
Introduction
Common intersection computation

Linear programming in 2D

Casting a polyhedron

Computational Geometry

Lecture 5: Casting a polyhedron

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

CAD/CAM systems

CAD/CAM systems allow you
to design objects and test how
they can be constructed

Many objects are constructed
used a mold

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting

A general question: Given an
object, can it be made with a
particular design process?

For casting, can the object be
removed from its mold without
breaking the cast?

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting

Objects to be made are 3D polyhedra

Its boundary is like a planar graph, but
the coordinates of vertices are 3D

We can use a doubly-connected edge list
with three coordinates in each vertex
object

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting in 2D

First the 2D version: can we remove
a 2D polygon from a mold?

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting in 2D

Certain removal directions may be good while others are not

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting in 2D

What top facet should we use?

When can we even begin to move
the object out?

What kind of movements do we
allow?

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting in 2D

Assume the top facet is fixed; we can
try all

Let us consider translations only

An edge of the polygon should not
directly run into the coinciding mold
edge

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting in 2D

Observe: For a given top facet, if
the object can be translated over
some (small) distance, then it can be
translated all the way out

Consider a point p that at first
translates away from its mold side,
but later runs into the mold . . .

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Casting in 2D

A polygon can be removed from its
cast by a single translation if and
only if there is a direction so that
every polygon edge does not cross
the adjacent mold edge

Sequences of translations do not
help; we would not be able to
construct more shapes than by a
single translation

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Circle of directions

We need a representation of
directions in 2D

Every polygon edge requires the
removal direction to be in a
semi-circle

⇒ compute the common intersection
of a set of circular intervals
(semi-circles)

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Line of directions

We only need to represent upward
directions: we can use points on the
line y = 1

Every polygon edge requires the
removal direction to be in a half-line

⇒ compute the common intersection
of a set of half-lines in 1D

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Common intersection of half-lines

The common intersection of a set of half-lines in 1D:

Determine the endpoint pl of the rightmost left-bounded
half-line

Determine the endpoint pr of the leftmost right-bounded
half-line

The common intersection is [pl,pr] (can be empty)

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Automated manufacturing
Casting in 2D

Common intersection of half-lines

The algorithm takes only O(n) time for n half-lines

Note: we need not sort the endpoints

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Casting in 3D

Can we do something similar
in 3D?

Again each facet must not
move into the corresponding
mold facet

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Representing directions in 3D

The circle of directions for 2D
becomes a sphere of directions
for 3D; the line of directions
for 2D becomes a plane of
directions for 3D: take z = 1

Which directions represented
in the plane does a facet rule
out as removal directions?

x

y

z

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Directions in 3D

Consider the outward normal
vectors of all facets

An allowed removal direction
must make an angle of at least
π/2 with every facet (except
the topmost one)

⇒ every facet in 3D makes a
half-plane in z = 1 invalid

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Common intersection of half-planes

We get: common intersection of half-planes in the plane

The problem of deciding castability of a polyhedron with n
facets, with a given top facet, where the polyhedron must be
removed from the cast by a single translation, can be solved
by computing the common intersection of n−1 half-planes

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Common intersection of half-planes

Half-planes in the plane:

y≥ m · x+ c

y≤ m · x+ c

x≥ c

x≤ c

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

An approach

Take the first set:

y≥ m · x+ c

Sort by angle, and add incrementally

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Incremental common intersection

The boundary of the valid region is a
polygonal convex chain that is
unbounded at both sides

The next half-plane has a steeper
bounding line and will always
contribute to the next valid region

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Incremental common intersection

Maintain the contributing bounding
lines in increasing angular order

For the new half-plane, remove any
no longer contributing bounding lines
from the end

Then add the line bounding the new
half-plane

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Incremental common intersection

After sorting on angle, this takes
only O(n) time

Question: Why?

The half-planes bounded from above
give a similar chain

Intersecting the two chains is simple
with a left-to-right scan

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Incremental common intersection

Half-planes with vertical bounding
lines can be added by restricting the
region even more

This can also be done in linear time

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Result

Theorem: The common intersection of n half-planes in the
plane can be computed in O(n logn) time

The common intersection may be empty, or a convex polygon
that can be bounded or unbounded

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Casting in 3D
Common intersection of half-planes
Incremental common intersection

Back to casting

The common intersection of half-planes cannot be computed
faster (we are sorting the lines along the boundary)

The region we compute represents all mold removal directions
. . .

. . . but to determine castability, we only need one!

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Linear programming

We will find the lowest point in the common intersection

Notice that half-planes are linear constraints

Minimize y

Subject to
y≥ m1 · x+ c1
y≥ m2 · x+ c2

...
y≥ mi · x+ ci

y≤ mi+1 · x+ ci+1
...

y≤ mn · x+ cn

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Linear programming

Minimize c1 · x1 + · · ·+ ck · xk

Subject to
a1,1 · x1 + · · ·+ak,1 · xk ≤ b1
a1,2 · x1 + · · ·+ak,2 · xk ≤ b2

...
a1,n · x1 + · · ·+ak,n · xk ≤ bn

where a1,1, . . . ,ak,n, b1, . . . ,bn, c1, . . . ,ck are given coefficients

This is LP with k unknowns (dimensions) and n inequalities

Question: Where are the ≥ inequalities?

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Terminology

LP with k unknowns (dimensions) and n inequalities:
k-dimensional linear programming

The subspace that is the common intersection is the
feasible region. If it is empty, the LP is infeasible

The vector (c1, . . . ,ck)T is the objective vector or cost vector

If the LP has solutions with arbitrarily low cost, then the LP
is unbounded

Note: The feasible region may be unbounded while the LP is
bounded

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

LP for casting

It is 2-dimensional linear programming with n constraints

We only want to decide feasibility, so we can choose any
objective function

We will make it ourselves easy

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Incremental LP

Let h1, . . . ,hn be the constraints and
`1, . . . , `n their bounding lines

Find any two constraints h1 and h2 where
`1 and `2 are non-parallel

Rotate h1 and h2 over an angle α around
the origin to make `1∩ `2 the optimal
solution for the objective function that
minimizes y

Rotate all other constraints over α too

`1

`2

`1

`2

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Incremental LP

Solve the LP with the rotated constraints

If the rotated LP is infeasible, then so is
the unrotated version

If the rotated LP gives an optimal
solution (px,py), then rotate if over an
angle −α around the origin to get the
removal direction for the original position
of the polyhedron

`1

`2

`1

`2

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Incremental LP

The algorithm adds the constraints h3, . . . ,hn incrementally
and maintains the optimum so far

Let Hi = {h1, . . . ,hi }
Let vi be the optimum for Hi (unless we already have
infeasibility)

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

LP for casting

The incremental step: suppose we
know vi−1 and want to add hi

There are two possibilities:

If vi−1 ∈ hi, then vi = vi−1

If vi−1 6∈ hi, then either the LP is
infeasible, or vi lies on `i

vi−1

hi
`i

vi−1

hi
`i

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Incremental LP

hi

`i

hi`i

vi−1 vi−1

hi

`i

vi−1

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

LP for casting

Algorithm LPforCasting(H)
1. Let h1, h2, and v2 be as chosen
2. for i← 3 to n
3. do if vi−1 ∈ hi

4. then vi← vi−1
5. else vi ←the point p on `i that minimizes y,

subject to the constraints in Hi−1.
6. if p does not exist
7. then Report that the LP is infeasible,

and quit.
8. return vn

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

LP for casting

If vi−1 6∈ hi, how do we find the point p on `i?

hi

`i

vi−1

`i `i

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Efficiency

If vi−1 ∈ hi, then the incremental step
takes only O(1) time

If vi−1 6∈ hi, then the incremental step
takes O(i) time

The LP-for-casting algorithm takes
O(n2) time in the worst case

v2

v3

v4

v5

vn

· · ·

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Efficiency

v2

v3

v4

v5

vn

· · ·

v2

v3

v4

v5

vn

· · ·

v2

v3

v4

v5

vn

· · ·

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Randomized algorithm

Algorithm RandomizedLPforCasting(H)
1. Let h1, h2, and v2 be as chosen
2. Let h3,h4, . . . ,hn be in a random order
3. for i← 3 to n
4. do if vi−1 ∈ hi

5. then vi← vi−1
6. else vi ←the point p on `i that minimizes y,

subject to the constraints in Hi−1.
7. if p does not exist
8. then Report that the LP is infeasible,

and quit.
9. return vn

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Putting in random order

The constraints may be given in any order, the algorithm will
just reorder them

Let j be a random integer in [3,n]
Swap hj and hn

Recursively shuffle h3, . . . ,hn−1

Putting in random order takes O(n) time

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Expected running time

Every one of the (n−2)! orders is equally likely

The expected time taken by the algorithm is the average time
over all orders

1
(n−2)!

· ∑
Π permutation

time if the random order is Π

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Expected running time

If the order of the constraints h3, . . . ,hn is random, what is the
probability that vi−1 ∈ hi ?

We use backwards analysis: consider the situation after hi is
inserted, and vi is computed (either by vi = vi−1, or
somewhere on `i)

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Expected running time

vi vi vi

Only if one of the dashed lines was `i, the last step where hi

was added was expensive and took Θ(i) time

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Expected running time

vi

If hi does not bound the feasible region, or not at vi, then the
addition step was cheap and took Θ(1) time

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Expected running time

There are i−2 half-planes that could have been one of the
lines defining vi

Since the order was random, each of the i−2 half-planes has
the same probability to be the last one added, and only 2 of
these caused the expensive step

2 out of i−2 cases: expensive step; Θ(i) time for i-th
addition

i−4 out of i−2 cases: cheap step; Θ(1) time for i-th
addition

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Expected running time

Expected time for i-th addition:

i−4
i−2

·Θ(1)+
2

i−2
·Θ(i) = Θ(1)

Total running time:

Θ(n)+
n

∑
i=3

Θ(1) = Θ(n) expected time

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Degenerate cases

The optimal solution may not be unique, if the feasible region
is bounded from below by a horizontal line. How to solve it?

There may be many lines from `3, . . . , `i passing through vi;
how does this affect the probability of an expensive step?

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Degenerate cases

vi

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Degenerate cases

In degenerate cases, the probability that the last addition was
expensive is even smaller: 1/(i−2), or 0

Without any adaptations, the running time holds

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Result

Theorem: Castability of a simple polyhedron with n facets,
given a top facet, can be decided in O(n) expected time

Theorem: 2-dimensional linear programming with n
constraints can be solved in O(n) expected time

Question: What does “expected time” mean? Expectation
over what?

Computational Geometry Lecture 5: Casting a polyhedron



Introduction
Common intersection computation

Linear programming in 2D

Terminology
LP for casting
Randomization

Higher dimensions?

Question: Can you imagine whether we can also solve
3-dimensional linear programming efficiently?

Computational Geometry Lecture 5: Casting a polyhedron


	Introduction
	Automated manufacturing
	Casting in 2D

	Common intersection computation
	Casting in 3D
	Common intersection of half-planes
	Incremental common intersection

	Linear programming in 2D
	Terminology
	LP for casting
	Randomization


