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5

introduction to Least Squares Adjustment

5.1. GENERAL

In Part I the reader was introduced to the basic concepts underlying
observations, the mathematical model, and adjustment. It was pointed out
that adjustment is in general meaningful only in those cases in which redun-
dant observations are available. In a statistical sense, adjustment is a method
of deriving estimates for stochastic variables and their distribution par-
ameters from observed samples. Of the different adjustment methods least
squares is by far the most common.

Since its first application to an astronomical problem by C. F. Gauss,
least squares adjustment has been introduced and applied in a vast number
of fields in science and engineering. Its practical importance has recently
been enhanced by the introduction of electronic computers, by the formula-
tion of its techniques in matrix notation, and by connecting its concept to
statistics.

Before planning observations, a general functional model about the
system to be assessed must be specified. Such a functional model, which
refers to a finite closed system, is determined by a certain number of var-
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102 INTRODUCTION TO LEAST SQUARES ADJUSTMENT

iables (parameters or observations or both) and the relationships between
them.

There is always a minimum number of independent variables that uniquely
determines a chosen model. It is important to note that the same physical
object or set of events can be associated with different functional models.
These models would have different elements depending on the particular
choice made for the purpose or extent to which information is needed. Once
that choice is made and the problem is specified, the minimum number of
variables is consequently fixed—although the choice of actual variables still
remains optional. In other words, we would determine the minimum
number of variables without specifying the particular variables, as illustrated
by the following examples.

1. The shape of a plane triangle (a particular geometric functional model) is
uniquely determined by two distinct variables (minimum number). These
may be chosen as any two angles of the three, or as the ratios of the three
sides (optional choice of actual variables).

2. The size and shape of a plane triangle (another particular functional
model) require a minimum of three distinct variables (which therefore
cannot be all angles since a linear dimension is necessary for determining
size). Several choices remain open, such as two angles and one side, two
sides and one angle, or three sides.

3. If, in addition, the location and orientation with respect to a specified
cartesian coordinate system of a plane triangle (yet another functional
model) are of interest, a total of six variables becomes necessary. Ob-
viously more choices also exist in this case.

As has been indicated above, once a model is selected it is expressed by a
minimum number of distinct variables. This minimum number of variables
will always be referred to by n,. Unless the given observations are sufficient
for determining the n, variables, the situation will obviously be deficient. We
denote the number of observations by n. These observations must be func-
tionally independent, that is, not one of the n observations can be derived
from any or all remaining (n — 1) observations. When n is larger than n,,
redundancy is said to exist and adjustment is needed in order to obtain a
unique set of estimates for the model variables. The redundancy, which is
denoted by r, is given by

r=n-—n, (5.1)

and is equal to the (statistical) degrees of freedom.

The redundancy r is meaningful only if the observations and the func-
tional model are mutually consistent. The observations should be sufficient
to determine the model, that is, they should refer to at least the minimum
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number of distinct random variables. Otherwise there will be a deficiency in
the model.

A deficiency can exist in spite of apparent existence of redundancy as, for
instance, when multiple observations are present (see the following exam-
ple). In complex systems such as large photogrammetric blocks, deficiency
may be encountered without the presence of multiple observations.

Example 5.1. Denote the three interior angles of a plane triangle by «, B, y, and
assume that determining the shape of the triangle is of interest. Therefore the func-
tional model is defined as that of the shape of a triangle for which n, = 2, each
referring to one distinct angle «, §, or y. Now, there are several possibilities for actual
observations.

Each angle is observed once, that is, a,, By, y;-. Thusn=3andr=n—ne = 1.
. Each angle is observed twice, or a4, a5, B, B2, 71, 72- Hence n=6 and r = 4.
3. Angle a observed twice, and B, y each observed once, or a;, a,, B, y. Here n = 4
and r = 2.

4. Angle a is observed four times, a,, a5, a3, as. In this case although n = 4, we
actually have a deficient situation, because the observations do not refer to the
minimum of ny = 2 distinct variables of the specified model. Therefore these
observations are no longer adequate for the model and the shape of the triangle
cannot be determined.

N o=

If we are asked to indicate what can be determined from these observations, the
model must first be reduced to that of one angle a, for which ny = 1. In this case r = 3
and the adjustment would involve obtaining a unique estimate for the angle « from
the four given observations.

Part (4) of the above example demonstrates that before we can evaluate
the value of the redundancy r, a check must be made to ascertain that the
total model selected is determinable from the given observations.

5.2. THE LEAST SQUARES PRINCIPLE

Because of the inherent stochastic properties of observations, redundant
observations are not usually compatible with the functional model. Any
sufficient subset of functionally (but not necessarily stochastically) indepen-
dent observations can be used to assess the model. Due to random variabi-
lity of the observational sampling, each minimum subset would yield a
different result. For example, any two of three measured angles in a plane
triangle suffice to determine its shape. However, for every possible pair of
angles (for example, « and 8; f and y; or y and a) a triangle shape results that
is in general different from that obtained from another pair; that is, no
unique result is possible from redundant observations unless an additional
criterion is introduced. In this situation it is the basic principle of adjustment



104 INTRODUCTION TO LEAST SQUARES ADJUSTMENT

to derive a unique set of estimates for all the model variables, with certain
optimum properties.

The original set of observations, which will be denoted by the vector / and
which includes redundant observations and is inconsistent with the model, is
replaced in the adjustment by another set of estimates  which satisfies the
model. This implies that the functional relationships comprising the model
are accepted as superior to the given sample values of the observations.
Consequently, after the adjustment is performed, model relationships
remain unaltered and will be strictly satisfied by the newly estimated set of
values 7.

The set of estimates 7 is in general different from the original set /. The
difference between the two sets is

v=I1-1 (5.2)

which has been termed in the classical theory as either “corrections” or
“residuals.” Neither of the two terms is descriptive or precise, and other
suggested terms such as “alterations ” or “shifts ” are equally so. For lack of
a better term, the term “residuals ” is selected as adequate, and will be used
throughout this book.

The vector of residuals v plays an important role after the adjustment
process. It is often possible to analyze the elements of v in order to test the
adequacy of the model. In certain instances this analysis may even lead to
discarding a chosen model completely and to remodeling the problem.

Due to redundancy, there would be an infinite number of estimates for v,
or I, which would satisfy the model. Amongst all the possibilities there exists
one set of estimates that, in addition to being consistent with the model,
satisfies another criterion commonly referred to as the least squares principle.
This principle endeavors to ascertain that the new estimates 7 are as close as
possible to the sample values of the observations / taking their stochastic
properties also into consideration. Such a criterion is obviously plausible
since the available sample of observations is the best that we have, although
it is superseded by the model functions. Therefore any variations in / neces-
sitated by the existence of inconsistencies with the model due to redundancy
must be as small as possible. In the limit when r =0, /=1 and the
residuals will all be zero.

The least squares principle states that

¢ = vWv > minimum (5.3)

where W is the weight matrix of the observations. It should be denoted by
W, = Q,; ! with Q, being the cofactor matrix. However, since they will be
used extensively, neither Q nor W will have a subscript for reasons of
simplification. In the exceptional cases when ambiguity may arise, the sub-
scripts will be restored. The weight matrix W is square and of order equal to
n, the number of observations. Its elements reflect the stochastic properties,
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such as variation and correlation, of all the observations as discussed in
Part 1.

The minimum criterion given above is the most general expression.
Several special cases may be derived from it by considering weight matrices
of special structure. The first specialization is when the observations are
considered as uncorrelated. The weight matrix W would be a diagonal
matrix, and the minimum principle becomes

n
¢ = ) (w;v?) > minimum (5.4)
i=1
where w; is the ith diagonal element of W and v, is the residual associated
with the corresponding ith observation.
A yet simpler case is when the observations are taken as of equal preci-
sion in addition to being uncorrelated. Then W becomes the identity matrix
and

n
¢ = Y (v?) > minimum (5.5)
i=1
will be the form of the minimum principle. This last case is the oldest and
most classical, and possibly the one that gave rise to the name “least
squares,” since in this case we seek the “least” of the sum of the squares of
the residuals.

It is important to note that the application of least squares principle given
above does not require a priori knowledge of the distribution associated with
the observations. All that is necessary is to have either W or Q defined and
known. In the past it has been erroneously stated that least squares adjust-
ment requires normal distribution. Perhaps the reason for this incorrect
assertion is that when the observations are normally distributed, the least
squares estimates will have some special properties, such as being identical
to those from the method of maximum likelihood.

Least squares has been by far the predominant technique of data adjust-
ment in photogrammetry, geodesy, surveying, and many other fields. The
reason for such extensive use lies in the fact that it yields a computational
algorithm for a unique answer even in very complicated cases. This was
essential from the beginning, as early attempts at adjustment of geodetic nets
in the nineteenth century failed mainly due to the lack of a suitable algor-
ithm. The advantage of such an algorithm has been enhanced lately by the
adoption of matrix notation and the use of electronic computers for per-
forming the computations. '

5.3. THE TECHNIQUES OF LEAST SQUARES

The mathematical model represents the point of beginning at which the
basic philosophy of the adjustment task is established. Once this has been
accomplished, the model remains in the background and consideration is
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then given to the practical and computational aspects of selecting a particu-
lar technique of least squares. The relationship between these phases is
shown schematically in Figure 5.1. The least squares computations yield
updated estimates of all model variables as well as their respective cofactor
or covariance matrices. After the computational algorithm is applied to the
given data, another step is necessary where the results are statistically eva-
luated. This is again a judgment operation which lies on the same side as the
model. In fact, depending on the degree of sophistication, the results of
the statistical evaluation could lead to remodeling of the adjustment task if
the original model is found to be inadequate.

The model

N

1 Technique
of least
squares

(Remodeling)

Statistical H
evaluation
and tests of
the results

Philosophical ' Technique and
and judgment <= computational
aspects algorithm

Figure 5.1

Although for a specified model and a given set of data the least squares
yields unique results, there are several techniques that can be employed. It
should be emphasized that whatever technique is used, the final answers are
always the same.

In addition to the observations, the model may also include other var-
iables and numerical constants. The family of those other variables, which
are also stochastic, will be termed “parameters” to distinguish them from
the observations with given a priori sample values. Invariably these par-
ameters have unknown values at the beginning and estimates are therefore
derived for them in the adjustment. They represent functional unknowns,
although after the adjustment they are treated as stochastic variables under-
going statistical testing just like the variables representing the observations.
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The number of parameters carried in the adjustment will be designated by
the letter u (for unknowns). The vector A, , will be used to represent those
parameters. Once the functional and stochastic models are established, the
least squares technique or algorithm operates with a set of mathematical
functions or equations. These equations describe the functional model of the
adjustment problem. For example, the equation for the closure of a plane
triangle and the relationship equating the final values of two observations on
a distance or angle express the functional models of the respective problems.
We shall distinguish between two types of equations: condition equations
and constraint equations. Any equation that includes one or more observa-
tions will be called a condition equation. Consequently, every adjustment
problem will entail condition equations. The total number of these equa-
tions or conditions in the adjustment will always be denoted by c. By
contrast, those equations that do not include any observations will be called
constraint equations, parameter constraints, or simply constraints. By
definition, these equations will be functions of only parameters and con-
stants. If the same vector of parameters A appears in both the condition
equations and constraint equations, the number of the latter (constraints)
will be given the letter s. In some cases, in formulating the constraints it may
be convenient to include in addition to A another vector of added parameters
A’. In those cases s’ will represent the number of constraints and g the
number of added parameters.

To recapitulate then, Table 5.1 gives the names of the different symbols
that have been introduced.

TABLE 5.1

SYMBOL EXPLANATION

~

Vector of sample values of the observational variables 7 which will also
be denoted by / for simplification

Estimated (“corrected ") observations

Vector of residuals

(Unknown) parameters

Added parameters (appearing in constraint equations)

Minimum number of distinct variables expressing a specified model

Number of given observations (estimates)

The redundancy or (statistical) degrees of freedom

Number of (unknown) parameters (in A)

Number of added parameters (in A’)

Number of condition equations

Number of constraints (in terms of only A)

Number of constraints with added parameters A’

Cofactor matrix of the observations / (replacing Q;;)

Weight matrix of the observations / (replacing W)

> e~

iom\wm.&:w;g
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There are two groups of adjustment techniques that will be treated as one
encompassing technique at the end. The two groups are entitled, (a) least
squares adjustment with conditions only, and (b) least squares adjustment with
conditions and constraints. These two groups of techniques arise mainly be-
cause of making a distinction between observations and parameters (hence
conditions and constraints). Recently, it was found that this distinction can
be eliminated by considering all model variables as observations, thus lead-
ing to only one inclusive method called (c) a unified least squares adjustment.

Since many practical adjustment problems can be treated by a technique
from the first two groups, they will therefore be developed in detail in the
remainder of Part II. Then the unified approach will be introduced in
Part III.

The schematic of Figure 5.1 showed that we should, for practical reasons,
differentiate clearly between the setting up of the model and the least squares
adjustment technique. It must be stressed that the observations, or rather the
variables they refer to, including additional parameters associated with them
(calibration parameters, orientation parameters, and so on) are part of the
total system. The eventual merits of an adjustment are mostly decided by
the choice of the model at the beginning.

For a long time the importance of the model concept has not been
realized, because in conventional applications the model is given a priori
and therefore it is not problematic. But even if no specific reference to the
model is made when performing an adjustment, it is nevertheless fixed by
implication. Many questions about least squares adjustment, and also prac-
tical difficulties, refer in fact to the problem of adequate modeling.

Although the techniques of least squares adjustment are mainly con-
cerned with obtaining the least squares estimates for a given model, the real
problem is often to refine or change the model if preliminary adjustments
turn out to be unsatisfactory.

5.4. LINEAR AND NONLINEAR FUNCTIONS IN THE MODEL

The conditional as well as the constraint equations involved in an adjust-
ment problem can, in general, be nonlinear. However, least squares treat-
ments are generally performed with linear functions, since it is rather
difficult and often impractical, at least at present, to seek a least squares
solution of nonlinear equations. Consequently, whenever the equations in
the model are originally nonlinear, some means of linearization must be
used to get linear equations. Series expansions, and Taylor’s series in parti-
cular, are often used for the purpose, where only the zero and first-order
terms are used and all other higher-order terms are neglected.

When applying a series expansion, a set of approximate values for the
unknowns in the equations must be chosen. The choice of those approxima-
tions is an important aspect of solving the problem at hand. Unfortunately
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there is no concrete and unique way of choosing approximations that can be
applied to all adjustment problems. Sometimes experience is relied on, and
in other situations some computational shortcuts may be employed. In all
cases the attempt should always be made to obtain close approximations
that can be obtained by using relatively simple and uninvolved techniques.

To demonstrate how linearization is performed, let any set of m nonlinear
functions be denoted by

F(x) =0 (5.6)

where x,, ; is a vector of unknown variables (which in the context of adjust-
ment may be observations, parameters, and so on). If xg, ; denotes the vector
of approximate values of the variables, the zero and first-order terms of a
series expansion would be

F(x°) + oFx) "Ax =0 (5.7)

ox x=x0
The set of partial derivatives of the functions with respect to the elements of
the vector of variables is a rectangular matrix U of dimensions m x p. The
vector Ax is a p x 1 vector of corrections to the approximations which
replaces the vector of unknowns x. The result of applying the series expan-
sion is that the nonlinear equation (5.6) becomes a set of linear equations of

the general form

U Ax= u (5.8)
m,pp,1 m, 1
where u = — F(x°).

After least squares adjustment, we get as a solution the vector Ax. If the
original approximation vector x° was sufficiently close for equation (5.7) to
be an adequate substitute for equation (5.6), that is, for second- and higher-
order terms of the series to be in fact negligible, then the final least squares
estimate is (x° + Ax). Often, however, x° is not that close an approximation
and adding Ax to x° yields only an improved approximation. The updated
vector of approximations must now be used again to formulate equation
(5.8) or equation (5.7) and least squares is used to obtain an updated vector
Ax the elements of which are, in general, smaller than those of the first one.
The process of relinearization at an updated vector of approximation
continues until the last value of Ax is insignificantly small and the iterative
procedure terminates. The final estimate X will be the sum of the original
approximation x° and all the correction vectors Ax. (Or equivalently the last
updated approximation vector plus the last correction vector.)

One must note that the method of least squares is applied only within
each iteration and on a linear (linearized) set of equations. It does not really
have anything to do with the linearization process. The linearization is only
a scheme to treat a problem of nonlinear estimation which although possible
in principle, is not normally solved directly by least squares.
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Adjustment with Conditions Only—General Case

Adjustment of Observations and Functionally Independent
Parameters

6.1. INTRODUCTION

In this group of techniques the parameters, if they exist, are functionally
independent. The existence of the parameters in the adjustment is relatively
arbitrary and will depend mostly on the type of problem to be solved. In
principle, we can perform the adjustment using only the observations.
However, it may be considerably more convenient to include a parameter
vector. This is particularly true when the parameters themselves are the
variables of interest.

When starting an adjustment, the first thing to be specified is the model,
particularly the functional model, which will specify n,. Then the given n
observations are examined with respect to the model in order to ascertain
that there is no deficiency. Thus the redundancy r=n—n, can be
computed. This redundancy, or degrees of freedom, may be interpreted to
mean that among the n observations there exist r functions (conditions) that
must be satisfied. This can be explained by considering that when r = 0, then
n = n, and the observations fit the model perfectly. When n exceeds n, by
one, that is, r = 1, one function must be written relating the n observations

110
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together. The sum of the three angles of a plane triangle is such a function,
for example, involving one redundancy. This analysis can obviously be ex-
tended to include all r degrees offreedom in the adjustment.

Now we consider the existence of parameters in addition to observations.
If we have to write r conditions when there are no parameters, then r + 1
conditions need to be written if one (unknown) parameter is added. This
added condition is necessary to allow for the determination of that extra
unknown, and to retain the same number of degrees of freedomr in the system.
Thus if there are u unknown independent parameters in the adjustment, the
number of conditions will, in general, be

c=r+u (6.1)

This is regarded as the general case within the group of techniques contain-
ing independent parameters. Special cases are designated according to the
number of parameters u carried in the adjustment. The lower limit occurs
obviously when u = 0. The upper limit occurs when u = ny, since in this case
¢ = n. If u is taken larger than ny, then the number of conditions would
exceed the number of observations, which is not possible unless the par-
ameters are not independent. Hence, the following two inequalities must be
satisfied

r<c<n (6.2)
0<u<n (6.3)

For the present case the number of parameters u may take any value
larger than zero but less than n,. The chosen parameters may be only those
of direct interest, or those of interest plus others. While we are analyzing the
adjustment problem, the number of parameters u can be composed not only
of parameters of direct interest but also of other parameters that make the
writing of the condition equations either easier or less complicated.

As soon as these u parameters are specified, a total of ¢ = r + u indepen-
dent condition equations must be set up between the n observations and u
parameters. These equations may be linear or linearized as pointed out in
the preceding chapter. We let the condition equations take the general form

A(l+v)+BA=d (6.4)

in which A and B are coefficient matrices, d is a column vector of constants,
and the remaining symbols have been previously defined (see Table 5.1).
Rearranging equation (6.4) leads to the following form which will be used as
a standard throughout this book

Av+BA =1 (6.5)
with
f=d-Al (6.6)
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In view of the inequalities of equations (6.2) and (6.3) and other explana-
tory remarks, the following are the characteristics of the matrices in equa-
tions (6.5) and (6.6):

A=c xnmatrix rank (A)=c

v=n x 1 vector

B =c x umatrix rank (B)=u

A =u x 1 vector

f=c x 1 vector (6.7)

There are three other different cases that may be considered as special
examples of the present case. These are when u = 0, giving the lower limit of
¢ = r and no parameters; when u = ny, giving the upper limit when ¢ = n;
and a further simplification of the case of ¢ = n, with the matrix A being the
identity matrix. Those will be dealt with in later sections.

6.2. DERIVATION

Equation (6.5) is the fundamental form of condition equations for the
adjustment of observations and independent parameters combined. It repre-
sents ¢ linear equations in (n + u) unknowns, which are the elements of the
two vectors v and A. Since from equations (6.1) and (6.2) c is less than
(n + u), there exist many solutions for equation (6.5). A unique least squares
solution is obtained by adding the basic criterion of equation (5.3), or

¢ = v"Wy - minimum

To enforce this criterion and at the same time have a solution for equation
(6.5), the method of constrained minima by Lagrange multipliers is used.
Thus if k. , represents the yet unknown Lagrange multipliers, then we
should seek the minimum for the following function, noting that the quan-
tity between parenthesis is zero when equation (6.5) is satisfied.

¢’ = v'Wv — 2k‘(Av + BA —f) (6.8)

To minimize ¢', its partial derivatives with respect to v and to A are equated
to zero. Consequently, according to the rules in Section A8 (Appendix A), we
get

Qﬂ =2v'W — 2k'A = O
ov

and

a¢l_ t — M
A= ~2KB=0
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which are in row form. Transposing and rearranging yields

~-W v +A k=0 (6.9)
nnnl ncec, 1
B 'k =0 (6.10)
u,ce 1

realizing of course that W is a symmetric matrix.

It is important to pause here and consider the number of unknowns
versus the number of linear equations. There is a total of (n + u + ¢) un-
knowns. Correspondingly, there are c linear equations in equation (6.5), n
equations in equation (6.9), and u equations in equation (6.10). In matrix
form the total system is

n c u
n -W A" 0 v 0
c A 0 Bllk]l =1]f (6.11)
u 0 B 0]1]A 0

This system of equations has usually been referred to as the total system of
normal equations. The matrix of coefficients is a square symmetric matrix of
order (n + ¢ + u), which is always nonsingular (that is, its rank is equal to its
order), unless the model is improperly constructed. In view of this fact the

least squares problem will be solved by inverting the system of equation
(6.11), or

v —W A" o0]!fo
k|=] A o B| [f (6.12)
A 0 B 0 0

The existence of zero matrices along the main diagonal of the coefficient
matrix should not be disturbing as long as the matrix is nonsingular and
because the zero matrices can be avoided simply by rearranging the
equations.

For relatively small problems in which the total system of normal equa-
tions is limited in number, equation (6.12) may be used and the problem may
be directly solved in this manner. However, many practical problems are not
that small and the resulting total normal equations constitute a rather large
system for which a direct solution may not be convenient, or practical.
Furthermore, we may not be interested in both v and A but only in one of
them, and we rarely need k for its own sake. Henceforth, an alternative
scheme may be desirable. Fortunately, the system of equation (6.11) contains
many zero submatrices and a solution by partitioning is relatively simple.
From equation (6.9),

v=W 1A%k = QAk (6.13)
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and substituting in equation (6.5) gives

AQAk + BA =f (6.14)
Let

l,=Al (6.15)

represent an “equivalent” set of observations. Applying the propagation
rule, the cofactor matrix Q, for /, is

Q. = AQA’! (6.16)
which when used in equation (6.14) yields

Qk+BA=f
solving for k

k=Q,'(—BA +f) =W, (—BA + f) (6.17)
where

W, =Q; " =(AQA")™’ (6.18)
substituting equation (6.17) into (6.10) and reducing

(B'W, B)A = (B'W, f) (6.19)
or

[B'(AQA')'B]JA = [B'(AQA")™'f] (6.20)

Equation (6.19) or (6.20) represents a set of u equations in u unknown
parameters (the elements of A) which are termed partially reduced normal
equations. With the auxiliaries

N = B'W, B = B(AQA')" !B (6.21)
t=B'W, {=B(AQA")'f (6.22)

a more compact form of equations (6.19) and (6.20) will be
N A=t (6.23)

duuy 1 u, 1

The vector A may be obtained from equation (6.23) by direct inversion such
that

A=N"1t (6.24)

In the derivation above, several inverses were taken. First, W~ ! in equation
(6.13) is all right since W is nonsingular because the observations are func-
tionally independent. Then Q! in equation (6.17) is allowable because the
rank of Q, is equal to the rank of A, or ¢, which is equal to its order. Finally,
N~ ! in equation (6.24) is also possible because N has a rank and order that
are equal (= u). Having the value of the parameters A, we can compute the
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vector k from equation (6.17) and substitute it into equation (6.13) to evalu-
ate the vector of residuals v. With this vector the quadratic form of
the residuals may be computed and an unbiased estimate of the reference
variance obtained from (a derivation and discussion of this aspect is given in
Section 11.3)

v'Wy
r

(6.25)

6% =

where r is the number of degrees of freedom (or redundancy) as defined
earlier and is equal to the number of condition equations ¢ minus the
number of unknown parameters u.

Finally, if the least squares estimate of the observations (which satisfy the
model) is also desired, it may be obtained by adding the residuals to the
given observations.

6.2.1. A Computational Check The equality
a=BW,_,Av = B(AQA’') 'Av=10 (6.26)

may be used for checking the correctness of the computation, particularly
for smaller problems. Equation (6.26) may be verified by first substituting for
v from equation (6.13); then for k from equation (6.17), and finally referring
to equation (6.12). Thus

a = B(AQA')” 'AQA'k
= B(AQA")"!(—BA + )
= —B{(AQA')"!BA + B{(AQA")"!f
=0

6.2.2. Computation of Quadratic Form Equation (6.25) shows that in order
to compute the a posteriori estimate of the reference variance, 63, we must
first compute the quadratic form (v'"Wv). To do this we recall equation (6.13),

v=QAk
and from equation (6.17)
v=QA'W,(—BA +f)
Thus
VWy = (—A'B' + f')W, AQWQA'W,(—BA + f)
or
VWy = f'W, f — 2f'W, BA + A'B'W, BA
='W, f — 2tA + A'NA
=f'W,f— 2A"t + A't



116 ADJUSTMENT WITH CONDITIONS ONLY—GENERAL CASE

or
VWy = f'W, f — A't (6.27)

In a nonlinear problem (see Section 11.1) if the iterative process has been
carried out sufficiently, such that the last correction vector A is essentially
zero, we can disregard the last term of the right-hand side of equation (6.27)
and use the following relation for computing the quadratic form

VWy = f'W, f = f'(AQA")~'f (6.28)

6.2.3. Precision Estimation A second, and quite important, part of adjust-
ment is the determination of the precision of the quantities that have been
estimated in the adjustment. Such precision estimation is in the form of
cofactor matrices, and it may also, of course, be in the form of covariance
matrices. These matrices can be derived from the least squares solution by
simply applying the rules of propagation of Chapter 4. For completeness, all
matrices are given here.

1=l

f=d-Al
A=N"'BW, f=N"'BW,(d - Al

k=W,[-BA + f] = W, (-BN " 'B'W, + I)(d — AJ)
v=QAk = QA'W,(—BN"!B'W, + I)(d — Al)
I=1+v

Autocofactor Matrices

Q=Q
Q;r =(-A)Q(-A) =Q.
Qas = (—-N7'BW_A)Q(-A'W,BN™)
=N"!'BW,BN ! =N"! (6.29)

Qu = [ W.(—BN"'B'W, + 1)A]Q[— A{(—W, BN~ !B’ + )W,]

= (=W, BN"!B'W, + W,)Q,(— W, BN~ 1B + )W,

=(—W,BN"'B'+1)’°W, =W, — W,BN 'B'W, (idempotent)
Q.. = QA'(W, — W, BN"'B'W)AQ

— QA'W, AQ — QA'W, BQ,, B'W, AQ (6.30)
Qi=Q+Q.+Qu+Q.=Q-Q. (6.31)
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Crosscofactor Matrices

Q= —QA’
Q= —QA'W,BN™' (6.32)
Qi = —QA(W, — W, BN 'B'W,)
Q. = —QA{(W, — W,BN™!B'W,)AQ = —Q,,
Q=Q,+Q,=Q0-Q,=Q;
Qs = +AQA'W,BN ! = BN™!
Qi = Q(W.— W,BN 'B'W,) = (I - BN~ !B'W,)
Q;, = Q.(I - W,BN'B)W, AQ = (I - BN 'B'W,)AQ
Q;i=Qn+Qp=—-AQ+ AQ - BN !B'W, AQ
= —BN"'B'W, AQ
Qua = (NT'B'W,)Q, (-~ W, BN 'B'W, + W)
=N"'BW,Q, W, — N"'B'W, Q, W, BN 'B'W,
=N"'BW, - N 'BW,=0
or
QAk = QAA( _We B)' + QAf WL
= —N"'B'W, + N 'BW, =0
Qs = Qa(QAY) =0
Qs = Qu + Qs = —N7'B'W, AQ (6.33)
Q.. = Qu(QAY) = (W, — W_ BN 'B'W,)AQ
=W,AQ — W, BN 'B'W, AQ
= Q“
Qi=Qu+Quw=Qu—Qu=0
Qi=Qu+Q,=-Q,+Q,=0

Of the cofactor matrices, equation (6.29) gives a relation that is of fun-
damental importance in least squares estimation. It states that the cofactor
matrix of the parameters is simply the inverse of the partially reduced
normal equation coefficient matrix. Thus as far as the precision of the un-
known parameters is concerned, it is obtained as a by-product of the least
squares solution, particularly if such a solution was performed by inverting
the coefficient matrix in equation (6.24). If x° is the vector of approxima-
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tions, which is a numerical constant as far as propagation is concerned, then
% = x° + A for nonlinear systems, and

Qi: =Qu=N"7! (6.34)

In certain situations it is possible, and even necessary, to obtain a solution
by stopping the elimination procedure after replacing v. This means that the
following system is solved directly.

[g‘e :ﬂ [zl;]: m (6.35)
from which
NI 639

The desired vector A can be taken as the appropriate subvector. However, it
is now an important question to find out how Q,, can be evaluated. In order
to do this, we seek the inverse in equation (6.36) by partitioning (see Section
A3.8, Appendix A.) Thus if

* “J (6.37)

Q. B|™'_
B oJ oy

and, with N = B'W,_B, from equation (6.21), we write
a=W, — W,BN"'B'W,
B=W,BN"!
y=—-N"1! (6.38)

or

B! 0 N— lBtWe _ N__ 1 (6.39)

Although Q,, = (W, — W,_BN ™ !B'W,), the other two submatrices are not
Q.x and Q,,, respectively. As derived above Q,, = 0 and Q,, = N~ ! and
not —N~!. Consequently

Qe B -1 Qkk QkA
[B' 0] * [QM QM] (6.40)

But the cofactor matrix of interest, Q,,, can in fact be extracted from the
inverse in equation (6.36) by taking the negative of the diagonal submatrix
corresponding to A, or

Quan = —7 (6.41)

[Qe B]-l _ [(we—we BN~ !'B'W,) W,BN™!
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6.2.4. Functional Dependence and a Posteriori Cofactor Matrices It has
been indicated so far that, a priqri, both the observations and parameters are
functionally independent. Functional independence of the n observations
was said to mean that no one observation can be deduced or computed from
the remaining (n — 1) observations. Also the difference between functional
independence and stochastical independence or lack of correlation was
stressed. Although the n observations are functionally independent, they
may or may not be correlated. The difference between these two concepts
can be related to the covariance or cofactor matrix associated with the
vector of stochastic variables under consideration. If these variables are
functionally independent, then the rank of the covariance or cofactor matrix is
equal to its order, thus implying nonsingularity. On the other hand if the
variables are stochastically independent or uncorrelated, then all elements off
the main diagonal of the covariance, or cofactor, matrix must be zero. This
establishes the fundamental difference between the two concepts. (In addi-
tion, perfect stochastic correlation is equivalent to linear functional
dependence.)

The a priori vectors / and A are functionally independent and thus Q and
Q.4 are both nonsingular, the first having a rank of n and the second a rank
of u. Other vectors computed from the adjustment include the residuals v
and the estimated observations / with corresponding cofactor matrices Q,,
and Q,;. The elements of both of these vectors are functionally dependent
with the result that both Q,, and Q; are singular matrices. Perhaps it is
easier to show why the elements of 7 are functionally dependent. After the
adjustment, 7 satisfies the condition equations. Thus since there are ¢ condi-
tions, then at least ¢ estimated observations (that is, ¢ elements of 7) can be
computed from the remaining (n — c¢) elements. Consequently, the rank of
Q,; 1s less than its order. In fact,

rank (Q,,) = redundancy = r (6.42)
rank (Qy) = (n —r)

= the minimum number of variables
specifying the model, n, (6.43)

Equations (6.42) and (6.43) are derived in Appendix C for this as well as
other cases of adjustment.

Example 6.1

Given: Figure 6.1 shows a much simplified problem of an object point which is
photographed by three terrestrial cameras. All three camera stations are assumed to
lie on the same line which is taken to be the X, axis of the object coordinate system.
The X, axis is taken to coincide with the optical axis of the first camera, S,. The
camera axes are horizontal and parallel. All interior orientations of the cameras are
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X
s 4 ’
A I§——
P (xy, x3)
S S S.
1 2 3 > Xl
p p p
1 _O _O
— 1y b— — Iy l— — 5

Figure 6.1. (Not to scale).

assumed known and without errors with principal distance p = 100 mm (as a con-
stant value). The observations / are those five distances denoted by that symbol in
Figure 6.1. Their absolute values (as distances and not coordinates) as well as their
standard deviations are given in Table 6.1. All those observations are assumed, for
simplicity, to be in the X, X, plane. We shall assume further that no correlation
exists between all the observations.

TABLE 6.1
OBSERVATION VALUE STANDARD DEVIATION
L 16.5 mm 0.10 mm
l, 3.8 mm 0.10 mm
Iy 20.4 mm 0.10 mm
I, 100 m 0.05 m
I 80 m 0.05 m

Required: We require the least squares estimate of the coordinates (X, X ;) of
point P, and the a posteriori estimates of the reference variance, the cofactor
matrices, and the covariance matrices.

Solution: The first step is to analyze the mathematical model of the problem. This
includes all the information that in this case specifies the geometry of the problem
and all the assumptions inherent in that information, whether explicit or implied. To
begin with, the object coordinate system is fixed, the camera axes are parallel to each
other and normal to the X, axis, and the profiles of all three photographs are parallel
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to the X | axis and at the equal distance of p = 100 mm from it. The given observa-
tions fix, with respect to the framework given, three points: S,, Sz, and P. Next, we
need to determine the minimum number of variables, n, . Since both S, and S; lie on
the X, axis, by fundamental assumption of the given model, only two parameters
need to be determined to fix their positions. Added to those are the two that would
determine point P, which makes a total of four variables as the necessary minimum
number for determining the total geometry of the problem. Since n is equal to five
observations, then there is 1 degree of freedom, or r = 1.

In the statement of the problem it was indicated that two parameters, the pair of
coordinates of point P, are desired. Thus u = 2 and the number of independent
condition equations is ¢ = r + u = 3 [see equation (6.1)]. Consulting Figure 22.1 one
equation may be written for each ray from P to a camera station. (A sort of simplified
version of the collinearity condition equation, as it is known in photogrammetry).
Thus

ll_ﬁ I, lLi—x, i la+1s—x

PTx p T om M T
or

fi=lix; — px, =0

fa=1x; —plls — x4) =0

f3 =I3x2 —p(l4+15 —xl)=0

In these equations [; refer to the variables representing the observations and not the
numerical values of the observations. Linearization by Taylor series according to
Section 11.1.2 leads to the form Av + BA = f where

[x3 0 0 o0 o —p I
0 0 x3 —p —p p I3
—Px?—llxg

£ = | plls — x9) — 1,x3

! LP(14 +1s — x9) — 13x3

At this early stage, Al in equations (11.5) and (11.6) reduces to v because the approxi-
mations for the observational variables will be taken equal to the numerical values of
the observations, and no iterations on the observations are effected. Approximations
for x; and x,, however, are needed and may be evaluated from the following geome-
tric relationships:

lyp _ 10(m) x 100(mm) 50 m

No

=+, 203(mm)

I;x9 16.5(mm) x 50(m)
o_txz 1 ~
= p 100(mm) 8 m
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The stochastic model in the problem is specified by the variances of the observa-
tions and the fact that there are no correlations. Assuming that the reference variance
is unity, the covariance matrix is used as the cofactor matrix, or

00l mm2 O 0 0 0

0.01 mm? 0 0 0

Q= 0.01 mm? 0 0
55

symmetric 0.0025 m? 0

Using the numerical values of the observations and the approximations of the
parameters computed above, the elements of A, B, and f may be computed as

[ s0(m) 0 0 0 0
A=|o 50(m) 0 — 100(mm) 0
0 0  50(m) —100 —100
[ —100 165
B=| 100 3.8 |(mm)
100 20.4
[ —25
f= 10 | (mm m)
~20

Then

5 0 O
W,.=Q;'=1s|0 3 —1|(mm 2m™?)
0 -1 2
and
N — B'W. B — 1 8 x 104 —5.45 x103( 2
T U e RTINS 545 x 103 2082 x 103
125 x 10%
_ R -1 -1
t=BW.1 m[—2.893x103](m )
_— 125 2082 x 103 545 x 103 (m?)
" 13684.55 x 10* 545 x 10® 8 x 10*
and, finally,
_ 0.075(m)
= 1 =
A=N"1 [—1.193(m)
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Adding A to the approximations yields
x; = 8.075(m) and X, = 48.807(m)

The two values computed here will be considered the final estimates for the
coordinates of point P. It should be mentioned, however, that the problem is nonlin-
ear and more consideration should be given. Since the concern at this stage is mainly
with linear (or linearized) conditions, there will be no elaboration on this aspect of
nonlinearity now. Suffice it to say that if the solution is properly iterated to account
for the neglected higher-order terms, the final answer would have been
x; = 8.0749(m) and x, = 48.8093(m). More discussion of this subject will be given in
later chapters and examples. '

In order to compute the vector of residuals, we first compute k

k=W,(—-BA +f)=135[1095 2416 -—13.32]
Then
v=QAK=[004 mm 010 mm -005mm -0022m 0.027 m}

The values in v were truncated to two decimals in millimetres (mm) and three
decimals in metres (m), as indicated by the given data and variances.

Using this vector of residuals, the vector of estimated observations may be
computed from I =7+ v, or

1= [16.54 mm 390 mm 2035 mm 9978 m 8.027 m]'

As a computational check, the expression of equation (6.26) may be evaluated to
a = B'(AQA')"'Av=10"°[6.17 6.10]

which is practically a zero vector as expected. The cofactor matrices are

190 498

Qs =N7' =107 [4.98 73.08}("12) rank = 2

8.993 -—-2238 1.231 0.503 -0.616
5025 2737 1.119 —1.369

Q=103 8494 —-0.616 0.753 | rank =4 =n,
2.248 0.308
symmetric 2.124

The reference variance is computed, realizing that here there is 1 degree of freedom,
65 = 1.9367 and g0 = 1.39

It is important to note that the above values were computed after the first itera-
tion of a nonlinear problem. Although this is, in the case of this example, adequate,
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here are the corresponding values after the last (fifth) iteration for the sake of com-
parison with other methods later on (the subscript f is used to signify final),

(186 503
_ -3 2
Qaay, = 1077503 7133|™7)

(9024 —2.189 1213 0500 —0.621
5090 2721 1121 —1.394

Qy,, =107? 8492 —0.621 0.772
2244 0318
symmetric 2.104

The reference variance is also recomputed after the last iteration to give
63, = 1.9634 and 0o, = 1.40

(For a posteriori statistical analysis on 6§ and Q,, refer to Examples 11.4 and 11.6).

Example 6.2

Given: The two-parameter transformation, rotation and scale (see Chapter 8, for
more detail), between two coordinate systems x and y is represented by

Yii = axy; — bxy;

ya2i = bxy; + axy;

where (x;, x,); are the x coordinates of any point i, and (y,, y,); are its corresponding
y coordinates, and (a, b) are the transformation parameters. In order to estimate a
and b, Table 6.2 gives the three points of known coordinates in both systems.

TABLE 6.2
i Xy X2i Yii Yai
1 0.0 1.0 -2.1 1.1
1.0 0.0 1.0 20
3 1.0 1.0 -09 2.8

For all three given points, the cofactor matrix is equal to the covariance matrix for
the pair of coordinates in the x coordinate system and is equal to

0.01 0

0 0.01 =0.0112

QXI = EXX = [

All y coordinates are to be considered as constants insofar as the adjustment is
concerned. ‘
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Required: We require the least squares estimates of the transformation par-
ameters a and b and the a posteriori estimates of the reference variance and covar-
iance matrices.

Solution: Similar to Example 6.1 the functional model of this example involves
plane geometry, which is demonstrated schematically in Figure 6.2. As implied from
the given information, we are interested in transforming from the x system to the y
system. Therefore the y coordinates of the points are those desired. Having three
points of known coordinates in both systems, a total of six observations, that is,
n = 6, are available. The minimum number of variables necessary for a unique deter-
mination of @ and b is ny = 2. Consequently the degrees of freedom or redundancy is
r = 4. For the purposes of this example there are two unknown parameters, or u = 2,
and the number of condition equations is ¢ = 6. The stochastic model is relatively
simple since the cofactor matrices for the x coordinates of all points are the same.
Then the total cofactor matrix of the observations is

Qux 0 0
Q= Q. 0

symmetric Q..

= 0.011,

Figure 6.2

The six condition equations may be obtained by writing the pair of transforma-
tion equations for each of the three given points (a more general algorithm is given in
Chapter 8),

X1i@ — x2:b — y1; =0
x2i8+ X1ib — y2; =0 i=1273
Linearization yields

A v+B A=Tf

6.6 6.6 6.2 2,1 6,1



126 ADJUSTMENT WITH CONDITIONS ONLY—GENERAL CASE

where A is a block diagonal matrix of 2 x 2 submatrices along the main diagonal (see
Section A9, Appendix A). If the approximationst a° b° are evaluated by simple
computation to be 1 and 2, respectively, each submatrix on the diagonal of A will be

a® -b° 1 =2
o R

Similarly, the matrices B and f are evaluated as

qu —“3521ﬂ [0 —1]
X21 X11 1
B = X12 —Xxa2| = |1
6.2 X22 X12 0
X13 —X23 -1
| X23 X13 ] | 1 iy
—Y11—X1100+X21b°— -—0.11
Y21 — x21a° — x, b° 0.1
f = yiz — x12a° + x5,0° | = 0
6.1 )’22—)‘2200—?‘121’0 0
V13 — X13a° + x,3b° 0.1
| y23 — x230° — x130° | | —02]

noting that x;; denotes the x; coordinate of point j, and the same applies for y;;. A set
of two reduced normal equations may be formed from the given condition equations
the solution of which is

A=[000 —005]

Thus the estimates of a and b, obtained by adding A to the approximations, are
a =100 and b = 1.95. Again it should be mentioned that for the purposes of this
chapter we shall stop after the first iteration. In order to evaluate a for the computa-
tional check of equation (6.26), first the numerical values are

v=[001 008 002 001 —005 —005]
Q = 0011,

|
SO = NNO O
N -0 O OO
S N == «> R wo I o)

— O

O

O -

QO OO N —=
SO OO =N
OO N=OO

+ No iterations on the observations is done here; therefore their approximations are the same
as their a priori estimates given in the data table.
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Then

ac 1.2 x 10~ 1° ~0
T =58 x10"11 T

Next, the cofactor matrices are

125 0

QAA=N—1=10’Zl 0 125] rank = 2

[ 2.5 0 0 -25 25 —25]
25 2.5 0 2.5 25
25 0 25 25

S =10"3
Q; = 10 25 =25 25
50 0
L symmetric 5.0 |

and with 4 degrees of freedom, 63 = 0.3123 and 6, = 0.56. Again, for the sake of later
checking, the final cofactor matrices are

(1212 o
Qaa,, = 10777 1212
[ 2916 0 0052 —2750 2579 —2.538]
2916 2750  0.052  2.538  2.579
Qu,, = 1073 2595 0 2439 2387
2.595 —2387 2439
4489 0
| symmetric 4.489 |

63,=03114 and &, =0.56

The a posteriori reference variance value may be statistically tested against the a
priori value according to Section 11.5.1. The a priori value is 63 = 1.0000 (with
infinite degrees of freedom), whereas the a posteriori estimate is 63 = 0.3114 with
r = 4 degrees of freedom. Hence, according to Section 2.8.3

2

xi=% or xi=(—‘11(%35—;i)=1.2446
and Hy: o2 = ¢} versus H,: 6?> > 3. The null hypothesis H, is rejected when
x% > x% 4. At the level of significance « = 0.05, Table D3 lists y3 o5 4 = 9.49 which is
larger than x4 and therefore H, cannot be rejected. Hence the a posteriori estimate of
the reference variance is not statistically significantly different from its a priori value.

It should be noted that the differences between the results after the first and last
iteration are not significant from the practical standpoint. However, differences can
exist and there may be situations in which they are significant and therefore nonlin-
ear problems should be appropriately iterated.
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6.3. ADJUSTMENT WITH MAXIMUM NUMBER OF
INDEPENDENT PARAMETERS (ADJUSTMENT
WITH n CONDITION EQUATIONS)

We now discuss a special case that represents the upper limit and for
which u = ny and ¢ = n. This leads to the same form of conditions but with
A being an n x nnonsingular matrix, and Ban n x u matrix with a rank of u.
All relationships developed for the general case apply directly here while
taking the change in dimensions of A and B into account. For example, Q,
may be computed from equation (6.16) but will be of order n; no change
occurs in N, t, and A as they may be obtained from equations (6.21), (6.22),
and (6.24), respectively; and k can be computed from equation (6.17) noting
that it is an n x 1 vector in this case. Without undue repetition, all relations
for precision estimation given in Section 6.2.3 also apply here.

There are two possibilities for using this present case of adjustment. The
first is when all u = n, parameters are of interest and need to be estimated.
The second is when those parameters of interest are less than n,, but we wish
to write all possible conditions to avoid errors in constructing the model.
The Example 6.3 is a useful illustration of the case.

Example 6.3. Refer to Example 6.1, Figure 6.1, dealing with determination of the
coordinates of an object point P, from data obtained from three terrestrial photo-
graphs. In example 6.1 it was determined that ny = 4 and r = 1. To demonstrate the
case of ¢ = n condition equations, the four variables used to determine n, are used as
unknown parameters, namely,

x, as the x; coordinate of point P
x, as the x, coordinate of point P

x5 as the x; coordinate of point S,

x4 as the x; coordinate of point S,
With u = 4 the number of condition equations will be equal to n = §,

lix; — pxy =0
lyx; —p(la —x;) =0
I3yx; — p(xqa — x,) =0
ly — x5 =0
Iy +1s — x4 =0

in which [; refer to the variables representing the observations. Linearization by
Taylor series (without iteration on the observations) gives
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x3 0 0 0 0] [ —p I, 0 0]
0 X5 0 -p 0 P I, 0 0
A=1]0 0 x9 0 0 B = p I3 0 —-p
** o o o 1 o0 >4 0 0 -1 0
K 0 0 1 1] | 0 0 0 -1
-le—llxg -1
plla — x(l)) —l3x3
f = p(xd—x?)—l3x3
51 xg—l4
[ x§ — 1o —1Is

Take the approximations as x = 8 m, x3 = 50 m, x3 = 10 m, x3 = 18 m, and the
same Q matrix given in Example 6.1. The A and B matrices are very similar to those
computed previously noting that they are augmented by simple numbers and there is
no need to rewrite them. The vector f, however, will be

f=[-25 10 —20 0 Of

For the sake of variation use the partially reduced system of normal equations given
in equation (6.35),

Q. B|[k| _ (f k| [ f
& ollal=l] o M-l
where
(25.0 00 0 0 T
250 0 0 0
Q.= 250 0 0 and
0.0025 0.0025
| symmetric 0.0050 |
[ —100 165 0 O
100 3.8 0 0
B= 100 20.4 0 -100
0 0 -1 0
| 0 0 0 -1

The inverse of the 9 x 9 matrix M, is computed as

[ 0.0040 0.0090 —0.0049 —-0.8952 0.4925 —0.0043 00283 —0.0010 = 0.0002 |

00199 -0.0109 -1.990 1.0948  0.0027  0.0027 -0.0022 -0.0003

0.0060 1.0948 —0.6023 0.0030 00256  0.0012 —0.0003

198.9996 —109.4767 —0.2684 —0.2704 -0.7762 -—0.0499

M~ ! = 60.2270 —0.2995 —2.5613 —0.1231 -0.9726

" —00731 ' —00071 00135

symmetric R S i =0.0050 |
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The solution of the normal equations would give a 9 x 1 vector containing both the
Lagrange multipliers k and A. The latter is of more interest to our present problem,
and thus

A=[0075 —1.193 —0022 0.005] (m)

Adding these values to the specified approximations gives the estimates of the four
parameters

X, = 8.075 m = x; coordinate of point P
X, = 48.807 m = x, coordinate of point P
X3 =9.978 m = x,; coordinate of point S,

X, = 18.005 m = x; coordinate point S;

It is clear that X, and X, are identical to the parameters obtained in Example 6.1. To
check x; and X,, we should realize by consulting Figure 6.1 that these two par-
ameters are closely related to two of the observations and their determination is
tantamount to computing estimated observations. For example, 5 is nothing but [,
and the answers from here and from Example 6.1 show that they are indeed equal.
The estimate x,, however, should be equal to I, + I or (9.978 + 8.027) = 18.005 m,
which is identical to the value computed above.

If we are also interested in the a posteriori cofactor matrices, they can be obtained
in the usual manner. For example, the cofactor matrix for all four parameters is the
negative of the 4 x 4 submatrix designated (I) in M~ ! [see Equation (6.38)]. Within
it, the negative of submatrix (II) is the cofactor matrix for the first two parameters
that were used in Example 6.1. Considering that all these answers are taken after the
first iteration, only the negative of submatrix (II) agrees quite well with Qa,
computed in Example 6.1.

The negative of submatrix (III) in M~ ! represents the cofactor matrix of the two
parameters x; and k4. It can be verified by recognizing that X3 = [, and X, = I, + [

or
3] [t 0]l
xa| (1 1]l
and that from Example 6.1 the cofactor matrix for I,, I is

[0.00224  0.00032
10.00032  0.00211

Thus

10
1 1

0.00224 0.00032
0.00032 0.00211

1 1] _[00022 0.0026
0 1] ]0.0026 0.0050

which is identical to the negative of submatrix (III).
To recapitulate, then, the cofactor matrix of all four parameters is

19 50 14 22

Q=103 73.1 7.1 135
22 26

symmetric 5.0
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and Q;; when computed turn out to be identical to that evaluated in Example 6.1.
Finally, the estimate of the reference variance is 63 = 1.9727.

It should therefore be noted that the choice of four parameters here as compared
to two parameters in Example 6.1 has no effect on the evaluation of the remaining
variables, v, Q,,, ..., and so on.

For the sake of completeness the final cofactor matrix for the parameters after the
last iteration is

1.862 5029 1420 2170

Qs = 107° 71332 7.106 1.347
2244 2562
symmetric 4985

The value of Q;;,, was also computed and found to be identical to that given in
Example 6.1. Finally, the last value of the reference variance is

&3, = 1.9634

6.4. GEOMETRIC INTERPRETATION OF THE
LEAST SQUARES PRINCIPLE

Although the foundation and derivation of the least squares principle are
best done starting from the minimum variance property, a geometrical dem-
onstration of its meaning can give the reader a better appreciation and
familiarity with the method. One interpretation is expressed by Brown (see
Bibliography):

Consider an n-dimensional coordinate system with orthogonal axes vy, v,, ..., v, (the
residuals). Then the quadratic form ¢ = v’ ™ 'v, being positive definite, will represent an
n-dimensional ellipsoid. The ellipsoid is centered at the origin. If X is diagonal, the axes
of the ellipsoid will coincide with the coordinate axes, while for £ nondiagonal the
ellipsoid will be in a tilted orientation. It is clear that by a rotational coordinate transfor-
mation, a tilted ellipsoid can be reoriented into a standard position. Such a transforma-
tion is specified by v = Rv where R is an n x n matrix whose rows (or columns) are
composed of the normalized characteristic vectors (eigenvectors) of X. Thus a problem
involving correlated observations can be reduced to one involving derived observations
which are uncorrelated. The dimensions of the hyperellipsoid are, of course, unaffected
by a rotation. In fact, the lengths of the axes are directly proportional to the square roots
of the characteristic roots (eigenvalues) of £. The constant of proportionality which
determines their absolute dimensions is simply ¢'/2. It thus follows that the volume of
the ellipsoid is directly proportional to ¢™2. Therefore, minimizing ¢ is equivalent to
minimizing the volume of the ellipsoid, it being understood, naturally, that the condition
equations must be satisfied by some point on the ellipsoid. To simplify matters we may
assume that any parameters have been eliminated from the linearized condition equa-
tions, leaving r relations between the residuals alone. Each condition equation then
represents a hyperplane, and the residuals must lie on the intersection of the r hyper-
planes. Now consider the family of hyperellipsoids defined by varying ¢. The orientation
and relative dimensions of such ellipsoids will be constant, and all will be centered at the
origin. We may think of the family as being formed by the balloonlike expansion of an
initial infinitesimal ellipsoid. Let the ellipsoid expand until it becomes tangent to the
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intersection of the condition equations hyperplanes. For this point all the condition
equations are satisfied and the volume of the ellipsoid (and consequently ¢) is obviously
minimum. Hence the coordinates of the point of tangency give the most probable
residuals. . . .”

To demonstrate the statements quoted above we consider the simple case
of two observations with the residuals v, and v,.

A two-dimensional coordinate system as shown in Figure 6.3 would re-
present the space expressed by these two residuals. The condition that may
relate v, to v, can be of the general form ay + a, v, + a,v, =0 and is
depicted by a straight line in the figure. The quadratic form ¢ = v"Wv repre-
sents in this case a family of ellipses. The dotted ellipse in Figure 6.3, which is
tangent to the line of condition, corresponds to the minimum value for ¢.
The point of tangency yields the least squares estimates of v, and v,.

Point of tangency

Condition line
ao + av + 02V2 =0

/
/ "
\ 7
/‘ N~ ”X
Ellipse for which ¢ = v/ Wy = minimum
Figure 6.3

The case demonstrated in Figure 6.3 is general in nature and special cases
may be derived from it. For example, if we are interested in the equality of
the two observations, the straight line of condition would be inclined 45
degrees to the v, and v, axes. If, further, the two observations are of equal
precision (that is, 62 = ¢%), then the ellipse will become a circle. In such a
case the point of tangency will be at the foot of the normal from the origin to
the line with the obvious result that the estimates of v, and v, will be equal.

A slightly different interpretation is possible if the observations them-
selves, and not the residuals, are used as the axes of the coordinate system.
As an example consider that the three angles a, f, and y of a plane triangle
are measured with equal precision. With a redundancy of r = 1, the well-
known condition a + f + y — n = 0 should be satisfied.

The condition represents a plane E, in the three-dimensional vector space
a, B, y in Figure 6.4. The a priori values of the observations a, 8, y determine
the point P which would not necessarily lie on the plane. Adjustment of the
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Pa,B,7y)

Figure 6.4

given data would replace P by P’ such that the least squares principle is
satisfied, making the vector v as short as possible, which means making the
line PP’ normal to the plane E,. This implies directly that the least squares
solution would give
va=vﬁ=vy=%(n_a—ﬁ_y)

because the plane E, is equally inclined to all three axes. All three residuals
will have the same sign, being positive if P lies below the plane and negative
if it lies above it.

Assume, now, that for one reason or another we want to impose the
constraint that the angle y should have a certain fixed and known value y, in
addition to the given data. This additional condition refers to a geometrical
model having redundancy r = 2, since with y given, only one observation
would suffice to fix the shape of the triangle. The condition y = y, in the
three-dimensional vector space is a plane parallel to the «, f plane. The
adjustment in this case has to provide a point P” that would satisfy both
conditions. Thus the point P” must lie on the intersection of the two planes
or on the line ab in Figure 6.4. It will be fixed on this line of intersection by
the least squares principle, which would minimize the distance PP".

In case the observations a, f, y are given different a priori weights or are
considered correlated, the geometrical explanation of the case remains
unaltered if the vector space is spanned by a skew axis system, according to
the weight relation.
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6.5. SUMMARY OF EQUATIONS

This section is included as an easy reference for those readers who have
become familiar with the concepts and wish to extract equations quickly for
use in actual adjustment problems. It is a summary of the basic symbols and
equations, with reference to the numbers used in the text. Although concise,
it is intended to be self-sufficient.

n = number of observations in the vectors / (a priori observations); v
(residuals); and 7 (estimated observations)

r = redundancy = n — n, (where n, is the minimum specifying the
model)

u = number of parameters in A(0 < u < ng)

¢ = r + u = number of condition equations in

Av+BA=d— Al=f (6.5, 6.6)

A = ¢ x n matrix of coefficients; rank (A) = ¢ (upper limit, A is n x n
with rank n)

B = ¢ x u matrix of coefficients; rank (B) = u (upper limit, B is n x u
with rank = u)

d and f = ¢ x 1 vectors of constants (upper limit, dimension of n x 1)

Q. = AQA' (6.16)
N = B'W, B = partially reduced normal
u, u equations coefficient matrix (6.21)
t = B'W, f = partially reduced normal

equations constant vector (6.22)

A = N7t = estimate of parameters (In the event that the condi-
u

o1 tions are originally nonlinear, then x = x° + A, x% is

a vector of approximations.) (6.24)
v=QA'W,(—BA +f) (6.13, 6.17)
I=1+ v = estimated observations (5.2)
63 = vVWy/r = ('W, f — A't)/r (625, 6.27)

Qas = N7 ! = cofactor matrix of the parameters
(rank Q44 = u) For nonlinear con-
ditions, Q,; is also equal to N™! (6.29)

vi = QA’(we - we BN~ lBtwe)AQ

= QA'W, AQ — QA'W, BQ,, B'W, AQ (6.30)
= cofactor matrix of the residuals
(rank (Q,,) =r) (6.42)
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Q” = Q - vi
= cofactor matrix of the estimated
observations (rank (Q;)=n—r = n,)

QAI = QAI = —N_lB'We AQ = Q;A = ;A

135

(6.31)

(6.43)
(6.32, 6.33)
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Adjustment with Conditions Only—Special Cases

Adjustment of Functionally Independent Parameters
and Observations

7.1. INTRODUCTION

The method of least squares has been conventionally used with two cases
that are simpler than and special cases of the general case given in the
preceding chapter. In this chapter these two cases will be treated and their
relationships to the general case shown. The choice from the three
techniques will depend mostly on the mathematical model of the problem to
be solved, and to a lesser degree on other factors. Such factors may include
the type of computational facilities available, the size of the problem, and the
preference of the individual involved.

The first of the two special cases involves situations in which only obser-
vations appear in the condition equations, thus u = 0. The number of condi-
tion equations would be equal to the redundancy. Therefore this method is
often used for simple geometric problems, such as the adjustment of a plane
triangle, a small level net, and the like. The solution of the normal equations,
whose number is equal to the number of conditions, yields values for
Lagrange multipliers that may be used in turn to compute the vector of
residuals, v. By adding v to the given observations /, we compute the

136
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estimated observations, . Should we be interested in another set of variables
which are related to the elements of 7 by specified functions, we compute
such variables after the adjustment is completed. The cofactor, or covar-
iance, matrix of these variables is also computed after the adjustment, using
Q;; and the given functions and applying the principle of propagation. Thus
the above two operations are considered outside the process of least squares
adjustment.

The second special case is more like the general case given in the preced-
ing chapter. In certain simple circumstances it is possible to formulate the
condition equations in such a way that each condition equation contains
only one observation. This implies that parameters are present, that the
number of conditions is equal to the number of observations, and that u is at
its upper limit of n, . Because of having only one observation per condition
equation, the A matrix reduces to the identity matrix. The number of
reduced normal equations is less than the number of condition equations in
this case, as it is equal to the number of parameters to be determined.
Consequently, their solution yields the values of the parameters and their
cofactor matrix directly. If we are also interested in the estimated observa-
tions J, they can still be obtained from the adjustment.

Each of these two cases will now be discussed in detail in separate sec-
tions, with numerical examples worked out by both techniques for the sake
of comparison.

7.2. ADJUSTMENT OF OBSERVATIONS ONLY

Adjustment of observations only is the technique conventionally referred
to as the method of “adjustment by conditions.” But since we have utilized
the term “condition equations” in a much more general sense, we shall
avoid this term. We will simply refer to the technique as “adjustment of
observations only.”

7.2.1. Formulation Since there are no parameters, the linear condition
equations will then simply be

A(l+v)=d (7.1)
or

Av=d—Al=f (72)

in which d and f are constant vectors.

The application of the least squares in this case follows exactly the same
derivation steps as those given in the preceding chapter. Therefore for the
sake of brevity, such a derivation is left as an exercise for the reader and only
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the summary results will be given here. The total system of normal equations
may be written directly from equation (6.11) by enforcing B = 0, thus

_ ¢
N &
Solution of equation (7.3) for the two vectors k and v yields
k=W, f=Q,'f=(AQA") !f (7.4)
v=QAk = QA'W, f (1.5)

The matrix Q, is the partially reduced normal equations coefficient matrix in
this case. The unknown vector in these equations is obviously the vector of
Lagrange multipliers, k.

The a priori estimate of the reference variance may be computed from
equation (6.25). The quadratic form can be evaluated directly using vand W,
or using equation (6.28) or its equivalent in view of equation (7.4),

vWy = f'’k = k'f (7.6)
7.2.2. Estimation of Precision In order to apply the principle of propaga-

tion to obtain autocofactor and crosscofactor matrices, the pertinant rela-
tions are first assembled as follows:

I=1 denote Q; by Q

f=d- Al

k=(AQA) f=Q, ' f=W,d- W, Al= —-W_ Al +k,
v=QAk = —QA'W, Al + v,
I=1+4v=(-QAW,A) + v,

Using the method of substitution we get the following autocofactor and
crosscofactor matrices.

Autocofactor Matrices

fo = (_A)Q(_A)t = AQA'=Q,

Qkk = We AQAtWe = We Qe We = we

Q.. = QA'W, AQA'W, AQ = QA'W, AQ

Qi = (I - QA'W, A)Q(I - A'W, AQ)
= (I - QA'W,A)Q

(Employing the property of idempotent matrices, see Appendix A.)

Qn =Q - QA'W,AQ

= Q - vi
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Crosscofactor Matrices

_ )t= _QAt

= —W,AQ + W, AQA'W, AQ =0
Q. = (—QA'W, A)Q(I - QA'W, A)
= —QA'W, AQ + QA'W, AQA'W, AQ = 0

Using stepwise propagation we get the same results as follows

Autocofactor Matrices
Q;r=AQA'=Q,
Qu =W, fowe =W,
Q.. = (QA)Qu(QA') = QA'W, AQ (7.7)
Q=Q+Q,+Qu+Qy
which when using Q,, and Q, (= Q},) given next, becomes
Q:=Q-QAW,AQ=Q-Q, (6.31)
Crosscofactor Matrices
sz = —QA’
Qu=Q; W.= —QA'W,
Q. = Qu(QA) = —QA'W,AQ = —-Q,,
Q=Q0+Q,=Q-Q,,=Qy
Qi =(—-A)Q;; W, =AQA'W, =1
Q. = (—A)Qu(QA') = AQA'W, AQ = AQ
Q=(-A)Q+Q,)= —AQ + AQA'W,AQ =0
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or
=Qn+Q,,=—-AQ+AQ=0
Qi = (W)Q(AQ) = W, AQ
Qu=W.Q; + Q) =W(-AQ + AQ) =0
or
=Qu+Qup=-W,AQ+ W, AQ =0
QQ=Q:+Q,=-Q,+Q,=0
As shown in Appendix C, the ranks of Q,, and Q,, are
rank(Q,,) =r (6.42)
rank(Q;)=n—r=n, (6.43)

Example 7.1. Consider a simple plane triangle with the following observed angles

Angle A4: 40°1902" = [,
Angle B: 70°30'01" = I,
Angle C: 69°11'00" = I;
All angles were measured with equal precision and are assumed to be uncor-

related. It is required to compute the least squares estimates of these three angles,
their cofactor matrix and its rank, and an estimate of the reference variance.

Solution: There is one redundant observation and therefore 1 degree of freedom.
Thus with n = 3 and ¢ = r = 1, the condition among the observations is
L+L+1l3;—n=0
or
11 1v=n-L -1, —1l3=-3"
From the simple stochastic model given, Q = I, compute

Q.=AQA'=3 k=W, f=-1"

1 _1"
v=QAk=|1|(-1)=]-1
1 —1

Finally,7=1+v, or
I, = angle A = 40°19'01”
I, = angle B = 70°30'00"

I3 = angle C = 69°10°'59”
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It can be easily ascertained that I, + [, + I3 — 7 = 0, which shows that the condi-
tion is exactly satisfied after the adjustment. This is equivalent to saying that 7 is
consistent with the model.

To compute the cofactor matrix of , first compute the cofactor matrix of the
residuals, Q,,, using equation (7.7),

111
Q. =31 1 1
111

Although this is a 3 x 3 matrix, its rank can be easily computed to be 1 (which is
equal to r). Next, Q; is computed from equation (6.31) as

2 -1 -1
Q=%-1 2 -1
-1 -1 2

It can be readily shown that the rank of Q;; is 2 which is equal to n, .
Finally, to compute 63, first VWyv = 3 sec?; and with r = 1, then 63 = 3 sec?. An
alternative would be to use equation (7.6), which would give the same value.

Example 7.2. Refer to Example 6.1 and solve the same problem using the
technique developed in this section.

Consulting Figure 6.1 and the data given in Example 6.1 for the basic information
on the problem, the redundancy is r = 1. The stochastic model is expressed by the a
priori cofactor matrix,

Q = diag. {0.01, 0.01, 0.01, 0.0025, 0.0025}

The first three terms are in square millimeteres and the last two in square metres. In
the present case of adjustment, given 1 degree of freedom, one condition equation in
terms of only the observations is needed. Such a condition equation is not easily
obtainable from the geometry of the problem. Therefore first write the three condi-
tion equations in Example 6.1 and then eliminate the parameters x; and x,. (It can
be argued that if such three condition equations are written first, then adjustment
using the technique discussed in the past chapter should be applied. This would be, in
fact, the direct way to solve the problem. Elimination of the parameters is done here
mainly to provide an exercise for the present technique.)
Using the first two equations solve for x; and x,

ll l4

pl4
—_ and Xs =
l] + l2

L+,

X1

substituting into the third equation leads to
_ll 15 - 1214 - 1215 + l3l4 =0

where [; refers to the observational variables.
This is the one condition equation in terms of the five observations. Linearization
by Taylor series to the form Av = f gives

A=[-I —(la+l) g (I3 - 1) -, +1,)]
—[-8 —18 0 166 ~203]
f=lll5+1214+1215—13l4= -3.6 (mm m)
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With Q given above, the normal equation matrix,
Q. = 6.6 (mm? m?)
the Lagrange multiplier is
k= —(66)"'3.6=—0.56 (mm~' m™!)
and the vector of observational residuals

0.04 (mm)
0.10 (mm)
v=] —0.05 (mm)
—0.022 (m)
0.027 (m)

Using these values, the final estimates of the observations will be
I, =16.54 (mm), 1, =390 (mm), I3 =20.35(mm)
l,=9978 (m) and 15 =8.027 (m)

These values are identical to those computed in Example 6.1. In that example, the
coordinates x; and x, of point P were the quantities of interest. Their estimates are

Il _ 16.54 (mm) 9.978 (m)
I, +1,  (16.54 + 3.90) (mm)
bl _ 100 (mm) 9.978 (m) _ 48.82
(I + 1) 20.44 (mm)

>

= 8.07 (m)

1

X2

These two values are nearly the same as the answers obtained in Example 6.1.
Actually, we would obtain exactly the same answers if both cases were iterated
properly. The a posteriori cofactor matrix of the estimated observations is

9.03 -—-218 121 0.50 -0.62
509 273 113 —1.38

Q,=10"3 848 —063 0.77
224 032
symmetric 2.11

It can be shown that the rank of this matrix is (n —r) = (5 - 1) = 4.
To compute Q;; we apply propagation principle on the formulas

A

X L +1 -
= [J‘Cl]= L =F@)
X2 pls
L+ 1,
J ox L L+l L, ls
23 ol ) X3 X2
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or

= 0.0931 —0.3950 0.8093
T | =2.3877 —2.3877 4.8919

Because the two values %, and %, are computed from only a subvector I’ of the total
vector /, the pertinent cofactor matrix Q;; is constructed from Q; by deleting the
latter’s third and fifth rows and columns. Thus

903 -218 0.50
Qi =1073 509 113
symmetric 224

The cofactor matrix of the derived parameters is therefore

1851 4968

L . = trjr ' = -3
Qe = JQu I = 10 [4.968 71.006

] rank = 2
Finally, the estimate of the reference variance is 63 = 2.016.
For reference, the values after the final iteration (f) are

9.024 —2.189 1.213 0.500 -0.621
5090 2.721 1.121 —1.394

Qy,, =103 8492 —0.621 0.772
2244 0318
| symmetric 2.104

186  5.03

_ -3
Qs = 10 503 71.33

and
&ﬁm = 1.9633

which agree well with those computed in Example 6.1.

Example 7.3. Consider the problem of Example 6.2, the two-parameter transfor-
mation, for adjustment with observations only.

In Example 6.2 the redundancy was evaluated as r = 4 for the given six observa-
tions. Inspection of the problem does not lead, at least not directly, to a simple way of
writing four equations in terms of the observations. In fact this type of problem
(transformation) is rather awkward to solve using the technique of adjustment of
observations only.

Writing a pair of transformation equations for any of the three given points, solve
for a and b in terms of observations and constants. For example, using the pair for
the first point,

Vi1 = axyy — bxy,
V21 = bxyy + axy,
then

X11Y11 + X21¥21 X11Y21 — X21 Y11
a= 3 ) =a b= p) 2 =B
X1 + X3, X1 + X734




144 ADJUSTMENT WITH CONDITIONS ONLY—SPECIAL CASES

Substituting these in the transformation equations gives

Vi = Xy — Bxy;

Va2i = Xz + Bxy;

or
Sri=(x11y11 + X210 Y21)%1 — (X171 Y21 — X21V11)X2i = Yn'(x%l +x3;)=0
Sai = (x11911 + X210 ¥21)%2i + (X141 Y21 = X201 Y11)%1i — yai(x}; +x3,)=0
with i = 2, 3.

These are four condition equations involving the six observations only. From the
given data, the stochastic model is represented by the cofactor matrix of the observa-
tions Q = 0.01 I.

Linearization: The condition equations may now be linearized to the form,

A v=Tf

4,6 6,1 4,1

where

_ t
V= [an Ux21 Ux12Ux22Ux13 vxza]

and
12
au=6 = Y11 X12 — Y21 X22 — 2Y12X11
X11
2
012=6 = Y21 X12 + Y11 X22 — 2Y12X21
X21
12
413 = 5 = X111 Y11 + X21)21
X12
12
ays = = —X11Y21 + X21¥11
0x33
o _he
15 = =
s 0xy3
12
g =5 — = 0
0x,4
faa
az, =3 = y11X22 + V21 X12 = 2y22 X1y
X11
0f22
az2 = P = y21X22 — Y11 X12 — 2y22X23
X21
0f22
a3 = = X11¥21 — X21V11




7.2 ADJUSTMENT OF OBSERVATIONS ONLY

az; =

azz =

a3q =

Azs = 3 — =

a3e =

a4y =

Qa2 =

Q43 =

145

of.
a‘ﬁ = X11 Y11 + X21 Y21
22
0f22 0
5x13
of22
0
6x23
df
6x1131 = Y11 X13 — Y21 X23 — 2¥13X13
f,
ﬁ = Y21 X13 + Y11 X23 — 2¥13X21
X21
s _,
0x12
s _,
axlz
13
ax13 =Aa3
df13 —a
aX23 14
af.
3 2 = yiaXas + V21X13 =~ 2y23Xy
X11
af.
5)& = Y21X23 — Y11 X13 — 2y23X2;
ohs _,
0xy 2
0f23 0
5x22
0
afl = a3
ohs _,
6x23 24

The elements of the vector f, , is the evaluation of the four equations with the
given observations. The following are the numerical values:

A =
4.6

-21 -09 1.1 =21 0.0 0.0

1 -19 21 1.1 0.0 0.0
-32 0.8 0.0 0.0 1.1 =21
-10 -24 00 0.0 21 1.1
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0.10
¢ =] o10
4,1 -0.10
| 0.40
1084 —060 60 426
a 1044 —504 3.46
Q. 16.50 1.28
| symmetric 12.38
(1336 —0.074 —4.56 —4.10
W = 13.00 431 —405
e 9.08 —0.57
| symmetric 10.68
[ —0.143
0.760
= f=
k=W. 1.163
| —3.514
[ 0.00937 %11 = 0.0093
0.0805 %21 = 1.0805
| 00144 %12 = 1.0144
V=1 oo0114 %y, = 0.0114
—0.0610 %13 = 0.9390
| —0.0631 %23 = 0.9369

Using the estimated observations compute the transformation parameters

_ X1y + X212 1.00
- 5(2 + 22 - &
11 T X2

N

5‘11:‘)21 _56213)11 =195

b
%) <2
X1 + X3,

which are identical to those computed in Example 6.2. It should be obvious that for
this type of problem, and for transformation problems in general, the general case of
adjustment of observations and parameters combined given in the preceding chapter
is more appropriate. No special effort is necessary in formulating the condition
equations. Furthermore, for this particular example the general technique gave rise
to only two reduced normal equations, a number that remains fixed even when the
number of observations is increased. In addition, the 2 x 2 matrix of the inverse of
the normal equations coefficient matrix is automatically the cofactor matrix of the
parameters. By contrast, adjustment of observations only requires special effort to
formulate the condition equations, and the number of these equations is dependent
on the number of observations. Furthermore, both the parameters and their cofactor
matrix require further computation after obtaining the estimated observations and
their cofactor matrix from the adjustment.
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For the sake of completeness, Q,, and a3 are

[2.501 0.055 0.049 —2.499 2541 —2459 ]
3420 3030 0067 2586 2574
2685  0.059 2292 2281

_ -3
Q. =10 2501 —2.449  2.550
4456 —0.554
| symmetric 4.437 |
52 = 0.2656

7.2.3. Further Examples on Adjustment of Observations Only
Example 7.4.  Adjustment of a Level Net

Given: Figure 7.1 shows a small level net involving eight lines, four points (B, C,
D, and E), and a known elevation of the starting point 4 of 800.000 metres. The
observations, which are the differences in elevation along the indicated lines, are
given in Table 7.1. These observations (the elevation differences) are assumed to be
uncorrelated. However, the weight of each elevation difference in square metres has

A
£ 7
1
S
B
D
Figure 7-1
TABLE 7-1
LINE NUMBER DISTANCE (km) ELEVATION DIFFERENCE (m)
1 18.1 +2542
2 9.4 +10.34
3 14.2 —35.20
4 17.6 - 1554
S 13.5 +21.32
6 9.9 + 482
7 13.8 -31.02
8 140 —26.11
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been found empirically to be equal to the reciprocal of the corresponding distance
taken in 10 km units. Thus, for example, the weight for the first elevation difference
(line 1 between points 4 and B) is w;, = (1/1.8) m™ 2.

Required: Compute the least squares estimates of the elevations of points B, C, D,
and E, and their precision.

Solution: The functional model of the problem is concerned with a simple geome-
tric case of vertical distances between points on the earth’s surface within a relatively
small area. Four variables are needed to determine uniquely the elevations of the four
points in the problem. Therefore with eight observations, the redundancy is r = 4.

There are two possible adjustment techniques. In the first, four condition equa-
tions involving only observations are written and values for all eight estimated
observations, J, are obtained. Using these and simple geometric relations, we would
then compute the required elevations of the four points. Also, using Q;; from the
adjustment and applying the rules of propagation, the cofactor matrix of the
computed elevations can be evaluated. In the second method the elevations of points
B, C, D, and E are introduced as unknown parameters and their values as well as
the corresponding cofactor matrix are computed directly from the adjustment. In
the present example we shall consider the first case of adjustment with observations
only.

Going around a “loop,” in one direction, the added elevation differences must be
zero. Using the four obvious loops (4BC, ACE, BDC, and DEC), and noting that a
value is positive along the given arrow and negative when opposite to the given
arrow, we may write the following four independent condition equations:

L+1L+1 =

-1 —ls+ 15 =

-1, + 1, —lg=

Is + 1 +lg =
It should be pointed out that several other equations may be written. It is therefore
important not only to have the right number of equations, but also that they be
independent. For example, the sum of the first two equations would correspond to

the loop ABCE, but it is obviously a dependent equation.
Rewriting these equations in the matrix form Av = f, thus

1 1 1 0 0 0 0 ol » T =1y —1 ~0.56 m
0 0o -1 0 0 -1 1 ol v. |- L+lg—1, | =] +064m
0 -1 0 1 0 o -1]] L=l + 1 —023 m
0 0 0 0 1 1 0 1] v —ly =l — g ~003 m

Us
Ve
vy

Ug

From the information given in the problem, the weight matrix of the given obser-
vations is the following diagonal matrix:

1 1 1 1 1 1 1

W =diag 727 594’ 142° 176" 135° 099° 138" 1.40]'

m~2)
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and the cofactor matrix is
Q = diag. {1.81, 0.94, 1.42, 1.76, 1.35, 0.99, 1.38, 1.40}(m?)

Using the above values for A and Q, the reduced normal equations coefficient matrix
is

417 —142 —094 0
l-142 379 0o -09], .
Q= _09s o 410 —1.40|™)
0 —099 —140 374

and its inverse

[0.3065 0.1333 0.0944 0.0706 ]
W = 0.1333 0.3445 0.0707 0.1177 (m-2)
7100944 00707 03118 0.1354

| 0.7060 0.1177 0.1354 0.3492 |

The vector of Lagrange multipliers is computed as
k=[-0.1102 0.1261 —0.0834 —0.0059](m™')
from which, the vector of residuals is computed to be
v=[-0.199 -0025 -0.335 -0.147 -0.008
—0.131 0.174 0.109](m)

The estimated observations 7 are obtained by adding the vector of residuals v to the
given observations /.

1=[25220 10315 —35.535 —15685 21312 4689 —30.846
— 26.001]/(m)

To compute the elevations of points, B, C, D, and E, denote them by x,, x,, x3, and
X4, respectively, and the elevation of point A by x,. Thus, from Figure 7.1,

Xy = Xo + 1 = 825.220 m = elev. of point B
Xy =Xo — I3 = 835.535 m = elev. of point C
X3 =Xo + I; + I, = 809.535 m = elev. of point D

X4 = Xo — I7 = 830.846 m = elev. of point E

In order to compute the cofactor matrix for these elevations, first compute Q;;
0.806 -0361 —-0445 -—-0.301 -0.173 0.112 -0.333 0.061
0.560 —0.200 0.360 0.082 0.118 -0.081 —-0.201

0.645 —0.059 0090 -0.231 0414 0.141

Q= 0.794 -0.322 -—-0.113 -0.172 —-0.434
0714 —-0309 -0219 -—-0404
0.541 0310 -0.091

0.724 -0.091

symmetric 0.635
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Referring to the vector of four elevations by x, we can write x = JI where

1 0 0 0 0 0 0 0
J= 0 0 -1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 -1 0
and through propagation compute
0.806 0.445 0.505 0.333
_ 0.645 0.504 0414 2
Q= 0999 0.505 | ™)
symmetric 0.724

If we were interested in the covariance matrix of the elevations, instead of the
cofactor matrix which gives only relative values, we would need to scale the latter by
the reference variance 3. Since the a priori precision estimation was only in the form
of an empirically derived weight matrix, we can only use the a posteriori estimate of
the reference variance (that is, in this case there is no possibility of performing a
statistical test on 63).

The computation of the reference variance leads to

63 = 0.0404

Thus the covariance matrix of the elevations is

00326 0.0180 00204 00135
o e 00261 0.0204 00167 |, ,.
Zix = 00 Que = 00404 00204 |™°)
symmetric 0.0293

One last remark regarding the computation

of Q,, is worth mentioning here.

Examining the matrix J, we see that it contains four zero columns, the second, fifth,
sixth, and eighth. This is because the computation of x requires the use of I, [, I,
and I, only. Therefore if the computations are performed by simple means (by hand,
desk calculator, or a small desk computer), it would be economical to shorten the
operation of matrix multiplication in the following way. First compact J to a size
4 x 4, thus

_1 ______ 4_1__:/'_columnsof.l
1 0 0 0

J =10 -1 0 0

4,4 1 0 1 0
0 0 0 -1

noting that the columns now correspond to I, I3, I, and I,, respectively. Using this
fact, the submatrix of Q,;, which is needed for computing Q,, would be a 4 x 4
matrix and is constructed using elements pertinent to the above four quantities, or

0806 —0.445 -0301 —-0.333
Qi = 0645 —0059 0414
4,4 0.794 -0.172
symmetric 0.724
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Using J' and Q,; into the propagation formula, we would get exactly the same Q,, as
computed above. It must be emphasized, however, that if the problem is being solved
by a standardized adjustment program, the above modification need not be applied.

Example 7.5. Quadrilateral Adjustment by Angles and by Directions. There has
been some discussion in the literature regarding the use of angles versus the use of
directions when adjusting triangulation nets. Although the method of observing
angles may be different and preferable over that for observing directions, the concern
here is not with particular surveying techniques. What should be demonstrated is
that as far as adjustment computation is concerned, the two techniques of using
angles and directions are identical; that is, starting with the same numerical data, we
would arrive at exactly the same answer if we construct corresponding mathematical
models properly and carry out the computations correctly. In this example we shall
ascertain this fact by a numerical example concerning the adjustment of a single
quadrilateral.

Figure 7.2 shows a quadrilateral (in a plane) ABCD with the two diagonals AC
and BD connected. It shall be assumed at the beginning that the area covered by the
quadrilateral is sufficiently small to allow working with plane trigonometry.

Figure 7-2

At each of the four vertices a theodolite was set up and readings along all three
lines were taken. These will be considered here as directions. Any angle at one of the
vertices will be simply the difference between the two directions which form that
angle. Under these assumptions, then, the given observed data is listed in Table 7.2.
For simplicity, all the directions in the table will be assumed as uncorrelated and of
equal precision. The corresponding observed angles are fixed as in Table 7.3 once
the directions are given.

Adjustment Using Directions: The fundamental observation is assumed to be a
single direction which is one reading on a horizontal circle. Such a reading is actually
meaningless in itself since no useful information can be derived from a single direc-
tion. Unless at least two directions are designated, we would actually establish noth-
ing by an individual direction. Therefore with a set of directions from one point a
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TABLE 7-2 TABLE 7-3
DIRECTION, d VALUE ANGLE | VALUE

10 00°00'00%00 1 22°01'42%51
11 22°01'42%51 2 16°44'31%20
12 38°46'13%71 3 57°08'57%10
13 00°00'00%00 4 19°33'14%13
14 57°08'57%10 5 86°33'13%45
15 76°42'11%23 6 58°46'35"93
16 00°00'00%00 7 15°06'52%28
17 86°33'13%45 8 84°04'50%66
18 145°19'49"38

19 00°00'00°00

20 15°06'52%28

21 99°11'42794

reference is attached that may be the zero direction and that may or may not be
known. To analyze the given information, which is composed of four sets of three
directions each, begin by determining the minimum number of observations that are
necessary to define the quadrilateral. Starting with point A, use directions 10, 11, and
12. Since the size of the quadrilateral is immaterial as the problem involves only its
shape, choose point C anywhere along the direction 11. From C, use directions 16,
17, and 18 to complete the quadrilateral. At this point we would suspect that six
observations have been used to determine the required figure leaving six extra ob-
served directions. This does not mean, however, that there are 6 degrees of freedom
(r = 6). As explained above, a direction taken at a point does not provide a useful
and independent piece of information unless it is referred to another from the same
point. Consequently, for each of the two sets of directions observed at points B and
D, there exists an inherent parameter representing the zero direction. Since these two
zero directions were not designated, they are to be considered as unknown variables
of the model. Hence, six extra observations minus two parameters lead to only 4
degrees of freedom, or a redundancy of r = 4.

In this problem the interest is in showing that the use of either directions or angles
leads to the same adjustment results, and therefore the technique of adjustment to be
chosen is not of primary importance. In the present case we shall be comparing the
estimated observations and their cofactor matrix, and thus the case of adjustment
involving observations only using ¢ = r = 4 independent condition equations is
appropriate.

The reader who is familiar with surveying techniques will recognize that there are,
for the present case, only three independent angular conditions in a quadrilateral and
one so-called side condition. The side condition guarantees that one side computed
from two different sets of triangles must be the same. It is actually the one condition
which ascertains that we do have a quadrilateral (otherwise, we would have adjacent
triangles). Designating directions by d (as used in Table 7.2) the following are four
independent condition equations:
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—dyo+di; —dy3+dia—dypo+dy=0
—‘d14 + d15 - d16 + dlg - d19 + d20 =0 angle conditions
—dyo +dyy —dy7+dig —dig +dy = 0[

sin (dyy — dyo) sin (dzo — dyo) sin (dy7 — dy) sin (d14 — dy3)

: : - - —-1=0
sin (dy, — dy,) sin (dyy — dj0) sin (dyg — dy4) sin (dys — dy4)

side condition

_ Linearizationby Taylor series: Let us denote these four condition equations by f;,
f25f3’ andf4- Then

-1 0 1 -1 1 0 0 0 0 0 -1 1
0 0 0 0 -1 1 -1 0 1 -1 1 0
-1 1 0 0 0 0 0 -1 1 -1 0 1
day Qa2 aa3 Qaa aas [ Y3 aar Qaas [rey daa, 10 aas 11 as, 12
V1o j.
U11 fl
X | V12 = 2
: -/
U2 —f

which is of the form

A v =f

4,12 12,1 4,1

where
Value (sec)
fi=+dyo—d,+ds—d, +dyy—dy, = —1.4700
fo=+d,—d;s+dg—dig+dy—dy = 42100
fi=+d,—dy, +d,—dg+dy—d,, = —1.3800
fi=1- sin (d,, — d,o) sin (d,o — d,5) sin (d,; — d;¢) sin (d,4 —d,3) 62670

sin (d,, — d,,) sin (d,, — d;;) sin (d,g — d,,) sin (d,5 — d;,) B
If the fourth equation is

. U
o= -1

then the elements of the fourth row of the A matrix can be evaluated as

sy = —(U/V) cot (dy; — dyo) = —247162
as. 2 = (U/V)[cot (dy; — dyo) + cot (dy2 —dy1)] = 579604
as 3= —(U/V) cot (dy; — dy;) = —332242
as, s = —(U/V) cot (dy4 — dy3) = —0.64573

aa. s = (U/V)[cot (dys — dy3) + cot (dys — dya)] = 346131
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as,6 = —(U/V) cot (dys — dy4) —2.81557
as, 7= —(U/V) cot (dy7 — dys) —0.06022
as, s = (U/V)[cot (dy7 — dy6) + cot (dyg — dy;)] = 0.66642
a5 = —(U/V) cot (dys — dy-) —0.60620
a4, 10 = —(U/V) cot (do — dy5) —3.70255
as. 11 = (U/V)[cot (dao — dis) + cot (dz;, — dzo)] = —3.80623
aqs, 12 = —(U/V) cot (dyy — d3p) = —0.10368

Since the observed directions were given as uncorrelated and of equal precision, then

60 —-20 20 —-0.6557
6.0 20 0.6859

- 2
Q. 601  10.5939 | (e of arc)
symmetric 100.1021
and
0.2773 0.1490 -0.1765 0.0195
Ql=W,= 0.2712 -0.1703 0.0171 (sec of arc)™?

0.3471 —-0.0367
symmetric 0.0139

The vector of four Lagrange multipliers is
k =[0.3414 10502 —0.7066 0.0072](sec of arc)™!

and then the vector of residuals v, and estimated directions d, are

0.3474 [d,,] [ 0° O 07.3474]
—0.6648 di, 22 1 418452
0.3174 di, 38 46 14.0274
—0.3460 dys 359 59 59.6540
—0.6838 dia 57 8 56.4162
Ve 1.0299 (sec) d= dys _ | 76 42 122599
—1.0506 dis 359 59 589494
0.7114 dy; 86 33 14.1614
0.3392 dis 145 19 49.7192
—0.3703 dio 359 59 59.6297
0.7362 dso 15 6 530162
| —0.3660 | | dy, | | 99 11 42.5740 |

From the above directions the following eight angles of the quadrilateral are
computed (see Figure 7.2):

—~
[y
]

[

11— dio = 22°1'4174978
12 —dy = 16°44'32"1822
1a—dy3 = 57°8'56"7622

oo
] I
)
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Values for these eight angles will be computed in the second part of the problem
directly from a least squares adjustment and compared to those given above. To
complete the comparison, we also check on the a posteriori cofactor matrix Q,;.

Qu=

07290 0.1788 00922 —0.1600 —0.1870 —00270 —00221 —0.0685 00906 —0.1641 —0.0629 0.2270 |
06121 02091 -0.0354 —0.1588 0.1942  -0.0683 0.1051 —0.0368 0.2253 —0.1592 -0.0661
0.6987 0.1953 -0.0281 —0.1672 00904 -00366 —0.1538 —-0.0120 0.2221 -0.1609
0.6917 0.2282 0.0800 —0.1618 02192 -00573 -00652 -0.0215 0.0867

0.5671 0.2047 -0.0597 —0.1669 0.2266 —0.0095 0.0666 —0.0572

0.7153 02216 —00523 —0.1693 0.0747 —00451 -00295

0.7267 0.1845 0.0887 —0.1662 0.1904 —0.0242

0.5978 02177 -00196 -0.1673 0.1869

0.6936 0.1858 -0.0231 ~-0.1627

symmetric 0.6770 0.2408 0.8210
0.5662 0.1930
0.7248 |

The quadratic form may also be computed as V"W, v = 4.8492 (sec of arc).
In order to compute the cofactor matrix of the eight angles first write

M1, -1 10 0 00 O 00 O 0 07T[do
I 0 -11 0 00 0 00 o0 o00}]ld,
Iy 0 00 -1 10 O 0O O 00O :
Iy 0 00 0 —-11 0 00 0 00]]dy,
Is| = 0 00 O 00 -1 10 0 00
I 0 00 O OO O -11 0 00
I 0 00 O 0O O 0O -1 10
[ Jg . 0 00 O 0O O 0O O —1 1

or I = Fd and then apply propagation to compute Q;;.

09835 —-03164 —0.4704 0.5669 02198 —0.3009 —-04858 —0.1968
0.8926 —0.1000 —0.4920 —0.3005 0.1247 0.6679 —0.4762
0.8024 —-0.2143 —0.4881 0.6700 00324 —-0.2320

08731 —-0.1668 —0.5104 —0.1959 0.1394

Qi = 09554 —0.2843 —0.5044 —0.5688
symmetric 08559 —00612 —0.4937
0.7615 —0.2145

I 09050 |

Adjustment Using Angles: It is of fundamental importance here to recognize that
although the directions are the original uncorrelated observations, the angles that are
computationally derived from them need not be uncorrelated. As a matter of fact,
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since I = Fd, the a priori cofactor matrix of the angles is Q, = FQuF' = FF' since
aa =1L
This is a basic point that involves choosing the correct stochastic model to fit the
variations in the functional model. Thus

2 -1 0 0 0 0 0 07
2 0 0 0 0 0 0
2 -1 0 0 0 0
2 0 0 0 0
Q= 2 -1 0 0
2 0 0
2 -1
| symmetric 2]

This matrix indicates a fact that should be obvious from Figure 7.2; that is, angles 1
and 2 are correlated, angles 3 and 4 are correlated, and so on, but each pair is not
correlated with any other. This is because each pair of angles is derived from the
directions measured at one point. Consequently, it would be an inaccurate stochastic
model if we were to use the identity matrix instead of the given Q, above.

To formulate the number of condition equations we have only to realize that it
takes a minimum of four angles to construct the shape of a unique quadrilateral thus
leaving a redundancy of four. Four independent condition equations (three angular
and one side) are

fi=h+h+lh+lg—n=0
fo=la+ls+lg+1,—n=0
f3=ll+l6+l7+18“ﬂ=0

_sin (I;) sin (I3) sin (Is) sin (I;) Y

4= Gn (1) sin (1) sin (I¢) sin (Is) zZ

Linearization

1 1 1 0 0 0 0 1 ry -h 0.3414

[ 0 0 0 1 1 1 1 0 l‘z] _ [—fz:I _ [ 1.0502] (sec of arc)"!
1 0 0 0 0 1 1 1 —f —0.7066
Qa1 Qa2 A43 Q4s Q45 dae Qa7 das Us —fa 0.0072

where
as; = (Y/Z) cot (1) = 2.4716

as; = —(Y/Z) cot (I;) = —3.3244
as3 = (Y/Z) cot (I3) = 0.6457

age = —(Y/Z) cot (l4) = —2.8156
ass = (Y/Z) cot (Is) = 0.0602

as6 = —(Y/Z) cot (lg) = —0.6062
= (Y/Z) cot (I,) = 3.7025

ass = —(Y/Z) cot (Ig) = 0.1037

as

~
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The reduced normal equations coefficient matrix is

60 -20 20 —0.6557

_ 6.0 20 0.6859

Q. = 6.0 10.5939
symmetric 100.1021

(sec of arc)?

and its inverse

0.2773 0.1490 —0.1765 0.0195

02712 —0.1703 00171 )
W, = f arc)-2
y 03471 —00367 | € °f arc)

symmetric 0.0139

The vector of Lagrange multipliers is
k =[0.3414 10502 —0.7066 0.0072](sec of arc)™!

The vectors of residuals v and estimated observations 7 are

M —1.01227 I, =22°1'41"4978
0.9822 I, = 16°44'3271822

—0.3378 I3 = 57°8'56"7622
v =| 17137|gec) and  ls=19°3315%8437
8, 1 1.7620 Is = 86°33'1572120
—0.3722 ls = 58°46'355578

1.1065 I, = 15°6'53"3865

| —1.1022. Ig = 84°4'4975578

Finally, the cofactor matrix of the estimated angles is

09835 —0.3164 -—0.4704 0.5669 02198 —-03009 -—04858 —0.1968
08926 —0.1000 —0.4920 —0.3005 0.1247 0.6679 0.4762
0.8024 —0.2143 —0.4881 0.6700 00324 -0.2320

0.8731 ~-0.1668 —0.5104 —0.1959 0.1394

09554 —0.2843 —0.5044 0.5688

08559 —0.0612 —0.4937

0.7615 —0.2145

| symmetric 0.9050

Qn =

and the computed quadratic form v'W, v = 4.8492.

It should be clear now that the results obtained above match identically with
those computed from an adjustment using observed directions.

With r = 4, the a posteriori estimate of the reference variance is

6% = % = 1.2123



158

Using this value the “standard deviation-correlation” matrixt for  in seconds is
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1.092 -0.338 —0.529 0.612 0227 -0328 -0.561 —0.209

1040 -0.118 —-0.557 -0.325 0.143 0.810 —0.530

098 —0.256 —0.557 0.808 0041 -0272

1.029 -0.183 —-0.590 —0.240 0.157

M, = 1.076 —0.314 —0.591 0.612
1019 -0.076 -0.561

0961 —0.258

symmetric 1.047

Difficulties may arise when the a priori correlation between angles is neglected, if
such angles are computed from measured directions. To demonstrate this point, the
same problem was solved one more time except that instead of using the correct
cofactor matrix used above, Q, = 2I was used. The reason for the multiplier of 2
should be obvious since each angle is compiled from two directions each having a
cofactor of unity, thus it will have a cofactor of two. The results of this nonrigorous
adjustment are

[—1.027 I, =22°1'41"49
0.26 I, = 16°44'31"46

0.38 I3 = 57°8'57"48
o] 169 (sec)  and la = 19°33'1582
1.78 Is = 86°33'15%23
0.30 Is = 58°46'36"23

0.43 I, = 15°6'52"71

| —1.10 ] Is = 84°4'49"56

Comparing the set of residuals computed here and those computed using the
correct adjustment we find some differences. The variation is both in the magnitude
and sign of the corrections. The maximum difference in the values of the estimated
angles is 0.72 seconds. However, this value is within the reference standard deviation
and may be tolerated.

This example represents a case of “approximate adjustment,” inasmuch
as a simplified stochastic model was used. Such simplified computational
methods have been, and still are, used in practice. They lose importance,
however, with the development of computer techniques which increasingly
make the use of simplified procedures unwarranted. The example further
demonstrates that the estimated observations and the estimates of the par-
ameters can be close to the proper least squares estimates. By contrast to
estimated observations and parameters, however, the a posteriori cofactor
and covariance matrices computed on the basis of a priori simplified
matrices are usually not close to those obtained from proper least squares.

+ The “standard deviation-correlation” matrix is used frequently in statistics and is given here
for the sake of introducing the reader to another useful concept. Its elements on the main
diagonal are the standard deviations, whereas those off the diagonal are the correlation
coefficients.
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Because this is quite frequent in practice, a general warning is appropriate
against relying on such a posteriori matrices. Instead, new matrices should
be computed on the basis of the nonsimplified cofactors of the original
observations.

Let Q be the original rigorous a priori cofactor matrix of the observations
and Q the simplified matrix. Let s represent the set of variables estimated
using Q. Instead of using the a posteriori cofactor matrix for the estimates §
as computed with Q, we should apply the principle of propagation to get a
Q,; using the original Q.

7.3. ADJUSTMENT OF INDIRECT OBSERVATIONS

Adjustment of indirect observations is the second of the two classical
cases of least squares adjustment. Here the adjustment is performed with
both observations and parameters but with the restriction that each condi-
tion equation contains only one observation. Therefore the number of condi-
tion equations is the same as the number of observations, or ¢ = n.

7.3.1. Formulation Because of the restriction on this case, the general
linear functional equations would be of the form

I+v+BA=d (7.8)
or
v+BA=(—I+d)=1 (7.9)

where d and f are constant vectors.

Since the residual vector v is explicitly separable in equation (7.9), the
application of the least squares principle can be done more directly than in
the cases discussed previously. For this reason, and as a further demonstra-
tion of the minimum criterion, we give the relatively short development here,
although the results can be obtained directly from the equations obtained in
Chapter 6. Thus the scalar to be minimized is

¢ = v'Wy
= (f — BAYW(f — BA)
= (f' — A'B')(Wf — WBA)
= A'B'WBA — A'B'Wf + f'Wf — f'WBA

Realizing that the second and last terms on the right-hand side are scalars
(as well as all other terms) then

¢ = A'B'WBA — 2f'WBA + f'Wf (7.10)
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The free variable in equation (7.10) is the vector of parameters A, thus for ¢
to be a minimum 0¢/0A must be zero, or

% = 2A'B'WB — 2f'WB = (' (7.11)

recognizing that the last term in equation (7.10) is a constant insofar as the
partial differentiation is concerned. Transposing equation (7.11) and
rearranging

(B'WB)A = B'Wf (7.12)

Equation (7.12) is the u reduced normal equations in the u unknown par-
ameters A. With the auxiliaries used previously [see equations (6.21) and
(6.22)], then

NA =t (7.13)
or
A=N"1t (7.14)

It is important to note here that all the relations developed in this section
are essentially the same as those derived in Section 6.2. Having obtained A,
the estimated observations / can be directly obtained from

I=1+f-BA (7.15)
7.3.2. Computational Check and Reference Variance The computational
check in this case is

a=BWAv=0 (7.16)

The proof of equation (7.16) is exactly the same as that given previously (see
Section 6.2.1).

The a posteriori estimate of the reference variance 63 is given by equation
(6.25). The quadratic form v'Wv may be evaluated directly using a v
computed from equation (7.9), or from

vWy = f'Wf — A't (7.17)

7.3.3. Estimation of Precision The autocofactor and crosscofactor matrices
are

1=l

f=-1+d

A=N"1B'Wf= —N"'B'WI/+ A,
v=f—BA =f— BN 'B'Wf
I=1+v
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Autocofactor Matrices

Q:=Q
Qr=Q
Qua =N"'BWQ,, WBN™! =N~ (7.18)
Q.,= Q- BN"'B' (7.18a)
QQ=Q-Q, (7.19)

Crosscofactor Matrices

Q,=-Q

Qs=-QWBN™')= —BN"!

Q,=Q; - QWBN'B)=-Q+ BN 'B'= —Q,
Q=Q2+Q,=Q-Q,,=Q;

Qs =Q(WBN™!)=BN"!
Q;,=Q;— QB =Q-BN'B
Q=Q,+Q;,=-Q+Q-BN"'B'= —BN" !B
Qao =Qay — QuaB' =N~ 1B _N"IB'=0

Qs =Qu + Qs=—N7'B
QQ=Qu+Q,=-Q,+Q,, =0

Example 7.6. Reconsider the case of the plane triangle given in Example 7.1.
Although it was worked out in the most straightforward manner there, we shall solve
it again here using the technique of adjustment of indirect observations.

Consider the two angles /; and [, also as unknown parameters x, and x,, respec-
tively. The three condition equations will therefore be

ll—x1=0
12—x2=0

l3+x1+x2—n=0

or
-1 o] [x ~1, —40°1902"
v+| o - =] -5|=] -70°3001"
1 n—1,] | +110°49'00”
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With W = Q! =1, the reduced normal equations may be computed as

2 1
N=B =BB =
B'WB = B'B [1 2}

151°08'02"
t=BWI=B1 [181°19'01"J
2 -1
-1 _ 1
Nl

A=f‘=N_,t=[40 1901]

70°30'00”

These two values are the same as the values of [, and [, obtained in Example 7.1. The
cofactor matrix of the parameters is

2 -1
“N-1_1
Qs =N ’5[_1 2]

which is also the submatrix of Q; corresponding to I, and [, in that example. To
complete the problem we compute

—40 19 02 —40 19 01 -1
v=f-BA=|-70 30 01|—-|—-70 30 00|=]-1"
110 49 00 110 49 01 -1"

and

I, = 40°19'01” I, = 70°30'00” I3 = 69°10'59”
2 -1 -1
Q=BN'B=} 2 -1
symmetric 2

which is the same as the matrix Q;; computed in Example 7.1.

Another verification for the computations is possible when applying equation
(7.16).

_l
-1 01 0
— Rt — R'v = _ = =
a = B'Wv = By [ 0 _1 1] ! [0] 0

For the quadratic form we use the computed v directly, or

-1
VWy=[-1 -1 —1]|-1]=3 sec?
-1
then

63 = 3 sec?
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Example 7.7. Consider the problem of Example 6.1 according to the technique of
indirect observations. As indicated above, as many condition equations as there are
observations (or five equations) are needed for this problem. From Figure 6.1 we can
readily write the following five equations with the parameters being (a) x, is the x,
coordinate of point P; (b) x, is the x, coordinate of point P; (c) x5 is the distance
S:S,; and (d) x4 is the distance S, S;.

ll_P_X_l___O IZ_P(xa—X1)=0 IS_P(X3+X4—x1)=O
X2 X2 X

I4"X3=0 IS—X4=0

I; represent observational variables. Linearization leads to

[ —p/x3  pxY/xY 0 0 |
p/x3  p(x3 —xP)/x3* —p/x§ O
534 = | p/x3  p(x3—xP)/x3" —p/x§ —p/x3
' 0 0 -1 0
[0 0 0 ~1

Approximations may be computed as follows:

x9 = hls =8.128 m

(ll + lz)
o _ Pl4 _
X3 = 0+ h) =49261m
xy=1I,=100m
x3=1s=80m

with p = 100 the numerical value of B becomes

—203 0.335 0 0
203 0077 -203 0
B= 203 0407 -203 -203|(mmm™?)
0 0 -1 0
0 0 0 -1

With the covariance matrix used before, the weight matrix may be obtained from

100 1
) 100 1
S W=r1!= 100 100 1
%0 400 4
400 4

From which the a priori value of ¢3 is 0.01 and the weight matrix is

W =diag. {1, 1, 1, 4, 4}
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Then
12363 0303 -—-8.242 —4.121
N = 0.284 —0.982 —-0.826
- 12242 4121
symmetric 8.121

In order to compute t, first evaluate f as follows:

(1]
DXy
fl—x(z) 1 =

0 _ .0
f2=”("3—0x‘)—1,= —0.175 mm

p(x3 + x§ — x9)

f3= 5 — I, = —0.360 mm
X2
fa= xg —1,=0
fs= xg—1s=0
Then
—1.065
t=| —1.160
+ 1065
+0.831
With
0.189 0.513 0.143 0.075
N !'= 7.334 0.718 0.642
0.224 0.031
symmetric 0.211

then the solution is

A=[-0054 -0455 -0.022 0.028] (mm)
leading to the parameter values

X; =8074 m X, = 48.806 m

X3=9978 m X4 =8.028 m

which agree well with the values computed previously.

This example brings up one last remark. In order that we may use this case of
adjustment of indirect observations, it is necessary that the maximum number of
independent parameters involved in the model be carried in the adjustment. Although
this may be desirable when all such parameters are of interest, it is not convenient or
useful to have to do this when only a subset is needed. This example illustrates the
point since we were only interested in two parameters, x, and x,, but had to solve for
four.
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Example 7.8. In this example, solve the two-parameter transformation problem
of Example 6.2 using the technique of adjustment of indirect observations. The
transformation equations were given as

Y1i = axy; — bxy;

Va2i = bxy; + axy;

or in matrix form

i ]

Since the x coordinates are the observations, first write the inverse transformation, or

) =wml e el

or

a

b
fri= x4 — (a2 T bz)yli - (02 T bz)yZi

=0 (a)

b a
Jai = x2 + @+ b2)y1i - @+ bz))’m‘ =0

with i =1, 2, 3, which are the six condition equations (n = 6). Linearization by
Taylor series to the form v + BA = f yields

— 1 [[(02 — b*)y1; + 2abyy] [(—a® + b%)yy: + 2abyy ] A
1

2, (a®> + b*)? | [(@® — b*)ys — 2aby,}] [(a> = b?)y1; + 2aby]
_ [ ~ }
—fai
with the given data

x; = (0.0, 1.0), x, = (1.0, 0.0), x; = (1.0, 1.0)
y: =(—-21, 1.1), y, = (10, 2.0), y; = (-0.9, 2.8)

and the approximations a® = 1 and b° = 2, the numerical values of the matrices
become

0.428 —0.204 0.02]
0204  0.428 0.06
0200  0.400 0.00
= f =3
B=1 o400 o20] 2™ 0.00
0.556  0.192 —0.06
| —0.192 0556 | | —0.08
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Remembering that the x coordinates are uncorrelated and of equal precision, for the
sake of variation take an a priori 63 = 0.01 and thus a W = I. Then

N = 0.7708 0.0 N-1! = 1.2974 0.0
— 1 00 0.7708 “ | 00 1.2974

A_ | 00036
~ | —00446

and

a = 10036 b = 19554

These answers agree with those obtained twice before. They, however, represent
values obtained after the first iteration of a nonlinear problem. If we were to continue
the iterations until the last A is insignificantly small, we would get as a final answer
a = 1.0031 and b = 1.9561.

We have solved the problem above in a straightforward manner without any
attempt at simplification. It is possible, however, to eliminate the nonlinearity in the
problem as well as simplify the algebraic operations by using two new parameters ¢
and d, mainly because the y coordinates were given in the problem as constants.
Referring to equation (a), make the substitution

It is important to emphasize that reparameterization is possible provided we always
make certain that the number of the new parameters is the same as the old parameters,
and that the new parameters are also functionally independent just as the old ones were.
In our present case both restrictions are met by the choice of ¢ and d. Thus

Sri=x1i—cyi—dy; =0 (c)
fri=Xxu+ dy,; — ¢y =0

with i = 1, 2, 3; and then in the usual form v + BA = f, or

—Vu — Yai||C€ —Xii
V,- '+' = d
[—Ym' Yh'] [d} [_xZi] @
again with i = 1, 2, 3. With Q = I, then

N 1927 0 (= 40
- 0 19.27 178

and

Ao ¢] _ [0.207576
~ |d| T |0.404774
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To get the estimates of the original parameters a and b we solve for them from (b), or

s &
ct+d
d

5 = 1.0031

These values are identical to those obtained from the first solution, but after the
problem has been iterated sufficiently. This should be clear to the reader since in the
linear case we would obtain the exact solution directly, which in the nonlinear case is
attainable only after the effects of linearization have been reduced to a negligible
level.

Example 7.9. Simple Mean, Weighted Mean, and Correlated Mean

a. Simple Mean. Given n repeated measurements on a variate /, derive the rela-
tion for the best estimate if all the measurements are uncorrelated and of equal
precision (weight).

Solution: Denoting the best estimate by x (a parameter), the n condition equa-
tions would be
i +v,—x=0

Lb+v,—x=0

L, +v,—x=0
or
Uy -1 _ll
[ 25] -1 —“12
1,1
Un -1 -1,

With W = Q™! =1, then
N=n t=Zl,

l; = I = the arithmetic mean (7.20)

e

I
S|
-

= cofactor matrix of arithmetic mean (7.21)

S| -

Qxx =

b. Weighted Mean. Given n uncorrelated observations on the same stochastic
variable /, each of which having a weight w;, derive the formula for the best estimate
of that variable.
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Solution: The condition equations are the same as those in (a) above, but the
weight matrix W in this case is

W = diag. [wy, wa, ..., w,]

and

t= Zw,-l.-

i=1

_ 2i=awik

X =5 = the weighted arithmetic mean (7.22)
Dia1 W
n -1
Q= [ v (123
i=1
wxx = Z w;

which says that the weight of the weighted mean is equal to the sum of all 'weights of
constituent observations.

c. Correlated Mean. Given n observations on the same random variable [ that are
correlated and of unequal precision, if the weight matrix of these observations is W,
compute the best estimate of I.

Solution: The weight matrix may be written in expanded form as

Wir Wiz 70 Wiy
T R
Wni Wp2 Wpn

The condition equations are as in (a), but the normal equations become

~1
N=BWB=[-1 —1 - —1]W|-1

~1

The best estimate is therefore

X = 2l=1 Xi=1 Wyl (7.24)
Z?=1 Z}'=1 Wij
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and
n n -1
Q.= Z Z Wij]
W = Z > Wi

169

(7.25)

which equals the sum of all the elements of the weight matrix of the given observa-

tional vector /.

Example 7.10. The Vector Mean. The plane coordinates of a point have been
independently determined twice by two methods with the following results. By the

first method

,]

y= with a covariance matrix X,

y2 | 2,2

By the second method

[z, ] ) . )
= with a covariance matrix X,
Z5 2,2

If there is no correlation between y and z, find by the method of least squares the best

estimate of the coordinates.

Solution: Let the final estimate coordinate vector be denoted by the parameter

vector

- [2

Realizing that the y and z are observational vectors, we can write the following pair

of vector condition equations
y+v,—x=0

z+v,—x=0

e Gl

which is of the form v+ BA = 1.

or

Since there is no correlation between the y and z observational vectors, the total

covariance matrix of the observations can be constructed as

By 0
4,24 - [ 0 Zzz]
and hence

)t 0
—_ —l= yy
wos[5 0
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The normal equations are
-1 [
N=[-1 —gj[® ° J ‘]

= (X, + I3

t=[-1 -I] rz(y;yl zg,l} {:y} =E;ly+E5'z
Hence
x=(Z;,' +E2)7(EZ,y + E2'2) (7.26)
and
L= (5, + 517! (1.27)

This relationship gives the vector mean of two independent vectors in two-
dimensional space, each given with its covariance matrix as well. Obviously the same
relationship holds for two vectors of more than two components (that is, in multi-
dimensional space). Also, either cofactor or weight matrices can be used in place of
the covariance matrices.

The case of two determinations only was used as an example. Actually, both
equations (7.26) and (7.27) hold for multiple determinations as long as there are no
correlations among them. For example, if m determinations x;, i=1, 2, ..., m are
given, each having a covariance matrix X;, the following relations hold provided
Ly =0 forallj # k:

X=CZ ' +Z7 '+ + Eo D) HEI X + B3Iy + o + B X)) (7.28)
and
2xx=(21_1+2;l+"'+z;1)_1 (729)

If £, # 0 for some or all j # k neither equation (7.28) nor (7.29) will apply, and a
more general treatment must be done.

Example 7.11. This example is to rework the problem of Example 7.4, of the
five-point level net, using the method of adjustment of indirect observations. Recall
that there are n = 8 observations, and that the redundancy was r = 4. If we introduce
the four elevations of points B, C, D, and E as parameters, then u = 4. Thus the
number of independent condition equations will in this case be ¢ = r + u = 8, which
is also equal to n. In this case it is likely that we can readily write the condition
equations such that each equation includes only one observation. Referring to Figure
7.1, the following eight equations can be directly written. (For simplicity in
the derivation and computation the elevation of point A will be considered tem-
porarily equal to zero. At the end of the adjustment, the elevation of A4, which is
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800.00 m will be added to all computed elevations.) In these equations the elevations
of points B, C, D, and E are designated x,, x,, x5, and x,, respectively.

I, — x4 =0
Iy + x; — x, =0
I3 + X, =0
Iy + x4 — X3 =0
ls +x3—x4=0
lg — X3 +x4=0
I, +x4=0
lg + X3 — X3 =0

These equations are linear and can therefore be written directly in the form

v+BA=f
v, ] [—1 0 0 07 [x, =1, [—25.42 m ]
v, 1 -1 0 0 X2 -1, —10.34 m
U3 0 1 0 0 X3 -1 3520 m
Va4 1 0 -1 0 X4 -1, 1554 m
vs| + 0 0 1 -1 =|—-Ils] = |—-2132m
v 0 -1 0 1 -l —482 m
v, 0 0 0 1 -1, 3102 m
| vg | ) 1 -1 0 | — g ] | 26.11 m |

The weight matrix of the observations is
W = diag. [1/1.81, 1/0.94, 1/1.42, 1/1.76, 1/1.35, 1/0.99, 1/1.38, 1/1.40]
The normal equations coefficient matrix N is

2.1845 —1.0638 —0.5682 0
34924 —-0.7143 -1.0101
2.0232 —-0.7407
symmetric 24755

and its inverse

0.806 0.445 0.505 0.333

N-! = 0645 0504 0414
0.999 0.505
symmetric 0.724

In a similar fashion the constant term vector may be computed and used to
compute the vector A,

A =[25220 35535 9.534 30.846]'(m)
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Thus the elevations of points B, C, D, and E may be obtained by adding 800.00 m to
each element of the vector A,

elevation of point B = 825.220 m
elevation of point C = 835.535 m
elevation of point D = 809.534 m
elevatioﬂ of point E = 830.846 m

which agree exactly with the values computed in Example 7.4 using the method of
adjustment of observations only.

The cofactor matrix of these four elevations is equal to N~ !, which is the same as
Q.. computed in Example 7.4. If only the elevations and their cofactor matrix are
required, this would conclude the present problem and we would agree that this
method of adjustment is shorter than that used in the other example, at least for the
current problem. If, however, it is the covariance matrix of the elevations that is
required, further computation is necessary to determine the a posteriori estimate of
the reference variance 63. First, compute the vector of residuals

v=[-0.199 -0025 -0.335 -0.147 -0008 —0.131 0.174 0.109] (m)
and
635 = 0.0404
Multiplying Q,, by 62 gives the covariance matrix of the elevations

00326 00180 00204 00135
N 00261 00204 00167 R
B = 00404 00204 | ™)

symmetric 0.0293

which as expected is identical to that computed by the other method. The reader is
left the task of determining which technique of adjustment is preferable. He should
compare such factors as setting up the condition equations, the size of the normal
equations to be inverted, the amount of effort required for precision estimation, and
above all the way the computations will be performed (by limited means or by
electronic computer). Before leaving this example we perform one last computation
to demonstrate the computational check of equation (7.16).

s b
—0.555 1.064 0 0568 O 0 0 0 -0.199
Bwy=| © —1.064 0704 O 0 —1010 0 0.714 | | —0.025
0 0 0 —-0.568  0.741 0 0 —0.714 | | —0.335
0 0 0 0 —0.741 1010 0725 0 -0.147
—0.008
—0.131
0.174
| 0.109
0.0 -
0.0
100 0

0.0
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7.4. SUMMARY OF EQUATIONS AND
CONCLUDING REMARKS

7.4.1. Adjustment of Observations Only

The given information would be a vector of n observations / and its
cofactor (or covariance) matrix Q. After determining the redundancy r, a set
of r linear condition equations are written

Av=d - Al=f

v is the n x 1 vector of residuals, and d and f are r x 1 vectors of
constants

A is an r x n coefficient matrix of rank = r

Q. = AQA' = r x r reduced normal equations coefficient matrix

k = Q. !f = W, f = vector of r Lagrange multipliers (7.4)
v=QAk = QA'W, f (7.5)
1= 1+ v = estimated observations

63 = VWv/r = f'k/r (7.6)
Q,, = QA'W,AQ  rank (Q,)=r (7.7), (6:42)
Q:=Q-Q,, rank (Q,)=n—r=ng (6.31), (6.43)

This case of adjustment of observations only is suitable for use when the
problem is relatively simple and uninvolved. It is also suitable when either
the estimated observations themselves, or rather simple functions of them,
are the variables of interest from the adjustment. For good size problems,
and for situations in which the values of clearly specified parameters are
required, this technique of adjustment is usually not utilized. Either the case
covered in Chapter 6 or the simpler technique of indirect observations is
often more appropriate.

7.4.2. Adjustment of Indirect Observations As in the preceding section we
begin with the observational vector / and its cofactor matrix Q. Since the
number of condition equations is specified as equal to the observations n, an
no = n — r parameters in A, where r is the redundancy, must be carried in the
adjustment. The condition equations are of the form

v+BA=—-I+d=f (7.8), (7.9)

d and f are n x 1 vectors of constants

B is an n x u (= n.x ny) matrix of rank = u

N = B'Q™ 'B = B'WB = reduced normal coefficient matrix

t = B'Wf = reduced normal equations constant vector

A=N"1t (7.14)
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(If conditions were originally nonlinear, then X = x° + A, where x%isa
vector of approximations.)

v=f—BA (7.9)
1 =1+ v = estimated observations

65 = vV'Wv/r = (I'Wf — A't)/r (7.17)
QAA =N7!

vi = Q — BN~ lBt

Q,=BN"'B'=Q-Q, (7.19)

The technique of adjustment of indirect observations is more closely
related to that presented in Chapter 6. The only exception is that the
coefficient matrix A of the residual vector is in the present case the identity
matrix.
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Examples and General Discussion on
Adjustment with Conditions Only

8.1. GENERAL

The purpose of this chapter is to present the reader with a number of
worked examples. For each example, we will first present a problem, discuss
it in detail, determine the model, analyze the merits of different adjustment
techniques, and then choose and apply the one that is considered most
appropriate. It may be necessary at times to solve the same problem by more
than one technique to stress a particular point.

Example 8.1. Consider mass production of metal cubes of which a particular unit
is selected as a sample for check. Let us assume that all face angles in the cube are in
fact 90-degree angles, and that the volume of the cube is to be checked. Under the
assumption above, all that is necessary for computing the volume of a cube is to
measure one of its sides. Consider now two possibilities: (a) that the same side of the
cube is measured three times; or (b) that three different sides of the cube are
measured, each once, as shown in Figure 8.1. In both cases there are two redundant
observations and adjustment is necessary. The question is whether there is any
difference between the two cases insofar as the adjustment problem is concerned.

For the first case, denote by [, I,, and I; the three repetitive measurements of the

175
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h
Figure 8-1
one side of the cube. If all three measurements are uncorrelated and of equal preci-

sion, the least squares estimate is simply the arithmetic mean of the three observa-
tions (see Example 7.9).

I=4(, + 1, + 1)
The volume of the cube is then
y=P
For the sake of comparison later on, take the numerical values
l; = 50.0 mm I, = 50.2 mm I3 =49.8 mm
thus
[=500mm and y=125x 10°> mm?3

In the second case, the three observations are of three separate sides of the cube as
shown in Figure 8.1. Since it takes only one side to fix a cube, there are 2 degrees of
freedom, that is r = 2. There are, of course, three possibilities of adjustment
techniques based on the three cases presented in the preceding two chapters.

Consider first the case of adjustment with observations only. Thus two condition
equations are

11—12=0 12—l3=0

1 -1 o] || _ [-1] _[ 02mm
o 1 -1 |2 Iy — I —0.4 mm

U3

or

With Q =1 as assumed above, the normal equations are

2 —lk_[ 0.2 mm or k= 0
-1 217 | —0.4 mm " 1 =0.2 mm

and
v=[0 —-02mm 0.2 mm]

Thus the least squares estimate of each of the three sides is in fact 50.0 mm with the
volume being y = 125 x 103.

So it can be seen that the two solutions are identical both as regards to the
estimate of the observations and the estimate of the volume. The reason for this
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possibility is the fact that only one observation is required and also that the type of
condition between the observations in both cases is the same—being the equality of
all observations—and that the observations were uncorrelated and of equal
precision.

For completeness, we work out the above adjustment using the case of explicit
observations and parameters. Let x be the parameter representing the best estimate
of the cube’s side. Then

ll—"x=0
12—x=0
13—x=0

are three condition equations (c=r+u=2+1=3), or

HEEIRE

With Q = I, the normal equations would simply be
3x = (ll + lz + 13)

Realizing that x is the same as [, we get
i= ’}(11 + lz + 13)

which agrees with earlier results.

Example 8.2. In the cases of the preceding example the mathematical equations
have all been originally linear and the adjustment proceeded directly. Furthermore
the computation of the volume of the cube was a postadjustment operation. In this
example we shall deviate from both points and introduce the volume as the par-

ameter required and estimate it directly from the adjustment. If y denotes the volume,
the condition equations will be

i —y"=0
I, —y'? =0
I3 __yl/3 =0

Linearization yields

vy o yr -1
va | + | =R A= [y -1,
v3 -4H° Yo =1

The normal equations matrix (in this case a scalar) is
N =4y
If the approximation is taken as y° = (49.5)3, then

—0.5 mm
f = |-07mm and  t=0.5y"""

31 —0.3 mm
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Thus
A= 3y°“’3(0.5y°”’3) = 3675.37 mm?
and

y = 121287.375 + 3675.37 = 124962.745 mm?

If this new value of the volume is used as a fresh approximation, another correction A
may be computed as approximately 37.25 mm?. This would give the expected answer
of 125000.00 mm?3.

The choice of y° = (49.5)® was intentionally done so that both linearization and
iteration may be demonstrated. An obvious choice should have been (50)3, but that
would have led directly to a A = 0, and the adjustment may have appeared trivial.

Example 8.3. For the adjustment case of observations only the linearized condi-
tion equations were of the form

A v =T{ (a)

r,nn1 r, 1

For the case of adjustment of indirect observations, the condition equation were of
the form

V+BA=f01 (b)

n 1 nuul

Show that for the same adjustment problem the following is true: AB = 0.

Solution: Partition the second set of equations (b) into two systems, the first
containing u condition equations,

v +Bl A =f01

u 1 u,u u 1 u 1

\/) + Bz A = foz

(n—wu), 1 (n—u),u u, 1 u, 1

Under the assumption that the condition equations are independent, solve the upper
set for A (here B, will be nonsingular),

A =B (=vy+fo,)
and substitute into the lower set

Vo + By Bri(—v, +fo,) =1y,
- v -
[—Bz Bl t I] [V:] = [—'Bz Bl ‘fo] + foz]

This equation is now of the same form as the first set of condition equations (a), for
the adjustment of observations only,

A v = f

(n—u),nn, 1 (n—u), 1
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Thus
AB=[-B,B;! 1] [B‘}
B,
= —B2 + B2 = 0

An Alternative Solution: Using information from precision estimation recall
equation (7.7) from adjustment of observations only

Q.=QA W, A Q (7.7)

n,nnr r,r r,nnn
and equation (7.18a) for adjustment of indirect observations

Q,=Q-BN'P (7.18a)

nn nn nu uwu un

Since it is an adjustment of the same problem but with two different techniques, first,
W, is different from N~! and, second, Q,, must be the same from both solutions.
Thus

QA'W, AQ = Q — BN !B
Premultiplying both sides by A, and realizing that W, = (AQA’)~ !,
(AQAYW, AQ = AQ — ABN™ !B
AQ = AQ — ABN" !B
ABN 'B'=0
Postmultiplying by (WB) and recalling that N = B‘'WB,
ABN !(B'WB) =0
or
AB=0

As a numerical demonstration refer to Examples 7.4 and 7.11 from the
adjustment of a level net given in the preceding chapter:

(1 1t 1 0o o0 o0 o0 O
A0 0 -1 0 0 -1 1 0
LT51o -1 0o 1 0o 0o o -1

o 0o o o0 1 1 o0 1

(-1 0 o0 O]

1 -1 0 0
0 1 0 0 0000
1 0 -1 0 0000
B=1o0o o 1 -1 2B=loo oo
0 -1 0 1 0000
0o 0 o0 1
0 1 -1 o0
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Figure 8-2

Example 8.4. Figure 8.2 shows five plane angles measured at point P with the
following values: :

l, = angle APB = 30°15'15"
I, = angle BPC = 20°00'00"
I3 = angle APC = 50°15'18"
I, = angle CPD = 30°00'00"
Is = angle BPE = 70°00'01”

All five angles are uncorrelated and of equal precision. Compute the best estimate of
the angle DPE, its cofactor, and the estimate of the reference variance from the
adjustment.

Solution: The mathematical model of this problem is comprised of five lines in a
plane all emanating from one point P. Since there are four angles constructed by
those five lines, it would take a minimum of four observed angles to have a unique
determination of the problem. Given five observations there is one redundant obser-
vation leading to 1 degree of freedom, r = 1. If the value of the required angle DPE is
considered an unknown parameter x, then with n = 5, r = 1, and w= 1, the number
of independent condition equations will be ¢ = r + u = 2. Two equations can be
readily written from Figure 8.2 as

Il+lz—l3=0
12+l4—15+x=0

1 1 -1 0 0 v 2 O] « o [h-kth
0 1 0 1 —1fs, |11 |=li—la+ls

_ 3"
~ [20°00'01”

or
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Given Q =1, then

31 i3 -1
QFL 3] We:s[q 3}

and
3 -, 8 60°
N=g N 3 T8
Therefore
8
x = N~ 't = 20°00'00” and Q,.,=N1= 3

Thus the estimate of the angle DPE is 20 degrees and its cofactor is . To compute the
a posteriori estimate of the reference variance, first

v=QAW, (-BA+f)=[1" 1” -1 0 O]
and with

r=1 g6§=3sec? and o2=52%Q,, =8sec?

Example 8.5. Rework the problem of Example 8.4 using a different technique of
least squares.

Solution: There are two other techniques that can be used, one using Av = f and
the other using v + BA = f. In the first possibility, we would adjust the given obser-
vations to obtain 7and Qy; and then seek a function relating x and 7 to compute both
x and Q,,. In the second possibility, we would attempt to reduce the situation
covered in Example 8.4 such that the A matrix becomes the identity matrix. Let us
consider the first case. Here, with r = 1 we need to write only one condition equation
thus leading to only one normal equation in one unknown. This means that the
entire problem would probably be done by hand without need of any computational
aid. In the second case, however, we must write five condition equations. Further-
more, sincer = 1 = n — uand with n = 5, it will be necessary to have four parameters
in the condition equations in order to construct them properly. This means that with
only one parameter being of interest we have to carry three more just for the sake of
computation but without any real need of them. More serious, however, is the fact
that there will be four normal equations, the solution of which will require inverting a
square matrix of order 4. This obviously requires much more computation. It is clear
then that we should choose the adjustment technique involving only observations as
the more economical. From the figure one condition equation is

ll+12—13=0

This condition equation includes a subset of three observations only from the total of
five observations given. The problem can be continued from here and the adjustment
answer will be correct if and only if there is no correlation between the observations
appearing in the condition and those not used. This is true in the present case as
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Q =I. However, we shall change the data of the problem later to demonstrate the
point raised here. Continuing now, first,

11 —v=—l, -l +13=3"

N=3 k=1, and v=[1" 1" -1
Thus
I, =30°1516' [, =20°00001" [y =50°15'17"
ls = I, = 30°0000"  [5 =I5 = 70°00'01"

1 1 1 2 -1 -1
Qvu = % 1 1 and Qii = % 2 -1
symmetric 1 symmetric 2

or, for all five values

2 -1 -1 0 0 7
2 0 0
30
| symmetric 3:

The angle of interest is then

angle DPE = x = —1, — I, + Is = 20°00°00”

2 0 0 -1
Q..=%-1 -1 1] 3 0 -1| =%
symmetric 3 1

Note that the 3 x 3 matrix in the middle of the above expression is formed from the
Q; matrix above by deleting the first and third columns and rows and taking the
elements delineated by dotted lines. Finally, from the above computed vector of
residuals, it is straightforward to compute 63 = 3 sec?.

Actually the solution according to this case may be considered as simpler than
that used in Example 8.4. Both techniques, however, required nothing more than
simple computation.

Now we return to the consideration of taking all the observations into the condi-
tion equation even though some of them will have zero coefficients. Thus

[t 1 -1 0 0]v ==l —L,+13+0l,+0l5=3"
5.1

Since Q =1, then
N=3 k=1" and v=[1" 1”7 -1 0 Of

which shows that the residuals for I/, and I are zero. The rest of the solution follows
the same steps carried out above.

A very interesting and important case arises when the given observations
are correlated a priori. This is treated in the following example.
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Example 8.6. Given the same observed angles of Example 8.4 (see Figure 8.2) but
with the a priori cofactor matrix

21000
12100
Q=10 1210
001 21
0001 2

instead of the identity matrix used before. Interest remains in computing the angle x
using specifically the technique of adjustment of observations only.

Solution: Suppose that we begin by considering the one condition in terms of the
three observations [,, I, I3 as in the preceding example. Thus

[t 1 —Av=-L1—-L+1=3
Taking the appropriate Q for the first three observations, then

N=6 k =0%5 and v=[1'5 17 -0°5)
Thus

I, = 30°15'16"5 I, = 20°00'01” I3 = 50°15'17"5
Examining the figure, the required angle would be

x = ls — I — 1, = 20°00'00"

Although this answer agrees with the value computed in the preceding two examples,
it is in fact the wrong answer. This is because the other two observations, I, and I,
are correlated with the first three and should be carried in the adjustment as newer
estimates for them can be obtained. To prove this, we repeat the above adjustment
such that all observations are used.

[T 1 -1 0 0]v =3
5.1

21000
12100 1

N=[1 1 —-100]]0o1210]]|-t1]=6
001 21 0
000 12 0

k=0°S and v=[15 1” —0'S —05" O]
I, =30°15'16*5 [, = 20°0001” I, = 50°15'17*5
I, =29°59'59" [ = 70°00'01"

x =I5 — I — I, = 20°00'00"5

The value of x is, as expected, different from that computed above, but is the correct
answer. As a matter of fact it should be made a rule that we must consider first the
most general case and then reduce it to a specific one if we can safely do so. In the
case when Q was I this was possible, but in the presence of correlation this becomes
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dangerous. The emphasis on using the most general formulation should apply to all
techniques of adjustment and not only to the case discussed.
To complete the example, compute the a posteriori cofactor matrices

9 6 -3 -3 0 3 0 3 3 0
4 -2 =2 0 8 8 2 O
Q.=1% 1 1 0 Q=14 11 5 0
1 0 11 6
symmetric 0 symmetric 12
L L L)rs 2 o -1
L 23
Qu=[-1 -1 1f|2 11 6f |-1]="
0 6 12 1

8.2. COORDINATE TRANSFORMATIONS

Transformation from one system of coordinates to another is a very
useful operation that is used frequently in photogrammetry, geodesy, and
surveying. There is a whole family of transformations, some of which are
applicable to two-dimensional space and others for use in three-dimensional
problems. Furthermore the effect of a transformation varies from simple
changes of location and direction (without any change in shape and size), to
a uniform change in scale (no change in shape), and, finally, to change in
shape and size of different degree of nonlinearity.

8.2.1. Transformations in Two-Dimensional Space
1. From polar coordinate system to a cartesian coordinate system
x, =rcosf
X, =rsin 0 (8.1)

2. From one cartesian coordinate system to another
a. Rotation

y1 = X; COS & — X, sin a

Yy, = X; sin & + x, COS a (8.2)
or
[yl} _ [cose —sin a} [xl} (8.3)
V2 sin « cos a | | x,

b. Rotation and a Scale Change

y1 = X4(s cos a) — x,(s sin o)

Y2 = X,(s sin &) + x,(s cos a) (8.4)
or

[y,] =s[c9s @ —sina xl} _ [a —b] X4 (8.5)

Va2 sin o cos a | [x, b al|x,
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C. Rotation, Shift, and Scale Change
yi=ax, —bx,+c
ya =bx, +ax, +d (8.6)

This transformation is referred to by several names, such as four-parameter
transformation, two-dimensional linear conformal transformation, and simi-
larity transformation.

All three types of transformation given above do not allow for any defor-
mation of the space transformed. The maximum change in the shape is a
uniform scaling. The following transformations, however, do not possess
that property.

a. Six-parameter transformation

y1=ax1 +be+C
y=dx; +ex, +f (8.7)
b. Eight-parameter projective transformation (fractional linear)

a;x; +ax, +a;s

Yi= CiXy +¢y3x, +1

Ty &
c. General two-dimensional polynomial transformation

Yi=ao+aix; +a%X;, +azx;x; +agxi +asxi+ -

Y2=bo+byx; +byx; +byx;x; +byx} + bgxi+ -+ (8.9)
d. Conformal two-dimensional polynomial transformation

y1=Ao+ A xy + Ayx, + A3(x3 — x3) + A (2x, x,) + -

Y2 =By — Ayx; + A x; — Ay(x] — x3) + A3(2x, %) + -+ (8.10)

These are only a few examples of such type of transformation and readers
who are familiar with computational photogrammetry recognize that there
are many more possibilities.

8.2.2. Transformations in Three-Dimensional Space

1. One of the most commonly used transformations is the seven-parameter
transformation which allows for three rotations, three translations, and one
scale change.

y =sM x + k (8.11)

3,1 3,3 3,1 3,1
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where

Y = [y, y2 y3J coordinates after transformation
X = [x; x, x3]' coordinates before transformation
k = [k, k, k3] vector of three shifts

M = an orthogonal matrix in terms of only three independent var-
iables (often taken as three sequential rotation angles)

s = scale change

This transformation is also referred to as a linear three-dimensional confor-
mal transformation.
2. General polynomial in three-dimensions

Vi =Go+ a1 X, + ay%; + azx; + asx? +asx3 + agx3 +a,x,x,
+agXx; X3+ agxyx; + -
ya=bo+b;x; +byx; +b3xs+byx? +bsx3 + bgx3+ byx,x,
+ bgx,x3 + bgx3x, + - (8.12)
Y3=Co+ C1X; + C3Xy + C3X3 + Cax 4+ C5x3 4+ cg X3+ co X,y X,
+ CgXy3X3+ CogX3Xy +

3. Polynomials in three-dimensions which are conformal in the three
planest

Yy =Ao+ Ay x, + Ayx; — Ayxy + As(x2 — x2 —x3)+ 0
+ 2A47x3%; + 246X, X,

Vo =By — Ayx; + Ay x; + Ayx3 + Ag(—x3 + x2 — x3) + 24,x, x5
+0+245x,x,

y3=Co+ A3x; — Agxy + Ay x5 + A5(—x3 — x3 + x3) + 246X, X,
+245x3%; + 0 (8.13)

We have given a few different transformations that perform different
functions. Now we discuss aspects of adjustment with regard to these
transformations.

Example 8.7. (This is a more extensive example than those given on the two-
parameter transformation in previous chapters). A transformation between two
coordinate systems x and y is given by

y1 = ax; — bx,

Y2 = bx1 + axs;

+ See Mikhail, 1964, in the Bibliography.
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where a and b are the parameters in the transformation, (x;, x,) the coordinates
before transformation, and (y,, y,) the coordinates after transformation. In order to
estimate the two parameters, three points of known coordinates in both systems are
given. A fourth point is known in the x-coordinate system only and its corresponding
coordinates in the y-coordinate system is required. The data are given in Table 8.1.

TABLE 8-1
POINT NUMBER Xy X, Y1 Y2
1 00 1.0 =21 1.1
2 1.0 0.0 1.0 2.0
3 10 10 -09 28
4 1.0 2.0 ? ?

Every point in the first coordinate system has the covariance matrix

001 00 ]

Ex= 100 001

and in the second system the matrix

. 004 00
»7 100  004]

The units are all of the same type, for example, metres for coordinates and (metre)?
for covariance matrices’ elements.

Required: First compute the estimates of a and b and their covariance matrix,
then using these compute the y coordinates of point 4 and its covariance matrix. Use
point 1 to analyze the question of final coordinates and covariance matrices of the
given points in the y-coordinate system.

Solution: This problem of two-parameter transformation was given in a little
more simplified form in Example 6.2. In that example a detailed analysis of the
mathematical model was given and the reader may wish to review that portion before
proceeding here. The position of a point in the y-coordinate system is obviously the
end product since the transformation is given as from the x to the y system.
The points that are given by both x and y coordinates present the interesting
question of how they should be treated. In Example 6.2 only the x coordinates were
considered as observations, whereas here both sets of coordinates are observations
with given a priori covariance matrices. Therefore for the three points there are
n = 12 observations and the determination of the minimum number of elements, n,,
is an important question. Each one of these points contributes four observations to
the amount of known information, and adds two parameters as well. These two
parameters are the final y coordinates of that point which must eventually be
determined. Consequently, for all three points a total of eight variables or elements
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must be considered: two transformation coefficients and six parameters for the y
coordinates of the three points. This means that n, =8 and then r =12 -8 =4
degrees of freedom.

The above analysis for determining n, is rather important since it points out
important facts. The first point to be observed is that n, varies with the amount of
given information; that is, it is not independent of n. For example, consider the cases
when one, two, or three points are given as in Table 8.2. This fact of different n, for
different n is often encountered when adjusting transformation problems.

TABLE 8-2
NUMBER OF POINTS n ng r (redundancy)
1 4 4 0
2 8 6 2
3 12 8 4

Having determined r = 4, the question of which technique of least squares to use
follows. An attempt could be made to write four conditions among the given 12
observations. However, from the given transformation equations and the treatment
of an even simpler case of two-parameter transformation problem in previous
examples (for instance, Example 7.2), it is clear that writing such equations is not
obvious. Equally unduly complex is to write condition equations for adjustment of
indirect observations since this would require the carrying of eight parameters. Since
interest is in only two parameters, a and b, and the form of condition equations is
already given, then the logical choice would be to have u = 2, ¢ = 6 and write the
linearized conditions for the ith point as

Ai v; + Bi A = fi

2,4 4,1 2,2 2,1 2,1
If this equation is written three times for the given three points, then
A v, + BA=T{,
A, v, + BA=H,
A;va+ B;A =1,

or
A, 0 o][w B, f,
0 Az 0 \p) + Bz A= fz
or

A v +B A=Tf

6,12 12.1 6,2 2,1 6,1
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The cofactor matrix Q; for each point i is a 4 x 4 matrix. If the reasonable
assumption is made that no correlation exists between the coordinates of different
points (either the x or the y coordinates), then the total cofactor matrix of the three
points is

Q 0 0
Q = 0 Q 0
12,12 0 0 Q3

Then
(AQAY), 0 0
Q. =AQA'= 0 (AQAY), 0
0 0 (AQAY),
and
W, 0 0
W, = 0 W, 0
0 0 W,

The normal equations coefficient matrix is

N = B'(AQA")" !B = B'W, B

2,2
B,
= [B} B, B5]W,| B, | = (B'W, B), + (B'W, B), + (B'W, B);
B,
or
3 3
N =Y (BW,B),= Y N; (8.14)
2,2 i=1 i=1

Similarly the constant term vector t may be developed as

f,
t = B'We f = [Btl B'2 '3]We fz

2,1 f
3
= (B'We f)l + (B'We f)z + (B'We f)3

or
3
t =Y (BW,f) (8.15)
2,1 i=1

The two results above are interesting because they show that the normal equa-
tions may be formed by a summation process. This has the distinct advantage that
for programming on a computer, data for each point may be handled at one time,
and more important considerable savings in computer space can be effected. Note,
for example, that for the A, Q, and B matrices space required is 2 x 4, 4 x 4, and
2 x 2 instead of 6 x 12, 12 x 12, and 6 x 2, respectively. The space for these com-
ponent matrices can be used over and over for all points instead of having one set for
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each point. This characteristic of summation is, under the above assumption of block
diagonality of A and Q matrices, common to most transformations. Computer space
savings increase as the number of parameters in the transformation increases.

Now we return to our numerical problem and evaluate the matrices for any point
i, after writing the equations in the functional form

fii=axy; —bxy; —y1;=0

fri=bxyi+axy;; —yu=0

A_=[af1/ax1 0f1/0x,  Of1 /0y, afl/aYZ] =[ao -b° -1 0
' 0f2/0xy  0f2/0x2 Of2/0y1 0f2/0y2|: b° a® 0 -1

= [ C -I ] (independent of “i”)

2,2 2,2

in which a°® and b° are approximations for the two parameters

B. — [afl/aa 6f1/6b} - [xx "xz]

of2/0a  0f,/0b X2 Xy i
and
5 [}:,,x 0 ] 1 0 0 O
4';_ 0 Zyy i 10_2 1 0 0 =0'8 Q,‘
4 0
symmetric 4

With the a priori 3 = 0.01, the cofactor matrix of the observations will be taken as

1 0 0 O I 0
Q= 1 0 0= (0 41
4 0
symmetric 4

then
Q.. = A; Q; Al = CC' + 4I = (a°* + b*))I + 41
=(a” + b° + 4)1
W, =(@”+b%+4) I=d
where o« = 1/(a®* + b°* + 4), and
N, =B!W, B, = a(x} + x3); I

Thus the total normal equation matrix will then be
3
N=oa) (x}+x3):I=0a(l +1+2)I =4al
i=1

noting that « is the only value that varies from one iteration to the next because of
updating the approximations a° and b°.
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In a similar manner the constant term vector is

Y (x4 fi + %2 f2)i
Y (=x2 fi + %1 f2)i

It is important to note that the vector t is more dependent on the approximations a°
and b° because it is directly related to the vector of so-called discrepancies f. The
latter vector will approach a minimum when the solution is iterated until practically
no improvement takes place.

Using the matrix N and vector t the correction vector A may be computed as

_N-1g =L 1 O fi 4 X2 fo): J
2é2 N 4[ =1 (=x2 fi + x1 f2);

Now, consider the question of choosing approximations for the parameters.
Taking the rather easy choice first begin by a°® = b° = 0. Thus
Case1.a°=0and b° =0

-2.1 1.0 -09
fi = [ 1.1] f. = [2.0] f, = [ 2.8}
S (X fi+ %2 fa)i= 11+ 10+ 19=140

Y (=x2fi+x f2)i=21+20+37=78
Then

1[40] _[10
A —3[7.8} - [1.95]

3 3 3
t=Zti=ZaB§f,~=a B?fi=a
i=1 i=1 =1

11

and

1
= 1l I=
Qam =N I=1

since « = § when a° = b® = 0 which with a priori 63 = 0.01 leads to the covariance
matrix of the parameters

001 O ]

Eas = [0 0.01

This, in fact, ends only the first iteration, and since the corrections are obviously
quite large, at least another iteration is necessary. To start the second iteration,
therefore,

a®=10 b° =195
and

—0.15 0.0 +0.05
fi= ( 0.10] f2= [0.05} f, = [—0.15}

Y (%1 fi + X2 £2)i =010+ 0.0 — 0.10 = 0
S (=x2 fi + X1 f2);=0.15+ 005 - 020 =0
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With a zero t vector then A =[0 O] and the final parameters are a = 1.0 and
b =195

It is very important to realize that in order to get the correct cofactor matrix of the
parameters, the last N~ ! must be computed, otherwise the one already available may
be grossly in error. In this case the new N~ 1 is

1 a”+b%+4 88025

- B = =
N~ 1= ™ I 4 I 4 I = 2.20061
Thus the covariance matrix of the final estimates of the parameters is
y - 0022 00
7100 0.022

Comparing this matrix with the one computed at the end of the first iteration reveals
a variation of over 2009, indicating how serious an error may be committed if
proper attention is not paid when solving a problem by iteration.

Case 2: In this case consider an approach of computing approximations for the
parameters with reasonable effort. For example, we might apply a minimum solution
by choosing, say, the first point to solve for a and b. Thus

—21=—-b or b°=20 (rounded off to whole number)
1.1= a or a®°=10 (rounded off to whole number)

(Note that if the second point was used, the above approximations would have been
obtained without rounding off. If the third point is used, a little more computation
will be involved but with about the same resulting approximations.)

Another possibility, which in principle would yield slightly better approximations,
is to compute the means of all coordinates and use them to solve a minimum case.
Although this is not a demanding effort in the present example, it could be a rather
unwarranted computation in more involved problems.

With a® = 1.0 and b° = 2.0, then

—-0.10 00 0.10
fi= [ 0.10] f= [o.o] fs = {—0.20]
Y (%1 fi + X2 £2);=0.10 + 0.0 = 0.10 = 0
Y (=2 fi + x4 f2);i=0.10 + 0.0 — 0.3 = —0.2

SHEAT N

leading directly to the final result of @ = 1.0 and b = 1.95. Now, to compute Q,, we
should advisably use @ and b directly to compute the final N~ !. If we were to use the
original approximations, we would get

a®” +b° + 4

Qs =N7! =“—T———l = 2.251

which would lead to

00225 0 ]

Eax = [0 0.0225
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The variation in this case is only slightly over 2%, and this is because the computed A
is about the same percentage different from the final answer. Although such differ-
ence may be sufficiently small to be negligible, it is advisable always to update the
cofactor matrix at the last iteration.

An important final remark is worth mentioning here, which is that we should
always obtain the best possible approximation vector that requires a reasonable
effort of computation. As has been shown above, with good approximations it was
not even necessary to perform another iteration. The reader must be cautioned,
however, that this is true here only because the condition equations are almost linear
(of course, if they were in fact linear, no iteration would be necessary). Nevertheless,
we would expect that, in general, choosing better approximations would lead to
fewer iterations.

Coordinates of Point 4 in the y System

Via =aXy4 — 53‘24 = —2.90
3724 = 53(14 + &X24 =395

To compute the covariance matrix of the vector y, we should realize that all
variables (x,, x;), and (a, b) ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>