are originally linear, then

P=P=x"=0 (12.32a)
fO=f=d-— Al (12.32b)
fO=f =d —A,L (12.32¢)
f = —x (12.32d)
A=(N+N+W_ ) '(t+¢t+ W, x) (12.32¢)

noting that in computing t and t,, we use f° and f° as evaluated from
equations (12.32b) and (12.32c).

2. If the functions are linear and there are no constraints, then equation
(12.32¢) reduces to equation (12.16c), or

A=(N+W_ ) '(t+W,x) (12.16¢)

by dropping the two terms N, and t,.
3. For nonlinear functions without constraints, equation (12.33b) becomes
the same as equation (12.19), or

A=(N+W_ ) (t—W_T1) (12.19)

If we iterate on the observations, we compute t using f° from equation
(12.24a). If we do not iterate on the observations, a situation that occurs
often in practice, then

f= —F( x°) (11.9)

must be used in evaluating t. The iterative process would involve computing
successive values for A only, whereas v may be computed only at the last
iteration, unless it is needed for the criterion of termination of the iterations.

Example 12.3. Consider the problem of Example 9.5 and rework it to show how
the unified approach accommodates parameter constraints by changing them to
condition equations with appropriate weight matrices. For convenience first recall
the data,

Av + BA =f withQ=I
D,A+D,;A'=h
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where
2 —3] ~1.1 1
A=1; B =]-1 2 f = 1.2 h=[ ]
3,2 3,1 3
0 1 1.0
1 -1 1] Xy .
Dl = [2 —I:I D2— |:_24 A = [x2:| A = X3

Rewrite the equations in the general form
A ~~
Av + [B 0][A,]=f or Av+BA=f

A v, + [Dy Dz][i,] =h=H{, or A, v.+CA=Tf,

with obvious correspondence in terms. The numerical values of these matrices are

A =1

2 -3 0
1 -1 1
B=|-1 20 C =
3,3 2,3 2 -1 =2
0 1 0

and f and f, (= h) are as given above. Realizing that this is a linear case, the solution
for A =[x; x, x;)' may be obtained by applying equation (12.32e), modified
slightly to accommodate the fact that there were no a priori values for those three
variables. Thus with W, , = 0 and x = 0, we have

A=(N+N,) t+1t)
-which, because A = A, = I, may be expanded to

A = (B'WB + CW,, ) {(BWIF+ CW, 1)
with
W=Q ! and W.=Q:'

The relative magnitudes of W and W, comprise the mechanism by which we can
insure that the constraints are treated properly. Since W = I as given in the data of
the problem, we are free to choose a suitable value for W .. The ideal case is when
W, is infinitely large relative to W. In order to determine which value of W, is
“practically ” infinite, consider several possibilities. Just for the sake of establishing a
trend, begin by the rather unrealistic value of W, = I as well. With these two values,
the above equation gives
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The answer is clearly different from the correct one obtained in Example 9.5, a fact
that should have been expected. Next, use W, = 10I and get

[x; x; x3],=[106000 108188 —0.98038]
which is already closer to the correct answer. Further, with W = 1001
[x; x2 x3]3=[106210 1.08299 —0.97934]

which may be considered as essentially the same as the correct answer. If, however, a
closer set of values is desired, we may increase W, to 10001 or even more, depending
on the accuracy of the required final answer.

12.5. PRECISION ESTIMATION

Applying the propagation principle to equation (12.29b), it can be readily
shown that

QAA = (N + Nc + Wxx)_ 1 (12-333.)

The fact that Q,, is the inverse of the sum of three weight matrices should
seem reasonable, since each matrix represents the contribution of one of the
three sources of information. The matrix W,, expresses what is already
known about the parameters before the adjustment, and N and N_ express
the contributions of the conditions and constraints, respectively.

Equation (12.33a) reduces to already known relationships when different
restrictions are enforced. For example, when W_, = N_ = 0, which means
that there are no a priori parameter information and no constraints, then

Q. =N"! (12.33b)

which is the same as equation (6.29).
If there are no constraints, that is, if N, = 0, but the a priori weight matrix
for the parameters W, is given, then

Qua=N+W,)"! (12.33¢c)
A third interesting case is when W,, = 0 but N, # 0, for which
QAA = (N + Nc)_l (12.33(1)

This equation can also be shown to reduce to an earlier form given the
proper assumption. Rewriting equation (12.33d) in an expanded form in
view of equation (12.28c), then

Qu=N+CW,C)™! (12.34a)

which may be expanded further, by applying equations (A68) and (A69)
(Appendix A), to

Qu=N"! —=N~ICYQ,. + CN~!C")~ICN-! (12.34b)
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In equation (12.34b), the matrix Q. is the inverse of W,., which is from
equation (12.26b)

Q.. =A. Q. A (12.34¢c)

Conventional treatment of constraints requires those equations to be strictly
satisfied. This is equivalent to saying that Q,. = 0 (or equivalently W — o0),
which leads to having Q,, = 0 from equation (12.34c). With the vanishing of
Q... equation (12.34b) may be rewritten as

Qu =N -C(CN~'C)"'CN7] (12.34d)

which is identical to equation (9.15b) derived for the conventional case.

The next cofactor matrix to evaluate is that for all the observational
residuals v,, which is denoted by Q,,. To derive this matrix, we first rewrite
equation (12.25) in a more compact form

Av,+BA=T{, (12.35a)
with associated total cofactor matrix,
Q O 0
Q=10 Q. 0 (12.35b)
0 0 Q..
Applying equation (6.30)
va: = Q, AIW, A Q,—Q, Al W, BQ,, Btwet A Q, (12'36)
in which
(AQAH~! 0 0
wet = (At Qtt Az)_ t= 0 (Ac Qcc AE)— ! 0
0 0 Q.

W o0 o0
=10 W, o0
w

] (12.37)
0 0

xx

Q... = Q.. Qo

symmetric Q,,.

i vi vi,,- vix ]

QA'W,AQ [—QA'W,BQ,, CW, A.Q.] [QA'W,BQ,,]
— QA'W,BQ,, B'W, AQ]
= [Qcc A: wec Ac Qcc [Qcc A: wec CQAA]
- Qcc A: wec CQAA C'wec Ac Qcc]
| symmetric [Q.x — Qaal

(12.38)
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Equation (12.38) is rather general in as much as it gives not only autoco-
factor matrices for all three residual vectors, v, v., and v, but also their
crosscofactor matrices (for example, Q,,, Q,,., and so on). The total cofac-
tor matrix of the estimated “observations” may readily be obtained from

R Q: Qu Qi
Q. =Q, — Qv,v. = Qlclc Qi.;c
symmetric Q;;
(Q - Qvu) - vic - vix
= (Qcc - chvc) _chux (1239)
symmetric (Qux — Qu.0)

where the terms such as Q,,, Q,,,, and so on, are obtainable from equation
(12.38). Similar to equation (12.38), equation (12.39) is also of general nature
such that various relationships derived earlier can be extracted from it.
From example, the (1, 1) term (on the first row and first column) in equation
(12.39) gives directly the familiar relation Q; = Q — Q,, . Another example
is the crosscofactor Q,; in the (1, 3) term. Recognizing that X = A for the
conventional treatment of linear functions given in Chapter 6 (Part II), then

Qi = Qi = —Q,,, = ~QA'W, BQ,,
which, in view of equation (6.29) becomes
Q= —QA'W,BN! (12.40)

Equation (12.40) gives a result that is identical to that given by equation
(6.32).

Example 12.4. Compute the a posteriori cofactor matrices for the numerical
Examples 12.1, 12.2, and 12.3.

Solution:

1. The Problem of Example 12.1: The cofactor of the elevation of point p is
Qu = (N+ W, ) ! =(201)"! =0.498

2. The Problem of Example 12.2: The problem here was of fitting a straight line
through the origin and two given points. A priori value for the one parameter, the
slope of the line, was given. Thus this is a case of a nonlinear problem with a priori
parameter data but no constraints. Given a priori W,, = 0.01, the solution was
iterated three times in Example 12.2, for which we give the corresponding W,,,

Wysg) = 2.81 + 001 =2.82 after the first iteration
Waay = 1.216598 + 0.01 = 1.226598 after the second iteration
Wasy = 1.220788 + 0.01 = 1.230788 after the third iteration
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We have given the computed values for all three iterations in order to illustrate a
point. It is quite important when iterating a nonlinear problem to make sure that
Qaa or W, is computed from the last set of normal equations. Otherwise although
the estimate of the vector itself, A, may be correct, the estimate of the associated
cofactor or weight matrix can be considerably in error as shown by the above set of
values.

3. The Problem of Example 12.3 Here we had linear conditions, linear constraints,
but no a priori W, for the parameters. According to the symbols in Example 12.3,
then,

Qxx = QZK = [i.;t(“l)ﬁ + t.’:'(“Ic:t.‘)é]ﬁ !

with
2 -3 0 1
B=|-1 2 o C=
0 1 0 2 -1 =2

The computed result will depend on the choice for a value of W_,. If we write a
general expression as W, = al, then

-1 1
and W=1

T 5 -8 0 5 -3 -=-31|
Q.x= -8 14 O +a]|-3 2 1
L 0 0 o -3 1 5
With an o = 10,
[ 505 —308 —300] ! 0.125488 0.160414 0.043208
Quxy= | —308 214 100 = 0.210219 0.054204
—300 100 500 symmetric 0.017084
With an o« = 100,
5005 —3008 —3000] !
Qxx(Z) = 2014 1000
| symmetric 5000
[ 0.117745  0.156300 0.039886
= 0.208033 0.052173
symmetric 0.013397
Finally, with an « = 1000,
50005 —30008 —30000] ~!
Q.x3y = | —30008 20014 10000
—30000 10000 50000 |
[ 0.117133  0.156108 0.039058
= 0.208107 0.052043
_symmetric 0.013046

The values in Q,,(;) agree with the proper values computed in Example 9.5 only

to the first decimal place. As the value of a increases to bring W, closer to what it
should be (infinity in the limit), the values computed from the present unified
approach get closer and closer to the answer by conventional means.
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12.6. THE REFERENCE VARIANCE

The computation of the a posteriori estimate of the reference variance is
similar here to the other cases covered in Part II. We need to compute the
total quadratic form (viW,v,) and divide it by the number of degrees of
freedom in the adjustment. Since all the variables are considered as observa-
tions, the situation may be treated in the same way as the limited case of
adjustment of observations only, covered in Chapter 7 (Part II). The quadra-
tic form in the present case, however, is formed of several parts correspond-
ing to the natural division of variables as they are presented in practice. For
example, referring to equation (12.25) the quadratic form may be written as

d=vVWv+VvW_ v.+VW_ v (12.41)

As regards to the number of degrees of freedom, this is often determined
prior to the writing of the condition (and constraint) equations. A direct way
to compute it is often to take the difference between the total number of
equations and the number of unknowns.

Example 12.5. Consider the simple problem of the one-loop level net given in
Example 12.1. If we assume for the moment that there was no a priori value for point
P, the problem may be solved quickly by the method of adjustment of observations
only:

[1 —1]v=0.02
from which

v=[001 -0.01]
Then

G =vVWyv=vv=2x10"4
and with 1 degree of freedom
63, = ¢, =2 x 107* m?
From the unified approach solution
[vi vy v,]=[0.0095 —0.0105 0.1095] m
and the quadratic form becomes
G2 =VWv+ Ve W,_ v, =2005x 10"%+ 1.199 + 10~ * = 3.204 x 10~ * m?

The degrees of freedom in the case of the unified treatment is equal to 2. Con-
sequently, the estimate of the reference variance would be

&(2) _¢2

2—7= 1.602 x 10~ 4 m?

The value of 63, is not substantially different from 63, because the a priori
estimates of the elevation of point P and its variance were consistent. Therefore their
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treatment as observations was quite realistic. If on the other hand the a priori
estimates were selected in such a way as to allow for the convenience of applying the
unified approach, then we must be careful in computing and interpreting the a
posteriori reference variance. For example, if W, = 10~ ¢ were selected, then

¢2 =2005 x 107* +0.012 x 107% = 2.00512 x 10™*
This value is almost identical to ¢,, but if we use 2 degrees of freedom, then
63, = 1.003 x 10~ % m?

which is considerably different from &3,;. Therefore it is advisable that we carefully
analyze the given data, particularly when evaluating the degrees of freedom.

12.7. REVIEW EXAMPLES

In this section some of the problems used in the examples in Part IT will
be solved by applying the techniques of the unified approach developed in
this chapter. In each of the examples to follow, several possibilities will be
selected for the weight matrices of the parameters and the constraints, when-
ever applicable. The objective of these variations is to show how the solution
vector behaves and when we can assume it to be the same as that obtained
from the classical procedures.

Example 12.6. In this example, consider the problem of the three photos with two
points given in Example 9.2, but without the distance constraint. Refer to Figure 9.1
and the data given, which consist of eight observations and their corresponding
covariance matrix. The four parameters, representing the coordinates of the two
given points A, Bshould have a priori observational values. Let these values be equal
to the approximations used in Example 9.2 in order to be able to compare the results
directly,

X1g = 8.00 m X2g = 51.00 Xip = 7.00 m Xap = 41.00 m

Associated with these values we should have an a priori cofactor matrix Q,,. We
shall choose different values for this matrix and compare the results. These results are
summarized in Table 12-1 v

Included in the table are four cases in which a priori Q,, takes values from 10I to
10*1, as well as the answers from the classical solution of Example 9.2. Note that with

TABLE 12-1

CLASSICAL
(m) Q.,=10 Q,=101 Q,=10 Q=101 Q,=col

X4 6.9954 6.9952 6.9952 6.9952 6.9952
X2 49.7243 49.7181 49.7175 49.7174 49.7174
X1 6.9820 6.9817 6.9816 6.9816 6.9816

X 41.9698 41.9698 41.9698 41.9698 41.9698
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Q.. = 10I the estimates of the coordinates agree within less than 1 cm with those
from the ultimate classical solution. This should be expected since a Q,, = 101 is
already several order of magnitude larger than the a priori Q, and since the elements
of the latter corresponding to measurements in the object space are 0.0025 m?2. This
is a ratio of 10/0.0025 or 4000 : 1, which is certainly large enough to yield such close
answers. As the magnitude of Q,, is increased relative to Q, the answers get closer
and closer to those from the classical procedure. It should be noted though that the
gain in proximity of the results is not proportional to the increase in the value of Q.
Finally, the choice of Q,, = 10*I gives identical results to within 0.1 mm in the
object. The implication of this is that (10*I) is practically a set of infinite values as far
as this particular example is concerned.

As regards to the a posteriori estimate of the cofactor matrix of the parameters,
that is, Q,,, the values obtained behaved in much the same way as the vector of
estimates % in Table 12-1, with Q,, being identical to Q,,,, in Example 9.2 when
Q.. = 10°L

Example 12.7. In this example consider the same problem of the preceding
example after introducing the distance constraint. This constraint seeks to enforce
the distance between the two points A and B to be equal to 7.80 m. Here we need to
select two a priori cofactor matrices, Q,, for the four coordinates and Q. for the
constraints. Running through five values of Q,,, from 101 to 10°I, a value
Q.. = 0.0001 associated with the linearized constraint equation was chosen. This
means an a priori variance of 0.0001 m? (since a priori ¢3 is 1) to the given distance.
The results are summarized in Table 12-2. These results show that the choice of
Q.. = 0.0001 m? is quite realistic since the answers by classical means are obtained to
within less than 0.1 mm in the object space when Q,, reached the value of 10°L.

TABLE 12-2
Q.. = 0.0001 Q.=0
CLASSICAL
Q.= 101 1071 10°1 1041 10°1 Q.. = ool
%y 699463 699437 699434 699434  6.99434 6.99434
%5, 4975862 4975716  49.75701  49.75700  49.75700  49.75700
%1 698352 698334 698333 698332 698332 6.98332

Xy 41.95863 41.95717 41.95702 41.95700 41.95700 41.95700

A posteriori cofactor matrix of the parameters Q,, was also monitored in this
example, and the conclusions obtained are essentially the same as those given in the
preceding example.

Example 12.8. In this example we rework, using the unified approach, the prob-
lem of three photos containing four points given in Example 9.6, without applying
the circle constraints. Figure 9.3 shows the schematic of the problem followed by the
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pertinent data. For the a priori “ observational ” values for the eight parameters (the
coordinates of the four points), select for simplicity the approximations used in
Example 9.6, which are

X1a = 8.00 m X2g = 51.00 m X1p = 7.00 m Xap = 41.00 m
X1 = 400 m X2c = 47.00 m X1d4 = 400 m Xag = 48.00 m

The a priori cofactor matrix will be selected at different values in order to observe
how closely the final estimates approach the correct answers obtained from the
classical solution. The results of these different possibilities are summarized in Table
12-3.

TABLE 12-3
Q,, = CLASSICAL

(m) 101 1021 10°1 ol

X1a 6.9972 6.9970 6.9969 6.9969
%, 497221 497152 497145  49.7144
%, 69839 69834 69833 6.9833
X2 41.9581 41.9675 41.9674 419674
X 2.9955 2.9955 2.9955 2.9955
X5, 46.1555 46.1511 46.1507 46.1506
%1y 40318 40814 40313 40313

%24 48.6448  48.6441  48.6440  48.6440

Similar to the situation encountered in Example 12.6, with Q,, = 10°I, we get the
same answers (to within 0.1 mm in the object space) as those obtained classically in
Example 9.6.

The a posteriori matrix Q,, was also computed for several cases and the value
obtained for the case of Q,, = 10°I was practically the same as Q,,, ) computed in
Example 9.6.

Example 12.9. Continue in this example the problem of the preceding example by
introducing the circle constraints and solve the problem by the unified approach.
These constraint equations enforce the fact that each of the given four points lies on
the circumference of a circle. The parameters of the circle, taken to be the two
coordinates of its center and its radius, are not known but will be introduced as
added parameters. In the unified solution we simply take them as observations and
select the following values for their a priori estimates:

x10=7.00m x20=46.00m R =400 m

In the a priori Q,, we shall also include the added parameters. Table 12-4 summar-
izes several cases of values of Q,,, and Q,, is taken to be 0.00011. This means that
deviation between a point and the circumference of the constraint circle is allowed to
an a priori variance (or cofactor, since 63 = 1) of 0.0001 m?, which is an adequate
and practical value. The results in Table 12-4 show that a value of Q,, = 10°I gives
answers within 0.1 mm from the classical answers.
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Again as before, the cofactor matrix Q,, was computed for each of the above
cases with the conclusions corresponding to those given in the preceding three
examples.

TABLE 12-4
CLASSICAL
Q.= 101 1071 10%1 10°1 ool

%10 699464 699424 699420 699419 6.99419
%30 4978021  49.77425  49.77365  49.77358  49.77358
X1, 698327 698270 698264 698263 6.98263
%30 4198046 4197989 4197982 4197982 4197981
Xy 299173 299157 299155 299155 299155
X5 46.17063  46.16641  46.16598  46.16593  46.16593
%14 404346 404338 404337 404337 404337
%54 4855662  48.55233 4855189  48.55184  48.55184
%10 6.88226 687954 687926  6.87923 6.87923
%50 4588049 4587723 4587690 4587686 4587686
R 390134 389871 389844  3.89841 3.89841

12.8. SUMMARY OF EQUATIONS AND
CONCLUDING REMARKS

12.8.1. Summary of Equations Given n observations / with a cofactor
matrix Q, u parameters with a priori estimates x and cofactor matrix Q,,, ¢
observational elements in a vector /, associated with constraints and a cofac-
tor matrix Q.., and the following nonlinear equations:

F(l,x)=0 (c equations) (12.17)
F(l.,x)=0 (s equations) (12.20)

With P, x°, and [ as approximation vectors, the linearized form of these
equations is

Av + BA = f° (12.23a)
A, v, + CA = f° (12.23b)

Aiscxn  rank (A)=c
A, iss xt, rank (A) =s
Bisc xu, rank (B) =u
Cissxu, rank (C)=s
o= —[F(°, x°) -~ A -] iscx1 (12.24a)
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£0= —[F(° x°) —A (L —1)] issxl (12.24b)
f.=x"-x (12.24¢)
W,=Q.!=(AQA")! (12.26a)
W, = (A, Q. A)"! (12.26b)
N=BW,B (12.28a)
t = B'W, f° (12.28b)
N.=CW,C (12.28¢)
t. = C'W,, f° (12.28d)
A=(N+N+W ) Y(t+t, —W_T1) (12.29b)
v=QA'W,(f° — BA) (12.29¢)
v, = Q. A W, (f° — CA) (12.30a)
v,.=f.+A (12.30b)
Qua=(N+N, +W,_)! (12.33a)
Q. Qu. Qu,
Q,,E,,c Q..., | = refer directly to equation (12.38)
| symmetric  Q,,,
(@ Q. Q] [@-0Q) -0 -Q,,,
chzc Ql‘c.i = (Qcc - chvc) - Q..
symmetric Qy; symmetric (Q.x — Q..0,)
b= (VWy+ viW,_ v, + Vi W, v,)
r
r = redundancy or degrees of freedom (12.41)

12.8.2. Concluding Remarks The unified approach given in this chapter is
the culmination of the developments recently undertaken in least squares
adjustment. Allowing each variable to be treated as an observation and
varying the a priori weight to account for practical considerations can result
in quite a flexible method which is also in a standardized form. This
alleviates having to make special decisions for different problems. In fact the
procedure applies equally to extensive adjustment problems with varying
inputs as well as relatively limited problems. While working with the unified
approach, care must be exercised when setting up the equations and, more
importantly, when determining the relative magnitudes of the a priori
weights and values of the variables. Although the values and weights of the
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actual observations are usually well specified, those for the conventionally
termed parameters must often be estimated. Here, the chosen weights, in
relation to the weights of the actual observations, must be consistent with
the selected a priori values. After the adjustment, care must also be taken in
interpreting the a posteriori estimate of the reference variance, particularly
in regard to the number of degrees of freedom.
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Sequential Data Processing

13.1. INTRODUCTION

We shall introduce our discussion of sequential data processing by refer-
ring to the problem of the two-parameter transformation as treated in
Example 8.7. Under the assumption that both the A and Q matrices are
block diagonal (by point), equations (8.14) and (8.15) show that both the
coefficient matrix N and the constant vector t are formed by summing the
contributions of each of the three given points. This summation process can
obviously be extended to any number of points m,

N

Il
™M=

2. (BW,B), (13.1a)

14

I
-

t (B'W, f); (13.1b)

I
L0=

4

It should be emphasized that equations (13.1a) and (13.1b) are possible
only when the A and Q matrices are block diagonal. This means that the
conditions arising for the ith point contain observations that belong only to
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those conditions (thus the block diagonality of A) and that are uncorrelated
with all other observations in the model (hence the block diagonality of Q).

Stopping the summation at an intermediate step and denoting the par-
tially formed (or incomplete) normal equations by

i—1

Ni-1= ) (B'W,_B); (13.2a)
j=1
i—1

ti-y= 2 (B'W,. 1), (13.2b)
i=1

it then follows from the pair of equations in (13.1) that the succeeding step
would be

Ny =Ni-1, + (B'W, B); (13.3a)
to = ti-1) + (B'W, f), (13.3b)

An interesting possibility now arises if a solution is assumed possible
from both pairs of equations (13.2) and (13.3), respectively, that is,

A1y =Ngly te-y (13.4a)
A =Ng'ty (13.4b)

assuming that both inverses N!;, and Ng,' exist. The possibility is to find
the value of A, not from N, and t;, but from a previous solution vector
A 1)- Such a scheme would lead to obtaining a least squares solution in a
sequential or recursive manner. The following are examples of why and
under what circumstances we would use such a scheme.

The first case is when an older adjustment has been performed and new
information becomes available. One possibility would be to combine the
new information with all the old information and perform a complete read-
justment. This can be rather uneconomical, particularly if the new informa-
tion is relatively limited compared to the old information. Instead, it would
be better to perform a sort of an “add-on” adjustment if the results of the
preceding larger adjustment can be used in combination with the new obser-
vational data. This is possible with the sequential techniques to be developed
here.

Another possible use of sequential methods is in the operation of design-
ing the actual observational experiment before the adjustment is performed.
Given present-day modern computers with their large capacities and
procedures of data simulation, the technique of sequential data reduction
can be used to great advantage to assist in an optimum design. For example,
in planning a trilateration net with a fixed set of points, various line lengths
can be inserted or removed (or both) and numerous observational plans can
all be tested in a computer program. The one configuration that would most
economically meet selected accuracy requirements would be chosen for field
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execution. Any computer simulation expense would be more than offset by
savings accrued from selecting an optimum scheme.

In the above example of design of observational experiments it was
implied that the sequential technique to be developed would be capable of
handling both problems of adding information as well as deleting informa-
tion. This is true, as the algorithm can be used with only minor sign changes
to remove the effect of any designated condition equation(s) from the adjust-
ment. Such a possibility offers another rather useful practical application,
the automatic editing of data during the reduction process. Large and in-
volved computer programs used in photogrammetric and geodetic net
adjustments often incorporate techniques of data editing. The ability to
eliminate the effect of undesirable information, or to reinstate the effect of
that which has proven to be useful, sequentially and at the same time of the
adjustment, can lead to computational savings.

Yet another possibility of using sequential techniques is in the field of
activity of on-line systems of data acquisition. Rapid advances in computer
technology are leading more and more to acquisition systems that use elec-
tronic computers interfaced with regular electro-optical-mechanical equip-
ment of measurement. One such example is a dedicated computer attached
to a multiple-plate comparator for the acquisition of photogrammetric plate
measurements. Here the sequential nature of the measurement process and
the availability of a computer that allows for real-time or near real-time
computational capability leave no doubt as to the desirability of developing
sequential data processing techniques.

13.2. MATHEMATICAL DERIVATION

In the example discussed in the introduction, the parameter vector A was
the same during all the steps of adding more condition equations. This
represents one class of problems in which the size of the partially reduced
normal equations remains unaltered during both addition and deletion of
condition equations. In a second class, the change in the number of condi-
tion equations causes a corresponding change in the size of the normal
equations; that is, the number of parameters increases with the addition of
conditions and decreases when conditions are deleted. We shall treat each
case separately.

13.2.1. Fixed Number of Parameters There are several procedures of deriv-
ing a sequential algorithm depending in part on the type of information
assumed known in the preceding step. For example, given N;!,,and t;_,,,
we would like to get N,' and t;,. Note that we assume that we know the
inverse N;?,, itself. This is a most useful case since the inversion of such a
matrix during each step can then be avoided. However, one inverse must be
assumed possible at the beginning of the recursive scheme. (This assumption
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will be eliminated later when the unified approach is considered.) In order to
get NG ' from N;1,), we simply apply the relations (A68) and (A69) (Appen-
dix A) to equation (13.3a), or

-1
N(_i)l =N6}1){ I ¢ B;(Qei i Bi N(;—ll) B:) Bi N(_,._ll)]

u, u u, ri\ rir; ri, u u, u u, r; ri,u u, u

(13.5a)

where u is the total number of parameters and r; is the number of conditions
involved in the ith step. Included in equation (13.5a) are cases of both
addition and deletion of conditions: the upper signs refer to condition addi-
tion and the lower signs are for condition deletion. Although Ng' is
computed from equation (13.5a), the updated constant term vector can be
directly written from equation (13.3b), or

ty = ti- + By W, f; (13.5b)

1

where the upper and lower signs in equation (13.5b) refer to condition
addition and deletion, respectively. Once N;,' and t, are evaluated, A; may
be obtained, if desired, from equation (13.4b).

The second case to be considered is concerned with Ng !, and A,_ ;.
Obviously, N ' can be evaluated from equation (13.5a) for both situations
of adding as well as deleting conditions. For developing A, from A,_; we
shall take the case of adding conditions in the following derivation as an
example.

From equation (13.4b) we write

A;=Ng't
and using equations (13.5a) (with the upper signs) and (13.5b) leads to
A;=[Ng 1) — Ngi1) Bi(Q.: + B; N1y BY) " 'B; Ny
X (ti- 1+ Bi W, f)

For simplicity we temporarily drop the subscript e from Q, and reinstate it
at the end of the derivation. Introducing the auxiliary,

J=B;N_} B! (13.6a)
then
Ai=NT
- NZYUBY(Qi + J) "B, Nt
+ N} Bi W, f,

— N2y BYQ; + J)7'(B; N, B)W, f; (13.6b)
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The last term in equation (13.6b) is
K= -NZ} B{(Q; + J)” 'JW, f;

which when using equation (A70) (Appendix A) gives
K= —N' BiW(W, +J7 )" W,

and applying equation (A69), realizing that U = V =1 in the present case,
leads to

K=-N_! BiW[Q; - Q(J + Q)™ 'Q]W. T
= —NZ| BIW, f, + N} B{(Q; + J)™'f;
which when used in equation (13.6b) results in
A;=A; =N B{Q; + J)"'B; Ay + Ny BYQ; + J) 7',
Finally,
A;= A + N B{Q; + B;N;_' B)) '(f; — B;A;_,) (13.6c)

Restoring the subscript ¢ and including the case of condition deletion
yields (the reader is advised to work out the case of deletion for himself)

Ai = Ai— 1 '_"‘_ N(_l_ll) B:(Qel + Bi N(-;_ll) Bi)_l(fi - Bi Ai— 1) (137)

Thus with Ng!,, and A;_; known, the new matrices N;' and A; can be
computed from the recursive formulas (13.5a) and (13.7).

All the preceding derivations were accomplished using only operations of
matrix algebra. It should be recognized that the same relation must also be
obtainable from applying the basic least squares criterion. As a demonstra-
tion we show the case of getting Ni;' from N, for the addition of condi-
tions and leave the other relations for the reader to derive as an exercise. Let

Aoy Vi1 +B_ A=1_,
represent the total conditions up to and including the (i — 1) step; and
Ai Vl- + Bi A = fi

denote the conditions to be added at the ith step. These two equations may
be combined into the form

Aoy 0]V, . fi-s

[ 0 A,~Hv,- J+[Bi]A_[fi (133)
With the total cofactor matrix (keeping the original assumption of no
correlation)

— Q(i'—l) 0]
Q [0 Q
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then

Q — (AQA‘)(:’— 1) 0 } — [Qe(i— 1) 0 ]

) 0 (AQAY), 0 Q.

The scalar to be minimized is in this case

¢ =(VWv)_ + (vVWv), — 2ki_(A;_; vio + B A—f_y)

— 2kY(A; v; + B, A — )

which must be differentiated with respect to v;_,, v;, and A, and the resulting
differentials equated to zero. These three equations combined with the pair
in equation (13.8) make up five equations in five unknown vectors, v;_,, v;,

k.-, k;, and A. After eliminating v,_,, v;, and k;_,, the partially reduced
normal equations take the form

_N(i-l) B; A _ |-
5wl 5

in which N;_,, and t;_,, are equivalent to those given by equations (13.2a)
and (13.2b). The solution of equation (13.9) by partitioning can be carried
out as follows:

_N('_ 1) B: -1 - P R'
B, W, R S

and according to equation (A37a) (Appendix A)
—P =N+ B{W,;,B)"!

which is equal to Ng,' from equation (13.3a). Multiplying the coefficient
matrix in equation (13.9) by its inverse and equating the result to the identity
matrix gives

—P=N;!,(I-BR)
-B,=Ng!,I-B:R)+Q,,R=0
R=(Q.,+ B;N;!,Bi_,) 'B,N;!,,
then
N@' = Ng= I — Bi(Q. + B; Ng- 4, B) ™ 'B; Ny

which is identical to equation (13.5a) with the upper signs for addition of
conditions.

The recursive formulas that have been derived exhibit an apparent advan-
tage in avoiding the inversion of the normal equations coefficient matrix. On
the other hand these sequential relationships, for example, equation (13.5a),
involve an apparently large number of matrix multiplications and an inver-
sion of a matrix of order r;. As regards the inversion, r; is, in general, much
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smaller than u, since we would usually add or eliminate a few conditions at a
time. Of course, if only one equation is involved, then the inversion degener-
ates into computing a reciprocal of a scalar. Concerning the number of
matrix multiplications, the question becomes a matter of computational
efficiency of the sequential scheme compared to the conventional “batch”
least squares. As an example, 90 linear equations in 60 unknowns, of the
form

v+ B A=1If1

90, 1 90,60 60,1 90, 1

were generated. As a start, a 60 x 60 normal equations coefficient matrix
from all 90 condition equations was formed. The inverse of this matrix,
which is used as a standard, consumed approximately 8 seconds on the
computer used (UNIVAC 1108). Next, several cases of deleting a progres-
sively larger number of condition equations (up to the limit of 30 equations)
were computed using both methods of conventional batch least squares and
by the sequential scheme developed here. To emphasize the difference be-
tween these two methods we can consider as an example the case of deleting
5 equations from the given 90 equations. In the batch process we would use
the remaining 85 equations, form a 60 x 60 normal equations matrix and
invert. In this case, the time used for these operations is a little less than 7
seconds. By contrast, in the sequential procedure the standard inverse (that
is, that computed from all 90 condition equations) is used together with the 5
equations to be deleted to compute the inverse that would correspond to the
remaining 85 equations. This sequential operation, which leads to the same
inverse, consumed less than 1 second of computer time. The same process of
taking off equations was performed several times by both methods; each
time a larger number of equations was deleted, and the computing time was
noted. The results are presented in Figure 13.1 in a form of two graphs, one
for the batch solution and the other for the sequential solution.
Examining the graph for the batch solution first, we can see that the
difference between the time required for getting an inverse from 90 equations
and that required for getting it from 60 equations is rather small, being only
slightly over 2 seconds. This indicates that the batch method is not strongly
dependent either on the total number of condition equations or the number
of equations to be deleted, but rather on the size of the reduced normal
equation coefficient matrix under the assumption that all the condition
equations are already available; that is, the time for their formulation is not
considered here. By contrast, the sequential method is more strongly depen-
dent on the number of condition equations, particularly those to be deleted.
The time increases relatively rapidly as the number of such equations in-
creases, until it reaches a cutoff point where the two graphs intersect and
where the use of sequential solution offers no advantage over the conven-
tional batch method. Therefore it would be advisable to limit the number of
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30—

25 Solution by
sequential algorithm Batch solution
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Number of condition equations
deleted from original set
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Average computation time in seconds

v

Figure 13.1. Example on Computational Time for Batch and Sequential Solutions (A
60-Parameter Problem)

condition equations by which the problem is changed in relation to the
number of normal equations.

It should be emphasized that these results are only a demonstration of the
possibilities and hold only for the data used (60 normal equations, inversion
by Gauss elimination algorithm, UNIVAC 1108 computer, and so on). Dif-
ferent data may produce different results, but it is felt that the general
characteristics of Figure 13.1 will remain. It is suspected further that if the
condition equations were to be formed within the adjustment process,
the sequential solution would offer additional computational time savings.

Example 13.1. Consider the following set of four condition equations:

Ul_'le+X2=1
UZ—X1—3X2=—9

3+ x; +2x, =8

or in matrix form

[ 23] -2 +1 1
Uy -1 -3 X1 -9
vs | Tl +1 +2|[x| = 8

Da -4 -1 —7
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which corresponds to

v+B A=1f1
4,1 4,2 2,1 4,1
Assume for simplicity that Q = I,. With this data we seek to demonstrate the
concepts developed in the preceding section for both the addition and deletion of
conditions. First consider the case of condition addition, by solving with all four
conditions, then with three plus one added sequentially, and then comparing the final
results.
For all four conditions,

(BWB)A = (B'Wf) or NA=t

or

[22 7”x1]=[43]

7 15]|x, 51
With

AR e I
then

xy] _ 1 [288
xy| 281821

For the first three equations,

[_2 1] [ 1] 6 3 15
B0= -1 -3 5 f0= -9 5 No—_— [ ] ’ to= [ ]
1 +2 8 3 14 44

thus

1[78
Ao=75 [219J

In order to effect the addition of the fourth condition equation, its matrices are
B1=[—4 —1] fi =[-7]

with the subscript 1 referring to the first (and only, in this case) sequential addition.
First, use equation (13.5a) (with upper signs) to compute N7 !, as follows. Because of
having Q = I, the recursive equation becomes

Ni'=Ng'[I-Bi(l + B, N5'Bj)"'B; N;']

noting that the parenthetical expression to be inverted is only a scalar equal to

1 14 —3][-4] 281
L+agl-4 _I][—3 6”—-1}=75—
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Performing the arithmetic operations, yields N7 ! which is identical to N~ ! obtained
directly from the four equations. As for the constant term vector, apply equation
(13.5b)

ti=to + B, Wf, =[43 51T

which is also identical to t computed from the four condition equations. Hence the
estimates for x,, x, will be identical from this sequential scheme as from the batch
solution.

The next step is to apply equation (13.7) (with upper signs), which in this example
becomes

Ay =A,+ Ng 'Bi(1 + B; Ng 'Bi)~'(f; — B, Ao)

First,
2
(fl - Bl A0) - B
and
_ - _ 1
NO lBtl(l + BINO lBtl) l(fl e Bl AO) = m[—:;lg 36]2
then
1 t
Ay =57 [288 821]

which is identical to the solution obtained before. Consequently, both schemes of
sequential solution for addition of condition equations are valid. Now consider the
same data for the case of condition deletion. The solution for all four conditions is
modified by eliminating the contribution of the fourth equation, and the results
obtained are compared to those directly available from solving the first three equa-
tions together. Thus

1 [15 -7 23 1 [288
-1 _- = =
No _281[—7 22} o [51] A0 =381 [821}

B, =[-4 -1] Ay =[-T7] Q. =1

and

First apply equation (13.5a) with the lower signs to compute Nj ! from Ng '
1| 14 -3
-1 _ °
Nit=7s [—3 6]
then from equation (13.5b) compute
t, = [15 44]

Both N7 ! and t, are identical to Ng ! and t, for the case of addition for the batch
solution of the first three conditions. Finally, we can also demonstrate the applicabi-
lity of equation (13.7) with lower signs for the case of condition deletion, which is left
as an exercise.
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13.2.2. Variable Number of Parameters In many problems, such as aerial
triangulation in photogrammetry and net design with variable number of
control points in surveying, the increase or decrease in the number of condi-
tion equations may change the number of parameters in the adjustment
accordingly. For example, if the collinearity type of condition equations is
used in a photogrammetric triangulation adjustment, each time a pass point
is added three new parameters corresponding to its coordinates will also be
added. In the following development first the basic foundation is given then
each of the two situations of condition addition and deletion will be treated

separately.
Consider the two sets of conditions
Aoy Vi  +Bi_ A=1, (13.10a)
Aivi+BA+bd =T (13.10b)

in which & is a subvector of parameters that appears in the set of conditions
to be added or subtracted sequentially. This pair of equations may be
combined into

Aoy 0 v, B, 0(|A fi—1

= 13.11
[0 AiHVi]+13i b,”&] [fi (13.19)
for which the reduced normal equations may be written directly as a

coefficient matrix N; and constant vector t;
N. = ,:(Btwe B)i— 1 + (Btwe B)l (B‘we b)l}

(b'W, B); (b'W, b),
. +8N. i
_ [N’ 1+ ON; “'] (13.12a)
i n;
(B'W, f),_, + (B'W, ), t;—y + 8¢ t;
t. = = - = |- 13.12
l [ (b'W, f); t; t; (13 l‘b)
The inverse of N; may be evaluated by partitioning as
N, m|™' [F, G
-1 _ i i i i
N = [Wi n.] [Gg H.] (13.13)
with [see equations (A37), Appendix A]
F,= (N, — n;n; ')~ ! (13.14a)
G;= -F;nn;’ (13.14b)

If G; and F, are replaced by their expressions, H; would become
Hi = (ni - ﬁ: Nl— lﬁi)_l (13.14d)
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which is an alternate form. Equation (A69) may be applied to equation
(13.14a) to give

F,=N;!'+ N; 'nyn, — 0! N 'n,)” 'n! N; ! (13.15a)
which in view of equation (13.14d) becomes

F,=N;!'+N;'n H;n N! (13.15b)
and since from equations (13.12a) and (13.13)

N,=N,_, +8N,=N,_, + BW,;B, (13.16)
the application of equation (A69) to equation (13.16) leads to

Ni' = NiZy — NiZi BYQ,; + B, N;i_'; B)"'B;N;Z} (13.17)

The foregoing development establishes all the fundamental relationships
necessary to handle this case of variable size of parameters. Because the case
of addition increases the order of the normal equations coefficient matrix,
whereas the case of deletion effects the opposite, each case must be handled
separately.

ADDING CONDITION EQUATIONS At the (i — 1) step of the sequential
processing we would have N;_}; and t;_,, and we would want to add the new
conditions given by equation (13.10b). These conditions include §; which
increases the size of the parameters from A;_; whichis u;_, x 1 to

Ai- 1

w= [
which is u; x 1, where u; is u;_; + w; and w; is the number of parameters in
;. It is important to note that the new observations in equation (13.10b) are
assumed to be uncorrelated with all the original observations. This allows
for constructing the total cofactor matrix as a block diagonal matrix. After
the new conditions of equation (13.10b) are added, we would have N; ' and
t;, which are obtained as follows.

First, equation (13.17) is used to compute N; ! from N;_!| and the
matrices of the added conditions of equation (13.10b), noting that
Q.. = A;Q;A}. Second, according to equation (13.12a) the auxiliary
matrices i; and n; are evaluated from ,

n, =B W,b, (13.18a)
n; =b; W, b, (13.18b)
Next, from N; ! and these auxiliary matrices, F;, G;, and H, are computed

from equations (13.15), (13.14b), and (13.14c), respectively. These three
matrices are then collected together to give N; ! according to equation
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(13.13). As regards to the constant term vector, by reference to equation
(13.12b) we compute

ti=t_, +B;W,f (13.19a)

oi K (13.19b)
and collect them to form t; as shown in equation (13.12b). This completes the
ith step of the sequential solution.

DELETING CONDITION EQUATIONS Here, in order to use the same basic
relations developed at the beginning of this section, we shall for the moment
go from the ith step to the (i — 1) step, and then at the end change the
subscript variable to give the more conventional relations. Thus at the ith
step we would have N ! and t; and would wish to eliminate the effect of the
conditions of equation (13.10b) to get N;_*, and t,_,. Since this elimination
will reduce the parameters by 8, then both N, and t,_, will be corre-
spondingly of smaller dimensions than N; ! and t;, respectively. Con-
sequently, from the partitioning of N; ! in equation (13.13) only the
submatrix F; would be of interest, and the remaining matrices are simply
discarded. Inverting equation (13.14a) yields

i i

or
N;=F '+ m;n; ' (13.20a)
and from equation (A69) the inverse of N; would be
Ni_l =F;,—F;nn; + o} F, ﬁi)_ l'—'; F; (13.20b)
Next, from equation (13.16)
N, =N,— B!W,B, (1321a)

which again may be inverted according to equation (A69) to give
N4 =N;7' + N7 'B{(Q,; — B; N; 'B)” 'B; N; ! (13.21b)

In a similar manner only the subvector t; of t; is pertinent here, from which
t;_, may be directly obtained from equation (13.19a), or

t,‘_l = t; - Bi wei fi - (13.210)

This completes showing how N}, and t;_, may be obtained from N; and t;.
However, in a sequential procedure we are conventionally accustomed to
ascending subscripts instead of this case of decreasing subscripts. Con-
sequently, we recapitulate the above development while changing the sub-
script to correspond to starting with N;_', and t;_, and seeking N; ' and t;
due to eliminating the conditions,

A;v;+ BA+bd=1; 13.22
i Vi j j j
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The sequence is summarized as follows:

L.

2.

Partition N, and take the upper left matrix F;_, of order correspond-
ing to the reduced number of parameters.

Compute the auxiliary matrices n; and n; using the matrices of equation
(13.22) in equations (13.18a) and (13.18b), and noting that
W, =(A;Q;A))” 1

. Evaluate N;_Y; from [see equation (13.20b)],

Nj—_ll = F]_ 1 — F]_ 1 l—lj(nj + l—‘; F]‘ 1 I—lj)_ lﬁ; Fj‘ 1 (13.23)
Compute N; ! from [see equation (13.21b)],
N;!'= N} + N;4,BYQ,, — B;N;.,B)~'B,N/1, (13.24)

. Compute t; from [see equation (13.21c)],

in which ¢;_, is the upper subvector of t;_, with as many elements as the
number of remaining parameters.

This concludes the steps of sequentially eliminating conditions that
reduce the number of parameters.

Example 13.2. To demonstrate the applicability of the derivations in this section,

take a numerical example and consider both cases of adding and deleting information.
Assuming for simplicity that A and Q are identity matrices for all conditions and
observations, let the total system of condition equations be denoted by [see equation
(13.11)]

efs Y-« e

where the total coefficient matrix is

—_

[0.44 076 i 0
197 3.18 § 0
835 352: 0

540 7.24: 270
9.99 269 | 2.69
1539 808 : 347
| 1.55 503 ! 6.59]

For simplicity we shall not consider the constant vector, as its modification is rela-
tively straightforward. For batch processing, with Q = I, we get

0.01036 —0.01066 0.00301
N~ !'=(BB)"!=| —-001066 0.02681 —0.02303
3.3

0.00301 —0.02303 0.04025
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For sequential processing, we originally have three condition equations with the
coefficient matrix

0.44 0.76
B=]197 318
3,2

835 3.52

from which the inverse of the normal equations coefficient matrix is

_ [0.05658 0.08823

G-t (RR1-1
N™" = (B'B) 0.08823 0.18091

The new set of equations to be added sequentially (as one group) has the following
coefficient matrices:

540 7.24 2.7
1999 269 269
B= 539 8.08 b= 3.47
1.55 5.03 6.59

In order to construct the total augmented matrix N~ ! [see equation (13.13)], first
compute N~! from equation (13.17) using N~ ! (representing N;_};) and B, thus

001013 - 0.00894]

_—
N = [—0.00894 001363

Next, from equations (13.18a) and (13.18b) compute the following auxiliary matrices

70.37090
ni=B b = n=b" b =[69.99510
26 a1 [88.10440J L ]

and use them and N~ ! above to compute F from equation (13.15)

_ | 001036 -—-0.01066
~ [ -0.01066 0.92681

which is the first submatrix of the required inverse. We finish up by using equations
(13.14b) and (13.14¢) to compute the remaining submatrices

0.00301
—0.02303

H=n""!—n '#G = [0.04025]

G=—-Fian!= {

Thus the total updated inverse is

F G 0.01036 —0.01066 0.00301
N~ != = | —0.01066 0.02681 —0.02303
G' H 0.00301 —0.02303 0.04025

which is identical to N~ ! computed directly from all seven condition equations. The
same example may be reworked to demonstrate the case of deleting information.

Having N~ ! which corresponds to all seven equations involving three parameters,
3,3
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we wish to obtain the inverse N~ ! for only the top three condition equations and two
2,2

parameters. Consequently, from N~! only the top left 2 x 2 block diagonal subma-
trix, or F is relevant. Referring to equation (13.23) first compute N~ !, using iand n
already evaluated

—0.21015

k= [ 161193

}, WFG = 12722924,  ni'FA = 197.22434
0000224 —0001718

= Stps\— 1o
Fa(n + wFn)”"n'F = [——0.001718 0.013174]

and

N1 001013 —0.00894
[ —0.00894  0.01363

which is the same as computed before. Finally, using equation (13.24), compute

0.05658 0.08823}

C
N = [0.08823 0.18091

which is identical to N~ ! computed directly from the first three condition equations.

13.3. SEQUENTIAL PROCESSING AND THE
UNIFIED APPROACH

The concept of sequential data reduction may be extended to the case of
having a priori estimates of functionally independent parameters and their
weights. The question of parameter constraints will be dealt with later. Cases
of both fixed number of parameters and of variable number of parameters
are addressed separately.

13.3.1. Fixed Number of Parameters In the unified approach with func-
tionally independent parameters, we have the observations / and their cofac-
tor matrix Q, and a priori estimates x for the parameters and an a priori
cofactor matrix Q,,. With an approximation vector x° a constant vector f,
was defined by equation (12.24c) in the preceding chapter as

f,=x"-x (12.24c)

The effect of these additional data is that W_ (= Q') is added to the
coefficient matrix, and the vector (W, f,) is subtracted from the constant
term vector of the reduced normal equations. Thus if these matrices are
redefined as

N=BW,B+W,_, (13.26a)
t=BW,f—W,_f, (13.26b)

then all the relations in Section 13.2.1 apply directly without any change.
For example, equation (13.5a) is used to update the inverse of the coefficient
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matrix, equation (13.5b) for updating the constant term vector, and equation
(13.7) for directly updating the value of the parameter vector. In the earlier
case when no a priori information was available, the sequential algorithm
was possible only if a set of conditions, which is more than or equal to the
minimum necessary for a unique solution, was used to evaluate the initial
values Ng !, to ! or A, . If such was not the case, neither Ng ! nor A, could be
computed and the sequential process could not be started.

By contrast, in the presence of a priori information this restriction need
not be imposed. In fact, we can begin the sequential procedure with zero
conditions. In this case

N(;l:Qxx’ t0= _Wxxfx

with x° = 0 the first value of the parameters, A, would simply be equal to x,
their a priori estimates. The following rather simple example demonstrates
this useful concept.

Example 13.3. Consider a much simplified problem of seeking the elevation of a
point C (Figure 13.2) by measuring two differences in elevation from two known
points 4 and B, whose elevations are 5.00 m and 4.00 m, respectively. The observa-
tions are [, = 1.74 m and I, = 2.76 m with a covariance matrix £ = 10™*I, m?%.
Assume further that an a priori value for the elevation of point C (that is, the
unknown parameter) is x = 6.70 m with a variance of 0.01 m?. Compute the eleva-
tion x of point C.

A4 (5.00)

Cx)

B(4.00) h

Figure 13.2

Solution: Several procedures are considered.

1. The simplest and most direct way is to begin by writing two condition equa-
tions, one for each observation, without regard to the given a priori information
about point C. (Note that here r = 1, u = 1; thus ¢ = 2 = n). Hence

S5+, —x=0 4+1,—x=0

v+ -1 |-l =5|_[-674
1|*T |-, —4|~ |-676
Let 63 = 10™4; thus Q = I and g, = 100 or W,, = 0.01. Thus the normal equation
is 2x = 13.50 or x = 6.75 m.

or
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2. Next, consider the given a priori information and write the normal equation
(N + W )A = (t — W, )
where, according to equation (13.24) and with x° = 0, f, = —6.7. Thus
(2 +0.01)x =13.5 — (0.01)(—6.7) = 13.567

and x = 6.75 m which is the same as in (1) above to two decimal places.

3. In another approach we may perform the solution in two steps: the first, using
only the first condition equation, with the a priori information, and in the second
step computing the contribution of the second condition equation. The first condi-
tion equation is

vy +[—1]x = —6.74
which with
Wy =1, W, =001, and fo=—6.7
yields
N, = (B Wo By + W,,) = (= 1)(1)(—1) + (0.01) = 1.01
to = (BY Wo fo — W, £,) = (—1)(1)(—6.74) — (0.01)(—6.7) = 6.807
Ao = Ng 'ty = (1.01)"1(6.807) = 6.7396
The second condition equation is
v +[—1]x = —6.76
with W, = 1, for which the second term of equation (13.7) becomes
3A = Nj 'BY(A;Q;A} + B;N; 'BY) " !(f, — B;A%) = 001015
Hence
x=A¢g+6A=674975=6.75 m

which checks with the above answers to two decimal places.

4. The solution in (3) above was based on using a minimum set of conditions,
which is one condition in this simple example, to obtain A, . Here we shall begin with
no conditions, then add one condition equation at a time. Therefore for A,

B, = 0f, = 0
No = (0 + W,,) =001
to = (0 — W,, f,) = 0.067
Ao = Nj 'to = (0.01)"1(0.067) = 6.7 m

(which was said to be so in the text). Now, with B; = —1 and f; = —6.74, equation
(13.7) yields 6A; = 0.0396.

A=Ay +08A;, =6.7396 m

[the same as A, in the two-step solution of (3)].
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In order to compute the contribution of the second condition equation, evaluate
first N7 ! from Ng !, using equation (13.5a) with upper signs,

Ni'=Ng'~ N 'Bi(A;QA} + B,N; 'Bi)™'B;Ng ' = (1.01)"!

The second condition equation has B, = —1 and f, = —6.76, for which equation
(13.7) gives 6A, = 0.01015. Hence

Xx=A, +8A,=674975=675m

For the sake of completeness, four different techniques were given, all
leading to essentially the same solution. A casual consideration for a choice
would almost certainly pick up the first technique as it is simple, short, and
most direct. This is undeniably true for this nearly trivial example. Further
consideration, however, is necessary when large size adjustment problems
are involved. Furthermore, when a priori information is available and is
realistic, we must use it, which would exclude the first technique.

If the observational data are in fact generated in a sequential manner, it is
advisable, and even necessary in certain cases, to perform the adjustment
sequentially. In this case several options are available. We may wait until
enough observations are accumulated for a minimum unique solution, or we
may simply begin with the a priori estimates that are given. The choice may
not be simple since the overriding factor will be computational efficiency.
Therefore for a given problem and its corresponding computational
configuration, both hardware and software, we must analyze the different
steps involved to determine which procedure would be more appropriate. As
regards the redundant data, the choice of the number of equations to be
added (or deleted) at a time would also influence the time of computation, as
may be implied from Figure 13.1. Therefore, in a similar manner we ought to
look into this aspect as well when designing the sequential scheme to be used
for a particular adjustment application in order to arrive at an optimum
configuration.

13.3.2. Variable Number of Parameters In the case of a variable number of
parameters the condition equations are of the form given in equations
(13.10a) and (13.10b). The a priori information would be x and W_, for A,
and in addition x; and W, for the new parameters 8. Consequently, besides
redefining N and t as given in equations (13.26a) and (13.26b), we also need
to redefine n and t appearing in equations (13.12a) and (13.12b). If x{ de-
notes an approximation vector, then

f; = x5 — x; (13.27a)
and

n;=b{W,b, + W, (13.27b)

t,=bW,f — W, f; (13.27¢)
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With all the new definitions, every relation developed in Section 13.2.2 can
be used directly and without alteration for the situation when a priori par-
ameter information is available.

Example 13.4. Suppose that we have the following six linear condition equations:

vy + x4 =1.1
vy + 2x,4 =20
vy + X3 + X, =21
Vs + 2%; + X, = 3.0

vs + 2x; + 2x, + x3 =50
Ve + X3 + X3 +2x3 =4.1

with
Q =1I and Q,, = 1001,

6.6 3.3
and the a priori estimates of the three parameters are all equal to 1.

Required: For the parameters (1) compute the estimates in one step using the a
priori information, and (2) compute the estimates sequentially adding one equation
at a time.

Solution

1. The matrix B and vector f are

1212 2 1)
B=]0 0 1 1 2 1 f=[11 2 21 3 5 41}
0 0001 2

15 8 4 273
N=BB=| 8 7 4 t=Bf=]192
4 4 5 13.2

Because of the a priori estimates of the parameters and the fact that the conditions
are linear, x° = 0, from equation (13.24c)

f=—-x=[-1 -1 -1}
The corresponding normal equations would therefore be

(BB+ W, )x=(Bf-W,Tf1)

1501 8 4 Xy 27.31
8 701 4 xl =11921
4 4 501 Lx; 13.21

[x, x; x3]=[1015537 0.990998 1.034703].
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2. We begin here by having W,, =001 for the normal equations coefficient
matrix and — W, f, = 0.01 for the constant vector, then we add the first equation for
which

B, =1, f,=11, Q. =1
therefore
Ni'=(101)"" and t; =111
Next,
B, =2, f, =2 Q=1 N;!'=(501)"1, and t, =5.11

At this point the parameter number will increase from one to two. Thus with a priori
W;,5, = 0.01 the matrix N; ! should now be expanded to

Nl = (so1)~* 0] [01996 0
z - 0 100 | o 100

B3 = [1 1] f3 = 2.1 Q3 = 1 f‘;J = —1 w6363 = 0.01

N N < .19 —0.1972
N3! = Nj![I, — By(I + By N; 'By) !B, N5 1] = [ 0199206  —0.197225

—0.197225 1.19
The constant term vector also needs to be expanded to
- [ 5.11 5.11 - . [7.21
= = = f =
=W, h,] T lo01] BTRTBL=]

N-t_ | 018079 —0.270045 4 e [1B32
4 T |-0270045 0902047 T T s

B5=[2 2 1] f5=5.0 Q5=1 f55= —1

[0.18079  —0270045 0 1321
Nyt = 0902047 0 and t,= | 511

| symmetric 100 001

[0.180446  —0.267606  0.172593 | [23.21]
N;!= 0.884764 —1.222095 ts= | 15.11

_symmetric 3.068322_ | 501
B6=[1 1 2] f6=4'1 Q6= 1

[0.173515  —0.218526  0.035937 | [27.31]
Ng!'= 0.537242 —0.254463 to= | 19.21

symmetric 0.374073 | 13.21J

and
[x1 x2 x3]=[1015538 0.991017 1.034710]

which agree well with the values obtained previously, the differences being due to
round-off errors.
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13.3.3. An Alternative Direct Scheme The solution in the second part of
Example 7.4 suggests a general scheme that may be applied equally well to
cases of both a fixed and variable number of parameters, and for addition as
well as deletion of condition equations. The only requisite for this scheme is
that all the parameters involved must have a priori estimates and corresponding
a priori weight matrices. Because of the allowance for varying the number of
parameters, the case of adding conditions differs somewhat from that of
deleting them.

THE DIRECT SCHEME FOR ADDING CONDITIONS The number of parameters
is assumed to be variable since the case of fixed parameters is a special case
(see also Section 13.3.1 and Example 13.3). Thus when a group of parameters
are to be included in the adjustment an a priori estimate of their values and
their weight matrix, W, , must be given. If two subvectors of parameters A;
and A; enter the adjustment sequentially (j = i + 1), the assumption will be
made that only their respective a priori weight matrices W, and W, are
given. This implies that they are not correlated, which is a totally practical
assumption. At the end of the (i — 1) cycle we have N;_!; with dimensions
(#;—1 x u;_,) and ¢t;_, for a computation of A;_, of size u;_,. For the ith
cycle, we add the conditions

Ai V,-+Bi Ai= f‘

13
si, ti ti, 1 si, ui ui, 1 si, 1

(13.28)

where A, is increased over A;_, by w; = u; — u;_,. Note that s; must be larger
than w; in order that equation (13.28) may contribute to the adjustment. The
added subvector of parameters 8; would have an a priori estimate. Further-
more, we must also have the a priori weight matrix W, which is (w; x w)).
Thus before computing N7 ! from N;_!,, the latter must be expanded from a
size of u;_, x u;_, to the larger size of u; x u;, as follows:

__ N1 0
L=t 13.29
uif uil [ 0 wé_.'él.- ] ( )
Then
N7 ' =NZ4[I - B{(A; Q; A + B, N, B})" 'B, N ] (13.30)

realizing, of course, that Q; is the cofactor matrix of the new set of observa-
tions which is assumed by necessity to be uncorrelated with the preceding set
already used. If the a priori estimate corresponding to 8, is x,,and x3, is an
approximate vector, then fj, is computed from equation (13.27a). The con-
stant term vector t;_, must also be expanded from a u;_; x 1 toau; x 1
vector, or

Iy ti—l
ti., = 13.31
o [“Wa.-«s.- fa,J (1331
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and then
t;=t_, + B{(A; Q; A}) ',

which completes the computation of N; and t; necessary for evaluating A;,
the answer at the ith step.

THE DIRECT SCHEME FOR DELETING CONDITIONS At the ith step of editing,
for example, we may delete the effect of the condition equations (13.28) from
the solution available as given by N_!| and t,_,, both of size u;_,. For the
sake of generality, we assume that u;_, is larger than u;, that is, the number
of parameters decreases, by say w;, when the effect of equation (13.28) is
removed from the solution. Obviously, then, u; = u;,_, — w;. The matrix
N;_} is first partitioned such that

Ni-y my
i_—ll = Uj, Ui Ui, Wi (13 32)
Ui g Uj— Tt .
i—-1r 41 nl__ 1 ni_ 1
Wi, ¥; Wi, Wi

then the new inverse is obtained from submatrix N,_,
Nl. l= 1Qi—l[l + B:(Al Qi A: - Bi N’i—lBE)_ lBi 1qi— 1] (1333)

in which Q; is the cofactor matrix of the observations associated with v;. The
remaining submatrices fi;_, and n,_, are not used, as they become irrelevant
with regard to the new set of parameters A;. It should also be pointed out
that if no change in parameters is warranted in the ith step (because the
conditions to be deleted do not reduce the number of parameters), N,_, will
be the total matrix N;_), which must then be used directly in equation
(13.33) to compute N; 1. In a similar fashion t;_, is partitioned

ti_, = [tf'l] (13.34)
ti-1
and the new constant term vector computed from
;= zi—l — Bi(A; Q; A})” lfi (13.35)

The same remark about the case of no change in the number of parameters
also applies here, thus t;_, would be equal to t;_,.

Example 13.5. Given the following four linear condition equations, Q = I,
Q.. = 100I,, and the a priori estimates are both equal to 1.
v + X, =1.1
vy + 2x, =20
b3+ x; +x; =21
vs + 2x; + x5, =30
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Compute first the estimates of x; and x, from all four conditions; then removing
sequentially the last two equations verify that the value of x, thus obtained is the
same as that obtained from solving the first two conditions directly by least squares.

Solution

1 21 2

B°=[0 011

t
] fo=[L1 20 21 30]
No=B, B, + Q. = [

1 201 -3 ~1
_1 — —_
No™ = {11201 [—3 10.01] fx [— 1]

13.21 b 1.009
—_ 4 - = =
to = Bo fo Wxx fx [ 511} [XZJ [1036]

10.01 3.
3. 201

Now to remove the effect of the fourth equation
A1=1 B1=[2 1] f1=30 1=l

Because the number of parameters remains unaltered in this step, then Ny = Ng!
and we apply equation (13.33) to compute Nj!

N-1 = 0.19920711 —0.19723476 (7121
' 7 |symmetric 1.18538095 17 a1
To remove the effect of the third equation

A2=1 B2=[1 1] f2=21 Q2=1

Since the number of parameters still remains unchanged we need not modify the
solution from the above step but simply take N, = Nj! and ¢, = t,. Equation
(13.33) thus yields

—1 _ |0-19960079 0.00000027 ¢ = S5.11
27 |symmetric  100.00001894 |’ 27 loot

x;] _ [1.019960
,  |1.000002

] and

X2

Returning to the original set of conditions, the first two equations yield

B=[l], r=[“J, W=I,, W,,=00, and f,=-1

2 2.0
N=BB+W,, =501 N-! = 0.19960079
t=Bf—- W, f, =511 x; = 1019961

Note that N~ ! is exactly the same value as the (1, 1) element of N3 ! and x, differs
only in the sixth decimal place. This shows that aside from rounding off error the
direct scheme is both rigorous and general. Its generality is demonstrated by the fact
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that x, computed after deleting the third and fourth equations is nothing but its a
priori estimate of 1.00, except for round-off error.

To demonstrate the reduction in the number of parameters, we extend the prob-
lem one more step by subtracting the effect of the second equation for which B3 = 2,
f3 =20, and Q3 = 1. Here only a submatrix of appropriate dimensions (in this case a
scalar) from N3 ! is needed. Thus N, = 0.19960079 and equation (13.33) leads to
N3 ! =0.99009885. Similarly, a subvector of t,, t, = S5.11, is relevant, hence
t; = 1.11. From the first equation directly

N=BB+ W,, =101 N~! =(1.01)"! = 0.99009900
t=BB-W,f =111

which agree well with those computed by the sequential scheme.

13.4. SEQUENTIAL REDUCTION, THE UNIFIED
APPROACH, AND PARAMETER CONSTRAINTS

The presence of parameter constraints poses no particular difficulties as
long as the unified approach is applied. If the classical methods were used,
there would be several special cases depending on whether the constraints
were available at the beginning or arose with the new conditions. Since in
the unified approach no distinction is made between conditions and con-
straints, the present case can be considered as essentially the same as that
given in Section 13.3. Therefore no special derivation is necessary here and a
numerical example is given instead to illustrate the points of treatment that
are applicable to the present case.

Example 13.6. Given are two conditions and one “constraint,”

v+ 1 Llxy| |21
1 —1]|x;{ 0.1
of the form

v+BA=f

and
x|
v.+[1 0] [xz] =10
of the form

v+ CA=¢g

The a priori weight matrix associated with the first two equations is to be taken as
W =1,, and the weight associated with the third equation is w, = 100; w, must be
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large relative to W in order to effect a practical enforcement of the third equation as a
parameter constraint. The a priori estimate of the parameters is

«= o]

with the a priori weight matrix W,, = 0.011,.
With the above data a solution is assumed to be found at the start. Then that
solution is to be modified due to the addition of another equation,

X1

vi+[—1 _1]["2

] = -22
with Wi = 1.0.

Solution: For the first part of the data we compute the normal equations as

10201 0
—-— 1 t —_
Nl—BWB+CWcC+Wx,,_[ ) 2_01]
_, _ [(0201)71 0 _[-1
Ni _[ 0 (on-t) =14
102.21
— Rt t _ —
t, = BWf+ CW,B—-W,_f, [2.01}

The answer for the first part is therefore

[l wer.  [1002
A= [xz]‘N‘ h= [1.000

For the second part

. 1 301 -1 . 104.41
2 730906 -1 10301/ 27 421

_ X1 _ 1.003

Az = [xz] - [1.065}
In Example 13.6 the number of parameters remained fixed through the
sequential treatment. As an illustration of how to apply the unified approach

sequentially with constraints in the case of variable number of parameters,
we shall take another numerical example.

thus

Example 13.7. The original data include two conditions and one constraint:

v 1 |11
2|11 < |20
of the form

v+BA=f
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and
V. +x, =1
of the form
v+ CA=g¢g
for which
w=I,, w, = 100, x; =10, and w,, = 0.01

After obtaining the solution for this data the following conditions are to be added:

s - )

of the form
vi +B;A+bd =1,
with
w=I,, x, = 1.0, and w =001

Solution: For the first part,

f,, = —x;, = —-10, and ;=10
thus

N=BWB+ CW,.C + W, =10501

t=BWf+CW.g—-W,Tf, 6 =10511

A =1.0010
With A, =1, (AQA’) = 1, thus

n; ! = (b'(AQA"); 'b + W,;)~ ! = (2.01)7!
Bi(AQA'); 'b =3, Bi{(AQA'); 'f, = 8.1
b'(AQA") f; — W;, 5 = 5.11

n,

t

Now equation (13.17) yields N™! = (110.01)™*.
To compute F use equation (13.15),

_ 110.01
— @ N7 §{,)"t =
(= N~ = o
ny(n, — W N;'n )"ﬁ‘n":L
LA R 17 212.1201
F, = (11001)" 221.1201

212.1201
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From equation (13.14b)

3
= — aprl=s ———
Gy = —F,un; 313.1201
221.1201
—n-1 _ p-1gt — -1
H, =n; n; 'ny G, = (2.01) 3151201
N-to |F Gl ! 201 =3
' 7 |G¢' H| 2121201 -3 11001
Finally, according to equation (13.12b),
(= t+ B{(AQA" ' f,]  [113.21 Ao 1.0005
- t s ~ 1.0490

In both Examples 13.6 and Example 13.7 the constraints were given at the
start. The cases in which constraints arise later pose no new points for
consideration since both types of conditions are the same. Consequently, no
particular treatment of such cases is necessary. Finally, cases of information
deletion are sufficiently straightforward and need no further elaboration.

13.5. PRECISION ESTIMATION

The question of a posteriori cofactor matrices is not much different from
the regular practice since at the end of a sequential treatment we end up with
the same information as would be obtained from the direct batch least
squares. For fixed number of parameters, Q,, will simply be equal to the
new inverse of the normal equations matrix after either addition or deletion
of information. Thus in this case equation (13.5a) may be used for evaluating
Q.4 - In case we are working with a variable number of parameters, equation
(13.13) may be used for the addition of information and equation (13.21b)
for deleting information. All we need to remember is to use the updated
inverse of the normal equations coefficient matrix as the required cofactor
matrix Q,,.

With regard to Section 13.3 and the use of the unified approach, the same
equations referred to above also apply. The only difference is that a priori
W, is included here in N~ 1.

Precision estimation is not much different for the situation when par-
ameter constraints are present as given in Section 13.4. Since the unified
approach is applied, no modification to the above statements is needed.

13.6. SEQUENTIAL PROCESSING AND
NONLINEAR EQUATIONS

All derivations in this chapter concerned linear functions. For nonlinear
problems, in addition to linearization by series expansion, further discussion
is needed when considering sequential or recursive procedures. As an illus-



388 SEQUENTIAL DATA PROCESSING

tration we shall consider the case of addition of information when the
number of parameters is fixed. Let a set of nonlinear conditions be

F(l,x)=0 (13.36)
and its linearized form

Av+BA=¢1 (13.37)

c,nn 1 c,uul c 1

where A, B, and f° are evaluated at approximate vector x for the par-
ameters (disregarding the aspect of iterating on the observations, for the
sake of simplicity). From equation (13.37) a system of u normal equations
may be formed and solved for the first vector of parameter corrections A,.
Updated approximations to be used in the second iteration would be

X1=X8+A1

The process may be repeated many (m) times leading to the eventual answer
x=x3+ YA, (13.38)
k=1

Let an additional set of conditions be
F,(,x)=0 (13.39)

The combination of equations (13.36) and (13.39) gives a larger set of condi-
tion equations from which the final estimate x, of the u parameters will
obviously be different from that given by equation (13.38). The most direct
process (which may not necessarily be the most efficient) is to linearize
equation (13.39) at an approximation vector x} equal to X obtained from
equation (13.38) to give

A, v +B, A, = f° (13.40)

p,n n1 p,u u, 1 p, 1

Next, equation (13.37) is re-evaluated at the same value x} and combined
with equation (13.40) to form a total set of (c + p) condition equations. The
corresponding normal equations are formed and solved to obtain a correc-
tion, A,, and the solution is repeated, if necessary, until convergence is
achieved. It should be noted that in this process the normal equation matrix
of size u will have to be inverted every time a correction vector is computed.

Another possibility occurs when the equations in (13.37) are stored and
kept until all the additional equations in (13.39) become available. In this
case, equation (13.39) is linearized at the approximation vector xJ used for
equation (13.36) and the set of linear equations is combined with equation
(13.37). Normal equations are formed and solved and relinearizations
carried out until the solution converges to a preset tolerance.
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A number of possibilities arise when sequential procedures are used for
nonlinear problems. Some of these possibilities entail exact solutions
whereas others involve certain approximations. To begin with, the sequen-
tial algorithm is exact when used inside each linearization. For example,
suppose that A,; is obtained from the first cycle of the direct solution for
equations (13.36) and (13.39) together (both linearized at the same approxi-
mation vector x9). If, then, the inverse of the normal equation matrix and
constant term vector arising from the set of equations (13.36) (linearized at
xJ) are modified by the sequential algorithm to include equation (13.39)
(also linearized at xJ), the product of the resulting inverse and constant term
vector will give A,; exactly. For the nonlinear case the set of equations in
(13.37) is solved by the linearization process as shown in equation (13.38).
The new set of equations in (13.40) is then added by the sequential algorithm
after being linearized with the best estimates of the parameters from the
original set of conditions, that is, X from equation (13.38). In this case the
resulting estimated parameter A, will not necessarily be precisely the same
A, estimated directly from linear least squares solution for all condition
equations considered together. Obviously, the amount of difference between
A, from the sequential solution and A,, from the batch solution will depend,
among other things, on the quality of the first vector of approximations, x .

To obtain an appreciation of this method of sequential reduction in the
case of nonlinear models, the solution of different cases of a relative orienta-
tion problem of a pair of aerial photographs is given in Table 13-1. First, six
points were used in a regular batch least squares and the solution iterated
until convergence. The answers—that is, the values of the five relative orien-
tation parameters—from this case are given in the first line. Adding three
more points, the second line gives the results from a batch solution in which
all nine points are used directly, and the fifth line gives the corresponding

TABLE 13-1 Comparison of Batch and Sequential Solution of the Nonlinear Model of Relative

Orientation
TYPE OF SOLUTION ESTIMATED PARAMETERS
BATCH  SEQUENTIAL
POINTS POINTS Y(mm)  Z(mm) ) ¢ K

6 0 0.179 151.766 1' 42851  36' 0.070" 6 17.920”
9 0 0.168 151.770 1" 56.564” 35 59.249" 6 19.278”
15 0 0.158 151.768 2 07.057" 36’ 33944 6 12.202"
40 0 0.152 151.773 2 12.462" 36’ 38931 6 12.551”
6 3 0.168 151.770 I’ 56.573" 35’ 59.238” 6" 19.277"
6 9 0.158 151.768 2 07.097" 36’ 33.939" 6 12.207"
6 34 0.152 151.773 2’ 12.462" 36’ 389317 6 12.551”
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results when the three points are added sequentially. In the third and sixth
lines the results of a total of 15 points are given, and those in the fourth and
seventh lines are for 40 points. The reader will note that when extensive
redundancy exists, such as the case of 40 points, the two solutions are
identical. For other cases there is some difference between the two methods
of solution reflecting the already mentioned fact that the sequential algor-
ithm is not exact for nonlinear cases. However, such differences, at least for
the example given, are so small they can be neglected. Of course, it must be
emphasized that this is only one example that shows tendencies, and other
examples from different applications would demonstrate the concept.

13.7. SUMMARY OF EQUATIONS AND
CONCLUDING REMARKS

13.7.1. Summary of Equations For a case of fixed number of parameters,
given Ng?,), t;_y), and a new set of conditions A;v; + B;A = f; with Q,,
then

Q.; = (AQAY); W, =Q;'
N7t =Nt oI F BYQu £ B,NG1, B)'B,Nz!, ] (13.52)
ti = t(,'_ 1) i B: We,- fi (13.5b)

with upper signs for addition of conditions whereas the lower signs are for
subtraction of conditions. Alternatively, given N;!,,and A;_, the effect of
the new conditions would be

Ai = Ai—l + N(?—l 1) BE(Qei t Bi N(_i—ll) Bti)-l(fi - Bi Ai-l) (13-7)

again with upper signs for condition addition and vice versa.

For a case of variable number of parameters, given N;_!;, t,_,, and the
new conditions A;v; + B;A + b;8 = f; with Q;, and where 8 is an added set
of parameters, then for condition addition,

N7 =NZ4[1 - B{(Q.; + B; N, BY)™'B; N;_] (13.17)
n; = (B'W,b), (13.18a)

n; = (b'W,b), (13.18b)
F,= Ny [+ 5, — N7 ') '8 N; ] (13.152)
G,= —F,fi,n! (13.14b)
H;=n'—n '8 G; = (n; — 0} N; ')} (13.14c),
(13.14d)

"J (13.13)
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t: = ti—l + Bi We,- f,- (13.193.)
t=bi W, f (13.19b)
t
t, = il] (13.12b)
Al -t
o

For deletion of the conditions A;v;+ B;A +b;5 =f; from the solution
given by N, and ¢;_,, then partition N;_'; and t;_,,

_ F;_ G;_ t_
Nl = [ / ‘l HJ i] t,_, = [{ i}
J= - J—

J

where H and t are of order equal to that of 8.
Compute ii; and n; from equations (13.18a) and (13.18b) above,

N;Y =F,_,[1 - an; + & F,_, i) '% F,_,] (13.23)
N; ! = N;4[I + BYQ,; — B, N;.,,B))™ !B, N1, ] (13.24)

When unified approach is used, apply all formulas above but redefining
BW. f—W,_f (13.26a), (13.26b)
b'W, f— Wy £, (13.27b), (13.27¢)

N=BW.B+W,_, t
n=btweb+w6a i

where f, = x® — x and f; = x? — x;; x° and x{ are vectors of parameter
approximation; and x, x; and W,,, W, are a priori estimates of the par-
ameters and their weight matrices.

13.7.2. Concluding Remarks We introduced in this chapter several modern
concepts that may be regarded as an extension of regularly practiced least
squares adjustment procedures. Although these concepts may appear to be
somewhat theoretical or academic, they may in fact take a place of promin-
ence in adjustment methodology because of current rapid advances in
on-line modes of data acquisition and the ever-increasing role played by
electronic computers.

Because the sequential methods are relatively recent, we have by no
means exhausted the subject. Actually, this chapter is mostly an introduc-
tory exposition. One point that must be emphasized is that the entire con-
cept of derivation as given was built on the lack of correlation between the
new set of observations and those preceding it. This assumption allowed for
the block diagonality of the total cofactor matrices and made possible the
derivation of the algorithms as given. Obviously, further development is
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needed to deal with the effect on these algorithms of having correlated
observations that need to be sequentially processed.

Another area that requires further elaboration concerns the nonlinearity
of the model, and how it can best be handled by sequential procedures.
Numerical factors and computational efficiency, further considerations of
cases of variable number of parameters, and the unified approach combined
with model nonlinearity all need more development. Therefore the material
given here is intended to present the reader with enough basic concepts to
prepare him for further study of more advanced work.
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An Introduction to Least Squares
Interpolation, Filtering, and Collocation

14.1. INTRODUCTION

The method of least squares has been used extensively in the major
portions of this book for solving adjustment problems involving random
variables and specified mathematical models. In such problems the selected
mathematical model is treated as superior to the given sample, and the least
squares criterion is used to estimate another set of random variables that is
consistent with the model. Therefore adjustment procedures may be con-
sidered as one type of statistical estimation in cases in which a mathematical
model is given a priori.

There are other estimation procedures that may also apply the least
squares criterion and which rely on the basic concepts of stochastic
processes. We may speak of “least squares prediction” when “ time” is the
variable involved, and therefore we estimate (or predict) what would happen
in the future on the basis of past occurrences (history). On the other hand
many of the applications in photogrammetry, geodesy, and surveying often
involve location instead of time, and hence either least squares interpolation
or extrapolation is used. The task of interpolation is to estimate (interpolate)
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at locations other than those for which (observed) data are given. Because
this situation is more often in practice, the term “interpolation” will be
selected for use hereafter. At data points, measuring errors may also occur. If
the estimation procedure “filters” these errors when estimating at new
points, we speak of “least squares filtering.”

When interpolating at new locations from data at given points, nonlinear
relationships could, in general, be assumed. However, for practical reasons
nonlinear interpolation is not often applied and instead “linear interpola-
tion” is more commonly used. For this reason consideration will be given
only to the linear case in the developments given in this chapter.

Least squares adjustment has been applied to problems in photogram-
metry, geodesy, and surveying for a long time. On the other hand least
squares interpolation and filtering have found their way into these fields
only recently. In addition to applying interpolation to geodetic problems a
general least squares technique combining classical adjustment with interpo-
lation and filtering was devised. This technique has been given the name
“least squares collocation.”

Instead of commencing with the relatively advanced method of least
squares collocation, least squares interpolation is introduced first. And in
order to facilitate its introduction several basic concepts and definitions are
concisely presented, without proofs.

14.1.1. Random or Stochastic Functions The reader will recall that a
random variable is defined as a variable that assumes various values depend-
ing on the result of an experiment (or observation, or trial) when such an
experiment is repeated many times under similar conditions. The random
variable has therefore a probability distribution associated with it, and it is
considered specified when its distribution function is known. When the out-
come of the experiment is a set of quantities (or numbers), we may consider
them collectively in a vector as a single multidimensional random vector. In
this case such random variables are specified by a multidimensional distrib-
ution function. Random variables, whether one dimensional or multi-
dimensional, were sufficient for the treatment of different techniques of least
squares adjustment. In order to explain least squares interpolation and filter-
ing, however, the concept of random functions is required. A random function
(also called “stochastic” function) is a function that is specified by the
outcome of an experiment, and which may have different realizations as the
experiment is repeated. It is composed of a set of random variables. An
example of a random function is the diameter of the cross section of a thin
wire (see Yaglom, 1962, in the Bibliography). Due to many factors in manu-
facturing a wire, its cross section is never a constant but is instead a random
function along the wire. Another example concerns the position of image
points (reseau marks) on an aerial photograph.

A realization of a random function (or a sample function) is one given set
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of values for the function. A given segment of a thin wire is one realization
since the diameters of various cross sections along this specified segment are
known values in the sense that they can be measured. Another segment (of
the same length) would be another realization which may, in general, have
different values for the diameters of the wire cross sections. Similarly, a given
photograph is a realization of a random function where the position of each
specific point (reseau mark) is determined. The random variation is there-
fore from one realization to another.

The general term “random function ” is used to designate either a random
sequence or a random process. In the case of random sequences, the varia-
ble(s) in the function (for example, the position of a reseau point on an aerial
photograph) assume only discrete values (when properly scaled, they
become integer values). Random processes (often termed “stochastic”
processes) on the other hand consider all values of such variable(s) (for
example, the position of a wire cross section). Random functions are
specified by the moments, particularly the first two, of their probability
distributions. The first moment is the mean whereas the second moment
would represent the covariance if the mean is zero. If s(u) represents a
random function, then the mean pu (u,) at a particular value u, is defined as

.1
o) = lim — 3 s, (u,) (14.1)
m-ao M k=1
Similarly, the joint moment (which is called autocorrelation function) C,(u,,
u; + A) at two different values u, and (u, + A) is given by

N
C,(ul, “1 + A) = hm — Z Sk(ul)sk(ul + A) (14.2)
m— k=1
For practical applications, u, and C, are often sufficient for specifying the
random function in question (in equations (14.1) and (14.2) the summation
is over realizations).

14.1.2. Stationarity, Nonstationarity, and Ergodicity If the conditions of
the experiment, on whose outcome the values of the random function
depend, remain unaltered (within one experiment and from one experiment
to the next), then the function is called “stationary”; otherwise it is called
“nonstationary.” Consequently, if the random function s(x) is nonstation-
ary, then both pu; and C; of equations (14.1) and (14.2) would vary as u,
varies. On the other hand for the special case of a stationary function, u, and
C, do not change in value as u, varies. It follows that for stationary functions
the mean is constant (often taken as zero) and the autocorrelation function
depends only on the increment A. An example of stationary function is when
the manufacturing environment of the thin wire does not change with time.
In this case the mean wire diameter is constant and the autocorrelation
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function depends only on the distance between points along the wire. Any
two different segments of the wire would have the same autocorrelation
function.

For the purposes of the current presentation, consideration will be given
mostly to stationary random functions. It is therefore convenient to take the
mean as zero and speak of the autocorrelation function as the autocovar-
iance function. If u, + 0, a new random function s'(u) = s(u) — u,, which has
a zero mean, would replace s(u).

The mean and autocorrelation would require a large number of realiza-
tions of the function s, in order to be estimated from the data. This is often
not practical and an alternative is desirable. In many cases in practice it is
possible to describe the characteristics of a stationary function from only one
realization. Here the mean and autocorrelation are given by

S
k) = lim 7 [ s,(u) du (143)
1 U
C(A, k) = lim i si(u)s(u + A) du (14.4)
U- o (1]

If the mean and autocorrelation as given by equations (14.3) and (14.4) turn
out to be the same no matter which realization k is used, the stationary
random function is called ergodic. The property of ergodicity applies only to
those functions that are stationary.

A characteristic that is useful in practice pertains to normal stationary
random functions. When the function mean is zero, the ergodic property will
be satisfied when

limC,(A) =0 (14.5)
A=
In other words, when the function is stationary and has a normal probability
functiont (which occurs frequently in practice) with zero mean and a covar-
iance function that converges to zero as the interval A increases indefinitely,
then the function is ergodic.

If the example of aerial photography is recalled, when ergodicity applies
we may use data at different (reseau) points of the same photograph (one
realization) to derive properties pertaining to the multitude of aerial photo-
graphs. In photogrammetry this is frequently carried out in tests on photo-
graphic quality without having to obtain an excessive number of photo-
graphic frames. In such tests ergodicity is assumed.

14.1.3. Multidimensional Random (Stochastic) Functions—Random Fields
So far, consideration has been given to single random functions such as

t A random function s(x) has a normal distribution if the multidimensional joint distribution
function f[s(u,), s(u,), ..., s(u,)] is normal for any arbitrary set of u,, u,, ..., u,.
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s(u) with only one variable u which may or may not be time. Random
vectors have been introduced before, however, and in a like manner a
random vector function (or vector process) may be introduced, again of a
single independent variable u. For example,

s(u) = [s1(u) s2(u) - suw)]' (14.6)

is an n-dimensional vector process that is a function of the one variable u. In
this case we would have a mean n-vector p,, but the concept of correlation
function must be expanded. Here, in addition to the autocorrelation (auto-
covariance) functions for each s;(u), there will be crosscorrelation (crossco-
variance) functions for each pair s;(u) and s;(u), i # j. Consequently, the
covariance function C(u) is replaced by a covariance matrix C(u). This
matrix is symmetric for stationary random vectors (of real functions). Each
element s,(u) is a stationary random function, and each pair, s,(u) and s;(u),
i # j, is only stationarily correlated, that is, the crosscovariance function
depends only on the difference (4; — u;).

Although the random vector function consists of several random func-
tions all of which are in terms of only one variable (u), a random field consists
of only one random function but in terms of more than one independent
variable. For example, s(u) is a random field that is a function of a vector of
independent variables u. Wind speed is an example of a four-dimensional
random field, where u includes four independent variables—that is, time and
the three dimensions of Euclidean space. For fields, the concept of stationar-
ity is replaced by the concepts of “homogeneity ” and “isotropy ”. A field is
called “homogeneous” if its mean is constant and its autocovariances
depend only on the vector separation (both length and direction) between
different points of the field, not on their absolute location. If, in addition,
autocovariances are invariant under rotation—that is, they depend only on
the length of the vector separation—then the field is not only homogeneous,
it is also isotropic.

A last kind of multidimensional random function combines both of the
types that have been presented so far. A random vector field consists of
several random functions (or processes), each of which is a function of a
vector of variables u, or

s(u) = [sy(u) s2(u) - s,(w) (14.7)

The properties of such a relatively complex field would be expressed by
averages, autocorrelations, and crosscorrelations in a manner similar to
those presented previously.

14.1.4. Linear Interpolation and Filtering In many branches of applied
science and engineering, problems often occur in which an estimate of a
random quantity is required from certain available data. The random quan-
tity sought could, in general, be written as a nonlinear function of the var-
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iables representing the data, but the solution in such a case would be difficult
analytically. Instead, linear functions are often used to simplify the problem,
hence the term “linear interpolation and filtering.” For an explanation of
interpolation and filtering, we define three random functions I(u), s(u), and
r(u) such that

lu) = s(u) + r(u) (14.8)

The observable function is I(u), whereas r(u) represents the measuring error
or “noise,” thus s(u) is the so-called “signal” or response that is to be
estimated. Interpolation and filtering, therefore, are the problems of finding
an estimate $(uo) of the random function s(u,), at u = u,, when a discrete set
of function values I(u,), l(u;), ..., l(u,) from a given realization I(u) are
available. The estimate is sought such that §(u,) is a linear combination of
I(u;), the function values, or

So = 8(uo) = a'l (14.9)
where

a’'=[a, a;, - a, (14.10a)
is a vector of coefficients, and

I=[luy) Uuz):-- Wun)) (14.10b)

is the vector of given data values. Special cases of this general formulation
include

1. If r(u) = 0, then I(u) = s(u) implies that either no measuring errors oc-
curred or if they did, they are of sufficiently small magnitude to be ne-
glected. This is the problem of interpolation, where s(u) is also I(u,).

2. If the noise r(u) # 0 and we are interested in estimating s(uo) at u = u,
from the data values /(u;), then this is the filtering problem.

If the independent variable u is time, then the estimation process is called
“prediction.” In this case the data represent the “past” of the random
function, and signal values at “future” times are to be estimated. In all cases
the type of estimation considered is linear inasmuch as equation (14.9) repre-
sents the linear operator used for estimation.

Before dwelling on the details of interpolation and filtering, the concept of
correlation (covariance) functions should first be introduced. Dealing with
stationary random functions, it is convenient to assume zero means, or

us=E(s)=0 (14.11a)
U, =E(r)=0 (14.11b)
w =E(l)=0 (14.11c)

Furthermore, stationarity means that autocorrelation C is only a function of
the separation A. The functional expression relating C and A is called the
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“correlation” or “covariance ” function. There are in general three correla-
tion functions—C(A), C,(A), and C,(A)—which, under the assumption of
zero means and that r and s are stationarily uncorrelated, are related by

C(A) = C(A) + C(4) (14.12a)
and
Ci(A) = C(A) (14.12b)

Figure 14.1(a) depicts graphically the relation of equation (14.12a) where the
shaded area represents the correlation function of the noise.

» 0
a

(@ (b)
Figure 14.1

In practice, however, the noise r(u) is more realistically assumed to be
uncorrelated and therefore C,(A) would be a single point (representing the
variance of the noise) as depicted in Figure 14.1(b). Consequently, the three
covariance functions in this case would be as shown in Figure 14.1(c), and
for A — 0 the relation between variances is

C/(0) = C,(0) + C,(0) (14.12c)

Covariance functions are either theoretically known, or they may be
derived from the experimental data as will be explained in Section 14.5.
Once the functions are established, the covariance C(A) may be evaluated
for any two points separated by a distance A.

14.2. LINEAR INTERPOLATION OF STATIONARY
FUNCTIONS

As given under the special case (1) of the preceding section the data
pertain to s(u), and hence equation (14.9) may be used replacing / by s. Let
the deviation between the estimate § and s be designated by

v = s(up) — S(up) = So — So = So — a's(u)
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or

p=[1 —a] [SZ‘;)J (14.13)

for which the variance is (applying the technique of variance propagation,
see Chapter 4, Part I)

o2 =JT) (14.14)
with the Jacobian, J =[1 —a‘] and the covariance matrix of the random
variables involved given by

62 ©
= % 2 14.15
[Gsso zss ] ( )

This is an (n + 1) square symmetric matrix of autocovariances and crossco-
variances, with o2 the variance of s, (a scalar) which is equal to C(0) [see
Figure 14.1(a)]; o, = o}, the n x 1 vector of crosscovariances between s,
and each element s(u;) of s (each value is obtained from the covariance
function C,(A) for each distance A; = uyu;); and X the n x n symmetric
autocovariance matrix of s. Its diagonal elements are all equal to C(0), and
each off-diagonal element ij is obtained from the covariance function using
A;; = u;u; as arguments.
Using equation (14.13) equation (14.12) may be expanded to

ol =02 —2a'6,, +aT a (14.16)

Ss

which represents the mean square interpolation error. For a minimum inter-
polation error, we select a vector a such that

0 2
a‘;” = —2¢!,,+2aE, =0

or, after transposing and rearranging

a=X_'e (14.17)

ss0
This leads to the estimate of the interpolated value [see equation (14.9)]
§o =0y, .25's (14.18)
The estimate of the mean square error of estimation is
02 =02 =02 —2ao,, +a'T a
or in view of equation (14.17) it becomes
0% = ol — a's,,, = C,(0) — a's,, = C,(0) — 6., L 0, (14.19a)

and alternatively

0%, =03, —a'L a=C(0) —aL,a (14.19b)
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14.3. LINEAR FILTERING OF STATIONARY
FUNCTIONS

Linear filtering is actually a more interesting problem since it is of more
practical usefulness than interpolation. In a manner similar to the derivation
for interpolation, the estimate §, for filtering may be obtained as follows:

S,

o2 =1 —a‘]Z[ 1}

—a

Here, the covariance matrix X is constructed as

2
o c
Z — [ S0 sol]
G0 2y

The variance o2, in X, is equal to C,(0). Next, the vector o,, contains
crosscovariances Cy(A) which are equal to C(A) according to equation
(14.12b). Finally, £, is the covariance matrix for the given data. Its diagonal
elements are all equal to C,(0). Its off-diagonal elements are the same as those
for £, because C,(A) = C,(A) for A # 0 [see Figure 14.1(c)].

Expanding ¢2 and differentiating to get a minimum, we get an equation

similar to equation (14.17)
a=X;'e, (14.20)
Finally, as in the case of interpolation

So=6,, 57 (14.21)
ol = g% — a'e,

or

oi = C,(0) — a's;,, = C,(0) — o}, X, ‘o), (14.22a)

and
O'go = CS(O) - atzu a (14.22b)

This concludes discussion of filtering.

In the treatments of both interpolation and filtering, attention was limited
to estimating one random function only. In practice, two- and three-
dimensional random vectors may occur. Therefore both interpolation and
filtering will be extended in the next section for multidimensional cases.
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144. EXTENSION TO MULTIDIMENSIONAL CASES

Suppose that at each point more than one random variable are defined.
For practical reasons only two- and three-dimensional random vectors will
be considered. We will denote the components of these vectors by x(u), y(u),
and z(u). Thus for the two-dimensional case,

A cx cx zxx zx - 1

[xo] — 1,(::‘ 1,(:ly nn n, ny [x(u)] (14.23)
:VO cyox Gyoy 2y.vc zyy y(u)

1,n 1,n nn n,n
and for the three-dimensional case

5&0 u'Jcox cxoy o'.xoz zxx Exy 2.vcz -1 x(u)
Yol = Syx Oy Oz | | Ex I,y I, y(u) (14.24)
2 G.0x G0y Oz | LE.x I, I z(u)

Xo, Vo, 2o are the estimates of the three components of the signal at
u=ug.

G ,0x> Gxoy Oxo: are €ach a 1 x nrow vector of covariances between x(u,)
and the data values x(u;), y(u;), and z(u;), respectively.

Gyox> Gyoys - -5 Oz, Ar€ vectors similarly defined.

L. Z,,, L, are each an n x n square symmetric matrix of autocovar-
iances of the given data.

L, X, XL, are each an n x n square matrix of crosscovariances of the

given data.

Equations (14.23) and (14.24) may be written more concisely as

So =L, Z! s (interpolation) (14.25)
m, 1 m, mn mn, mn mn, 1
so =X, Zpt 1 (filtering) (14.26)
m, 1 m, mn mn, mn mn, 1

and the corresponding covariance matrices

z.Co!o = Esoso - a zsso
= 2soso - E.1=os E;l Ea:.so (1427)
Z9030 = z:soso - a‘xlso = 2:smso - zsolzﬁ 12130 (1428)

where m =2 for the two-dimensional case, and m =3 for the three-
dimensional problem. The covariance matrix X, ,, is the computed matrix
for the estimated signals x(u,), (o), and so on. The matrix X is a covar-



145 SURFACES, FUNCTIONS, EXPERIMENTAL RESULTS 403

iance matrix whose elements are the zero values C,(0) of the auto- and
crosscovariance functions, or, for three dimensions,

C..(0) C,(0) C.(0)
2.10:0 = ny(o) ny(o) Cyz(o) (1429)
C.0) C,0) C.0)

In case the multidimensionality pertain to the independent variable, that
is, in case of random fields, the relations of equations (14.18), (14.19) and
equations (14.21), (14.22) for interpolation and filtering, respectively, would
directly apply if the fields are assumed to be homogeneous and isotropic.
Similarly, for homogeneous isotropic random vector fields, all equations in
this section can be directly used. The increment A would be the scalar
distance between the points in the field.

14.5. TREND SURFACES, COVARIANCE FUNCTIONS, AND
EXPERIMENTAL RESULTS

Stationary random functions are characterized by a constant mean and
the fact that the correlation function C(A) approaches the mean as A — 0.
For simplicity, the presented formulation of interpolation and filtering
assumed zero mean; thus C(A) -0 as A — co. In order to ascertain that
these properties hold for given observational data, the trend must be
removed first. A general definition of “trend ” is that it is that component of
a random phenomenon which has a period larger than the recorded data
sample.

14.5.1. Trend Surfaces The trend is often represented by linear or low-
order polynomial terms. The given data must therefore be preprocessed to
remove the trend by transforming the data to another surface called “refer-
ence” or “trend ” surface as shown in Figure 14.2. In this figure the signal
surface (to be interpolated) would be referred to the trend surface instead of
to the original datum. Consequently, the given values I, at the data or
reference points, would be measured with respect to the trend surface. Both
the signal surface and data points vary randomly about the trend surface
such that their means are zero, one of the requirements for removing the
trend.

Trend removal is an important operation. If the trend is not properly
removed, distortions which cause erroneous results will occur. The type of
function selected to represent the trend surface is essentially determined
from the nature of the given data. In fact, caution should be exercised not to
remove trend arbitrarily when there is no reason to believe that the data
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include a trend. On the other hand once it is recognized that a particular
deformation exists in the data, it should be accounted for in the trend
removal. For example, residual film deformation often causes affine distor-
tion of a triangulated photogrammetric block. Consequently, we would
choose an affine transformation to remove the trend when we are interested
in external block adjustment using the filtering method presented here.

Having selected an appropriate expression for the trend surface, the trans-
formation of the data is usually accomplished using the method of least
squares adjustment. This is advisable because the number of reference (data)
points is usually so large as to yield considerable redundancy. Therefore a
least squares surface (curve) fitting would be the most suitable procedure.
Once the fitting is accomplished, the data values are then referenced to the
trend surface and become ready for the computation of the covariance func-
tion. Trend computation may be combined with interpolation or filtering in
one operation. This operation is the so-called collocation, which will be
given in detail in Section 14.7.

14.5.2. Covariance Functions Although in some special instances it is pos-
sible to have a theoretically determined covariance function, it is often neces-
sary to derive such a function from the given data. Since consideration is
limited here to stationary random functions (or fields), the covariance func-
tion would usually take the general form shown in Figure 14.1. Addressing
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first the one-dimensional case, we may compute the variances and covar-
iances from the given data [; as follows:

Variance:

i (14.30)

Covariance:

:I,_. SI*-‘

2 (1431)

Equation (14.30) shows that the variance is computed by simply summing
up the squares of all given data values /; and dividing by the total number of
reference points, n. If there is no noise, or measuring errors, in the data, the
computed C,(0) will be identical to Cy(0), the variance of the signal to be
interpolated. Otherwise these two variances will be different by the amount
C,(0), the error variance, as shown in Figure 14.1(c).

With respect to the covariance, reference is made to equation (14.12a)
which shows that the covariance computed from the data C,(A) is composed
of two covariances C((A) and C,(A), when s and r are uncorrelated. In
practice the measuring errors are usually uncorrelated, thus C,(A) =0 for
A # 0, and C(A) = C((A) for all A > 0, as shown in Figure 14.1(c). In the
figure, A is the distance between the two points whose correlation is
considered.

To compute the values C;(A) of the covariance function from the data, A
is divided into equal intervals. For example, as shown in Figure 14.1(c). the
first is A; = §, the second is A, = 34, and so on, with the interval being 20.
Therefore the mean of all possible n, products [;/;, at points whose separa-
tion A;; is within an interval (A, + ), is computed and regarded as the
covariance C/(Ay) at A, according to equation (14.31). The increment § is
rather arbitrary and its value can usually be chosen on the basis of the
knowledge of the given data. Once the number of covariance points is thus
evaluated from the data, the corresponding covariance function may be
derived. In order to determine an appropriate expression for the function, it
is advisable to plot these covariance points as shown in Figure 14.1(c). When
studying the disposition of the plotted points, and from knowledge of the
conditions of the problem, we can usually elect the suitable function to fit the
covariance points. Of the functions commonly used for autocovariance we
may use a constant, sinusoidal, Gaussian, exponential, exponential cosine,
and exponential sine and cosine. The function depicted in Figure 14.1(c) is
the Gaussian with the equation

C(A) = C(0) exp (—k>A?) (14.32)

which has been used frequently in applications to photogrammetric
problems.

Usually the number of covariance points exceeds the number of
coefficients in the covariance function, which are to be determined numer-
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ically. Therefore a least squares curve fitting is applied. For example, in the
case of the Gaussian curve of Figure 14.1(c), both C(0) and k would be
determined using all covariance points but not the point C,(0) along the
covariance axis if filtering is to be effected. It is worthwhile to mention that
linearization of equation (14.32) for least squares adjustment requires good
approximations, otherwise difficulties with convergence may be en-
countered. When interpolation is to be carried out without filtering, we
would use C,(0) and have the covariance function curve pass through it. This
is accomplished by using a constraint equation.

Once C(0) and k (as an examiple) are determined, then the covariance for
any value of A is computed using equation (14.32). Consequently, we can
construct the autocovariance matrices X for both interpolation and filtering.
In case of interpolation only, the diagonal elements of X [see equation
(14.18)] would all be equal to C,(0)—which is also equal to C(0) in this case.
Next, each off diagonal element in X is obtained by evaluating A for each
corresponding pair of points, and using it to compute the corresponding
covariance using equation (14.32). For instance, considering points 3 and 5,
we compute A, and use it as an argument in equation (14.32) to get the
element 6;5. The same procedure is repeated for all other off diagonal
elements of X, .

In case of filtering, the diagonal elements of X, [see equation (14.21)] are
equal to C,(0) and not C,0). This is the major difference that leads to
filtering. Other than that, the remaining off diagonal elements of X, would
be obtained in the same manner as for X,.

To have an appreciation of the importance of the covariance function a
simulated problem of one-dimensional filtering of a profile was set up.
Figure 14.3 shows the empirical covariance functions used, limiting con-
sideration to Gaussian and exponential functions only. Figure 14.4 shows
several interpolated profiles corresponding to different covariance functions
with different ratios between C,(0) and C,(0). Points to note here follow.

C(0)4CW

5 10 A
Figure 14.3. Experimentation with Different Covariance Functions
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Figure 14.4. Interpolated Profiles Corresponding to the Different Covariance Functions in
Figure 14.3

1. The Gaussian function produces estimated profiles with continuous
first derivative, whereas the exponential function leads to profiles that ex-
hibit discontinuous slope changes (that is, breaks or sharp peaks) at the
locations of the reference points. This is one reason for using exponential
covariance functions for interpolation problems in the digital terrain model,
for example.

2. When C,(0) = C/(0), the estimated profiles pass through the reference
points (that is, no filtering). In practice, however, it is always better to filter
even with C,(0) = 0.99C(0) in order to avoid potential numerical problems.

3. As the value of C,(0) gets smaller relative to C,(0) the profiles in
general get farther from the reference points (that is, more filtering).

14.5.3. Multidimensional Cases So far discussion has been limited to co-
variance functions for one-dimensional random functions. Extension to
random fields, that is, when the argument of the one random function is
multidimensional, is not problematic if the field is homogeneous and isotro-
pic. In such a case the increment A becomes the distance between the points.
If the field is not isotropic, then we must consider both distance and azimuth
in constructing the covariance function—a situation that is not quite so
common in practice. When considering random vector functions (or isotro-
pic random vector fields), we must evaluate both autocovariance as well as
crosscovariance functions. For each element of the random vector, an auto-
covariance function may be evaluated in a manner similar to the develop-
ment given in the preceding section. In addition, for each pair of elements, a
crosscovariance function also needs to be evaluated. If all such crosscovar-
iances, when evaluated from the data, turned out to be small enough not to
be significant, then an n-dimensional random vector would break down to n
one-dimensional functions. Consequently, both interpolation and filtering of
such random vectors can be performed as n separate operations each of
one-dimensional random function. This turns out to be the case in many
applications in practice.

When crosscorrelation is not insignificant, the evaluation of a crosscovar-
iance function is done in a similar manner as the autocovariance function.
As an example, consider the case of a two-dimensional random vector with
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components x(u) and y(u). The autocovariance functions C,,(A) and C,(A)
can be derived from the data using equation (14.31), or

C..(Ay) =— Zx (14.33)
n i<j

— Zy,yj (14.34)
n i<j

The crosscovariance functions C,(A) and C,(A) may be computed from the
data using

C,(Ay) = — Zx Vi (14.35)
n, i<j

yx(Ak n, Zyl } (1436)
i<j

Once the autocovariance and crosscovariance functions are evaluated, the
elements of the covariance matrices £, X, , and so on, may be computed

xxs “ixy>

from the functions in a straightforward manner.

14.5.4. Experimentation and Evaluation The filtering method presented in
Section 14.3 can be practically evaluated when the possibility of filtering at
each of the given n reference points is considered. Hence, for the ith point,
the estimated value according to equation (14.21) is given by

§i = 6”217 11 (14'37)

Referring to the discussion in Section 14.5.2 on covariance functions, the
vector o; is the same as the ith column of X, except for the diagonal element
o;;.- For completeness we give both,

A ] [C(0) o,, 04, ]
Oi2 C(0) -+ o2,
6, = ai,-,- = C((0) and X, =
_a:,-,, | | symmetric C(0) |
(14.38)

The vector a,; may be considered as a column of a square symmetric matrix
2!! ’

Cs(O) 012 Tt Oqp
Z" = CS(O) e 02" (14.39)

symmetric C,0)
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and the total vector of estimated signals at the n reference points becomes
é = 2“217 ll (14.40)

Recalling that s + r = I [see equation (14.8)], an estimate of the error
vector r would be

t=l-8=(01-X,X,;') (14.41)
f=E,- _‘:,,)E,I "
The matrices £, and Z,, differ only in the diagonal elements [see equations

(14.38) and (14.39)], and from equation (14.12c) and Figure 14.1(c), equation
(14.41) reduces to

t=C,0)X;'1 (14.42)
This is the vector of the components filtered out at the reference points. If the
assumption of zero mean is adhered to, an a posteriori estimate of C,(0) may
be computed from

C,(0)=-1'¢ (14.43)

S| =

Since C,(0) is often obtained a priori from the data (when establishing the
covariance function) whereas C,(0) is an estimate after filtering, their relative
magnitudes may be considered as an indication of how well the filtering was
performed. As an example with a one-dimensional problem, the a priori
variance was C,(0) = 0.0026 and the estimate was C,(0) = 0.0019. In terms of
standard deviation, 86 %, of r was filtered out. This type of evaluation has the
same practical usefulness as the reference variance (¢3) in least squares
adjustment. Just as 63 may be used to judge both the model and the given
data, the test on C,(0) helps evaluate the overall adequacy of the method,
particularly the amount of filtering.

14.6. EXAMPLES OF FILTERING APPLICATIONS

14.6.1. Compensation for Aerial Film Deformation The mathematical
model in computational photogrammetry relies on the collinearity condi-
tion that the camera position, the image point, and the object point all lie on
a straight line. This is, in fact, a simplification of the actual physical shape of
the light ray from the object point to the image point, which is usually a
curve. Instead of formulating much too complex an expression for that
curved path, the collinear form is introduced together with shifting the
image position in the plane of the photograph to make its application rea-
listic. In addition to the image shift to compensate for the curvature of the
projection ray, there is also an image shift to account for the deformation of
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the emulsion and film base between the moment of exposure and the time of
image coordinate measurement.

To account for image deformation, reference points with calibrated posi-
tions, such as fiducial marks or reseau points (or both) are used. Although
procedures using polynomials and other functions have been applied for
some time, only recently has linear filtering been used. Figure 14.5 shows the
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Figure 14.5. Residuals at 524 Points

field of deviations between measured coordinates and calibrated positions at
524 reseau points after the trend has been removed using a similarity trans-
formation. These vectors represent the given data I. Each [; can be con-
sidered in two components I, and I,. The computed correlation between
these two components was small and therefore each component was treated
independently as a one-dimensional filtering problem. From the given data,
Gaussian covariance functions [see equation (14.32)] were evaluated for
both the x and y components. Figure 14.6 shows the covariance function for
the y component, as an example, for which C,(0) = 18.4 um?, C/0) =
12.2 ym?, and k = 0.0173 mm~ 2. In fact, the experiment involved three pho-
tographs, the results of which are summarized in Table 14.1, with

05 = CS(O) and o, = \/Cr(O) = \/Cl(o) - Cs(o)

Continuing with the results on one photograph, Figure 14.8 shows the
computed § component at all 524 reseau points when 144 reference points
are used. The vectors depicted in the figure are drawn as the resultants of the
separately computed §, and §,. Comparison of Figure 14.7 to Figure 14.5
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C(A)?(ym2)
CH0)»e VC(0) =0, =25 um
T VE.:(O) =g¢s=3.5um
CK0) k = 0.0173 mm™>
Cy(0)~» ‘L
10}

50 00 (mm)a

Figure 14.6. Covariance Function for Y Component of Film Deformation

TABLE 14.1 Uncorrelated Random Component of Film Deformation—

Standard Deviation o,. Correlated Random Component for Film

Deformation—Standard Deviation o,. Constant k of the Covariance
Function

PLATE X COMPONENT y COMPONENT

a, g, k a, g, k

(pm)  (um)  (mm~%)  (um)  (um) (mm~?)

302 1.7 28 0.017 28 39 0.017
358 1.8 33 0.014 25 35 0.017
412 21 39 0.015 30 49 0.021

shows that the original field is approximated quite well. The filtered uncor-
related random components, 7, are plotted in Figure 14.8 and show how
effective filtering is for this type of problem.

14.6.2. Radial Lens Distortion Similar to film deformation, lens distortion
is another factor for which measured image coordinates are treated before
utilizing them in an analytical photogrammetry application. Limiting con-
sideration to radial distortion, Figure 14.9 shows the distortion curves along
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Figure 14.8. Filtered / Component of Film Deformation Using 144 Reference Points

the four radii of the format. It is not uncommon in practice simply to take
the mean of all four values (see Figure 14.9) and apply a uniform radial
correction to each point depending on its radial distance from the center of
the format. This is obviously inadequate and better results can be obtained
by a more effective method that operates directly with the given distortions
along the different radii.
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Figure 14.9. Radial Lens Distortion Curves

The first step is to seek an appropriate trend surface that was found to be
the polynomial (see Vicek, 1969, in the Bibliography),

d,=b;r +b,r* + bsr® + a;r* cos ¢ + a,r* sin ¢ (14.44)

where d, is the radial distortion, r is the radial distance, and ¢ is the direction
angle.

After removing the trend using this polynomial, the remaining field of
residuals is shown, for 20-mm points, in Figure 14.10. As usual an appro-
priate covariance function, in this case a Gaussian, was found for both the x
and y directions as shown in Figure 14.11. Using least squares filtering the
resulting correlated § components are added to those from the polynomial
and the combined effects are plotted for the 2-cm grid of points in
Figure 14.12. Finally, the uncorrelated random 7 components filtered out
during estimation are shown in Figure 14.13.

14.6.3. External Photogrammetric Block Adjustment After block triangu-
lation, particularly by relatively simplified methods such as Anblock, resi-
dual vectors remain at the check control points (or at used control points if
they were not assigned infinite weights during triangulation). Residuals at
different points invariably include correlated components (s components)
and usually uncorrelated random errors (r components). In order to account
for these correlated residuals and to compute corresponding quantities at
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Figure 14.10. Lens Distortion Residuals after Trend Removal
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Gaussian Covariance Functions for Lens Distortion
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Figure 14.16. Estimated 7 Components

the pass points (s components) without the uncorrelated random part, least
squares filtering proved to be an excellent procedure. As an example for
horizontal adjustment, Figure 14.14 shows a photogrammetric block with
the residuals after triangulation at 42 horizontal check control (reference)
points. Using a Gaussian covariance function the values C 0) = 0.72,
C,(0) = 1.00, and k = 0.00086 m? were estimated from the data. Both X and
Y components were estimated independently and separately, but then
combined to plot total horizontal vectors.

Figure 14.15 shows the estimated § for both the check control (reference)
points (designated by solid circles) and the interpolated pass points (hollow
circles o). Figure 14.16 shows the remaining 7 = ! —§ component of the
residuals at the reference points. It can be ascertained by comparing Figures
14.15 and 14.16 how the § and 7 components vary in appearance and

behavior. Although the § components are quite correlated, the r components
obviously are not.
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14.7. LEAST SQUARES COLLOCATION

It has been mentioned earlier in this chapter that least squares collocation
combines the well-established techniques of adjustment with those of inter-
polation and filtering. The presentation by Moritz (1972, see Bibliography)
considers the technique of adjustment of indirect observation and interpola-
tion. Although we shall rely mainly on this work, we shall extend it slightly
to include the more general least squares technique of adjustment of obser-
vations and functionally independent parameters, for which the conditions
are

A(l+v)+ B A=d (14.45)

cn c,uu 1 c 1

with X as the covariance matrix of the original observations. A new set of
equivalent observations /, may be introduced so that

I, +v,=(—Al+d)+ (Av)

Thus
I,=—-Al+d (14.46a)
¢ 1
v, = Av (14.46b)

¢ 1

and from propagation techniques
X, = AZA’ (14.46¢)

is the covariance matrix of /,. Equation (14.45) may now be rewritten as
v,= —BA + [, (14.47)

which implies a transformation from a technique of combined observations
and parameters to that of indirect observations.

In equation (14.47) the residuals v, are decomposed into a correlated
component (signal) s and noise r, or v, = s + r, hence

r+s=1—BA (14.48)

Comparing equations (14.48) to (14.8) shows that subtracting BA from [,
amounts to trend computation. Thus collocation means combining estimat-
ing the trend simultaneously with interpolation and filtering.

Since bothr and s are random vectors whose expectations are zero vectors,
or

n,=Er)=0 (14.49)
p,=E(s)=0 (14.50)
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then p,, = 0, and BA represents the mean vector of I, or E(l,). Consequently,

X, = E(I, — BA)(I, — BA)

= E(Ie - E(’e))(le - E(’e))r
which is by definition the covariance matrix of /,, or

X, =%

Vele e

(14.51)

The vector of observations is assumed to be known at n points (the
reference or data points). In addition to estimating A, we may also wish to
interpolate and filter at another set of m points for which the vector s, will be
used. In other words s, is the vector of estimated signals at m points that
may be different from the data points. Combining the two random vectors

So and v,

m, 1 c 1

into one, let

v o= [io] withp=m+c¢ (14.52)

ps 1

and so equation (14.47) becomes
0 1 [ﬂ +BA=1=f (14.53)

or
Av+BA=f (14.54)

Taking the a priori reference variance equal to one, the covariance and
cofactor matrices associated with equation (14.54) may be constructed as

> 050 z 0 Qsoso Qsoe
= Sos§ el I 14.55
r [z;oe £ =% o, Q. (14.55)

According to equation (6.20), the least squares estimate of A from equation
(14.54) is

A = [B'(AQA")"'B] ![B/(AQA")™ 'f] (14.56)
From equations (14.53), (14.54), and (14.55)
(AQAY) =[0 1] [Qsm ‘°e] [0

soe e I

|-e.

hence equation (14.56) becomes
A = (B'W, B)” }(B'W, f) (14.57)
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Equation (14.57) is identical to the results in equations (6.21), (6.22), and
(6.24), which shows that the extension to least squares collocation still yields
the proper adjustment estimate for the parameters. It can also be shown that
the a posteriori cofactor matrix Q,, is in fact (B'W_,B)~ !, which is consistent
with the results in Chapter 6 (Part II).

To continue with filtering as a part of collocation, we may write

v=QA'W,(/, — BA)

S0] _ [Eewo Evoe] [0]gmryy
[veJ - [E' )3 I 2e (le BA)

soe e

or

Thus the estimate §, of the filtered signal at the m points is
§0 = Esoeze— l(le - BA) (1458)

If the original least squares adjustment were of the indirect observation
technique, then /, in equation (14.58) would be replaced by the observations
themselves (data) /, thus

§o = I,,Zi (I — BA) (14.59)

in which §, is the m x 1 vector of interpolated or filtered values at the m new
points; X, , = X, is the m x n cross covariance matrix between the signal
and the given data; X, is the n x n symmetric autocovariance matrix of the
observations (data); / is the vector of observations (= s for interpolation);
and BA is the mean of the observations (representing the trend surface) as
the product of the m x u coefficient matrix and the u x 1 vector of par-
ameters. If the trend has been removed before interpolation and filtering, BA
would be missing and equation (14.59) becomes identical to equation
(14.26).

As a further demonstration if only one value s, is to be estimated, the
least squares collocation reduces to

So=06,,Z;"'(/—BA) (14.60a)
1,n

in which 6, is a row vector. Furthermore, when the vector of parameters is
zero due to a priori trend removal, least squares collocation reduces to
interpolation and filtering, and equation (14.60a) becomes

S =0, Li | (14.60b)

which is identical to equation (14.21). Consequently, it is obvious that both
least squares adjustment [see equation (14.57)] and least squares interpola-
tion and filtering are special cases of collocation.

By way of summary then, least squares collocation makes possible the
estimation of parameters, A, as well as estimating filtered values for the
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variables representing the observations (signals) not only at the data points,
but also at other points. These filtered (or interpolated) values will by neces-
sity be referred to the trend surface BA. Consequently, if we are interested in
the total estimate of the signal t with respect to the original datum of the
data, then

to =8, + DA (14.61)

where D is the appropriate coefficient matrix necessary for computing values
of the function at the m new filtered points. Obviously, if filtering is done at
the original n reference or data points, the matrix D would be identical to the
original matrix B. The computation of the total signal is demonstrated by
the example succeeding the following section.

A last remark concerns the fact that all the functions given in the preced-
ing derivations were linear. This is in keeping with the premise that least
squares is practical mainly in linear estimation. Naturally, if the original
functional model is nonlinear, as it often is in practice, a linearized form
must be derived and used in the developed algorithms.

14.7.1. Precision Estimation for Least Squares Collocation The a posteriori
cofactor (covariance) matrix of the parameters is

Qua = (B'W, B)™" = [B(AQ, A")”'B]™’ (14.62)

In order to evaluate the a posteriori cofactor matrix of the estimated signals
o, we should recall that in general the a posteriori cofactor matrix of the
estimated observations is equal to the a priori cofactor matrix minus the a
posteriori cofactor matrix of the residuals. According to equation (6.30) the
cofactor matrix Q,; may be evaluated

Q. = QA(W, — W, BQ,, BW,)AQ (14.63)
From the structure of A and Q, see equations (14.53), (14.54), and (14.55),
the cofactor submatrix relating to §, is

Qoo = Qo We Qi — Qsoe We BQ, BW, Q, (14.64)

Therefore the estimated cofactor matrix of §, is

Q§o§0 = Qsoso - stvs

or

Q050 = Quoso = Quoe Q2 'Qspe + Quoe Q2 ' BQ, B'Q; 1Q,  (14.65)

with the last term in equation (14.65) representing the contribution of the
errors in the parameters A. In the absence of parameters, equation (14.65) in
terms of covariance matrices becomes

Zso.io = Esoso - 2:‘soezne’_ 12tsoe (1466)
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which is very similar to equation (14.28) except that here /, replaces the /
used in the earlier treatment. Finally, if only one value is estimated, and the
conditions are of the indirect observation type, then (using the original
symbols for covariances)

0%, = C,(0) - o}y, Ei oy, (1467)

which is identical to equation (14.22a). This shows that the results from least
squares collocation will reduce to the results of interpolation and filtering
once the parameters are not considered, which means that the trend has
been removed a priori.

A crosscofactor matrix Q,, may also be evaluated as follows. Let the
vector of observational variables associated with equation (14.54) be
denoted by /. The estimated observations are therefore

I=l+v= m + [s"] - [§°] (14.68)

e v e le

Referring to equation (6.33), the crossfactor matrix between the parameters
A and [ is

Q= —N"B’WeAQ = —Q,, BW,J0 1] [Q’f“ QQ‘“]
soe e

or

[QA&O QAIJ = _QAA B:we[Q;oe Qe]
from which

Qas, = — Qs B'W, Q. (14.69)
or in terms of covariance matrices

EA.GO = —ZAA Btwezsoe (1470)

Finally, an a posteriori cofactor matrix is needed for the final estimate t of
the total signal given by equation (14.61). Applying the propagation
principle

Qi = Q50 + DQyy D' + Q; A D' + DQy;,
which according to equations (14.65) and (14.69) becomes

Qii = Qsoso - Qsoe Qe_ 1(2;0e + Qsoe Qe_ ! BQAA B’Qe_ lQ;oe
+ DQu, D' - Q. Q. 'BQ,, D' — DQ,, B'Q; 'Q;,,
= Qsoso - Qsoe Q; ! ;oe + (Qsoe Qe_ IB - D)QAA
X (BIQ; lQ:soe - Dt)
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or

Qii = Qsoso - Qsoe Qe_ ! .tsoe + (Qsoe Qe— IB - D)QAA
X (Qse Qe— 'B - D)‘ (1471)

in which Q,, is as given by equation (14.62). In terms of covariance matrices,
equation (14.71) becomes

zii = Zsoso - 2soe2e_ lz.tsoe + (Esoeze_ IB - D)ZAA

x (E,,.E; 'B — D' (14.72)

14.7.2. Example on Least Squares Collocation It was pointed out
previously that the removal of the trend in the data is an important pre-
requisite to the application of interpolation and filtering. The operation of
trend removal has usually been performed prior to the process of interpola-
tion or filtering. Least squares collocation as presented here allows the
determination of the trend surface, simultaneous with filtering. The trend
surface therefore becomes the functional part of the model.

This example considers a one-dimensional filtering problem with the
trend surface limited to a straight line. It is taken from the report by Moritz
(1972, see Bibliography) in which Dr. K. P. Schwarz is acknowledged as
having performed the computations. Figure 14.17 is a schematic of the
problem.

s =f(x)

'/ Trend:
bl + bzx

Figure 14.17

The data, or observations, are given at n = 5 points in Table 14.2. Assum-
ing stationarity and ergodicity, a covariance function may be written in
terms of distances between points, d. The expression

C(d) = C,(O)e“"""2 (14.73)
is used for such a covariance function with the constants

C,(0) =0.1260 a=0.6
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TABLE 14-2
x l
0.000 0.6108
1.445 1.0863
2.890 2.9034
4.335 4.5925
5.780 6.2714

Taking the covariance function for the uncorrelated random component r to
be a constant equal to 0.01, then

C,(0)=0.01 C(d)=0 foralld#0
Consequently, the a priori covariance matrices are

[0.1360 0.0594 0.0062 0.0002 0.0000
0.1360 0.0594 0.0062 0.0002
I, = 0.1360 0.0594 0.0062
0.1360 0.0594
| symmetric 0.1360

[0.1260 0.0594 0.0062 0.0002
0.1260 0.0594 0.0062
ss 0.1260 0.0594
| symmetric 0.1260

The reader should note that the diagonal elements of L, are equal and each
is the sum of one diagonal element of £ plus 0.01. This satisfies the fact that
C,(0) = C,(0) + C,(0) [see equation (14.12c)],

0.1044 0.1044 0.0232 0.0012 0.0000
Xu= ]00232 0.1044 0.1044 0.0232 0.0012
0.0012 0.0232 0.1044 0.1044 0.0232
0.0000 0.0012 0.0232 0.1044 0.1044

Before presenting the results, the appropriate equations are first given.
The equation for the trend surface is

y=bl+b2x

Thus with A = [b, b,]’, the functional model is expressed by the equation
[see equation (14.48)] for each data point

S,-+r,-=l,-—[1 xl]A=l,—-B,A
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with B; = [1 x;]. The total coefficient matrix B; , is

11111}'

Xy X X3 X4 Xs

B=
and the estimate of the parameters is [see equation (14.57)]

b 0.3252
= -1 -1 = 1 =
Note that since the model is that of indirect observations, W, becomes £ *.

Next, the filtered values are obtained at the m = 4 points shown in Figure
14.17, from [see equation (14.59)]

8o =X, ,Z;'(/l—BA)=[-0221 —0.5590 —0.1052 0.1082]"

The points at which filtering is performed are taken as halfway between
data points. Their coordinates are needed to compute the values of the total
signal at them. For example t, at the point x, = 0.7225 is computed as [see
equation (14.61)]

t, =02221 +[1 0.7225]A = 0.8177

Collecting all values for computing the total signal we get the data in
Table 14-3.

TABLE 14-3
x So t
0.7225 —-0.2221 0.8177
2.1675 —0.5590 1.9101
3.6125 —0.1052 3.7932
5.0575 0.1082 5.4359

Finally, the a posteriori covariance matrices are

0.1136 —0.0234
—0.0234 0.0081

0.1034 0.0532 0.0343 0.0025

2AA = (B‘ZE IB)_ =

Lo = 0.0564 0.0369 0.0343
0.0564 0.0532

symmetric 0.1034
00131 -0.0024 0.0015 —0.0009

i = 00121 -0.0019 0.0015

00121 -0.0024
symmetric 0.0131
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The value of D used to compute X;; is

1.0000 1.0000 1.0000 1.0000
0.7225 2.1675 3.6125 5.0575

r 0.1007 0.0578 0.0298 —0.0080
4% 1 _0.0188 —0.0048 0.0048 0.0188

|



Problems for Part il

1. Using the unified approach rework Problem 16 of Part II taking the a priori
coordinates of point B as x,; = 500.00 m and x, = 866.00 m with a priori covariance
matrix I, = 25I,(m?).

2. Using the unified approach rework Problem 10 of Part II taking the a priori
elevations as follows:

Station 1 2 3 4
Elevation (m) 542.0 529.5 487.2 495.7

Assume that the cofactor for each of these a priori elevations is 20 times the largest
cofactor for the given observed differences in elevation.

3. Rework Problem 20, Part II, using a priori value for x as 60 degrees with a
priori weight w,, = 10 times the weight of the observations.

4. Refer to Problem 39, Part II. Let x, = 10, x, = 4, y, = 2 be a priori values for
the parameters, with a priori W,, = 100I;. Using the unified approach compute the
estimates of x,, x,, y, and their a posteriori cofactor matrix.

5. For the traverse in Problem 36, Part II, the coordinates of the control points B
and E are assumed to have a priori covariance matrix £ = 4 x 10~ %I, m2. In order

427
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to apply the unified approach totally to the problem, a priori values for the coordi-
nates of points C and D are needed. Compute these using a minimum subset of the
given observations, and take the estimate of their a priori covariance matrix as
0.041, m2.

6. The figure shows the geometry of lines and points in a plane. The observations
arel; =707 m;1l, =708 m;l; =10.00 m;l, = 1002 m;witho, =0, =063 =04 =
001 m;l5 = 30°; 05 = 0.01°. Points 4 and B are control points with perfectly known

Y

> X

coordinates X , =0, Y,=10m, Xz= Yz=0. For all the parts to follow we are
interested in the least squares estimates of the coordinates of points 1 and 2.

a. Write the elements of the functional and stochastic models. (Give the equations,
but do not linearize if nonlinear. Instead write symbolically the linearized form and
give the dimensions of the matrices).

b. If, in addition to the information above, points 1 and 2 are on a line parallel to
the X axis, give the elements of the functional model (again no linearization—only
matrices’ dimensions).

c. If, instead of assuming the coordinates of points A and B to be perfectly known,
the given coordinates (thatis, X , = X ;= Y, =0and Yz = 10.0 m) each has a stan-
dard deviation of 0.001 m, give the elements of the functional and stochastic models.
(No linearization—only matrices’ dimensions).

d. In addition to the information in (b) and (c) a priori coordinates for points 1
and2are X; =Y, =50m, X, =87 m, Y, = 5.0 m, each with a standard deviation
of 0.2 m. Taking the approximations for all the observations equal to their a priori
values, and the approximations for the parameters to be X9 =Y =50m,
X% =80m, YJ =50 m, give the linearized form of the functional model, as well as
the stochastic model. Show how you would construct the reduced normal equations,
giving the numerical values of the contributions from the a priori information on the
parameters X, Y;, X5, Y,.

7. For Problem 30, Part II, use enough points to determine uniquely the par-
ameters, then add the contribution of the remaining points sequentially.

8. For Problem 7 above use the parameter values from a unique solution as a
priori estimates and assume a suitable a priori weight matrix for these estimates. Add
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the contribution of all five points sequentially using two points, then two points, then
one point.

9. For Problem 38, Part II, find the least squares solution for the first two points,
then add the contribution of the third point sequentially.

10. Rework Problem 31, Part II, beginning with a minimum solution and adding
the remaining data sequentially.

11. Using the a priori data in Problem 3 above, add sequentially the conditions
arising from the given observational data to get the least squares estimate of the
angle x.

12. The figure shows a schematic of a simulated level net involving a bench mark
(elevation 100.000 m) and five points 1, 2, 3, 4, 5. There is a total of 13 observed

Bench mark
(100 m)

differences in elevation, the values of which as well as corresponding lengths of the
lines are given in the following table:

LINE l, I, L Iy Iy le

Observations (m)  5.013 2985 6.987 10014  17.013 1.982
Length (km) 14 1.03 12 1.71 142 1.27

LINE L lg ly lo lyy ly, lys

Observations (m) 7982 10014 10014 15016 25017 14982 4981
Length (km) 0.6 095 182 1.66 1.14 20 1.42

The variance of each observation in square metres is taken proportional to the
corresponding line length in kilometres. Use the first eight observations, shown in
solid lines in the figure, to perform a batch least squares for estimating the elevations
of the five points. Then sequentially add one observation at a time, ly through /;,
(dotted lines in the figure), and compute new estimates for the five elevations as well
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as the reference variance after each observation. Use an F test to determine at which
observation, if any, is the change in the estimate of the reference variance, 63,
significant at a = 0.05.

13. With respect to the figure the coordinates are as follows:

POINT X Y
A 1 1
1 2 1.2
2 3 1.3
Y

> X

A straight line is to pass through point 4 exactly. Points 1 and 2, whose Y coordin-
ates are taken as the observations, are to be used to determine the straight line. Get a
solution from point 1 first, then sequentially add the contribution of the data from
point 2. Assume Q =L



APPENDIX

A

Review of Matrix Theory

Al. DEFINITIONS

A matrix is an array of numbers of some algebraic system, which in
general is written in the geometric form of a rectangle of specified number of
rows and columns. Thus

Ay Q3 "t Gy,
Ay Qzy " Qg
A =
m,n
_aml amZ amn_

is a rectangular matrix of order m x n. The first subscript always refers to the
number of the row and the second refers to the column number. The capital
boldface letter refers to the whole matrix, whereas the lowercase letter refers
to one element only. It follows then that g;; lies at the intersection of the ith
row and the jth column. Another way of expressing the matrix A is by typical
element such as

A={ay}i=12,..., m; j=1L2...,n

If the matrix is of the order 1 x 1, it is called a “scalar.”

431
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A2. TYPES OF MATRICES

A2.1. Square Matrix A square matrix is the matrix with an equal number
of rows and columns. In this case A,, ,, is a square matrix of order j. The
principal (or main, or leading) diagonal is that composed of the elements a;;
for i =j. Two special cases of the square matrix are the symmetric and
skew-symmetric ones. These will be introduced later.

A2.2. Row Matrix or Row Vector A row matrix or row vector is the matrix
composed of only one row. It is designated by a lowercase boldface roman
letter, for example,
a=[a, a, " a,] and a =[1 2 4]
1,3

A2.3. Column Matrix, or Column Vector A column matrix or column
vector is composed of only one column, and is denoted by

a
a, -1
a= for example, b = [ J
. 2,1 3
_am-

A24. Diagonal Matrix A diagonal matrix is the square matrix with all
elements off the main diagonal being zero:

dy, 0 - 0
0 0 d,,.

where d;; = 0 for all i # j, and d;; # O for some or all i =j.
Example

1 0 0
G=]|0 0 0
0 0 -3

We will also denote a diagonal matrix by the form

B = diag. {bl’ b2 s b3 g eoey bn}-
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A2S. Scalar Matrix A scalar matrix is a diagonal matrix whose elements
are all equal to the same scalar:

a
A= a a;; =0 for all i +j
T a,-j=a fOI'alll=]
a
Thus

200

H=]0 2 0

0 0 2

is a scalar matrix.

A2.6. Unit or Identity Matrix A unit or identity matrix is a diagonal
matrix whose elements are all equal to 1. It is always referred to by

Lo a; =1 foralli=j

A2.7. Null or Zero Matrix A null or zero matrix is a matrix whose ele-
ments are all zero. It is denoted by a boldface zero, 0.

A28. Triangular Matrix A triangular matrix is a square matrix whose
elements above (or below), but not including, the main diagonal are all zero:

a1y 412 77 Qm
A= 0 a,, - a,,| = upper triangular
: aij = 0, i >J
0 0 - a,,
Example
[-1 3 4
A= 010
[ 0 0 7
—a“ o -+ 0
a; az; -+ 0 = lower triangular
A= | ..
a,-j = 0, 1<
Ay Gm2 " Qmm
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A3. MATRIX OPERATIONS

A3.1. Equality Two matrices A and B of the same order are equal if a;; = b;;
for all i and j. Matrices of different orders cannot be equated. The laws of
equality that hold are

A=A forall A (reflexive law) (A1)

If A=B, then B=A foralAand B (symmetric law)
(A2)

If A=BB=C then A=C for all A, B, C (A3)

A3.2. Sums The sum of two matrices A and B, of the same order, is a matrix
C of that order whose elements are c;; = a;; + b;; for all i and j. Matrices of
different orders cannot be added. The laws of addition that hold are

A+B=B+A (commutative law) (A4)
A+(B+C)=(A+B)+C=A+B+C

(associative law)  (AS)
With the null matrix 0, we have

A+0=0+A=A (A6)
A+ (-A)=0 (A7)
where (—A) is the matrix composed of (—a;;) as elements.
A3.3. Scalar Multiplication Scalar multiplication of a matrix A by a scalar

a is another matrix B whose elements are b;; = aa;;, for all i and j. (We will in
general denote a scalar by a lowercase Greek letter.) Thus

B=0aA and {bij} = {0ay;}

Example. For

sl
-

The following laws hold true:
(A + B)=aA + oB (A8)
(x+ BJA=0aA + A (A9)
«(AB) = (xA)B = A(xB) (A10)

*(BA) = (af)A (Al1)
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A3.4. Matrix Multiplication The product of two matrices A and B, in that
order, whose dimensions are m x k and k x n, respectively, is another matrix
C of order m x n and elements,

J

cij= Y. ayb,; for all i and j (A12)
r=1

or

Ci; = a“blj + aizsz + -+ aikbkj

)

This process is shown schematically in the following relation:

cee 7 - 7 [~
[a,, a4y, arx by, b[j by, C11 Cyj Cin |
: by, b, :
aiy 4 T Ay by | =1 ¢ 6= Za.r |l G
| Am1 G2 7 Q] __bkl Lbkj $ bkn_‘ | Cm1 Comj Conn |

It is important to note that for matrix multiplication to be defined the
number of columns of the first matrix must be equal to the number of rows of the
second matrix.

Example
1 2
3A2= 30 and 211—[2 ;J
1 1
1 2
5 1
3C2=31‘&2 sz= 30 [2 3J
1 1
[1(5 )] [1(1) + 2(3)] 9 7
= |[35)+0(2)] [B(y)+03)]| = |15 3
[1(5) + 1(2)]  [1(1) + 1(3)] 7 4

The following relationships regarding matrix multiplication hold:
Al =TA=A  with I = identity matrix (A13)
A(BC) = (AB)C = ABC (associative law) (A14)
AB+ C)=AB + AC (distributive law) (A15)
(A+B)C=AC + BC (distributive law) (A16)
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In all these relations the sequence of the matrices is strictly preserved.
Note that in general the commutative law does not hold even if multiplica-
tion is defined in both orders, i.e.,

AB # BA in general (A17)

Example
1 2 1 3
A= [ 3 4] and B= [2 4]

5 11 10 14
AB_[II 25} and BA=[14 20]

Of course if orders are different (that is, component matrices are not
square) the equality is not even defined, for example,

A B=C

m,k k,m m,m
and

B A=D

k,m m, k k, k

It is important to note that the product of two matrices can be the null
matrix without either matrix being the zero matrix.

Examples

11112
"0 0)|-1 =2

—2 3
1 2 1

3.0 1 —-11jo =2 1] =[0 0 0]
1 0 2

It is useful to note some properties of diagonal matrices as regards multi-
plication. If A is a square matrix and D is a diagonal matrix, then

1. DA causes each row A; of A to be multiplied by the corresponding ele-
ment d;; of D.

2. AD causes each column A; of A to be multiplied by the corresponding
element d;; of D.
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Example. For

A= [a“ a”] and D= [a 0]

az; Qjz2 0 B
DA = [“au 01012] and AD = [aa“ ﬁalz}
Bayy Paz aaz;  Paz;

The concept of the fractional power of a diagonal matrix applies to diag-
onal matrices with nonnegative elements. Thus if d;; > 0 and given a scalar
y > 0, then the matrix D is

d, 0 - 0
D=0 45 - O
0 0 - d,
Obviously, if « > 0 and § > 0, then
D* - Df = pa+h

and in particular
D1/2Dl/2 = D

A3.5. Matrix Transpose The transpose of a matrix A of order m x nis an
n x m matrix formed from A by interchanging rows and columns such that
row i of A becomes column i of the transposed matrix. We denote the
transpose by A'. If B = A', it follows that b;; = a;; for all i and j.

Examples
1 3 . 1 -6
A_[——6 5] and A—[3 5}
-2 7
-2 0 1
— r_
B= 0 8 and B [ 7 3 4J
1 4

The following relationships hold true

(A+B)f=A'+B (A18)
(AB) = B'A* (A19)
(A) = aA’ (A20)
(AY) = A (A21)

If D is a diagonal matrix, then D = D. Similarly, for the scalar matrix H
and the identity matrix I we have H' =H and I' = L.
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If x is a column vector, then x‘x is a nonnegative scalar that is equal to the
sum of squares of the vector’s components. On the other hand, xx’ is a
square symmetric matrix of the same order as the vector x.

A3.6. Symmetry and Skew Symmetry A matrix is symmetric if A = A and

it is skew symmetric if A' = — A. These matrices must always be square.
Thus

1 2 3

2 45

3 56
is symmetric and

0 1 2
-1 0 -3
-2 3 0

is skew symmetric.

There are at most (n + n)/2 distinct elements in a symmetric matrix of
order n, although a skew-symmetric matrix of the same order would have at
most (n?> — n)/2 non-zero elements. The only matrix that is both symmetric
and skew symmetric is the null matrix 0. Every square matrix can be uniquely
decomposed into the sum of a symmetric and a skew symmetric matrix:

A=A+3A - A=A+ A)+ A - A) (A22)
The matrix
A, =3A+A)
is symmetric because
Al=4A+A)Y=3A+A)=A,
and the matrix
A.=HA - A)
is skew symmetric since
A=HA-AY = —HA-A)= A,

Thus we have expressed the matrix A as the sum of the symmetric matrix
A, and the skew symmetric matrix A,.

Example
1 2 c_[1 O
A= [ 0 3] and Al = [2 3]
. 1 1 .
B=3A+A")= L 3 symmetric

0

C=4A-AY)= [_1 (1)} skew symmetric
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and

1 2
B+C= [0 3J =A

For any matrix A and any symmetric matrix B, the matrices AA’, A'A,
ABA', and A’BA are all symmetric. The same applies for skew symmetry if B
were skew symmetric. Note that the sum and difference of symmetric (or
skew symmetric) matrices are also symmetric (or skew symmetric). On the
other hand the product of symmetric matrices is symmetric only if the

matrices commute.

A3.7. Partitioning of Matrices We often wish to study a subset of elements
from a given matrix A. The matrix formed by that subset of elements is
called a submatrix of A. For example, the matrix

[011 as als]

asz; Qaz3 4ss

is a 2 x 3 submatrix obtained by deleting the second row and second and
fourth columns of the 3 x 5 matrix

a1 Gy Q3 Gyq Qg5
A= |ay a; a3 ays as
a3y Q32 Az QAzg A4js

The scheme called partitioning allows for the writing of a matrix not in
terms of its original elements but in terms of submatrices. The submatrices
will be denoted by boldface uppercase (or lowercase in the event that they
are vectors) letters with appropriate subscripts. Thus the matrix

A1 Q12 Q33 Qyq "7 G4y
azy 4zz Q33 Az Az
____________________ b cer e e e e e e e e ==
A= |a3 a3, az;iasy as,
_aml amZ am3 E am4 amn_

may be partitioned several ways. Considering the vertical dotted line only,
we write

A=[A; A,

where A, isan m x 3 submatrix and A, anm x (n — 3) submatrix. Similarly,
considering the horizontal dotted line only,

=[]
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where in this case A, is a2 x nsubmatrix and A, an (m — 2) x nsubmatrix.
Considering both horizontal and vertical partition lines

A, ‘Au}
A=
[AZI A22

where A, is 2 x 3, A, is 2 x (n—3), A,; is (m—2) x 3, and A,, is
(m—=2)x(n-23).

All matrix operations given in the preceding sections can be performed on
the submatrices as if they are elements, provided necessary precautions are
exercised regarding dimensions. Thus, for example,

t At
11 2_1 Bll B12
: 3,2 3,(m—2)
B =A'= . . =
n,m 12 22 B,, Bzz

n—3),2 (n—3),(m-2)

1 2:3 4 1 2
A=1]4 3:21 and B=|3 4
3.4 | oo _______ 4,2 1 ..___.
2 1:3 4 21
1
then
A B=C

Ay Ay, [Bu}
A= and B=
[AZI Azz] By,

then

AB = [(Aan + Ay Bzx)} _ [CHJ
(A2:By; + Az Byy) C:,

where

1 2 3 4
=[4 3]’ ?‘22:[2 1}’ Az =[2 1) fzzz_p 4]

1,2

Thus

7 10 10 15
AuBu = s A12 Bzx = ,
13 20 S 5

AZlBll = [5 8], A22 B21 = [10 15]



A3 MATRIX OPERATIONS 41

leading to
AB = 7 10 10 15 _ 17 25 _ |17 25
h 13 20 5 5 - 18 251 |18 25
[5 8]+ [10 15] [15 23] 15 23

which is the same answer as that obtained directly from

1 2 3 4 1 2 17 25
AB=14 3 2 1 3 4| =118 25
21 3 4 2 1 15 23

1 3

A3.8. Matrix Inversef Unlike scalars, division of matrices is not defined. In
fact, we may have AB = AC without having B = C. This implies that the
operation of “dividing” by A, even if A # 0, is not possible. As an example

let
1 0 1 -1 1 -1
e A A

where obviously B # C, but computing we get

1 -1

AB =
[4 -4

] _ AC
In place of division, we introduce the concept of inverse, A~ !, of a matrix A
(similar to the reciprocal a~ ! of the scalar «).

The inverse of a square matrix A, if it exists, is the unique matrix A~ ! with
the property

AA " '=A"1A=1 (A23)
The following rules hold:

(AB)"! =B 'A"! (A24)

(AH T=A (A25)

(A)~1 = (A7 (A26)

(A)™! = é A (A27)

A square matrix that has an inverse is called nonsingular; one that does
not have an inverse is called singular.

t Consideration in this Appendix is limited to Cayley matrix algebra where an inverse is only
defined for a square matrix. Although a square matrix may not have an inverse in this algebra, it
has a generalized inverse. However, generalized matrix algebra is not utilized in this book.
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We showed in Section A3.4 that AB = 0 did not necessarily imply that
A =0 or B=0. If, however, either A or B is nonsingular then the other
matrix must be a null matrix. Hence, the product of two nonsingular
matrices cannot be a null matrix.

To appreciate a method of inverting matrices we need to introduce the
concept of determinants of square matrices. We associate with each square
matrix A a uniquely defined scalar that is called the determinant of A and is
denoted by either “det A” or |A|. The determinant of order n (forann x n
matrix) will be defined in terms of determinants of order (n — 1). In order to
apply this procedure we need to define the determinant of the least-order
matrix, namely, that of a 1 x 1 matrix. For a matrix consisting of a single
element,

A= [au]
1,1

the determinant is defined as
lAI - det A = a“

An (n—1) x (n— 1) determinant obtained from the n x n matrix is
called a minor. The minor m;; of an element g;; of a square matrix A is the
determinant of the square submatrix formed from A by deleting the ith row
and jth column.

Ay apx dps

A= lay; a, ap; m,, (for a;,) =

The cofactor c;; of an element g;; in a matrix A is given by

Cij = (— 1)i+jmij
where m;; is the minor of the element a;;. We may now define a determinant
as

|A| =detA= Zaljclj

j=1
or that |A| is the sum of the products of the elements of the first row times
their respective cofactors. For the matrix

A= [all a12}

the cofactors for the elements a,; and a,, are
Ci1 = 'azzl =az; and Ci2 = _|a21| = —daz
Thus

IAI =4ajy103; — Q1543
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Similarly, for

ay; a2 a3
A=la,; a; ay;
aszy a3z QAsz

az, 43 a;; 4aj; a;; Qs>

A=a, - — a4, +a;3 -

a3, Qajz; az; Qajz; as; das;

= 011(022033 - ‘123032) - 012(021033 - 023‘131)
+ ay3(az1a3; — aza3;)

There are several properties of determinants that make their evaluation
relatively less complex.

1. The determinant of a triangular matrix is the product of its diagonal
elements (same for a diagonal matrix).
2. lAl‘Az""'Akl = IAll . 'Azl IAk|
3. The determinant of a matrix with a zero vector is zero.
4. The determinant of a matrix with two rows or two columns that are
identical is zero.
5. The determinant of a matrix with one row (or column) a multiple of
another row (or column) is zero.
6. |[A| = |AY]
7. Interchanging two rows or two columns changes the sign of the
determinant.
8. If a row or a column is multiplied by a constant, the value of the
determinant is multiplied by that constant.
9. The value of a determinant does not change if a multiple of a row (or
column) is added to another row (or column).
10. If a matrix A can be partitioned to form a triangular matrix with square
matrices A,,, A,,, ..., Ay on main diagonal, then

'A| = |A11| : |A22i ' |A33| toene |Akk|

Having introduced the concept and some properties of determinants, we
may now give some of the more direct methods of evaluating an inverse of a
matrix.

1. The cofactor matrix C of a matrix A is the square matrix of the same
order as A and in which each element g;; is replaced by its cofactor c;;.

a;y Gy 0 Qim
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and the cofactor matrix

€11 Cy2 Cim

Cz; Cz3 Com
C=1": :

cml cm2 Com

REVIEW OF MATRIX THEORY

2. The adjoint matrix of a matrix A is the transpose of its cofactor matrix,

that is, C', and is denoted by adj A.

Ci1 €2
adjA=C = |12 22
clm ch

It can be shown that

A(adj A) = (adj A)A = |A]| - 1

Example. Let

A=

p— DD
N W=
e =]

|A] =2(=1) = 1(=1)+0(—1) =

The elements of the cofactor matrix are

ci1=+(-1) c12=—(-1)
cp = —(1) ¢z = +(2)
c31 = +(2) c3z = —(4)
Thus
—1 1 -1
C=1] -1 2 =3
2 -4 5
and
(1 -1 2
adiA=C=| 1 2 —4
L_l -3 5
2 1 0] [ -1
AadjA)= |1 3 2 1
1 2 1 -1

cml

C,ttz

cmm

-1

ci3=+(—1)

023='(3)

c33 = +(5)

-1 2 -1 0 0
2 —4) = 0 -1 0
-3 5 0 0 -1
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The reader can ascertain that (adj A) A is also equal |A| -1 From the
preceding relation between A, adj A, and |A|, and the basic definition of a
matrix inverse given in equation (A23), it follows readily that the inverse of
a square matrix A is computed from

_adj A
|A]

It is apparent from equation (A28) that |A| must not vanish in order that
A~ ! may exist.

At (A28)

Example. Given the simultaneous pair of linear equations
2X, +3X,=28
3X, — X, =1

find a unique solution.
First the two equations are written in matrix form as

BB e ae

Evaluating the cofactors,

€11 = (_1)2(—1)= -1

and

From Ax = b we may write
- - ! ] [8 1
T —11

Hence X, =1and X, = 2.

A very important matrix which is encountered frequently in practice is
the orthogonal matrix. A square matrix M is orthogonal if

MM = MM = | (A29)
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which implies that
M 1l=M (A30)

The columns of an orthogonal matrix are mutually orthogonal vectors of
unit length. Also,

M| = +1 (A31)

When |M| = +1, then M is called proper orthogonal, otherwise it is
termed “improper.”
The product of two orthogonal matrices is also an orthogonal matrix.

MATRIX INVERSE BY PARTITIONING Let A be an n x n square nonsingular
matrix whose inverse is to be evaluated. We partition A in the form,

- S m
A= [Au A12J s
Ay Ay;m

where A, iss X s, A, iss xm, A,;ism x s, Ay,ismx mandm+ s=n.
The inverse A~ ! exists and we shall denote it, in the correspondingly parti-
tioned form, by

A-l=B= [Bu BlzJ
B, B,

From the basic definition of an inverse we have AA~! = AB =1, or in the
partitioned form

[Au AIZ] [Bu sz] _ [Is 0]

Ay A |By By, 0 I,

which leads to
A B, +A; By =1 (A32a)
A:B,+A;,;,B,,=0 (A32b)
A, B +A,,B; =0 (A32c)
A, B, +A,, B =1, (A32d)

From equation (A32c) we have
Bz1 = —A2—21A21 B11 (A33)

Substituting into equation (A32a), we obtain the value of B, as

B11 = [A11 - A12 A;ZIAZI]_I (A34)
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From equation (A32d) we have
B, = Az_zl - A521A21 B, (A35)
which, with equation (A32b) and taking equation (A34) into account, gives
B, =-B; ;A A (A36)

Thus all the submatrices have been evaluated and their formulas may be
collected as

B,,=[A;; —A; AS}A, ]! (A37a)
B,,=—-B,;A; A7} (A37b)
B,, = —A}A,, B, (A37¢c)
B,, = Az_z1 - A521A21 B, (A37d)

If A is originally a symmetric matrix, then A,, = A}, and correspondingly
B,, =B},.

In inverting by partitioning we end up computing directly thé inverse of a
matrix A,, of a smaller order (m < n) than the original matrix. In fact, if m is
taken equal to 1, then Aj,! is simply the reciprocal of a scalar. Inversion by
partitioning can, of course, be performed in more than one step.

A4. RANK OF A MATRIX

The rank of a matrix is the order of the largest nonzero determinant that
can be formed from the elements of the matrix by appropriate deletion of
rows or columns (or both). Thus a matrix is said to be of rank m if and only if
it has at least one nonsingular submatrix of order m, but has no nonsingular
submatrix of order more than m. A nonsingular matrix of order n has a rank
n. A matrix with zero rank has elements that must all be zero.

A4.1 A rectangular matrix has a rank that is less than or equal to the
smallest dimension. Therefore if A is an n x k matrix and k < n, then
rank (A) < k.

A4.2 The rank of the product of a number of matrices does not exceed the
least rank of individual multiplicands, or

rank (A; A, A; -+ A;) < min [rank (A,), rank (A,), ..., rank (A;)]
(A38)

A4.3 Multiplication of a matrix by a nonsingular matrix does not change
its rank.

A4.4 If A and B are m x k and k x n, respectively, and each is of rank k,
then AB is of rank k.
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Example. Given

1 00 0 0O
A=]101 0], B=]0 1 0], r(A) =2, r(B) =2
0 0O 0 0 1
then
1 0 1 00 1 0
C=A*=1]0 10 01 0]=10 120 r(C)=2
0 0 0 0 0 0
and
1 0 0 0O 0 0O
D=AB=]0 1 0 01 0]l=]01020
0 0 0 01 0 0

rD)=1<2

An interesting property for the product of two matrices is that if
r.=rank (C), r,=rank(D), and CD=0

m,s s, n

then
re+r;<s (A39)

This relation can be verified by the three examples given in Section A3.4. As
an illustration, let us consider the third example, where CD = 0, or

1 2 1
[t 1 -1]]0 -2 1| =0 o0 0]
1.3 1 0 2
3,3

The rank of the first matrix is r, = 1, and for the second matrix, r; = 2,
leadingtor, + r;=3=s.

A4.5 An important fact is that AA’ and A'A have the same rank as A. It
follows that if A is of order n x k and n > k and is of (full) rank k, then A'A is
nonsingular, whereas AA' is singular with rank k. Furthermore, A'BA is
nonsingular if B is also nonsingular.

A4.6 The rank of the sum of two matrices cannot exceed the sum of their
ranks.

The determination of the rank of a matrix by direct application of the
definition is not practical, particularly when we are dealing with other than
simple small matrices. Instead, we obtain a much faster answer if we realize
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that primary row or column operations do not change either the order or the
rank of the matrix. These operations are as follows:

1. The interchange of any two rows (or columns).

2. The multiplication of all the elements of any row (or column) by the same
nonzero constant.

3. The addition to any row (column) of an arbitrary multiple of any other
row (column).

Example. Find the rank of the matrix

1 2 -1 3
2 4 -4 7
-1 -2 -1 =2

Subtracting twice the first row from the second and adding the first row to the third
yields

Subtracting the new second row from the new third row gives

-

1 2 -1 3
0 0 -2 1
0 0 -2 1

1 2 -1 3
0 0 -2 1
0 0 0 0]

.

Primary row operations may be stopped at this point since

2 -1
0 —2%0

leading to rank = 2. However, the primary operations may be continued until

(1 0 0 0
0100
000 0

leading directly to the rank being 2.

Two matrices are said to be equivalent if one can be transformed to the
other by elementary operations. Hence they must be of equal order and
rank.

The primary row (or column) operations are also useful in several
methods of solving sets of linear equations. We shall briefly give here two of
the more common procedures.

THE GAuss METHOD In the Gauss method, elementary row operations are
used to reduce the matrix to an upper triangular form or canonical form.
This is classically called the forward solution, which is followed by a back-
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ward solution to determine the values of the unknowns. Let us consider as an
example the two equations solved by the method of inverse in Section A3.8.

Ax=Db
with
2 3 8
A—[3 _1] and b—[l]

First we set the matrices
Abil
side by side
[2 308 11 0]
3 -1 :1:0 1

Augmentation by I is useful for the following method. Divide the first row by
2 and multiply by —1 (R} = —3R,); multiply R by 3 and add to negative of
second row (R, = —R, + 3R))
0
-1

1 4
0

11
At this point we can readily write from the second row that

Nl: wlw
Nl W=

Ly, =11 or x,=2
and substituting backward
xl - 4 —_— %XZ = 1

We could also continue until the upper triangular matrix (in A) has ones
along the diagonal by

3 =%R;
1 3 4 3 0
0 1 2 —-&

From which x, = 2 directly and x, computed as above.

THE GAUSS-JORDAN METHOD In the Gauss-Jordan method, the elemen-
tary row operations are continued until A becomes a unit matrix, b thus
becoming the answer vector for x.

R; = &R,
R = R, — 3R}
10 i1

.
o 2=

-
|'-‘ ,_lb)

0 12

|
|
|
=
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giving x; = 1 and x, = 2 directly. It is also quite interesting to note that
although A reduced to I, the augmented identity matrix I became the inverse
A~ 1. This is useful when, in addition to solving the equations, the inverse is
also needed.

AS. TRACE OF A MATRIX

If A is an n x n square matrix, then the sum of its diagonal elements is a
scalar called the trace of A and is denoted by tr (A). (Some textbooks on
matrices use the German word Spur instead of the English translation
“trace.”)

tr (A)=a11 +a22+”'+ann

The definition leads directly to the fact that tr (A*) = tr (A). If A and B are
both of order m, then

tr (A+ B)=tr (A)+ tr (B) (A40)
Also, if E is of order p x q and F of order g x p, then
tr (EF) = tr (FE) (A41)

Finally, if F is nonsingular, that is, if
|F| +0 and B = FAF !
then
tr (B) =tr (A) (A42)

A6. THE EIGENVALUE PROBLEM

For a square matrix A of order n, we seek a nonzero vector x and a scalar
A such that

Ax = ix (A43)

This is called the “eigenvalue problem.” A solution A, and x,, to this prob-
lem is called an eigenvalue (proper value, characteristic value) and the corre-
sponding eigenvector (proper vector, characteristic vector) of the matrix A.
An eigenvector, if one exists, can be determined only to a scalar multiplica-
tion, for if A4, X, satisfy equation (A43), then 4, , ax,, where o is an arbitrary
scalar, will also do.

A6.1. The Characteristic Equation Equation (A43) can be rewritten as
(A—A)x=0 (A44)

which represents a set of homogenous linear equations. For a nontrivial
solution to this set the following must be satisfied,

|A—A1| =0 (A45)
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Equation (A45) represents a real polynomial equation of degree n:

b(—AY'+b,_((=A)" 1+ +by=0 (A46)
where

b, =1

b,-1=a;;+a,+ - +a,= Zati: tr (A) = trace of A

i=1

b,-, = sum of all principal minors of order r of A

by = |A| = determinant of A (A47)

Equation (A46) is called the characteristic equation of A, or the eigenvalue
equation. The matrix (A — AI) is called the characteristic matrix. There are n
roots for equation (A46), counting multiplicity. These are the n eigenvalues
of A, Ay, 4,, ..., 4,. For an eigenvalue 4;, we solve the set of (homogeneous)
linear equations (A — 4;I)x = 0 to determine the components of the corre-
sponding eigenvector X;. In general, A; and x; are either real or complex
numbers and vectors, respectively.

If the matrix A is symmetric, then

1. The eigenvalues are real.
2. The eigenvectors are all mutually orthogonal, that is,

Xix;=x;x; =0

Theorem: For every symmetric matrix A there exists a rotation (orthogonal)
matrix R such that (R‘AR) is a diagonal matrix. The columns of R are the
normalized eigenvectors of A and the elements of the diagonal matrix are
the corresponding eigenvalues of A (R is not unique). We demonstrate the
validity of this fact for the case in which all eigenvalues 4, are distinct.
Here the corresponding eigenvectors

xp =[xy Xz " Xy

are also distinct.

Since, as we mentioned earlier, these vectors are orthogonal, if they are
normalized so that x!x; = 1, then the matrix R whose columns are these
normalized vectors, is an orthogonal matrix. Thus

X11 X211 "7 Xpp
X X e X
R=[x;, x, - x;]= %2 22 ?2 (A48)

Xin X2n Xnn
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has the property

453

R =R"!
and
AR - [AXI AXZ Axn] = [j.lxl 12 X2 °te A,n X,,
A1Xyy AnXny '1)1 f 0
= ; : = . (A49)
Alxln A‘nxml O i"
Premultiplying equation (A49) by R™! = R’,
i, 0 0
R 'AR=RAR= [0 4, 0 | = D = diagonal matrix
0 0 A,
(A50)

Example. Find the eigenvalues and eigenvectors for the matrix,

1 -1 1
B=]|0 2 0
1 -1 1

From equation (A47), we have
by=1, b=1+2+1=4
ey el

0 2 -1 1
bp=2-2=0
Thus the characteristic polynomial is
—A34+422-41=0 or
Hence
A, =0,

)-2=2, 13_—‘2

MA2— 44 +4)=0

are the three eigenvalues. To compute the eigenvectors, we have for 4, =0

1 -1 1 X1 0
0 1 0 X2 = 0
1 -1 1] 1]x 0
from which
Xy = 0, Xy = —X3

hence [x;, 0, —x,]is an eigenvector.
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For A; and A; = 2,

-1 —1 1 X1 0
0 -1 0 x| =10
1 -1 -1 X3 0

or
x, =0, X; = X3

and [x;, 0, x,]is an eigenvector.

Example. Find the eigenvalues and eigenvectors of the symmetric matrix

Sl

Show that A is orthogonally similar to a diagonal matrix whose elements are the
eigenvalues of A, with the transforming orthogonal matrix composed of the nor-
malized eigenvectors of A as columns.

The characteristic polynomial is

1-2 2
2 (1-2)

'=/12—21—3=o

from which
Ay = —1 and Ay =3

are the eigenvalues.
For A, = — 1, we write

2] =2

or x; = (1, —1) is an eigenvector.
For 4, = 3, we have

1 2 X1 _ 3x1
2 1{[x,|  |3x,
or x, = (1, 1) is an eigenvector.
These two vectors are orthogonal since
Xix,=1—-1=0

The normalized vector x, is

(e

and for x,

|

N
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Then the orthogonal matrix is
1 1 1
R~ )
for which
1 —-1][1 2 11 -1 0 A, 0
t =1 = = 1
S [ R R (e
which demonstrates equation (AS0).

A7. BILINEAR AND QUADRATIC FORMS

If A is a square matrix of order n and x and y are two arbitrary n vectors,
then the scalar

u = x'Ay (AS1)
is called a bilinear form. If, however, the matrix A is also symmetric, then
v = x'Ax (AS2)

is called a quadratic form with the kernal A.

The matrix A is called positive definite if v > 0 for all x # 0, and we write
A>0. If v>0 for all x and there exists a nonzero vector x for which
equality holds, we say A is positive semidefinite (or nonnegative definite) and
write A > 0. There are corresponding definitions for negative definite (or
nonpositive definite). If there exist vectors x, and x, such that x} Ax, > 0 and
x5 Ax, < 0, we say A is indefinite.

For a positive definite matrix A it is necessary and sufficient that

a;; Q>

a;; >0, > 0, |A| >0 (AS3)
az; Qjz;
Thus the matrix
3 -2 1
B=| -2 3 1
1 1 4
is positive definite, because 3 > 0; and
3 =2
=9-4=5>0
—2 3 Z

and
[B| =3(11) +2(-9) + 1(-5)=10>0

A quadratic form represents, in general, a conic section of some kind.
Considering the two-dimensional case for simplicity we write

x'Ax =b with A symmetric
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or
2 2 2 _b
a11X7 + 2a13X1%x; +az,X3 =

Figure A1 represents an equation of an ellipse when the quadratic form is
positive definite, with axes oblique to the x,x, axis system of coordinates. If
we construct the orthogonal matrix R whose columns are the normalized
eigenvectors of A, then perform the transformation,

x = Ry

Y2 4 N

X1

We get
(Ry)'A(Ry) = y'(R*AR)y = y'Dy

where

D= Ao 0 with 4; the eigenvalues of A
0 4,

Thus the quadratic form becomes
Ayi+Ay3=b

or

» V3
=1
(b/21) * (b/Az)

which is the equation of the ellipse with respect to the y, y, system as shown
in Figure A1l. It is seen that R is a rotation matrix, and that the semimajor

and semiminor axes are ./b/A, and /b/A,, respectively.
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A8. MATRIX DIFFERENTIATION

1. If we are given a vector x =[x; X, ‘- x,]' whose elements are
functions of another variable u, then the derivative dx/du is given by

-d_xl-
du
dx )
Py : (AS54)
n, 1
dx,
du
The differential change dx of the vector x is defined as
n 1
[ dx 1 ]
dx,
dx = : (ASS)
n, 1
de,,

2. If the elements of the matrix A, , are functions of the (scalar)
variable u, then the derivative dA/du is given by

- -

day,  day,

du du
dA . .
s : : (AS6)
| daw . da,

du du

3. Ifa vector y represents m functions of some or all of the elements of a

m, 1
variable vector x, then the total differential of y is given by
n, 1
dy
dy = —~ AS57
y =5, dx (A57)

where the total differentials dx and dy follow the definition given in the first
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item above. By necessity the partial derivative dy/0x is an m x n matrix,
which is called the Jacobian matrix, and is written in detail as

- -

Yy Oy o
Ox, 0x, 0x,
%_ : : : A58
ox : : : (AS8)
Ym  OYm . OVm
0x, 0x, 0x, |
4. For the expression
v=Ayvy
m, 1 m,nn 1
where A is independent of vy,
ov 0(Ay)
dv =—dy=—"""4d
m, 1 ay n,bl’ ay n,)ll
or
d(Ay)
A
3y A (AS9)
5. For
w=x'"B
1,q 1,p p.q
where B is independent of x
pP.q
t t t
dw=d(B‘ x) = M dx
l,q 4.pp1 ox p. 1
q.p
= (B'dx)
=dx' B
1,ppg
6. For the bilinear form,
u=x' Ay
1,nnnn1
where A is independent of both x and y,
0
du =" dy or ou =x'A (A60)

0y n1 oy
1,n
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and
ou ou
du = | — dx |’ — =y A’ A61
y ax n )i) o ax lyn nn ( )
I,n
7. For the quadratic form,
u = x'Ax
where A is independent of x,
ou
—=x'A+ x'A'= X' (A + A‘) = 2x'A (A62)
X  1n 1,n 1,n\ nn 1,n

i,n
when A, , is symmetric.
8. The derivative of the inverse A~ !, assuming that it exists, is obtained
from

AA" =1
4 a2
Adj; +‘—;%A*‘ =0
hence
d‘;;l = —A“%:A" (A63)

9. If the elements of a determinant r = |R| are functions of a variable x,
then

dr d |
dx dx
drll r o o r r r .. drln
3 11 1 5
dx 12 1n 2 dx
dr, dr
1 2n
= r e p 4+ 0+ ryy T ce
dx 22 2n 2 22 dx
dr"l r ey r 2 dr,,,,
2 1
dx n nn n n2 dx

(A64)
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or
dry, drq, dr,,
1 12 Tn o
dx dx dx
dr bt
—_— = r rz r r21
dx 21 2 2n
dr
ni
r 1 r 2 e r —_—
n n nn dx

dr,,
dx

dr

dx

(A65)

Note that the derivative of a determinant of order n is the sum of n

determinants.

A9. SOME USEFUL MATRIX RELATIONSHIPS
1. For the bilinear and quadratic forms, we may write
x‘'Ay = tr (xy'A’)
x'Ax = tr (xx'A) (A symmetric)
2. Given the matrix expression

X=YxUZYV

nn n,n n,pp.ppn

then
x =Y !'FYUZ '+ VY"IU)‘IVY"l

provided that all inverses in equation (A69) do exist.
3.

(A+B) '=A"1YA"'+B )" IB!
=B—1(A—1 +B—l)—1A—1

provided that A~! and B~ exist.
4. In general

(A + B)(A — B) # A? — B?

and

d , , . dA
AT£2AT

(A66)
(A67)

(A68)

(A69)

(A70)
(AT1)

(A72)

5. An idempotent matrix is a matrix that is equal to its square, or

H = H?

(A73)
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For instance,
C=1-B(B'B) 'B
is idempotent, since
C? =1-2B(B'B)"'B' + B(B'B) 'B'B(B'B) 'B’
=1 - B(B'B)" 'B’
=C

6. A block diagonal matrix is a square matrix with square submatrices
along the main diagonal and zero submatrices elsewhere. It may be written
symbolically as

Ay, 0 e 0
0 0 Ay
as an example
(1] 0 0 o0 0 O]
0 2 -1 4 0 0
0 3 4 0 0 0
0({-=5 0 7
0 0 0 0| 11 1
K 0 0 0 4 |

is a block diagonal matrix.

The inverse of a nonsingular block diagonal matrix is another block
diagonal matrix with corresponding diagonal submatrices being inverses of
the respective submatrices in the original matrix, or

ATL 0 0
0 Az_zl e 0

0 o0 Agt



APPENDIX

B

Linearization by Series Expansion

When the original condition (and constraint) equations are nonlinear,
they are usually linearized using the zero and first-order terms of Taylor
series. In the following sections a number of cases are given.

Bl. ONE FUNCTION OF ONE VARIABLE
For y = f(x) the series expansion is

1 d%y
Ax 4+ — — 2
X |x, X+ 2! dx?
Any term beyond the second on the right hand side of equation (B1) is again
nonlinear. Therefore, for purposes of adjustment, only the first two terms
(zero and first order) are used to form a linear expression approximating the
original nonlinear form. Thus

(Ax)? + - (B1)

Xo

d
ygf(x°)+d—i) -Ax =)y° +j Ax (B2)

x0

is the linearized form to be used.

462
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— <
<
i
=
X

y=y0+ij
O+ A ————————— ] c
0, ;
O +jAx A
yO a
— AX jo—
» X

The technique of linearization is demonstrated in Figure B1. The curve
represents the original nonlinear function f(x), whereas the straight line
represents the linearized form of equation (B2). That line is tangent to the
curve at the given point a, (x° y°). When Ax is given (or evaluated), the
value of the function would be approximated by point b whose ordinate is
(¥° +j - Ax), and the exact value from the nonlinear function is point c, with
ordinate f(x° + Ax). The error arising from using the linear form is the line
segment bc.

Example Given y = x2 + x3, evaluate the linearized form at x° =1 and the
value of the function and its linearized form at x = 1.1

dy

_ 2
=7 xo—2x+3x

W=f(x)=2 and Ax=0.1
=1 +jAx=2+05=25
F(x° + Ax) = f(1.1) = 1.21 + 1.331 = 2.541

x0=1

B2. ONE FUNCTION OF TWO VARIABLES

y=f(x1, x3)
=f(x%, x3) + Eax% oo - Axy + gx% oo - Ax,
2150 e O 21551, 5
+ 66—:1 o : 66_;72 (Ax ) (Ax,) + -

x10, x20 (B3)
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For linearized form, equation (B3) is truncated to

y=)"+j; Ax, +j, Ax, (B4)
where
¥* =1(x}, x3)
. _ 0Oy
h= dx.
X1 |x10, x20
. 0
J2 = a—y
X2 |x19, x20

Equation (B4) can be rewritten introducing vectors, or

Ax

_ .0 . 1

y=y"+[i Jz][sz]
or

y=)y"+J,, Ax (BS)
where

oy
Jyx—é;

is the Jacobian of y with respect to x.

B3. TWO FUNCTIONS OF ONE VARIABLE
N1 =f1(x) = Y? +j; Ax

. (B6)
ya =falx) = y3 +j, Ax
with
1 =f1(x)°
Y2 =f2(x)°
e a1 |9n dy,
Jyx - [Jl 12] - [dx 0 dx 0

B4. TWO FUNCTIONS OF TWO VARIABLES EACH
y1 =fi(x1, X3) = y) + iy Axy + 12 Axy
V2 =fa(xy, X2) = V3 + jay AXy + oy AX, (B7a)

0 N .
N1 1 Jir Jiz2||Ax,

~ + | i B7b
L’J [y(z’} []21 ]22] [sz] ( )

or



BS GENERAL CASE OF m FUNCTIONS OF n VARIABLES

or
y=y’+J,, Ax
where
y0 = [Y?J — [f1(x(1)a x3)
v2] o> x2)
and
ATRNC
oy 0x; 0x,
Jyx = — =
x|y 0y
0x, 0x,

evaluated at x9, x9.

BS. GENERAL CASE OF m FUNCTIONS
OF n VARIABLES

341 =fl(x1’ X35 e0es xn)

Y2 =f2(x1’ X235 eeny xn)

Y? fl()i:l), XE,...,XE
RO I P I
m Sux3 X3, .., X9)
9y oy
0x; 0x, 0x,
)
Jyx = A P —— evaluated at x°
0x
ay"' % aym
0x, 0x, aan
Ax, ]
Ax = A?CZ
Ax, |

the linearized form of equation (B8) becomes

vyl +J,, Ax

465
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Example Given

_ L2

Y1 =X1 — X3
1 2

Ya=—+Xx3
X2

write the linearized form, in matrix notation, at the point x° =[1 1 1]

bR

g o[> 0o -1]_[2 0o -1
T lo —x0t YT o -1 2

Thus



APPENDIX

C

Ranks of a Posteriori Cofactor
(Covariance) Matrices

After a least squares adjustment is performed, the residuals v and
estimated observations / are both functionally dependent variables. Con-
sequently, their cofactor matrices, Q,, and Q,,, are singular. In the text the
fact was mentioned that the rank of Q,, is 7 (the redundancy) and the rank of
Qy; is (n — r), but without proof. It is the purpose of this appendix to give the
proofs of these facts for different techniques of least squares.

Cl. ADJUSTMENT OF OBSERVATIONS ONLY
The conditions are:

Av=Tf

r,nn1 r, 1

with cofactor matrix Q and

n,n

n>r, rank (A)=r, rank (Q)=n

v=QA'W, f
I=1+v
Q.. = QA'W, AQ
QQ=Q-Q,

467



468 RANKS OF A POSTERIORI COFACTOR (COVARIANCE) MATRICES

It is required to show that:

rank (Q,,)=r and rank (Q)=n-—r
Let
J = A'W, AQ (C1)

n,n

which has the following properties:
1. J2 = A'W,(AQA")W_AQ =J  (idempotent)
2. Rank (J) = r because
rank (J) < least rank of constituent matrices in equation (C1)
<r
since
JA'=A" and rank (A")=r
then
r =rank (A’) < min (rank (J), r)
rank (J) >r
Thus
rank (J)=r
3. There exists an orthogonal matrix F that diagonalizes J,
FJF =D
D? = FJFFJF = FJ’F =D
Thus the diagonal elements of D (eigenvalues) are either 0 or 1. The
number of elements for which d; = 1 is the same as the rank of J, or is r.

4. Because JA' = A’, the row vectors of A (column vectors of A’) are the
eigenvectors of J

K=I1-1J (C2)

which has the properties
.LK2=1-2J+J?=1-J=K (idempotent)
2. Rank (K) = (n — r), because applying the orthogonal transformation

FKF=1-FJF=1-D
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thus
rank (K) = rank (I — D)
= the number of elements for which d; =0
=(n—r)
3. If eigenvalues of J are A, then for any vector x
Jx = Ax
and thus

Kx=x—-Jx=x—-Ax=(I-4)x

Thus the eigenvalues of J are eigenvalues of K except that those of value 1
for J are of value O for K and vice versa.

From the above preliminary notes the ranks of Q,, and Q, may be derived.

C1.1. Rank of Q,,
Q.. =QJ

rank (Q,,) <min [n,r]<r  (because r < n)

and
wQ,, =J
rank (J) = r < min [n, rank (Q,,)]
rank (Q,,) >r
Thus
rank (Q,,)=r (C3)

which is the first required result.

C1.2. Rank of Q,
QQ=Q-Q,=Q-QJ=Q(I-J)=Qk
rank (Q;) < min [n, (n —r)]

<(n-r)
wWQ,; =K
rank (K) = (n — r) < min [n, rank (Q;;)]
rank (Q;) > (n —r)
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Thus
rank (Q;)=(n—r) (C4)

which is the second required result.

C2. ADJUSTMENT OF INDIRECT OBSERVATIONS
The conditions are
v+BA=Tf with Q

n, 1 nuu 1 n 1 nn

and
n>u, rank (B)=u, rank (Q)=n
A = (B'WB)~ 1(B'Wf)
v=f—-BA
Qs = (BWB)™! =N7!
Q,,=Q—BN"'B
Q,=BN" !B
=Q-Q,
It 1s required to show that
rank (Q,,)=(n—u)=r or degrees of freedom
rank (Qu) = u

which is the minimum number of variables (observations) necessary for a
unique solution.
In this case

J = BN 'B'W

nn

with the properties:
1. J32=17J
2. Rank (J) = u because

rank (J) < min rank of constituent matrices
<u
JB=B
u < min [rank (J), u]
rank (J) > u

or rank (J) must equal u.
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3. Orthogonal transformation
FJF =D

where D is a diagonal matrix with u of d;=1 and (n — u) of d; = 0, since
D2 =D.
4. JB = B, or columns of B are eigenvectors of J. Next,

K=1-1J
with
K=K
rank (K) = (n—u)

and eigenvalues of J are also eigenvalues for K as in Section C1.

C2.1. Rank of Qj
Q:=JQ
rank (Qy) < u
Q:W=1J
rank (Qy) > u
Thus
rank (Q) =u=(n—r) (C5)

C2.2. Rank of Q,,
QQ.=Q-Q;=Q-JQ=KQ
rank (Q,,) < (n — u)

Q,W=K
rank (Q,,) > (n —u)
Hence
rank (Q,,) = (n—u)=r (C6)

C3. ADJUSTMENT OF COMBINED OBSERVATIONS AND
PARAMETERS

The conditions are

Av+BA=Tf with Q

c,nn 1 c,uul c, 1 n,n
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and
c<n c>u c=u+r r = redundancy
rank (A)=c rank (B)=u rank (Q)=n
-1
A= (B‘ W, B) (B'W, f) = N1t

u,c ¢c cu

v =QA'W,(—BA + f)

Qaa=N" !
vi = Q At[we - we BN~ 1Bt‘ve]‘AQ
QII = Q - vi

It is required to show that
rank (vi) =c—u=r
rank (Qn) =n-—-—r

C3.1. Rank of Q,,
QA'W,(I — BN~ 'B'W,)AQ

Let
J = BN~ 'B'W,
J2=BN !(B'W,B)N"'B'W,=BN 'B'W,=J (idempotent)
rank (J) < min rank of constituent matrices
<u
JB=B
rank (J) > u
Thus
rank (J) =u
Let
K=1-1J

K2=K (idempotent)
and following the scheme of orthogonal transformation

FKF=1-D
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we can get
rank (K)=c—u=r
Then
Q.. = QA'W, KAQ
rank (Q,,) < min rank of constituent matrices

<r

Premultiplying both sides by A, and postmultiplying by A’, then

AQ,, A'=KQ,
or
AQ, AW, =K
r = rank (K) < min (c, rank (Q,,))
rank (Q,,) >r
Hence
rank (Q,,) =r
Next,
Q.=Q-0Q,, =Q - QA'W,KAQ
= Q(I — A'W, KAQ)
Let

J=A'W,KAQ
J2 = A'W, K(AQA")W, KAQ = A'W,K2AQ =J
rank (J) < min rank of constituent matrices

<r

Premultiplying J by AQ and postmultiplying by A

AQJA’ = (AQA")W, K(AQAY)
= KQ,
AQJA'W, =K

r = rank (K) < min (rank (J), ¢)

rank (J) >r

473
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Let
K=1-1J
K2=K
and following the scheme of orthogonal transformation
FKF=1-D
as used previously, we conclude

rank (K) = (n —r)

Finally,
Qn = QK
rank (Qy) < (n — r)
WQ, = K
rank (Q;) > (n —r)
therefore

m{‘k Qu)=n-—r

(C8)
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Pertinent Statistical Tables
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TABLE D1 Area under the Standard Normal Density Function

ot=J’mf(z)dz=P(z>z(,,)=1—J‘_zu f(z) dz

M

2a

l 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

00 | 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 04761 04721 0.4681 0.4641
0.1 | 04602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 | 04207 0.4168 0.4129 0409 04052 04013 0.3974 0.3936 0.3897 0.3859
0.3 | 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 | 03446 0.3409 0.3372 0.3336 03300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 | 0.3085 0.3050 0.3015 02981 02946 02912 0.2877 0.2843 0.2810 0.2776
0.6 | 02743 0.2709 0.2676 02643 0.2611 02578 0.2546 0.2514 0.2483 0.2451
0.7 | 0.2420 0.2389 0.2358 0.2327 02296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 | 02119 0.2090 0.2061 02033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
09 | 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 | 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 | 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 | 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 | 00968 0.0951 0.0934 00918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
14 | 00808 00793 00778 00764 00749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 | 00668 0.0655 00643 00630 00618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 | 00548 0.0537 00526 00516 0.0505 0.0495 0.0485 00475 0.0465 0.0455
1.7 | 00446 0.0436 00427 00418 00409 0.0401 0.0392 00384 0.0375 0.0367
1.8 | 00359 0.0351 00344 00336 0.0329 0.0322 00314 00307 0.0301 0.0294
19 | 00287 0.0281 00274 00268 00262 0.0256 0.0250 0.0244 0.0239 00233

20 | 00228 00222 00217 00212 0.0207 0.0202 00197 00192 0.0188 0.0183
2.1 ] 00179 00174 00170 00166 00162 0.0158 00154 00150 0.0146 0.0143
22 ] 00139 00136 00132 00129 00125 0.0122 00119 00116 00113 00110
2.3 1 00107 00104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
24 | 00082 00080 00078 00076 0.0073 0.0071 0.0070 0.0068 0.0066 0.0064

2.5 | 00062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 | 00047 0.0045 00044 0.0043 00042 0.0040 0.0039 00038 0.0037 0.0036
2.7 | 00035 00034 00033 00032 00031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 | 00026 0.0025 0.0024 0.0023 00023 0.0022 00021 0.0021 0.0020 0.0019
29 | 00019 0.0018 0.0018 00017 0.0016 00016 00015 0.0015 0.0014 0.0014

30 | 00014 00013 00013 00012 00012 00011 00011 00011 0.0010 0.0010
3.1 | 00010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 | 00007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 | 00005 00005 0.0005 0.0004 0.0004 0.0004 00004 0.0004 0.0004 0.0004
3.4 | 00003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
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t,, m such that P(t, >t, )=a= '[ f(

tam

TABLE D2 Area Under the Student ¢ Density Function

t)dt=1 —J"Mf(t) dt

477

m | «=025 020 0.15 0.10 0050 0.025 0.010 0.005 0.0005
1 1001 1376 1963 3078 6.314 12706 31.821 63.657 636.619
2 0816 1061 1386 1.886 2920 4.303 6.965 9.925 31.598
3 0765 0978 1250 1.638 2353 3.182 4.541 5.841 12.941
4 0.741 0941 1.190 1.533 2.132 2.776 3747 4.604 8.610
5 0727 0920 1.156 1476 2015 2.571 3.365 4.032 6.859
6 0718 0906 1.134 1440 1943 2.447 3.143 3.707 5.959
7 0711 0896 1.119 1415 1.895 2.365 2.998 3.499 5.405
8 0706 0.889 1.108 1397 1.860 2.306 2.896 3.355 5041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 0700 0.879 1093 1372 1812 2.228 2.764 3.169 4.587

11 0697 0.876 1088 1363 1.796 2.201 2.718 3.106 4437

12 0695 0.873 1083 135 1.782 2.179 2.681 3.055 4.318

13 0694 0.870 1079 135 1.771 2.160 2.650 3012 4.221

14 0692 0868 1076 1.345 1.761 2.145 2.624 2977 4.140

15 0691 0866 1074 1341 1.753 2.131 2.602 2947 4.073

16 0690 0.866 1.071 1337 1.746 2.120 2.583 2921 4.015

17 0.680 0.863 1069 1333 1740 2.110 2.567 2.898 3.965

18 0688 0862 1067 1330 1734 2.101 2.552 2.878 3922

19 0688 0861 1066 1328 1.729 2.093 2.539 2.861 3.883

20 0.687 0860 1064 1325 1.725 2.086 2.528 2.845 3.850

21 0686 0859 1063 1323 1.721 2.080 2.518 2831 3.819

22 0.686 0858 1061 1321 1717 2074 2.508 2.819 3.792

23 0685 0858 1060 1319 1714 2.069 2.500 2.807 3.762

24 0.685 0.857 1059 1318 1711 2.064 2.492 2.797 3.745

25 0.684 0.856 1058 1316 1.708 2.060 2.485 2.787 3.725

26 0684 0856 1058 1315 1.706 2.056 2479 2.779 3.707

27 0684 0855 1057 1314 1.703 2,052 2.473 2771 3.690

28 0683 0855 1056 1313 1.701 2.048 2467 2.763 3674

29 0683 0.854 1055 1311 1.699 2.045 2.462 2.756 3.659

30 0.683 0854 1055 1310 1.697 2.042 2.457 2.750 3.646

40 0.681 0851 1050 1303 1.684 2021 2.423 2.704 3.551

60 0679 0848 1046 1296 1.671 2.000 2.390 2.660 3.460

120 0677 0844 1042 1289 1.658 1.980 2.358 2.617 3.380




478 APPENDIX D
TABLE D3 Area Under the Chi-Square Density Function
ao X%,m
x2m such that P2 > 2 ) =a=[ SO di=1-[  f(*) df
xim 0
Area = a
xl
m a«=0995 0990 0975 0950 0.900 0.500 0.10 0.05 0.025 0.010 0.005

1 0.00 0.00 0.00 0.00 0.02 0.46 271 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.10 0.21 1.39 461 5.99 7.38 9.21 10.60
3 0.07 0.12 0.22 0.35 0.58 2.37 6.25 781 9.35 11.34 12.84
4 0.21 0.30 0.48 0.71 1.06 3.36 7.78 949 11.14 13.28 14.86
S 0.41 0.55 0.83 1.15 1.61 435 924 1107 1283 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 5.35 1064 1259 1445 16.81 18.55
7 0.99 124 1.69 2.17 283 6.35 1202 1407 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 1551 1753 20.09 21.96
9 1.73 2.09 2.70 333 4.17 9.34 1468 1692 19.02 21.67 23.59
10 2.16 2.56 3.25 394 487 9.34 1599 1831 2048 2321 25.19
11 2.60 305 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.73 26.76
12 307 3.57 4.40 523 6.30 11.34 18.55 2103 2334 26.22 28.30
13 3.57 4.11 501 5.89 7.04 12.34 1981 2236 2474 27.69 29.82
14 407 4.66 5.63 6.57 6.79 13.34 21.06 2368 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 14.34 2231 2500 2749 40.58 32.80
16 5.14 5.81 691 796 9.31 15.34 23.54 2630 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.08 16.34 2477 2759 20.19 3341 35.72
18 6.26 7.01 8.23 9.39 10.86 17.34 2599 2887 3153 3481 37.16
19 6.84 7.63 891 10.12 11.65 18.34 27.20 30.14 3285 36.19 38.58
20 7.43 8.26 9.59 1085 12.44 19.34 2841 3141 3417 37.57 40.00
21 8.03 890 1028 11.59 13.24 20.34 29.62 3267 3548 38.93 41.40
22 8.64 954 1098 12.34 14.04 21.34 30.81 3392 3678 40.29 42.80
23 926 1020 11.69 13.09 14.85 22.34 3201 3517 38.08 41.64 44.18
24 989 1086 1240 13.85 15.66 23.34 3320 3642 39.36 4298 45.56
25 10.52  11.52 13.12 1461 16.47 14.34 24.38 3765 40.65 4431 4693
26 11.16 1220 13.84 15.38 17.29 25.34 3556 38.88 4192 45.64 49.29
27 1181 1288 1457 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.64
28 1246 1356 1531 1693 18.94 27.34 3792 4134 4446 48.28 50.99
29 13.12 1426 1605 17.71 19.77 28.34 39.09 4256 4572 49.59 52.34
30 13.79 1495 16.79 18.49 20.60 29.34 4026 4377 4698 50.89 53.67
40 2071 22.16 2443 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
60 3553 3748 4048 43.19 46.64 59.33 7440 79.08 83.30 88.38 91.95
120 8385 8692 91.58 9570 100.62 119.33 140.23 146.57 15221 15895 163.65
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TABLE D4(a) Area Under the F Density Function

Fo.05, m. m, Such that P(F

> FO.OS, m;.mz) = 0'05

479

m, m
Fo.05 m1, m2
= f(F)dF =1 - f f(F)dF
Fo.05, m1, m2 0 :
Area = 0.05
FO.S, my, m
ud}
m2 1 2 3 4 s 6 7 8 9 10 11 12 13 14 16
1161 200 [216 225 (230 234 237 239 241 242 {243 244 (245 [245 |246
2| 185 | 190 | 19.2 | 192 | 193 | 193 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194
3] 101 9.55! 9.28| 9.12] 9.01] 8.94| 889| 8.85] 8.81| 8.79] 876| 874 8.73| 8.71| 8.69
4| 7711 6.94] 6.59| 6.39| 6.26]| 6.16| 6.09| 6.04] 6.00| 596] 594| 591| 589] 5.87| 5.84
5| 6.61| 579 541; 5.19| 505| 4.95| 4.88] 4.82| 4.77| 4.73] 4.70| 4.68| 4.66| 4.64| 4.60
6| s99| s514| 476| 453 439 4.28]| 4.21| 4.15| 4.10| 4.06] 4.03| 4.00f{ 3.98| 3.96( 3.92
7] 5.59| 4.74| 4.35| 4.12( 3.97| 3.87| 3.79( 3.73| 3.68| 3.64] 3.60| 3.57| 3.55| 3.53| 3.49
8] 5.32]| 4.46| 4.07| 3.84] 3.69| 3.58| 3.50| 3.44]| 3.39] 3.35] 3.31| 3.28] 3.26| 3.24| 3.20
9] 5.12| 4.26] 3.86] 3.63| 3.48} 3.37| 3.29| 3.23| 3.18| 3.14| 3.10] 3.07| 3.05| 3.03] 299
10| 4.96( 4.10f 3.71| 3.48| 3.33] 3.22| 3.14] 3.07| 3.02| 2.98] 2.94| 2.91| 2.89| 2.86| 2.83
11] 4.84| 3.98) 3.59| 3.36{ 3.20] 3.09| 3.01|{ 2.95| 2.90] 2.85| 2.82| 2.79]| 2.76| 2.74| 2.70
12| 4.75| 3.89| 3.49| 3.25| 3.11] 3.00( 2.91| 2.85] 2.80| 2.75| 2.72] 2.69{ 2.66| 2.64| 2.60
13| 4.67| 3.81| 3.41] 3.18] 3.03| 292} 2.83| 2.77| 2.71| 2.67] 2.63| 2.60| 2.58| 2.55| 2.51
14| 4.60] 3.74| 3.35| 3.11| 2.96| 2.85] 2.76| 2.70| 2.65| 2.60] 2.57| 2.53| 2.51| 2.48| 2.44
16| 449 3.63| 3.24| 3.01| 2.85| 2.74| 2.66| 2.59| 2.54] 2.49] 246 2.42| 2.40] 2.37| 233
18] 4.41| 3.55| 3.16] 2.93| 2.77| 2.66] 2.58| 2.51| 2.46| 2.41| 2.37]| 2.34| 231| 2.29] 2.25
20| 4.35| 3.49] 3.10] 2.87| 2.71| 2.60| 2.51| 2.45| 2.39| 2.35] 2.31]| 2.28]| 2.25] 2.22] 2.18
221 430 3.44| 3.05| 2.82| 2.66] 2.55| 2.46| 2.40| 2.34| 2.30]| 2.26]| 2.23| 2.20| 2.17| 2.13
241 4.26| 3.40) 3.01| 2.78| 2.62] 2.51| 2.42| 2.36| 2.30| 225 2.21| 2.18| 2.15] 213| 2.09
26) 4.23| 3.37| 298| 2.74| 2.59| 2.47]| 2.39| 2.32| 2.27| 2.22f 2.18| 2.15| 2.12| 2.09| 2.05
281 4.20( 3.34] 2.95| 2.71| 2.56]| 2.45] 2.36) 2.29| 2.24] 2.19} 2.15( 2.12| 2.09| 2.06] 2.02
30f 4.17| 3.32| 2.92] 2.69| 2.53] 2.42| 2.33| 2.27] 2.21] 2.16] 2.13] 2.09] 2.06] 2.04{ 1.99
40| 4.08| 3.23| 2.84] 2.61] 2.45] 2.34| 2.25| 2.18| 2.12| 2.08] 2.04] 2.00| 1.97] 1.95] 1.90
50| 4.03| 3.18] 2.79| 2.56| 240} 2.29| 2.20] 2.13] 2,07 2.03] 1.99| 1.95{ 1.92| 1.89} 1.85
60| 4.00{ 3.15! 2.76| 2.53| 2.37| 2.25| 2.17| 2.10| 2.04| 1.99] 1.95| 1.92{ 1.89| 1.86] 1.82
80| 3.96( 3.11]| 2.72| 2.49| 2.33| 2.21]| 2.13] 2.06] 2.00] 1.95] 1.91| 1.88( 1.84| 1.82] 177
100] 3.94f 3.09| 2701 2.46( 2.31] 2.19] 2.10| 2.03| 1.97| 1.93| 1.89| 1.85| 1.82| 1.79| 1.75
200| 3.89| 3.04| 2.65{ 2.42| 2.26] 2.14| 2.06] 1.98] 1.93| 1.88] 1.84| 180} 1.77| 1.74| 1.69
500| 3.86] 3.01] 2.62} 2.39] 2.23| 2.12| 2.03| 1.96] 1.90| 1.85] 1.81] 1.77| 1.74| 1.71| 1.66
oo | 3.84| 3.00] 2.60| 2.37| 2.21] 2.10] 2.01] 194} 1.88| 1.83] 1.79| 1.75| 1.72] 1.69]| 1.64
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TABLE D4(a)—(Continued)

Fo05 m,.m Such that P(F, > F,o 0 ) =005

Fo.05.m .m

=jm ’f(F)dF=1—j f(F) dF

Fo.05.m .m []

18 20 22 24 26 28 30 40 50 60 80 100 | 200 | 500 | o Zm,

247 (248 249 249 {249 [250 [250 251 [252 [252 (252 |253 1254 |254 [254 1

194 | 195 | 19.5 | 19.5 | 19.5 | 19.5 19.5f 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5
867 866) 8.65| 864 863| 8.62| 8.62] 859| 859| 857 8.56] 8.55| 8.54| 8.53| 8.53
5.82| 580| 579| 5.77| S5.76] 5.75| S5.75] 5.72| 5.70| 5.69| 5.67] 5.66( 5.65( S5.64| 5.63
4.58] 3.56] 4.54] 4.53] 4.52]| 4.50| 4.50| 4.46]| 4.44] 4.43| 4.41| 441| 439 437 437

3.47| 3.44| 3.43| 3.41| 3.40| 3.39| 3.38} 3.34| 3.32) 3.30| 3.29] 3.27| 3.25] 3.24| 3.23
3.17} 3.15] 3.13| 312| 3.10( 3.09| 3.08] 3.04( 3.02( 3.01| 2.99] 297! 295} 2.94| 2.93
296 2.94] 2.92{ 2.90| 2.89| 2.87| 2.86{ 2.83| 2.80| 2.79| 2.77| 2.76| 2.73| 2.72| 271

2
3
4
5
3.90| 3.87]| 3.86] 3.84| 3.83{ 3.82| 3.81] 3.77| 3.75| 3.74| 3.72] 3.71 3.69| 3.68| 3.67 6
7
8
9
2.80| 277} 2.75| 2.74| 2.72] 2.71| 2.70] 2.66f 2.64| 2.62| 2.60| 2.59| 2.56] 2.55| 2.54 0

-

2.67| 2.65] 2.63| 2.61| 2.59| 2.58| 2.57| 2.53| 2.51| 2.49| 2.47] 2.46| 2.43| 2.42| 240| 11
2.57| 2.54| 2.52| 2.51| 2.49| 2.48| 247} 2.43| 2.40| 2.38| 2.36| 2.35{ 2.32| 231 230| 12
248| 246} 2.44| 242| 241| 239| 2.38] 2.34| 231 2.30( 2.27| 2.26} 2.23} 2.22]| 2.21| 13
241 238 2.37]| 235 2.33| 2.32| 2.31| 2.27| 2.24| 2.22{ 2.20| 2.19| 2.16| 2.14| 2.13| 14
2.30| 2.28] 2.25) 2.24| 2.22| 2.21| 2.19] 2.15| 2.12{ 2.t1| 2.08} 2.07| 2.04| 2.02| 2.01} 16
2.22| 2.19] 2.17| 2.15| 213] 2.12] 211} 2.06| 2.04}] 2.02| 1.99] 198} 1.95] 193] 1.92]| 18
215 212§ 2.10] 2.08] 2.07| 2.05| 2.04] 1.99] 1.97| 1.95] 1.92| 1.91| 1.88| 1.86] 1.84] 20

2.10| 2.07| 2.05] 2.03] 2.01] 2.00] 198] 194| 191} 1.89| 1.86| 1.85] 1.82| 1.80| 1.78]| 22
2,05 2.03f 2.00| 198 197| 1.95| 1.94]| 1.89| 1.86]| 1.84| 1.82| 1.80| 1.77| 1.75] 1.73| 24
2,02 199] 1.97| 195 193] 191]| 190]| 1.84} 1.82| 180} 1.78] 1.76] 1.73] 171| 1.69| 26
1.99| 196] 193] 191} 190| 1.88| 1.87| 1.82| 1.79}] 1.77| 1.74] 1.73| 1.69| 1.67| 1.65| 28
1.96| 1.93] 191] 1.89] 1.87| 1.85| 1.84] 1.79| 1.76] 1.74} 171} 1.70| 1.66| 1.64] 1.62| 30
1.87| 1.84] 1.8t 1.79] 1.77| 1.76| 1.74] 1.69] 1.66] 1.64] 1.61] 1.59| 1.55| 1.53| 1.51| 40
1811 1.78] 1.76| 1.74| 1.72| 1.70| 1.69] 1.63| 1.60] 1.58| 1.54| 1.52| 1.48| 1.46| 1.44| 50
1,78} 1.75) 1724 1.70] 1.68]| 166} 1.65| 1.59| 1.56{ 1.53| 1.50] 1.48| 1.44| 1.41]| 1.39]| 60
1.73] 1.70] 1.68| 1.65| 1.63] 1.62] 1.60] 1.54| 1.51| 1.48]| 1.45] 1.43| 1.38| 1.35| 1.32] 80
171 1.68] 1.65| 1.63} 1.61| 1.59] 1.57} 1.52| 1.48| 1.45| 1.41] 1.39] 1.34]| 1.31] 1.28/100
1.66] 1.62] 1.60| 1.57]| 1.55| 1.53| 1.52] 1.46] 1.41§ 1.39| 1.35] 1.32| 1.26| 1.22]| 1.19]|200
1.62] 1.59] 1.56| 1.54| 152} 1.50| 1.48] 1.42| 1.38] 1.34] 1.30] 1.28| 1.21( 1.16| 1.11]500
160} 1.57| 1.54¢] 1.52| 150 1.48| 146} 1.39| 1.35] 1.32| 1.27| 1.24| 1.17| 1L11] 1.00f
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TABLE D4(b)
Fo025 m.m sSuch that P(F, > F 025 . m) = 0025
Foo25m .m
= f(F)dF =1-] f(F) dF
Fo.025.m .m o
Area = 0.025
Fo2s,m.m:
]
my 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
11648 800 864 900 922 937 948 957 963 969 973 977 980 983 987
2( 385 | 390 |39.2 |39.2 {393 |393 |394 ]394 | 394 | 394 | 394 | 394 | 39.4 | 39.4 | 394
3|]174 | 16.0 | 154 | 151 149 | 147 | 146 | 145 | 145 144 | 144 | 143 14.3 143 14.2
4] 12.2 | 10.6 998 9.60| 9.36] 9.20| 9.07| 8.98| 890| 8.84] 8.79| 8.75| 8.72| 8.69| 8.64
51 10.0 8.43]| 7.76| 7.39]| 7.15|] 6.98] 6.85] 6.76| 6.68| 6.62] 6.57| .52 6.49| 6.46| 6.41
6] 8.81| 7.26] 6.60f 6.23| 5.99] 5.82| 5.70| 5.60| 5.52} 5.46] 5.41| 5.37| 533] 530 5.25
7| 8.07| 6.54| 589| 5.52| 529| 5.12] 4.99] 4.90| 4.82| 4.76] 4.71| 4.67| 4.631 4.60] 4.54
8| 7.57| 6.06] 5.42| 5.05| 4.82] 4.65| 4.53]| 4.43| 4.36] 4.30] 4.24]| 4.20| 4.16| 4.13] 4.08
9] 7.21]| 5.71| 5.08| 4.72| 4.48] 4.32| 4.20] 4.10] 4.03} 3.96| 391} 3.87| 3.83| 3.80| 3.74
10| 6.94| 546 4.83| 4.47| 4.24]| 4.07| 3.95| 3.85| 3.78| 3.72] 3.66] 3.62} 3.58| 3.55| 3.50
11| 6.72] 5.26| 4.63] 4.28]| 4.04] 3.88| 3.76| 3.66] 3.59| 3.53] 3.47| 3.43| 3.39| 3.36| 3.30
12| 6.55] 5.10] 4.47| 4.2 3.89] 3.73| 3.61 3.51 3.44| 3.37] 3.32| 3.28| 3.24] 3.21 3.15
13| 6.41] 497| 4.35] 4.00| 3.77] 3.60] 3.48| 3.39| 3.31| 3.25|] 3.20| 3.15{ 3.12| 3.08] 3.03
14| 6.30] 4.86| 4.24| 3.89| 3.66] 3.50| 3.38] 3.29] 3.21! 3.15] 3.09| 3.05| 3.01f 298| 292
16] 6.12| 4.69! 4.08| 3.73| 3.50] 3.34] 3.22| 3.12]| 3.05| 2.99]| 2.93| 2.89| 2.85| 2.82| 2.76
18] 5.98| 4.56; 3.95| 3.61 3.38] 3.22| 3.10| 3.01| 293] 2.87] 2.81| 2.77| 2.73| 2.70| 2.64
20] 5.87| 4.46| 3.86] 3.51| 3.29] 3.13} 3.01] 2.91| 2.84] 2.77] 2.72| 2.68{ 2.64{ 2.60| 2.55
22| 5.79] 4.38{ 3.78| 3.44| 3.22] 3.05| 2.93| 2.84] 2.76| 2.70] 2.65| 2.60| 2.56| 2.53| 2.47
24 5.72| 4.32| 3.72| 3.38| 3.15] 2.99| 2.87| 2.78| 2.70} 2.64] 2.59| 2.54| 2.50| 2.47| 241
26| 5.66] 4.27| 3.67| 3.33]| 3.10] 2.94| 2.82] 2.73] 2.65| 2.59] 2.54| 2.49]| 2.45| 2.42] 2.36
28| S5.61| 4.22]1 3.63| 3.29}] 3.06] 2.90| 2.78| 2.69| 2.61 2.55] 2.49| 2.45) 241 2371 2.32
30| 5.57| 4.18| 3.59| 3.25| 3.03| 2.87| 2.75| 2.65§ 2.57| 2.51]| 2.46] 2.41| 237{ 2.34] 228
40| 5.42| 4.05| 3.46] 3.13| 2.90| 2.74| 2.62| 2.53] 2.45| 2.39] 2.33| 2.29| 2.25| 2.21| 215
50| 5.34] 3.98] 3.39| 3.06] 2.83] 2.67| 2.55| 2.46| 2.38| 2.32] 2.26{ 2.22f 2.18| 2.14| 2.08
60| 5.29| 3.93| 3.34] 3.01] 2.79| 2.63} 2.511 2.41| 2.33| 2.27| 2.22{ 2.17| 2.13| 2.09| 2.03
80| 5.221 3.86] 3.28] 2.95| 2.73] 2.57 2.45| 2.36] 2.38] 221 2.16| 2.11] 2.07| 2.03| 197
100} 5.18| 3.83| 3.257 2.92| 2.70| 2.54| 2.42) 232} 224 2.18| 2.12] 2.08| 2.04] 2.00| 1.94
200{ 5.10f 3.76)] 3.18| 2.85] 2.63| 2.47] 2.35} 2.26} 2.18} 2.11] 2.06{ 2.01 1.97 1.93 1.87
500] 5.05| 3.72| 3.14| 2.81 2.59] 2.43| 2.31( 2.22] 2.14| 2.07} 2.02f 1.97| 1.93 1.891 1.83
© 5.02) 3.69] 3.12| 2.79| 2.57] 2.41] 2.29| 2.19| 2.11]| 2.05] 1.99| 1.94] 1.90| 1.87| 1.80
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TABLE D4(b)—(Continued)

F0.025.M1,mz Sl.lCh that P(F > F0.025,m1, mz) = 0.025

my, m;

- S R dF=1- | BT R dF

Fo.025m .m 0

18 20 22 24 26 28 30 40 50 60 80 100 | 200 | 500 © 'm2

990 [993 [995 |997 999 1000 [1001 [1006 (1008 [1010 {1012 |1013 [1016 {1017 |1018

-

394 | 394 | 395 | 395 |{39.5 | 39.5 | 39.5 | 39.5 | 39.5 | 39.5 | 39.5 | 39.5 | 39.5 | 39.5 | 39.5 2
142 | 142. 1 14.1 | 141 | 141 | 141 | 141 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 13.9 | 13.9 | 13.9 S
8.60] 856]| 853| 851| 849| 848] 846] 8.41| 8.38| 8.36| 833} 832§ 829 827 826 4
6.37| 6.33] 6.30] 6.28| 6.26| 6.24| 6.23] 6.18| 6.14] 612 | 6.10f 6.08] 6.05| 6.03| 6.01 5
521| 5.17| S5.14] 5.12| 5.10| 5.08| 507] 501| 4.98) 4.96| 4.93] 4.92! 4.88| 4.86| 4.85| 6
4.50| 4.47] 4.4 4.42] 439| 4.38| 4.36] 4.31| 4.28| 4.25{ 4.23] 4.21| 4.18| 4.16| 414} 7
4.03| 4.00] 3.97] 3.95) 3.93| 3.91| 3.89| 3.84] 3.81| 3.78| 3.76| 3.74] 3.70| 3.68| 3.67| 8
3.70] 3.67| 3.64] 3.61| 3.59| 3.58] 3.56| 3.51| 3.47| 3.45| 3.42] 3.40| 3.37| 3.35| 3.33| 9
3.45| 3.42] 3.39( 3.37| 3.34) 3.33| 3.31]| 3.26| 3.22| 3.20| 3.17]| 3.15) 3.12( 3.09] 3.08| 10

3.26] 3.23} 3.20 3.17) 3.15| 3.13| 3.12] 3.06f 3.03f1 3.00] 2.97} 2.96} 2921 2.90| 2.88] 11
3.1} 3.07| 3.04] 3.02) 3.00|{ 2.98| 2.96] 2.91| 2.87| 2.85] 2.82] 2.80( 2.76( 2.74| 2.72{ 12
298| 2.95] 2.92| 2.89| 2.87] 2.85| 2.84) 278 2.74| 2.72| 2.69} 2.67] 2.63| 2.61| 2.60]| 13
2.88] 2.84{ 2.81| 279 2.77| 2.75] 2.73| 2.67| 2.64| 2.61| 2.58] 2.56]| 2.53]| 2.50| 2.49] 14
2,721 2.68] 2.65| 2.63] 2.60| 2.58| 2.57| 2.51| 2.47| 2.45| 242} 2.40( 236 2.33| 232| 16
2,60} 2.56] 2.53| 2.50| 2.48] 2.46| 2.44]| 238} 2.35f 2321 2.29]| 2.27] 2.23| 2.20( 2.19{ 18
2.50( 2.46] 2.43]| 2.41] 239{ 2.37( 2.35| 2.29| 2.25]| 2.22] 2.19] 2.a7( 2.13| 2.10{ 2.09} 20

2431 239 236 233 231f 2.29| 2.27{ 2.21| 2.17| 2.14| 2.11| 2.09( 2.05{ 2.02| 2.00| 22
236 2.33} 2.30( 2.27| 2.25( 2.23| 2.21| 2.15] 2.11{ 2.08] 2.05] 2.02 1.98| 1.95| 1.94| 24
231} 2.28| 2.24] 2.22]| 2.19| 2.17| 2.16] 2.09| 2.05| 2.03| 1.99| 1.97| 1.92f{ 1.90( 1.88| 26
2.27| 2.23] 2.20} 2.17| 2.5} 2.3} 2.11| 2.05| 2.0t] 1.98| 1.94| 192 1.88| 1.85| 1.83| 28
2.23| 2.20] 2.16| 2.14| 211 2.09| 2.07| 2.01| 1.97| 1.94| 1.90] 1.88( 1.84] 1.81] 1.79| 30

2,11 2.07] 2.03] 2.01]| 1.98] 196f( 1.94] 1.88| 1.83| 1.80| 1.76]| 1.74] 1.69] 1.66| 1.64| 40
2.03| 199} 196] 193] 191| 1.88| 1.87{ 1.80! 1.75( 172} 1.68] 1.66{( 1.60| 1.57| 1.55| 50
1.98| 194 191]| 1.88| 1.86] 1.83} 1.82] 1.74| 1.70| 1.67| 1.62| 1.60( 1.54| 1.51| 1.48] 60
193 1.88} 1.85| 1.82| L79} 1.77| 1.75] 1.68 31 1.60f 1.55] 1.53| 1.47; 1.43} 1.40| 80

1.89] 1.85] 1.81( 1.78]| 1.76f 174 1.71| 1.64| 1.59] 1.56| 1.51| 1.48{ 1.42( 1.38( 1.35/100
1.82| 1.78| 1.74] 1.71| 1.68] 1.66| 1.64] 1.56| 1.51| 1.47]| 1.42}] 1.39| 1.32( 1.27( 1.23|200
1.78] 1.74] 1.70] 1.67] 1.64( 1.62( 1.60] 1.51| 1.46| 1.42; 137| 134| 1.25( 1.19( 1.14{500
175 1.71] 1.67] 1.64| 1.61| 1.59| 1.57| 1.48| 143} 1.39] i.33| 130 1.21| 1.13} 1.00|
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TABLE D4(c)
Fo01, m.m Suchthat P(F, > Fgq . . )=001
Fooim .m
= f(F)dF =1— | f(F) dF
Fo.o1,m ,m 0
Area = 0.01
F'.Ol s My, my

m
1 1 2 | 3 4 | s 6 | 7 8 9o | 10| 11 | 12| 13 14] 16
*1]a05 [s00 |s40 |s63 |s76 |[ss6 [s93 |s98 602 [e06 |608 611 [613 |614 [617

2| 985 [ 99.0 | 992 | 992 | 993 | 99.3 | 99.4 | 99.4 | 99.4 | 99.4 | 99.4 | 99.4 | 99.4 | 99.4 | 99.4

3] 34.1 | 308 | 295 | 28.7 | 282 | 279 [ 27.7 | 275 | 27.3 [ 27.2 | 27.1 | 27.1 [ 27.0 | 26.9 | 268

4| 212 [ 180 | 167 | 16.0 | 155 | 152 | 150 | 14.8 | 147 | 145 | 144 | 144 | 143 | 142 | 142

s| 163 | 133 | 121 | 11.4 | 11.0 | 107 | 105 | 103 | 102 | 101 | 9.96] 9.89| 9.82| 9.77] 9.68

6| 137 | 109 | 9.78| 9.s| 8.75| 8.47| s.26] s.10| 7.98] 7.87] 7.79| 7.72| 7.66] 7.60| 7.52

7| 122 | oss| sas| 7.85| 7.46] 7.19] 6.99| 6.84| 672| 6.62| 6.54| 6.47| 6.41| 636| 6.27

8| 11.3 | 8e6s| 759 7.01] 663] 637| 618| 6.03| s591| s8] s573| s.67] s.61| s.s6| s.48

9| 106 | 8.02| 6.99] 6.42| 6.06] 580 s.61| s5.47| 535] sa26| s18| sa| sos| soo| 4.92
10| 100 | 7.56| 6.55| 5.99| s.64] s5.39| 5.20| s.06| 494| 4.85| 477 a71| 4.65| 460 as2
11| 96s| 7.21| 622] 567 532] s.07| 489 474| 463] 4.54| 446] 4a40| 434( 429 421
12) 9.33]| 6.93| s.95| s541] s5.06] 4.82]| 4.64| 4.350| 439| 4.30| 4.22]| 416| 4.10| 405 3.97
13| 9.07| 6.70| 574| 5.21| 4a.86] 4.62| 4.44| 430| 4.19] 4a10| 4.02{ 3.96| 3.91| 3.86| 3.78
14| 886] 6.51| 5.56! 5.04| 4.70] 4.96| 4.28| 4.14| 4.03| 3.94] 3.86] 3.80| 3.75( 3.70] 3.62
16| 8.53| 6.23| 529 4.77| 4.44| 4.20| 403 3.89| 3.78| 3.69] 3.62| 3.55| 3.50| 3.45 337
18| 8.29! 6.01| 5.09| 4.58] 425] 401| 3.84| 3.71| 3.60| 3.51| 3.43| 337 332 3.27| 309
20| s.10| s5.85| 4.94| 4.43| 4.10] 3.87] 3.70| 3.56| 3.46| 3.37] 3.29| 3.23| 3.18| 3.13| 3.08
22] 7.95| s.72| 4.82| a31| 3.99| 3761 3.59| 3.45| 3.35| 3.26] 3.a8] 3.12| 3.07| 3.02 294
24| 7.82| s.61] 472] a22| 3.90| 3.67| 3.50| 3.36] 3.26| 3.17| 3.09| 3.03| 2.98| 2.93]| 2.85
26| 7.72| 5.53| 4.64] 41s| 3.82| 3.59| 3.42| 3.29| 3.18| 3.09| 3.02] 2.96| 2.90f 2.86| 2.78
28| 7.64| s5.45| as7| 407| 3.75| 3.53| 3.36| 3.23] 3.12| 3.03| 2.96| 2.90| 2:84| 279 2.72
30| 7.56| 539| 4.51| 4.02| 3.70] 3.47| 330 37| 3.07] 298] 2.91] 2.84| 2.79| 2.74| 7.66
40| 731 sa8| 431| 3.83| 3.51| 3.29] 3.12| 2.99] 289 2.80| 2.73] 2.66| 2.61| 2.56| 2.48
so| 7.17| s.06| 420] 32| 3.41]| 39| 3.02| 2.89] 279 2.70] 2.63| 2.56| 2.51| 2.46] 2.38
60| 7.08| 4.98| 43| 3.65| 3.34| 3.12| 2.95| 2.82| 2.72) 2.63] 2.56] 2.50| 2.44| 239 231
80| 696 4.88| 4.04] 3.56| 3.26| 3.04| 2.87| 2.74| 2.64| 2.55| 2.48| 2.42| 236 231} 223
100] 6.90| 4.82] 3.98| 3.51| 3.21| 2.99] 2.82| 2.69| 2.59] 2.50} 2.43| 2.37) 231 2.26| 2.19
200 676 471| 3.88] 3.41| 311 2.89| 2.73| 2.60] 2.50] 241| 2.34 227 222 27| 2.09
500| 6.69| 4.65 3.82| 3.36| 3.05| 2.84] 2.68| 2.55| 2.44| 2.36] 2.28| 222 2.17| 22| 2.04
o | 663] a61] 3.78| 3.32| 3.02] 2.80| 2.64| 2.51| 2.41| 2.32] 2.25]| 218 2.13| 2.08] 2.00

* Multiply the numbers of the first row (m, = 1) by 10.
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TABLE D4(c)—(Continued)

Fy.01, m.m Such that P(F > F401.m.m) =001

my, m

=f f(F)dF =1 —j“m'" " () dF

Fooim .m 0

18 20 22 24 26 28 30 40 50 60 80 100 | 200 | 500 © /2

619 |621 622 (623 |624 625 {626 |629 |630 631 633 633 1635 |636 |637 1

99.4 | 994 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5 | 99.5

26.8 | 26.7 | 26.6 | 26.6 | 26.6 | 26.5 | 26.5 | 26.4 | 26.4 | 26.3 | 26.3 | 26.2 | 26.2 | 26.1 | 26.1

14.1 | 140 | 14.0 | 139 | 13,9 | 13.9 | 13.8 | 13.7 | 13.7 | 13.7 | 13.6 | 13.6 | 13.5 | 13.5 | 13.5
9.61] 9.55] 9.51]| 9.47| 9.43| 9.40| 9.38] 9.29] 9.24| 9.20| 9.16] 9.13| 9.08f 9.04] 9.02

6.21] 6.16] 6.11| 6.07] 6.04] 6.02| 5.99] 591 s5.86| S5.82| 5.78| 5.75| 5.70| 5.67| 5.65
541] 536| 5.32| 5.28| 5.25| 5.22]| 5.20] S5.12] 5.07| S5.03] 4.99| 4.96] 4.91]| 4.88| 4.85
4.86] 4.81| 4.77| 4.73| 4.70| 4.67| 4.65] 4.57| 4.52| 4.48| 4.44| 4.42| 4.36| 4.33] 4.31
4.46] 4.41| 4.36| 4.33] 4.30| 4.27| 4.25] 4.17| 4.12| 4.08] 4.04] 4.01| 3.96| 3.93] 391} 10

2
3
4
5
745] 7.40] 7.35| 7.3t| 7.28]| 7.25| 7.23] 7.14} 7.09| 7.06] 7.01] 6.99| 6.93] 6.90| 6.88} 6
7
8
9

4.15| 4.10] 4.06| 4.02] 3.99] 3.96| 3.94] 3.86| 3.81| 3.78] 3.73] 3.71] 3.66] 3.62} 3.60| 11
3911 3.86f 3.82| 3.78| 3.75| 3.72| 3.70| 3.62| 3.57| 3.54| 3.49] 3.47| 3.41| 3.38| 3.36] 12
3.72] 2.66] 3.62| 3.59| 3.56{ 3.53| 3.51] 3.43| 3.38| 3.34| 3.30] 3.27| 3.22| 3.19| 3.16] 13
3.56] 3.51] 3.46| 3.43| 3.40| 3.37| 3.35] 3.27| 3.22| 3.18| 3.14| 3.11| 3.06| 3.03] 3.00] 14
3.311 3.26] 3.22| 3.8 3.5| 3.12( 3.0} 3.02| 2,97 293} 2.89| 2.86] 2.81| 2.78] 2.75] 16
3.131 3.08% 3.03( 3.00] 2.97| 2.94| 2.92} 2.84| 2.78| 2.75| 2.70( 2.68) 2.62| 2.59| 2.57] 18
2991 2.94] 2.90| 2.86] 2.83| 2.80] 2.78} 2.69| 2.64| 2.61] 2.56| 2.54| 2.48] 2.44| 2.42] 20

2.88) 2.83{ 2.78| 2.75| 2.72| 2.69| 2.67] 2.58]| 2.53] 2.50| 2.45] 2.42| 2.36| 2.33| 231] 22
2.79] 274} 2.70| 2.66] 2.63| 2.60| 2.58| 2.49| 2.44| 2.40| 2.36] 2.33( 2.27) 2.24| 2.21| 24
2.72] 2.66] 2.62} 2.58}] 2.55| 2.53| 2.50| 242} 2.36| 2.33| 2.28| 2.25| 2.19| 2.16| 2.13| 26
2,65] 2.60| 2.56] 2.52| 2.49| 2.46| 2.44| 2.35| 2.30| 2.26| 2.22| 2.19| 2.13] 2.09| 2.06] 28
2.60] 2.55| 2.51} 2.47]| 2.44| 2.41| 2.39] 230} 2.25| 2.21]| 2.6} 2.13| 2.07| 2.03] 2.01] 30

2.42] 2.37| 2.33| 229 2.26f 2.23; 220 2.11| 2.06] 2.02| 1.97| 1.94] 1.87| 1.83| 1.80| 40
2.32| 2.271 2.22]| 2.8} 2.15| 2.12] 2.10| 2.01{ 1.95} 1.91{ 1.86f 1.82{ 1.76| 1.71| 1.68} 50
2.25| 2.20| 2.15| 2.12] 2.08| 2.05| 2.03} 194| 1.83) 1.84| 1.78| 1.75( 1.68| 1.63| 1.60{ 60
2.17] 212 2.07| 2.03] 2.00| 1.97| 1.94] 1.85| 1.79| 1.75] 1.69] 1.66] 1.58| 1.53| 1.49} 80
2.12] 2.07| 2.02| 1.98} 1.94| 1.92| 1.89| 1.80| 1.73| 1.69; 1.63| 1.60| 1.52| 1.47} 1.43]100
2.02] 197} 1.93| 1.89} 1.85]| 1.82] 1.79] 1.69| 1.63| 1.58] 1.52] 1.48] 1.39| 1.33] 1.28]200
1.97] 1.92) 1.87| 1.83| 1.79| 1.76| 1.74] 1.63| 1.56| 1.52] 1.45]| 1.41; 1.3t1] 1.23| 1.16]500
1931 1.88| 1.83| 1.79| 1.76| 1.72| 1.70| 1.59| 1.52] 1.47( 1.40| 1.36| 1.25| 1.15| 1.00|] =

* Multiply the number of the first row (m, = 1) by 10.
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Index

Acceptance region, 54
Accuracy, 44, 64
Added parameters, 107, 233
Adjoint matrix, 444, 445
Adjustment
with conditions and constraints (with
functionally dependent parameters)
213-219, 228-231, 233-236
with derived observations, 257-260
of indirect observations, 159
non-linear, 274-275
of observations and parameters, 110-116
of observations only, 137-138
sequential, 360-365
fixed parameters, 362-365
variable parameters, 370-373
in steps, 266-270
unified least squares, 333-352
Adjustment techniques
by least squares, 107-108
selection of, 303
Approximations, 281-285
Autocofactor matrix, 85-87
Autocorrelation function, 395
Autocovariance function, 396, 407, 408

Bar diagram, 36
Bias, 45
Bilinear forms, 455

Block diagonal matrix; See Matrix
Blunders, 66

Central moments, 20, 21
Characteristic polynomial, 30, 452
Chi square distribution, 25
Chi square tests, 57, 294, 298
Circular probable error, 33
Circular standard error, 33
Cofactor, 64
matrix, 65
of a matrix, 443
of a matrix element, 442
relation to functional dependence, 119
Conditional distribution; See Distribution
Condition equations, 107, 111, 137
Conditions and constraints, 214, 252
Confidence intervals, 49-53
defined, 49
for the means, 50
for ratios of variances, 52
for variances and covariances, 51
Confidence level, 49
Confidence regions, 296-299
Consistence of an estimator, 43
Constraints, 107, 213
with added parameters, 233-236, 254
elimination of, 217-218, 231, 235-236,
253-254
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with more parameters than conditions,
228-231

and sequential reduction, 384

in the unified approach, 343-347
Convergence criteria (for iteration

termination), 290

Coordinate transformations, 184-186

four parameter, 185, 201-208

seven parameter, 185, 209-212

six parameter, 185, 208-209

two parameter, 187-201
Correlated mean, 168
Correlation, 14, 16, 18, 39, 40

coefficient, 19
Correlation analysis, 299-301
Covariance

functions, 399, 404-408

matrix, 21

characteristic polynomial of, 30
diagonilizing of, 31, 33

propagation of, 76

sample, 43
Crosscofactor matrix, 84-87
Crosscorrelation function, 397
Crosscovariance function, 407, 408
Cumulative distribution, 11

Degrees of freedom; See Redundancy
Derived observations, 256-259
Determinant (of a matrix), 442, 443
Diagonal matrix; See Matrix
Distribution
bivariate, 27, 37
chi square, the, 25
conditional, 13, 14, 16, 29
cumulative, 11
F, the, 26
Fisher, the, 26
frequency, 36
conditional, 39
marginal, 39
two-dimensional, 37
Gaussian, 22
marginal, 14
marginal cummulative, 15
multidimensional, 13
multinormal, 27
normal, 22
student, 24
t, the, 24

Efficiency of an estimator, 45

INDEX

Eigenvalue
defined, 451
equation, 452
of symmetric matrices, 452
Eigenvalues
of the covariance matrix, 30
Eigenvector, 31
defined, 452
of symmetric matrices, 452
Ellipse of constant probability, 29, 30
Ellipsoid of constant probability
probability within, 34
Ellipsoids of constant probability, 33
Equivalent matrices, 449
Equivalent observations, 114, 418
Ergodicity (of random functions), 396
Error, 8
average, 41
mean square, 45
observational, 8, 61, 63
random, 61
systematic, 45, 67
propagation of, 89
Error propagation; See Propagation
Estimation, 35, 43
interval, 49
methods of, 46
least squares method, 48
maximum likelihood method, 46
moment method, 46
point, 49
unbiased, 43
Expectation, 16
Expected value, 16

F distribution, 26

F tests, 58, 59, 295, 299

Fractional power of a diagonal matrix, 437
Functional model, 5, 101

Gauss, C. F.,, 101

Gauss method (solving linear equations),
449-450

Gaussian distribution, 22

Gauss-Jordan method (for solving linear
equations), 450

Histogram, 36

bidirectional, 37
Homogeneous (random fields), 397
Hypothesis, 53

alternative, 53-59

null, 53-59
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Hypothesis tests, 53-59 orthogonal, 445

concerning variances, 57 partitioning, 439-441

on sample means, 55, 56 positive definite (semidefinite), 455

rank of, 447-449

Idempotent matrix, 460 for a posteriori cofactor (covariance)
Identity matrix; See Matrix matrices, 467-474
Indefinite matrix, 455 row, 432
Independence, 14, 15 singular (nonsingular), 441
Independent square, 432

equivalence to uncorrelated, 32 diagonal, 432
Indirect observations, 159 fractional power of, 437
Interpolation, 393, 397-400, 402, 403 identity (unit), 433
Inverse of a matrix, 441, 445 scalar, 433

by partitioning, 446, 447 sy.mmetric, skew symmetric, 438
Isotropic (random fields), 397 triangular (upper and lower), 433
Iteration termination, 289 trace, 451

criteria for, 290-292 transpose, 437

variance-covariance, 21
weight, 65
Matrix operations, 434 et seq.
scalar multiplication, 434
Maximum likelihood, 46-48

and gross errors, 292-294

Jacobian
of a matrix, 458, 464
Joint probability distribution, 13, 14

Mean
correlated, 168
Lagrange multipliers, 112 simple, 167
Least squares, 48 vector, 169
collocation, 394, 404, 418-421 weighted, 167
extrapolation, 393 Mean deviation, 41
filtering, 394, 398, 401-403 Mean radial spherical error, 34
examples of, 409-417 Mean square error, 45
interpolation, 393, 397-400, 402, 403 of estimation in filtering, 401
prediction, 393 of estimation in interpolation, 400
principle, 103-105 Mean square probable error, 33
geometric interpretation, 131-133 Measurement, 3, 4
techniques of, 105-108 properties of, 4
unified adjustment, 333-352 statistical properties of, 7
Linearization, 108, 276-279, 462-466 Median, 41
Midrange, 41
Marginal distribution; See Distribution Minor, 442
Mathematical model, 5 Mode, 41
Matrix Model, 4
adjoint, 444, 445 functional, 5, 101
block diagonal, 461 examples of, 5, 101
cofactor, 65 mathematical, 5
covariance, 21 relating observation to, 6
defined, 431 stochastic, 7
determinant of, 442, 443 Moments, 16, 19
differentiation of, 457-459 central, 20, 21
idempotent, 460 statistical, 19
inverse, 441, 445 Multinormal distribution, 27
by partitioning, 446, 447
multiplication, 435-437 Negative definite (semidefinite) matrix, 455

null (or zero), 433 Noise, 398
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Nonsingular matrix, 441
Normal distribution, 22
Normal equations
algorithms for solution, 309-311
formation by summation, 189
partially reduced, 114, 138, 160, 216
structure of matrices, 304-309
banded bordered, 306
first-order partitioned, 306
second- and third-order, 308
total system of, 113, 138, 215, 234

Observation, 3, 4
Observations

covariance, cofactor, or weight matrix of,

104

equivalent, 114, 418

estimated, 104

relation to model, 6

residuals to be added to, 104
Orthogonal matrix, 445

Parameters, 12, 106, 107
added, 107
treated as observations, 335
Partitioning of matrices, 439-441
Population, 10, 12
Positive definite (semidefinite) matrix, 455
Precision, 44, 64
average, 64
Precision estimation, 116-118, 138-140,
160-161, 216-217, 219, 235, 236,
349-351, 387, 421-423
Prediction, 393, 398
Primary (row or column) operations, 449
Probability, 9, 10
density function, 11
two-dimensional, 13
distribution, 11
marginal, 39
Propagation
defined, 72
of cofactor matrices after the adjustment,
116-118, 138-140, 160-161, 216-217,
219, 229-230, 236, 349-351, 387
of distributions, 73
of means, 74
of systematic errors, 89
stepwise, 86
using matrices, 85
using substitution, 86
of variances and covariances, 76-84

INDEX

Quadratic forms
defined, 455
in least squares criterion, 104

Random

field, 397

functions, 394, 395

stationarity of, 395

process, 395

sequence, 395

variable, 10

vector, 13, 14

vector field, 397

vector function, 397
Rank (of a matrix), 447-449
Ranks of a posteriori matrices, 467-474
Realization of a random function, 394, 395
Recursive partitioning, 309-311
Redundancy, 102
Reference variance, 65

definition, 65

estimation of, 115, 138, 160, 216, 285-288,

353

tests on, 294-295
Regression line, 29
Rejection region, 54
Residuals

definition of, 104

Sample, 10, 12, 35
covariance, 43, 63
function, 394, 395
mean, 40, 62
median, 41
midrange, 41
mode, 41
standard deviation, 41
variance, 42, 63
Scalar matrix; See Matrix
Scalar multiplication, 434
Selection of adjustment technique, 303
Sequential adjustment, 360-365
and nonlinear equations, 387-389
with parameter constraints, 384
and the unified approach, 375-378
Signal (response), 398
Significance level, 54
Simple mean, 167
Singular matrix, 441
Skew-symmetric matrix; See Matrix
Spherical probable error, 34
Spherical standard error, 34
Standard deviation, 18
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Standard ellipse, 30
probability within, 32
Standard ellipsoid, 33
Stationarily correlated functions, 397
Stationarity (of random functions), 395
Statistics
definition, 9
sample, 13, 40
for dispersion measures, 41
for position measures, 40
Stereogram, 37
Stochastic; See Random
Stochastic model, 7
Student (1) distribution, 24
Symbolic multiplication, 84
Symmetric matrix; See Matrix
Systematic effects, 45, 67-71

t-distribution, 24

Taylor series expansion, 108, 109, 276, 462

Tests; See also under specific tests
statistical, 53, 294-295

Trace of a matrix, 451

Trend surfaces, 403, 404

Triangular matrix; See Matrix
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Unbiased estimation, 43
Unified least squares, 108, 333-352
Unified approach
and non-linear functions, 341
and parameter constraints, 343-347
in sequential adjustment, 375-378

Variance, 18
hypothesis test, 57
minimum property, 44
propagation of, 76
reference, 65
estimation of; See Reference variance
tests on, 294-295
sample, 42
Variance factor, 65
Variate, 12
Vector mean, 169

Weight coefficient; See Cofactor
Weighted mean, 167
Weight matrix, 65
Weights, 65
variation in the unified approach, 334






