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Preface

This book is an outgrowth of lecture material that evolved over many
years of teaching the subject of least squares at the undergraduate and
the graduate levels by the primary and contributing authors. The presen-
tation is such that the beginner may acquire a thorough understanding of
the basic concepts. There is also sufficient material to challenge the advanced
student. The book is therefore suitable for a first course and for one or
two advanced courses on observations and least squares. In addition, the
numerous examples worked out in detail together with complete derivations
make it equally useful for self-study or as a reference.

The book is divided into three parts: Part I deals with fundamental
concepts, Part II covers in detail the common techniques of least squares
adjustment, and Part I1I discusses advanced topics. The appendices following
the main text provide necessary supplementary material.

Chapter 1, which introduces the concepts of observation and the mathe-
matical model, should be read first. Chapter 2 includes a review of
statistical concepts that are pertinent to the main theme of the book.
Since it is not intended to substitute for statistical literature, it contains
very few theoretical derivations. As a review, however, it is sufficiently
complete, covering both one- and multidimensional cases. The beginner
need not read this chapter in its entirety before proceeding. Chapters 3 and 4

ix
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are concerned with “errors” and their propagation. “Error,” a commonly
used term, is related to the more appropriate term “observation” in the
context of statistical notions. For propagation the reader needs familiarity
with matrix manipulation. Prior review of Appendix A is necessary before
reading Chapter 4.

An introductory undergraduate course on the subject might include
Chapter 1, parts of Chapter 2, Chapters 3, 4 in Part I; Chapter 5, 7 and
parts of Chapters 8 and 11 in Part II. If the first course is dual-level
undergraduate-graduate, Chapter 6 should be added to the list. Thus the
student would be exposed to basic statistics, propagation, and two or three
techniques of least squares adjustment using condition equations. The term
“condition equations” has been generalized in this book to mean all
equations involving observations.

A second course might include Chapter 2; a review of Chapters 4 and
6, Chapters 9, 10 and 11 in Part II; and parts of Chapters 12 and 13 in
Part III. At the end of such a course the student would have learned
techniques of adjustment with constraints (equations involving only
parameters); unified adjustment where all variables in the model are treated
as observations; adjustment in steps; and sequential data processing.

For more advanced study, the latter parts of Chapters 12 and 13, as
well as 14 in Part III provide the reader with further material. In particular,
Chapter 14 introduces the concepts of interpolation (prediction), filtering,
and collocation. After reading this chapter, the student will be better pre-
pared to further his knowledge in these advanced subjects by studying the
technical literature.

The development of the topics is sytematic in that each technique is
progressively shown to be an extension of a preceding simpler technique.
Essential to the following of the development is familiarity with matrix
algebra, a review of which is given in Appendix A. Although generalized
matrix algebra may be used instead, it is not considered necessary to the
topics covered in this book.

The presentation is complete in itself. However, a bibliographical list is
given at the end of the book to provide a source of supplementary reading.
The reader should consult this list when seeking additional information on
specific subjects.

The terms used are usually defined when introduced. However, some
common statistical and adjustment terms may have been employed without
specific definition. Readers unfamiliar with such common terms may consult
a dictionary of statistical terms or the International Society for Photo-
grammetry Multi-Lingual Dictionary, 1961.

There are many colleagues whose encouragement and assistance made
the completion of this book possible and are gratefully acknowledged:
Mr. D. C. Brown reviewed a major part of the manuscript, made valuable
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recommendations, and allowed the use of some paragraphs and figures
and adaptation of a section on recursive partitioning; Dr. E. Stark
programmed most of the numerical examples; Dr. G. W. Marks edited
Chapter 2 and computed some of its numerical examples ; Professor K. Kraus
contributed examples and illustrations to Chapter 14 which was reviewed
- by Dr. F. Leberl; Professor P.-L. Baetslé assisted with the material in
Appendix C; Drs. B. Makarovi¢ and P. Stefanovic read parts of the
manuscript; Dr. D. L. Gifford had many discussions with the primary
author and made significant recommendations; Professor K. Linkwitz
allowed the use of Example 9.4; Professor H. Moritz permitted the use of
the example in Chapter 14; and Mr. R. S. Johnson who assisted in reviewing
the galley proofs. The primary author also wishes to acknowledge his past
and present graduate students who taught him more than he is willing to
admit and who continuously encouraged him to get this book published;
and to thank his wife LaVerne without whose faithful support this book
would not have become a reality.
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Concepts of Observation and the Model

1.1. INTRODUCTION

Adjustment is meaningful only in those cases in which the data available
exceed the minimum necessary for a unique determination (redundant data).
Since the data are usually obtained from observations (or measurements),
which are subject to probabilistic fluctuations (classically known as errors),
redundant data are usually inconsistent in the sense that each sufficient
subset yields different results from another subset. To obtain a unique solu-
tion, an additional criterion (such as that of least squares) is applied.

In order that we may understand the details of adjustment techniques, a
number of basic concepts and their interrelations are introduced in this
chapter.

1.2. OBSERVATIONS (MEASUREMENTS)

Both the terms measurement and observation will be used alternatively
hereafter as having the same meaning. The term “ observation ” (or measure-
ment) is often used in practice to refer to both the operation or process itself,
as well as the actual outcome of such operation. With regard to adjustment

3



4 CONCEPTS OF OBSERVATION AND THE MODEL

the outcomes, and in particular numerical outcomes, will be designated as
the “observations.” Such numerical observational data are fundamental to
science and engineering because they supply the instrument for analysis and
manipulation.

Casual consideration of the concept of measurement is not problematic,
since we can easily accept such seemingly simple notions as measuring dis-
tances, angles, temperature, or speed. However, when we take a closer look at
the operation called “ measurement,” matters do not turn out to be so easy.
As a matter of fact, even the measuring of a distance with a tape is a
relatively complex operation, the analysis of which leads to the following
fundamental properties of measurement:

1. To measure always means to perform a physical operation; and the
process of measurement often consists of several more elementary opera-
tions, such as preparations, either instrument setup or calibration (or
both), pointing, matching, and comparing.

2. The numerical reading or result obtained from the process is considered
to represent the measurement. Thus the figure obtained as the measure-
ment carries with it the circumstances and relevant historical data of how
it originated.

3. Measurements are almost always performed with the help of instruments,
no matter how simple, or with the aid of physical events. (An exception
would be simple counting of a certain event.)

4. Measurements refer to standards, which are established by convention
and which are rather arbitrary. Thus, in essénce, to measure is to compare
with a standard. Consequently, one is concerned with units and dimen-
sions because the results of measurement always have a dimension of
some sort.

5. Deeper consideration of measurements reveals that they refer to rather
theoretical concepts, such as the geometrical abstractions used for dis-
tances and angles that have no real, direct equivalent in physical nature.
We choose such concepts in order to describe certain elements of nature,
such as location, area, or extension, that may be of interest to us.

6. Although performing measurements is an operation or a process, the
results obtained from such processes take their meaning of a measure-
ment only by association with the theoretical concepts to which they refer
and on which they are based.

The theoretical abstractions to which measurements refer are called the
model. In science and engineering, which are the subjects considered in this
book, the model is almost always mathematical. Although it may appear
that such a model concept is rather theoretical, it is in fact of basic impor-
tance to the subject of adjustment. A thorough understanding of the concept
of the model considerably facilitates the task of adjustment.
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1.3. THE MATHEMATICAL MODEL

Since most of the activities treated in this book pertain to quantitative
problems, consideration will always be given to the mathematical model. It is
defined here as a theoretical system or an abstract concept by which one
describes a physical situation or a set of events. Such a description is not
necessarily meant to be complete or exhaustive, but to relate only to those
aspects or properties that are under consideration. Since a model serves a
particular purpose, its setup can vary widely from one point of view to
another. Thus the same physical system may be described by more than one
model. The model then replaces the physical situation for the purpose of
assessing it.

The mathematical model is often thought of as being composed of two
parts: the functional model and the stochastic model. The functional model
will in general describe the deterministic properties of the physical situation
or event under consideration. On the other hand, the stochastic model desig-
nates and describes the nondeterministic or stochastic (probabilistic)
properties of the variables involved, particularly those representing the
observations. Both functional and stochastic models must be considered
together at all times as there may be several possible combinations, each
representing a possible mathematical model.

1.3.1. The Functional Model Whenever measurements are planned, some
functional model is usually chosen to represent either a physical or a ficti-
tious system with which the measurements are associated. In fact measure-
ments are usually made in order to assess values for some or all of the
parameters of the functional model. In photogrammetry, geodesy, and sur-
veying we generally deal with geometric time-independent models and occa-
sionally with dynamic models, such as the following:

1. Geometric model in surveying: A plane triangle, in Euclidian space, char-
acterized by three angles, three corner points, three sides, and perhaps
also orientation with respect to a coordinate system.

2. Geometric model in photogrammetry: Aerial photographs considered to

be perspective images of (geometrical) terrain points.

Dynamic model in geodesy: Gravity field of the earth.

4. Dynamic models in photogrammetry: Orbital photography and time-
dependent scanning photography.

w

Because the geometric models used are rather simple and easy to visual-
ize, the elements of the model and the physical elements to which they refer
are often not clearly distinguished. It must be recognized, however, that
there are in nature no such objects as points, angles, distances, or coordin-
ates. These are only elements of the functional model that are used to
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describe corresponding features of natural objects or their relationships of
location.

Functional models are very often not stated explicitly, as they may refer
to conventional models which are mostly defined by implication. If, for
instance, a surveyor says that he measured a distance, then he refers to two
objects that are abstracted and considered as two geometrical points. Even
then he may not refer to the distance in its direct geometrical meaning, but
rather to its projection onto a plane or even on an ellipsoid. Similarly, an
angle CAB from point C to B about another point A is usually not the angle
in the plane ABC, but its projection in another plane such as the horizontal
(XY) plane.

It is perhaps the role of education in a given field to expound different
workable models for different tasks. It is part of the technical skill of a
scientist or engineer to know in which cases to operate with certain models
and in which cases to construct new ones.

In general the functional model should conform to the physical reality
with sufficient accuracy for the intended purpose.

1.3.2. Relating Observations to the Model A functional model is a com-
pletely fictitious construction used to describe physical events by an intelli-
gible system suitable for analysis. It is linked to physical realities by
measurements or observations that are themselves physical operations. In
simpler situations, measurements refer directly to at least some elements of
the functional model. However, it is not necessary, and often not practical,
that all elements of the model be observable. In more involved situations,
measurements do not actually relate directly to the elements of the model in
question. For example, electronic distance measurement is actually the
measurement of time, or time differences, not of distances. Here, a lot more
theory becomes involved that must be incorporated into the model when the
measurements are linked to the model. In fact, additional variables are
necessarily included and new functional relationships added, thus expanding
the model concept beyond the apparently simple task of measuring a dis-
tance. Consequently, in order to associate the results of the measurements
with the elements of the model, the model must be extended.

The augmentation of the functional model due to measurements and their
properties is of basic importance. The evaluation of observations depends on
how and by what instruments and methods they have been acquired. The
“measured” length of a line depends to a great extent on the measuring
process, on whether the calibration of the instrument is considered to be
known, on which reductions are to be applied, and so on. The same applies
to the case of measuring angular directions. For instance, we must consider
the zero direction and determine its place in the model, whether it is to be
taken as known or unknown.
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It may be a relatively long process, therefore, until the outcome of a
measurement can be associated with an element of the model. Very often the
direct readings from the measuring operation have to be “reduced” or
preprocessed (which implements a correction model) before they can be
considered appropriate.

In linking the observations te the model many of their features are often
discarded for the sake of simplicity. For example, the special circumstances
under which the actual measurements are acquired are seldom taken into
account. In the light of the extension of the functional model, the modeling
of this part is simplified. However, whenever a change is made in the func-
tional model, the stochastic model must be modified accordingly.

1.3.3. The Stochastic Model—Statistical Properties of Measurements As
the practitioner knows from experience, measurements are always subject to
some unaccountable influences. They may be subject to physical influences
that cannot be completely controlled, resulting in a certain variability of
outcomes when observations are repeated. The variability of the results of
measurements may or may not be attributed to some distinct physical
causes. Such statistical variations, either due to neglecting physical or time-
dependent influences or due to more inherent qualities of physical processes,
are a basic property of measurements.

In the past these variations were said to be due to observational errors. At
present, however, we accept variability or randomness of the results of meas-
urements as a principal property of the observations and refer to statistical
concepts in order to account for it.

From a practical standpoint it is rather difficult to assess the statistical
properties of the observations. One way is to obtain repeated observations
and derive the required properties, but this is usually demanding. Another
way, which is often used, is to assume the statistical properties on the basis of
a general reference to similar observations that were performed under simi-
lar circumstances in the past. Therefore when measurements are made, all
relevant physical and environmental circumstances should be recorded
during the measuring period in order to be able to judge the results properly.
Actually, we often accept in practice rather coarse approximations for the
statistical properties of the observations. For example, in geodesy the obser-
vations are usually considered (statistically) independent and often of equal
precision (weight). The same applies in photogrammetry to image coordin-
ates, although it is rather well known that film shrinkage causes (physical)
correlation between image points. The assumption of independent image
coordinates is made mainly because of its simplicity and because of the
practical difficulty experienced so far in determining the correlation.

The totality of the assumptions on the statistical properties of the var-
iables involved is called the stochastic model. It includes all model variables
and designates those that are considered fixed (that is, constant during the
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adjustment, either known or a priori determined) and those that are con-
sidered free (that is, the parameters to be determined in the adjustment).

The classical theory of least squares adjustment did not explicitly specify
the concept of stochastic model. Instead, the terms observational errors or
error properties of observations were used. To the present practitioner,
however, the term “ measurement” or “observation” is not ambiguous and
is used with very general meaning. In this book the term “ observation” will
refer to any quantity that is considered as a stochastic (random) variable and
for which an estimate is available a priori. Such an estimate may be derived
from direct or previous measurements or otherwise.

EXAMPLES OF VARIABLE DESIGNATIONS

1. The refraction coefficient in trigonometric height observation may be
treated as a constant, as a free parameter to be determined from the
adjustment, or as a (stochastic) variable (to which a “standard deviation”
is associated). In the latter case it is considered as an observation and
treated accordingly.

2. In fitting polynomials to a set of data one or more coefficients can be
treated as observations (with “expectation,” or mean, zero and a given
standard deviation). This practice can often alleviate the possibility of an
indeterminate solution.

As has been alluded to above, in the theory of observation and adjust-
ment we deal with random variables whose treatment requires knowledge of
statistical concepts. Therefore the remainder of Part I, particularly Chapter
2, is devoted to those aspects of statistics that are useful in adjustment. The
treatment of such subjects will by necessity be concise and the reader is
advised to refer to statistical textbooks for more detailed study and deeper
insight (see the Bibliography at the end of the book).

Chapter 3 of Part I deals with an elaboration on the properties of obser-
vations. It attempts to relate classical theory of errors and modern theory of
observations. Chapter 4 covers the principle and techniques of propagation,
from one set of random variables to another.



2

Review of Statistical Concepts

2.1. INTRODUCTION

This chapter summarizes briefly a number of statistical concepts that are
needed for the understanding of the theory of observations as will be treated
in this book. These concepts are also necessary for the introductory founda-
tion of the method of least squares as well as its assessment and practical
application. The concepts to be introduced will be extracted from the two
related mathematical fields of probability and statistics. In simple terms
probability involves the laws of chance regarding the outcome of experi-
ments. Its theories deal with averages of mass phenomena that may occur
sequentially or simultaneously. They attempt to describe and predict those
averages that would have been realized if the experiments were repeated
many times. Statistics, on the other hand, deals with applying the laws of
probability either to obtain estimates or to make inferences based on a given
set of observational data. It is therefore concerned with methods of collect-
ing, analyzing, and interpreting data. Both of these disciplines are used to
assist the experimenter in making proper judgments in the face of uncer-
tainty. They yield criteria on the basis of which decisions may be made.
However, they never actually lead directly to the decisions to be made.

9
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2.2. PROBABILITY, DISTRIBUTIONS, AND
DENSITY FUNCTIONS

2.2.1. Probability Classical definitions relate the concept of probability of
an event to the frequency of its occurrence when repeating an experiment;
this repetition may be real or hypothetical. This leads to defining probability
as the limit of the frequency of occurrence when the number of repetitions
approaches infinity. If, for instance, the relative frequency of throwing a 6
with a die tends toward £ (with number of throws n approaching o), then
the probability of throwing a 6 with this die is considered to be 1 or 0.166.

In modern statistics this concept of probability as expected frequency is
no longer in common use. Instead, probability is now considered as an
independent basic concept associated with statistical events, and its proper-
ties are being founded axiomatically. In order to appreciate this concept, we
first introduce the idea of the random variable.

2.2.2. Random Variable Probabilities are associated with statistical events,
whether real or hypothetical, and an event is the outcome of a statistical
experiment (such as throwing dice, measuring angles, or counting defective
units of a product). If a statistical event has several possible outcomes, we
associate with that event a stochastic or random variable, x. A random var-
iable may be defined as a variable that takes on several possible values to
each of which is associated a probability.

In probability we normally seek the behavior of a system on the basis of a
known mathematical model with specified parameters. The totality of ele-
ments to be studied and about which information regarding its behavior is
sought is called the population. In the theoretical sense the population is
assumed to contain an infinite number of observations, whereas in practice it
may have a very large, but finite, number of observations. The population
includes all possible values of the random variables under consideration.
Said another way, the population is the total of all possible outcomes of the
statistical event associated with the random variable. Because of the very
large size of the population, it is either impossible or entirely impractical to
study each and every one of its elements to evaluate its characteristics.
Therefore we select only a certain number of observations from the popula-
tion, which we call a sample, and study it. From the results of sample study,
we may draw inferences and make statements regarding the population from
which the sample was taken.

The method of drawing a sample, as well as its size, will influence the
conclusions that may be made. Obviously, the larger the sample size, to a
certain extent, the more confident we will be regarding the results. As far as
the method of drawing the sample is concerned, we must be careful that it
does not follow a regular pattern. When this does occur, we run the risk of
having the elements of the sample exhibit systematic effects, and the exten-
sion of the sample results to the population may not be entirely valid. To
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alleviate such a difficulty it must be ascertained that the sample is drawn at
random, which means that each element of the population has an equal
chance of being chosen into the sample. This is equivalent to saying that the
selection of each element of the sample is independent of each other selection.

The total set of possible values of a random variable, X, together with
their probabilities, constitute what is termed a probability distribution asso-
ciated with the random variable. Consequently, a probability distribution
describes the various probabilities related to the possible values of a random
variable. These distributions are specified as two types: cumulative distribu-
tion functions and probability density functions.

2.2.3. The Cumulative Distribution Function The cumulative distribution
function F(x) for the random variable X is defined by the relationship

P(Xx < x) = F(x) (2.1)

which says: The probability that the random variable X takes values less
than or equal to x (x being a running variable) defines F(x) or the cumula-
tive distribution function. Because probabilities are, by axiomatic definition,
limited to values between 0 and + 1 (that is, 0 < P < + 1), the distribution
function F(x) satisfies the following marginal conditions:

lim F(x)=0 lim F(x) = +1 (2.2)
Although the basic definition in equation (2.1) holds for discrete as well as
continuous functions, we shall, in the context of this book, be mainly con-
cerned with continuous distribution functions.

2.2.4. The Probability Density Function The probability density function
f(x) is formulated in a manner analogous to the concept of density in phy-
sics. It can be defined as the probability for an interval Ax. Assuming contin-
uous differentiable functions, the relationship between F(x) and f(x) is

X

Fx)={ f()dr (2.3)
and
7y = 2 24)

From these two relationships we can easily deduce the following statements:

1. The probability that a random variable X takes values in the interval
between x; and x,, where x, > x, is given by

P(x, <% <x2) = F(x2) = F(xy) = [ f() dr (2.5)

X1

which is depicted by the shaded area in Figure 2.1.



12 REVIEW OF STATISTICAL CONCEPTS

Sx)
4

Figure 2.1

2. The probability that a random variable X takes values smaller than x, is
given by
P(—o0 <X <x,)= F(x;) — F(— ) = F(x,)

x1

=[ f@)dr (2.6)

Y-

Note that F(—o0) = 0 according to equation (2.2).
3. Similar to (2) we can write for the probability that x takes on values
larger than x;.

P(x, < X < 0) = F(c0) — F(x;) = 1 — F(x,)

[ 1) dr 27)

Y x1

Note again that F(c0) = 1 according to equation (2.2).

From the preceding development two conditions stand out to character-
ize f(x) as a probability density function:

1. f(x) = O for all values of x.

2. {2, f(x) dx = 1, since infinite values of x have been implied and since
the total value of the probability, being in this case the entire area under
the density curve, must equal 1.

The two criteria (1) and (2) given above must be strictly satisfied in order
that a function may be considered as a probability density function.

Before addressing cases involving more than one random variable
(variate), it should be mentioned that the probability density function ex-
presses the whole population. It is usually represented by a number of var-
iables which are called parameters in statistical terminology. Knowing the
parameters totally specifies the density function. By contrast, the sample
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values drawn for a population are used to compute quantities that are
known as statistics. Each statistic usually represents an estimate of the corre-
sponding population parameter.

2.3. MULTIDIMENSIONAL DISTRIBUTIONS, MARGINAL
AND CONDITIONAL DISTRIBUTIONS, INDEPENDENCE

The concepts introduced in Section 2.2 involved only one random
variable. In many practical situations we often encounter cases with more
than one random variable. For example, the case of two random variables X
and y has a two-dimensional cumulative distribution function F(x, y). The
joint probability of x taking values smaller than x and of y taking values
smaller than y (x and y are both running variables) is given by

F(x,y)=P(x<x,y<Yy) (2.8)

In a manner similar to the one-dimensional case, if f(x, y) refers to the
two-dimensional probability density function, and assuming continuous differ-
entiable functions, then

02
1) =8

x y

F(x, y)= [ [ f(u, v) du dv (2.10)

*=0w *—o

(2.9)

As before, since 0 < P < 1 is the allowed region of values of probability,
therefore

lim F(x, y)=0 lim F(x, y)=+1 (2.11)
X— — © x=++ o0
y=—o y=>+awo

Finally, the probability that the two random variables X and y take values
between x, and x,, and y, and y,, respectively, is given by
X2 y2
Plx; <k <xiy <y<y)=|[ [ flwv)dudo (2.12)
X1 "y
Geometric representation for two-dimensional joint probability distribution
can be effected in a way similar to the one-dimensional case (Figure 2.2). A
probability within the interval x; — x, and y, — y, is equal to the volume
that is bounded by the surface f(x, y), the x — y plane and the four vertical
planes, x = x;, x =X, y=y,and y=y,.
For the n-dimensional case, the n random variables are collected in a
random vector X, or

X =[% % %] (2.13)
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f(x,)
4

f(x,9)

Figure 2.2

For that random vector, an n-dimensional joint density distribution function

f(x) is

f(X) =f(x1’ x25 AR xn) (214)
and a corresponding cumulative distribution function F(x), is
F(x)=F(xq, X35 ..., X,) (2.15)

The probability that the random vector X takes values smaller than x is
given by

F(x) = P(X < x)

X1 X2
=P(>~Cl<xl,i2<x2,...,i"<xn)=JA j
J f(ul, Uy onny u,,) dul du,_ dun (2.16)

— o0

Although these relations show a relatively straightforward extension of the
one-dimensional case, the two-dimensional and multidimensional cases are
sufficiently different to warrant a few new concepts. These concepts include
marginal distribution, conditional distribution, independence (and correlation),
all of which are only relevant when speaking of situations other than one-
dimensional cases.

2.3.1. Marginal Distributions A marginal distribution is obtained from an
n-dimensional distribution (n > 2) by disregarding the distribution of one or
more of the components of the random vector X. For example, the two-
dimensional joint distribution for X and y may be reduced to the one-
dimensional marginal distribution for x by disregarding its relation, if any,
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with y. This is accomplished technically by selecting for y the upper limit
value of y = + oo in the cumulative distribution functipn of equation (2.8) or
(2.10). Consequently, the marginal cumulative distribution function of the
random variable X is given as the joint probability of X taking values smaller
than x, and y taking values less than + oo, or

Fo(x) = F(x, ) = P(X < x, j < o) =j j flu, v)dudo (2.17)
The joint density distribution function f(x, y) is reduced to the marginal form

Julx) = f T (4, v) dv (2.18)

- @
which leads to the marginal cumulative distribution function for X as

F(x) = j fulx) dx = P(% < x) (2.19)
Extending to the n-dimensional case, we can readily see that marginal dis-
tributions exist for all possible combinations of the random variables in
groups of 1, 2, ..., and (n — 1).

2.3.2. Independence Let F(x, y) denote the joint two-dimensional cumula-
tive distribution function of the two random variables x and y, and F(x) and
F(y) denote the marginal cumulative distribution functions for x and j,
respectively. The two random variables X and y are said to be independent if

F(x, y) = F(x) - F(y) (2.20)

Equation (2.20) also leads to a relation for density functions, provided they
are continuous. Thus for two independent random variables

f6y)=1(x) - f(y) (221)

In fact, the relation in equation (2.21) can be directly extended to the case of
n-dimensional density functions, or

f(xla X255 eens xn) =f(x1) 'f(xZ) f(xn) (222)

The concept of independence of two or more random variables is a con-
sequence of the concept of independence of statistical events. It may be
recalled that two events are said to be statistically independent if the probab-
ility of the joint event is equal to the product of the probabilities of the
separate events, that is,

P(ab) = P(a) - P(b) (2.23)

We should distinguish between statistical or stochastical independence
and functional independence of variables. Two variables may be functionally
independent but may not necessarily be stochastically independent.
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2.3.3. Conditional Distribution The concept of conditional distribution is
defined in a manner similar to that of conditional probability. For example,
P(b |a), which reads probability of b given g, is the probability of the statisti-
cal event b on condition that the statistical event a has happened. Analo-
gously, the conditional distribution of (| X) (this reads the distribution of y
given %) is the distribution of y for a given value of X from a two-dimensional
distribution of the random variables X and J.
The conditional density function of y given X is

fx y)
ylx) = 224
1619 ="20 (229
The two concepts of independence and conditional distribution are
directly related to each other. If two random variables X and y are indepen-
dent, then the conditional distribution of y given X is the same for any value
of % and vice versa. In terms of the relationships already given

_f(y) _ Sfulx) " Suy)
SulX) JalX)

Thus the values of % have no influence on the conditional distributions of
7 that are then all equal and identical to the marginal distribution of .

The concepts of marginal and conditional distributions and of correlation
are illustrated for the two-dimensional case in Section 2.7.1 on sampling by a
numerical example on the stereogram (bidirectional histogram). Therefore
the reader may consult that section at this point in order to gain a better
understanding of these otherwise apparently abstract topics.

2.4. EXPECTATIONS, MOMENTS, AND CORRELATION

The distribution and density functions of random variables are charac-
terized (and determined) by a number of parameters which are useful for the
understanding of their behavior. The first of these expresses the intuitive
concept of the mean and is referred to by one of several terms, such as
expectation, expected value, mean, or average.

f|x) = fu(y) =f(») (2.25)

2.4.1. Expectation The expectation E(%) of a random variable X, if it exists,
is defined as the average value u, of the variable over all possible values. It is
computed by taking the sum of all possible values x; of X each multiplied by
its corresponding probability P(x;). Thus

B(R) = he = Yo Plx) (2.26)

For a random variable x with a continuous density function f(x), the expec-
tation is given by

E(X)=pu,= J._w xf(x) dx (2.27)
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where f(x) is the density function of X. The relation in equation (2.27) may
be extended to a more general form when we consider the expectation of a
function g(X) of a random variable X whose density function is f(x). In this
case

E(g(x)) =] g(x)f(x) dx (2.28)
The expression of equation (2.26) can be used to show how the name of
mean of x comes about. If there are n possible values x; of X, each having
equal probability P(x;) = 1/n(= constant), then the computed expectation
U, from equation (2.26) becomes identical to the arithmetic mean of the n
values x; . If the probabilities P(x;) are not equal, it can be easily shown that
equation (2.26) would provide the weighted mean of the n values, taking the
weights as proportional to the probabilities of occurrence of each value x;.

Equation (2.28) may be extended to cases of two or more dimensions. If
X =[x, X,]' is a two-dimensional random vector with the corresponding
joint density function f(x,, x,), which is assumed to be continuous, then for
any function g(x;, X,) the expectation is defined as

E(g(xy, X,)) = le _[_w g(x1, x2) - fx1, x5) dx; dx, (2.29)

Similarly, for the general case of n dimensions

Blo(o fa o3 = [ [ [ gl %)

(2.30)

When working with expectations, several simple rules can be obtained as a
consequence of equations (2.26) through (2.30). These rules are given here
without proofs.

'f(xla Xg s aney x,,) dx, dx, -+ dx

E(E(X)) = E(X) (2.31)
E(X + y) = E(X) + E(p) (2.32)
E(c)=c | (2.33)

where ¢ is constant,
E(cx) = cE(X) (2.34)

where c is constant.
E(x - §) = E(%) - E(9) (2.35)

if and only if X and y are independent random variables.

E(x*) # (E(%))* (2.36)

in general.
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Example 2.1. If %, j, and %z are three independent random variables and
w = 3x + 5% — 2, what is the expectation of w if we are given the expectations u,,

Uy, and p, .

Solution: Applying the relations above, we can then write

E(W) = Uy = 3ﬂx + S)uyﬂz -2

Before leaving this section it is perhaps worth pointing out that the
combined equations (2.31) through (2.34) express the so-called laws of
propagation of the mean as will be explained later (see Section 4.3.2).

2.4.2. Variance Let g(X) be defined as

g(x) = (x — E(X))* = (x — )’ (2.37)

The expectation of this special function g(X) is called the variance of the
random variable X, and is given by

var () = o2 = E(g(x)) = E[(x — EG)?] =] (x = p)* - f(x) dx
N (2.38)
in which f(x) is the density function of X, assumed to be continuous. The
square root of a2, denoted by o, is usually given the name standard devia-
tion. The variance (or the standard deviation) is a measure of dispersion.

In view of the few rules of expectation given previously, an alternative
form for the variance is possible, as follows:

var (%) = of = E[(X — E(x))’] = E[(% — n,)*]
= E[X* — 2xp, + pi]
var (%) = E(X*) — 2u, E(X) + E(13)
or

02 = E(%?) — 2 = E(%) — (E(%))? (2:38a)

2.4.3. Covariance and Correlation In a manner similar to defining the var-
iance of one random variable, the covariance may be introduced when con-
sidering two random variables. Let the two random variables X and y have
the joint density function f(x, y), and define the function

h(%, 9) = [(X — EG))(7 — EG))] = [(X — n)(F — )] (2.39)
The covariance between X and y is defined as the expectation of the function
h(x, y), or

cov (%, ) = o,, = E[h(%, 7)]
= E[(x — u)(y — ﬂy)]



24 EXPECTATIONS, MOMENTS, AND CORRELATION 19

or

o= [ [ =)y = m)(x 3) dx dy (2.40)

provided that the distributions are continuous. Although the variance of a
random variable expresses the variation of its distribution, the covariance
describes the mutual variation of two random variables. It reflects their
interrelationship or mutual correlation for which a correlation coefficient p is
constructed as

_ 9% _ |G- ERX) (V- E@F)
Pry = e E p - (2.41)

y

where o, and o, designate the standard deviations of the marginal distribu-
tions of X and , respectively. The correlation between two random variables
describes some interdependence between them. It should not, however, be
confused with stochastic dependence or independence that is defined by the
concept of conditional distributions [see equation (2.25)]. Correlation and
statistical dependence are not the same, although both concepts are often
used synonymously. It can be shown that the covariance o,, is always zero
when the random variables X and y are statistically independent. But the
reverse is not true in general. Zero covariance does not necessarily imply
statistical independence. Nevertheless for multivariate normal probability
distribution, zero covariance (lack of correlation) is a sufficient condition for
statistical independence (see Hamilton, p. 31; in the bibliography at the
back of the book).

2.44. Moments The concepts of mean (expectation), variance, and covar-
iance are special cases of a more general concept termed statistical moments.
The expected value of the general function g(X) = (X — c)¥, where c is a
constant that may or may not be zero, is called the statistical moment of the
kth order of the random variable X (or, in short, the kth moment of x) about
c. Thus

iy = E((% — ¢)) (2.42)

Using the two definitions of expectation given by equations (2.26) and (2.27),
we get for the case of c =0

A= E(%) = 3 xtP(x) (2.43)

for a discrete random variable, and

A= E() = [ () dx (2.44)

e o
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for the continuous case. The class of moments given by equation (2.42)
includes a group called central moments which is of particular importance in
practice. For this group the constant ¢ takes the value

c=u,=EX) (2.45)
hence central moments are expectations with respect to the mean, or
my = E[(% — E(X)) (2.46)

If we now refer back to the definition of the variance in equation (2.38), we
find that it is a special case of equation (2.46) in which k = 2. This is to say
that the variance o2 of the random variable x is its second central moment, or
62 =m,.

The different moments of a random variable X reflect the properties of its
density function. When the density function is symmetric with respect to the
first moment ; = E(X) = u,, all central moments of odd order vanish; that
is, m; = 0 for k odd. Conversely, when such odd-order central moments are
not zero, their values reflect the degree of asymmetry or skewness of the
density function.

As with the other concepts, moments may be extended to multi-
dimensional random variables. Suppose that (X, y) is a two-dimensional
random vector. The expected value of the general function g(%!, ") is called
the moment of (I + n) order. The corresponding central moment of the
(I + n) order is given by

my, = E[(X — E(X))'(7 — E(7))"]

=[ | (= E®Y - EG)YT(x y) dx dy (2.47)

—® -
for continuous distributions. For such a two-dimensional random vector
there are three central moments of order two. Let m,, and m,,; denote the
first moments (that is, expectations) of the variables X and y, respectively.
Then the following are the three central moments of second order

myo = E{(x — m,0)*} = E((X — p,)?) = 02 = variance of x

moz = E{(y — Mo,)’} = E((y — n,)*) = o5 = variance of y

my, = E{(i - "—'7‘10)(5’Y - mOl)} = E((i - ﬂx)(j; - /‘ly)) = Oxy
= covariance of x and y
(2.48)

The central moments of order two, which according to equations (2.38)
and (2.40) are identical to the variance and covariance, are of special impor-
tance for the statistical assessment of observations and for least squares
adjustment.
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In the general case of an n-dimensional random vector X, second-order
central moments can be set up in all combinations between the elements of
the vector. The totality of these moments can be arranged in a matrix array,
which is termed the matrix of second central moments, the variance-
covariance matrix, or simply the covariance matrix. Its elements may be
written symbolically as

mx1x1 mxlxz mxlxn
Mxx = mx2x1 mxzxz mxzx,.
| Mxxy Myxy 777 My,
[~ 2
ax1 a'xi x2 axxxn
—_ axle ze e zex,.
' .. 2
| ax,.x1 ax,.xz axn (249)

which is a square symmetric matrix, because

Myix; = E{(SC! - E(.;C,))(SCJ - E(SCJ))}

= E{(X; — E(X)))(X; — E(X;))} = m,, (2.50)

It should be mentioned, however, that M_ is square and symmetric only
because it relates to the one n-dimensional random vector X. If, on the other
hand, we construct the cross-covariance matrix M,, for the n-dimensional
vector X and m-dimensional vector ¥, it will be an n x m rectangular matrix.
All its elements will be covariances; that is, there will be no variances
included. The symbol M is used to denote the covariance matrix, to be
consistent with the symbol m used for the individual elements. Later it will

be convenient to use X instead, in keeping with the lower case ¢ being used
for variances (6?) and covariances.

Example 2.2. (a) Derive the relationship between the central moments my, m,,
msy, and the moments m; (about zero).
Solution: By definition
m, = E(x — E(x)) = E(x) — E(E(x)) = E(X) — E(x) =0
m; = E[(% — E(x))’] = E[(x — m)]
= E(x*) — 2m, E(x) + m}
= my — 2m? + m}

=m; —mj
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This result is identical to that derived in equation (2.38a) (see Section 2.4.2).
my = E[(x — E(x))*] = E[(X — m,)’]
= E(%%) + 3m} E(X) — 3m, E(x?) — m}
= s + 3m} — 3m, iy — m3
= iy — 3, i, + 2m}
(b) Derive the relationship between the central moment m,; and the moments /o,
Mo, and my,; (about zero) for a case of two random variables.
Solution: Again, by definition
myy = E[(x — E(X))(y — E(¥))]
= E[Xy — XMoy — Yo + Moy Myo]
= E(xy) — E(X)moy — E(y)my0 + Moy Mio
=My — MyoMgy — Moy My + Moy Myo

= Myy — Moy Myo

2.5. SOME OFTEN USED DISTRIBUTIONS

In connection with the theory of errors of observation and least squares
adjustment there are a few (one-dimensional) distributions that are often
used. Only continuous distributions are discussed, particularly those used
for statistical testing.

2.5.1. The Gaussian or Normal Distribution The one-dimensional normal
distribution is the most frequently used distribution in statistical theory and
application. Its density function is given by

(x — u)°
- _.2-&3—} (2.51)

f(x)=

exp

O,./2T
In equation (2.51) there are two parameters that specify the distribution
(Figure 2.3):
U, = expectation or mean of X

and

o, = standard deviation of X = +./var (%) = \/o2

The cumulative normal distribution function of the standardized random
variable,

X — Hy
= x 2.52
=22 (252)

X
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S(x)
4

b

X X

» X
Kx

Figure 2.3. Normal Distribution Density Function

(with zero mean and unit standard deviation) is given by

F(z) = \/% j_w exp (— “;) du (2.53)

Appendix Table D.1 gives the values of [1 — F(z)]. A few remarks may point
out the essential features of the normal distribution.

1. The normal density function f(x) is symmetric about the mean y, . There-
fore all odd central moments are zero. Also the mediant and the mode,}
which are two parameters of location sometimes used in practice, are
equal to the mean p, .

The maximum density value for the standardized variable is 0.399.

The density function approaches zero asymptotically as x goes to + co.
The density function has two points of inflection at x = u, + 7,

The probability for x taking values within x, and x, is given by the area
between the x axis, the density function curve, and the boundaries of the
interval x = x;, x = x, . In particular the probabilities for deviation from
the mean within some multiples of ¢ are as follows:

KA W

Pl—0o, <x —p, < +0,] =0.6827
P[—20, < x — pu, < +20,] =0.9545
P[-30, <x — p, < +30,] =0.9973 (2.54)

1 The median x,, is defined for the continuous distribution such that

[ e ax=1

Thus x,, is the abscissa through which a vertical line divides the area under the density distribu-
tion into two equal parts.

1 The mode, another measure of location or central tendency, is for continuous distributions
the value of the random variable at which the probability density function has a relative
maximum.
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6. The abscissae associated with intervals covering probabilities of 0.90,
0.95, and 0.99 are

P[— 16450, < x — p, < +1.6455,] = 0.90
P[—19606, < x — ;< +1.9605,] = 0.95
P[-2.5760, < x — p, < +2.5760,] = 0.99 (2.55)

7. The probability that x takes on values on either side of u, (that is, either
larger or smaller than u,) is equal to 0.5.

The theoretical and practical importance of the normal distribution is
due to the “central limit theorem” which states that the sum Y7_; X; of n
independent variables %,, ..., X, will be asymptotically normally distributed
as n— co. In practical applications, normal distributions are encountered
very often. In particular, random variables that represent measurements in
photogrammetry, geodesy, or surveying are often nearly normally
distributed.

2.5.2. The ¢ (Student) Distribution The ¢ distribution is used in connection
with sampling (testing hypotheses using sample statistics instead of popula-
tion parameters).

Let %,, X, ..., X, be n independent stochastic (random) variables of
identical normal distribution with mean u and standard deviation ¢. Then
the random variable ¢ is defined by

RN (256)
where
vl ix and %= ! i(x - x)?
n k=1 * n—1,5""

The statistics X and s refer to sample mean and sample standard deviation,
respectively (see Equation (2.89) and (2.92)). The density function of ¢ is

1 I'(n/2) 1

J(n——mrl(n—l)/zl(1+ K )..,2

f(@t)= (2.57)

I' = gamma function

[= o]

I(n) = jo e "1 dt

Fn+1)=n-T(n) and T(1)=1 (2.58)
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For whole, positive numbers n,
I'n)=(n—1)! or T(n+1)=n!

Appendix D Table D.2 lists the values of [1 — F(t)]. The ¢ distribution, as
defined in equation (2.57) is said to have (n — 1) degrees of freedom. The
density function is symmetrical with respect to the mean. With increasing
degrees of freedom the ¢ distribution approaches the normal distribution
with mean 0 and variance 1. For n > 30 the ¢ distribution can be replaced by
the normal distribution.

2.5.3. The x? Distribution Let X,, X, ..., X, be n independent stochastic
(random) variables, each of which is normally distributed with mean 0 and
variance 1. Then the sum of their squares yields a random variable for which
the symbol y? is customarily used

=32 +x34+-+x2 (2.59)

This random variable has a y? distribution (chi square) of n “degrees of
freedom.”
The density function of the random variable 2 is

fm)=f(x)=c, - x"" D272 for x>0 (2.60)
and
f(x)=0 for x <0
where
1
Cp = ————
» o)

n = degrees of freedom

The x? distribution has particularly simple central moments as follows:
Mean:

E(x3)=n (2.61)
Variance:
var (12) = 02(2) = 2n (262)

In Appendix Table D.3 the values of [1 — F(x?)] are given for several degrees
of freedom. The graphical representations in Figure 2.4 show that y2 density
functions are markedly skew for small degrees of freedom. Beyond n ~ 10,
however, they approach more and more a normal distribution. The asymp-
totic convergence for n — oo approaches normal density function with mean
n and variance equal to 2n.
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Figure 2.4

2.5.4. The F (Fisher) Distribution Let X,, X,, ..., X,, and y,, y,, ..., y, be
two sets of independent, normally distributed, normalized random variables,
each with mean 0 and variance 1. Consider the sum of the squares of each
set,

i=1
=iyt tin= 2 (2.64)
j=1
The random variable F,
Tm/m
F_ = .
R (265)

is said to have an F distribution of m and n degrees of freedom. The density
function f,, () and the cumulative distribution function F,, ,(u) are, for
u > 0, given by

I[(m+n)2]  (m\™? Lm=2)/2
fm, n(u) = F(m/?..) . F(n/2) (;{) [1 + (m/n)u](m+n)/2 (266)
F, o(u) = f uf,,., At) dt (2.67)

The value of [1 — F] (where F is a cumulative function) for different degrees
of freedom are given in Appendix Tables D.4(a) through D.4(c). The values
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of the expectation (mean) and the variance of an F-distributed random
variable, with m, n degrees of freedom are

mean = forn>2

n-2
2n*(m +n —2)
m(n — 2)*(n — 4)

The F distribution with m, n degrees of freedom approaches asympto-
tically for n — oo the x? distribution with m degrees of freedom.

The practical application of the F distribution in least squares adjustment
1s concerned with the comparison of variances such as those obtained from
two adjustments. In some particular cases the comparison may be between a
variance obtained from the adjustment and an a priori given reference
variance. This case refers to the F,, , = 2 distribution.

variance = forn>4 (2.68)

2.6. MULTINORMAL DISTRIBUTION

Although least squares theory of adjustment does not require a specified
distribution, most of the statistical testing following the adjustment is con-
cerned with multinormal distribution of random vectors with density
function

fxy, -nny %) =f(x)= [@ﬁ}

« exp [ laem)E x| @69)

with mean vector p, and covariance matrix X. From equation (2.69) the
expanded form for the two-dimensional normal distribution of a random
vector (X, y) is defined by the density function,

oia}
2("%‘7% - U%z)

1
X, y) = ex
f(xy) S e

where u,, 1, are the means, a2, 62 are the variances for x and y, respectively,
and o, , is the covariance.

The graphical representation of the two-dimensional normal density
function in Figure 2.5 demonstrates that its intersection with any vertical
plane y = ax + b will be a one-dimensional Gauss function, that is, a one-
dimensional normal density function. Any plane parallel to the x, y plane
and cutting the bell-shaped surface intersects it in an elliptical curve.
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Figure 2.5

The conditional density function of y given x can be considered as that of
a one-dimensional normal distribution

_ = ux)?

1
X) = —p=€xX 271
f(y]x) aﬁt p 252 (271)
the mean of which is a function of x,
o o
) =y + P22 (x = ) = pp + 22 (x — 1y) (272)
0y o1
The variance in equation (2.71) can be seen to be
2.2 2
5% = o}(1 - p?) = B2 712 (273)

01
Thus the mean (or expectation) of the conditional distribution of y for given
values of x is a linear function of x. This function u(x) is called the regression
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line of y on x. This provides for an interpretation of correlation and of
regression between two random variables. In case of correlation the regres-
sion line is the functional dependence of the expectation of the conditional
distribution of y on x and similarly for the other regression line.

2.6.1. Ellipses of Constant Probability Referring to equation (2.70) of the
two-dimensional normal distribution, the properties of the density function
f(x, y) can also be geometrically interpreted by intersecting the surface
f(x, y) by horizontal planes f (x, y) equal to constant. The resulting curves of
intersection lines form a family of ellipses (because ¢, >0, o, > 0, and
—1 < p < 1), the equation of which is

h(x, y)

_ 1 (x — ﬂl)z (x — pu)y — #2) (y - ﬂz)z 2
T (1-p?) ot 2 0,0, a3 =k 2

The common center of this family of ellipses is defined by the expectations u,
and p, (of the marginal distributions of X and ) as coordinates. For simpli-
city in the analysis to follow, we shift the origin of the coordinate system to
the point of common ellipses’ center (u;, u,).

The equation h(x, y) = k? in equation (2.74), for a specific value of k, is an
ellipse bounded by a rectangle having the dimensions 2ko, in the direction
of x, and 2ka, in the direction of y, as shown in Figure 2.6. Such an ellipse is

» <

7
<

| \0 [ o]
| (k=1)
kas / 92\

2 (k
L1
Figure 2.6. The Standard Ellipse. Relations for k=1: x,= —x, = al,/l p? = a(x|y);

Vo= =Yy =0,/1 — p2 =0(y|x); y.=2po,\/1 — p%; x,=2pa,\/1—p* x,= —x, =a,y,

= =Yy = POy Xy =Xy =pO Y, = —y. =0,
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known as an ellipse of constant probability; the value of such probability
depends on the selected value of k.

In the shifted coordinate system considering the ellipse with k =1 as a
representative ellipse, its equation becomes

) e

This particular ellipse is named the standard ellipse and its shape is
determined by a4, 0,, and p (see Figure 2.6).

The points of intersection with the x axis are a and a with
x=+t0,1— pj, and with the y axis they are b and b’ with
y = +0,./1 — p? These values can be easily obtained from equation (2.75)
by setting y = 0 and x = 0, respectively. Consequently, they represent the
square roots of the corresponding conditional second moments m(x |y = 0)
and m(y|x = 0). The vertical tangents to the ellipse are at points e and e’
with coordinates (o, po,) and (—o,, —po,), whereas the horizontal tan-
gents are at points f and f’ with corresponding coordinates (pag,, 6,) and
(—poy, —a,), respectively.

From equation (2.75) and well-established relations for the geometry of
an ellipse, the semimajor and semiminor axes may be computed from

a? = 4o} + 03) + /i(0? — 02)? + 62, (2.76)
b? = 3o + 03) — /3ol — 03)* + ol (2.77)

where p in equation (2.75) was replaced by its value 6, , /o, 0, in terms of the
covariance ¢,,. The values of a and b obtained from equations (2.76) and
(2.77) can be readily shown to be the square roots of the eigenvalues of the
covariance matrix,

Y = [Uf 012]

2
012 03

The characteristic polynomial of X is evaluated as
(AP +tr(Z)(—4)+ |E]| =0
where

tr(X) = trace of the covariance matrix = 6% + ¢35
|| = determinant of the covariance matrix = 6263 — 01,
Thus the polynomial becomes
A* — (o1 + 03)A + (0103 —01,) =0 (2.78)

The roots of equation (2.78) are those given by equations (2.76) and (2.77),
which verifies the relationship between the eigenvalues of X and the semima-
jor and semiminor axes of the standard ellipse.
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The angle y between the semimajor axis of the ellipse and the x axis is
obtained from the following relationship:

2012

tan 2y = (2.79)

o} — o3
The proper quadrant for 2y is determined such that sin 2y has the same sign
as o, and cos 2y has the same sign as (67 — o3).

Referring to Figure 2.6, we denote by u and v a rotated coordinate system,
the axes of which coincide with the semimajor and semiminor axes of the
ellipse. The system u, v is obtained from the original system x, y by a simple
rotation through the angle y. With respect to this new system, u, v, we may
refer two new random variables i, 7 with the marginal standard deviations
G,, 6,. From the foregoing discussion and Figure 2.6 it becomes clear that
G, =a, 6, =b, and that the new random variables #, ? are independent
(uncorrelated), that is, 3,, = 0. Consequently, through that transformation
from x, y to u, v, it was possible to replace a pair of correlated random
variables by another pair that is not correlated. This possibility is in fact
general; it is always possible to replace a set (of any dimension) of correlated
random variables by another set (of the same dimension) of uncorrelated
random variables. The transformation matrix can be constructed by deter-
mining the normalized eigenvectors of the covariance matrix of the original
set of random variables and using them as columns. This is equivalent to
diagonalizing the original covariance matrix since the resulting covariance
matrix of the new uncorrelated set of random variables is always in diagonal
form. The elements of this diagonal matrix are the eigenvalues of the original
covariance matrix. This concept is explained further in Appendix A (Section
A.6).

Considering further the case of no correlation (p = 0), the density func-
tion of equation (2.70) can be written in the form,

1 g | L[ o)

2n0,0, 2 o o35
(X—MV}
exp |———>—
01/ 2m P [ 20}

fome |-
= f1(x) - fa(y)

where f1(x) and f,(y) are one-dimensional normal density functions with
means u, and u, and variances o2 and 6%, respectively. Thus for no correla-
tion, or when p = 0, the joint density function f(x, y) can be written as the
product of the marginal density functions for x and y. Referring to equation
(2.21) we can directly conclude that for a normal distribution, the case of no



32 REVIEW OF STATISTICAL CONCEPTS

correlation is identical to the case of statistical independence. Perhaps it is
this fact that sometimes leads to the use of the terms “uncorrelated” and
“independent ” synonymously. This is obviously true only when the random
variables in question are normally distributed.

Having defined the standard ellipse [see equation (2.75)], it is now of
interest to find out the probability that the random vector (%, y) takes values
within the ellipse [applying in principle equation (2.12)]. The derivation of
that probability is simplified if we work with (i, 7), instead of (%, y), as they
are uncorrelated and lie along the principal axes of the ellipse. If the nor-
malized variables #/é, and 7/6, are used, the sum of their squares has,
according to equation (2.59), a x* distribution with two degrees of freedom.
The general expression for the probability of being within or on an ellipse
with axes k&, and k&, is

u? v 2 2 2
gy 03

For the standard ellipse k = 1, and the value of (1 — a) is 0.3935, so the
probability of falling inside the standard ellipse is 0.3935. In order to estab-
lish confidence regions (see Section 11.5.2), we select the o level and compute
the multiplier k. For example, for a = 0.05

P{x3 < Xo.0s.2} = P{x3 < 5.99} = 095

from which k = ./5.99 = 2.447. Consequently, the 959 ellipse has semiaxes
of a = 2.4476, and b = 2.447G, . Table 2.1 gives other typical values.

TABLE 2.1

P 03% 0.500 0.900 0.950 0.990
k 1.000 1.177 2.146 2.447 3035

The reader should note that for each one-dimensional marginal normal
distribution, the probability that each variable (%X or ) lies in the region
within plus and minus one standard deviation (+a, or a,) is 0.683 [see
equation (2.54)]. By contrast the probability for the joint event, which is
falling within the standard ellipse, is considerably less, being only 0.394.

2.6.2. Radial Standard Deviation in Two Dimensions In many cases we are
interested in one measure (for example, standard deviation) instead of the
two, g, and o, in the two-dimensional estimation. If X, y are two indepen-
dent random variables, a new variable 7 = /X? + y* can be defined and its
distribution derived from the joint distribution of X and y. The value r that 7
takes can be determined given the selected values for X and j. For example,
considering the case of standard ellipse for which the probability is 0.394, the
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value of r obtained from P[f < r] = 0.394 is called “circular standard error”
and is given the symbol o, . In another case P[f < r] = 0.500, r is called the
“circular probable error” (or CPE). The values of both ¢, and the circular
probable error depend on the relative magnitudes of o, and ¢,. For practical
reasons we may use the following approximation for o,:

0. 3(o, + 0,) (2.81)

particularly for 0.5 < (6,/6,) < 1.0 (with o, > ¢,). Similarly, an approxima-
tion for the circular probable error is

CPE =~ 0.58%(c + 0,) (2.82)

especially for 0.2 < (0, /0,) < 1.0 (When o, > 0,).
Another circular measure of precision is termed the “ mean square posi-
tional error” (MSPE) evaluated from

MSPE = /62 + o2 (2.83)

P[F < MSDI@] varies with the ratio (o,/0,). When o¢,=o0,, then
MSPE = /20, and P[f < MSPE] = 0.632. This precision index (the mean
square positional error) is not recommended for use because of the variation
in probability.

2.6.3. Ellipsoids of Constant Probability Referring to equation (2.69), the
function (x — p, )T~ (x — p,) = k* (which is a positive definite quadratic
form) represents a family of hyperellipsoids of constant probability. The case
of three dimensions is important because it is often encountered when apply-
ing statistical concepts to the determination of point coordinates (x, y, z)
through photogrammetric or geodetic techniques. In this case the ellipsoid
equation becomes (assuming for simplicity p, = 0)

h(x,y,z)=[x y z]Z~ 1I:yjl = k? (2.84)

z

and when k =1, it is called the standard ellipsoid. The semiaxes of the
ellipsoid (a, b, c) are determined by diagonalizing X by writing

ol a’ A
o |=| s |=| 1 |=TET (2.85)
o2 c? A3

where T is an orthogonal matrix whose columns are the normalized eigen-
vectors of £; A,, 4,, and A, are the eigenvalues of X; and the u, v, wis a
rotated coordinate system such that the random variables in the directions
of its axes are uncorrelated. In a manner similar to the two-dimensional case,
the statistical significance of the ellipsoids may be derived. Thus for the
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probability of the point falling inside or on the ellipsoid defined by a = kg,
b = ko,, ¢ = ka,, the expression is

ur v* w?
PIL +2 + 2 ) <k = P2 <k?]=1-
[(03+65+0£)< ] Plx3 <k*]=1-«a

For the standard ellipsoid (1 — a) = 0.199, which is obtained from y? with
three degrees of freedom. Furthermore, Table 2.2 gives different values of the
probability and k.

TABLE 2.2

P 0.199 0.500 0.900 0.950 0.990
k 1.000 1.538 2.500 2.700 3.368

The reader should note that for one dimension (n = 1) the probability for
the standard region is 0.683, for two dimensions it is 0.394, and for three
dimensions it is 0.199. Table 2.3 gives the values for several other
dimensions.

TABLE 2.3

n 1 2 3 4 5 6
P 0683 0394  0.199 0.090 0.037 0.014

When seeking a single measure for three-dimensional cases, the spherical
standard error o, is defined as P[§ < g,] = 0.199 and is approximated by
o, =0+ 0,+0,) (2.86)

for 0.35 < (0,/0,) < 1.0(s, = 6, > 0,). Similarly, spherical probable error

(SPE) is given by P[§ < SPE] = 0.500 and is approximated by
SPE = 0.513(o, + 0, + 0,) (2.87)

for 0.35 < (o, /0,) < 10.
Finally, the mean radial spherical error (MRSE) is

MRSE = /02 + o2 + o? (2.88)

and if 6, = 6, = 0,, then
MRSE = /30, and P[§ < MRSE] = 0.608

Since the probability varies with the different values of o,, o,, and o,, the

mean radial spherical error is not suitable for use in practice.
Summarizing the discussion of the properties of two- and more-

dimensional normal distributions, the basic concept of correlation should be
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emphasized. Correlation describes a certain dependence between x and y
values of the random variables X and . The dependence is not strict (func-
tional), however. It holds strictly (functionally) only for the expectations of
both random variables. Their mutual dependence is given by regression
lines. There are always two of them, since the expectation of y as a function
of x is different from the expectation of x as a function of y.

Thus, in general terms, correlation for actual values of x and y expresses
only a trend relationship, which is not strictly valid for individual pairs of
values. The higher the correlation, however, the closer would be the ten-
dency to have the regression relationship realized.

2.7. SAMPLING, ESTIMATION, AND CONFIDENCE
MEASURES

In statistics a physical situation or process is assessed conceptually by a
(hypothetical) functional model. The elements of that model are considered
as random variables, associated with joint probability distributions. Statisti-
cal events (for instance, measurements) are considered realizations of the
random variables. The realizations, whether repeated or not, are always
limited in extent. They are called samples from the probability distributions.

From the sample values, the probability distributions of the random
variables, or at least some of their parameters, are to be assessed or
estimated. The method of least squares, for instance, is a method for estimat-
ing expectations of random variables from samples (measurements).

Related to estimation is the task of determining the reliability or accuracy
with which the estimates are obtained (confidence measures). Furthermore,
statistical testing treats the question of whether the results of estimations are
in agreement with the initial assumptions (hypotheses).

Those concepts are increasingly linked to the application of the least
squares method. Therefore introductory essentials to these topics are pre-
sented next.

2.7.1. Sampling Any set of measurements is considered the realization of
the sample (x,, x,, ..., x,) of the random vector x. The purpose of sampling
is (in this context) to derive estimates for the probability distributions or
some of their parameters. These distributions may be of the random var-
1ables concerned, or of some other random variables derived from the ones
to which the measurements refer directly.

When repeated observations are taken, some factors that are commonly
used to assess the sample data are as follows:

1. Frequency distributions.

2. Sample statistics for location (mean, median, mode, or midrange).
3. Sample statistics for dispersion (variances and covariances).

4. Other sample moments.
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FREQUENCY DISTRIBUTIONS Establishing frequency distributions makes
sense only if the size of the sample is relatively large, in particular for
multidimensional frequency distributions. They are obtained by classifying
data according to some appropriate subdivision and counting the events of
each class, thus yielding class frequencies. In practice, relative frequencies
are generally used. The table of class frequencies gives the frequency distrib-
ution, which can be graphically displayed by either a bar diagram or more
frequently by a histogram.

BAR DIAGRAM AND HISTOGRAM As an example of a one-dimensional case,
we shall consider measuring a distance (which is approximately 50 meters),
say, 100 times, and recording the values to the nearest 4 mm. We shall
regard any measurement whose last two digits fall between, say, 62 and 66 as
64 mm, that between 66 and 70 as 68 mm, and so on. (The actual values of
the length would be 49,964 mm and 49,968 mm, but the digits 499 are the
same for all readings and will be dropped). We may represent this sample of
measurements by a bar diagram using the values 64, 68, 72, and so on, as the
points along the horizontal axis. The number of measurements belonging to
each of these values and the ratio between such numbers and the total
number of measurements (100) which is the relative frequency are given in
Table 2.4. The graph itself is shown in Figure 2.7, where f(x) represents the
values of the relative frequency of occurrence of a certain measurement
value. In this presentation the approximation was made to take the middle
value of an interval as representing a certain value of the observation. If we
eliminate this approximation, we can replace each of the vertical lines by a
rectangle that covers the appropriate interval and whose height is propor-
tional to the relative frequency. In this case the probability of a certain
interval, which is estimated as the ratio of measurements within the interval
and the total number of measurements, is equal to the area of the rectangle
constructed over it. In this manner the sum of the areas of all the rectangles
will equal to 1, thus satisfying the requirement of having all probabilities
adding up to 1. Such a frequency distribution is called a histogram. The

£
?

0.3+

0.2

01 I I
| I

49964 68 72 76 80 84 49,988
Figure 2.7

Relative frequency
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TABLE 24
Nominal Values 64 68 72 76 80 84 88
Interval Range 62-66 66-70 70-74 74-78 78-82 82-86 86-90
Number in Each 6 10 20 28 20 10 6 =100
Interval
Relative 0.06 0.10 0.20 0.28 0.20 0.10 0.06 Z=10
Frequency
Height of 0.015 0.025 0.05 0.07 0.05 0.025 0.015
Rectangles
in Histogram

heights of the rectangles are given in the fifth line of Table 2.4 (which are one
fourth of the values in the fourth row because the interval width is 4 mm)
and the histogram itself is depicted in Figure 2.8.

BIDIRECTIONAL HISTOGRAM (STEREOGRAM) As an example for a two-
dimensional case, we shall consider an example of a target chart grouping.
Every point on the target chart represents one shot and its position may be
determined by a pair of cartesian coordinates x and y with origin at the
center of the target board. The behavior of the position of the points follows
the laws of probability, in this case, a bivariate distribution with X and y as
the random variables or variates. We shall assume that one person has taken
400 shots at the practice board. A grid made up of 3-cm squares is then
superimposed on the target sheet and the number of points in each square
are counted and entered in the upper half of the square as shown in Table
2.5. This table represents a two-dimensional frequency distribution of the
rifle shots.

Table 2.5 can also serve as the base for constructing a stereogram (a
bidirectional histogram) by erecting square columns over each square. The
volume of each column is equal to the relative frequency of the number of

S(x)
4

0.08 —

0.06 —

0.04 —

0.02+

49962 66 70 74 78 82 86 49,990
Figure 2.8
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shots on which the column is erected. For example, the volume of the
column over the square centered about (6, 6) is equal to 8/400 = 0.02, where
8 is the number of shots in the square and 400 is the total number of shots.
Similarly, the relative frequency and hence the volume of the column over
(=3, 6) is 4/400 = 0.01. The relative frequency represents the probability of
occurrence and therefore P(6, 6) = 0.02 and P(—3, 6) = 0.01.

In the foregoing discussion consideration was given to the probability of
shots falling in a particular square on the target board, that is, the probabi-
lity involving both random variables X and . Suppose, however, that we are
interested in the aiming ability of the individual in the x direction only,
without regard to the y direction. In other words, we wish to find out how
the shots are distributed about the center of the target to the right and to the
left of it. This is then a case of one random variable, X, and the values in the
third row from the bottom in Table 2.5 show the frequency of shots relative
to the x intervals of 3 cm each. These values are simply obtained by sum-
ming up the values in each column. Similarly, the distributions in the y
direction only are obtained by adding up the numbers along each row and
are given in the last column of Table 2.5. These two sets of numbers are
called marginal frequencies as each represents the frequencies along one
direction or margin. If the marginal frequencies are divided by the total
number of shots, we would get the marginal relative frequencies. This is
shown in the second to last row of Table 2.5 for the x direction. From these
relative frequencies we would then also talk about marginal probability as
being the probability that only one random variable takes on a certain value,
or falls within a certain interval, without regard to other random variables.
Thus the probability that the x coordinate of the shots falls within the
interval +7.5 to +10.5 cm is 0.120, whereas it is 0.192 for the interval —1.5
to + 1.5. The same can be computed for the marginal probabilities of the y
coordinates. These ideas demonstrate the theoretical concepts given in Sec-
tion 2.3.1.

Another univariate probability distribution is also possible for one var-
iable as related to a particular interval along the other variable. As an
example, the distribution of y given a value x = —6 is represented by the
numbers (relative frequencies) 0.04, 0.11,0.25, 0.25,0.20, 0.11, and 0.04 in the
column under x = —6. Similarly, each horizontal row in Table 2.5 gives
the distribution of x for a given interval of y. Such distributions are called
conditional frequencies or conditional distributions. If we are interested in
the conditional distribution of x given intervals of y, we should study
the relative frequencies along different rows. It can be seen that the relative
frequencies differ from one row to another. This means that as one variable
changes (in this case y), the conditional distribution of the other (x) also
changes. Such an influence between the two random variables is an indica-
tion of correlation. As was said previously, statistical correlation or depen-
dence should not be confused with functional (algebraic) dependence. If



40 REVIEW OF STATISTICAL CONCEPTS

the latter existed between two variables, the value of one would completely
determine the other. The example under consideration shows clearly that x
and y are not functionally related; given x, the variate y may take several
values, and vice versa.

Correlation between random variables may be strong or weak. Strong
correlation would be indicated by the fact that relative frequencies of the
conditional distribution of one random variable differ appreciably as the
value of the other variable changes. On the other hand weak correlation
would be reflected by having conditional relative frequencies that vary little
when the other variable takes on different values. In the limit when correla-
tion is zero, relative frequencies of the conditional distribution would be
the same regardless of the value of the second variable. Such a case would be
reflected in Table 2.5 by having equal relative frequencies from row to row
and from column to column. This discussion of correlation and conditional
distribution using numerical values from Table 2.5 amplifies on the theoreti-
cal treatment of Sections 2.3.2 and 2.3.3.

From frequency distributions, conclusions may be drawn as to the asso-
ciated probability distribution. In applications to engineering, the assess-
ment of probability distributions through frequency distributions is not
often done simply because large sample size is not practical. In most cases
the type of probability distribution associated with the random variable at
hand is assumed to be known a priori. It is then some parameters of the
distribution that are estimated from the sample. For such parameter estima-
tion the sample size need not be as large as for estimation of the distribution
itself.

The most common sample statistics used to estimate distribution par-
ameters are discussed next.

SAMPLE STATISTICS FOR POSITION MEASURES

Sample Mean: From a sample of a size n (x,, x5, ..., x,) of the stochastic
variable X, the sample mean is calculated as
1

X=-
n;

X

M=

; (2.89)

1
which is the same as the arithmetic mean. Since X is a random variable and
its expected value is the population mean, that is, E(X) = y, the expectation
of the mean is

1 1
E(f)_—'E[;l Zx,- =;E(x1 +x2+"'+x,,)
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Thus the arithmetic mean of a set of independent observations is an estimate
of the mean of the population describing the random variable for which
observations are made.

The Median: A sample median is obtained by arranging the values in the
sample in their order of magnitude. The median is the value in the middle if
the number of observations n is odd, and it is the mean of the middle two
values if n is even. There will therefore be an equal number of observations of
larger magnitude as well as of smaller magnitude than the median.

It should be noted that for a continuous distribution the mean and
median will be equal if the distribution is symmetric. This will also be nearly
so for a sample of large size and approximately symmetrical values.

The Mode: The sample mode is the value that occurs most often in the
sample. Therefore if a histogram is constructed, it is the value at which the
highest rectangle is located.

Midrange : If the observation of smallest magnitude is subtracted from
that of the largest magnitude, we obtain a value that is called the range. The
value of the observation that is midway along the range is called the
midrange and may be used, though infrequently, as a measure of position for
a given sample. It is simply the arithmetic mean of the largest and smallest
observations.

SAMPLE STATISTICS FOR DISPERSION MEASURES

The Range: The simplest dispersion measure is the range as defined in
the preceding section. It is not, however, as indicative a measure as are
others.

THE MEAN (OR AVERAGE) DEvIATION The mean (or average) deviation is
another measure of dispersion that is suited for coarse estimation and has
been conventionally called the average error. It is the arithmetic mean of the
absolute values of the deviations from any measure of position (mostly the
mean). Thus the mean deviation from the mean for a sample of n observa-
tions would be given by

mean deviation =

S|

PIEEET 291)

where X is the arithmetic mean [equation (2.89)].

VARIANCE AND STANDARD DEVIATION The mean deviation, though useful
in certain cases, does not reflect the dispersion or scatter of the measured
values as does the standard deviation that was defined previously as the
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square root of the variance. The variance of a sample is defined as (see also
Section 2.5.2)

= Y (x - %) 292)

where X is the sample mean and n is the sample size. The reason for using
(n — 1) instead of n in equation (2.92) can be justified if it is shown that the
expectation of s2 is equal to the population variance. First

M=

(xi— %) =) [(x;— u) — (X — p))?

=Y Ki—uP+nE—p)’-2x-p) ) (k—n
=Y (&= ) + n(x — p)* = 2(x — p)(nx — np)

1

or
L (&—%) =3 (% —p)?—nx-u? (293)
The expectation of the last term in equation (2.93) is

E[n(x — p)’] = nE [Zn& - ,ur — nE (Z_il;—i_'_"‘_)z]

= LEIX (- 071 =, % B — )
or

E[n(x — p)?]=—=o0? (2.94)

Now, taking the expectation of equation (2.92),

(n— 1DE(2) = ¥ E(5i — ) — 0% = no? — o
E(s2) = a? (2.95)

Equation (2.95) is a very important result as regards to estimating par-
ameters through calculation of statistics. It expresses the fact that the sta-
tistic s2, as computed by equation (2.92), has a probability distribution
whose expected value or mean is o2. If we used n instead of (n — 1) in
equation (2.92), we would find that the expected value is [(n — 1)/n]o? in-
stead of ¢2. In such a case the sample variance computed using n would be a
biased estimate because its expectation is different from the population
parameter, as will be discussed in Section 2.7.2.
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SaMPLE COVARIANCE Given a set of n pairs of values (x,, y;), (X3, y2), .- -»
(x,, y,) of the random vector (X, y), we can compute in addition to the
marginal variances s2 and s, the sample covariance as

1

n—1;

Sxy =

> (v = 20— 9) (296)

where X and y are the sample means of X and y.

2.7.2. Estimation Drawing inferences regarding parameters of probability
distributions on the basis of sample statistics is referred to as estimation. The
sample statistic used for estimating the corresponding parameter is called an
estimator, whereas the computed value is referred to as an estimate or, more
precisely, a point estimate. These terms refer equally to single as well as
multiple dimension cases.

As examples of estimators, the sample mean X, (2.89), the sample variance
s2, (2.92), and the sample covariance s,,, (2.96), are estimators for the dis-
tribution parameters y, 62, and o,,, respectively. From the statistical point
of view all values derived from observations are estimates for the distribu-
tion parameters in question. Because estimates can be obtained in different
ways, certain criteria are needed to judge the quality of estimation. There are
four different criteria.

1. Consistence: An estimator is called “consistent” if for n — co the
probability for the estimator p to approach the parameter p converges
toward 1. Thus for any small ¢ > 0,

lim P(|p —p)| <e)=1 (2.97)
The estimator is said to converge in probability to the parameter. As an
example, the sample mean X given by equation (2.89) is a consistent estima-
tor of the distribution mean yu, of the random variable Xx.

2. Unbiased Estimation: Although consistence is a property related to
the limit case of n — oo it does not say anything about the property for small
sample size. Among several possibilities, an estimator should not be biased.
That means the expectation of the sample statistic p should be identical to
the parameter p itself for any sample size n,

E(p)=p (2.98)

If this property holds only for n — oo, the estimator is said to be asympto-
tically unbiased.

As an example, the sample variance s> of equation (2.92) is an unbiased
estimator of the population variance ¢2. As was shown in the preceding
section if instead of using (n — 1) we used n in equation (2.92), the computed
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sample variance would be biased (too small). It is, however, asymptotically
unbiased since

1

liml—>lim
n—1

n—'oon n—

Figure 2.9 shows the distribution of three different estimators of p. The
first two, p, and p,, are unbiased but the third is biased. The bias is defined
as the difference between the value of the parameter and the expectation of
the estimator,

bias = E(p) — p (2.99)

The bias is equivalent to the term “systematic effect” or “systematic error ”
as conventionally used. Just as increasing the number of observations will
not alleviate systematic effects, neither will it eliminate the bias.

3. Minimum Variance: Although unbiasedness involves the relationship
between the expectation of the estimator and the parameter, the variances of
the estimates from an estimator offer another criterion for estimator selec-
tion. In Figure 2.9, we can see that the variance of p, is smaller than that for
p, , but the variance of p, is smallest of the three. Hence, if we were to choose
minimum variance as a criterion, p; would be selected. However, realizing
that p, is biased, we must then weigh the benefits of unbiasedness against
that of minimum variance.

AccURACY AND PrEecisiION Figure 2.9 can be used to illustrate the related
concepts of accuracy and precision. Precision may be defined as the degree
of conformity among a set of observations of the same random variable. The
spread (or dispersion) of the probability distribution is an indication of
precision. Therefore in Figure 2.9 p, is least precise and p; is most precise.

f(p)
N

— Bias
3) -

v
=

Figure 2.9. Biased Estimator
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Accuracy, on the other hand, may be defined as the extent to which an
estimate approaches its parameter. (In conventional terms, it was considered
as the degree of closeness to the “true” value.)

In Figure 2.9, both p, and p, are equally accurate but neither is as precise
as p;. By contrast, p, is least accurate although it is the most precise.

The difference between precision and accuracy lies in the possible
presence of bias or “systematic error.” Although precision includes only
random effects, accuracy encompasses both random and systematic effects.
A measure of accuracy (proposed by Gauss) is the “mean square error”
(MSE) given by

MSE = m? = E[(p — E(p))’] (2.100)
which can be shown to reduce to
MSE = m? = ¢} + (bias)? (2.101)

Although mean square error may be used for comparing relative accuracies
of estimates that differ substantially in bias and precision, as do those in
Figure 2.9, it is really not the most appropriate measure. Instead, we should
assess accuracy on the basis of both the measure of precision and the bias.

4. Efficiency and Sufficiency: For unbiased estimators, that with mini-
mum variance is called “efficient estimator.” Thus if var p, < var p, and p,
and p, are estimators of the same parameter p, then p, is efficient. The
efficiency of p, is equal to the ratio var p, /var p,.

To demonstrate the above concepts, let us consider the random variable
x, whose expectation is

E(x) = u = the mean of the distribution

Obviously any observation x in a set of, say, n independent observations
would be an unbiased estimator of u. The arithmetic mean X is also an
estimator of u which is also unbiased as proved in equation (2.90). Thus on
the basis of unbiasedness, both estimators are equally acceptable. However,
the variance of x is obviously that of the population or ¢2. The variance of
the mean o2, on the other hand, may be evaluated from the basic definition
as

o; = E[(x — E(X))’] = E(x — p)°

which can be readily deduced from equation (2.94) as

o
o2=" (2.102)

n
Since 02 < ¢?, the mean X satisfies the criterion of minimum variance better

x

than an individual observation x. As a matter of fact x is also ar: efficient
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estimator since the efficiency of x as an estimator relative to x is 62 /6> = 1/n,
which can be a very small number. It can also be shown that X is a consistent
estimator.

An estimator is called sufficient if it uses all the information about the
parameter that is contained in the sample. The formulation of this property
is too involved and will not therefore be considered here.

METHODS OF ESTIMATION There are many ways of estimating a parameter.
Estimators that have the four properties mentioned above are called “ best ”
estimators. Some of these properties may be valid only asymptotically,
however. In addition, these estimators may be called best asymptotically
normally distributed with n — oo.

In practical applications of statistical estimation from samples it is not
necessary to evaluate all criteria to determine which one to apply in a
particular estimation. Instead, methods for estimation are applied for which
the criteria, or some of them, hold in general. A few methods are briefly
mentioned here.

The moment method takes the kth sample moment,

m, = %Z x¥ (2.103)

as an estimate for the kth moment of the probability distribution.

The sample mean is one example. However, when equation (2.103) is
applied to the second central moment, it yields only asymptotically unbiased
estimators for the variance and covariance.

The maximum likelihood method is an estimation method that is widely
used in statistics. It is used for estimating parameters such that the sample
values take the highest probability. If the random variables x; are indepen-
dent and have the same distribution (density function f(x;)), then the sample
vector (x,, x5, ..., X,) has the joint density function

LAXq, ..\ Xp3 P1s s Pm) = || £(Xi5 P1s ---» Prm) (2.104)

according to equation (2.22). Here, p;, ..., p,, are the parameters to be
estimated. Equation (2.104) is called the likelihood function. The density
f(x;) are functions of the unknown parameters p,, ..., p,,, which in turn are
related to the sample values p; = gi(x;, ..., x,). It seems plausible to deter-
mine estimators p; of p; such that the joint probability density L [equation
(2.104)] becomes a maximum. This leads to the system

53_1: _0 or 0lnL _
op op
The solution from equation (2.105) yields estimators of the parameters p;
and these are called maximum likelihood estimators. Note that this method

0 (2.105)
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of estimation requires the knowledge of the distribution function of the
random variable in question.

As an example, suppose that we would like to estimate the mean of a
normal distribution using the data from the sample x,, x,, ..., X,. Since the
density function for a normal distribution is

fx)= ;——\/l.z_ne— 1/2(%:#)2

the likelihood function is given by
1 e 112 (xl _2/‘)2} . [ 1 e 112 (xz—/‘)z
o

o /2n o/2n o’

2

L=

or

12 u)
L (2n02)n/2 Z

i

To get the first derivative of L it would be easier if we work with the
natural logarithm. Thus

= _" 2y 1 )2
In L= 3 In (2ro?) 2022 (x; — )
which when differentiated with respect to y, gives
d(ln L)
du 202 Z =0

for maximum

Z(xi_ﬂ)zzxi""ﬂ=0

13 13

or

:I»—-

a

This shows that the maximum likelihood estimator of the mean of the
normal distribution is the sample mean X as previously defined.

It is interesting to note that it was possible to estimate u without encoun-
tering the second normal distribution parameter o2 (variance). Perhaps it is
worthwhile to seek an estimator for o2 using the maximum likelihood func-
tion. Differentiating In L with respect to ¢ yields

aél(r;zl)‘) = T 2me? T 26% Z,: (= py* =0
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for maximum

Y (=

or

‘72:1 Z(xi—ﬂ)z
n
which is not the same as s2. In fact o is a biased estimate, which happens to
be true about many maximum likelihood estimates. It is, however, consistent
and asymptotically unbiased.

The least squares method is a very widely used procedure for estimating
parameters of distributions from samples. Since it is the major topic of this
book, its different techniques will be extensively treated in Parts II and III.

Least squares has been used in different branches of science and engineer-
ing for over a century and a half. Legendre published his own version of least
squares in 1805 only to discover that Gauss had been using the same method
since 1795. In addition to these two famed men, Laplace also holds a place of
prominence with regard to the history of least squares and the theory of
errors. Although both Gauss and Legendre were mainly interested in such
sciences as astronomy and geodesy and the treatment of observations ther-
ein, Laplace had a purely theoretical interest. The latter’s contributions were
therefore important events in the history of calculus of probability and the
theory of random errors.

Unlike the maximum likelihood method of estimation, the method of
least squares does not require the knowledge of the distribution from which
the observations are drawn for the purpose of parameter estimation.
However, the construction of confidence intervals or the testing of hypoth-
eses regarding the estimated parameters (which are given in the following
sections) will require the knowledge of the distribution.

If the random variables to which the observations refer are normally
distributed, the least squares method will give identical results to those from
the maximum likelihood method. For instance, if v is the vector of observa-
tional residuals (which is equal to a posteriori observational estimate A
minus the a priori given estimate /), for which E(v) =0, and which is
assumed to be normally distributed, and X is the covariance matrix of the
observations, then

f(v) = Cexp [—3(v— E(V))Z™ (v — E(v))]
= C exp [—4vE~1v]

The least squares criterion is VX~ ly - minimum, as will be given in detail in
Part II. It is clear, then, that minimizing v~ !v would maximize f(v), which
is equivalent to yielding a maximum likelihood estimation.
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With linear functions the estimated parameters (in particular the
estimated expectations) are consistent, unbiased, efficient, sufficient, and
have the minimum variance property, especially when there are no systema-
tic effects in the observations.

2.7.3. Confidence Intervals The estimation of means, variances, and covar-
iances of random variables from sample data is referred to as point estima-
tion, because it results in one value for each parameter in question. By
contrast to point estimation, establishing confidence intervals from sampling
is referred to as interval estimation.

After having performed a point estimation—for instance, having
estimated the coordinates of one intersected point—the question remains as
to how much the deviation of the estimate is likely to be from the still
unknown parameter. In other words, we would like to have an indication of
how good the estimation is and how much it can be relied on. Here an
absolute answer is not possible because sampling never leads to the true,
theoretical distribution or its parameters. It is only possible to estimate
probabilities with which the true value of the parameter in question is likely
to be within a certain interval around the estimate. Such probabilities can be
determined if the cumulative distribution function F(x) of the random var-
iable is given.

The probability that a random variable X takes values within the boun-
daries x, and x, is given, according to equation (2.5), by

x2
Plx; <% <x3) = F(xp) = F(x)) = [ f(x) dx
x1
By analogy to this, the probability statement for a confidence interval of a
parameter p, the estimate of which is p, is

P(py<p<py)=1-u (2.106)

Here (1 — «) is called the confidence level or degree of confidence which is
conventionally taken to be 909, 959, or 999%,. The values p, and p, are the
lower and upper confidence limits for the parameter p. Equation (2.106)
defines the confidence interval for the parameter p as the interval around the
estimate p, such that the probability that this interval includes the (un-
known) value of the parameter is (1 — a). The probability that the parameter
does not fall in a given interval is the value a. The width of a confidence
interval decreases as the degrees of freedom increase and as the level of
probability associated with it decreases.

In constructing confidence intervals, it is essential to use suitable random
variables whose values are determined by the sample data as well as by the
parameters, but whose distributions do not involve the parameters in
question. Examples are given in the following paragraphs.
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CONFIDENCE INTERVALS FOR MEANS We shall consider a normally dis-
tributed random variable X, with unknown expectation u and known var-
iance ¢2. We will let the sample mean be X, computed from a sample of size
n. Then the estimator function (X — y)/(a/\/r_i) will be normally distributed
with mean 0 and variance 1. We choose from the normal distribution func-
tion a value z,,, such that the probability of the standard normal random
variable to be outside the interval (+ z,,,) is « (see Figure 2.10). The probabi-
lity statement for the confidence interval, which is symmetrical here, is then

P{ —Zyy < —1-a (2.107a)

U
Tﬁ < Za2

or

(2.107b)

~ Z42 t 2.2

Figure 2.10

Since for a = 0.05, z,, = 1.96, we may write
P[X — 1960/,/n < u < X + 1960/, /n] = 0.95

This was an example of a two-sided confidence interval. On the other hand,
for a one-sided confidence interval we write

Pu<3‘c+za(ﬁ)} =1-a (2.108)

Example 2.3. Suppose a distance is measured n =8 times with the mean
X = 10.1 cm. We assume that the variance of the normal population is known to be
62 = 0.10 cm2. Then the 959% confidence interval on u (which is unknown) according
to equation (2.107b) is
0.10 0.10

P:lO.l - 1.96 g <K< 10.1 + 1.96 T: =095

or

P[9.88 cm < u < 10.32 cm] = 0.95
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" for a two-sided confidence interval. For a one-sided interval, equation (2.108) may be
applied,
0.10

or
P[u < 10.28 cm] = 095

Let us now consider the case in which the standard deviation of the
distribution ¢ is not known and has to be replaced by the standard deviation
s, as estimated from the sample [according to equation (2.92)].

Then the estimator (X — p)/(s/s/n) has a ¢ distribution (see Section 2.5.2)
with (n— 1) degrees of freedom. The probability statement for the
confidence interval of the random variable of the estimator will be

X—p
P{—ty3 n-1 <;/:_/-; < ta/Z,n-l} =1-a (2-109)
or
— S _ S
Px—t,/z',,_l ‘ ﬁ<ﬂ<x+t¢,2'"_l 'ﬁ}—_—l—a (2.110)

For a = 0.05((1 — a) = 0.95) we obtain from Appendix Table D.2 of ¢ dis-
tribution for (n — 1) =7, for instance, t,, = 2.365, and z,,, = 1.96. The
confidence interval is wider in this case compared to the case of known g, as
illustrated in the following example. As the degrees of freedom increase (that
is, the larger the sample size), the difference between the values of ¢ and z
decreases, all other factors remaining the same. In practice, for a sample size
of 30 or larger, the t distribution is often approximated by the standard
normal distribution.

Example 2.4. Considering the preceding example of the measured distance, n = 8
times, X = 10.1 cm, let s> = 0.10 cm? be the sample variance. The 95% confidence
interval on u is, according to equation (2.110),

P{ 10.1 — 2.365 OTIO < u < 10.1 4+ 2.365 0—;9> = 0.95

or

P[9.84 cm < p < 10.36 cm] = 0.95

CONFIDENCE INTERVALS FOR VARIANCES AND COVARIANCES Suppose we
are given a random sample of variance s? from a normal population with
variance 2. The random variable ms?/o2, where m is the number of degrees
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of freedom used in computing s?, has a y? distribution with m degrees of
freedom. For the confidence level (1 — a) this random variable will take a
value between x3_,/, ,, and x2, ,, with the probability (1 — «). Thus

2
P{X%—a/z,m<%<){3/z,m: =1—-a (2.111)
or
2 2
P{ e <az<—2£}=1—a (2.112)
Xaj2,m Xi-a/2,m

For instance, with m = 10 and a = 0.05 we get from Appendix Table D.3
X3.025, 10 = 20.48 and x3 475, 10 = 3.25. This interval is two sided but is
asymmetric. For the one-sided interval we have x3 o5 1o = 18.31.

Example 2.5. Suppose, as in preceding example, n=8, X =10.1 cm, and
s2 =0.10 cm?. The 999 confidence interval on the population variance ¢ may be
established using equation (2.112). Here m = n — 1 = 7 degrees of freedom. Thus

Pl0010) _ ., ()OI0) _ o

or
P[0.035 cm? < 62 < 0.707 cm?] = 0.99

which states that the probability is 0.99 that the distribution variance lies between
0.035 cm? and 0.707 cm?.

For a confidence interval on the standard deviation o, we have merely to take the
square root of each side in the interval on the variance. Thus in this example

P[0.186 cm < o < 0.841 cm] = 0.99.

CONFIDENCE INTERVALS FOR RATIOS OF VARIANCES If we are given two
independent random samples of sizes n, and n, from normal populations
with variances 62 and o3, respectively, then each of the random variables
m, s? /o? and m, s3 /o3 with m; = n, — 1 and m, = n, — 1 has a y? distribu-
tion with m; and m, degrees of freedom, respectively. The ratio

_sijo?
s3/03
has an F distribution with m,, m, degrees of freedom. For the confidence

level (1 — a) the random variable F in equation (2.113) will take a value
between Fy_, 5 . m, and F with the probability (1 — ). Thus

(2.113)

a/2,my, m2

si /ot
P Fl—a/z,ml,mz < 2 p) < Fa/2,m1,mz = 1 i 4 (2114)
53/03
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or
2 2 2
S32 o3 S3
P S—zFl—a/Z,ml,'nz < P < _2Fa/2,M1,Mz =1-a (2°114a)
1 1 1

Because of the way the F tables are typically presented (see Appendix D) the
following equality is often applied:

1
Fy 22, my,m; = . (2.115)

a/2, mz, my

For instance, with m;, = 10, m, = 60, and a = 0.05,

1 1

F - —
0.975,10, 60 F 0
0.025,60,10 3.2

Fo.ozs, 10,60 = 227

= 0.312

which gives the following confidence interval for a3 /o?:

2 0.2 S%

03122 <22 <2272
st o3 ST

2.8. STATISTICAL TESTS

Statistical tests are increasingly applied in engineering and science and in
combination with the least squares method. They are often used to compare
results with previous ones or with given standards. In testing, one secks a
judgment as to whether some estimator function is consistent with the
assumption (hypothesis) that the sample was drawn from a population with
specified parameter values, such as normal distribution with a given stan-
dard deviation. Questions of this kind are the subject of hypothesis testing.

A hypothesis is a statement (explicit or implicit) about the probability
distribution of a random variable. If the hypothesis covers the complete set
of parameters for a distribution, we speak of a simple hypothesis. Con-
versely, a hypothesis is said to be composite if it covers only a number of
distribution parameters, leaving others unspecified.

The general procedure of statistical testing always refers to a null hypoth-
esis H,—that is, the set of distribution parameters with respect to which the
sample estimates at hand are to be compared. The intention is to formulate a
statement as to whether the sample parameters are in sufficient agreement
with H, . In other words the result of the test is a statement whether, accord-
ing to the available evidence, the null hypothesis can be considered accept-
able or not.

A more specific task of a test is to make a decision between a null
hypothesis H, and one or several alternative hypotheses. The alternative
hypothesis can be simple, that is, specific or composite.
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When accepting or rejecting a null hypothesis, there are four possible
cases: (a) H, is true and is accepted; (b) H, is true but is rejected; (c) H, is
false and is rejected; (d) H, is false and is accepted. Cases (a) and (c) are
obviously correct decisions, and cases (b) and (d) are wrong decisions.
Wrongly rejecting a true hypothesis is referred to as committing a type I
error. The probability for type I error is designated by «, and is called the
“significance level of the test.” It is conventionally taken to be 5%, 2%, or
19, as a has to be small in order that a test be useful. Case (d), which is the
wrong acceptance of a false hypothesis, leads to committing a so-called type
II error. The probability for type II error is designated B, and (1 — B) is
called the “power of a test.”

Figure 2.11 demonstrates the relation between o and f. Let D, = f(p | H,)
be the conditional probability density function for the estimate of a par-
ameter p when the null hypothesis H, is true; and let D, = f(p| H,) be the

Acceptance region Rejection region

D, =f(ﬁ'Ho) D2 =f(13'H1)

Accept Hy—se—— Reject Hy (accept Hy)
Figure 2.11

conditional probability density function for p in case the alternative hypoth-
esis H, is true. We now consider the value p, which marks the limit of
sample values up to which H,, is accepted and beyond which H, is rejected
or H, is accepted. Thus H,, is accepted if p < p,, and H,, is rejected or H, is
accepted if p > p,. The area o indicates the significance level of the test. It
shows the probability that the sample parameter (p|H,) will exceed p, in
case H, is true. It shows, in other words, the probability of rejecting H,
when it is true (type I error). Conversely, the area ff shows the probability of
accepting H, when H , is true (type II error). Figure 2.11 illustrates that for a
certain alternative hypothesis H, it is not possible to make both a and B
arbitrarily small. Decreasing the probability for a type I error increases the
probability for a type II error and vice versa. Balancing type I versus type II
errors depends on the purpose of the test.

Figure 2.11 represents the so-called one-tail or one-sided test. In this case
H, is p = p, whereas the alternative hypothesis is H,: p > p,. Another
one-sided test is depicted in Figure 2.12 for which H,: p = p, versus
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S(B1Hy)

b, Py
Reject H, —+— Accept Hy
Figure 2.12

H,: p < po. The two-tail or two-sided test is demonstrated in Figure 2.13.In
this type of test the null hypothesis is Hy: p = p, whereas the alternative
hypothesis is simply H,: p # po. In the following sections hypothesis tests
for different parameter estimates are given together with numerical
examples.

Py p

a/2 a/2
Reject H, —+——— Accept H, —+— Reject Hy

Figure 2.13

2.8.1. Test on Sample Means for Known ¢ In this case we are given a
sample of size n with either the values x; (from which the sample mean x may
be computed) or the sample mean X, as well as the normal population
standard deviation . The null hypothesis is Hy: u = uo, which seeks to test
that the population mean is equal to some a priori known value y, . There
are three possible alternative hypotheses: u < uq, or u > g, or the two-tail
case u # Uo . In order to perform any of the three possible hypothesis tests,
the standardized normal random variable z is computed from

X — Ho

Z=a/ﬁ

(2.116)
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If z, and z,,, are values from the normal table (Appendix Table D.1) with the
level of significance being a, then the three possibilities are as follows:

1. Hy: p= po; Hy: u < po; reject H; when z < —z, because

2. Hy: u= po; Hy: > po; reject H; when z > z, because

X — Ho
a/ﬁ>za

3. Ho: u= po; Hy: p# po; reject Hy; when z < —z,,, or z > z,,, because

P<z= =

X — Mo
Pl—z,,<——=<2Z=1—0a
|5 < <

As examples, different values from Table D.1 are z;, 495 = 2.58, z4 o, = 2.33,
20'025 = 1.96, 20.05 = 1.64.

2.8.2. Test on Sample Mean for Unknown ¢ When ¢ is unknown, the
random variable

_ X~ Ho
s/ﬁ

is used in place of z of equation (2.116). All three tests can be carried out as
in the preceding section except that z, and z,,, are replaced by ¢, ,, and
ta/2, m> T€Spectively, where m = n — 1 degrees of freedom.

We shall consider the problem of comparing two sample means where
one is concerned with hypotheses regarding differences of means, and shall
assume that one is dealing with independent random samples of sizes n; and
n, from two normal populations having the means u, and u, and the known
variances 2 and oZ. It is desired to test the null hypothesis y; — pu, =6,
where 6 is a given constant, against one of the three alternatives
Uy — Py F O, 4y — py > 6, 01 iy — u, < 6. The test can be applied, based on
the difference of the sample means X; — X,, and using the standardized
normal random variable

t

(2.117)

_ J_Cl —22_6
- 2 2
\/Ul/nl + 03 /n,

The rejection regions for the three tests are the same as those given in detail
in Section (2.8.1.).

4

(2.118)
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When the variances ¢? and ¢3 are unknown but assumed equal, they are

replaced by sample variances. In this case the random variable
t = S S (2.119)
\/(n, —1)s2+(n,—1)s3 [ 1 N 1

ny+n, —2 ng N,

is used for a test of the null hypothesis 4, — u, = 6 against the same alterna-
tive hypotheses given above. Here ¢ is a random variable having a ¢ distribu-
tion with m = (n, + n, — 2) degrees of freedom. The same three possible
hypothesis tests can be performed using ¢, ,,and ¢,,, ,, in place of z, and z,,,
respectively.

2.8.3. Tests Concerning Variances Let us consider a random sample of size
n from a normal population. We may test the null hypothesis ¢? = 63
against the alternatives, 62 # 62, 0% > 02, and 62 < 6. In these tests, c2isa
specified value for the variance. Here the x? test is used, based on the
sample variance s2, with the variable
2
ms
=" (2.120)
0o
computed from the sample data, where m is the degrees of freedom. If « is the
level of significance, the three tests are as follows:

. 2 2. . 2 2. : 2 2 2
1. Hy: 6* = 05; H,: 0* # a;; reject Hy, when y; < X1-2/2,m OF Xm. > Xa2,m
because

SZ

m

2 2

P:Xl—a/Z,m < 0_2 < Xa/2,m} =1-a
0

where m = degrees of freedom.
2. Hy: 62 = 03; H,: 6% < 6}; reject Hy when x2 < x3._, ,, because

ms?

2
2 < Xl—a,m
1)

P =ua

3. Hy: 62 =62; H,: 62 > 62; reject H, when y2 > y2 . because
0 0 1 0 0 Xm = Xaym

2

3 = Xa,m| =&

Example 2.6. Given a sample of size n = 12 with sample mean X = 10.0 and
sample variance s? = 0.07, test the hypothesis that the population variance g% = 0.10
against the alternative that ¢ < 0.10 for a level of significance of 0.05.
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Solution:
2 2
2 ms® (n—1)s _ (11)(0.07) _
Xm - o_(z) - 0_(2) - 010 = 770

We would reject the null hypothesis of 6% = 0.10 if y2 computed above is less than
x3-a m- Since x3 95 1; = 4.57 is not larger than y2 = 7.70, the null hypothesis is not
rejected.

Another problem concerns the test on equality of the variances of two
populations on the basis of the ratio between sample variances. Given two
independent random samples of sizes n, and n, from two normal popula-
tions with the variances ¢? and o3, the null hypothesis is Hy: 67 = ¢3.

If the sample variances are s? and s3, with degrees of freedom
m, = n; — 1 and m, = n, — 1, respectively, the random variable used in the
test is

le,'n2=—2 (2121)
The three hypothesis tests possible are, in this case, as follows:

1. Hy: 6?2 =02; H,:0?2<03; reject the null hypothesis if
Fmsz < Fl—a,ml,".z, because

st
P <2 <F1—¢.m1,m2} =«
52

where a is the level of significance.
2. Hy: 0} =03; H,: 62 > o}; reject H, if F,, p, > Fy m, m, because

Pl F =

3. Hy: 02 =03, Hy: 62 # o};reject H if F , > Fafamy. my When s > s3,
which refers to the right boundary only. The rejection at the lower boun-
dary is when F,, ., < F1_0/3. my my-

Since s? > s}, the value F, , > 1. Furthermore, Fy_,3 m, m, =
1/Fy3. my. my @0d Fyj3 o, > 1 (all entries in Table D.4 for the area under
the F density function are larger than 1), then F,_,/; , ., < 1. Henceforth
F will always be larger than F, , and the test at the lower

my, my

boundary is unnecessary.

-af2,my, m

Example 2.7. Given the following two sample data sets
n, =12 x, = 100 s2 =0.07
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Test the hypothesis that 67 = ¢ against the alternative that 62 # o3 using the level
of significance of 0.05.

Solution:

st 0.10

5 _ YAV 2o 2
F7‘ 11 = S% 0.07 1.429 (note si > Sz)

We would reject the null hypothesis that 6 = 63 if F,,,, », computed above is larger
than Fu3 m, m,- Since «/2=0025 and Fg935 7,11 =376 is larger than
F, 11 = 1.429, then we cannot reject the null hypothesis.

There are of course a number of other tests that may be used in connec-
tion with adjustment problems such as (a) test for goodness of fit of
frequency distribution on probability distribution, (b) test for correlation
coefficients (see Section 11.5.3), and (c) test for regression coefficients. For
such tests the reader should consult statistical literature. (See the Biblio-
graphy at the end of this book.)



3

Error Properties of Observations

3.1. INTRODUCTION

Modern information theory regards observations as signals the statistical
properties of which are classified as having deterministic and stochastic
components.

Until recently it was usual to speak of either the theory of observations or
the theory of errors. Most of the foundation of present knowledge on the
subject was laid down based on the idea of errors. The term “error” is
actually somewhat misleading and seems to enjoy less and less usage.
Instead, one often speaks in general of the statistical properties of
observations.

Although the conventional concept of error should be avoided, the term
still continues to be used to some extent. In order to avoid difficulties for the
many who are still familiar with it, it will be occasionally used. In addition,
an attempt will be made, whenever possible, to relate it to the modern
concepts.

Classical ideas usually present errors as being of three types: random
errors, systematic errors, and blunders.

60
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3.2. RANDOM ERRORS

From the statistical standpoint, observations are considered to be
samples from probability distributions of random variables. In the classical
theory the variability due to sampling from probability distribution was
what led to the idea of observational errors.

The term “observational error” or “random error,” as it is sometimes
called, is very often restricted to a normal probability distribution. This is
due to the fact that repeated observations usually display a normal
frequency distribution. In principle, however, the term “random” is not
necessarily restricted to normal distribution. Furthermore, it is not limited
to one-dimensional distributions but holds equally for multidimensional
distributions.

The error properties of observations are equivalent to statistical proper-
ties of sampling. Although in statistical sampling emphasis is placed on the
independence of sampling, this feature is normally not considered a serious
problem with observations, because the population from which the observa-
tions are drawn is hypothetically considered continuous and infinite.
Independent sampling essentially means that observations should be set up
such that the results of previous observations should not influence the re-
sults of the following observations. This is to be clearly distinguished from
possible correlation of subsequent observations, perhaps because of
common influence of a certain physical parameter (such as refraction). The
two more essential parameters of a distribution are

U, = expectation or mean that is a location parameter
o, = standard deviation
or
2 _ .
o% = variance, or the second moment about u,

(the parameter of dispersion)

In case of a normal distribution the two parameters u, and o, determine it
completely.

When observations x,(i = 1, ..., n) are made (or drawn), estimates for yu,
and o, are computed from them. Of direct importance is the sample mean X
[see equation (2.89)] which represents an estimate for u,. In case of one
observation only, X = x is considered an estimate for u,. The standard
deviation o, of the random variable X is often supposed to be known from
previous experiments with similar equipment under similar conditions, and
so on. If sufficient repetitions are available, then from the observations an
estimate for the variance o2 can be obtained by computing the sample

variance s2 using equation (2.92).



62 ERROR PROPERTIES OF OBSERVATIONS

The more general case refers to a multidimensional set of observations.
Let us assume that there are several random variables x;, X,, ..., X,, with a
joint probability distribution. The parameters of interest are therefore

Uiy U2 s «evs M the m expectations or
means for the m random
variables X;

the variances of the
marginal distributions

-~

for x,, X, ..., X,

I

2 2
0{,05%,...,0

012,013, -301ms023, s Oy covariances between
X; and X; in all
combinations

In case of a multidimensional normal distribution, the above parameters
determine it completely.

Considering the general case of multiple observations for m-dimensional
distribution, we get the following observational set:

xll’ XIZ, cony xln

X215 X225 -++5 X2y

Xm1s Xm2s s Xmn

From such observations the sample means X,, X,, ..., X,, may be computed
as estimates for the population means u,, u,, ..., i,

n
lei

i=1

n
ZXZi

i=1

b_>_<I
Il

I
[ ]
I
.

= Y. Xmi (3.1)

n =1

=
I

In practice we usually assume that the other parameters of the distribu-
tion (6%, ..., 62, G123, --+s Gipms --+» Om_ 1. m) are known. In particular it is
often assumed in practice that random variables X;, X; are uncorrelated (for
all i and j). In case enough repeated observations are available, the variances
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and covariances of the multidimensional distribution may also be estimated
by the sample variances and sample covariances:

1 n

Sf=n_1 2 (x1: = %4)?

i=1
S n _ 1 Z ('x21 - x2)
2= T (= X)? (32)
m n— 1 = mi m

and

S12 n—l Zl(xu Xy )(X2: — X3)

1 = _
Skj T ;l(xki Xe)( X;)
sm—l,m_ Z m—1, 1— m— 1)(xmi_xm) (33)

Thus the primary purpose of observations is to get estimates for the
expectations of random variables. When we talk of observational errors or
random errors of observations, we refer to the basic and inherent property
that the estimates of a random variable X do not agree, in general, with its
expectation. Thus an observational error may in this context be defined as

Eji = Hj — Xji (34)
It can also be extended to the sample mean,
€j = Hj — X; (3:5)

From equation (3.4) we can readily show that the distribution of ¢ about
zero, is identical to the distribution of X about its expectation u,. This is
actually a result of the simple fact, directly obtainable from equation (3.4),
that E(e) = 0.

Error properties of observations are in general considered established
once the complete probability distribution of the random variables to which
they refer is specified. In practice, however, this is not always possible and
often restricts consideration only to variances and covariances.
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In this conception the mean of a sample of size n can be regarded as a
sample of size one on a new random variable with mean u and variance of
o/n. This case sometimes causes differing opinions. In the context of our
discussion it may be considered as tantamount to having either n repeated
observations, that is, a sample of size n on one random variable; or having n
samples, each of size one on n different independent variables whose means u
and variance o2 are equal.

Closely related to the topic of random errors are the concepts of preci-
sion, accuracy, and weights.

3.3. PRECISION, ACCURACY, COFACTORS, AND WEIGHTS

Observations, as well as results of adjustments, are often assessed in
practice by such terms as “accuracy” and “ precision.” These terms are used
to summerize statistical properties of random variables as introduced in
Section 2.7.2.

Briefly, accuracy refers to the degree of closeness of an estimate to its
parameter, whereas precision expresses the degree of closeness of observa-
tions to their mean. Therefore accuracy reflects the closeness of a location
statistic to the value of the parameter for which it is an estimate, and preci-
sion is directly related to the dispersion of a distribution. In the one-
dimensional case precision is taken to be represented by the value of the
standard deviation o.

The term “precision” is also applied to multidimensional distribution.
The description of the precision properties of multidimensional random
variables (random vector) is the complete set of second central moments, or
the covariance matrix £ = {7,;}.

A term related to the trace of this covariance matrix is often taken as an
indication of the average precision:

.. tr X 1
average precision = | T —Jot+ a3+ + 0} (3.6)
n ﬁ

The covariance matrix can be used to determine the error ellipsoids of an
n-dimensional random variable as explained in Section 2.6.3.

In practical application of adjustment the variances and covariances are
often replaced by what should be called relative variances and covariances.
For these the terms “ weight coefficient” or “cofactors ” are in common use.
The term “cofactor ” is selected and the letters g for one element and Q for a
matrix, are used as symbols for it.

A cofactor is related to a covariance by

O;i
qij = a—é or 0;j = qija(z) (3.7)
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The definition in equation (3.7) includes as a special case the relation
between a cofactor and the-variance:

g = or o} =q,0% (38)

3,9
oN (8]

In equations (3.7) and (3.8) the term &3 is an arbitrary constant with arbi-
trary dimension, called the reference variance. (Its square root, ,, will be
referred to as the “reference standard deviation.”) It has also been called
“variance factor” and the “reference variance associated with the weight
unity” (see below).

Applying equations (3.7) and (3.8) to the covariance matrix, results in the
cofactor matrix,

1 1
Q= {qij} = 0—(2) {aij} = a_gz (39)

Because of the symmetry of the covariance matrix X (when referring to the
elements of the same random vector), the cofactor matrix Q is also symme-
tric for this case. It must also have only positive diagonal elements.

With equation (3.7) we can always switch from cofactors to covariances
and vice versa. The inverse of the cofactor matrix Q (when it is square and
nonsingular) is called the weight matrix W, thus

W = {Wij} = (2_1 (310)

Again, when referring to the elements of the same random vector, the weight
matrix must also be symmetric.

The concept of weights has had extensive use in the classical theory of
error and of adjustment. In fact, the term “weight” was used to express
precision by way of inverse relationship. Thus high weight meant high preci-
sion, which in turn meant small standard deviation. However, this type of
relationship is not true in general. In fact the use of the term “weight”
relating to individual (diagonal) elements of W should be totally restricted
to the noncorrelation case. Only then is its use safe.

For the case of no correlation the covariance and cofactor matrices will
both be diagonal, with all off-diagonal elements being equal to zero. In this
case the diagonal elements are then

1

W, = —
dii

or, using equation (3.8),

C
i 2 )
&

Q
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These relationships are used often in textbooks on surveying. It must be
stressed that they hold only in the uncorrelated case. In the general case, the
diagonal elements w;; of a weight matrix are not just the reciprocals of the
associated cofactors,
1
Wi ¥ —
n
It should be noted that in the case of perfect correlation, that is, p = +1,
between variables it is still possible to establish a covariance matrix and a
cofactor matrix. It is not possible, however, to establish a weight matrix in this
case. In addition, since covariances can be derived from observations
directly, according to Equation (3.3), whereas weights cannot, the concept of
weight is considered as a secondary concept. Caution must therefore be
exercised when using weights.

3.4. BLUNDERS

Under the broad concept of error properties of observations, the conven-
tional theory of errors also includes, in addition to random errors, blunders,
or gross errors, as well as systematic errors. As regards blunders, the obser-
ver may take the wrong reading of a scale or a dial, or if he reads the proper
value, he may record the wrong one by, for example, transposing numbers. If
the operation of collecting the observations is performed through an auto-
matic recording technique, mistakes may still occur due to failure of equip-
ment, although they may be less frequent in this case. Another way of
causing the occurrence of blunders is by failure in technique as in the case of
reading the fraction on a tape on the wrong side of the zero mark, or by
selecting the wrong whole degree in the measurement of angles that are very
close to an integer of degrees. Finally, a mistake may also occur due to
misinterpretation, such as sighting to the wrong target or selecting the
wrong image for a control point in an aerial photograph. In fact, this last
group of possibilities contains the more common causes of mistakes.

From a statistical point of view, blunders are observations that cannot be
considered as belonging to the same samples from the distribution in
question. They should not therefore be used together with other observa-
tions. Consequently, measurements should be planned and observational
procedures designed in such a way as to allow for detecting blunders so they
may be rejected. In practice, there are a variety of ways that can be
employed: taking multiple readings and checking for reasonable consist-
ency; careful checking of both pointing and recording; using simple and
quick techniques for verification, applying logic and common sense; check-
ing and verifying the performance of equipment, particularly those with
automatic readouts; repeating the experiment with perhaps slightly different
techniques; increasing the redundancy of the observations used in a model;
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in case of relatively complex models, applying simplified geometric or alge-
braic checks to detect the mistakes; and, finally, simply noting that mistakes
are deviations of large magnitude, whic may lead directly to their detection.
(However, blunders of moderate magnitude are hard to detect even with
modern statistical techniques). For example,

1. Measuring an angle or a distance several times and computing the aver-
age. Any single measurement deviating from that average by an amount
that is larger than a preset value can be assumed to contain a blunder.

2. Taking two readings by the transit differing by 180 degrees.

3. Realizing simple facts such as a tape is usually 100 feet long; vertical
angles are normally between + 90 degrees; when checking photocoordin-
ates, the format is mostly 230 x 230 mm (for aerial photography).

4. Making a quick check on a spherical triangle using plane trigonometry.

Using solar time instead of siderial time to check astro observations.

6. Using small portable calculators or even slide rules to check traverses and
other nets to a low number of significant digits.

b

Despite design precautions, some blunders may still remain. Their detec-
tion and rejection should be carried out according to principles of statistical
testing (data editing). It is worth mentioning here, that in practice too many
observations are often discarded, although careful testing may prove the
rejection to be unjustified.

3.5 SYSTEMATIC EFFECTS (ERRORS)

The term “systematic error,” though used extensively in the past, is gra-
dually being reconsidered. The practitioner is well aware of the existence of
systematic effects and usually strives to minimize their presence through
instrument calibration, observational procedures, and data preprocessing
for atmospheric and other effects. However, from the statistical point of view
it is essential to note that systematic errors will affect repeated observations
in much the same way, hence they cannot be detected by having repetitive
measurements. The concept of considering observations as samples from
random probability distributions shows us where to place the effects of
systematic errors. Although the variability of sampling relates to the devia-
tions of the means of a distribution, the systematic effects of observations (or
biases) concern its location parameter (u). Thus perhaps with some exagger-
ation we can say that when systematic errors are present, there is nothing
wrong with the observations; it is the interpretation that is wrong. In other
words it is the functional model that is not appropriate. For example, a
triangle on the earth’s surface may be treated by one of three functional
models: plane, spherical, or ellipsoidal. The choice of one over the others
may result in systematic errors. Taking the concept of systematic error away
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from the observation and attaching it to the functional model may seem to
be of little practical importance, as this does not solve the problem of how to
consider such effects. But it is of basic importance to understand that
systematic errors indicate an inconsistency between the observations (or
better, between the random variables to which the observations refer) and
the functional model. The linking of the observations to the model, that is,
assigning sample means (which are estimates for the expectations) to certain
variables of the functional model, will be inconsistent when systematic errors
are present.

Systematic effects take on different forms depending on the value and sign
of each of the effects. If the value and sign remain the same all through the
measuring process, we would have the so-called constant error. An example
of this is making distance measurements with a tape that is either too short
(or too long) by a constant value. All lengths measured by that tape will
undergo the same systematic effect due to the tape alone. If the sign of the
systematic effect changes, perhaps due to personal bias of an observer,
the resulting systematic errors are often called “counteracting.” For exam-
ple, on an aerial photograph earth curvature and atmospheric refraction
cause opposite displacements of image points. Thus the systematic effect due
to the first counteracts that due to the second.

In photogrammetry, geodesy, and surveying, systematic errors occur due
to physical causes, due to instrumental factors, and due to the observer’s
human limitations. Physical sources are numerous of which we mention
temperature, humidity, and pressure changes. These will affect angle measure-
ments and distance measurements either by tapes or electro-optical equip-
ment, and wili cause the bending of photogrammetric light rays due to
atmospheric refraction, to name a few. Instrumental factors are caused by
either imperfections in construction or lack of adequate adjustment of
equipment before their use in data acquisition. Examples include unequal
graduations on linear and circular scales, lack of centering of different com-
ponents of the instrument, compromise in optical design thus leaving certain
amounts of distortions and aberration (for example, photogrammetric
camera lenses), and physical limitations in machining parts such as straight
ways and pitch of screws in precision photogrammetric equipment.

Although automation has been considered and in some cases introduced
(with its own sources of systematic effects) to several tasks, the human
observer remains an important element in the activities of photogrammetry,
geodesy, and surveying. Of his natural senses, he relies most on his vision
and hearing abilities, both of which have limitations, and vary due to cir-
cumstances and from one individual to another. Although some of the per-
sonal systematic errors are constant and some are counteracting, a lot more
may be erratic.

As a matter of principle, the functional model should be set up such that
systematic effects are accounted for. This can be done in several ways:
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1. The effects of systematic errors can be determined separately and con-
sidered directly a priori to the adjustment.

2. The effects can be considered-as unknown random variables to be as-
sessed by the observations during the adjustment.

3. The effects can be treated as observations themselves, perhaps with a
priori given numerical values, for instance, refraction coefficients.

It is interesting to note that systematic effects are often not taken into
account by the functional model but rather by “correcting” the observa-
tions for them. In other words the observations are replaced by another set
of values, which are then treated as observations and which are more con-
sistent with the functional model. It is said that the functional model is a
“computational model” onto which the observations are “reduced.” Work-
ing with such a simplified computational model is preferred over the “best”
functional model in the sense of a best description of the physical system.

As an example we consider the case in which image coordinates in an
aerial photograph are corrected for lens distortion and refraction in order to
maintain the fictitious functional model of a perspective image. Sometimes
the image coordinates are even corrected for earth curvature in order to
have a simpler computational system.

In order to eliminate the effects of systematic errors, they must first be
detected. One should always strive to analyze the measuring process and the
functional model in order to determine as well as possible the systematic
effects. In some instances even the best modeling of the systematic errors
leaves some effects in the observations. This is often detected by performing
tests on the residuals from the adjustment (for example, using regression on
the residuals from least squares computation). In such cases the functional
model may be extended in such a way as to include some added parameters
to absorb the effect of the remaining systematic errors. Alternatively, some
interpolation treatment a posteriori to the adjustment may be performed on
the results (see Chapter 14). Before closing this chapter, some examples may
help in focusing the attention of the reader on how to detect and treat
systematic errors.

Example 3.1. Let us consider the taking of aerial photography for the purpose of
photogrammetric aerotriangulation. Object points on the surface of the earth eman-
ate light rays that will eventually impinge on the photographic emulsion in the aerial
camera. As these rays travel through the atmosphere, the air density changes
(decreases) thus causing their refraction and bending before they reach the camera
lens assembly. While passing through the lens, the rays undergo further deviation
from straight line paths due’ to the radial and tangential distortions of the lens.
Therefore the latent images registered on the negative material will be at positions
different from those that would result from perfectly straight line rays (perspective
image).
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The negative material is brought back and then subjected to a variety of chan-
geable conditions (stresses, temperature and humidity changes, and so on) during
development and printing to make the photographic postive. Image positions un-
doubtedly change further during this process. What are now measured on a compar-
ator are the images on the positive plate, which are obviously shifted from the
perspective position. The magnitudes of these shifts depend on the amounts and
types of all systematic effects, some of which have already been discussed.

Once the existence of systematic errors is ascertained, their effects are modeled
functionally. When formulation is made to fit the systematic portion of the problem
at hand, the correction procedure for those systematic effects is not difficult. For
example, to compensate for radial lens distortion the image coordinates need to be
shifted a certain amount which is a function of the radial distance from the principal
point. Knowing the function and the radial distance for any one image point, the x
and y shifts can be readily computed and (algebraically) added to the measured
coordinates. Other systematic effects may be treated in the same manner and the
total correction computed and applied to compensate for all effects, as far as possible.

Example 3.2. Example 3.1, from photogrammetry, exemplifies the procedure
followed to trace in an orderly manner the sources of systematic effects. Examples of a
variety of systematic errors also abound in geodetic and surveying operations. Let us
consider the operation of taping for the determination of distances between points on
the earth’s surface. The length of a given tape may be physically different from the
values indicated by the numbers written on its graduations due to some or all of the
following factors:

1. The temperature changes between that used for tape standardization (calibration)
and the temperature actually recorded in the field during observation.

2. The tension or pull applied to the tape during measurement is different from that
used during calibration.

3. The method of tape support is different during measurement from that used
during calibration.

4. The end points of the distance to be measured are at different elevation. In this
case a correction is needed due to the fact that the slope distance would be
measured instead of the horizontal distance.

Example 3.3. Electronic (and electro-optical) distance measuring techniques are
also subject to a number of systematic effects whose sources and characteristics must
be determined and alleviated. We mention a few of these sources here: There may be
a change in the density of air through which the signal travels as it causes a change in
the signal frequency (due to variations in wave propagation velocity); the instrument
(and sometimes the reflector or remote unit) may not be properly centered on the end
of the line to be measured; and the path of propagation of the signal may not
conform to the straight-line assumption and may be bent due to environmental and
other factors.

Example 3.4. Another instrument that is used extensively in surveying and
geodesy to measure horizontal and vertical angles is the transit. The following are
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some of the sources of systematic effects that may be associated with such
instruments:

Horizontal circle may be off center.

. Graduations on either or both circles may not be uniform.

3. The horizontal axis of the telescope (about which it rotates) may not be perpendi-
cular to the vertical axis of the instrument.

4. The longitudinal (or optical) axis of the telescope may not be normal to the
horizontal axis of rotation. (In this case, the axis of the telescope would describe a
cone instead of a plane as it rotates through a complete revolution.)

5. When the optical axis of the telescope is horizontal, the reading on the vertical
circle is different from zero.

6. The telescope axis and the axis of the leveling bubble may not be parallel.

7. This source does not pertain to the transit but to the target that is used to sight on.

If the natural illuminating conditions are such that part of the target is in the

shadow, the observer will tend to center the transit’s cross hair so as to bisect the

illuminated portion of the target. This type of error is often referred to as the phase
error.

[\ I

We have by no means exhausted all systematic sources in the general field
of geometronics. There are numerous others in photogrammetry (parti-
cularly instrumental errors in stereoplotters, comparators, and so on) and
geodesy (spherical and spheroidal excess, gravimeter and other instrument
errors, and timing and other errors in astrogeodetic work). Systematic
errors, once found, can often be accounted for as follows:

1. Actual formulation and computation of corrections that are then applied
to the raw observations.

2. Careful calibration and adjustment of equipment and measuring under
the same conditions specified by calibration results.

3. Devising observational procedures that will result in the elimination of
systematic errors that would otherwise occur.

4. Extending the functional model to include the effects of the systematic
errors.

Finally, systematic effects may arise due to highly correlated random
errors that are not accommodated in the stochastic model. In fact, parti-
cularly after an adjustment, residual systematic effects are often treated as
correlated random errors and filtering techniques are used for their reduc-
tion. It is important to note that in the phase on adjustment techniques in
this book we do not deal with systematic effects or biases. The assumption
will be made that both the stochastic and functional models are appropriate.
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Principle and Techniques of Propagation

4.1. INTRODUCTION

Propagation involves obtaining the stochastic characteristics of (func-
tionally) dependent variables given the characteristics of the independent
variables and the functional relationships relating the two sets of variables.

Let X; be a set of random variables with associated density function (n
dimensional) f(x,, x5, ...). Let y, be another set of random variables related
to X; by functional relationships

Vie=ulXy, X2, ..)
Then the task of propagation is to determine the stochastic properties of y,
from those of the X;, in other words, to determine basically the density
function f(y,, y,, ...).
In practical application this general problem is often simplified. We can
distinguish conventionally between three cases:

1. Propagation of means (expectations).
2. Propagation of random errors (variances and covariances).
3. Propagation of systematic errors.

72
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Each of these cases will be treated separately, following the general case of
distribution propagation. In all the cases, however, practical application is
concerned with linear (or linearized) functional relationships only.

4.2. PROPAGATION OF DISTRIBUTIONS

Let (X,, X,, ..., X,) be a set of stochastic variables, the joint probability
distribution of which is given by the density function f,(x,, X,, ..., X,). From
them a set of variables (J,, y,, .., ) is derived by given functional relation-
ships. The joint probability distribution f,(y,, y,, ..., y.) is to be derived
using f, and the given functions.

4.2.1. One-Dimensional Case For simplicity, consider first a one-
dimensional case. Let us take a continuous, differentiable function y = g(X)
with f(x) being the density function of X. The inverse function X = h(y) is
assumed to exist and to be also unique, continuous, and differentiable.

Each event X; can be transformed to an event y; = g(X;) and, vice versa,
X; = h(y;). Therefore the probability of X falling into the interval x, — x, is
the same as y falling into the associated interval y, — y,.

P, <x<x2) =] Sl dx=[ f»)dy="P(<y<ys)

“x1 Y1

Using the functional relationships, we can substitute

109 dx = | 2000 52| ay = L5000

Thus the density function for the random variable y = g(x) is

50) = £00)) | 752

The absolute value used in equation (4.1) is taken in order to insure having
the proper sign.

(4.1)

Example 4.1

1
density function for y: f.(v) = f.(y) - ——=. Thus, if

fulx) = 72
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then
) = /(-z—lfy)

4.2.2. Multidimensional Case Let us consider the functions

;= gi(xy, X5, ...) = gdX) (4.2)
of the random vector X and the inverse functions

%, = (i, 4y, ...) = hy(@) (4.3)
If f(x,, x5, ...) is the joint density function of the random vector X, then

Fluy, uyy ) =f[hy(uy, uy, ...), hyug, up, ...), ..] - |9 (4.4)

is the joint density function of the derived random variables i1, i, , . ... Here,
| J| is the determinant of the Jacobian matrix of the inverse transformations

_ox
" Ou

The difficulty with propagation of distributions is that we have to assume
that the inverse function exists. But in the case of linear transformation of
normally distributed variables the result will also be normally distributed
variables. Therefore propagation is generally limited to linear or linearized
functions.

X;j=h) or J

4.3. PROPAGATION OF MEANS

4.3.1. General Means or expectations of distributions are a special class of
parameters by which probability distributions or density functions are
defined. Therefore the general equation (4.4) must contain the special rela-
tionship for the propagation of means. Instead of using equation (4.4),
however, it is simple to derive the propagation of means directly from the
concept of statistical expectation introduced in Chapter 2. Let X, X,,...bea
set of random variables with expectations (or means) E(X,), E(X,), .... We
let y,, y,, ... be a set of random variables that are functions of X, X,, ....

Vi=gdXy, X5, ...) (4.5)
The expectation of j; being the expectation of the function g; is given by
E(y:) = E(gi(%y, X3, ...)) (4.6)

Equation (4.6) holds in general, but it does not provide a simple computa-
tional technique, although its general statistical definition makes possible
the computation of E(y;) from

+ o

E(y,.)=”_w -—-fg,.(xl, X0 ) f(xg Xas ..) dxy dxy, ... (4.7)

Here, f(x,, x,, ...) is the density function of X,, X,, ....
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4.3.2. Propagation of Means for Linear Functions For linear or linearized
functions, however, the relationship for the propagation of expectations can
be easily derived. In this case the general formula (4.7) simplifies con-
siderably. For example, for y = ax we get

E(y) = E(aXx) = j ) axf(x)dx =a jw xf(x) dx = aE(X) (4.8)

Extending equation (4.8) to include several variables
Vi=ao; + ay; Xy + az; Xy + az;x; + -
E(3;) = E(ag; + ay;%; + az%; + a3, %3 + )
= E(ap;) + E(ay;%,) + E(azX;) + E(as;Xs) + -
= ag; + ay; E(X) + a3 E(X3) + a3, E(X3) + -+ (4.9)
or
Myi = Qo; + Ayilyy + Qgilcy + Q33 + ¢ (4.10)

Thus the linear relationship holds for the expectations or means as well. It
is important to point out that this propagation of means for linear functions
is independent of the probability distribution of the random variables X, X,
.... Equation (4.10) combines the rules given in Section 2.4.1. When the
relations are nonlinear, the probability distribution is needed.

Example 4.2. Given a normally distributed random variable X with
1 1{x — pu\?
e - —
6\/2n *P [ 2( o ) ]

that is, with a mean y and a variance of ¢2. If j = X? is another random variable,
evaluate its mean u,.

flx) =

Solution

ny = E(3) = E(¥?)

1 ° 1(x — u\?
= 2_<n;.[_wx exp[ 2( 5 ) de
Let

X —p
/2

1({x — u\?
2 _ X H
z 2( o )

x=u+a\/§z
dx=a\/§dz

zZ =
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then
1 a0
= +06./22)%e (6. /2) dz
b=l Fe™(0y/2)

= 71: [uz Jm e dz + Zuaﬁ fm ze"** dz + 202 fw z2e™ % dz]

_..7.:[\/_;1 +0+202\[ :

or
Hy = ”2 + o?

This result could have been directly obtained from equation (2.38a) in Chap-
ter 2, which, by the way, does not require knowledge of the density function.

In case X has a standardized distribution N(0, 1), or p =0 and 62 = 1,
then

1 ® PR,
Let
X
t=—"0
NG
t? = 4x?
dx =./2dt
then

or

VLI
ﬂy“’ﬁ —4__

This result shows that whereas p = 0 (for %), p, =0 + 62 =0+ 1 for .

4.4. PROPAGATION OF VARIANCES AND COVARIANCES

4.4.1. General The propagation of variances and covariances is commonly
known in practice as propagation of errors. In its general form it may be
extracted as the second central moments from equation (4.4). It can in
general be formulated for nonlinear functions in the following manner.
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We let X,, X, be random variables, with expectation u,, u, and density
function f(x,, x,). We consider the functions

~ ~

Y1 =9g1(x1, X2) and V2 = ga(%y, X2) (4.11)

Variances and covariances are defined as the expectations

e o]

o2 = E[(%, — )1 =] (xi = )Y (xr) dx, (412)

-

a0

o2, = E[(xs — )] = | (x2 = u2)?f(x2) dx, (4.13)

-

Orix, = E[(Xy — uy)(%2 — 1)

[T G ) — ) (e x2) diy i (414)

- @ -

Accordingly we get for the variances and covariances of y,, y,

Q ©

=] [ (0ubxrx3) =,V (51 %) dxy dx, (4.15)

- a®© = o0

[s ] [+ ]

L= [ (@aber x2) = 1) (x1 %) dxy dxy (4.16)

— @ e o}

=1 T @b ) = s Moalis x2) = i)
X f(xq, X3) dx; dx, (4.17)

Formulas (4.15) to (4.17) are general for any two functions of two random
variables. They can readily be extended to the case of n random variables.

Such general formulas are not used in practice, however. The integrals
involved in these equations often present problems. Therefore the propaga-
tion of variances and covariances is simplified to linear (or linearized)
functions.

4.4.2. Variance and Covariance Propagation for Linear Functions Let
%,, X, be the random variables, with expectations u,, u, and joint density
function f(x,, x,). Consider the linear functions

yi=ao+a x; +axX,;

5}2 =b0+b1il +b2i2 (4.18)
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The variances and covariances of j,, j, are derived by applying the
definition,

a5, = E(y — 1,,)* = E(ao + a; X, + ay %, — ap — ay py — ay 11,)}
= E(a,(%; — p1) + ax(%; — pp))?
= E(@i(X; — u1)* + a3(X2 — p2)* + 2a,a5(%; — 1)(%2 — p2))
= afE(X, — p,)* + a3 E(X; — p2)* + 20,0, E(%y — p,)(%; — )
= ajo?, + a}ol, + 2a,a,0,,,,
(4.19)
Similarly,

o, =blo? + blicZ, +2b,b,0 (4.20)

X1X2

For the covariance, we have
Oyiy2 = E(G1 — 1, )02 — 1)

= El{ao + a,%; + a, %, — ap — aypy — ay )
X (bg + byX; + byx; — by — by, — byp,)]

= Ef(a,(a, — py) + ay(%; — 1))
X ((by(%y — p1) + ba(X2 — pp))]

= E(a,; b,(X, — p;)* + 2(a, b, + a,b,)
X (Xy = p1)(X2 — p2) + a2by(X2 — p2)?)

=a b E(X, — u,)* + ayb, E(X; — uy)* + 2(a, b, + a,by)
X E(Xy — py)(X; — p2)

=ab,62 + ayb,0%, + 2(a, b, + ayb,)o,,,,

(4.21)

Again it is noticeable that the propagation of variances and covariances
with linear functions is independent of the density functions. Equations
(4.19) to (4.21) are valid for any probability distribution.

These equations were derived in a lengthy manner due to the application
of the basic definitions of expectation. They can, however, be more concisely
presented using matrices. Let

y = [y 5] and X = [X; %,]'

be the two random vectors involved. Equation (4.18) may be written in the
form

y=c+Cx (4.22)
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where
c=[ay bo]
_ |4 ay
€= [bl bZ]

Further, let

2 2
E — axl axlxz 2 —_ JYI a,\’l)'z
xx = 2 yy — 2

x1x2 axl O-YI y2 a)’z

be the covariance matrices for the two random vectors X and y. The three
equations (4.19), (4.20), and (4.21) may all be combined in one

r, =CE,,C (4.23)

The (1, 1) terms in equation (4.23) give equation (4.19), the (1, 2) or (2, 1)
terms give equation (4.20), and the (2, 2) terms give equation (4.21). The
matrix C represents the Jacobian of § with respect to X; thus equation (4.23)
may be further generalized symbolically to read

2yy = Jyx Zx.v: Jtyx (424)
with
Jy

IfX,, is a diagonal matrix, £, may still in general be a full matrix. Therefore
even if the original variables are uncorrelated, the new ones are usually
correlated.

4.4.3. Variance and Covariance Propagation for Nonlinear Functions Lin-
ear equations are not often encountered in practice, and therefore equations
(4.18) are usually the result of linearizing functions that were originally
nonlinear. For instance, if the orginal equations are those given by equation
(4.11), their linearized form at the approximate (or initial) values x{, x3 (see
Appendix B) will be identical to equation (4.18).

Of course, the linearized form is stopped after the zero and first-order
terms neglecting the second and higher-order terms. In fact, the zero-order
terms are not needed since g,(x, x3) and g,(x%, x3), which correspond to
aq, bo of the directly linear form, would not appear in the forms for pro-
pagated 67, 7,,,,, and o2,. This leaves only the partial derivatives and thus
makes equation (4.24) general, in as much as it can be applied to linear and
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nonlinear cases alike. Here, the Jacobian matrix J would include all four
partial derivatives or

oy o
0x, 0x,

J= oy, oy, evaluated at xJ, xJ (4.26)
0x, 0x,

Although in practical applications linearized functions are used regularly
for the propagation of variances and covariances, it should be pointed out
that this is permitted if the range of dispersion in X,, X, is small when linear
approximation is compared to the curvature of the function in the neighbor-
hood of x¢, x9. In other words the function should be approximated well by
its tangent within the region of interest—that is, the region of dispersion of
the random variables.

From a formal point of view it should be noted that in linearization the
properties of random variables change from the variables themselves (in the
nonlinear form) to the increment,

X; = X;0 + AX; Yi = Yio + Ay;

Thus the error properties—that is, the probability distribution—is now as-
sociated with Ax; and Ay; instead of x;, y;, respectively.

Within the range of linearity, the geometrical consideration confirms the
result, obtained previously, that linear transformation of normally dis-
tributed variables X; also yields normally distributed variables ;. It also
allows us to assess the validity of the linearization (see Figure 4.1).

As a final comment, propagation rules for other moments could be
derived in the same way as for the second moments in the case of linear

() Tangent

E()=ELf(x)]

E (x)
1
f
\l/f A
| Density function

Figure 4.1
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functions. In general, the propagation of moments is independent of the
distribution with linear functions.

4.44. Alternate Derivation for Variance and Covariance Propagation A
derivation, which is due to Brown,T is possible without the application of the
concept of moments. It is based on the following alternate definitions of
variance and covariance. If X; is a random variable taking many values x;,
each of which having a random error dx;, (as a deviation from the mean),
then the variance ¢2; of x; is given by
1 m
o= lim — Y (dx)? (4.27)
m— oo m k=1
In a similar manner the covariance of two elements X;, X; of a random vector
X may be defined by

.1 Z
axixj = llm - Z (dxik dx_,k) (4.28)
m-o M =1
With these two basic definitions, the propagation of variances and covar-
iances from one set of random variables X to another set § can be for-
mulated. We let

5’1 = _V1(5€1, 5‘2 y ey in)

j)q = yq(scla -;CZ 5 ey Scn) (429)
be a set of g functions relating the variables X to §. In order to propagate the
“errors” dx,,, dx,, ..., dx, into all J,, let us define the auxiliaries

(partial derivatives),

’ 8yl . .
yu=a l=1,2,...,q, ]=1,2,...,n (4.30)
J
Thus

dyy = Vi1 @Xq + Vi dxg + 0 + Yy, dXg

dyg = Vg1 dX 4+ Vg2 dXg + 7 + Viu dX (4.31)
or in matrix form

dyk = Y, dxk (4.32)

t See bibliography at end of book.
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where dy, is a g x 1 vector, and dx, is a n x 1 vector; Y’ isa g x nmatrix of
partial derivatives which is the same as the Jacobian J,. Hence, equation
(4.32) may be written as

dyk = Jyx dxk (4.33)

If we choose the ith and rth elements to represent any two typical elements,
then

dyy = j; dx,
dyrk = jr dxk (434)
where j;, j, are the ith and rth rows of J. Next,

dyy dy, = §; dx, j, dx,

I,n n,1 1,n n1

or
dyy Ay, = §; dx, (dx) jt (4.35)
1,n n 1 1,n n1
Let
(dxy)?  (dx, dx;) - (dx; dx,)
M, =dx, - (dx,) =
(dx, dx,) (dx, dx;) - (dx)? |,
(4.36)
then
dyy Ay, =j; My j; (4.37)

We let k run from 1 to m, take the sum, divide by m, and take the limit, or

m- oo k=1 m— © k=1

) 1 Z ) 1 &
lim — ) dy, dy,k=j,-[hm = ZMk}jﬁ (4.38)

In view of the definitions of equations (4.27) and (4.28), it is readily seen that
equation (4.38) leads to

Ginr = ji z::m: J:l- (439)

Equation (4.39) represents one element on the ith row and rth column of the
total covariance matrix X, . It should be rather straightforward to extend
equation (4.39) to

E=du e (4.40)
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which is identical to equation (4.24). Equation (4.40) is sufficiently general in
that it concerns a vector §, ,, as a general (nonlinear) function of another
vector X, {, which is of different dimension. Since cofactor matrices are
related to covariance matrices by only a scale factor, that is,

1 1
Qxx =—- zxx and QJ’)’ = z}'Y
Oo
Then equation (4.40) may be written in terms of cofactor matrices

ny = Jyx Qxx J;x (4'41)

It is worth noting here that we may speak of covariance and cofactor
propagation but not of weight propagation. This follows in view of the fact
that earlier discussion showed that weight matrices may not even be defined.
Furthermore, the Jacobian matrices are often rectangular and the inverse of
equation (4.41) [or equation (4.40)] cannot be effected on individual
matrices.

A further generalization of equation (4.41) is possible when multiple func-
tions of different random vectors are involved. For example, let x, ;, and
tm, 1) be two correlated vectors with cofactor matrices Q,,, Q,, and Q,,.
Two other vectors y,, ,,and z, ,, are functions of x and t (y is functionally
independent of t and z of x)

y = y(x) (4.42)
z = z(t)
from which the following Jacobians are derived
dy
= 44
Je=2) (443)
oz
Jzt - a

Two expanded vectors

] el

can be set up with the corresponding expanded Jacobian

r=

J 0
J. = yx 4.44
rs [ 0 Jz' ] ( )

and equation (4.41) may be applied
Q. =J,s Qi J;s
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or
[ny Qyz] = [Jyx 0 } Qxx th] [J;x 0 j'
sz sz 0 Jzt th Qtt 0 Jtzt
_ [Jyx Q. I J,.Qu J;,]
3 Qi 8 I Qu I

from which we can write the following four general relationships

Q)y = 3,2 Qux I« (4.452)
Q). =3, Qu Jz (4.45b)
Q. =17, Q. J,. = Qi (4.45c)
Q.. =J., Q. J, (4.45d)
The crosscofactor matrices are easily constructed as, for example,
dx1:1 9x1e2 7" Gxim
?: =| : : : (4.46)
’ Axmtr  Gxm2 """ Gxnm
which directly leads to the fact that
?:: = Q

4.4.5. Symbolic Multiplication In an effort to assist the practitioner,
Tienstrat devised a scheme for the application of propagation rules that he
called “symbolic multiplication.” It is a strictly mnemotechnical rule that
makes possible obtaining the elements of the covariance matrix separately.
It is briefly given here for the sake of those readers consulting European
literature.

In order to illustrate the scheme, we consider the following equations,

u=ag+ax+a,y+asz (4.47)
v=by+b;x+byy+ bz
According to equation (4.41), the cofactors of u, v are
Qui = 01 qxx + 039,y + 034, + 20, 0,9, + 20,039, + 2a,054,,
Qoo = b1qux + b3a,, + b3q.. + 2b1brg,, + 2b1b3g,; + 2b2 D34,
Quo = a1b1q.x + ayb,q,, + a3bsq,, + (a1 b, + a3 by)q,,
+ (aybs + a3by)q,. + (azbs + as3b,)q,, (4.48)

t See bibliography at end of book.
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The coefficients of the cofactors on the right-hand side of equation (4.48) can
be obtained directly from corresponding multiplication of the original equa-
tions themselves [equations (4.47)] disregarding a,, by. For instance, the
product (uu) would be

(uu) = a3(xx) + a3(yy) + a3(zz) + 2a,a,(xy) + 2a, a;(xz)
+ 2a,a;(yz) (4.49)

The terms between parentheses refer to the indices of cofactors.

Comparing equation (4.49) to the first line of equation (4.48) shows that
such a “multiplication” does in fact yield the coefficients of the cofactors.
Thus with the understanding that products of random variables are shifted
to indices of cofactors, any auto- or crosscofactor can be obtained by “sym-
bolic multiplication” of the equations. It was devised before the extensive
use of matrix algebra, and was helpful in particular when a single element of
the total cofactor matrix is required. Recently the same scheme has also been
applied to matrix equations. Of course, in this case the matrix sequence must
be carefully observed, thus leading to transposition. For example, for

y=Ax+a

z=Bt+b
The crosscofactor matrix Q,, may be obtained by “symbolic multiplica-
tion” of y and z (again disregarding the terms a and b which are irrelevant to
propagation). Thus ‘

yz = (Ax)(Bt) = A(xt®)B' (4.50)

The random vectors are transferred to indices for cofactor matrices and
dropping the transpose symbol, or

Q,. =AQ, B (4.51)

Noting that J,. = A and J,, = B, equation (4.51) becomes identical to equa-
tion (4.45b).

4.4.6. Further Elaboration on Propagation Using Matrices Matrix formula-
tion expounded in the preceding sections allows for the propagation of
variances through several transformations. As an example, we consider the
following three relations:

y=Ax+a
z=By+b (4.52)
r=Cz+c

Let the random vector X be known, with its cofactor matrix Q,, . Then there
are two ways of obtaining the cofactor matrices of z and r, known as “ substi-
tution” and “stepwise execution.”
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PROPAGATION THROUGH SUBSTITUTION We express z and r in terms of x,
by substitution:

y=Ax+a
z=By +b=B(Ax +a)+b=(BA)x + (Ba+b)
r=Cz +c=C(By+b)+c=(CB)y+ (Cb+c)
= (CB)(Ax + a) + (Cb + ¢)
= (CBA)x + (CBa + Cb + ¢) (4.53)

Applying propagation of cofactor relations in equation (4.45) (or using sym-
bolic multiplication) we get

Q,, = AQ, A’

Q.. = (BA)Q,.(BA) = BAQ,, A'B'

Q. = (CBA)Q..(CBA) = CBAQ,, AB'C'

Q,. = AQ.(BA) = AQ A'B'

Q,, = AQ,(CBA) = AQ,, AB'C’

Q., = BAQ,,(CBA) = BAQ,, A'B'C’ (4.54)
STEPWISE PROPAGATION The same result in equation (4.54) can be ob-
tained by applying propagation in steps as follows:

y=Ax+a Q,, = AQ A’

z=By +b Q.. = BQ,, B' = BAQ,, A'B

r=Cz +c¢c Q.. =CQ,, C' = CBAQ,, A'B'C’

Qyz = AQxy B’
Q,=4Q..C
er = BQyz C' (455)

The last three (crosscofactor) relations of equation (4.55) do not corre-
spond to those in equation (4.54), particularly because of the absence of the
matrices Q,,, Q,., and Q,,. However, these matrices can be derived if
equations (4.52) are supplemented by simple identities. Thus

x = Ix
y=Ax+a
x = Ix
z=By+b
y=1Iy

z=By+b
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and

Q, =1Q;; A"=Q,; A’

Q. =Q,B=Q,,AB

Q,.=Q, B (4.56)
Substituting equation (4.56) in equation (4.55) leads directly to the equations

in (4.54), thus ascertaining the equivalence of both procedures.

Example 4.3. Given

yl _ 2 1 xl . _ 3 1 . _
2I-f AR el g e

1. Compute ¢, X,,, and X,
2. Compute the elements of the standard ellipse for x and z.

Solution: 1. First
X1 1 2 -1 (,Vl
X2 . 1 2 | V2

[ 11 -7
z:ch = ny zyy J;y Z% ]

and

-7 11

2 __ t __ 8
o ‘sz zxx sz—'Q'

Ezy = sz zxx J,’vx = %[4 4]

5 -1
Ly=Jd,L, Jtyy =%[_1 5}

2. (a) Standard ellipse for x: The characteristic equation is
A2+ tr (Ba)(—4) + |Zax| =0

or
-1 +8=0

thus
Ay =2 and A,=1%

For A, = 2 the eigenvector is (x;, —x,), and for A, = § the eigenvector is (x,, x,).
Hence the semimajor axis of the standard ellipse is a = \/Z = \/5 and is oriented
along a line making an angle —45° with the x, axis. The semiminor axis is normal to
it and is equal to b = /4, = 3.

(b) Standard ellipse for z: Since this is a one-dimensional case, the ellipse degenerates
into a line segment with +0, = (2ﬁ)/3 along the positive z axis from the estimate of
the point, and — g, in the opposite direction.
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Figure 4.2

Example 4.4. Figure 4.2 shows a triangle for which
f=a+Bf+y—(n+e¢)

represents the lack of closure, with ¢ being the spherical excess.
1. If s,, s4, s, are the standard deviations for the three angles, which are assumed to

be uncorrelated, then

s2.0 0 1
s2=[1 1 1]] 0 s © 1| =s2+s5+s}
0o o 2] |1

If, further, s, = sg = 5, = s, then
s} = 3s?

2. Each angle may be considered as the difference between two directions that are
uncorrelated and of equal precision, s3. For example: « = d; — d, and

2
2 2 _ Sd 0 1_ 2
poten it 3] 1]

Thus
s}=6s7 or  s}=#4st
The latter relationship is often referred to as Ferrero’s.

Example 4.5. In the plane triangle of Figure 4.2, the two angles « and f and the
side ¢ are measured and known to be uncorrelated. It is desired to derive the autoco-

factor of side a.

Solution:

4= csin a
"~ sin (m—a — B)

y= c(cosasinysinacos y) csinacosy sina
- sin? y sin? y sin y
a
=[(acotoc+acoty) acoty E]

2
a
Gaa = a*(cot a + cot y)2q,, + a* cot? yqgs + o2 e
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Another procedure is as follows:

sin o
a=— y=n—a—pf
sin y
a
J=|acota —acoty c

2
a
Qaa = a* cot? agq,, + a? cot? yq,, — 2a* cot « cot yq,, + 24

Since g,y = qua + gpp and guy = —qua, then g,, reduces to the same expression above.

4.5. PROPAGATION OF SYSTEMATIC AND
“TRUE” ERRORS

In this section we shall discuss briefly the propagation of “known” terms
through known functions. Let X, j be random variables, for which the fol-
lowing function is given

r=g(x y) (457)

Let Ax, Ay be increments, the nature of which will be discussed below. Then
we have directly for the propagation of the increments

r+ Ar =g(x + Ax, y + Ay)
Ar = g(x + Ax, y + Ay) — g(x, y) (4.58)

If the increments are small, the function can be expanded and only linear
terms used. Thus

_ dg g
r+ Ar = g(x, y)+axAx+ayAy+
or
_0Og dg

To this point, no probability considerations enter into the picture. It is
treated as a calculus problem as far as the formula (4.59) is concerned. In
practical applications, however, the increments Ax, Ay are in a way related
to the error concept. They can be (a) corrections due to computational
errors; (b) “true” errors that are assumed to be known; or (c) systematic
errors.

It is essential that in all cases Ax, Ay are supposed to be known and not
associated with random variables. This is, of course, a simplification. From a
statistical point of view the case can be considered as a special case of
propagation of means. The random variables X, y are replaced by derived
variables u = x + Ax, v = y + Ay, where Ax and Ay are also, in principle,
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random variables. We ask here for the expectation of r =g(u, v) as
compared to that of r = g(x, y).

The above rule in equation (4.59) can be considered a limit case when Ax,
Ay are considered as constants, their stochastic properties being reduced to
zero. This propagation rule is from a theoretical point of view of very limited
importance. However, it is useful in practice for studying certain effects, in
particular in connection with simplified mathematical models. Systematic
errors are, in principle, deficiencies of the mathematical model. Con-
sequently, such rules can be used in studying the propagation of residual
systematic effects.



Problems for Part |

1. From the bivariate normal density function for two correlated random var-
iables X, y [see equation (2.70)], derive the marginal distributions for each variable x
and j.

2. Given the bivariate normal density function f(x, y) [equation (2.70)] derive the
conditional density function f(x|y).

3. From equation (2.69) give the (noncentral) joint normal density function for
the variables X, y, z such that there is no correlation between X and z (p,, = 0) and
between y and Z (p,, = 0). Show that the joint density can be written as the product
of the bivariate density function f(x, y) and the univariate density function f(z).

4. Show that the mean is zero and the variance is equal to one for the stan-
dardized random variable

x — E(%)

Ox

5. Derive the mean and variance of the x? distribution, given in equations (2.61)
and (2.62).

6. Given the following 20 measurements of an angle in order of their
observation:

91
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(@) 9.3 (b) 6.6 (c) 79 d) 68"
(€) 6.1 (f) 5.9 ) 6.1” (h) 78"
i) 72" (G) 80 (k) 7.1” (1) 49"
(m) 5.7 (n) 52" (0) 69 (p) 6.2
(q) 10.1" ) 9.7 (s) 4.1” (t) 6.2

Sketch a histogram of the measurements using an interval of 0.5” and a lower bound
of 4.0” and compute the sample mean value, the sample standard deviation of a single
measurement, and of the mean value.

7. Given a random variable y with standard normal distribution, what is the
probability that (a) y assumes a value between 0.35 and 1.65; (b)  assumes a value
between —1.96 and 2.42.

8. The distribution of the diameters of the ball bearings in a certain shipment is
approximately normal with mean 0.500 cm and standard deviation 0.010 cm. If a
ball bearing is effective when its diameter lies between 0.490 and 0.515 cm, find the
probability of obtaining an effective ball bearing from the shipment. (Use the stan-
dard normal tables.)

9. The following observations were recorded for the measurement of two angles, &
and B, each measured 20 times.

OBSERVATION & B
1 20° 05’ 17.9” 16° 42’ 29.8”
2 17.0 29.9
3 19.1 30.1
4 17.1 313
5 17.7 31.3
6 16.8 30.9
7 17.6 30.7
8 18.5 29.5
9 17.6 300
10 16.4 31.2
11 17.5 30.2
12 18.4 30.2
13 17.6 30.6
14 16.6 29.1
15 18.2 30.3
16 17.8 299
17 17.0 29.8
18 18.3 29.5
19 17.7 29.6
20 18.0 30.6

(a) Compute the sample variance and sample standard deviation for a single
observation of each of the angles & and B. (b) Compute the sample covariance and
estimate of the correlation coefficient between & and J. (Assume & and B are the
random variables of a bivariate distribution.) (c) Write out the variance-covariance
matrix for the observations &, B.
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10. A distance x is measured nine times with sample mean of 190.09 meters and
sample variance of the mean of 4 cm?. Present the confidence intervals for u, and o,
at the 95% and 999 levels.

11. A distance x is measured 30 times with sample mean of 190.09 meters and
sample standard deviation of a single value of 6 cm. Present the confidence intervals
for u, and o, at the 959 and 999 levels.

12. A sample of nine measurements of a distance yields a mean value of 8.4 cm
and a standard deviation in the mean value of 0.4 mm. Test the hypothesis that the
true length of the distance is 8.0 cm against the alternative that the true length is
greater than 8.0 cm. Use a 5% level of significance.

13. The average of 100 measurements is 21.0 cm with a standard deviation in a
single measurement of 1.5 cm. Can it be claimed that the true length of the measure-
ment exceeds 20.0 cm? Use a 5%, level of significance.

14. The following 15 measurements were observed and assumed to be from a
normal distribution:

132.2 128.0 125.0 130.2 126.6
128.6 127.8 128.4 1280 128.4
128.0 128.5 128.4 128.7 127.2

Test the following hypotheses at a 59 level of significance:
a. Hy: u=1300 against H,: u+130.0
b. Hy: p=1300 against H,: p<1300
c. Hy:02= 90 against H;: 624+ 90
d. Hy:0>= 50 against H;:ad’< 50
15. The following two sets of measurements were supposedly taken of the same
physical quantity by identical techniques:
Sample I: 0.806 0.827 0.816 0.809 0814
Sample II: 0.813 0.803 0.810 0.807 0.804
Test the following hypotheses at a 59 level of significance:
a. Ho:pyy—p=0 against Hy: oy —pn #0
b. Hy: o =of against H,: of # o}
16. The random variable X has mean yu,. The random variable ¥ has mean p,. If
a and b are constants, determine the expected value of Z in terms of a, b, u,, and uy if
Z=X-aX+Y-»bY.
17. A sample of 12 measurements of an angle 0 yields a mean value of 60 degrees.
The standard deviation in the mean value of the angle is 30 seconds. Present a 959,
confidence interval for u; and o2.

18. From two sets of measurements supposedly from the same population, the
following data were recorded:

o]

SET n oy

8 10.1 0.10
II 12 10.0 0.07
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At the 109 level of significance, test the hypothesis that the variances are equal
against the alternative that they are not equal.

19. If x; = [1 2][:‘}, x;, =2 3][2‘}, and I,, = [(l) g} is the
2 2

covariance matrix of u; and u,, compute the covariance matrix X,; for

7= Z; _ 6 2 X1
- Zy - 2 3 X2
20. Given the cartesian coordinates x = 300 mm with o, =004 mm, and

y = 400 mm with ¢, = 0.05 mm, where x and y are assumed uncorrelated, compute
the polar coordinates r and 0 and their covariance matrix.

_ Uy _ uy 2 2 2 |01 0
21 x; =1 3][u2}, x, =11 4][u2],x1+x2—y ,and £, = [0 o2l
Compute o, if u; =0 and u, = 1.

1 -0.1

= ' -
2. x=[2 3), E.x [—0.1 )

], y = x'x. Compute o?2.

23. y=x; cos 0 — x; sin0,9=45°’w""=[1 4

1 .
> ] Compute the weight

of yifgd = 1.

2 0

0 3
25. The figure below shows a small triangulation chain, in which L is the

measured baseline and «,, a5, a3, B;, B2, and B3 are known angles. The exit base M

may be computed from

24. z=[1 2L, Z,,= [ ], u = 27'Az for A = i ;] Compute 2.

sin oy sin o, sin a3
sin B, sin f, sin f;

Compute the value of M and its standard deviation if the measured quantities and
their corresponding estimated accuracies are

L = 5286.278 meters; ¢, = 12.7 mm

ANGLE DEGREES MINUTES SECONDS o IN SECONDS

o, 53 56 413 7.6
B, 74 47 40.2 10.5
o, 50 42 26.3 6.8
B, 81 32 56.3 23
o 63 50 46.6 3.7
B, 69 2 06.5 5.3

Note: All observations are assumed to be uncorrelated.
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26. The following two functions x, and x, relate three observed correlated var-
iates uy, u,, and u;, where u;, = 3.0, u, = 4.0, and u3z = 5.0,

Xy = u? + 3u3 + u;

Xy = ! + 4u, + !

2= u% 2 Us
Compute the covariance matrix of the functions x, and x, given that the weight
matrix of the observations is

2 05 06
W,=|05 1 =07
06 —-07 3

and the reference variance is 0.8.

27. It is estimated that in 1 km of differential leveling, the standard deviation in
elevation difference determination is 2 mm. The elevation of bench mark A is con-
sidered known at a standard deviation of 3 mm. How long a level line can be run
from BM A to establish the elevation of point Q at a standard deviation of 1 cm?

28. It is estimated that each interior angle of a nine-sided closed traverse is
measured with a standard deviation of 10 seconds. Within what range would you
expect the sum of the measured interior angles of the traverse to fall, knowing that
the sum of the interior angles of an n-sided polygon is (n — 2) 180 degrees?

29. The upper base (UB), lower base (LB), and height (H) of a trapezoid are each
measured n times and the respective standard deviation of a single measurement for
each is determined (oy 5, 6.5, and o). The mean value of the area of the trapezoid is
determined from 4 = [(UB + LB)/2]H. What is the standard deviation of 4 in terms
of the variables identified? (Assume the measurements on UB, LB, and H are
independent.)

30. 0,4, 08, 6¢, and o p are the standard deviations of A, B, C, and D, respectively.
The measurements on A4, B, C, and D are not independent, hence ¢ ,5 + 0 ¢ #+
Oup F0gc ¥ #0.If S = A+ 2B — 3C + D, what is the standard deviation of §?

31. In a triangle, the misclosure w = a + b + ¢ — (180° — e), where g, b, and c are
the three measured angles with standard deviations o,, 6,, and o, respectively, and e
is the spherical excess. (a) Determine the standard deviation of w, g,,. (In terms of
variables defined above.) (b) Determine o, if 6, = 0, = 6. = 7,. (c) If each angle is
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determined as the difference of two directions as read from a horizontal circle of a
theodolite, and if the standard deviation for a direction o is assumed equal for all
directions, represent o,, 6,, 0., and g,, in terms of 7.

32. In stadia distance measurement, the horizontal distance D = KR cos? a,
where K is the stadia constant (normally 100), R is the level rod intercept (upper wire
reading — lower wire reading), and « is the vertical inclination of the telescope above
horizontal. At a sight distance of 300 feet, the wire readings on the level rod can be
made with a standard deviation of approximately +0.01 feet. (a) Determine the
standard deviation in D for a horizontal sight distance of 300 feet. (b) State or show
why the effects of error in K and a are much less than those in the reading of the level
rod.

33. In a subtense bar distance measurement process, the horizontal distance
D = (b/2) cot (a/2), where b is the length of the subtense bar, « is the horizontal angle
measured between the targets designating the length of the subtense bar, and the line
of sight is perfectly perpendicular to the subtense bar at its midpoint. If the length of
the subtense bar is 2 meters + 0.1 mm, determine the standard deviation that must
be attained in the measurement of the angle o in order to measure a 100-foot line with
a relative error of 1/5000. Repeat for a 200-foot line and a 300-foot line. (Note: For
the purposes of this problem consider the relative error to be the ratio of the
estimated standard deviation in the line length over the line length.)

34. The figure shows a scaled layout of a land area where all the angles in the
figure are perfectly known to be right angles. You are given the following
information:

[~
G

H FI 't
B5)
D El 4
A B c|
l . J

x;=7cm 2 1
T =
X, =2cm xx {1 z]mm

y; =1cm 121
y2=3cm 2”‘[1 2]""“

Assuming no correlation between the x; and y; measurements, compute the area of
the rectangle ABGH and its variance.

35. An observable quantity / has been measured three times with assumed uncor-
related values [,, I;, and /5 having standard deviation a,, 6,, and o3, respectively.
Using the propagation principle derive the standard deviation of the weighted mean of
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these three observations. (Assume that the reference variance is unity.) The weighted
mean X, of any variable x, is given by

X = (wlxl + Wi X3 + wnxn)

Wi w4+ w,

where x; is the ith observation and w; is the ith weight, assuming no correlation.
36. a. Sketch the error ellipse for

3 3
Li=13 3
3 3

b. Describe in your own words what the above ellipse means.






