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CHAPTER 1: Introduction 

 

1.1. Show that the diffusion equation (heat conduction is one example) u,xx = αu,t, where 

α is a positive constant, is parabolic. 

 

Solution to 1.1. 

          

The above equation can be reduced to a first order form following the same procedure 

presented in Section 1.5. We let       and       from which we obtain the two first-

order equations: 

       

        

Expressing the derivatives of the dependent variables as 

                  

                  

And writing the above system in matrix form, 

  

   

[
 
 
 
      
     
        

        ]
 
 
 
{

   
   
   
   

}  {

 
 
   
   

} 

   ( )     (   )
 
       

Dividing by     
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From which we conclude that the diffusion equation is parabolic. 

 

 

1.2. Determine the classification of the equation for the dynamics of beams, u,xxxx = αu,tt. 

 

Solution to 1.2. 

Considering the solution for exercise 1, by inspection, the equation for the dynamics of 

beams is also parabolic. Note that, if        and       we get 
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CHAPTER 2: Lagrangian and Eulerian finite elements in one 

dimension 

 

2.1. Transform the principle of virtual work to the principle of virtual power by letting 

δu = δv and using the conservation of mass and the transformations for the stresses. 

(Note that this is possible since the admissibility conditions on the two sets of test 

and trial function spaces are identical). 

 

Solution to 2.1. 

The Principle of virtual work is: 

∫ (  )      

  

  

   (     
  )|    ∫   

  

  

        ∫   
  

  

     ̈     

The transformation to the principle of virtual power is possible by letting         using the 

conservation of mass,             , the transformation for the stresses,       , and 

using the chain rule 
 

  
 

 

  

  

  
 

∫ (  )  

  

  

  

  
      (        )|   ∫      

  

  

   ∫      ̇
  

  

     

∫ [(  )       (       ̇)]   (        )|    
  

  

 

 

 

2.2. Consider a tapered two-node element with a linear displacement field as in Example 

2.1 where the cross-sectional area A0 = A01 (1 – ξ) + A02ξ, where A01 and A02 are the 

initial cross-sectional areas at nodes 1 and 2. Assume that the nominal stress P is 

also linear in the element, i.e. P = P1(1 – ξ) + P2ξ. 
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(a) Using the total Lagrangian formulation, develop expressions for the internal 

nodal forces. For a constant body force, develop the external nodal forces. 

Compare the internal and external nodal forces for the case when A01 = A02 = 

A0 and P1 = P2 to the results in Example 2.1. 

(b) Develop the consistent mass matrix. Then obtain a diagonal form of the mass 

matrix by the row-sum technique. Find the frequencies of a single element 

with consistent mass and the diagonal mass by solving the eigenvalue 

problem 

 
2 01 02

0

1 1( )
where

1 12

PFE A A


 
   

 
Ky My K  

 

Solution to 2.2a). 

Similarly to example 2.1, the displacement field is given by the linear Lagrange 

interpolant expressed in terms of the material coordinates: 

 (   )   
 

  
 [        ] {

  ( )

  ( )
} 

where    
 

  
 [        ] and            . 

The strain measure is evaluated in terms of the nodal displacements by using   

 ∑
   

  
   

       
 

  

 (   )       ∑
   

  
   

   
 

 

  
 [   ] {

  ( )

  ( )
} 

where     
 

  
[   ]. 

However, the displacement field can also be expressed in parent coordinates 

 (   )   [    ] {
  ( )

  ( )
} 
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where  ( )   [    ], with    
    

  
          . 

Using parent coordinates, the displacement field becomes 

 (   )      
      ( ) 

 ( )   
 

  
 [   ] {

  ( )

  ( )
} 

where       
      ( )   

 

  
[   ] 

We can now obtain the internal nodal forces: 

  
     ∫   

       
  
 

 ∫   
 ( )    

 

 

      

  ∫
 

  
[
  
 
] (  (   )      )(   (   )       )    

 

 

 

  
    

   (      )     (      )

 
{
  
 
} 

 

The external nodal forces are: 

 

  
     ∫    

         ∫   

 

   
 

   ( )           

 ∫   

 

 

[
   
 

]  (   (   )      )    

  
     

      
  

 {
         
         

} 

 

Finally, we can compare these results with the ones obtained in example 2.1. The internal 

and external nodal forces for the case when             and          become: 

 

  
        [

  
 
] 
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 [
 
 
] 

 

Which are the same results obtained in example 2.1 (provided that         )  

 

 

Solution to 2.2b). 

Consistent mass matrix: 

 

  
  ∫    

       ∫   

 

 

  ( ) ( )   ( )     
  

  

 

 

  
   

   

  
[
               
               

] 

 

Diagonal Mass matrix (    ∑   ) 

 

  
   

   

 
[
         

         
] 

 

In order to find the natural frequencies, we need to solve the eigenvalue problem using 

the stiffness matrix provided in the problem statement: 

 

           (      )    

 

Hence, 

 

    (     )    

  

Solving for the consistent mass matrix   
 , we find (besides the trivial     ): 
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 √ (       )

  (        )
√
   

  
 

 

Solving for the diagonal mass matrix   
 , we find (besides the trivial     ): 

 

   
 (       )

  √(        )(        )
√
   

  
 

 

Note that      . 

 

 

2.3. Consider a tapered two-node element with a linear displacement field in the updated 

Lagrangian formulation as in Example 2.4. Let the current cross-sectional area be 

given by A = A1(1 – ξ) + A2ξ, where A1 and A2 are the current cross-sectional areas at 

nodes 1 and 2. Develop the internal nodal forces in terms of the Cauchy stress for 

the updated Lagrangian formulation assuming σ = σ1(1 – ξ) + σ2ξ where σ1 and σ2 

are the Cauchy stresses at the two nodes. Develop the nodal external forces for a 

constant body force. 

 

Solution to 2.3. 

Internal nodal forces: 

     ∫
   

  
       ∫

   

  

 

 

(   )
  
   ( )     

  

  

 

 

   [    ]  

  

     {
  
  
}  (   )       
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     ∫ [
  
 
]
 

 
 (   (   )       )(  (   )      )    

 

 

 

     [
   
 

(      )  
   
 

(     )] {
  
 
} 

 

External nodal forces: 

 

     ∫         
  

  

  ∫  [
   
 

]  (  (   )      ) 
 

 

   

 

     
   

 
{
    

  
 

  
 
   

}  

 

 

2.4. Consider a 2-element mesh consisting of elements of length ℓ with constant cross-

sectional area A. Assemble a consistent mass matrix and a stiffness matrix and 

obtain the frequency for the two element mesh with all nodes free (the eigenvalue 

problem is 3 × 3). The frequency analysis assumes a linear response so the initial 

and current geometry are identical. Repeat the same problem with a lumped mass. 

Compare the frequencies for the lumped and consistent mass matrices to the exact 

frequency for a free-free rod, ,
c

n
L


   where n = 0, 1, … Observe that the 

consistent mass frequencies are above the exact, whereas the diagonal mass 

frequencies are below the exact. 

 

Solution to 2.4. 

Calculating the consistent mass matrix for each element: 
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 ( )
   ( )

    
  ∫          

  

  

  ∫             
 

 

 

 

For a two-node element with length  : 

 

   [    ] 

   [    ] {
  
  
}  (   )       

               

 

Then, 

 

  
   ∫    [

   
 

] [    ]     
  

  

 
   

 
 [
  
  

]  

 

Assemble the mass matrix for the two element mesh according to the connectivity 

matrices: 

 

    ( ) ( )
   ( ) ( )

   [
   
   

]
    

 
 [
  
  

]  [
   
   

]
    

 
 [
  
  

]  

    
   

 
[
   
   
   

] 

 

The stiffness matrix for each element (considering linear elastic isotropic material): 

 

 ( )   ( )     ∫
   

  

  

  
     

  

  

 
   

 
 [
   
   

] 

 

Assembling the stiffness matrix for the two element mesh: 

 

   ( ) ( )   ( ) ( )   
  

 
[
    
     
    

] 
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We can now determine the natural frequencies solving the eigenvalue problem as in 

exercise 2: 

 

            (      )    

 

Using the consistent mass matrix: 

 

   (       )              
          

  
  

   
       

  
   

   
 

            
√ 

 
√
 

 
  ̃        

  

 
        

 √ 

 
√
 

 
        

  

 
  

 

Using the lumped mass matrix: 

 

    
   

 
 [
   
   
   

] 

 

   (      )            
      

   
  

   
   

   
  

   
    

            
√ 

 
√
 

 
        

  

 
        

 

 
√
 

 
       

  

 
  

 

The exact solution for the first 3 natural frequencies is (    )  

 

            
  

 
     

  

 
 

 

So we see that the frequencies obtained with the consistent mass matrix are above the 

exact solution and the frequencies for the lumped mass matrix are below.  
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2.5. Repeat Example 2.6 for spherical symmetry, where 

 ,

1
, , ,

rr rr

rr r r

D

D D v D D vr
r

D

   

 







   
   

       
   
   

D σ  

 

Solution to 2.5. 

For spherical symmetry, 

   {

   
   
   

}  

{
 
 

 
 
    
 

 
  

 

 
  }
 
 

 
 

 

 

Momentum equation in spherical coordinates, for this problem: 

 

    
  

  
 

 
 (            )         ̇  

      ∫ ∫ ∫ (            
  
 

  
 

 

 

  

 

    )  
             

      ∫    
  
 

  
 

         

 

Considering a linear velocity field: 

 

 (   )   [    ] {
  ( )
  ( )

} 
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with    [    ], the components of the rate-of-deformation can be determined as 

follows: 

 

              (   )
  

 

       [   ] {
  ( )
  ( )

} 

     {
  
  
}  (   )       

            

 

Thus, 

 

    
 

   
[   ] {

  ( )

  ( )
} 

with           . The remaining components of the rate-of-deformation are: 

 

          
  
 
 
 

 
[    ] {

  ( )

  ( )
} 

 

From which we obtain the rate-of-deformation: 

 

   

[
 
 
 
 
 
  

   

 

   
   

 

 

 
   

 

 

 ]
 
 
 
 
 

 {
  ( )

  ( )
}       

with    (   )      , and          . 

 

The internal forces can now be calculated: 

 

       ∫   { }        
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      ∫

[
 
 
 
  

   

   

(   )      

   

(   )      
 

   

 

(   )      

 

(   )      ]
 
 
 

 
 

 

 {

   
   
   

}   ((   )      )
 
      

 

The consistent mass matrix can be calculated as: 

 

    ∫  [
   
 

] [    ]
 

 

   ((   )      )
 
      

   
  

  
[
    (   

          
 )    (   

           
 )

   (   
           

 )     (  
           

 )
] 

 

 

2.6. (a) Develop an expression for the principle of virtual power and derive the 

corresponding strong form. 

(b) For a two node element with a linear velocity field, develop B, the internal 

nodal forces 
int

ef  in terms of the stresses, and the consistent mass matrix Me. 

For constant body force, develop an expression for the nodal external forces 

ext

ef . 

 

Solution to 2.6a). 

See sections 2.6 & 2.7. 

 

Solution to 2.6b). 

For a two node element with a linear velocity field, the shape functions are: 

 

   [    ] 
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From which we can write: 

 

    [    ] {
  
  
}  (   )       

              

 

   
  

  
  

  

  

  

  
 [   ]

 

 
 

 

Therefore, the internal nodal forces are: 

 

  
     ∫    

  

  

      ∫
 

 
[
  
 
]     

 

 

     {
  
 
} 

 

The consistent mass matrix is: 

 

     ∫  [
   
 

] [    ]  
 

 

   
   

 
[
  
  

] 

 

And the external nodal forces are: 

 

       ∫ [
   
 

]
 

 

        
    

 
{
 
 
} 
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CHAPTER 3: Continuum mechanics 

 

3.1. Consider the element shown in Figure 3.4. Let the motion be given by 

 
1

,
2

x X Yt y Y Xt     

(a) Sketch the element at time t = 1. Evaluate the deformation gradient and the 

Green strain tensor at this time. 

(b) Evaluate the velocity and acceleration of the element at t = 1. 

(c) Evaluate the rate-of-deformation and the spin tensor of the element at t = 1. 

(d) Repeat the above at t = 0.5. 

(e) Evaluate the Jacobian determinant as a function of time and determine for 

how long it remains positive. Sketch the element at the time that the Jacobian 

changes sign. What can you say about the motion at that time? 

 

Solution to 3.1a). 

For     the nodal coordinates are: 

                    

                    

                    

 

2 
2 x,X 

y,Y 

3 

1 

3 

1 

2 

x 

y 

1 

1 

1 

Deformed at t=1 

1 

Undeformed 

Sketches of the element in the undeformed configuration and the deformed configuration at t=1. 
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Deformation gradient: 

    

[
 
 
 
 
  

  

  

  
  

  

  

  ]
 
 
 
 

  [
  
 

 
 
] 

  |     [
  
    

] 

Green-Lagrange strain tensor: 

    
 

 
 (      )   

[
 
 
 
  

 

  

 
  

 

  

 ]
 
 
 

 

 

  |     [
      
      

] 

 

Solution to 3.1b). 

{
 
 }   [

  
 

 
 
] {

 
 } 

The velocity is obtained by taking the derivative of this motion with respect to time, 

{
  
  
}   {

 ̇
 ̇
}   [

  
 

 
 
] {
 
 
} 

 

The acceleration in the material description is obtained by taking the time derivatives of 

the velocities: 

{
  
  
}   {

 ̇ 
 ̇ 
}   [

  
  

] {
 
 
} 
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Since it is asked for the velocity and acceleration of the element at t=1, we should 

substitute that value in t, but looking to the obtained velocities and accelerations we see 

that they are constant in time so: 

 |     [
  
    

] {
 
 
}   {

 
   

} 

 

 |     [
  
  

] {
 
 
}   {

 
 
} 

 

Solution to 3.1c). 

Rate-of-deformation:  

   
 

 
(    ) 

The velocity gradient can be calculated from: 

    
  

  
 
  

  

  

  
   ̇      

 

 ̇   [
  
    

] 

    
 

      
 [
     
   

] 

 

Therefore, 

     ̇       [

 

    

  

    
  

    

 

    

] 

   

[
 
 
 
  

    

 
 
 

    

 
 
 

    

 

    ]
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  |     [
     
     

] 

 

 

The spin tensor is simple to obtain: 

  
 

 
(    )   [

 
    

    
   

    
 

] 

 |     [
 

 

 

 
 

 
 

] 

 

Solution to 3.1d). 

Repeating the exercise, now considering t=0.5: 

                

             
 

 
          

                      

 

 

 

 

 

2 
2 x,X 

y,Y 

3 

1 

3 

0.5 

2 

x 

y 

1 

1 

0.5 

Deformed at t=0.5 

1.5 

Undeformed 

0.5 

Sketches of the element in the undeformed configuration and the deformed configuration at t=0.5. 
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Deformation gradient and Green strain tensor at t=0.5: 

 

 |       [
    
    

] 

 |       [
       
      

] 

 

Velocity and acceleration at t=0.5: 

 |        {
  
  
}  [

  
    

] {
 
 
}   {

 
   

} 

 |        [
  
  

] {
 
 
}  {

 
 
}  

Rate of deformation: 

 |        [
       
       

]  

 

Spin tensor: 

 |        [
    

     
] 

 

Solution to 3.1e). 

The Jacobian is obtained as: 

 

     ( )   |
  
    

|     
  

 
            

  

        
  

 
     (    √          √ )                    [  √ [ 

The Jacobian changes sign at   √  , and the motion at that time is: 
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       √  

   √      

 

 

 

 

We conclude that the element collapses in itself leading to a zero element area which 

causes a singularity because the deformation gradient cannot be inverted anymore. 

 

 

3.2. Consider the motion given in Example 3.13, (E3.13.1). Find the velocity gradient L, 

the rate-of-deformation D, the spin tensor W and the angular velocity Ω as 

functions of time. Plot the spin and the angular velocity as function of time on the 

interval t  [0,4]. Does this shed any light on the difference between the Green-

Naghdi and Jaumann material shown in Fig. 3.13? 

 

Solution to 3.2. 

Motion of the element given in Example 3.13: 

       

      

3 

1 

2 

x 

y 

1 

1 √ 

.5 

√ 

.5 
Sketch of the element at the time the Jacobian changes sign. 
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The deformation gradient, its time derivative and its inverse are: 

   [
  
  

]    ̇  [
  
  

]       [
   
  

] 

The velocity gradient, the rate of deformation and the spin tensor are: 

    ̇       [
  
  

] 

   
 

 
 (    )   [

    
    

]   

   
 

 
(    )   [

    
     

] 

The angular velocity Ω is calculated by: 

    ̇      

where         and    (    )
 

  

Therefore, 

         [
  
     

] 

The eigenvalues of   are obtained from: 

   (      )      

     √ 
 

 
 ( √         )         √

 

 
 ( √         ) 

The eigenvectors of   are obtained from: 

(     
   )                            

First eigenvector     

(    )  
     

       
    

 

 
 (√      )   
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Normalizing the vector to be a unit vector: 

(  
 )   [ 

 

 
 (√      )   

 ]
 

    

  
   

√ 

(    )
 
  √√       

          
   

 
√ 
  (√      )

(    )    √√      
  

 

Second eigenvector      

(      )  
      

          
    

 

 
(√      )   

   

Normalizing the vector to be a unit vector: 

(  
  )   [

 

 
(√      )   

   ]
 

    

    
    

√ 

(    )
 
   √√      

           
    

√ 
 (√      )

(    )
 
   √√      

 

 

We can finally determine the stretch tensor   from: 

    [
  
   

  

  
   

  ]   [
   
    

]  [
  
   

  

  
   

  ]

 

 

 

This results in very long components of the stretch tensor. The same happens for the 

computation of the rotation tensor, which requires to determine the inverse of U and to 

multiply that by the gradient tensor F: 

        

After computing the rotation tensor it is possible to obtain the angular velocity from: 

    ̇       
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Due to the size of the components of each of the above referred tensors it is inadequate to 

write them here. Therefore, here we present the plot of the only nonzero component of 

the spin tensor     and the angular tensor     as a function of time on the interval  

   [   ]. 

 

Spin and angular velocity as function of time on the interval   [   ]. 

Observing the plot it is clear that the spin tensor and the angular velocity tensor have very 

different values over time, although they start with the same value at t=0. The spin tensor, 

for this problem, is constant. On the other hand, the angular velocity is not. It decreases 

as time passes. 

Therefore, looking to the expressions that define the Jaumann rate and the Green-Naghdi 

rate, 
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We see that the rates will have different values because they measure the rotation with 

different entities: the Jaumann rate uses the spin tensor, whereas the Green-Naghdi rate 

uses the angular velocity tensor. Hence, the latter will have a lower value when compared 

with the first.  

 

 

3.3. Consider the three-node rod element shown in Figure 3.15. Use the standard 3-node 

shape functions for ˆ
xv  and ˆ .yv  The nodal coordinates are given by 

 1 2 3 1 2 3sin , 0, sin 0, (1 cos ), 0x r x x r y y r y           

The nodal velocities at each node are in the radial direction as shown. Evaluate the 

corotational rate-of-deformation at node 2 in terms of the nodal velocities. For this 

point, the corotational coordinate system is coincident with the global system. 

Compare the result with the result obtained by using cylindrical coordinates, 

.rv

r
D   Repeat the procedure at the Gauss quadrature point ξ = – 3

–½ 
for θ = 0.1 

rad and θ = 0.05 rad and compare to ;rv

r
D   the corotational system for the 

quadrature point is shown on the RHS of Figure 3.15. 

 

Solution to 3.3. 

Evaluating the figures it is possible to write the nodal coordinates with respect to a 

corotational system based on any given point with a parent coordinate  : 

 

 ̂   (          )       (          )      

 ̂    (          )       (          )      

where      and        . 
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Using the above result we can write the current coordinates in the corotational system by 

using the shape functions to interpolate the nodal values: 

 

 ̂    ̂      

 

Also by evaluating the figure, the nodal velocities in the corotational frame can be written 

as: 

 ̂        (    ) 

  ̂   ̂     

 

If we want to determine the corotational rate-of-deformation at node 2, the corotational 

system is located at: 

          

For this point, the nodal coordinates have the following value: 

 ̂              ̂    (       ) 

 

So, each node has the coordinates: 

 

                    ̂              ̂    (      )  

                      ̂         ̂     

                      ̂             ̂    (      )  

 

And the nodal velocities are: 

        ̂                 ̂           

        ̂          ̂      

        ̂        ( )     ̂        ( )  

 

Now, using the shape functions for a 3 node rod element: 

    [
 

 
  (   )     

 

 
  (   )] 
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We can determine     at node 2 in order to compare it with the result obtained using 

cylindrical coordinates    . 

    
  ̂ 
  ̂

   ̂  
   

  ̂
    

   

  
 
  

  ̂
    

   

  
 (
  ̂

  
)
  

 

  ̂

  
  ̂ 

   

  
  {            }

[
 
 
 
  

 

 
  

   
 

 
  ]

 
 
 
 

|
|

   

        

 

Since, 

(
  ̂

  
)
  

 
 

     
 

 

the corotational rate-of-deformation at node 2, 

    
  ̂ 
  ̂

     
   

  
(
  ̂

  
)
  

    
   

  
 

 

     
  

    
  ̂

  ̂
   {          }

[
 
 
 
  

 

 
 
 

 ]
 
 
 
 

 

     
  

  
 
  

 

is then proven to be the same as the rate-of-deformation using cylindrical coordinates 

 ̂    
  

 
    . 

 

Now we need to repeat the problem for             
 

√ 
 

 

For this point the nodal coordinates in the corotational system can be calculated as 

before. For instance, the x-component of the corotational coordinate for node 1 is: 



29 

 

 ̂   (   (   )       ( 
 

√ 
))    ( 

 

√ 
)

   (   (  )     ( 
 

√ 
))    ( 

 

√ 
) 

 

Calculating the values for          : 

 

                    ̂ |      ̃               ̂ |      ̃            

                      ̂ |      ̃               ̂ |      ̃            

                      ̂ |      ̃               ̂ |      ̃            

 

Calculating the values for           : 

 

                    ̂ |       ̃               ̂ |       ̃             

                      ̂ |       ̃               ̂ |       ̃             

                      ̂ |       ̃                ̂ |       ̃            

 

Also, following the same procedure as before, the nodal velocities for           can 

be determined: 

        ̂  |      ̃                 ̂  |      ̃              

        ̂  |      ̃                  ̂  |      ̃            

        ̂  |     
 ̃                ̂  |     

 ̃             

 

While the nodal velocities for            are: 

        ̂  |       ̃                 ̂  |       ̃              

        ̂  |       ̃                  ̂  |       ̃            

        ̂  |      
 ̃                 ̂  |      

 ̃             

 

We can now calculate  ̂  : 
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 ̂   
  ̂ 
  ̂

   ̂  
   

  

  

  ̂
 

  

  ̂
  (

  ̂

  
)
  

 

  ̂

  
|
      

   ̂ 
   

  
  {                      } 

{
  
 

  
  

 

 
 ( 

 

√ 
)

   ( 
 

√ 
)

 

 
  ( 

 

√ 
)
}
  
 

  
 

 

  ̂

  
|
      

 ̃             

  ̂

  
|
       

 ̃             

  ̂ 
  ̂

|
      

   {                    } 

{
  
 

  
  

 

 
 ( 

 

√ 
)

 

√ 
 

 
 

 

√ }
  
 

  
 

 
 

         
  ̃

  
 

 

  ̂ 
  ̂

|
       

 ̃
  
 

 

Therefore, we again conclude that  ̂ |         ̂ |        
  

 
    . 

 

 

3.4. Use Nanson’s relation (3.4.5) to show that the material time derivative of a surface 

integral is given by 

 ( ) T

S S

d
g dS g g g dS

dt
       n v I L n  

This result is used in Chapter 6 in the derivation of load stiffness. 
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Solution to 3.4. 

From Nanson’s relation: 

         
      

 

We can write: 

 
 

  
∫      

 

  
∫       

     
   

 

 ∫ ( ̇     
       ̇   

         ̇
  )   

  

   

   ∫ [( ̇       )     
         ̇

  ]     
 

 

Considering     ̇    
  

   ̇          ̇             

 

 

  
∫      ∫[( ̇       )        ]   

  

 

 ∫[( ̇      )          ]   
 

 

 ∫[( ̇      )       ]      
 

 

 

Noting that: 

 

 
 

  
(     )      ̇         ̇                       

 

Therefore, 

 

 
 

  
 ∫  
 

    ∫[( ̇      )     ]      
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3.5. (a) Show that for any two second order tensors A and B, the Jaumann rate has 

the property that 

 ( : ) : : : :J J   A B A B + A B A B A B   

(b) Show that for symmetric tensors A and B, the additional results 

 : : or : :J J  A B A B A B A B  

hold if A and B commute (i.e., are coaxial or have the same principal 

directions). 

(c) Finally, show that the results in a) and b) hold for any spin-based rate, i.e., 

 
T    A A A    

where Ω = –Ω
T
 is a spin tensor. 

These results, due to Prager, are used in Chapter 5 in developing the elasto-plastic 

tangent modulus. 

 

Solution to 3.5a). 

From the definition of Jaumann rate: 

     
  

  
            

     
  

  
          

We want to show that 

 

  
(   )   ̇      ̇              

 

Developing the RHS: 

            ( ̇          )      ( ̇          ) 

   ̇   (   )   (    )      ̇    (   )    (    ) 

   ̇     (   )    (   )     ̇    (   )    (   ) 

 

Where in the last line we used the definition of skew-symmetric tensor for   and the 

property of the double dot product        . 
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Recalling that any skew-symmetric second-order tensor can be expressed in terms of the 

components of a vector  , called axial vector, we can rewrite the above equation as: 

             ̇   (   )     (   )     ̇  (   )     (   ) 

 

Therefore, we can now permute the order of the entities accordingly (odd permutations 

need a negative sign): 

             ̇   (   )     (   )     ̇  (   )     (   )

  ̇      ̇ 

 

Hence, 

 

  
(   )                ̇      ̇                  

 

Solution to 3.5b). 

It is enough to prove one of the results, let's prove that          ̇ 

        ( ̇          )      ̇    (   )    (    )

     ̇    (   )    (   ) 

 

Recalling           as a property of the double dot product, and noting that   and   

are symmetric tensors, we can rewrite the above equation as: 

          ̇     (   )    (   )      ̇     (     )    (   )

     ̇    (   )    (   )      ̇     (   ) 

 

Rewriting the above result using the axial vector  : 

             ̇      (   ) 
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If   and   are co-axial tensors they have the same eigenvectors; therefore, they can be 

written as: 

  ∑   
( )   ( )

 

   

                   ∑   
( )   ( )

 

   

 

where   stands for the dyadic product. 

We can then write: 

       ̇    ∑   
( )   ( )

 

   

 (∑   
( )   ( )

 

   

  ) 

  ̇    ∑  

 

   

∑  

 

   

( ( )   ( ))( ( )   ( )   )    ̇                   

Where the last equality is obtained if we note that: 

 For       ( )   ( )   , because the eigenvectors are orthogonal; 

 For       ( )   ( )     ( )   ( )     , due to the fact that the cross 

product of  ( ) with   produces a perpendicular vector to both these vectors, 

which is also perpendicular to  ( ). 

 

Solution to 3.5c). 

Trivial considering the previous answers. 

 

 

3.6. (a) Use the results in Problem 3 and the expressions for the principal invariants 

of a tensor in Box 5.2 to show that the material time derivatives of the 

principal invariants can be written as 
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1

2 1

1 1

3 3 3

: :

: ( ) : : ( ) :

trace ( ) trace( )

J

J J

J

I

I I

I I I



 

  

 

     

   

I I

I I I I

 

     

   

 

It follows that if the Jaumann rate of Cauchy stress vanishes, i.e., 0,J   

then the principal invariants of the Cauchy stress are stationary. 

(b) Show that if the material time-derivative of the Cauchy stress is deviatoric 

then the Jaumann rate of Cauchy stress is deviatoric. 

From Problem 5(c), it follows that these results also hold for any symmetric tensor 

and for any spin-based rate. 

 

Solution to 3.6a). 

Let’s start with the first invariant: 

        ( )                 

Therefore, calculating the time derivative of   : 

  ̇  
 

  
(   )   ̇      ̇ 

Since  ̇   , and using the result obtained in Problem 5b): 

  ̇   ̇                           

 

Now, considering the second invariant: 

   
 

 
{[     ( )]       (  )}  

 

 
[  
     ] 

Calculating the time derivative of this invariant: 

  ̇  
 

 
[     ̇   ̇      ̇] 
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Recalling that for any two tensors   and  , the following holds:     (    )  , we 

can rewrite the above expression as: 

  ̇  
 

 
[     ̇  ( ̇    )   (   ̇ )  ] 

From the following property of the double dot product of two tensors:            , 

and recalling that the Cauchy stress is symmetric: 

  ̇  
 

 
[     ̇  ( ̇   )   ( ̇    )   ]  

 

 
[     ̇  ( ̇   )   ( ̇   )  ] 

  ̇      ̇  ( ̇   )   

Now, we can rewrite the above as: 

  ̇     ̇    ̇       ̇    ̇       ̇    ̇   

Therefore, using the results of Problem 5b): 

  ̇     ̇   ( ̇   )      
     (     )                                

 

Finally, let’s consider the third invariant: 

      ( ) 

Recalling that the derivative of the determinant of a square matrix   can be expressed 

using Jacobi’s formula: 

 

  
[   ( )]       [   ( )

  

  
]     ( )     [    

  

  
] 

We can write the time derivative of the third invariant as: 

  ̇     ( )     [     ̇]         [  ̇   
  ]         [ ̇     ] 

We can rewrite the above as:  
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  ̇    ( ̇     )      ̇  
   

From the results of Problem 5b) 

  ̇     
         ( 

      )          [ 
      ]               

 

Solution to 3.6b). 

The first invariant of a deviatoric tensor is zero; therefore, if  ̇ is deviatoric: 

  ( ̇)       ( ̇)   ̇     

However, in part (a) we derived the following result: 

 ̇         

Therefore, 

             (   )                       

Proving that the Jaumann rate of Cauchy stress is also deviatoric. 

 

 

3.7. Starting from Eqs. (3.3.4) and (3.3.12), show that 

 
12 2 Td d d d       x D x x F E F x  

and hence that Eq. (3.3.22) holds. 

 

Solution to 3.7. 

Equation (3.3.4) is: 

    (         )        

 

Equation (3.3.12) is: 
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 (   )   

 

  
(     )                             

 

From equation (3.3.4) it is possible to define       as: 

 

      (         )        

                               

                       

                       

  

Going back to equation (3.3.12) and using this result: 

 

  
(     )  

 

  
(              )       ̇     

since the reference configuration does not change with time. Recalling that    
  

  
 

         , and substituting this result in the previous equation: 

 

  
(     )           ̇                                    

 

 

3.8. Using the statement of the conservation of momentum in the Lagrangian description 

in the initial configuration, show that it implies 

 
T T P F FP  

 

Solution to 3.8. 

From the conservation of the linear momentum in the Lagrangian description in the initial 

configuration, one can write: 

 

  
∫       
  

  ∫       
  

  ∫       
  

 

 



39 

 

The integral form of the conservation of the angular momentum can then be obtained by 

taking the cross product of each term in the corresponding linear momentum principle 

with the position vector x (in the current configuration, even though the linear momentum 

is expressed in terms of the initial configuration): 

 

 

  
∫      
  

    ∫   
  

        ∫         
  

 

 

The last term on the RHS can be rewritten as: 

∫        
  

  ∫   (    )   
  

  ∫    (   )
  

     ∫   (   )
  

    

 

Or using the component form: 

∫         
  

  

    ∫         
    

  

    ∫     
 

   
(     ) 

  

   

 ∫      (
   
   

       
    

   
) 

  

    

 

Therefore, going back to the equation of the conservation of angular momentum, using 

the above obtained result, and using the component form: 

∫ [                   
   

  
               (         

    

   
)]

  

      

Noting that the first term is zero (cross product of parallel vectors), and rearranging the 

remaining terms: 

 ∫        
  

(  
   

  
      

    

   
)     ∫     

  

             

Noting that the expression inside the brackets is the linear momentum conservation, we 

get: 

   ∫      
  

             

For an arbitrary volume: 
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Multiplying by        

                 

(             )          

           
    

                                    

 

 

3.9. Extend Example 3.3 by finding the conditions at which the Jacobian becomes 

negative at the Gauss quadrature points for 2 × 2 quadrature when the initial 

element is rectangular with dimension a × b. Repeat for one-point quadrature, with 

the quadrature point at the center of the element. 

 

Solution to 3.9. 

Since this element is not a square, the motion is not the same as in Example 3.3. 

Although the motion can be easily determined for this problem we will use the 

isoparametric mapping for a four node element to find the Jacobian. 

The nodal coordinates in the reference configuration: 

                                                                             

The nodal coordinates in the deformed configuration are: 

                                                                    

                 

The shape functions for this element are: 

  
 

 
[(   )(   ) (   )(   ) (   )(   ) (   )(   )] 

We can then write: 
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           {
 
 
}  [

    
    

]
 

 
[
 
 
 
(   )(   )

(   )(   )

(   )(   )

(   )(   )]
 
 
 

 
 

 
{
 (   )

 (   )
} 

           {
 
 }  [

        
        ]

 

 
[
 
 
 
(   )(   )

(   )(   )

(   )(   )

(   )(   )]
 
 
 

 
 

 
{
 (   )(   )  (     )(   )(   )

 (   )(   )  (     )(   )(   )
} 

From the result for the Lagrangian coordinates   for this problem it is possible to find the 

motion by explicitly writing the parent coordinates   in terms of the Lagrangian 

coordinates   (note that this is not necessary to solve the problem; we could solve it by 

writing the derivatives using the chain rule, as usual): 

  {
 
 
}  {

   
  

 

   
  

 

} 

Substituting this result in the current coordinates we determine the motion: 

  {
 
 }  

{
 

 
(     )  

  
 
 

 
 (  

  

 
)

(     )  

  
 
 

 
 (  

  

 
)}
 

 

 

We can now determine the deformation gradient: 

   
  

  
  

[
 
 
 
(     ) 

  
 
 

 
(  

  

 
)

  

 
 
(     ) 

  

  

 
 
(     ) 

  

(     ) 

  
 
 

 
(  

  

 
)]
 
 
 

 

Since we have the expression for the deformation gradient as a function of the 

Lagrangian coordinates, to find the value of the Jacobian for the 4 Gauss points we need 

to determine the coordinates of the Gauss points in the reference domain: 
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First Gauss point in parent coordinates:       
 

√ 
               

 

√ 
 

In the reference domain using the mapping obtained for  : 

     
 

 
(  

 

√ 
)             

 

 
(  

 

√ 
) 

Calculating the Jacobian at this point: 

        ( )    
(  √ )   

  
 
(  √ )   

  
 

Therefore, the Jacobian at the first Gauss point becomes negative for: 

            
  

  √ 
 
 

 
    

Doing the same for the remaining Gauss points: 

     

{
 

 
 

√ 

 
 

√ }
 

 

             

{
 

 
 

√ 
 

√ }
 

 

             

{
 

  
 

√ 
 

√ }
 

 

  

We arrive to the following conditions for the respective Jacobians: 

            
  

  √ 
 (  √ )

 

 
    

            
  

  √ 
 
 

 
    

            
  

  √ 
 (√   )

 

 
    

Finally, it was asked to calculate when the Jacobian becomes negative for the case of a 

single Gauss point in the middle of the element: 

          {
 
 
} 
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So, the following condition arises: 

                    
 

 
    

 

 

3.10. Derive (3.2.19). 

 

Solution to 3.10. 

Trivial from the textbook.  
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CHAPTER 4: Lagrangian meshes  

 

4.1. Consider the element shown in Figure 3.4 with the motion 

( , ) (1 ) cos (1 ) sin
2 2

( , ) (1 ) sin (1 ) cos
2 2

x t at X t bt Y t

y t at X t bt Y t

 

 

   

   

X

X

 

Sketch the element in the deformed configuration at t = 1 (this was already done in 

Exercise 3.1). 

(a) Let the only nonzero PK2 stress component in the deformed configuration be 

S11. Find the nodal internal forces. 

(b) For the same state of stress, find the nodal internal forces in the under-

formed configuration. What is the effect of rotating the body on the nodal 

internal forces? 

(c) Repeat the above parts a and b with the only non-zero components being S22 

and S12. Explain the nodal internal forces in the undeformed and deformed 

configurations. 

 

Solution to 4.1a). 

  |                      |      

  |                 |      (   ) 

   |      (   )          |       

 

The map between the parent element and the initial configuration is: 

 

{
 
 
 
}   {

      
      
   

} {

  
  
  

} 

                                      

 

The inverse of this relation is given by: 
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{

  
  
  

}   
 

   
 {
               
               
               

} {
 
 
 
} 

where          ,          , and                  . 

 

The shape functions for the linear displacement triangle are the triangular coordinates 

so         This way, the     matrix is given by: 

  
  [    

 ]   [
   

   
] 

     [  
    

   
 ]   

[
 
 
 
   
  

   

  

   

  
   
  

   

  

   

  ]
 
 
 

 
 

   
 [
         
         

]  

   
 

 
[
    
    

] 

 

Now, using Voigt notation the expression to calculate the internal nodal forces is: 

 

  
     ∫    

 { }
  

     

 

where      

[
 
 
 
 

   

  
 
  

  

   

  
 
  

  
   

  
 
  

  

   

  
 
  

  

   

  
 
  

  
 

   

  
 
  

  

   

  
 
  

  
 

   

  
 
  

  ]
 
 
 
 

. 

 

The terms        and        were calculated for the    matrix; the terms of the 

gradient tensor are calculated by: 

  

  
      

   

  
    

 

   
 (                  ) 

  

  
|
   

    

 



46 

 

  

  
  

   

  
    

 

   
(                 ) 

 
  

   
|
   

       

 

 
  

  
  

   

  
    

 

   
 (                  ) 

 
  

  
|
    

     

 

  
  

  
  

   

  
    

 

   
 (                 ) 

 
  

  
|
    

    

 

Thus, 

  |     

[
 
 
 
  

    

 
 

   

 
  

           
   

 
    

    

 
     

  

]
 
 
 
 

 

 

We can now calculate the nodal internal forces at t=1 for a stress state at that time 

with the only nonzero component being    . Note that the element is considered to 

have a thickness of   . 

    |
    

  

{
  
 

  
 
   
   
   
   
   
   }

  
 

  
 

  ∫   
 

  

 {
   
   
   

}           
  {

   
 
 
}  

     |
    

  
     
 

 

{
 
 

 
 

 
    

 
   
 
 }
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Solution to 4.1b). 

For this part, it is necessary to recalculate the    matrix for time t=0 (undeformed 

configuration). 

 |        

  

  
|
   

     
  

  
|
   

    

  

  
|
   

     
  

  
|
   

    

 

 

Therefore, 

 

  |     [
           
       
            

  ] 

 

Thus, 

 

 

    |
    

  

{
  
 

  
 
   
   
   
   
   
   }

  
 

  
 

  ∫   
 

  

 {
   
 
 
}    

     
 

 

{
 
 

 
 
  
 
 
 
 
 }
 
 

 
 

 

 

We conclude that the effect of rotating the body on the nodal internal forces does not 

change the direction of those forces relative to the body. This is explained by the fact 

that the PK2 stress is an objective stress. However, the nodal internal forces change in 

intensity due to the fact that the body is being stretched. 

 

Solution to 4.1c). 

If the only nonzero component is    : 
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    |
    

  ∫   
 |   

  

 {
 
   
 
}           

{
 
 

 
 
   
 
 
 

    
 }

 
 

 
 

 

 

    |
    

  ∫   
 |   

  

 {
 
   
 
}           

{
 
 

 
 
 
  
 
 
 
 }
 
 

 
 

 

 

If the only nonzero component is    : 

 

    |
    

  ∫   
 |   

  

 {
 
 
   

}      
     
 

{
 
 

 
 

   
  (   )
    

 
 

 (   ) }
 
 

 
 

 

 

     |
    

  ∫   
 |   

  

 {
 
 
   

}      
     
 

{
 
 

 
 
  
  
 
 
 
 }
 
 

 
 

 

  

  

We conclude that the same effect is caused on the nodal internal forces by the rotation 

of the body: the nodal forces follow the rotation, changing the intensity due to the 

stretching applied to the body.  

 

 

4.2. Consider the block under shear shown in Figure 3.13 with the motion given in 

(E3.13.1). Evaluate the Green strain as a function of time. Plot E12 and E22 for 
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   [   ]; explain why E22 is nonzero. Evaluate the PK2 stress for a Kirchhoff 

material, using a [C
SE

] given by (5.4.58) (the matrix given in (5.4.58) is [C
τ
], but use 

the same matrix). 

 

Solution to 4.2. 

The motion of the element is given by 

                   

The deformation gradient is simple to calculate: 

   
  

  
  [

  
  

] 

 

The Green strain as a function of time is: 

  
 

 
 (      )  

 

 
[
  
   

] 

 

The explanation for the fact that the     is nonzero is simple to understand by 

drawing the undeformed and deformed configurations and knowing what the Green 

strain measures: 

 

 

 

 

The motion to which the block is subjected imposes that the y coordinate does not 

change. On the other hand, since the block is under shear, if one follows what 

2 x,X 

y,Y 

4 3 

1 

Undeformed 

2 

x 

y 

4 3 

1 

Deformed 

2 

dS ds 

Sketch of the deformation of the block under shear. 



50 

 

happens to an infinitesimal line segment in the Y direction in the undeformed 

configuration and to what happens to the length of that infinitesimal line segment 

after deformation we see that it increases such that the upper face of the block 

remains at the same height. 

Knowing that the Green strain measures the difference of the square of the length of 

an infinitesimal segment in the deformed configuration and the undeformed 

configuration, it is then intuitive to understand that     is nonzero. 

 

Finally, we need to evaluate the PK2 stress using a tangent modulus tensor     

     [
      

      
   

] 

 

Thus: 

{
   
   
   

}   [
      

      
   

] {
   
   
    

}  
 

 
{

   

  (    )
   

} 

 

 

4.3. (a) Use Nanson’s relation (3.4.5) 

 
1 0 1

0 0 0i j jid J d n d Jn F d       n n F  

to show that the external nodal forces for an applied pressure p acting on the 

plane     –    are given by 

 
1 1

ext

0
1 1

,T

I IpN J d d    

 
   f F n  

where 0 3
ˆ

  n e  is the unit normal vector in parent coordinates to the plane 

    –    in the parent element, 

(b) By using the definition of the inverse of a tensor in terms of Cramer’s rule, 

i.e. 
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1 *1

det( )
 



    F F
F

 

where 
*

F  is the adjoint (transpose of the matrix of co-factors) of Fξ, show 

that the above expression for the external nodal forces reduces to (E4.3.16). 

 

Solution to 4.3a). 

The pressure force can be written as: 

      

With   being the normal vector to the lower face of the element corresponding to the 

parent element face ς = – 1, and p being the applied pressure. 

Therefore, the external nodal forces are given by: 

  
     ∫    

 

   

Using Nanson’s formula to relate the current normal to the reference normal in the parent 

domain: 

            
      

We can express the external nodal forces as: 

  
     ∫ ∫            

      
 

  

 

  

  ∫ ∫        
          

 

  

 

  

                 

 

Solution to 4.3b). 

From the definition of the inverse of a tensor in terms of Cramer’s rule, we can express 

the external nodal forces as: 

  
     ∫ ∫            

      
 

  

 

  

 ∫ ∫     ̂    
     

 

  

 

  

 ∫ ∫    (  
 )

 
  ̂     

 

  

 

  

 

Since       (  ), and       ̂ . The deformation gradient, which is a two-point 

tensor, is given by: 
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[
 
 
 
 
 
 
  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

  ]
 
 
 
 
 
 

 
   
   

   ̂  

where    are the unit vectors in the current configuration and  ̂  are the unit vectors in the 

parent configuration. The transpose of the adjoint matrix, which is the matrix of co-

factors is given by: 

(  
 )

 
 

[
 
 
 
 
 
 
  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

  ]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 

||

  

  

  

  
  

  

  

  

||    ̂  ||

  

  

  

  
  

  

  

  

||    ̂ ||

  

  

  

  
  

  

  

  

||    ̂ 

||

  

  

  

  
  

  

  

  

||    ̂ ||

  

  

  

  
  

  

  

  

||    ̂  ||

  

  

  

  
  

  

  

  

||    ̂ 

||

  

  

  

  
  

  

  

  

||    ̂  ||

  

  

  

  
  

  

  

  

||    ̂ ||

  

  

  

  
  

  

  

  

||    ̂ 

]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Therefore, from the orthonormality of the unit vectors within the same configuration, 

 ̂   ̂     , it is clear that the following equality holds: 

(  
 )

 
  ̂  ||

  

  

  

  
  

  

  

  

||    ||

  

  

  

  
  

  

  

  

||    ||

  

  

  

  
  

  

  

  

||    |

|

      
  

  

  

  

  

  
  

  

  

  

  

  

|

|
 

Substituting back in the equation obtained for the external nodal forces we get: 

  
    ∫ ∫    (  

 )
 
  ̂     

 

  

 

  

 ∫ ∫    |

|

      
  

  

  

  

  

  
  

  

  

  

  

  

|

|
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4.4. To illustrate the flexibility in choice of reference configuration for the formulation 

of the finite element equations, consider the tensor quantity, 
1 ,J  

 P F σ  which 

can be thought of as the nominal stress tensor on the parent element domain. Show 

that the equilibrium equation and boundary conditions can be written as 

. 0  P  in e  (union of parent element domains) 

0 . t  n P  on Гt (traction boundary) 

and derive the corresponding weak form. Introduce parent element shape functions 

NI (ξ) and show that the element internal force vector can be written directly in 

terms of the parent element domain as  

   
    ∫    

    

   
  

 

                     

 

Solution to 4.4. 

The given stress quantity    can be expressed in terms of the Cauchy stress as: 

      
     

 
   
 

 

The equilibrium equation in the absence of body forces is given by: 

              
    

   
   

Using the result obtained for the Cauchy stress in terms of   , and substituting in the 

above equation: 

 (  
     

 
   
 
)

   
   

 (  
  )

   
   
 
   
 
   

  
 (   

 
)

   
   
 
   

     
 
 (   

 
)

   
   

 

Evaluating each term separately, starting with the first derivative and using the definition 

of determinant of a tensor in index notation: 
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 (  
  )

   
    

  
 (  )

   
 

    
  

 (       
 
   
 
   
 
)

   
 

    
  

 (    
   
   

   
   

   
   

)

   
 

    
      [

 (
   
   

)

   

   
   

   
   

 
   
   

 (
   
   

)

   

   
   

 
   
   

   
   

 (
   
   

)

   
] 

    
      [

 (
   
   

)

   

   
   

   
   

 
   
   

 (
   
   

)

   

   
   

 
   
   

   
   

 (
   
   

)

   
]    

 

Since 
   

   
    . 

For the same reason, 

 (   
 
)

   
   

Thus, 

 (  
     

 
   
 
)

   
     

     
 
 (   

 
)

   
   

   
 
 (   

 
)

   
   

   
   

 (   
 
)

   
   

 (   
 
)

   
                 e                  

 

The boundary conditions can be obtained by converting: 
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Using Nanson’s relation,             
     , and using the definition for    given in 

the problem statement. Starting with the LHS of the above equation:  

           
            

   
              

        

             
      

 

From conservation of angular momentum         
    

 , so: 

 

     
    

    
            

         

 

Since, 

             

 

We finally obtain: 

  
                  

 
                           

 

Deriving the weak form is then trivial, leading to: 

                    

      ∫    
      

  

 ∫ (    
 
)
 

   
 
  

  

 

      ∫      
 
  

  

 

      ∫        ̈   
  

 

 

The internal nodal forces can then be obtained by discretizing the expression for the 

internal energy: 

      ∫ (    
 
)
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        ∫

   

   

 

   
 
  

  

 

Denoting the parent domain as the problem statement: 

   
    ∫    
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CHAPTER 5: Constitutive models  

 

5.1. Show that if p is the pressure, the relations 3Jp = τ:g = : eS C  hold. 

 

Solution to 5.1. 

From Equation (5.7.4) 

   
1 T

e e
 

  S F τ F  

From Equation (5.7.3) 

e eT e  C F g F  

Therefore, 

   
1

: : :
Te

e e eT e
 

     S C F τ F F g F τ g  

In Euclidean space g I ; therefore, 

11 22 33: : : ( ) 3J J Jp       τ g τ I σ I      q.e.d. 

where, 11 22 33( ) / 3p       

 

 

5.2. Show that (sym r )  
1

: 0e


C  and hence that 
dev: : .p pS D S D  See (5.7.39) and 

(5.7.40). 

 

Solution to 5.2. 

From (5.7.40), 

3
 sym 

2

p e dev e

 


 

   D r C S C  

Therefore, 

3
sym 

2

e dev e


  r C S C  
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And 

   
1 13 3

sym : : :
2 2

e e dev e e e dev

 

 

    r C C S C C C S I  

Since the trace of a deviatoric tensor is zero 

 
1 3

sym : : 0
2

e e dev





  r C C S I         q.e.d. 

 

5.3. Derive expressions for the Lie derivatives Lvτ
dev

 and Lvτ
hyd

 in terms of the material 

time derivative of the stress and the spatial velocity gradient L. 

 

Solution to 5.3. 

From equation (5.10.5), we know that 

TL



    τ τ L τ τ L  

Since dev hyd Jp   τ τ τ τ I , and noting how equation (5.10.5) was derived, we can 

calculate the Lie derivative of the hydrostatic part of the Kirchhoff stress by replacing τ  

by hyd Jpτ I : 

      tracehyd T TL Jp Jp Jp Jp       τ I v L L I L L L , 

Since 
 

 trace
D Jp

Jp Jp
Dt

  
I

I v I L . 

Therefore, we can now determine the Lie derivative of the deviatoric part of the 

Kirchhoff stress: 

    tracedev hyd T TL L L Jp Jp  



         τ τ τ τ L τ τ L I L L L  

Note that we could simplify the last term by using  
1

2

T D L L . 
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CHAPTER 6: Solution methods and stability 

 

6.1. Use Nanson’s law (3.4.5) and the result obtained in exercise 4 of Chapter 3 for the 

material time derivative of a surface integral, 

( ) T

S S

d
g dS g g g dS

dt
       n v I L n , 

to develop a linearization of the load stiffness K
ext

 = f
ext

/d for a pressure load 

applied on a surface mapped from the biunit square in the parent element. 

 

Solution to 6.1. 

The external nodal forces are given by  

ext

I IN p d


  f n
 

Using the relation derived in exercise 4.3, 

( ) T

S S

d
g dS g g g dS

dt
       n v I L n  

 

We obtain the following expression for the time derivative of the external nodal forces: 

( )ext T

I IN p p p d


        f v I L n  

Similarly to what was done in the textbook in equation (6.4.29), we omit the term with 

the rate of change of the pressure ( 0p  ). Thus, the external load stiffness is given by: 

 ext ext T

I IJ J IpN d


        f K v v I L n  

Rewriting the integral with respect to the parent domain using , ,d d d     n x x  

   
1 1

, ,
1 1

ext ext T

I IJ J IpN d d   
 

         f K v v I L x x  
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Next, we switch to index notation and use , ,i k iJ J kv v N  

 
1 1

, , , ,
1 1

ext

ikIJ kJ I nJ J n ik kJ J i klm l mK v pN v N v N e x x d d   
 

     

Noting that ,

qJ
J p

q p

N
N

x







 

 and 
q r

pr

p q

x

x






 


 
, and evaluating the first term of the 

integral separately: 

, , ,

qJ l m
nJ J n ik klm l m nJ ilm

q n

N x x
v N e x x v e

x
 




  

  


     

J l m J l m
ilm nJ ilm nJ

n n

N x x N x x
e v e v

x x

 

     

      
 

       
 

J m J l
nJ ilm nl nJ ilm nm

N x N x
v e v e 

   

   
 

   
 

, , ln , ,inm nJ J m i nJ J le v N x e v N x      

, , , ,inm n m iln l ne v x e x v      

Now, evaluating the second term using the same procedure: 

, , ,

T
qT J l m

kJ J i klm l m kJ klm

q i

N x x
v N e x x v e

x
 



  

  


   
 

J l m J l m
klm kJ klm kJ

i i

N x x N x x
e v e v

x x

 

     

      
 

         

J m J l
kJ klm il kJ klm im

N x N x
v e v e 

   

   
 

     

, , , , , , , ,kim kJ J m kli kJ J l ikm k m ilk l ke v N x e v N x e v x e x v             

Therefore, we conclude that 

 
1 1

, , , ,
1 1

2ext

ikIJ kJ I inm n m iln l nK v pN e v x e x v d d     
 

     



61 

 

Which is the same result as equation (6.4.30) in the textbook, leading to equation (6.4.33) 

as shown there. 

 

 

6.2. Show that (6.3.60) corresponds to the stationary points of (6.3.59). 

 

Solution to 6.2. 

Equation (6.3.60) is: 

1
( , , ) ( ) ( )

2

T T

PLW W g   d λ d λ d λ λ  

 

To examine the stationary points we will differentiate the above with respect to d  and λ  

separately and equate them to zero about an equilibrium point da as below: 

 

0PL I
I

a a a

W gW

d d d


 
  

    

0PL
I I

I

W
g 




  

  

 

Rewriting the above two equations in terms of the residual r and the gradient of the 

matrix G yields: 

T r λ G 0  

 g λ 0  

 

 

6.3. Show that (6.3.61), the linearized perturbed Lagrangian equations, can be converted 

to the linearized penalty equations by eliminating the Lagrange multipliers. 
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Solution to 6.3. 

The linearized perturbed Lagrangian equations are: 

 

 
 

TT

I I

 

     
     

       

r λ GdA H G

λG I g λ
 

 

Writing the equations separately: 

 

  T T

I I      A H d G λ r λ G  (1) 

 

       G d I λ g λ  (2) 

 

Equation (6.3.47) derived for the penalty method is: 

 

T r g G 0  
(3) 

 

Using the results obtained in exercise 2: 

 

T r λ G 0  
(4) 

 

 g λ 0  
(5) 

 

From equations (3) and (4): 
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T Tλ G g G  
(6) 

 

Substituting equation (6) into (1): 

 

  T T

I Ig       A H d G λ r g G  

 

Also, from equation (5) we can write equation (2) as: 

 

   G d I λ 0  

 

From which we obtain 

 

 
1 1





    λ I G d G d  

(7) 

 

Substituting equation (7) into (6) 

 

1 T T

I Ig 


 
      

 
A H G G d r g G

 

 

Which is identical to the linearized penalty equation (6.3.49) since  is a very small 

number and   is a very large number. 

 

 

6.4. Obtain (6.4.20) by letting the reference configuration in (6.4.4) be the current 

configuration. 
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Solution to 6.4. 

Equation (6.4.4) is: 

 
0

int

0
I

iI jr ir jr ir

j

N
f S F S F d

X



  

  

In order to obtain (6.4.20) let’s evaluate each term of the above equation separately. 

Starting with the first term, 

0

0
I

jr ir

j

N
S F d

X





 , if we let the reference configuration be 

the current configuration (i.e. if x  coincides with X ) then the following equalities hold: 

 

I I

j j

N N

X x

 


 
  ;  jr jrS     ;  ir irF    ;  0   

 

Where the second relation in the above is expressed in equation (3.7.19). Therefore, we 

have obtained the first term of equation (6.4.20): 

 

0

0
I I

jr ir ji

j j

N N
S F d d

X x

 

 

 
  

    

To obtain the second term of equation (6.4.20), 

0

0
I

jr ir

j

N
S F d

X





 , we first convert the 

integral to the current domain by writing: 

 

0

1 1

0

TI I I
jr ir jr ir

j j

N N N
S F d S F J d J d

X X

 

  

  
    

     SF
X  

 

Where in the last equality we have converted to tensor notation for convenience. Then we 

can substitute in the above expression the definition of PK2 stress in terms of the Cauchy 

stress, 
1 1 TJ     S F σ F , and the relation F LF , resulting in: 
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 1 1 1T T T TI IN N
J d J J d   

 

 
         

  S F F σ F F L
X X

 

TI I
jr ir

j

N N
d L d

x


 

 
     

  σ L
x

 

Hence, we have obtained equation (6.4.20): 

 int I
iI jr jr ir

j

N
f L d

x

 




  

  

 

 

6.5. Show that the critical time steps given by the updated and total Lagrangian 

formulations in (6.6.61) and (6.6.63) are identical. Use the relations between tangent 

moduli in Example 5.1 for uniaxial strain. 

 

Solution to 6.5. 

This can be proven by showing that the relations in equations (6.6.59) and (6.6.62) are 

equivalent.  

The relation in equation (6.6.59) is 

 

  1 1

2 2

1 1 1 0

1 1 0 12

xxA C y yAl

y yl

          
      

      
 

 

and the relation in equation (6.6.62) is 

 

 2

0 11 1 10 0 0

2 20

1 1 1 0

1 1 0 12

SEA F C S y yA l

y yl

        
      

      
 

 

The relationship between the tangent moduli for uniaxial strain is: 
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4SEC J C  

Since 
0 0

Al
J

A l
 and 

0

l

l
  , then: 

3

0

3

0

SE Al
C C

A l


 

 

Also, using the definition of PK2 stress, 
1

11

T

xxS JF F  , and since a uniaxial strain 

problem is being considered 
0

 
l

F
l

 : 

0
11

0

xx

Al
S

A l


 

Therefore, equation (6.6.62) can be re-written as: 

 

 2

0 11 1 10 0 0

2 20

1 1 1 0

1 1 0 12

SEA F C S y yA l

y yl

        
      

      
 

 

0 0
0

1 10 0 0 0 0

2 20

1 1 1 0

1 1 0 12

xx

Al Al
A C

y yA l A l A l

y yl

 


 
 

               
      

 

 

  1 10 0 0

2 2

1 1 1 0

1 1 0 12

xxA C y yA l

y yl

          
      

      
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Assuming conservation of mass i.e., 0 0 0Al A l  , we reach to the desired equivalence: 

 

  1 1

2 2

1 1 1 0

1 1 0 12

xxA C y yAl

y yl

          
      

      
 

 

 

6.6. Develop the tangent stiffness for an axisymmetric 2-node membrane element. 

 

Solution to 6.6. 

Assuming the material is elastic isotropy with Young’s modulus E  and Poisson’s ratio    

 

  
 

1 0

1 0

1 01 1 2

0 0 0 1 2 / 2

r r

z z

rz rz

E

 

   

   

    

 

    
           
     
 

       

 

 

which can be represented as :σ D ε . 

 

mat T

I J d


 K B DB
 

ˆ ˆgeo T

I J d


 K B σB
 

Following the example 2.6, we have the 2D membrane with thickness a . Since the radius 

of membrane is much larger than its thickness, we only consider the plane stress 

condition as 0z   and shear stress free 0rz  . From example 2.6, we have 

   1 2 1N N    N   
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1

21

1

1

1

1 1

21

10 0

0 00

1
0

0

1
0

N

r r
N

z

N
r

r

N N
r

z r



   
   

      
        
   
   
    
      

B
  and 

2

21

2

2

2

2 2

21

10 0

0 00

0
0

1
0

N

r r
N

z

N
r

r

N N
r

z r



   
   
      
       
   
   
    
      

B
  

 

Thus, 

21 21

1 2

21 21

1 1
0 0

0 0 0 0

[ ] 1
0 0

1 1
0 0

r r

r r

r r

 

 
 
 
 
    
 
 

 
  

B B B
 

where 21 2 1r r r  , 

1

21

r r

r



 and ar is the area of one radian segment. 

 

mat TK ardr


 B DB  

From Eq. (E4.6.4), we have ˆ B B , thus   

 

geo TK ardr


 B σB
 

Here the integrals are taken from 2r  to 1r  and 
int mat geoK K K  . 
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6.7. Examine the stability of a solution of the two-dimensional heat conduction equation 

(kijθ,j),i = 0 in the following way. Consider an infinite slab under a uniform 

temperature and apply the perturbation 
t ie    n x

 where  is real. Using the 

transient equations of heat conduction, determine the conditions under which the 

solution is stable if kij is symmetric. 

 

Solution to 6.7. 

The heat conduction equation in 2D can be written as 

  0ij

i j

f k
x x




  
     

 

The Taylor series expansion about the uniform temperature 0  gives 

   
 

0 0 higher order terms
f

f f


   



   


 

The first term vanishes because the temperature is uniform, and if we neglect the higher 

order terms we can write: 

 
 

0 ij ij

i j i j

f
f k k

x x x x

  
    

  

            
                           

 

ij

ij

i j j

k
k

x x x

 


 

    
        

 

The second term vanishes, therefore we obtain: 

 
2

0

ij

i j

k
f

x x
  


 

   

Since the transient heat conduction equation is: 

 ij

i j

k f
t x x

 


   
      

 

Then, 
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2

0
ij

i j

k

t x x





 

    

Now considering the perturbation given in the problem statement, 
t ie    n x

 where  

is real, 

2

0
ij t i

i j

k
e

x x

   
 

     

n x

 

From which we obtain: 

2

ij

i j

k

x x




   

Therefore, we conclude that 

2

0,  the solution is stable
ij

i j

k

x x



 
 

 

2

0,  the solution is unstable
ij

i j

k

x x



 
 
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CHAPTER 7: Arbitrary Lagrangian Eulerian formulations 

 

7.1. Develop your own code (Matlab, FORTRAN, C, Maple and etc.) to solve the 1D 

advection-diffusion equation 

2

2

dx

d

dx

d
u





  

with Galerkin and SUPG method separately. [See Example 7.2] 

The BCs and parameters are assigned to a real world problem to determine the particles 

distribution at the steady state.  Consider a 1m length segment in a long tube filled with a 

solution.  At steady state, the particle concentration at end A is 5% and that at end B is 

20%, i.e.   05.00 x ,   2.01 x .  The solvent flows in the tube from end A to B 

under a constant velocity       m/s.  The particles diffusion coefficient in the solvent is 

          m
2
/s.  Please provide the distribution of particles concentration distribution 

along the tube segment.    

Simulate and discuss the following situations: 

 (a) Mesh the domain with 10, 20, 50, 100 and 200 uniform size elements.  What is 

the element Peclet number Pe for each mesh?  Compare the analytical solution, 

Galerkin and SUPG prediction.  In SUPG method, select   














e

e
P

P
x 1

coth
2

  for 

each case.  Discuss the stability and accuracy of the results. 

(b) In the mesh with 20 uniform size elements, conduct the SUPG with 

 and , where   














e

e
P

P
x 1

coth
2

0 .  Discuss the 

influence of . 

(c) Mesh the domain with a nonuniform mesh.  Discuss the following: 

c.1) Where should the finer mesh be? 
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c.2) How to select a proper ? 

 

Solution to 7.1. 

 

Analytical solution: 

The steady state linear advection-diffusion equation in one dimension is 

 
  

  
  

   

   
            [   ] (1) 

where   is the dependent variable,   is the kinematic viscosity (diffusion coefficient) and   is a 

given velocity of the system. The analytical solution of equation (1) is straightforward to obtain, 

see for example Kreyszig
1
, 

     
 
 
      

Substituting the given boundary conditions of  (   )      ,  (   )      , and the 

given flow velocity of         and the particles diffusion coefficient in the solvent of 

             

              
 
 
        

Galerkin method: 

The development of the Galerkin discretization of the advection-diffusion equation using linear 

shape functions is given in the book. We need to multiply equation (1) by a test function,  , and 

integrate over the domain 

∫ ( 
  

  
  

   

   
)  

 

              (2) 

Integrating by parts and using the divergence theorem, one obtains the weak form of the 

advection-diffusion equation 

                                                 
1
 Kreyszig, E.. Advanced Engineering Mathematics. Wiley, 2011. 
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∫  
  

  
  

 

 ∫ 
  

  

  

  
  

 

                (3) 

Performing the usual discretization using finite elements,   , equation (3) for each element can 

be rewritten as 

( ∫   

   

  
  

  

)   ( ∫ 
   

  

   

  
  

  

)                     

where   and    are the finite element shape functions that discretize the test and trial functions, 

  and  , respectively. Rewriting this equation in indicial form 

                              

where the convective matrix and the diffusion matrix are 

    ∫    

   

  
  

    

  

         ∫  
   

  

   

  
  

    

  

                 

Therefore, as it is shown in the book, using linear shape functions for elements of length    

  
 

 
[
   
   

]        
 

  
[
   
   

]  

Finally, after assembly, the FEM matrix equations become 

(   )    (4) 

SUPG method: 

The Streamline Upwind Petrov-Galerkin method is obtained using the same reasoning explained 

previously but replacing the test function   in equation (2) by  ̃, which is defined as 

 ̃     
  

  
  

where    
  

 
, with   being defined differently according to the problem. The idea is quite 

simple: without changing the method of discretizing the advection-diffusion equation, one just 
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inserts a stabilization parameter that can be seen as an artificial viscosity. This way, the strong 

form for the SUPG method is obtained as 

∫ ( 
  

  
  

   

   
)  

 

 ∑ ∫ 
  

  
( 

  

  
  

   

   
)  

  

  

   

   (5) 

The first integral corresponds to the strong form of the Galerkin method, while the second term 

corresponds to the upwind Petrov-Galerkin method. It is important to refer that this second term 

has been subdivided into element integrals due to the fact that 
  

  
 and 

  

  
 are both discontinuous 

in their derivatives, i.e.,    . 

Integrating by parts the second term of Galerkin integral in equation (5) 

∫  
  

  
  

 

 ∫ 
  

  

  

  
  

 

 ∑ ∫  
  

  

  

  
  

  

  

   

 ∑ ∫  
  

  

   

   
  

  

  

   

   (6) 

Now, if one applies the same discretization procedure shown for the Galerkin method and using 

linear shape functions, one sees that the last term in the above equation is zero, 

∑ ∫(  
  

  
   

  

  

  

  
)   

  

  

   

    

with        . Therefore, the discretized form of equation (6) is 

(    )     

where the only difference when compared to equation (4) is the diffusion matrix,   , that is 

calculated replacing   for   . This way, the convective matrix and the diffusion matrix are 

    ∫    

   

  
  

    

  

         ∫   
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Finally, it is shown in the book how the parameter   can be determined for the one dimensional 

case of the advection-diffusion equation that is being evaluated in this work, leading to the 

following expression 

  
  
 
(    (  )  

 

  
)  

 

Solution to 7.1a). 

 

Simulation and discussion of the results. 

The analytical solution and the results obtained from the Galerkin method and the SUPG method 

will be presented for 5 different mesh sizes with 10, 20, 50, 100 and 200 uniform size elements. 

The element Peclet number for each mesh is 

Table 1. Element Peclet number for each mesh. 

    10 20 50 100 200 

   4 2 0.8 0.4 0.2 
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Comparison of Analytical solution and results from the Galerkin and SUPG methods: 10 uniform elements. 

 

 

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 20 uniform elements. 
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Comparison of Analytical solution and results from the Galerkin and SUPG methods: 50 uniform elements. 

 

  

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 100 uniform elements. 

 

  

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 200 uniform elements. 
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All of the previous figures show the results obtained for different mesh sizes using uniform 

length elements for the Galerkin and SUPG methods by comparing them with the analytical 

solution. The results are consistent to Example 7.2 of the book. Indeed, when the Peclet number 

is larger than 1, the Galerkin method shows an unstable solution. On the contrary the SUPG 

method is stable for any Peclet number due to the stabilization parameter previously discussed. 

Therefore, the Galerkin method returns spurious oscillatory concentration values, being the 

oscillation higher for higher values of the Peclet number. Not surprisingly, the accuracy of the 

predictions for both Galerkin and SUPG methods improves with increasing number of elements. 

Due to the fact that the variation of concentration is very abrupt very close to end B, only when a 

sufficient number of elements are used close to this end (roughly the last 8% of the tube) the 

results are very accurate. 

Finally, when comparing the accuracy of the Galerkin method and the SUPG method it is 

important to understand that for the problem that is being solved there are two different physical 

processes that are being modeled: 1) the transport of particles caused by the flow within the tube 

of a solvent at a certain speed (in this case from end A to end B), i.e., the advective (or 

convective) term; 2) the diffusion of particles from end B to end A due to the fact that the 

concentration at end B is higher than at end A. This is important to keep in mind because the 

SUPG method is based on introducing a parameter on the diffusion term that can be thought of 

as an artificial viscosity. Hence, adding viscosity (i.e., increasing the diffusion coefficient) 

increases the contribution of the diffusion term, which leads to an earlier increase of the 

concentration of the particles. In conclusion, the SUPG method tends to the analytical solution 

with an overestimation of the dependent variable,  , when compared to the Galerkin method. 

This will be clear with the analysis performed next, where we will assess the contribution of   to 

the solution obtained by the SUPG method. 
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Solution to 7.1b). 

 

Influence of the   parameter. 

The figure below shows the predictions using different values for the   parameter:   

               and      , where    
  

 
(    (  )  

 

  
). As was predicted in the previous 

section by comparing the Galerkin method with the SUPG method, it is clear that increasing the 

  parameter causes an overestimation of the distribution of the concentration in the tube because 

it increases unrealistically the weight of the diffusion term in the advection-diffusion equation; 

the system becomes over damped. 

On the other hand, if one uses   lower than    
  

 
(    (  )  

 

  
) then the response starts 

being oscillatory due to the fact that not enough damping was introduced in the system. The 

lower   is, the more oscillatory the response is; in the limit, if     the same response given by 

the Galerkin method will be achieved. 

This parametric study is very important to keep in mind once a three-dimensional system is 

being analyzed, because the correct   parameter is not known a priori. Therefore, one might be 

over damping the system without knowing it because the response is smooth. When   is too low 

and the system is underdamped it is easier to detect due to the instability of the response.  

 
 

Influence of the   parameter in the predictions using the SUPG method. 
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Solution to 7.3c). 

 

Nonuniform mesh. 

As referred previously, increasing the number of elements increases the accuracy of the solution. 

However, it was also mentioned that it is predictable that using smaller elements at end B and 

larger elements at end A will produce better results, even without changing the total number of 

elements, because the change in concentration is very localized at end B, being very close to zero 

until the last 8% of the tube. 

Several different meshes can be used to prove this hypothesis. One of the most effective meshes 

for this problem can be obtained considering an exponential variation of the number of elements 

along the tube towards the end B: 

  ( )    ( 
  
 
   ) (S7.1.17) 

where   
       

( 
  
 
 
  )

, with         being the total number of elements of the mesh, and   is a 

parameter to avoid a resolution that is too low at end A (the code uses      ). This distribution 

generates a mesh that is very coarse at the beginning of the tube and that is very refined at the 

end, just like it is needed. A plot of the mesh and the distribution is shown in the figure below for 

10 elements. 
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Element distribution and nonuniform mesh obtained for 10 elements. 

 

The results obtained with this nonuniform mesh of 10 elements are also plotted in the next 

figure. As predicted, even for such a low number of elements, the simulations lead to an 

excellent result for both methods: Galerkin and SUPG. This was possible for the Galerkin 

method because the Peclet number was calculated for each element and the elements that lead to 

a variation of the particle concentration had a Peclet number lower than 1 (the first element is 

         long, whether the second element is only         , with the remaining elements 

getting even smaller). This way, after the sixth element (            , thus         ) 

which has its first node at           , the      eliminating the oscillation because it is at 

approximately that length that the concentration starts to increase. 
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Comparison of Analytical solution and results from the Galerkin and SUPG methods: 10 nonuniform elements. 

As a final comment, the variation of the   parameter was also studied using the nonuniform 

mesh. As can be seen in the next figure, the influence of   on the response is less pronounced 

when compared with the influence on the response obtained for a uniform mesh with the double 

of elements. This is reassuring because it means that if the mesh resolution is fine enough, even 

if one does not know the exact value of the   parameter for a tridimensional case, the response 

may be accurate enough. 

  

Influence of the   parameter in the predictions using the SUPG method for a nonuniform mesh with 10 elements. 

 

MATLAB code for Problem 7.1 
%%%%%%%%%%%%%%%%%%%%% Advection-Diffusion problem %%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   M. A. Bessa  (mbessa@u.northwestern.edu) 
%   Northwestern University, Mechanical Engineering 
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% 
%   April 15, 2012 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [] = Project1_AdvectionDiffusion() 
    close all; clear all; clc; 
    %% Input parameters. 
    uni_mesh    = 1;     % Select uniform [1] or nonuniform [0] mesh 
    ne          = 10;    % Number of elements 
    nn          = ne+1;  % Number of nodes. 
    tube_length = 1.0;   % Length of the tube. [m] 
    phi_BC = [0.05,0.2]; % Particle concentration at end A and B 
    BC_dof      = [1,nn];% Degrees-of-freedom of Boundary Conditions 
    u           = 2;     % Velocity of the solvent flow in the tube from... 
                         % end A to end B [m/s] 
    nu          = 0.025; % Particles diffusion coef. in the solvent [m^2/s] 
    beta        = 0.10;  % Parameter for nonuniform mesh 

  
    %% Preprocessing. 
    switch uni_mesh 
        case 1 
            % Nodal coordinates for uniform mesh. 
            X = linspace(0, tube_length, nn)'; 
        case 0 
            % Nodal coordinates for nonuniform mesh. 
            A = ne/(exp(beta*u/nu*tube_length)-1); 
            for el = 0:ne 
                X(el+1) = 1/beta*nu/u*log(el/A+1); 
            end 
    end 

  
    % Initialize nodal variables to zero. 
    phi = zeros(nn,1); 

  
    % Connectivity matrix (each row gives nodes in an element.) 
    connect = [ 1:length(X)-1; 2:length(X) ]'; 

     
    % Calculate the length of each element 
    le = zeros(ne,1); % length of each element [m] 
    count = 0; 
    for conn = connect' 
        count = count+1; 
        le(count) = X(conn(2))-X(conn(1)); 
    end 

  
    %% 
    % For this simple problem, using linear shape functions it is easy... 
    % obtain the Convective matrix and Diffusion matrix for each element: 
    L_Gal = zeros(nn,nn); 
    K_Gal = zeros(nn,nn); 
    L_SUPG = zeros(nn,nn); 
    K_SUPG = zeros(nn,nn); 
    K_SUPG_gam1 = zeros(nn,nn); 
    K_SUPG_gam2 = zeros(nn,nn); 
    K_SUPG_gam3 = zeros(nn,nn); 
    K_SUPG_gam4 = zeros(nn,nn); 
    for conn = connect' 
        % Element Convective matrix 
        L_Gal_e = u/2*[ -1, 1; ... 
                    -1, 1 ]; 
        % Element Diffusion matrix 
        K_Gal_e = nu/le(conn(1))*[ 1, -1; ... 
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                              -1,  1 ]; 
        L_Gal(conn,conn) = L_Gal(conn,conn) + L_Gal_e; 
        K_Gal(conn,conn) = K_Gal(conn,conn) + K_Gal_e; 

  
        Pe = u*le(conn(1))/(2*nu); 
        alpha = coth(Pe)-1/Pe; 
        gamma = le(conn(1))/2*alpha; 
        nu_bar = u*gamma; 
        % Element Convective matrix 
        L_SUPG_e = u/2*[ -1, 1; ... 
                    -1, 1 ]; 
        % Element Diffusion matrix 
        K_SUPG_e = (nu+nu_bar)/le(conn(1))*[ 1, -1; ... 
                              -1,  1 ]; 
        L_SUPG(conn,conn) = L_SUPG(conn,conn) + L_SUPG_e; 
        K_SUPG(conn,conn) = K_SUPG(conn,conn) + K_SUPG_e; 

         
        % PARAMETRIC STUDY OF GAMMA 
        nu_bar1 = 10*nu_bar;  % 10 times gamma 
        K_SUPG_gam1_e = (nu+nu_bar1)/le(conn(1))*[ 1, -1; ... 
                              -1,  1 ]; 
        K_SUPG_gam1(conn,conn) = K_SUPG_gam1(conn,conn) + K_SUPG_gam1_e; 

         
        nu_bar2 = 2*nu_bar;  % 2 times gamma 
        K_SUPG_gam2_e = (nu+nu_bar2)/le(conn(1))*[ 1, -1; ... 
                              -1,  1 ]; 
        K_SUPG_gam2(conn,conn) = K_SUPG_gam2(conn,conn) + K_SUPG_gam2_e; 

         
        nu_bar3 = 0.5*nu_bar;  % 0.5 times gamma 
        K_SUPG_gam3_e = (nu+nu_bar3)/le(conn(1))*[ 1, -1; ... 
                              -1,  1 ]; 
        K_SUPG_gam3(conn,conn) = K_SUPG_gam3(conn,conn) + K_SUPG_gam3_e; 

         
        nu_bar4 = 0.1*nu_bar;  % 0.1 times gamma 
        K_SUPG_gam4_e = (nu+nu_bar4)/le(conn(1))*[ 1, -1; ... 
                              -1,  1 ]; 
        K_SUPG_gam4(conn,conn) = K_SUPG_gam4(conn,conn) + K_SUPG_gam4_e; 
    end 

     
    % Since both matrices operate on phi, they can be added: 
    M_Gal = L_Gal + K_Gal; 
    M_SUPG = L_SUPG + K_SUPG; 

     
    M_SUPG_gam1 = L_SUPG + K_SUPG_gam1; 
    M_SUPG_gam2 = L_SUPG + K_SUPG_gam2; 
    M_SUPG_gam3 = L_SUPG + K_SUPG_gam3; 
    M_SUPG_gam4 = L_SUPG + K_SUPG_gam4; 

  
    F = zeros(nn,1); 
    BigNumber = 10^9; 
    for i=1:length(BC_dof) 
    M_Gal(BC_dof(i),BC_dof(i)) = BigNumber; 
    M_SUPG(BC_dof(i),BC_dof(i)) = BigNumber; 

     
    M_SUPG_gam1(BC_dof(i),BC_dof(i)) = BigNumber; 
    M_SUPG_gam2(BC_dof(i),BC_dof(i)) = BigNumber; 
    M_SUPG_gam3(BC_dof(i),BC_dof(i)) = BigNumber; 
    M_SUPG_gam4(BC_dof(i),BC_dof(i)) = BigNumber; 

     
    % RHS term ("force") 
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    F(BC_dof) = phi_BC*BigNumber; 
    end 

     
    % Solution 
    phi_Gal = M_Gal \ F; 
    phi_SUPG = M_SUPG \ F; 

     
    phi_SUPG_gam1 = M_SUPG_gam1 \ F; 
    phi_SUPG_gam2 = M_SUPG_gam2 \ F; 
    phi_SUPG_gam3 = M_SUPG_gam3 \ F; 
    phi_SUPG_gam4 = M_SUPG_gam4 \ F; 

     
    %% Analytical solution 
    phi_A = phi_BC(1); 
    X_A   = X(1); 
    phi_B = phi_BC(end); 
    X_B   = X(end); 

     
    C1 = (phi_B-phi_A)/exp(u/nu*(X_B-X_A)); 
    C2 = phi_A-C1*exp(u/nu*X_A); 

     
    X_ana   = X_A:(0.001*abs(X_B-X_A)):X_B; 
    phi_ana = zeros(length(X_ana),1); 
    phi_ana = C1*exp(u/nu*X_ana)+C2; 

     
    figure(); 
    plot(X, phi_Gal, X, phi_SUPG, X_ana, phi_ana); 
    title('Particles concentration vs. Tube length: 10 elements uniform mesh',... 
        'FontWeight', 'bold', 'Color', [0,0,1]); 
    xlabel('X (m)', 'FontWeight', 'bold'); 
    ylabel('\phi', 'FontWeight', 'bold'); 
    legend('Galerkin method', 'SUPG method', 'Analytical solution'); 

     
    figure(); 
    plot(X, phi_SUPG_gam1, X, phi_SUPG_gam2, X, phi_SUPG, X,... 
        phi_SUPG_gam3, X, phi_SUPG_gam4, X_ana, phi_ana); 
    title('Particles concentration vs. Tube length: 10 elements uniform mesh',... 
        'FontWeight', 'bold', 'Color', [0,0,1]); 
    xlabel('X (m)', 'FontWeight', 'bold'); 
    ylabel('\phi', 'FontWeight', 'bold'); 
    legend('10\gamma_0', '2\gamma_0', '\gamma_0', '0.5\gamma_0', '0.1\gamma_0',... 
        'analytical solution'); 

     
    %% Nonuniform mesh plot 

     
    if uni_mesh == 0 
        elem_dist = A*(exp(beta*u/nu*X)-1); 

         
        plot_nodes = 0.0.*elem_dist; 

         
        figure(); 
        plot(X, elem_dist, 'bo:', X, plot_nodes, 'ro-'); 
        title('Element distribution', 'FontWeight', 'bold', 'Color',... 
            [0,0,1]); 
        xlabel('X (m)', 'FontWeight', 'bold'); 
        ylabel('Number of elements', 'FontWeight', 'bold'); 
    end 

     
end 
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CHAPTER 8: Element technology 

 

8.1. Show that when X2 ≠ 1
2

 (X1 + X3), then the 3-node element in Example 2.5 does not 

reproduce the quadratic displacement field. Hint: set the node displacements by a 

quadratic field in X and examine the resulting field. 

 

Solution to 8.1. 

The map between the reference configuration and the parent element is given by 

 

 ( )    ( )   

With the shape functions: 

    [
 

 
(    )     

 

 
(    )]            

        
     

 

And the reference coordinates: 

   {(   )
  
  
  

    }           ]   [   {   } 

 

For an isoparametric element, the dependent variable u is interpolated by the same shape 

functions, so 

 ( )     ( )   

 

Let the dependent variable be a linear function of the spatial coordinates, so 

 

             
  

 

Where    are arbitrary parameters. If the nodal values of the field are given by the above, 

then 
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Substituting the nodal values of the dependent variable given by the above expression 

into the displacement field obtained with the discretization: 

 

         ( )    (    )    (    
 ) 

 

After some algebra, we can reach the following expression: 

 

       {(    ) [
 (    )

 

     
    ]  (    )  }

   { 
  (    ) [

(    )(    )[  (    )    (    )]

     
]} 

 

Reaching the conclusion that for   
 

 
: 

  
 

 
             

  

The quadratic displacement field is reproduced. However, for    ]   [  {   } the 

quadratic displacement field is not reproduced: 

   ]   [  {   }                
                       

 

 

8.2. Show that the weak form (8.5.12) leads to the following strong form: 

 dev

,, , ,ii ii ij j i i ip p D D p b v        

    dev dev

inton , [ ] 0oni ij ij j t i ij ijn p t n p          

 

Solution to 8.2. 

Due to the symmetry of    
   , the internal power (8.5.12) can be written as: 
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       ∫(         
      ̅     )    ∫  [ ̅ (      ̅  ]   

  

 

With the external power and kinetic power given by: 

 

       ∫    
  

  ̅    ∫   
 

      

       ∫   
 

  ̇    

 

Taking the variations of the second term in the internal power yields  

 

∫   [ ̅ (       ̅  ]     ∫[  ̅ (       ̅  )    ̅ (        ̅  ) ]
  

   

 

Considering the third term on the RHS of the above: 

 

∫          ̅     ∫ [(       ̅)          ̅  ]
  

    

  ∫    
  

  ̅          ∫    ⟦ ̅      ⟧    ∫       ̅    
     

 

 

Where the Gauss divergence theorem was used to obtain the first two terms of the RHS, 

noting that   was changed to    because       on        . 

 

Evaluating the 1
st
 term of the internal power: 

 

∫         
        ∫ [(      

   )
  
         

   ]
  

    

  ∫    
  

   
           ∫    

    

⟦   
      ⟧     ∫         

      
 

 

 

Substituting each of the results in       we obtain: 
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 ∫ [   (            ̅  )    ̅   ( ̅    )    ̅ (  ̅       )]  
 

  ∫    (
  

   
      

   ̅      )     ∫    (⟦   
      ⟧   ⟦ ̅      ⟧)

    

    ∫      ̅  
  

  ∫        
 

  ∫      ̇  
 

   

   

 

Using the arbitrariness of the test functions then gives the strong form: 

     
      ̅          ̇  

  ̅    

 ̅       

   (   
      ̅    )     ̅           

 ⟦  (   
      ̅    ⟧                                    

 

 

8.3. Show that the weak form (8.5.13) leads to the following strong form: 

 dev

, , , , 0ij j i i i iip b v p p D        

    dev dev

inton , [ ] 0oni ij ij j t i ij ijn p t n p          

 

Solution to 8.3. 

This proof is obvious because the only difference is that       , so only one equation in 

the strong form is changed 

 ̅         
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8.4. By using the transformation for stresses and letting δD = δF, show that (8.5.1) can 

be transformed to (8.5.14). 

 

Solution to 8.4. 

Equation (8.5.1) is: 

 

       (   ̅  ̅)

  ∫  ̅    ( ̅)  
 

  ∫ 
 

[ ̅  (  ( )    ̅)]                

 

Let’s start by converting the integrals to the reference configuration: 

 

∫   ̅
  

   ( ̅)        ∫   [ ̅  (  ( )   ̅)]     
  

               

 

Now, noting that by definition of    and symmetry of stress   , 

           
   
   

      

Applying the chain rule, 

           
   
   

 
   
   

     

Using the definition of  , 

              ̇
   
   

      

And finally using the appropriate stress transformation: 

            ̇       

 

Now, using this relation we can write: 

   ̅  ( ̅)    ̇̅    ( ̇̅) 

  ̅    ( )    ( )   ̅   ̇ ( ̇)   ̅ 

 ̅    ̅    ̅   ̇̅ 
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Hence, the three-field weak form becomes 

    (  ̇  ̇̅  ̅)

  ∫   ̇̅    ( ̇̅)   
  

 ∫  [ ̅  ( ̇̅   ̇̅  )]                 

  

  

Finally, noting that equation (8.5.14) is a virtual work instead of a virtual power, the 

above expression needs to be converted accordingly: 

 

      (   ̅  ̅)

  ∫   ̇̅    ( ̅)   
  

 ∫   [ ̅  (  (  )      ]    
  

      

                               

This can be expressed in index notation, leading to equation (8.5.14). 
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CHAPTER 9: Beams and shells 

 

9.1. Consider the three-node CB element shown in Figure 9.16. The shape functions are 

quadratic in ξ. Develop the velocity field and the rate-of-deformation in the 

corotational coordinates. Give an expression for the nodal forces. Develop an 

expression for the angle between the pseudonormal p and the true normal to the 

midline.  

 

Solution to 9.1. 

The motion of the 6-node continuum element is: 

        (   ) 

With the following shape functions and respective derivatives, 
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Replacing the shape functions in the motion equation and rearranging the terms: 

  
 

 
(       ) (   )  

 

 
(       ) (   )  

 

 
(       )(    )

 
 

 
(       )(    )  

 

 
(       ) (   )

 
 

 
(       ) (   )  

Considering, 

   
 

 
(       )  

 

 
(       )                   

 

 
(       )  

 

 
(       ) 

   
 

 
(       )  

 

 
(       )                ‖       ‖    

  

‖       ‖    
                 ‖       ‖    

                    
       

  
  

   
       

  
                    

       

  
  

We can then rewrite the equation of motion as: 

  
 

 
   (   )    (    )  

 

 
   (   )   

  
 

 
   (   )   

  
 

 
  (    )

  
  
 

 
   (   ) 

The velocity field can now be determined to be: 

  
 

 
   (   )    (    )  

 

 
   (   )   

  
 

 
 (   )     

  
  
 

 
(    )       

  
 

 
 (   )      

with     ̇        , and               , and                   . 

To develop the velocity field in corotational coordinates, we need to determine the 

laminar base vectors: 

 ̂  
           

(   
     

 )
   

           ̂  
            

(   
     

 )
   

 

Where, 

    ∑        (   )

  

              ∑        (   )
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Substituting the derivatives of the shape functions with respect to  : 

      (  
 

 
)         (  

 

 
)   

  
 

 
  (  

 

 
)   

  
 

 
     

  
 

 
  (  

 

 
) 

with                   . 

From which we can calculate the rotation tensor: 

     [
    ̂      ̂ 

   
    ̂      ̂ 

]  
 

(   
     

 )
   

[

        
   
       

] 

 

The velocity field in corotational coordinates is obtained from the nodal velocities 

transformed by the above rotation tensor: 

 ̂  
 

 
    
     (   )      

    (    )  
 

 
    
     (   )

  
  
 

 
 (   )    

         
  
 

 
(    )    

       

  
  
 

 
 (   )    

        

 

The rate-of-deformation can be determined once all the previous quantities are defined. 

First, we determine: 

    ̂
      

  ̂  
   

where  ̂   is determined following the same procedure used for  ̂: 

        
    (  

 

 
)       

          
    (  

 

 
)   

  
 

 
    
    (  

 

 
)

  
  
 

 
    
       

  
 

 
    
    (  

 

 
) 

We can then calculate the velocity gradient and the rate-of-deformation in corotational 

coordinates: 

 ̂   ̂     ̂       ̂  
 

 
( ̂   ̂ ) 

The nodal forces are given by: 
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     {

   
   
  

}

    

   
 {
  
 

  
 }
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]

{
 

 
    

    

    

    }
 

 

 

Leading to: 

                                        

   (      )     (      )     (      )     (      )     

 

Finally, we need to evaluate the angle between the pseudonormal and the true normal to 

the midline. The pseudonormal to the midline (   ) is: 

  
 

 
   (   )    (    )  

 

 
   (   ) 

with                   . 

The true normal to the midline is: 

   ̂  
            

(   
     

 )
   

 

Therefore, the angle  ̅ between   and   is then given by: 

    ̅            ̅       [
                  

(   
     

 )
   

] 

 

 

9.2. Consider a plate (a flat shell) in the x–y plane governed by the Mindlin–Reissner 

theory. Show that the rate-of-deformation is given by 

1
, , –

2 2

1 1
,

2 2

M M M M
y yx x x x x x

xx yy xy

M M

z z
xz y yz x

v v v v z
D z D z D

x x y y y x y x

v v
D D

x y

  

 

         
         

         

    
       

    

 

 

Solution to 9.2. 

The Mindlin-Reissner theory for a flat plate leads to a simple velocity field: 
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} 

Therefore, obtaining each component of the rate-of-deformation is straightforward: 
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9.3. Consider the lumped mass for a rectangular CB-beam element (Figure 9.17), 

1
8

M̂ I,m  m = ρ0a0b0h0 where ρ0, a0, b0, and h0 are the initial density and dimensions 

of the rectangular continuum element underlying the beam element. Using the 

transformation (9.3.24), develop a mass matrix for the 2-node CB element and 

diagonalize the result with the row-sum technique. 

 

Solution to 9.3. 

The transformation matrix for the 2-node CB element is: 
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Where 

       
 

 
                 

 

 
    

       
 

 
                 

 

 
    

       
 

 
                 

 

 
    

       
 

 
                 

 

 
    

With           and          . The transformation matrix is then written as: 

 

  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

 
      

   
 

 
      

   
 

 
      

  
 

 
      

     
 

 
   

      
 

 
   

      
 

 
   

     
 

 
   ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The mass matrix for the rectangular continuum element underlying the beam element (in 

the expanded 8x8 form) is: 

 ̂  
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Therefore, the mass matrix for the 2-node CB element is obtained using the 

transformation (9.3.24): 

     ̂  
        

 

[
 
 
 
 
 
 
 
      
      

  
  

 
(   

     
 )    

      
      

     
  

 
(   

     
 )]

 
 
 
 
 
 
 

 

 

 

9.4. Develop the consistent mass matrix for a rectangular continuum element. 

(a) develop a consistent mass for the CB beam using (9.3.24), i.e. ˆTM T MT  for 

a beam element lying along the x-axis as shown in Figure 9.17; 

(b) develop the complete inertia term including the time-dependent term in 

(9.3.26). 

 

Solution to 9.4a). 

From example 4.2 in the book, equation (E4.2.17), we can calculate the mass matrix for a 

quadrilateral element and expand it to an 8x8 matrix, resulting in the following matrix: 

 

 ̂  
        

  

[
 
 
 
 
 
 
 
        
        
        
        
        
        
        
        ]

 
 
 
 
 
 
 

 

 

The transformation matrix is the same as in the previous problem, hence: 
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Solution to 9.4b). 

From example 4.2 in the book, equation (E4.2.17), we can calculate the mass matrix for a 

quadrilateral element and expand it to an 8x8 matrix, resulting in the following matrix: 

 

 ̂  
        

  

[
 
 
 
 
 
 
 
        
        
        
        
        
        
        
        ]

 
 
 
 
 
 
 

 

 

The transformation matrix is the same as in the previous problem, and the time derivative 

of the transformation matrix is given by: 
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CHAPTER 11: Extended Finite Element Method 

 

11.1. Consider a 1D bar that has a total length of 20mm with its left end at -10mm and 

right end at 10mm and a discontinuity surface at 0cx  mm. The bar is stretched by an 

external load (P=1MPa) on the left end and fixed on the right. Assuming that the bar is 

made of linear elastic material with material properties            ,   = 7.83 g/cm
3
,
 

     .  

Write a 1D code to solve this problem using explicit formulation with standard Verlet time 

integrator. Implement XFEM to model the crack surface. To simplify the solution, no 

cohesive force on the crack surface needs to be considered. One of two ways of 

implementing XFEM can be used: the original XFEM or phantom node method. The hints 

below are given for implementing original XFEM. 

Hints: 

(a) Calculate the level set values (signed distance function to the crack surface) for each 

node. Note that only one element cut by the crack will be enriched in this case. It will 

have both positive and negative nodal level set values. 

(b) Derive the B matrix for the enriched element and use the shifted enrichment function 

introduced in this chapter for strong discontinuity. Keep in mind that the dimension for 

B matrix has changed, since it now has double the degrees of freedom as before. 

However, the dimension of the stress shouldn’t change. Keep the standard form for the 

B matrix for all the other unenriched elements.  

(c) Integrate Bσ  over the enriched element carefully to get the internal force. Since B is 

now a discontinuous function over the enriched domain, using the same number of 

gauss integration points as the unenriched elements will give poor results. There are 

two ways around: a) Use a lot of integration points. b) Integrate the two parts of the 

enriched element formed by the crack separately. 
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Solution of 11.1. (solved by P. D. Lea) 

MATLAB code for Problem 11.1 
%%%%%%%%%%%%%% 1D XFEM code using a consistent mass matrix %%%%%%%%%%%%%%%% 
% 
%   P. D. Lea  (Patrick.Lea@u.northwestern.edu) 
%   Northwestern University, Theoretical and Applied Mechanics 
% 
%   May 30, 2013 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [] = XFEM1D() 
clc 
close all 
clear all 
    %% Input parameters. 
    nn         = 100;      % Number of nodes.     
    barstart   = -10;      % Location fo the bar starting point 
    barend     =  10;      % Location fo the bar ending point 
    runtime    = 4.0;      % Number of times for wave to cross domain.    
    youngs     = 2e5;      % Modulus of elasticity (for linear). 
    rho        = 7.85e-6;  % Density per unit length. 

  
    %%XFEM Parameters 
    xc         = 0;      % Location of discontinuity  

     
    %% Calculated parameters. 
    bar_length = barend-barstart;  % Determines overall length of bar 
    c      = sqrt(youngs/rho);     % Wave speed. 
    t_crit = bar_length/(nn-1)/c;  % Critical timestep for lumped mass matrix of non-

cut bar. 
    dt     = t_crit * .2;       % Timestep size (Needs to be reduced for XFEM and 

consistent mass matrix.     
    num_timesteps = ceil(runtime*bar_length/c/dt); % Number of time steps. 

  
    %Accounting for XFEM 
    ndof = nn+2; 

  
    %% Preprocessing. 
    % Nodal coordinates in reference configuration. 
    X = linspace(barstart, barend, nn)'; 

  
    % Initialize nodal variables to zero. 
    u  = zeros(ndof,1); 
    v  = zeros(ndof,1); 
    a1 = zeros(ndof,1); 

  
    % Connectivity matrix (each row gives nodes in an element.) 
    connect = [ 1:length(X)-1; 2:length(X) ]'; 

  
    % Defines the element shape functions. 
    % See MATLAB help for "anonymous function" if you don't understand. 
    N = @(x) ( 0.5*[1-x, 1+x] ); 
    % Defines the stress as a function of strain. 
    stressfunction = @(eps) ( youngs * eps );     
    % Defines the applied load as a function of time. 
    applied_load = @(t) (-10e3 * (t<Inf).*(t>=0)); 
    %Level Set 
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    LV = @(x) (x-xc); 
    %Heaviside function 1 for x>0 and 0 otherwise 
    Hx = @(x) floor(heaviside(x)); 
    %Shifted enrichment for strong discontinuity  
    Psi = @(x,xI) (Hx(LV(x)) - Hx(LV(xI))); 

  
    %Determines value of xi for real point xp inside of element bounded by XI(1) and 

XI(2) 
    Getxi = @(xp,XI) ((xp-.5*(XI(1) + XI(2)))/((XI(2)-XI(1))/2)); 
    %Determines the value of X given xi 
    GetX = @(xi,XI) ((xi*(XI(2)-XI(1)))/2 + (XI(1)+XI(2))/(2)); 
    %Heaviside * Shape functions 
    NPsi = @(xp,XI) (0.5*[(1-xp) * Psi(GetX(xp,XI),XI(1)) , 

(xp+1)*Psi(GetX(xp,XI),XI(2))]);  

  
    %Determine what element has a crack in it 
    CrackElem = DetermineCrackedElement(X,xc,nn);  
    %% Compute mass matrix. 
    M = sparse(ndof,ndof);       
    connCrack = (CrackElem:CrackElem+1); 
    for conn = connect' 
        xi = sqrt(3)/3;         
        Me = 0.5*(N(xi)'*N(xi) + N(-xi)'*N(-xi)); 
        Me = Me * range(X(conn)) * rho; 
        M(conn,conn) = M(conn,conn) + Me; 
    end 
    conn = (CrackElem:CrackElem+1); %Connectivity of cracked element 
    qconn = (nn+1:nn+2); %connectivity of extra degrees of freedom 
    lce = range(X(conn));  %length of cracked element 
    XI = X(conn); %locations of nodes of element 
    l1 = xc - X(CrackElem); %length from first node to crack 
    l2 = lce -l1; %length from crack to second node 
    xic = Getxi(xc,X(conn)); %Determine location of crack in parent coordinates 
    %Calculate location values for cracked element Gauss quadrature  
    xi1 = (-sqrt(3)/3)*(xic+1)/(2) + ((xic-1)/2);  
    xi2 = (sqrt(3)/3)*(xic+1)/(2) + ((xic-1)/2); 
    xi3 = (-sqrt(3)/3)*(1-xic)/(2) + ((xic+1)/2); 
    xi4 = (sqrt(3)/3)*(1-xic)/(2) + ((xic+1)/2); 
    %Numerical integration of Mass matrix 
    Meqq1 = .5*l1*rho*(NPsi(xi1,XI)'*NPsi(xi1,XI) + NPsi(xi2,XI)'*NPsi(xi2,XI)); 
    Meqq2 = .5*l2*rho*(NPsi(xi3,XI)'*NPsi(xi3,XI) + NPsi(xi4,XI)'*NPsi(xi4,XI)); 
    Meqq = Meqq1 + Meqq2; 
    M(qconn,qconn) = M(qconn,qconn) + Meqq; 
    Meuq1 = .5*l1*rho*(N(xi1)'*NPsi(xi1,XI) + N(xi2)'*NPsi(xi2,XI)); 
    Meuq2 = .5*l2*rho*(N(xi3)'*NPsi(xi3,XI) + N(xi4)'*NPsi(xi4,XI)); 
    Meuq = Meuq1+Meuq2; 
    M(conn,qconn) = M(conn,qconn) + Meuq; 
    Mequ1 = .5*l1*rho*(NPsi(xi1,XI)'*N(xi1) + NPsi(xi2,XI)'*N(xi2)); 
    Mequ2 = .5*l2*rho*(NPsi(xi3,XI)'*N(xi3) + NPsi(xi4,XI)'*N(xi4)); 
    Mequ = Mequ1+Mequ2; 
    M(qconn,conn) = M(qconn,conn) + Mequ; 

     
    %% Allocate arrays for output. 
    figure(1); 
    u_mid = zeros(num_timesteps,1); 
    P_mid = zeros(num_timesteps,1); 
    u_left = zeros(num_timesteps,1); 
    u_right = zeros(num_timesteps,1); 
    %% Loop over time steps. 
    for ts = 1:num_timesteps 
        %% Displacement update. 
        % Current simulation time, t. 
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        t = (ts-1) * dt;  
        % Update displacements to time t + dt. 
        u = u + dt*(v + 0.5*dt*a1);         
        %% Apply boundary conditions. 
        % Fix right most node. 
        u(end-2) = 0; 
        % Initialize nodal forces to zero. 
        f = zeros(ndof,1);         
        % Apply load at left end.         
        f(1) = applied_load(t);         
        %% Element nodal force loop. 
        for conn = connect' 
            lce = range(X(conn));    % Compute element reference length. 
            Be = [-1, 1] / lce;      % Element B matrix (dN/dX). 
            eps = Be * u(conn);                         
            % Evaluate constitutive law.             
            P = stressfunction(eps);                         
            % Compute element forces with 1pt integration. 
            fe = Be' * P * lce; 
            f(conn) = f(conn) - fe;  % Scatter element internal forces. 
        end 
        % Integrating fractured element internal stress 
        conn = [CrackElem:CrackElem+1]; 
        qconn = [nn+1:ndof]; 
        X1 = X(CrackElem); 
        X2 = X(CrackElem+1); 
        lce = range(X(conn));    % Compute element reference length. 
        l1 = abs(LV(X(CrackElem))); %length from first node to crack 
        l2 = lce-l1; %length from crack to second node 
        % B matrices from N and N Psi 
        Be = [-1,1]/lce; 
        Bp1 = [-(Psi((X1+l1/2),X1)), (Psi((X1+l1/2),X2))]/lce; 
        Bp2 = [-(Psi((X2-l2/2),X1)), (Psi((X2-l2/2),X2))]/lce; 
        % Strains for u and q displacements 
        epsq1 = Bp1*u(qconn); 
        epsq2 = Bp2*u(qconn); 
        eps = Be * u(conn); 
        P = stressfunction(eps); %Stress from real displacements 
        %Stress from q degrees of freedom 
        Pq1 = stressfunction(epsq1);  
        Pq2 = stressfunction(epsq2); 
        %Internal stress calculation associated with XFEM degrees of freedom 
        feuq = (Be' * Pq1 * l1) + (Be' * Pq2 * l2); 
        fequ = (Bp1' * P * l1) + (Bp2' * P * l2); 
        f(conn) = f(conn) - feuq;  
        f(qconn) = f(qconn) - fequ;  
        feqq = (Bp1' * Pq1 * l1) + (Bp2' * Pq2 * l2); 
        f(qconn) = f(qconn) - feqq;  
        % 
        %% Velocity update. 
        % Consistent. 
        a2 = M\f; 

     
        % Update velocities to time t + dt. 
        v = v + 0.5*dt*(a1 + a2); 
        % Push back a2 to a1. 
        a1 = a2;         
        %% Post processing 
        if (mod(ts,5) == 0)    
            Xe = 0.5*(X(2:end)+X(1:end-1)); 
            eps = (u(2:end-2)-u(1:end-3)) / (bar_length/(nn-1)); 
            eps(CrackElem) = 0; %zeros stress in the cut element (for post processing 

only) 
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            P = stressfunction(eps); 
            plot(Xe, P); 
            pause(0.001); 
        end 
        eps = (u(ceil(end/4))-u(ceil(end/4)-1)) / (bar_length/(nn-1)); 
        P_mid(ts) = stressfunction(eps); 
        u_mid(ts) = u(ceil(end/4)); 
        u_left(ts) = u(CrackElem); 
        psin = N(1) * u(nn+1:ndof); 
        u_right(ts) = u(CrackElem+1) +  Psi(X(CrackElem+1),X(CrackElem+1)) *  N(1) * 

u(nn+1:ndof); 

         
    end 
    figure(2); 
    t = (1:num_timesteps)'*dt; 
    plot(t, u_mid); 
    title('Displacement Quarter Point') 
    figure(3); 
    plot(t, P_mid); 
    title('Quarter Point Stress') 
    figure(4); 
    plot(t,u_left); 
    title('Displacement Left') 
    figure(5); 
    plot(t,u_right); 
    title('Displacement Right') 

  
end 

  

  
function  [BrokenElem] = DetermineCrackedElement(X,xc,nn) 
% Determines which element are cut 
    for i =1:nn-1 
        if(X(i) < xc && X(i+1) > xc) 
            BrokenElem = i; 
        end 
    end 
end 
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CHAPTER 12: Introduction to Multiresolution Theory  

 

12.1   In section 12.5.3 the kinetic power is defined for MCT theory. Beginning with the 

definition of kinetic energy density Eq. 12.5.6, show that Eq. 12.5.7 results for the 

kinetic power. (Hint: See derivation in [38]). 

 

Solution to 12.1. 

Beginning with the expression of kinetic energy density, 

    1
0 0 0 1 0 0a a

n n
kin n n n nn V V

e dV            v v v vv v  

Take the material time derivative 

 

    

0 0 0

1
1 0 0

( )

                        ( )a a
n n

kin

n n n nn V V

D D
e d d

Dt Dt
D

dVd
Dt

  

  

 




   

     

 

 

v v

v vv v
 

We now focus on each term from the RHS separately: 

A- Focusing on the first term of the right hand side, 

   

  

   

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

( )

     ( ) ( )

     0 ( )

     0

D
d

Dt

d d
t

d

d

 

     

   

   



 





  

 
        

 

         

       



 





v v

v v v v v v v v

v v v v v v v

v v v v v v
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We wish to drop the term containingdv0
 to simplify the resulting expressions. To do so, 

we notice that for small increments of time  , using integration by parts  

   

 

0 0 0 0 0 0

0 0 0

1
( ) ( )

                                        ( )

t t t

tt t

t

t

d dt d dt

d
d dt

dt

  



   


 

  

 





    

 
   

 

   

 

v v x v v x

v v x
 

The variation dv0
can be assumed roughly constant over interval . We will thus use its 

mid-interval value dv0

t+t /2  to approximate the time integral, 

   

 

   

0 0 0 0 0 0

0 0 0

0 0 0 0

1
( ) ( )

                                          ( )

1
                                          

t t t t

tt t

t
t

t

t

t

d dt d dt

d
d dt

dt

d

dt

   






   


 

 


    

 


 





    

 
   

 


 



   

 

v v x v v x

v v x

v v 0 ( )
t

t

t
d





 




 


  v x

 

Since  was assumed to be small and arbirtrary, if we exclude sudden jumps in 

momentum, we find the quantity in the parentheses is zero to the first order, thus the 

volume integral must be zero, so that the term may be dropped as desired.   Thus, the 

material rate becomes, 

   

  

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0
0 0 0 0 0

( )

                                   

( )

D
d d

Dt

d

DD
d d

Dt Dt

    

 

   

 



 

        

    

    

 



 

v v v v v v v

v v v v

v
v v v

 

 
In an updated Lagrangian formulation, 

Dv0(x)

Dt
= v0(f(X,t)),  so 
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0 0 0 0 0 0( )
D

d d
Dt

   
 

     v v v v   

B- Focusing on the second term from the RHS, 

We define vn = ln ×yn . The material time derivative is thus, 

    

      

    

    

     

1
1 0 0

1
1 0 0

1
1 0 0

1
1 0

1
1 0

1

(

 

 

a a
n n

a a
n n

a a
n n

a a
n n

a a
n n

n

n n n nn V V

n n n n n n n nn V V

n nn V V

n n n n n nn V V

n n n nn V V

V

D
dVd

Dt

dVd

dV d

dV d

dV d

  

  

  

  

  
















    

         

   

      

    



 

 

 

 

 

v v

v l l l y v l y

v v

l l l y v

y v l

v v

      1 :a a
n

n n n n n n n nn V
dV d  


       l l l y y l

 

Noting that 1

Vn
a rn - rn-1( )yn dV = 0,  
Vn
aò since the integrand is an odd function. Hence, 

the material derivative 

 

 

Where the last equation follows from the definitions of  and P given in chapter 12.  

Combining the results of (A) and (B) yields Eq. 12.5.7.   

 

    

      

      

1
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1
1

1 0 0

:

:

a a
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n nn V V

n n n n n n n nn V V

n n n n nn n

dV d

dV d

d d

  

  

    








 

   

      

     

 

 

  

v v

l l l y y l

v v l
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12.2     Using the assumptions outlined in Section 12.5.4, derive the MCT strong form Eq. 

12.5.8 and Eq. 12.5.9. (Hint: See derivation in [38]). 

 

Solution to 12.2. 

 

The main effort lies in re-writing the internal power expression in terms of variations of 

the degrees of freedom only, by getting rid of the variations in their gradients using 

integration by parts and the divergence theorem. Thus, 

 int 0 0 1
: d : d

N

n n n nn
P   

 
  xL s l ss L


     

Focusing on the first term on the RHS, 

   0 0 0 0 0 0 0 0: d : d dd   
   

   xL v n v v             

 

Focusing on the second term, 

 

  
    

    

1

01
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1

: d

    : d d

: d d d
     =

: d : d

N

n n n nn

N

n n n nn

n n n nN

n

n n n n

 

 

  

 



 

  

 

 

  

  

 

x

x

x

x

s l ss L

s L L ss L

s L s n v s v

ss n L ss L









  

      
 
     
 



  

  


 

 

Thus the variation of internal power is given by, 
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   

    
    

int 0 0 0 0
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1

d

: d d d
      

: d : d

n n n nN

n

n n n n

P d  

  

 

 

  

 

 

  

 

x

x

x

n v v

s L s n v s v

ss n L ss L


     

      
 
     
 

 

  


 

 

 

We now turn our attention to the variations of kinetic and external powers, and use the 

simplifying assumption  and n n n n  l L l L  for the case of large deformations, then  

   

 

0 01 1

0 0 1

: d  : d

:

N N

n n n nn n

N

n n nn

P

P

    

   

  



       

    

  



ext

kin

b v B L t v T L

v v L d

 

Finally, we set  

intP P P   ext kin  

Noting that all variations are arbitrary, and must vanish at Dirichlet boundaries, the 

strong forms 12.5.8 and 12.5.9 result. 

 

12.3     Show that the stress rate n



s  and double stress rate n



ss  in Eq. 12.6.4 are objective. 

 

Solution to 12.3 

(A) Focusing on n



s .   

We begin by relating ns  to *

ns  in a starred coordinate system, 

* T

n ns Qs Q  
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Where Q is the rotation matrix between the starred and un-starred coordinates. Taking the 

material derivative 

* T T T

n n n n  s Qs Q Qs Q Qs Q  

Recall that  

*

*T T T

 

  

Q W Q QW

Q Q W WQ
 

Then, 

   

   

   

 

* * *

* * *

* * * * *

* * * * *

T T T T

n n n n

T T T T T

n n n n n n

T T T

n n n n n n

T

n n n n n n

     

     

     

    

s W Q QW s Q Qs Q Qs Q W WQ

s W Qs Q QWs Q Qs Q Qs Q W Qs WQ

s W s QWs Q Qs Q s W Qs WQ

s W s s W Q s Ws s W Q

 

Thus, stress rate  n n n n



  s s Ws s W  transforms as a second rank Eulerian tensor and 

is objective.  

 

(B) Focusing on ss
Ñ

n.  We use index notation for clarity. Relating starred to un-starred 

components we find, 

   *

n il jm kn nijk lmn
ss Q Q Q ss  

Taking the material derivative, 
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     
*. .

n nil jm kn n il jm kn n il jm kn n il jm knlmn lmn lmn
lmnijk

ss Q Q Q ss Q Q Q ss Q Q Q ss Q Q Q ss
   

      
  

 

Given that the rotation rates can be written as, 

*

*

*

 

  

il ip pl ip pl

jm jp pm jp pm

kn kp pn kp pn

Q W Q Q W

Q W Q Q W

Q W Q Q W

 

 

 
 

We find the double stress rate is, 

   

   

  

*.
*

*

*

.

           

           

           

N ip pl ip pl jm kn N lmn
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il jp pm jp pm kn N lmn

il jm kp pn kp pn N lmn

nil jm kn

lmn

ss W Q Q W Q Q ss

Q W Q Q W Q ss

Q Q W Q Q W ss

Q Q Q ss

 
  

 

 

 

 
  

 

  

Plugging in the for    *

n il jm kn nijk lmn
ss Q Q Q ss  we find, 

    

    
    

*.
* *

* *

* *

.

           

           

           

N ip n ip pl jm kn Npjk lmn
ijk

jp n il jp pm kn Nipk lmn

kp n il jm kp pn Nijp lmn

nil jm kn

lmn

ss W ss Q W Q Q ss

W ss Q Q W Q ss

W ss Q Q Q W ss

Q Q Q ss

 
  

 

 

 

 
  

 
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Relabeling repeated indices as appropriate,  

     

      

     

*.
* * * * * *

.

 

 

N ip n jp n kp npjk ipk ijp
ijk

il jm kn lo N il jm kn mo N il jm kn no Nomn lon lmo

nil jm kn lo N mo N no Nomn lon lmo
lmn

ss W ss W ss W ss

Q Q Q W ss Q Q Q W ss Q Q Q W ss

Q Q Q ss W ss W ss W ss

 
   

 

   

  
     

  
  

Thus, stress rate ss
Ñ

n transforms as a third rank Eulerian tensor and is objective.  

 

12.4   (a) What condition on the stresses and double stresses would permit rewriting the 

variation of MCT internal power as,  

  int 0 0 1
: : d

N

n n n nn
P   


xD s d ss D


     , 

where 0n n d D D . 

(b)  What savings in degrees of freedom per node could be achieved as a result? 

 

Solution to 12.4a). 

First we re-write the internal power as, 

   int 0 0 0 1
: ( ) : ( ) d

N

n n n n n nn
P   


 xD W s d w ss D W


        

0If ,  are symmetric, and  is symmetric in its first two indices,n ns ss  then 

for the term, 



115 

 

               

           
           

0 0 0 0 0 0 0 0 0 011 11 22 22 33 33

0 0 0 0 0 012 12 23 23 31 31

0 0 0 0 0 012 21 23 32 31 13

:

                                        

                                        

                          

ij ij
W W W W

W W W

W W W

    

  

  

W    

 

 



           0

 

Same for : 0n ns w  , 

   
,

Now n n n nijk ij k
ss Wxss W  , 

           

           
11 11, 22, 22, 33 33,

12 12, 23, 23, 31 31,

For  = 1,2,3

                                    

                                        

                                

n n n n n nk k k k k k

n n n n n nk k k k k k

k

ss W ss W ss W

ss W ss W ss W

  

 

           
12 21, 23, 32, 31 13,

        

                                     0

n n n n n nk k k k k k
ss W ss W ss W 



 

Finally, the internal power could be written as, 

   int 0 0 1
: ( ) : ( ) d

N

n n n nn
P   


     x

D s d ss D  

Remark: This assumption ignores Micropolar effects. 

 

Solution to 12.4b). 

The savings in degrees of freedom per node would be in three dimensions computed 

from:  

Saving = 1 - (6N+3)/(9N+3) 

 

 

12.5   Computer project: Write a code for the finite element implementation of a two-scale 

MCT model (i.e., a micromorphic continuum with a macro- and micro-scale), applied to a 

one-dimensional rod, using explicit time stepping. 
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The 1D bar is subjected to uniaxial tension by applying on both ends a constant velocity of 

      . Consider a constant cross sectional area of          and initial length 

        , as shown in the figure above. The origin of the coordinate system lies in the 

center of the bar. The body forces and body couples are considered negligible for this 

problem. The macro-scale is defined as elastic and perfectly plastic with a yield stress of 

250 MPa, while the micro-scale is considered linear elastic. To induce localized 

deformation, set the yield strength in the middle element of your mesh to have a yield stress 

of 237.5 MPa (imperfection of 5%). The micro-scale is considered to be a cubic cell with 

length  ( )          . The remaining properties that need to be considered are: 

 Density ( ) (     ) Young's modulus (E) (GPa) 

Macro-scale 7.85e-3 200 

Micro-scale 7.065e-3 2 

In order to write the FEM code to solve this problem consider doing the following: 

 (a) Write the equations of motion (the strong form) and explain the meaning of 

each variable.  

(b) State the constitutive equations used in the code for each set of degrees-of-

freedom. 

(c) Write the weak form of the problem and discretize it such that it can be 

solved in a finite element procedure. 
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(d) Write the FEM code and an outline of the algorithm. 

(e) Plot the different stress and strain measures over the entire bar for the 

parameters given in this problem statement. Compare the results with the 

classic continuum case. 

(f) Evaluate the influence on the result of different input parameters. 

 

Solution to 12.5a). 

Strong form: 

The equations of motion are derived from the conservation of linear momentum and the 

conservation of angular momentum. The multiresolution continuum equations of motion for this 

problem coincide with the equations of a micromorphic continuum since only one extra scale is 

considered. The strong form can then be written as follows, noting that no body forces or double 

body forces are present: 
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where   
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,   
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 and    
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 are the macro-stress, moicro-stress and double micro-stress, 

respectively.  ( ) and  ( ) are the macro-density and micro-density,    
( )

  ( )
( ( ))

 

 
  is the 

moment of inertia along   per unit micro-volume (cube with length  ( )).  ̇ 
( )

 is the macro-

acceleration, and    
( )

 is the micro-acceleration defined by: 
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Note that since this is a 1D problem there are no couple stresses (moments per unit area) and 

there is no spin tensor, leaving just the rate-of-deformation to be equal to the velocity gradient. 

Also note that the double stress    
( )

 is a couple stress without moment, i.e. a pair of stresses 

acting along the same line. This measure of stress is characteristic of the micromorphic 
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continuum and does not exist in the classic continuum neither in the Cosserat continuum. Rather, 

it is a higher order stress that is often used in strain gradient plasticity formulations. Therefore, 

its existence in this formulation is expected to regularize the localization of the deformation at 

the center of the bar (as will be verified with the results). 

The boundary conditions are: 

  
( )

          
( )

               ( )   
 

 
  

  
( )

         
( )

               ( )  
 

 
 

 

Solution to 12.5b). 

Constitutive equations: 

The generalized stresses and strain measures are gathered into a single vector as follows 

  [ ( )    ( )     ( )] 

  [  
( )     

( )    
   

( )

  ( )
] 

Since the problem of interest is 1-dimensional, there is no need to define a rotationally invariant 

stress measure. The generalized constitutive law in rate form becomes: 

 

  
[
 ( )
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  ( )

]  [
 ̅( )   
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] [
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] 

The constitutive constants for the micro-scale are obtained by averaging procedures (recall that 

the micro-cell is considered as a cube of length  ( ) in this problem): 

 ̅( )  
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A simple perfect plasticity law defined by the following yield surface is defined 

 (  )  |  |       

where    is the yield stress. 

 

Solution to 12.5c). 

Weak form and FEM discretization: 

Obtaining the weak form from the above written strong form is very similar to what we did for 

the classic continuum. For the conservation of linear momentum, we multiply both sides of the 

equation for the virtual velocity    
( )

, and after using the chain rule and the divergence theorem 

we obtain: 

∫ (   ( ))
 (   

( )
)

  ( ) ( )

  ( )  ∫ [ ( ) ̇ 
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 (   

( )
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  ( )    

For the conservation of angular momentum the procedure is similar in every way, with the 

difference that the power conjugate is now the relative micro velocity gradient (note that the 

relative micro velocity gradient is equal to the total micro velocity gradient subtracted with the 

macro velocity gradient). Therefore, we multiply both sides of the equation by a virtual relative 

micro velocity gradient    
   ( )     

   ( ), with "rel" standing for relative. Then using the 

chain rule and the divergence theorem we get: 
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Writing the relative micro velocity gradient as:   
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, and assuming that 
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  , we can write the above equation as: 

∫ [  ( )
 (   

( )
)

  ( ) ( )

  ( )  ∫  ( )(   
( )

    
( )
)

 ( )

  ( )

 ∫  ( )  
( )
(   

( )
    

( )
)

 ( )

  ( )    

Then, we can discretize these two equations in a similar way to the regular FEM. First define a 

generalized stress vector ∑ and generalized rates of deformation as follows (we omit the 

subscript   from now on): 

∑  [  ( )   ( )] 

  [ ( )  ( )   ( )
  ( )

  ( )
] 

Then define a vector   , which contains 2 degrees of freedom at node  : 

   [
  

  
( )] 

Let    be the assembly of all of the    in an element. For a one-dimensional two-node rod 

element at node  , 

   [
  
 

  
 ] 

Defining the matrix    as the shape function matrix, we interpolate the nodal values as follows: 

[
  
 ( )]       
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Similarly, it can be defined the matrix   containing spatial derivatives of shape functions (the 

generalized   matrix) so that one writes the generalized strain rate measure in the form: 

      

The generalized mass matrix is defined as follows: 

   [
 ( )  

  ( )
] 

Using these definitions, the finite element discretization is written as follows: 

                  

      ∑∫ (   )   

 ( )

  

   

    
( )  (   )      

      ∑∫ (   ) (  )      ̈    
( )  (   )    ̈ 

  
( )

  

   

 

where the number of elements is given by   . The mass of the system is given by the matrix M, 

the internal force by the vector      and the external force by the vector     . Defining    as the 

connectivity matrix of the system, then the discretization could be: 

     ∑  
 {∫      }

  

   

 

  ∑  
 {∫(  )        }

  

   

   

Finally, the semi-discrete equation of motion is written in a similar form as the standard finite 

element method: 

        

This equation is then integrated explicitly following the algorithm described below. 
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Solution to 12.5d). 

Algorithm for 1D problem (with n scales): 

1. Initial conditions and initialization: 

Define generalized displacement d, generalized velocity v;  

set generalized stress ∑   , generalized strain    , d=0, v=0, energy variables=0, t=0, 

n=1 

2. getmass and compute the lumped mass matrix and its inverse. 

3. getforce 

4. Compute the accelerations for every scale: 

   
( )

 ( ( ))    
( )

,   
( )

 ( ( ))    
( )
 ( ( ))  

5. Time update:                ,        
 

 
(       ) 

6. First partial update of nodal generalized velocities:           (         )   

7. Enforce velocity boundary conditions: 

If node I on     :   
     

   ̅(    
  

 

 ) 

8. Update nodal displacements:                       

9. getforce 

10. compute      

11. Second partial update nodal velocities:             (           )     

12. Check energy balance at time step n+1:  

    
        

  
    

 
 

 
(   

 
 )

 

(    
      

   )      
  

 

 
             (    

      
   ) 

    
        

  
    

 
 

 
(   

 
 )

 

(    
      

   )      
  

 

 
             (    

      
   ) 

    
        

    
 

 
              

|              |        (              )  

13. Update counter:       

14. Output; if simulation not complete, go to 5. 
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Subroutine getmass 

0. Initialization:    , Global Gauss point     

1. Loop over elements e 

i. Set      ,  initialization of mass in all scales 

ii. Compute quadrature Gauss point and weight 

iii. Loop over quadrature points     

1. Compute shape function, Jacobian, and partial derivatives 

2. Compute element mass matrix for macro-scale: 

   
( )

   
( )

  ( )      ̅  

3. Loop over microscale    

i.   
( )    

( )   ( )     ( ) ̅  

END loop over microscale 

4. Update global Gauss points       

END loop over quadrature points 

                 iii.        SCATTER    to  , put microscale mass in the end 

                 END loop over elements 
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       Subroutine getforce 

0. Initialization: generalized stress ∑ , generalized strain  ,and          global Gauss point 

    

1. Compute global external nodal generalized forces     
  

2. Loop over elements e 

i. Set      , and compute quadrature Gauss point and weight 

ii.   
     

=0 

iii. Loop over quadrature points    

1. Compute shape function N, Jacobian, B matrix and relative derivatives  

2. Compute rate of deformation of macro-scale:  ( )           ( )         
 
  

3. Loop over microscale   

i. Compute  ( )           ( )         
 
 ,  

  ( )         

  
  ( )         

 
  

END loop over microscale 

4. SCATTER to generalized strain measure   , 

   
   ( )            

   ( )           
( )      

 

    
  

  ( )         

  
….. 

5. Update           
      

6. Compute generalized stress at the Gauss point from the constitutive law 

7. Reassign the stress in the generalized stress for this element to macro 

stress, micro stress, micro stress couple 

8. Update the internal force in macro scale:   
        

        ( ( )  

 ( ))    ̅  

9. Update the internal force in microscale:   
      ( )

   
      ( )

 (  ( )  

    ( ))  ( ) ( ) ̅  

10. SCATTER internal force from all scales 

11. Update global Gauss points       

END loop over quadrature points 

iv. SCATTER   
      to global        

END loop over elements 

Compute nodal force:       
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Solution to 12.5e). 

Discussion of the results of the code: 

 

Code outputs for the macro-scale. 

 

 

Code outputs for the micro-scale. 

The above figures show the results for the input parameters defined in the problem statement. 

Observing first the outputs for the macro-scale it is clear that there is a strain localization at the 

center of the bar over several elements. Readers familiar with strain gradient plasticity 

immediately identify the macro-strain plot versus position to have the same shape as a plot for a 
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one-scale strain gradient plasticity continuum. In fact, identifying this similarity is very 

important. Since there are no forces on the boundary conditions of the micro-scale, the second 

equation of the strong form, 

∫ [  ( )
 (   

( )
)

  ( ) ( )

  ( )  ∫  ( )(   
( )

    
( )
)

 ( )

  ( )

 ∫  ( )  
( )
(   

( )
    

( )
)

 ( )

  ( )    

only leads to an increase of the micro-stress due to the macro rate-of-deformation   
( )

. 

Therefore, the micro-stresses and micro double stresses influence the macro-scale right from the 

beginning of the simulation. This influence can be interpreted as the effect of the microstructure 

of the material that is being averaged for each macro-deformation state. This averaging 

procedure does not occur concurrently, but it is the result of previous analyses such that the 

constitutive laws for the micro-scale are calibrated. This may be viewed as a drawback of the 

method, since it is difficult to assign meaningful values for those extra laws. The most successful 

solution is to calibrate those laws by performing representative volume element (RVE) 

simulations of the microstructure for different load states and averaging the stresses at that scale 

such that approximate constitutive laws are obtained. Nevertheless, in this problem we are trying 

to understand the numerical details of the implementation of the method as well as understanding 

the influence of the extra stress measures without considering the development of the 

constitutive laws. 

Once the macro-stress reaches the yield value at the center element (with the imperfection), this 

causes the macro-strain to localize in a sharp peak that leads to a sharp peak of the micro-stress 

and subsequentlly to a sharp peak of the micro rate-of-deformation. Once the micro rate-of-

deformation develops that peak then the gradient of the micro rate-of-deformation presents an 

abrupt change with a different sign on each side of the peak (slope of the peak of   
( )

), as can be 

seen in the second figure above. This has the effect of diffusing the deformation to the 

neighboring elements, similar to what is observed in strain gradient plasticity. Note that in strain 

gradient plasticity there is no micro-stress, only the double stress is present (usually called higher 

order stress). 
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Solution to 12.5f). 

The reader is invited to run the code and to study the influence of the various parameters in the 

result. In particular, it is interesting to observe that the micro-scale length paramater has a much 

smaller influence on the localization zone than the elastic constants of the constitutive laws of 

the micro-scale. Although, the expected effect of increasing the size of the micro-cell causing an 

increase of the localization zone happens, this increase is small. 

As a final note, the code is prepared to use a different number of integration points, any number 

of elements, different input parameters, and any number of extra scales. 

MATLAB code for Problem 12.5 
%%%%%%%%%%%%%%%%%% Multiresolution Continuum 1D code %%%%%%%%%%%%%%%%%%%%%% 
% 
%   M. A. Bessa  (mbessa@u.northwestern.edu) 
%   Northwestern University, Mechanical Engineering 
% 
%   June 14, 2013 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [] = multiresolution_in_1D() 
    close all; clear all; clc; tic 
    %% CONSISTENT UNITS: 
    % MASS  LENGTH  TIME  FORCE  STRESS    ENERGY 
    %  g      mm     ms     N      MPa    N-mm (mJ) 
    % 
    %% Input parameters. 
    % Termination time 
    endtime = 2.0e-2;      % total time of simulation [ms] 
    prescribed_v_0 = 5.0;  % Prescribed velocity [mm/ms] 
    output_frames = 'all'; % Number of times that every plot will be shown 
                            %(for output_frames = 'all' every time 
                            %step will have a plot) 
    % Mesh definition 
    nel = 99;          % Number of elements 
    ngp = 1;           % Number of Gauss points per element 
    % Geometric properties 
    mesh.L    = 100.0;   % Length of the bar [mm] 
    Xmin      = -mesh.L/2;  % Position of the left end of the bar [mm] 
    mesh.area = 30;  % Cross-section Area of the bar [mm^2] 
    % Material properties  
    youngsC_0 = 2.0e5;    % Modulus of elasticity (for linear). [MPa] 
    rho_0     = 7.85e-3;  % Density per unit length. [g/mm^3] 
    sigy_0    = 250.0;    % Macro-yield stress [MPa] 
    imperfection = 0.95;  % Imperfection at the middle element (0: no ele- 
                          %ment; 1: no imperfection) 
    % 
    % Number of extra sets of degrees of freedom ('scales' in lack of a 
    %better term) 
    nscales = 1;       % Number of extra 'scales' (NOT including the 



128 

 

                       %macro-scale). Use nscales = 0 for a regular FEM 
                       %analysis 
    % 
    % Extra dof input parameters 
    % Initilize variables 
    l_n = zeros(nscales,1); 
    youngsC_n = zeros(nscales,1); 
    youngsB_n = zeros(nscales,1); 
    rho_n     = zeros(nscales,1); 
    % 
    % (Extra) Scale 1: 
    l_n(1)    = mesh.L/nel * 4; % Horizontal size of domain in scale 1 (in 
                                 %the x direction [mm] 
    h_n(1)    = l_n(1); % Vertical size of domain in scale 1 (in the y 
                        %direction) [mm] 
    thick_n(1)= l_n(1); % Width of domain in scale 1 (z direction or 
                        %out-of-plane direction) [mm] 
    % 
    youngsC_n(1) = youngsC_0*0.01; % Constant for scale 1 constitutive law 
    youngsB_n(1) = 0.0;            % Constant for scale 1 constitutive law 
                                   %(gradient term) 
    rho_n(1)     = rho_0*0.9;      % Density for scale 1 
    % 
    % 
    % Scale 2: 
%     l_n(2)    = mesh.L/nel*0.5; % Horizontal size of domain in scale 2 (in 
%                                  %the x direction [mm] 
%     h_n(2)    = l_n(2); % Vertical size of domain in scale 2 (in the y 
%                         %direction) [mm] 
%     thick_n(2)= l_n(2); % Width of domain in scale 2 (z direction or 
%                        %out-of-plane direction) [mm] 
%     % 
%     youngsC_n(2) = youngsC_0*0.002;  % Constant for scale 2 constitutive law 
%     youngsB_n(2) = 0.0;            % Constant for scale 2 constitutive law 
%                                    %(gradient term) 
%     rho_n(2)     = rho_0*1.5;      % Density for scale 2 
    %% Calculated parameters. 
    mesh.nn = nel+1;            % Number of nodes 
    l_0     = mesh.L/nel;       % Element reference length 
    % 
    area_n = zeros(nscales,1); 
    I_n    = zeros(nscales,1); 
    for iscale=1:nscales 
        % Compute the cross-section of the domain of scale i 
        area_n(iscale) = h_n(iscale)*thick_n(iscale); 
        % 
        % Compute the I term of the mass matrix for scale i. This is the 
        %moment of inertia DIVIDED by the 'volume' of that domain. 
        I_n(iscale) = rho_n(iscale)*(h_n(iscale)^2+thick_n(iscale)^2)/12; 

  
    end 
    % 
    % Calculate the total number of Gauss points 
    ngp_tot = ngp*nel; 
    % 
    sigygp_0 = sigy_0*ones(ngp_tot,1); % Macro-yield stress in each Gauss 
                                       %point 
    % 
    % Include imperfection at middle element 
    num_imp = floor(nel/2)+1;          %imperfection element 
    % 
    for igp = 1:ngp 
        sigygp_0((num_imp-1)*ngp+igp)= imperfection*sigy_0; 
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%         epsygp_0((num_imp-1)*ngp+igp) = imperfection*epsy_0; 
    end 
    % 
    c_0     = sqrt(youngsC_0/rho_0);  % Macro-wave speed [mm/ms] 
    tcrit_0 = l_0/c_0;           % Critical timestep (macro scale) [ms]. 
    % 
    c_n     = zeros(nscales,1); 
    tcrit_n = zeros(nscales,1); 
    for i = 1:nscales 
        c_n(i) = sqrt(youngsC_n(i)/I_n(i)); % Wave speed in each scale 
        % 
        if c_n(i) ~= 0 
            tcrit_n(i) = l_0/c_n(i);     % Critical time step in each scale 
            tcrit = min(tcrit_0, tcrit_n(i)); 
            cmax = max(c_0, c_n(i)); 
        else 
            tcrit = tcrit_0; 
            cmax = c_0; 
        end 
    end 
    % 
    if nscales == 0 
        dt = tcrit_0 * 0.9; 
    else 
        dt = tcrit * 0.9;       % Time step of simulation. 
    end 
    num_ts = round(endtime/dt); % Total number of time steps. 
    % 
    % Output some information about the simulation 
    fprintf('INFORMATION:\n'); 
    if nscales == 0 
        fprintf('-> Critical time step: %d miliseconds\n',tcrit_0);         
    elseif nscales > 0 
        fprintf('-> Critical time step: %d miliseconds\n',tcrit); 
    end 
    fprintf('-> Total number of time steps: %d \n',num_ts); 
    endtime = num_ts*dt;    % Termination time 
    if output_frames == 'all' 
        output_frames = num_ts; 
    end 
    % 
    % Save material properties for all scales in one variable: 
    matprops = zeros((1+nscales),3); 
    matprops(1,:) = [youngsC_0 , 0 , rho_0]; 
    for iscale=1:nscales 
        matprops(1+iscale,:) = [youngsC_n(iscale) , youngsB_n(iscale) ,... 
                                rho_n(iscale)]; 
    end 
    %% Preprocessing. 
    % Nodal coordinates in reference configuration. 
    Xmax = Xmin + mesh.L; 
    mesh.X = linspace(Xmin, Xmax, mesh.nn)'; 
    % Connectivity matrix (each row gives nodes in an element.) 
    mesh.conn = [ 1:length(mesh.X)-1; 2:length(mesh.X) ]'; 
    % 
    %% 
    % ..::: Now following the flowchart for explicit time integration :::.. 
    %                 Belytschko et al book (box 6.1 - p.313) 
    % 
    %% 1. Initial conditions and initialization 
    % Nodal Array definition 
    gen_u = zeros((1+nscales)*mesh.nn,1);      % generalized displacement 
    gen_v = zeros((1+nscales)*mesh.nn,1);      % generalized velocity 
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    % Initialize variables with information from the previous time step 
    old.gen_sigma = zeros((1+2*nscales),ngp_tot); % old gen. stresses 
    old.gen_truestrain = zeros((1+2*nscales),ngp_tot); % old generalized 
                                                       %true strains 
    % Initialize energy variables and others 
    Wint = zeros(num_ts,1); 
    Wext = zeros(num_ts,1); 
    Wkin = zeros(num_ts,1); 
    Wtot = zeros(num_ts,1); 
    displacement = zeros(num_ts,1); 
    reaction = zeros(num_ts,1); 
    time = zeros(num_ts,1); 
    fint_old = zeros(mesh.nn*(nscales+1),1); 
    fext_old = zeros(mesh.nn*(nscales+1),1); 
    Wint_old = 0; 
    Wext_old = 0; 
    Wkin_old = 0; 
    % 
    % 
    t  = 0; % time 
    ts = 1; % n + 1 (where 'n' is the counter used in box 6.1, point 1) 
    % 
    % Compute the consistent mass matrix 
    [Mc,Xgp] = getMass(mesh,nscales,ngp,rho_0,I_n,area_n); 
    % 
    % Compute lumped mass matrix 
    [M,invM] = getLumpedMass(Mc,mesh,nscales); 
    % 
    % 
    %% 2. getforce 
    % No residual stresses considered: 
    fint = zeros(mesh.nn*(nscales+1),1); 
    % Get external nodal forces 
    [fext] = getFext(t,mesh,nscales); 
    % Compute nodal forces 
    force = fext - fint; 
    % 
    % 
    %% 3. Compute accelerations a^n 
    gen_a = invM*force; 
    % NOTE: for the extra DOF what we obtain is GAMMA, which is NOT the 
    %time derivative of D, that is used in the explicit time integration 
    % Therefore, dotD^(n) = gamma^(n) - D^(n)*D^(n) 
    gen_a((mesh.nn+1):end) = gen_a((mesh.nn+1):end)... 
                             - gen_v((mesh.nn+1):end).^2; 
    % 
    % 
    while(t <= endtime) 
        %% 4. Time update 
        tnew = t + dt;          % tnew = t^(n+1); t = t^n 
        thalf = 1/2*(t + tnew); % thalf = t^(n+1/2) 
        % 
        %% 5. First partial update nodal velocities 
        gen_vhalf = gen_v + (thalf-t)*gen_a; 
        % 
        %% 6. Enforce velocity boundary conditions 
%         gen_vhalf(mesh.nn) = 0.0; 
        gen_vhalf(1) = -prescribed_v_0; 
        gen_vhalf(mesh.nn) = prescribed_v_0; 
        % 
        %% 7. Update nodal displacements 
        gen_u = gen_u+dt*gen_vhalf; 
        % 
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        % Determine the current position of the nodes 
        mesh.x = gen_u(1:mesh.nn) + mesh.X; 
        %% 8. getforce 
        % Get internal nodal forces 
        [fint,gen_sigma,gen_truestrain] = getFint(dt,mesh,nscales,ngp,... 
                                          matprops,old,l_n,h_n,thick_n,... 
                                          gen_vhalf,sigygp_0); 
        % Get external nodal forces 
        [fext] = getFext(t,mesh,nscales); 
        % Compute nodal forces 
        force = fext - fint; 
        % 
        %% 9. Compute a^(n+1) 
        gen_a = invM*force; 
        % NOTE: for the extra DOF what we obtain for gen_a (generalized 
        %acceleration) is GAMMA, which is NOT the time derivative of D, 
        %that is used in the explicit time integration. Therefore, 
        %dotD^(n) = gamma^(n) - D^(n)*D^(n) 
        gen_a((mesh.nn+1):end) = gen_a((mesh.nn+1):end)... 
                                 - gen_v((mesh.nn+1):end).^2; 
        % 
        %% 10. Second partial update nodal velocities 
        gen_vnew = gen_vhalf + (tnew-thalf)*gen_a; 
        %% 11. Check energy balance at time step n+1 
        Wint_inc = 0; 
        Wext_inc = 0; 
        Wkin_inc = 0; 
        Wint_inc = Wint_inc + 1/2*dt*(gen_vhalf(1:mesh.nn)')... 
                   *(fint_old(1:mesh.nn)+fint(1:mesh.nn)); 
        Wext_inc = Wext_inc + 1/2*dt*(gen_vhalf(1:mesh.nn)')... 
                   *(fext_old(1:mesh.nn)+fext(1:mesh.nn)); 
        Wkin_inc = Wkin_inc + 1/2*(gen_vhalf(1:mesh.nn)')... 
                   *M(1:mesh.nn,1:mesh.nn)*gen_vhalf(1:mesh.nn); 
        Wint(ts) = Wint_old + Wint_inc; 
        Wext(ts) = Wext_old + Wext_inc; 
        Wkin(ts) = Wkin_old + Wkin_inc; 
        % 
        Wtot(ts) = Wint(ts) + Wext(ts) + Wkin(ts); 
        time(ts) = t; 
        %% 12. Update counter 
        ts = ts + 1; 
        gen_v = gen_vnew; 
        t = tnew; 
        fint_old = fint; 
        fext_old = fext; 
        old.gen_sigma = gen_sigma; 
        old.gen_truestrain = gen_truestrain; 
        %% 13. Output 
        displacement(ts) = gen_u(mesh.nn); 
        reaction(ts) = force(mesh.nn); 
        if mod(ts,round(num_ts/output_frames)) == 0 
            figure(1) 
            % Displacement vs Position 
            subplot(2,2,1); 
            plot(mesh.X,gen_u(1:mesh.nn),'m*-',... 
                 mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
            title('Displacement vs Position', 'FontWeight', 'bold',... 
                  'Color', 'm'); 
            xlabel('Position (mm)', 'FontWeight', 'bold'); 
            ylabel('Displacement (mm)', 'FontWeight', 'bold'); 
            % 
            % Macro-force at 1st node vs Displacement 
            subplot(2,2,2); 
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            plot(displacement,reaction,'k-'); 
            title('Macro-Force at last node vs Displacement',... 
                  'FontWeight', 'bold', 'Color', 'k'); 
            xlabel('Displacement (mm)', 'FontWeight', 'bold'); 
            ylabel('Force (N)', 'FontWeight', 'bold'); 
            % 
            % Macro-strain (true strain) vs Position 
            subplot(2,2,3); 
            plot(Xgp,gen_truestrain(1:(2*nscales+1):end)','r*-',... 
                 mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
            title('Macro-strain vs Position', 'FontWeight', 'bold',... 
                  'Color', 'r'); 
            xlabel('Position (mm)', 'FontWeight', 'bold'); 
            ylabel('Macro-strain (mm/mm)', 'FontWeight', 'bold'); 
            % 
            % Macro-stress vs Position 
            subplot(2,2,4); 
            plot(Xgp,gen_sigma(1:(2*nscales+1):end)','k*-',... 
                 mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
            title('Macro-stress vs Position', 'FontWeight', 'bold',... 
                'Color', 'k'); 
            %     axis([xminplot xmaxplot yminplot ymaxplot]) 
            xlabel('Position (mm)', 'FontWeight', 'bold'); 
            ylabel('Macro-Stress (MPa)', 'FontWeight', 'bold'); 
            hold off; 
            % 
            % 
            if nscales > 0 
                % Plots of the first micro-scale 
                figure(2) 
                % 
                % Micro-strain vs Position 
                subplot(2,2,1); 
                plot(Xgp,gen_truestrain(2:(2*nscales+1):end)','r^-',... 
                     mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
                title('Micro-strain vs Position', 'FontWeight', 'bold',... 
                      'Color', 'r'); 
                xlabel('Position (mm)', 'FontWeight', 'bold'); 
                ylabel('Micro-strain (mm/mm)', 'FontWeight', 'bold'); 
                % 
                % Micro-stress vs Position 
                subplot(2,2,2); 
                plot(Xgp,gen_sigma(2:(2*nscales+1):end)','k^-',... 
                     mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
                title('Micro-stress vs Position', 'FontWeight', 'bold',... 
                    'Color', 'k'); 
                %     axis([xminplot xmaxplot yminplot ymaxplot]) 
                xlabel('Position (mm)', 'FontWeight', 'bold'); 
                ylabel('Micro-Stress (MPa)', 'FontWeight', 'bold'); 
                % 
                % Gradient of micro-strain vs Position 
                subplot(2,2,3); 
                plot(Xgp,gen_truestrain(3:(2*nscales+1):end)','r^-',... 
                     mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
                title('Gradient of micro-strain vs Position', ... 
                    'FontWeight','bold', 'Color', 'r'); 
                xlabel('Position (mm)', 'FontWeight', 'bold'); 
                ylabel('Gradient of micro-strain', 'FontWeight', 'bold'); 
                % 
                % Double-stress vs Position 
                subplot(2,2,4); 
                plot(Xgp,gen_sigma(3:(2*nscales+1):end)','k^-',... 
                     mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
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                title('Double-stress vs Position', 'FontWeight',... 
                    'bold', 'Color', 'k'); 
                %     axis([xminplot xmaxplot yminplot ymaxplot]) 
                xlabel('Position (mm)', 'FontWeight', 'bold'); 
                ylabel('Double-stress', 'FontWeight', 'bold'); 
% 
%                 figure(3) 
%                 % 
%                 % Micro-strain vs Position 
%                 subplot(2,2,1); 
%                 plot(Xgp,gen_truestrain(4:(2*nscales+1):end)','r^-',... 
%                      mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
%                 title('Micro-strain vs Position', 'FontWeight', 'bold', 'Color', 

'r'); 
%                 xlabel('Position (mm)', 'FontWeight', 'bold'); 
%                 ylabel('Micro-strain (2) (mm/mm)', 'FontWeight', 'bold'); 
%                 % 
%                 % Micro-stress vs Position 
%                 subplot(2,2,2); 
%                 plot(Xgp,gen_sigma(4:(2*nscales+1):end)','k^-',... 
%                      mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
%                 title('Micro-stress vs Position', 'FontWeight', 'bold',... 
%                     'Color', 'k'); 
%                 %     axis([xminplot xmaxplot yminplot ymaxplot]) 
%                 xlabel('Position (mm)', 'FontWeight', 'bold'); 
%                 ylabel('Micro-Stress (2) (MPa)', 'FontWeight', 'bold'); 
%                 % 
%                 % Gradient of micro-strain vs Position 
%                 subplot(2,2,3); 
%                 plot(Xgp,gen_truestrain(5:(2*nscales+1):end)','r^-',... 
%                      mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
%                 title('Gradient of micro-strain vs Position', 'FontWeight',... 
%                     'bold', 'Color', 'r'); 
%                 xlabel('Position (mm)', 'FontWeight', 'bold'); 
%                 ylabel('Gradient of micro-strain (2)', 'FontWeight', 'bold'); 
%                 % 
%                 % Double-stress vs Position 
%                 subplot(2,2,4); 
%                 plot(Xgp,gen_sigma(5:(2*nscales+1):end)','k^-',... 
%                      mesh.X,zeros(1,size(mesh.X,2)),'bo-'); 
%                 title('Double-stress vs Position', 'FontWeight',... 
%                     'bold', 'Color', 'k'); 
%                 %     axis([xminplot xmaxplot yminplot ymaxplot]) 
%                 xlabel('Position (mm)', 'FontWeight', 'bold'); 
%                 ylabel('Gradient of micro-stress (2)', 'FontWeight', 'bold'); 
% 
                hold off; 
            end % end if nscales 
        end % end if mod 
        % 
    end % end while loop 
    toc 
end 
%% Returns the consistent mass matrix 
function [Mc,Xgp] = getMass(mesh,nscales,ngp,rho_0,I_n,area_n) 
    % Allocate space for mass matrix. 
    Mc = zeros(mesh.nn*(nscales+1),mesh.nn*(nscales+1)); 
    nel = 0; 
    ngp_global = 1; 
    Xgp = zeros((mesh.nn-1)*ngp,1); 
    for conn = mesh.conn' 
        nel = nel+1; % Element number inside this loop 
        nne = length(conn); % Number of nodes of this element 
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        % 
        Me_0 = zeros(nne,nne);  % element mass matrix for macro-scale 
        Me_n = zeros(nne,nne,nscales); % element mass 
                                                       %matrix for 
                                                       %extra scales 
        % 
        [qpt, qwt] = quadrature(ngp); % Quadrature points and weights 
        for i=1:ngp 
            xigp = qpt(i); % Gauss point in parent coordinates 
            % Get the shape functions: 
            N = getN(xigp); 
            % Gauss point in ref. coordinates (not needed): 
            Xgp(ngp_global) = (mesh.X(conn)')*N; 
            % 
            dN = getGradN(xigp);    % dN/dxi (wrt parent coords) 
            dXdxi  = (mesh.X(conn)')*dN; % dx/dxi (Jacobian of the ref. 
            %config. wrt parent coords) 
            Jac0xi = det(dXdxi); % Jacobian determinant ref./parent 
            % Compute element mass matrix for macro-scale 
            Me_0 = Me_0 + rho_0*N*(N')*Jac0xi*mesh.area*qwt(i); 
            % 
            % Compute element mass matrix for each extra scale 
            for iscale=1:nscales 
                Me_n(:,:,iscale) = Me_n(:,:,iscale)+I_n(iscale)*N*(N')... 
                                   *Jac0xi*area_n(iscale)*qwt(i); 
            end 
            % 
            ngp_global = ngp_global + 1; 
        end 
        % 
        % Mass matrix assembly 
        %Indices of rows and columns for each type of dof: 
        i_0  = conn; 
        Mc(i_0,i_0) = Mc(i_0,i_0) + Me_0; 
        for iscale=1:nscales 
            i_n = mesh.nn*iscale+conn; 
            Mc(i_n,i_n) = Mc(i_n,i_n) + Me_n(:,:,iscale); 
        end 
        % 
    end 
end 
%% Returns quadrature points and quadrature weights.  
function [qpt, qwt] = quadrature(ngp)     
    if ngp == 1 
        x = zeros(ngp,1); 
        wt = zeros(ngp,1); 
        x(1) = 0; 
        wt(1) = 2; 
    elseif ngp == 2 
        x = zeros(ngp,1); 
        wt = zeros(ngp,1); 
        x(1) = -sqrt(1/3); 
        x(2) = -x(1); 
        wt(1) = 1; 
        wt(2) = 1; 
    elseif ngp == 3 
        x = zeros(ngp,1); 
        wt = zeros(ngp,1); 
        x(1) = -sqrt(3/5); 
        x(2) = 0; 
        x(3) = -x(1); 
        wt(1) = 5/9; 
        wt(2) = 8/9; 
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        wt(3) = wt(1); 
    elseif ngp == 4 
        x = zeros(ngp,1); 
        wt = zeros(ngp,1); 
        x(1) = -sqrt( (3+2*sqrt(6/5))/7 ); 
        x(2) = -sqrt( (3-2*sqrt(6/5))/7 ); 
        x(3) = -x(2); 
        x(4) = -x(1); 
        wt(1) = ( 18-sqrt(30) )/36; 
        wt(2) = ( 18+sqrt(30) )/36; 
        wt(3) = wt(2); 
        wt(4) = wt(1); 
    else error('More than 4 point quadrature is not implemented'); 
    end 
    % 
    qpt = x; 
    qwt = wt; 
end 
%% Returns a 2x1 matrix that gives the shape functions 
function [N] = getN(xi) 
    % xi is the parent coordinate 
    % 
    N = 1/2*[(1-xi) , (1+xi)]'; 
    % NOTE: N is defined as a COLUMN vector: 2x1 (instead of a row vector 
    %as in the book) 
end 
%% Returns the lumped mass matrix and its inverse 
function [M,invM] = getLumpedMass(Mc,mesh,nscales) 
    M = spalloc(mesh.nn*(nscales+1),mesh.nn*(nscales+1),mesh.nn); 
    for i=1:(mesh.nn*(nscales+1)) 
        for j=1:(mesh.nn*(nscales+1)) 
            M(i,i) = M(i,i)+Mc(i,j); 
        end 
    end 
    % 
    % Compute the inverse of the lumped mass matrix 
    invM = spalloc(mesh.nn*(nscales+1),mesh.nn*(nscales+1),mesh.nn); 
    % 
    for i=1:(mesh.nn*(nscales+1)) 
        for j=1:(mesh.nn*(nscales+1)) 
            if M(i,i) == 0; 
                invM(i,i) = 0; 
            else 
                invM(i,i) = 1/M(i,i); 
            end 
        end 
    end 
end 
%% Computes the force. 
function [fint,gen_sigma,gen_truestrain] = getFint(dt,mesh,nscales,ngp,... 
                                           matprops,old,l_n,h_n,... 
                                           thick_n,gen_v,sigygp_0) 
    % Allocate space for generalized stresses and strain measures 
    gen_sigma = zeros(size(old.gen_sigma)); % generalized stresses 
    gen_truestrain = zeros(size(old.gen_sigma)); % generalized strains 
    % Allocate space for the nodal forces matrix 
    fint = zeros(mesh.nn*(nscales+1),1); 
    nel = 0; 
    ngp_global = 1; % Counter for the total number of Gauss points 
    % Loop over element nel 
    for conn = mesh.conn' 
        nel = nel+1; % Element number inside this loop 
        nne = length(conn); % Number of nodes of this element 
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        % 
        [qpt, qwt] = quadrature(ngp); % Quadrature points and weights 
        fe_int = zeros(nne*(nscales+1),1); 
        for i=1:ngp 
            xigp = qpt(i); % Gauss point in parent coordinates 
            % Get the shape functions: 
            N = getN(xigp); 
%             % Gauss point in current coordinates (not needed): 
%             xgp = (mesh.x(conn)')*N; 
            % dN/dxi (wrt parent coords): 
            dN = getGradN(qpt(i)); 
            % dx/dxi (Jacobian of the current config. wrt parent coords): 
            dxdxi  = (mesh.x(conn)')*dN; 
            % Jacobian determinant 
            Jac_xi = det(dxdxi); 
            % Calculate the scripted B matrix in current configuration 
            %for the regular dofs: 
            Bscript = dN/dxdxi; % Scripted B matrix 
            % 
            % 
            % Compute rate-of-deformation 
            D_0 = (gen_v(conn)')*Bscript; 
            % 
            D_n = zeros(nscales,1); 
            gradD_n = zeros(nscales,1); 
            % 
            for is=1:nscales 
                D_n(is) = (gen_v(mesh.nn*(is)+conn)')*N; 
                gradD_n(is) = (gen_v(mesh.nn*(is)+conn)')*Bscript; 
            end 
            % 
            % Generalized strain measures (assemble previous rate-of- 
            %-deformation measures in one vector): 
            gen_D = zeros((1+2*nscales),1); 
            gen_D(1) = D_0; 
            for is=1:nscales 
                gen_D(2*is) = D_n(is)-D_0; 
                gen_D(2*is+1) = gradD_n(is); 
            end 
            % 
            % Determine the true strain (logarithmic strain) for this Gauss 
            %point 
            gen_truestrainGP = old.gen_truestrain(:,ngp_global) +... 
                               gen_D * dt; 
            % 
            % Get the stress from the constitutive law: 
            [gen_sigmaGP] = getGenStress(ngp_global,dt,matprops,l_n,h_n,... 
                                       thick_n,nscales,old,gen_D,sigygp_0); 
            % Note: "gen_sigmaGP" is the vector with the generalized 
            %stresses for this element 
            % 
            % The generalized stress vector containing all the information 
            %for every Gauss point is: 
            gen_sigma(:,ngp_global) = gen_sigmaGP; 
            % The generalized true strain vector containing all the 
            %information for every Gauss point is: 
            gen_truestrain(:,ngp_global) = gen_truestrainGP; 
            % Rename the stresses in the generalized stress vector for this 
            %element: 
            sigma_0 = gen_sigmaGP(1); 
            sigma_n = zeros(nscales,1); 
            gradsigma_n = zeros(nscales,1); 
            for is=1:nscales 
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                sigma_n(is) = gen_sigmaGP(2*is); % micro-stresses 
                gradsigma_n(is) = gen_sigmaGP(2*is+1); % double-stresses 
            end 
            % 
            auxsigma = sigma_0; 
            for is=1:nscales 
                auxsigma = auxsigma - sigma_n(is); 
            end 
            % Calculate the nodal internal forces 
            fe_int(1:nne) = fe_int(1:nne) + Bscript*auxsigma*Jac_xi... 
                            *mesh.area*qwt(i); 
            % 
            for is=1:nscales 
                ind = 1+nne*is; 
                fe_int(ind:(ind+nne-1)) = fe_int(ind:(ind+nne-1)) + ... 
                    ( N*sigma_n(is) + Bscript*gradsigma_n(is) ) ... 
                    *Jac_xi*h_n(is)*thick_n(is)*qwt(i); 
            end 
            % 
            ngp_global = ngp_global + 1; 
        end % end element mass matrix for enriched element 
        % 
        % Scatter the force 
        % Indices of rows and columns for each type of dof: 
        i_0  = conn; 
        fint(i_0) = fint(i_0) + fe_int(1:nne); 
        for is=1:nscales 
            i_n = mesh.nn*is+conn; 
            ind = 1+nne*is; 
            fint(i_n) = fint(i_n) + fe_int(ind:(ind+nne-1)); 
        end 
        % 
    end 
end 
%% Returns a 2x1 matrix that gives the derivative of the shape functions. 
function [dN] = getGradN(xi) 
    % xi is not necessary for linear shape functions. 
    dN = 1/2*[-1 , 1]'; 
    % Note: dN is a COLUMN vector: 2x1 matrix (instead of 1x2 as in the 
    %book) 
end 
%% Returns the generalized stress according to chosen constitutive law 
function [gen_sigmaGP] = getGenStress(ngp_global,dt,matprops,l_n,h_n,... 
                                      thick_n,nscales,old,gen_D,sigygp_0) 
    % The generalized stresses for this ELEMENT are given by the vector: 
    % 
    %              |      sigma^(0)        |   <--- macro stress 
    %              |      sigma^(1)        |   <--- micro stress (1) 
    %              |    sigma-sigma^(1)    |   <--- double-stress (1) 
    %              |      sigma^(2)        |   <--- micro stress (2) 
    %gen_sigmaGP = |    sigma-sigma^(2)    |   <--- double-stress (2) 
    %              |           .           | 
    %              |           .           | 
    %              |           .           | 
    %              |      sigma^(n)        |   <--- micro stress (n) 
    %              |    sigma-sigma^(n)    |   <--- double-stress (n) 
    % 
    %% Read material properties for every scale: 
    youngsC_0 = matprops(1,1); 
    % 
    youngsC_n = zeros(nscales,1); 
    youngsB_n = zeros(nscales,1); 
    rho_n = zeros(nscales,1); 
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    for iscale=1:nscales 
        youngsC_n(iscale) = matprops(1+iscale,1); 
        youngsB_n(iscale)= matprops(1+iscale,2); 
        rho_n(iscale) = matprops(1+iscale,3); 
    end 
    % 
    Cmat = zeros((1+2*nscales),(1+2*nscales)); 
    Cmat(1,1) = youngsC_0; 
    for i=1:nscales 
        Cmat(2*i,2*i:(1+2*i)) = [youngsC_n(i) , youngsB_n(i)]; 
        Cmat(2*i+1,2*i:(1+2*i))= [youngsB_n(i) , youngsC_n(i)... 

            *(h_n(iscale)^2+thick_n(iscale)^2)/12]]; 
    end 
    % 
    %% Apply the constitutive law 
    % Get the generalized stresses for this Gauss Point before yielding 
    gen_sigmaGP = old.gen_sigma(:,ngp_global) + Cmat * gen_D * dt; 
    % 
    % Get the generalized stresses after yielding 
    if abs(gen_sigmaGP(1)) > sigygp_0(ngp_global) 
        gen_sigmaGP(1) = sign(gen_sigmaGP(1))*sigygp_0(ngp_global); 
    end 
    % 
end 
%% Returns external nodal forces 
function [fext] = getFext(t,mesh,nscales) 
    fext = zeros(mesh.nn*(nscales+1),1); 
%     fext(1) = 1e3 * mesh.area; 
end 
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CHAPTER 13: Single Crystal Plasticity  

 

13.1     Show that for cubic crystals the unit normal n
hkl

 =  
1/2

2 2 2

1 2 3( )h k l h k l


   e e e . 

 

Solution to 13.1 

Beginning with the definition of the reciprocal lattice vector, 

1 2 3hkl h k l  g b b b  

The reciprocal bases are given by, 
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Thus, the reciprocal lattice vector is given by, 

 
 1 2 3

1 2 3

1hkl h k l  
 

g a a a
a a a

 

In a cubic crystal, all lattice vectors are of equal length, say a, therefore, 

 1 2 32

1hkl h k l
a

  g e e e  

The inverse of its norm is given by, 

2
1

2 2 2

hkl a

h k l




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The unit normal is therefore, 
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Which proves that the normal vector is in the direction [hkl]. 

 

 

13.2     Show that according to Fig. 13.10 
1

e
F V e  and *

1 R R , where 
1 1 1

e eF V R . 

 

Solution to 13.2 

 

Two definitions are of interest, 

 1 1 1 1 1,  so ,  and

,  with  symmetric

e p e p

e p e

 



F F F F V R F

F F F F
 

Now, configurations Intermediate II and Intermediate-Polar both follow from 

Intermediate I by rigid rotations only, R* and R1 respectively. Going from Intermediate 

II and Intermediate-Polar to the deformed configuration only symmetric tensors are to be 

used, 
eF  and 1

e
V  respectively. Since Intermediate II and Intermediate-Polar follow 

from intermediate I by rigid rotation, symmetric 
eF  and 1

e
V  must describe the same 

total elastic stretching of the crystal that yields the final configuration. That is, 1F V
e e

.  

But then 
-1

1V
e

 maps into intermediate II from the deformed configuration, just as 
1e

F

Intermediate 

Polar 

R1

V1

e
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does. In this manner, intermediate II and intermediate-Polar must be the same 

configuration, since 
-1

1 aV
e

, a 1-to-1 function, maps to both, and 
*

1 R R . 

 

 

13.3     Show that crystalline plasticity is incompressible (Hint: use Eq. 13.5.7). 

 

Solution to 13.3 

Beginning with the relation 

1 1: :e p e  


 C D C P   

Noting that Ce  serves as a metric tensor g on intermediate configuration I, we can write 

   1 : :e trace     

  
       C P G P G P  

where G = g-1 . Substituting the definition of Pa
in its covariant form we find, 

 ( ) ( ) ( ) ( )1

2

         P g s n n s g , where 

( ) ( ) is defined with contravariant components,  and  with covariant components s n

 

Thus, 
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In index notation, and noting that the g lowers an index and G raises an index, 

   
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( ) ( )By the orthogonality of  and . n s   
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13.4     Show that the second of Eq. 13.8.5 results from the skew symmetry of . 

 

Solution to 13.4 

Beginning with the relation, 

 ( ) * * * *: :dev dev dev dev   
 

     
 

P P P        

In index notation, 

 ( ) * * * *dev dev dev dev dev

ij ij kj ik ij ik kj ij ij ik kj ij kj ikP P P P P          


          

Substituting T   for the third and fourth terms, and rearranging terms we find, 

 ( ) * * * *    dev dev dev dev dev

ij ij kj ik ij ij ki kj ik kj ij ij jk ikP P P P P          


        

 

Swapping i and k indices in the second term, and j and k in the third term, 

 ( ) * * * *    dev dev dev dev dev
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
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Thus, 

( ) :dev 


 P  

 

 

13.5 Find the explicit expression for , in Eq. 13.5.4, in component form.  (Hint: See 

derivation in [9].) 

 

Solution to 13.5 

Beginning from the definition 

1 1 1e e e p p e   L F F F F F F   

where 
1p p p p D W F F . 
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Post multiplying by F
e
, 

1e e e p p LF F F F F  

Solving for  F
e
  

   e e e p p   F D W F F D W   

Using the symmetry of  F
e
we find, 

   e eT e p p e    F F F D W D W F   

Subtracting the two expressions, for  F
e

 

       e p p e e e p p      F D W D W F D W F F D W   

Regrouping terms 

       p e e p p e e p      D D F F D D W W F F W W   

Now 

     :e p p e pW    F W W W W F W W   

where  e e

ijkl ik jl ik jlW F F     

Thus 

    1p p e e pWW W D D F F D D
      

Also, 

     :p e e p p
D D F F D D D D    V  

where  e e

ijkl ik jl ik jlV F F   . 

Therefore, 

 1p p

ij ij ijmn mnkl kl
W VW W D D

    

Hence . 

 

 



144 

 

13.6 Computer problem. 

(a) Write a poly-slip, rate-dependent, single crystal plasticity subroutine, based on Box 

13.2 and Table 13.3, to reproduce the results in Fig. 13.11 to Fig. 13.13.  

(b) Change the Euler angles to (0, 60, 0) and compare the deformation pattern at 

30% nominal strain. Use Box 13.1 to help re-define your slip directions and normals 

correctly, or use Table E13.1.  

 

Solution to 13.6 (a) 

Here we list a FORTRAN material subroutine, VUMAT to be used in ABAQUS\Explicit.  

The results of this code reproduce Fig. 13.11 to Fig. 13.13 based on Box 13.2 and Table 

13.3. 

The code, however, does not present the details of the ODE solver (ODEINT.inc), since 

different available solvers could be chosen from. Nonetheless, the parameters to be 

passed in and out of the ODE solver are clearly indicated and setup. 

 

Solution to 13.6 (b) 

The same code will be used for this part. Only, Table E13.1 should be used to define the 

initial values for slip directions and normals.  
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% FORTRAN CODE FOR PROBLEM 13.6 % 

C #======================================================================= 

C                       _______ 

C                 \    /  |    |   |\  /|    /\       | 

C                  \  /   |    |   | \/ |   /__\      | 

C                   \/    |____|   |    |  /    \     | 

C 

C     This subroutine is the MAIN MATERIAL SUBROUTINE:  

C     It updates: stresses, internal variables (SDV array), and energies  

C 

C     Khalil El Khodary <khalile@aucegypt.edu> 

C     Assistant Professor at the American University in Cairo 

C ======================================================================= 

      subroutine vumat ( 

C Read only - 

     1     nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 

     2     stepTime, totalTime, dt, cmname, coordMp, charLength, 

     3     props, density, strainInc, relSpinInc, 

     4     tempOld, stretchOld, defgradOld, fieldOld, 

     5     stressOld, stateOld, enerInternOld, enerInelasOld, 

     6     tempNew, stretchNew, defgradNew, fieldNew, 

C Write only - 

     7     stressNew, stateNew, enerInternNew, enerInelasNew ) 

      include 'vaba_param.inc' 

      include 'DataInitialize.inc' 

      include 'ElasticStarter.inc' 

C 

C #===================================================================== 

C   #   LOADING MATERIAL DATA FROM INPUT FILE  # 

C  (independent of Element), (nprops = 7*nslip+27) 

C         Note: Not all data in props is loaded here.  

C          Some will be loaded when needed 

C #===================================================================== 

   nslip        = int(props(1))          

        e            = props(2) 

         xnu          = props(3) 

         yield        = props(4) 

   g_source     = props(10) 

   g_immob      = props(11) 

   g_minter     = props(12) 

   g_recov      = props(13) 

   Cp           = props(14)  

   tempR        = props(15)        

  

   H_K           = props(16)                                            

   xi           = props(17)         

   Chi          = props(18)         

   EM_factor    = props(20)   

   b_v(1:nslip) = props(21:20+nslip) 

C  
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C Derived material constants    

   g        = e/(two*(one + xnu))          

   twomu    = two*g             

   bulk     = e/three/( one - two * xnu )      

       

C 

C Note H/K is assumed constant, so temp must stay at tempR 

   thermal_coef = H_K/tempR      

C   

C Derived Pointers/Flags 

   ibeginN  = 20 + nslip            

   ibeginS  = nslip*3 + ibeginN      

          

C #===================================================================== 

C         # WORKING WITH ELEMENT "k" # 

C #===================================================================== 

    do k = 1,nblock 

C Load Internal variables independent of slip system 

          Psi21   = stateOld( k,1)*pi/180.d0 

          Psi32   = stateOld( k,2)*pi/180.d0 

          Psi13   = stateOld( k,3)*pi/180.d0 

          gamma   = stateOld( k,4) 

          temp    = stateOld( k,6) + tempR 

C Load Internal variables dependent on slip system 

          do j = 1, nslip         

     

    tau(j)       = stateOld( k,8  + (j-1)*10 )        

    gdot(j)      = stateOld( k,9  + (j-1)*10 )    

    den_im(j)    = stateOld( k,10 + (j-1)*10 )    

    den_m(j)     = stateOld( k,11 + (j-1)*10 )    

    slip_n(j,1)  = stateOld( k,12 + (j-1)*10 )     

    slip_n(j,2)  = stateOld( k,13 + (j-1)*10 )    

    slip_n(j,3)  = stateOld( k,14 + (j-1)*10 )    

    slip_s(j,1)  = stateOld( k,15 + (j-1)*10 )    

    slip_s(j,2)  = stateOld( k,16 + (j-1)*10 )    

    slip_s(j,3)  = stateOld( k,17 + (j-1)*10 )   

  

          end do 

C    

C Compute derived slip-specific mechanical constants    

     do j = 1, nslip 

    recip_m(j)  = one / props(6) 

    ref_gdot(j) = props(7)         

     end do 

C             

  

C    ------------------------------------------------------------------- 

C   # IF APPLICABLE: REPLACE ZEROED VARIABLES WITH INITIAL DATA #  

C    ------------------------------------------------------------------- 

     if (dt .eq. totalTime) then 

              do i = 1, nslip         

   

   den_im(i) = props(8) 

        den_m (i) = props(9) 
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        do j =  1, 3 

      slip_n(i,j) = props( ibeginN + 3*(i-1) + j ) 

      slip_s(i,j) = props( ibeginS + 3*(i-1) + j ) 

   enddo 

              enddo        

     endif  

C    ------------------------------------------------- 

C    #  COMPUTE TOTAL SPIN and RATE OF DEFORMATION  # 

C                       #      COMPUTE ROTATION FROM F = RU            #  

C                       #      (Rnew is the Transpose of R)            # 

C    ------------------------------------------------- 

C Compute Spin, Dij and Rotation tensors 

         call getSpinDij(dt,defgradNew(k,:),defgradOld(k,:),Spin,Dij) 

   call getRot(defgradNew(k,:),stretchNew(k,:),Rnew)         

C                   

C Deviatoric Dij tensor 

   traceDij = Dij(1) + Dij(2) + Dij(3)  

   Dij_dev(1) = Dij(1) - traceDij/3.d0 

   Dij_dev(2) = Dij(2) - traceDij/3.d0 

   Dij_dev(3) = Dij(3) - traceDij/3.d0 

   Dij_dev(4) = Dij(4) 

   Dij_dev(5) = Dij(5) 

   Dij_dev(6) = Dij(6) 

C 

C    ------------------------------------------------- 

C     #               COMPUTE Pij & Wij             # 

C    ------------------------------------------------- 

  

C SYMMETRIC SCHMID TENSOR (EXPRESSED W.R.T GLOBAL AXES) 

C This is for the sake of Dij tensor compuations. 

         do j = 1, nslip 

      p(j,1) = 0.5d0*(slip_s(j,1)*slip_n(j,1) + 

     1                      slip_s(j,1)*slip_n(j,1)) 

                p(j,2) = 0.5d0*(slip_s(j,2)*slip_n(j,2) +  

     1                      slip_s(j,2)*slip_n(j,2))      

      p(j,3) = 0.5d0*(slip_s(j,3)*slip_n(j,3) +  

     1                      slip_s(j,3)*slip_n(j,3))  

      p(j,4) = 0.5d0*(slip_s(j,1)*slip_n(j,2) +  

     1                      slip_s(j,2)*slip_n(j,1))    

      p(j,5) = 0.5d0*(slip_s(j,2)*slip_n(j,3) +  

     1                      slip_s(j,3)*slip_n(j,2))     

      p(j,6) = 0.5d0*(slip_s(j,3)*slip_n(j,1) +  

     1                      slip_s(j,1)*slip_n(j,3)) 

         end do 

C       

C ANTI-SYMMETRIC SCHMID TENSOR (EXPRESSED W.R.T GLOBAL AXES) 

C This is for the sake of spin tensor compuations, which are  

C also computed and expressed w.r.t. Initial (global) Axes 

         do j = 1, nslip 

                w12(j) = 0.5d0 * (slip_s(j,1)*slip_n(j,2) -    

  

     1        slip_s(j,2)*slip_n(j,1)) 

      w23(j) = 0.5d0 * (slip_s(j,2)*slip_n(j,3) -    
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     1        slip_s(j,3)*slip_n(j,2)) 

      w31(j) = 0.5d0 * (slip_s(j,3)*slip_n(j,1) -    

  

     1        slip_s(j,1)*slip_n(j,3)) 

         end do 

C 

C 

C    ------------------------------------------------- 

C     #                    PijDij                  # 

C                        For the Computation of Tau_dot    

C    ------------------------------------------------- 

   do j = 1, nslip 

         PijDijDev(j)= p(j,1)*Dij_dev(1) +      p(j,2)*Dij_dev(2) 

     1           + p(j,3)*Dij_dev(3) + 2.d0*p(j,4)*Dij_dev(4)   

     2       +2.d0*p(j,5)*Dij_dev(5) + 2.d0*p(j,6)*Dij_dev(6)             

   end do 

C 

C         ------------------------------------------------- 

C          #  UPDATE Resolved Shear stress: TAU (alpha)  # 

C         ------------------------------------------------- 

C 

C Thermal Multiplier 

   thermal_factor = (tempR/temp)**xi        

   tauR(1:maxSS) = 0.d0 

C            

C Compute Tau Reference (crystal strength)      

   do j = 1, nslip 

  do kk = 1,nslip 

     alphaInt = abs(    p(j,1)*p(kk,1) +    p(j,2)*p(kk,2) 

     1             +     p(j,3)*p(kk,3) + 2.*p(j,4)*p(kk,4)   

     2        +  2.*p(j,5)*p(kk,5) + 2.*p(j,6)*p(kk,6) )/0.5d0 

               tauR(j) = tauR(j) + alphaInt*g*b_v(kk)*sqrt(den_im(kk)) 

  enddo     

        enddo 

        tauR(1:nslip) = (tauR(1:nslip) +yield/EM_factor)*thermal_factor 

C       

C Define Integration Parameters to pass to ODEINT (initial value ODE problem)   

        tauStart(1:nslip) = tau(1:nslip)  

  NVAR = nslip   

  Time = totalTime - dt 

  eps  = 0.01d0 

  hmin = dt/24.d0     

C PACK Parameters into Array PAR to send to tauDot and tauResidual 

C These are all required input to solve for the resolved shear stress 

  PAR (1)                      = dble(nslip) 

  PAR (        2 :    NVAR+1 ) = recip_m(1:nslip) 

  PAR (   NVAR+2 :  2*NVAR+1 ) = ref_gdot(1:nslip) 

  PAR ( 2*NVAR+2 :  3*NVAR+1 ) = PijDijDev(1:nslip) 

  PAR ( 3*NVAR+2 :  4*NVAR+1 ) = p(1:nslip,1) 

  PAR ( 4*NVAR+2 :  5*NVAR+1 ) = p(1:nslip,2) 

  PAR ( 5*NVAR+2 :  6*NVAR+1 ) = p(1:nslip,3) 

  PAR ( 6*NVAR+2 :  7*NVAR+1 ) = p(1:nslip,4) 

  PAR ( 7*NVAR+2 :  8*NVAR+1 ) = p(1:nslip,5) 

  PAR ( 8*NVAR+2 :  9*NVAR+1 ) = p(1:nslip,6) 
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  PAR ( 9*NVAR+2 : 10*NVAR+1 ) = tau(1:nslip) 

  PAR (10*NVAR+2 : 11*NVAR+1 ) = tauR(1:nslip) 

  PAR (11*NVAR+2)              = twomu 

  PAR (size(PAR,1)) = 0.d0 !This takes the value of time step increment 

'h'      

C Integrate tauDot using an ODE solver subroutine        

        call odeint(tauDot, tauResidual, tauStart, NVAR, 

     1               Time, Time + dt, eps, dt, hmin, PAR) 

C Update Tau  

        tau(1:nslip) = tauStart(1:nslip) 

C      

C      ------------------------------------------------- 

C      #  COMPUTE CRYSTALLOGRAPHIC SHEAR STRAIN RATE   #  

C      -------------------------------------------------  

   

         do j = 1, nslip 

C Power-law  

  gdot(j) = ref_gdot(j)*(tau(j)/tauR(j))*                    

     1                (abs(tau(j)/tauR(j)))**(recip_m(j)-1.)           

   end do  

C   ------------------------------------------------- 

C   #  COMPUTE PLASTIC RATES OF DEFORMATION & SPIN  #  

C   -------------------------------------------------  

  

C Initialize Values 

   D11_p    = 0.d0      

   D22_p    = 0.d0 

    D33_p    = 0.d0 

   D12_p    = 0.d0 

   D23_p    = 0.d0 

   D31_p    = 0.d0 

   spin_p12 = 0.d0 

   spin_p23 = 0.d0 

   spin_p31 = 0.d0 

   spin_21  = Spin(1) 

   spin_32  = Spin(2) 

   spin_13  = Spin(3) 

   spin_12  =-Spin(1) 

   spin_23  =-Spin(2) 

   spin_31  =-Spin(3)   

         do j = 1 , nslip 

C Plastic Deformation Rate, 

  if (abs(gdot(j)).gt.abs(ref_gdot(j))) then   

   D11_p  = D11_p + p(j,1)*gdot(j)      

   D22_p  = D22_p + p(j,2)*gdot(j) 

   D33_p  = D33_p + p(j,3)*gdot(j) 

   D12_p  = D12_p + p(j,4)*gdot(j) 

   D23_p  = D23_p + p(j,5)*gdot(j) 

   D31_p  = D31_p + p(j,6)*gdot(j) 

   spin_p12 = spin_p12 + w12(j)*gdot(j)     

   spin_p23 = spin_p23 + w23(j)*gdot(j)    

    spin_p31 = spin_p31 + w31(j)*gdot(j) 

  endif       

         end do 
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C 

C 

C 

C    -------------------------------------------------   

C                       #                COMPUTE ELASTIC SPIN         #   

C    ------------------------------------------------- 

    spin_p21 = -spin_p12     

    spin_p13 = -spin_p31        

    spin_p32 = -spin_p23     

    spin_e21 =  spin_21 - spin_p21 

    spin_e12 = -spin_e21 

    spin_e32 =  spin_32 - spin_p32 

    spin_e23 = -spin_e32 

    spin_e13 =  spin_13 - spin_p13 

    spin_e31 = -spin_e13 

C 

C    ------------------------------------------------- 

C    # UPDATE/NORMALIZE SLIP NORMALS AND DIRECTIONS # 

C                           NOTE: STILL REFERENCED TO GLOBAL AXES 

C    ------------------------------------------------- 

   

    do j = 1 , nslip 

C n_dot and s_dot,  

     an_dot1 = spin_e12*slip_n(j,2) + spin_e13*slip_n(j,3)    

     an_dot2 = spin_e21*slip_n(j,1) + spin_e23*slip_n(j,3) 

     an_dot3 = spin_e31*slip_n(j,1) + spin_e32*slip_n(j,2) 

     as_dot1 = spin_e12*slip_s(j,2) + spin_e13*slip_s(j,3) 

     as_dot2 = spin_e21*slip_s(j,1) + spin_e23*slip_s(j,3) 

     as_dot3 = spin_e31*slip_s(j,1) + spin_e32*slip_s(j,2) 

C n and s updated 

     slip_n(j,1) = slip_n(j,1) + an_dot1*dt        

     slip_n(j,2) = slip_n(j,2) + an_dot2*dt 

     slip_n(j,3) = slip_n(j,3) + an_dot3*dt 

     slip_s(j,1) = slip_s(j,1) + as_dot1*dt 

     slip_s(j,2) = slip_s(j,2) + as_dot2*dt 

     slip_s(j,3) = slip_s(j,3) + as_dot3*dt  

   end do         

C Normalize slip vectors to unit magnitude       

   call unit_vector( 3,nslip,slip_n,slip_s)              

C 

C   --------------------------------------------------------- 

C              # EXPRESS THE ROTATED STRESS AT BEGINNING OF INCREMENT  # 

C              # AS CAUCHY STRESS:: S = R*S(corot)*R^T ,for R = FU^-1  # 

C              # NOTE: RNEW is the Transpose of that in F=R*U          # 

C   ---------------------------------------------------------  

  

C Cauchy Stress 

         Rnew = Transpose(Rnew) 

         call ROTATE(stressNew(k,:),Rnew,stressOld(k,1),stressOld(k,2), 

     1               stressOld(k,3),stressOld(k,4),stressOld(k,5), 

     2               stressOld(k,6) ) 

         sigGLB1 = stressNew(k,1) 

         sigGLB2 = stressNew(k,2) 

         sigGLB3 = stressNew(k,3) 
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         sigGLB4 = stressNew(k,4) 

         sigGLB5 = stressNew(k,5) 

         sigGLB6 = stressNew(k,6) 

         Rnew = Transpose(Rnew) 

           

C COMPUTE THE DEVIATORIC PARTS 

         press =  ( sigGLB1 + sigGLB2 + sigGLB3 )/3.d0 

   sigGLB1 = sigGLB1  - press 

   sigGLB2 = sigGLB2  - press 

   sigGLB3 = sigGLB3  - press 

C 

C     ------------------------------------------------- 

C     #            UPDATE CAUCHY STRESSES             #  

C     ------------------------------------------------- 

C COMPUTE THE NON-CONSTITUTIVE PART OF STRESS RATE: "SIGMA.W* - W*.SIGMA" 

    

    o11    = - 2.d0*( spin_e12*sigGLB4 + spin_e13*sigGLB6 ) 

    o22    = - 2.d0*( spin_e21*sigGLB4 + spin_e23*sigGLB5 )  

    o33    = - 2.d0*( spin_e31*sigGLB6 + spin_e32*sigGLB5 )     

    o12    =   spin_e12*sigGLB1 - spin_e12*sigGLB2 - 

     1               spin_e13*sigGLB5 - spin_e23*sigGLB6    

  

    o23    =   spin_e23*sigGLB2 - spin_e23*sigGLB3 - 

     1               spin_e21*sigGLB6 - spin_e31*sigGLB4    

  

    o31    =   spin_e13*sigGLB1 - spin_e13*sigGLB3 - 

     1               spin_e32*sigGLB4 - spin_e12*sigGLB5 

C 

C UPDATE THE CAUCHY STRESSES, BUT EXPRESSED W.R.T. GLOBAL AXES  

    sigGLB1 = sigGLB1 + dt*o11 + twomu*dt*(Dij_dev(1)-D11_p) 

    sigGLB2 = sigGLB2 + dt*o22 + twomu*dt*(Dij_dev(2)-D22_p)   

    sigGLB3 = sigGLB3 + dt*o33 + twomu*dt*(Dij_dev(3)-D33_p) 

    sigGLB4 = sigGLB4 + dt*o12 + twomu*dt*(Dij_dev(4)-D12_p) 

    sigGLB5 = sigGLB5 + dt*o23 + twomu*dt*(Dij_dev(5)-D23_p) 

    sigGLB6 = sigGLB6 + dt*o31 + twomu*dt*(Dij_dev(6)-D31_p)   

C    

C     ------------------------------------------------- 

C      # UPDATE TEMPERATURE AND PLASTIC WORK INC#  

C     ------------------------------------------------- 

C (Deviatoric) StressPower,  

    DijSij    =       sigGLB1*D11_p  +       sigGLB2*D22_p +     

     1                      sigGLB3*D33_p  +  2.d0*sigGLB4*D12_p + 

     2                 2.d0*sigGLB5*D23_p  +  2.d0*sigGLB6*D31_p   

C Update plastic work from stress power 

          plasticWorkInc = dt*abs(DijSij)       

   

    eta            = density(k)*Cp 

C Adiabatic Temp Update,  

    tempInc        = plasticWorkInc/eta* Chi                  

C Update normal stress components with volumetric part    

    press  = press  + bulk*dt*(traceDij)        

    sigGLB1 = sigGLB1 + press 

    sigGLB2 = sigGLB2 + press 

    sigGLB3 = sigGLB3 + press 
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C        ------------------------------------------------- 

C        #  STORE UPDATED COROTATIONAL STRESS :: R^T*S*R  

# 

C        ------------------------------------------------- 

         call ROTATE(stressNew(k,:),Rnew,sigGLB1,sigGLB2,sigGLB3, 

     1                                   sigGLB4,sigGLB5,sigGLB6) 

C    ------------------------------------------------- 

C     # UPDATE INTERNAL VARIABLES: RHO_M & RHO_IM #  

C    ------------------------------------------------- 

   

C Define Integration Parameters to pass to ODEINT (initial value ODE problem)   

    eps  = 0.05d0 

    hmin = dt/24.d0  

    Time = totalTime - dt 

    NVAR = 2 

C 

C Reset PAR 

    PAR( 1: size(PAR,1) )  = 0.d0       

C PACK Parameters into Array PAR to send to rhoDot and rhoResidual 

    PAR (       1        ) = dble(nslip) 

    PAR (       2        ) = g_source 

    PAR (       3        ) = g_immob 

    PAR (       4        ) = g_minter 

    PAR (       5        ) = g_recov 

    PAR (       6        ) = thermal_coef 

    PAR (      11   :   nslip+10 ) = gdot(1:nslip) 

    PAR (  nslip+11 : 2*nslip+10 ) = b_v(1:nslip) 

    PAR (   size(PAR,1)  ) = 0.d0!This later takes on a value'h' 

C 

C Call rho_dot integrator 'nslip' times 

    do j = 1, nslip 

             rhoStart(1) = den_im(j)!Rho_im Starting Value  

             rhoStart(2) = den_m(j) !Rho_ m Starting Value 

   PAR (     2*nslip+11   ) = dble(j) !assigns jslip 

    PAR (2*nslip+12:2*nslip+13) = rhoStart(1:2) 

C 

C Call Nested Subroutines for Adaptive RK5 Integration or Back Euler 

             call odeint(rhoDot,rhoResidual,rhoStart, NVAR,   

     1                  Time, Time + dt, eps, dt, hmin, PAR )   

             den_im(j) = rhoStart(1)  !Rho_im Updated Value  

             den_m(j)  = rhoStart(2)  !Rho_ m Updated Value 

    end do 

C 

C Reset PAR 

   PAR( 1: size(PAR,1) ) = 0.d0 

C    

C    ------------------------------------------------- 

C        # UPDATE ALL OTHER INTERNAL VARIABLES #  

C         ------------------------------------------------- 

   

C Increment in shear slip:: Using an 'effective' measure;  

C dgamma = dt*sqrt([D_p]:[D_p]) 

   dgamma = dt*sqrt(( D11_p**2.d0 +     D22_p**2.d0 +     D33_p**2.d0+ 

     1               2.d0*D12_p**2.d0 +2.d0*D23_p**2.d0 +2.d0*D31_p**2.d0 )) 
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C 

C 

C 

C Internal variables not dependent on slip system  

   Psi21 = Psi21 + spin_e21*dt 

   Psi32 = Psi32 + spin_e32*dt 

   Psi13 = Psi13 + spin_e13*dt         

        stateNew( k,1) = Psi21*(180.d0/pi)!Angle21 that Slip systems rotated, 

   stateNew( k,2) = Psi32*(180.d0/pi)!Angle32 that Slip systems rotated, 

   stateNew( k,3) = Psi13*(180.d0/pi)!Angle13 that Slip systems rotated, 

         stateNew( k,4) = stateOld( k,4) + dgamma !New Shear Slip, 

   stateNew( k,5) = sum(tauR(1:nslip))/nslip !New Reference Tau 

         stateNew( k,6) = stateOld( k,6) + tempInc !New Temperature 

C 

C Internal variables dependent on slip system 

   do j = 1, nslip    !Loop over slip-system alpha: 

   stateNew( k,8  + (j-1)*10 ) = tau(j) !shear stress      

   stateNew( k,9  + (j-1)*10 ) = gdot(j)!shear strain-rate 

  stateNew( k,10 + (j-1)*10 ) = den_im(j) !rho mobile 

  stateNew( k,11 + (j-1)*10 ) = den_m(j)!rho immobile 

  stateNew( k,12 + (j-1)*10 ) = slip_n(j,1)!slip plane normal (x) 

      stateNew( k,13 + (j-1)*10 ) = slip_n(j,2)!slip plane normal (y) 

  stateNew( k,14 + (j-1)*10 ) = slip_n(j,3)!slip plane normal (z) 

  stateNew( k,15 + (j-1)*10 ) = slip_s(j,1)!slip direction    (x) 

      stateNew( k,16 + (j-1)*10 ) = slip_s(j,2)!slip direction    (y)  

      stateNew( k,17 + (j-1)*10 ) = slip_s(j,3)!slip direction    (z) 

   end do           

   

C     ------------------------------------------------- 

C                          # UPDATE THE ENERGIES #  

C     ------------------------------------------------- 

  

C Update the dissipated inelastic specific energy - 

  enerInelasNew( k) = enerInelasOld( k) +  

     1                      plasticWorkInc / density( k)               

C Update the specific internal energy - 

        stressPower = half * ( 

     1      ( stressOld( k,1)+stressNew( k,1) ) * (Dij(1) - D11_p)*dt + 

     2      ( stressOld( k,2)+stressNew( k,2) ) * (Dij(2) - D22_p)*dt + 

     3      ( stressOld( k,3)+stressNew( k,3) ) * (Dij(3) - D33_p)*dt ) + 

     4      ( stressOld( k,4)+stressNew( k,4) ) * (Dij(4) - D12_p)*dt +      

     5      ( stressOld( k,5)+stressNew( k,5) ) * (Dij(5) - D23_p)*dt +     

     6      ( stressOld( k,6)+stressNew( k,6) ) * (Dij(6) - D31_p)*dt      

C 

   enerInternNew( k) = enerInternOld( k)  

     1                      + stressPower / density( k)     

 enddo    

       return 

 end 

C #===================================================================== 

      include 'TensorSubs.inc'   

      include 'UpdateRhos.inc' 

      include 'UpdateTaus.inc' 

      include 'ODEINT.inc' 
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C ====================================================================== 
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C ElasticStarter.inc 
C     ****************************************************************** 

C  THIS LOOP IS FOR ABAQUS TO COMPUTE INITIAL ELASTIC WAVE SPEED  

C     ****************************************************************** 

      if ( totalTime .eq. zero ) then       

  do k = 1,nblock 

C    ------------------------------------------------- 

C       #  MATERIAL DATA  # 

C     -------------------------------------------------      

C     material properties not dependent on slip system 

    e        = props(2) 

    xnu      = props(3) 

C     derived mechanical constants    

    g        = e/(two*(one + xnu))          

    twomu    = two*g            

        bulk     = e/three/( one - two * xnu ) 

        

C    -------------------------------------------------        

C   # COMPUTING VUMATS INITIAL STRESSES # 

C    -------------------------------------------------   

C     Trial/Elastic stress 

          trace = (strainInc(k,1) + strainInc(k,2) + strainInc(k,3)) 

          stressNew(k,1) = stressOld(k,1)  

     1         + twomu * strainInc(k,1) + bulk * trace 

          stressNew(k,2) = stressOld(k,2)   

     1         + twomu * strainInc(k,2) + bulk * trace 

          stressNew(k,3) = stressOld(k,3)  

     1         + twomu * strainInc(k,3) + bulk * trace 

          stressNew(k,4) = stressOld(k,4)  +  

     1                     twomu * strainInc(k,4) 

          stressNew(k,5) = stressOld(k,5)  +  

     1                        twomu * strainInc(k,5) 

          stressNew(k,6) = stressOld(k,6)  +  

     1                        twomu * strainInc(k,6)  

  enddo 

  return 

   endif     

C      *****************************************************************    

C  THIS LOOP IS FOR ABAQUS TO COMPUTE INITIAL ELASTIC WAVE SPEED  

C     ****************************************************************** 
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C Datainitialize.inc 
C #===================================================================== 

C #                 ABAQUS-SPECIFIC ARRAYS/VARIABLES    

C # 

      dimension coordMp(nblock,*), charLength(nblock),  

     1     props(nprops),density(nblock), strainInc(nblock,ndir+nshr), 

     2     relSpinInc(nblock,nshr), tempOld(nblock), 

     3     stretchOld(nblock,ndir+nshr),  

     4     defgradOld(nblock,ndir+nshr+nshr), 

     5     fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 

     6     stateOld(nblock,nstatev), enerInternOld(nblock), 

     7     enerInelasOld(nblock), tempNew(nblock), 

     8     stretchNew(nblock,ndir+nshr), 

     9     defgradNew(nblock,ndir+nshr+nshr), 

     1     fieldNew(nblock,nfieldv), 

     2     stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 

     3     enerInternNew(nblock), enerInelasNew(nblock) 

      character*80 cmname 

 

C #  ========#    CRYSTAL PLASTICITY ARRAYS/VARIABLES #==============  

   real*8, PARAMETER:: zero = 0.d0,one = 1.d0,two = 2.d0,  

     1            three = 3.d0,half = 0.5d0,pi = 3.141592654d0    

C Integer Scalars            

   integer, parameter:: maxSS = 14 

   integer  i,j,k,kk, nslip, NVAR,IBEGINN, IBEGINS, IER 

C 

C Real Scalars   

   real*8 g_source, g_immob, g_minter, g_recov, thermal_coef 

   real*8 tauOld,g,e,xnu,trace,yield 

   real*8 Cp, tempR, H_k, xi, Chi, alphaInt, EM_factor 

        real*8 TWOMU,BULK, PSI21 

  real*8 PSI32, PSI13, GAMMA, TEMP 

        real*8 TRACEDIJ, THERMAL_FACTOR,STRESSPOWER 

        real*8 TIME, EPS, HMIN, PRESS, DIJSIJ 

        real*8 D11_P, D22_P, D33_P, D12_P, D23_P, D31_P 

        real*8 SPIN_21, SPIN_32, SPIN_13,SPIN_12, SPIN_23, SPIN_31 

        real*8 SPIN_P12, SPIN_P23, SPIN_P31, SPIN_P21, SPIN_P32, SPIN_P13 

        real*8 SPIN_E12, SPIN_E23, SPIN_E31, SPIN_E21, SPIN_E32, SPIN_E13 

        real*8 AN_DOT1, AN_DOT2, AN_DOT3, AS_DOT1, AS_DOT2, AS_DOT3 

        real*8 sigGLB1, sigGLB2, sigGLB3, sigGLB4, sigGLB5, sigGLB6 

        real*8 O11, O22, O33, O12, O23, O31 

  real*8 PLASTICWORKINC, ETA, TEMPINC, DGAMMA,SNRM2   

C 

C Vectorial/Matrix Definitions      

         real*8 Dij_dev(6),w12(maxSS),w23(maxSS), w31(maxSS),Dij(6) 

         real*8 slip_n(maxSS,3),slip_s(maxSS,3),p(maxSS,6) 

   real*8 Spin(3),PijDijDev(maxSS),Rnew(3,3),tauStart(maxSS) 

   real*8 rhoStart(2), tau(maxSS), recip_m(maxSS),TAUR(maxSS) 

   real*8 den_im(maxSS),den_m(maxSS),PAR(10*maxSS+4) 

   real*8 ref_gdot(maxSS),gdot(maxSS),b_v(maxSS),PijDij(maxSS) 

 

C #===================================================================== 

   external tauDot, tauResidual, rhoDot, rhoResidual     
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C #=====================================================================
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C #=====================================================================  

C       --------   /\               _____    _____  -------- 

C     |      /  \    |      | |     \  |     |    | 

C                   |     /____\   |      | |      | |     |    | 

C                   |    /      \  |      | |      | |     |    | 

C                   |   /        \ |------| |_____/  |_____|    | 

C            Computes tau dot 

c  ...  Define the system of nonlinear differential equations for each  

c  ...  active slip-system (k)                                          

c            tau_dot(k)   = 2*mu*Pij(k)*[Dij_dev - Dij_p_dev]          

c            Dij_p_dev    = Pij(n)*gamma_dot(n)                        

c            gamma_dot(n) = ref_gamma_dot(n)*[tau(n)/tau_r(n)]**(1/m)  

C #===================================================================== 

      subroutine tauDot ( y, yprime, PAR)    

      include 'vaba_param.inc'       

      integer, parameter:: maxSS = 14 

      integer nslip, i, j 

      real*8 TWOMU, DUMMY 

      real*8 PAR(10*maxSS+4) 

      real*8 p(maxSS,6), TAUR(maxSS) 

      real*8 recip_m(maxSS), ref_gdot(maxSS), PijDijDev(maxSS)    

      real*8 y(maxSS), yprime(maxSS), r(maxSS), g(maxSS) 

C UN-PACK Parameters from Array PAR 

 nslip              = int( PAR (1)  )  

 recip_m(1:nslip)   = PAR (         2 :   nslip+1 )  

 ref_gdot(1:nslip)  = PAR (   nslip+2 : 2*nslip+1 )  

 PijDijDev(1:nslip) = PAR ( 2*nslip+2 : 3*nslip+1 )  

 p(1:nslip,1)       = PAR ( 3*nslip+2 : 4*nslip+1 ) 

 p(1:nslip,2)       = PAR ( 4*nslip+2 : 5*nslip+1 ) 

 p(1:nslip,3)       = PAR ( 5*nslip+2 : 6*nslip+1 ) 

 p(1:nslip,4)       = PAR ( 6*nslip+2 : 7*nslip+1 ) 

 p(1:nslip,5)       = PAR ( 7*nslip+2 : 8*nslip+1 ) 

 p(1:nslip,6)       = PAR ( 8*nslip+2 : 9*nslip+1 ) 

 tauR(1:nslip)      = PAR (10*nslip+2 :11*nslip+1 ) 

 twomu              = PAR (11*nslip+2) 

      dummy = 0.0 

      do i = 1, nslip 

         r(i) = ((abs(y(i)/tauR(i)))**(recip_m(i)-1.0)) *  

     1          (y(i)/tauR(i)) 

         g(i) = 0.0 

      end do 

      do i = 1, nslip 

         do j = 1, nslip 

            dummy = r(j)*ref_gdot(j) *  ( p(i,1)*p(j,1) + 

     1                                    p(i,2)*p(j,2) + 

     2                                    p(i,3)*p(j,3) + 

     3                                 2.*p(i,4)*p(j,4) + 

     4                                 2.*p(i,5)*p(j,5) + 

     5                                 2.*p(i,6)*p(j,6) ) 

            g(i) = g(i) + dummy 

         end do 

      end do 

      do i = 1, nslip 

         yprime(i) = twomu*( PijDijDev(i) - g(i) ) 
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      end do  

      return 

      end 

C #===================================================================== 

C #===================================================================== 

C  --------   /\               -----   -----   ----- 

C        |      /  \    |      | |     | |       | 

C              |     /____\   |      | |_____| |_____  |_____ 

C              |    /      \  |      | |   \   |             | 

C              |   /        \ |______| |    \  |_____   _____| 

C #===================================================================== 

    

 subroutine tauResidual(y,f,n,PAR) 

       include 'vaba_param.inc'       

 integer, parameter:: maxSS=14 

 integer n, nslip, i 

 real*8 dt 

 real*8 y(n), yold(n), yprime(n), f(n), PAR(10*maxSS+4) 

C UN-PACK Parameters  from Array PAR  

 nslip      = int( PAR(1) )                 

 yold(1:n)  = PAR ( 9*nslip+2 :10*nslip+1 ) 

       dt         = PAR ( size(PAR,1) ) 

       call tauDot( y, yprime, PAR) 

       do i = 1, n 

         f(i) = y(i)-yold(i)-dt*yprime(i) 

       end do  

 

      return 

      end 

C #====================================================================
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#===================================================================== 

C         ____          _____      _____    _____  _______ 

C   |     | |    | |     |    |     \  |     |    | 

C            |_____| |____| |     |    |      | |     |    | 

C            |   \   |    | |     |    |      | |     |    | 

C            |    \  |    | |_____|    |_____/  |_____|    | 

C        Computes dRho_m(alpha)/dt and dRho_im(alpha)/dt 

#===================================================================== 

      subroutine rhoDot (y,yprime,PAR) 

      include 'vaba_param.inc' 

C Integer Scalar    

      integer,parameter:: maxSS = 14 

      integer NSLIP, JSLIP 

C Real Scalar    

      real*8 G_SOURCE, G_IMMOB, G_MINTER, G_RECOV, THERMAL_COEF 

      real*8 ABSGDOT, C1, C2, C3, C4, C5 

C Vectorial/Matrix Definitions 

      real*8 y(2),yprime(2), gdot(maxSS), b_v(maxSS) 

      real*8 PAR(10*maxSS+4)   

C Un-PACK Parameters  from Array PAR 

      nslip         = int ( PAR(1) )  

      g_source      = PAR ( 2 ) 

      g_immob       = PAR ( 3 ) 

      g_minter      = PAR ( 4 ) 

      g_recov       = PAR ( 5 ) 

      thermal_coef  = PAR ( 6 )  

      gdot(1:nslip) = PAR (    11    :   nslip+10 ) 

      b_v( 1:nslip) = PAR ( nslip+11 : 2*nslip+10 ) 

      jslip         = int (   PAR ( 2*nslip+11 )  )     

C Compute Local Parameters 

      absGdot = abs(gdot(jslip)) 

      c1 = g_immob/b_v(jslip) 

      c2 = g_recov 

      c3 = g_minter*y(2) 

      c4 = g_source/(b_v(jslip)*b_v(jslip)) 

      c5 = - thermal_coef 

      yprime(1) = absGdot* ( -c2*exp(c5)*y(1) + c3*exp(c5)    

     1                                        + c1*sqrt(y(1)) ) !rho_im_dot 

      yprime(2) = absGdot* (   c4*y(1)/y(2)   - c3*exp(c5)       

     1                                        - c1*sqrt(y(1)) ) !rho_m_dot 

      return 

      end 

 ====================================================================== 
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C #===================================================================== 

C        ____           _____      _____    _____   ____ 

C          |     | |    | |     |    |     |  |       | 

C                   |_____| |____| |     |    |_____|  |____   |____ 

C                   |   \   |    | |     |    |   \    |            | 

C                   |    \  |    | |_____|    |    \   |_____   ____| 

C #===================================================================== 

      subroutine rhoResidual(y,f,n,PAR) 

      include 'vaba_param.inc'   

      integer, parameter:: maxSS=14  

      integer n, nslip 

      real*8 dt    

      real*8 y(n),yold(n),yprime(n),f(n),PAR(10*maxSS+4) 

C Un-PACK relevant parameters  from Array PAR 

      nslip     = int ( PAR(1) )  

      yold(1:n) = PAR (2*nslip+12:2*nslip+13) 

      dt        = PAR ( size(PAR,1) )  

C 

      call rhoDot(y,yprime,PAR) 

      f( 1) = y( 1) - yold( 1) - dt*yprime( 1) 

      f( 2) = y( 2) - yold( 2) - dt*yprime( 2) 

       

      return 

      end 

C ====================================================================== 
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C #===================================================================== 

C               _______               __    ___ 

C                  |    |   |\  |   |    |        \    /  |      | 

C                  |    |   | \ |   |    |         \  /   | --   | 

C                  |____|   |  \|   |    |          \/    | __   |___ 

C             

    

C    

C    This subroutine rescales all slips directions and normals to unity 

C #===================================================================== 

      subroutine unit_vector(m,n,slipn,slips) 

      include 'vaba_param.inc' 

      integer n, m, i, k, j 

      real*8,dimension(n,m):: slipn, slips 

      real*8 anorm_n, anorm_s, sum_n, sum_s 

 

      sum_n = 0.0 

      sum_s = 0.0 

 

      do i = 1, n 

         do k = 1, m  

            sum_n = sum_n + (abs(slipn(i,k)))**2. 

            sum_s = sum_s + (abs(slips(i,k)))**2. 

         end do 

         anorm_n = sqrt(sum_n)         

         anorm_s = sqrt(sum_s) 

         do j = 1, m 

            slipn(i,j) = slipn(i,j)/anorm_n 

            slips(i,j) = slips(i,j)/anorm_s 

         end do 

         sum_n = 0.0 

         sum_s = 0.0 

      end do 

      return  

      end  

C ====================================================================== 
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C #===================================================================== 

C       ____   ____  _____        ______   ______ 

C                  |    | |    |   |      /\     |    | 

C                  |___/  |    |   |     /  \    |    |_____ 

C                  |   \  |    |   |    / -- \   |    | 

C                  |    | |____|   |   /      \  |    |______ 

C             

    

C #===================================================================== 

      subroutine rotate(stressNew,Rnew,sigGLB1,sigGLB2,sigGLB3, 

     1                                    sigGLB4,sigGLB5,sigGLB6) 

      include 'vaba_param.inc' 

C Real Scalar     

      real*8 stressNew(6), Rnew(3,3),sigGLB1,sigGLB2,sigGLB3 

      real*8                         sigGLB4,sigGLB5,sigGLB6 

  

 

 

 

   stressNew(1) =  

     1         Rnew(1,1)**2.d0*sigGLB1+2.d0*Rnew(1,1)*Rnew(1,2)*sigGLB4+ 

     2         2.d0*Rnew(1,1)*Rnew(1,3)*sigGLB6+Rnew(1,2)**2.d0*sigGLB2+ 

     3         2.d0*Rnew(1,2)*Rnew(1,3)*sigGLB5+Rnew(1,3)**2.d0*sigGLB3  

   stressNew(2) = 

     1         Rnew(2,1)**2.d0*sigGLB1+2.d0*Rnew(2,1)*Rnew(2,2)*sigGLB4+ 

     2         2.d0*Rnew(2,1)*Rnew(2,3)*sigGLB6+Rnew(2,2)**2.d0*sigGLB2+ 

     3         2.d0*Rnew(2,2)*Rnew(2,3)*sigGLB5+Rnew(2,3)**2.d0*sigGLB3   

   stressNew(3) =  

     1         Rnew(3,1)**2.d0*sigGLB1+2.*Rnew(3,1)*Rnew(3,2)*sigGLB4+ 

     2         2.d0*Rnew(3,1)*Rnew(3,3)*sigGLB6+Rnew(3,2)**2.d0*sigGLB2+ 

     3         2.d0*Rnew(3,2)*Rnew(3,3)*sigGLB5+Rnew(3,3)**2.d0*sigGLB3   

   stressNew(4) =  

     1         Rnew(1,1)*Rnew(2,1)*sigGLB1+Rnew(1,1)*Rnew(2,2)*sigGLB4+ 

     2         Rnew(1,1)*Rnew(2,3)*sigGLB6+Rnew(1,2)*Rnew(2,1)*sigGLB4+ 

     3         Rnew(1,2)*Rnew(2,2)*sigGLB2+Rnew(1,2)*Rnew(2,3)*sigGLB5+ 

     4         Rnew(1,3)*Rnew(2,1)*sigGLB6+Rnew(1,3)*Rnew(2,2)*sigGLB5+ 

     5         Rnew(1,3)*Rnew(2,3)*sigGLB3  

         stressNew(5) =  

     1         Rnew(2,1)*Rnew(3,1)*sigGLB1+Rnew(2,1)*Rnew(3,2)*sigGLB4+ 

     2         Rnew(2,1)*Rnew(3,3)*sigGLB6+Rnew(2,2)*Rnew(3,1)*sigGLB4+ 

     3         Rnew(2,2)*Rnew(3,2)*sigGLB2+Rnew(2,2)*Rnew(3,3)*sigGLB5+ 

     4         Rnew(2,3)*Rnew(3,1)*sigGLB6+Rnew(2,3)*Rnew(3,2)*sigGLB5+ 

     5         Rnew(2,3)*Rnew(3,3)*sigGLB3  

         stressNew(6) =  

     1         Rnew(1,1)*Rnew(3,1)*sigGLB1+Rnew(1,1)*Rnew(3,2)*sigGLB4+ 

     2         Rnew(1,1)*Rnew(3,3)*sigGLB6+Rnew(1,2)*Rnew(3,1)*sigGLB4+ 

     3         Rnew(1,2)*Rnew(3,2)*sigGLB2+Rnew(1,2)*Rnew(3,3)*sigGLB5+ 

     4         Rnew(1,3)*Rnew(3,1)*sigGLB6+Rnew(1,3)*Rnew(3,2)*sigGLB5+ 

     5         Rnew(1,3)*Rnew(3,3)*sigGLB3 

      return  

      end  

C ====================================================================== 

 

 



164 

 

C #===================================================================== 

C       _____    ____ _______  ____  ____       

C                  |        |        |    |     |    | |  |\   | 

C                  |   --   |---     |    |___  |___ | |  | \  | 

C                  |    |   |        |        | |      |  |  \ | 

C                  |____|   |____    |    ____| |      |  |   \|   

C       

C           This subroutine computes the spin and deformation rate 

C #===================================================================== 

 

      subroutine getSpinDij(dt,fNew,fOld,Spin,Dij) 

      include 'vaba_param.inc' 

C Real Scalar     

      real*8 F11DD,F22DD,F33DD,F12DD,F23DD,F31DD,F21DD,F32DD,F13DD 

      real*8 F11DI,F22DI,F33DI,F12DI,F23DI,F31DI,F21DI,F32DI,F13DI    

      real*8 F11DV,F22DV,F33DV,F12DV,F23DV,F31DV,F21DV,F32DV,F13DV    

      real*8 VG11, VG22, VG33, VG12, VG23, VG31, VG21, VG32, VG13    

      real*8 fdet, dt 

C Vectorial/ Matrix Definitions 

      real*8 fNew(9),fOld(9),Spin(3),Dij(6) 

 

 

         Spin(1) = 0.d0 

   Spin(2) = 0.d0 

   Spin(3) = 0.d0 

   Dij(1)  = 0.d0 

   Dij(2)  = 0.d0 

   Dij(3)  = 0.d0 

   Dij(4)  = 0.d0 

   Dij(5)  = 0.d0 

   Dij(6)  = 0.d0 

C F_ij and F_dot_ij:    

   f11dd = fNew( 1)  

   f22dd = fNew( 2)   

   f33dd = fNew( 3)    

   f12dd = fNew( 4)    

        f23dd = fNew( 5)   

        f31dd = fNew( 6)  

        f21dd = fNew( 7) 

        f32dd = fNew( 8)  

        f13dd = fNew( 9)   

  f11dv = ( fNew( 1)  - fOld( 1) )/dt  

  f22dv = ( fNew( 2)  - fOld( 2) )/dt   

  f33dv = ( fNew( 3)  - fOld( 3) )/dt   

  f12dv = ( fNew( 4)  - fOld( 4) )/dt        

        f23dv = ( fNew( 5)  - fOld( 5) )/dt   

        f31dv = ( fNew( 6)  - fOld( 6) )/dt   

        f21dv = ( fNew( 7)  - fOld( 7) )/dt   

        f32dv = ( fNew( 8)  - fOld( 8) )/dt   

        f13dv = ( fNew( 9)  - fOld( 9) )/dt       

 

  fdet  = (f11dd*f22dd*f33dd - f11dd*f23dd*f32dd- 

     1           f21dd*f12dd*f33dd + f21dd*f13dd*f32dd+ 

     2           f31dd*f12dd*f23dd - f31dd*f13dd*f22dd) 
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C inv(F_ij) 

    f11di =  (  f22dd*f33dd - f23dd*f32dd )/ fdet  

    f22di =  (  f11dd*f33dd - f13dd*f31dd )/ fdet  

    f33di =  (  f11dd*f22dd - f12dd*f21dd )/ fdet  

    f12di =  ( -f12dd*f33dd + f13dd*f32dd )/ fdet  

    f23di =  ( -f11dd*f23dd + f13dd*f21dd )/ fdet   

    f31di =  (  f21dd*f32dd - f22dd*f31dd )/ fdet  

    f21di =  ( -f21dd*f33dd + f23dd*f31dd )/ fdet   

    f32di =  ( -f11dd*f32dd + f12dd*f31dd )/ fdet   

    f13di =  (  f12dd*f23dd - f13dd*f22dd )/ fdet          

C L_ij = F_dot_ik * inv(F_kj)    

    vg11 = f11dv*f11di+f12dv*f21di+f13dv*f31di 

    vg22 = f21dv*f12di+f22dv*f22di+f23dv*f32di 

    vg33 = f31dv*f13di+f32dv*f23di+f33dv*f33di 

    vg12 = f11dv*f12di+f12dv*f22di+f13dv*f32di 

    vg23 = f21dv*f13di+f22dv*f23di+f23dv*f33di 

    vg31 = f31dv*f11di+f32dv*f21di+f33dv*f31di 

    vg21 = f21dv*f11di+f22dv*f21di+f23dv*f31di 

    vg32 = f31dv*f12di+f32dv*f22di+f33dv*f32di 

    vg13 = f11dv*f13di+f12dv*f23di+f13dv*f33di    

C Wij = asym(L_ij)    

    Spin(1) = 0.5d0*(vg21 - vg12) 

    Spin(2) = 0.5d0*(vg32 - vg23) 

    Spin(3) = 0.5d0*(vg13 - vg31) 

 

     

C Dij = sym(L_ij) 

             Dij(1) = vg11 

   Dij(2) = vg22 

   Dij(3) = vg33 

   Dij(4) = 0.5d0*(vg21 + vg12) 

   Dij(5) = 0.5d0*(vg32 + vg23) 

   Dij(6) = 0.5d0*(vg13 + vg31)    

   return 

   end 

C ====================================================================== 
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C #===================================================================== 

C       _____    ____  _____   ____   ____  _____     

C                  |        |        |    |    | |    |   |   

C                  |   --   |---     |    |___ | |    |   |   

C                  |    |   |        |    |   \  |    |   |   

C                  |____|   |____    |    |    | |____|   |    

C               

C             This subroutine computes the Element Rotation Matrix 

C #===================================================================== 

      subroutine getRot(fNew,strtchNew,R) 

        include 'vaba_param.inc'  

   real*8 fnew(9), strtchNew(9), R(3,3) 

   real*8 detFU, U11,U12,U22,U23,U31,U33 

   real*8 F11,F12,F13,F21,F22,F23,F31,F32,F33 

C     Define Deformation gradient components    

   F11 = fNew(1) 

   F22 = fNew(2) 

   F33 = fNew(3) 

   F12 = fNew(4) 

         F23 = fNew(5) 

         F31 = fNew(6) 

         F21 = fNew(7) 

         F32 = fNew(8) 

         F13 = fNew(9) 

C     Define Stretch Matrix components    

   U11 = strtchNew(1) 

   U22 = strtchNew(2) 

   U33 = strtchNew(3) 

   U12 = strtchNew(4) 

         U23 = strtchNew(5) 

         U31 = strtchNew(6) 

C     Compute rotation matrix using R = F*inv(U){Polar decomposition of F} 

C     Actually, store R_transpose 

         detFU =      U11*U22*U33-U11*U23**2.d0-U12**2.d0*U33+ 

     1           2.d0*U31*U12*U23-U22*U31**2.d0   

         R(1,1) = ( F11*U22*U33-F11*U23**2.d0-F12*U12*U33+ 

     1              F12*U23*U31+F13*U12*U23-F13*U22*U31  )/detFU      

   R(2,1) = (-F11*U12*U33+F11*U23*U31+F12*U11*U33- 

     1              F12*U31**2.d0-F13*U11*U23+F13*U12*U31)/detFU     

   R(3,1) = ( F11*U12*U23-F11*U22*U31-F12*U11*U23+ 

     1           F12*U12*U31+F13*U11*U22-F13*U12**2.d0)/detFU 

   R(1,2) = ( F21*U22*U33-F21*U23**2.d0-F22*U12*U33+ 

     1           F22*U23*U31+F23*U12*U23-F23*U22*U31  )/detFU     

   R(2,2) = (-F21*U12*U33+F21*U23*U31+F22*U11*U33- 

     1           F22*U31**2.d0-F23*U11*U23+F23*U12*U31)/detFU  

   R(3,2) = ( F21*U12*U23-F21*U22*U31-F22*U11*U23+ 

     1           F22*U12*U31+F23*U11*U22-F23*U12**2.d0)/detFU 

   R(1,3) = ( F31*U22*U33-F31*U23**2.d0-F32*U12*U33+ 

     1           F32*U23*U31+F33*U12*U23-F33*U22*U31  )/detFU 

   R(2,3) = (-F31*U12*U33+F31*U23*U31+F32*U11*U33- 

     1           F32*U31**2.d0-F33*U11*U23+F33*U12*U31)/detFU 

   R(3,3) = ( F31*U12*U23-F31*U22*U31-F32*U11*U23+ 

     1           F32*U12*U31+F33*U11*U22-F33*U12**2.d0)/detFU 

   return  
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   end 

C ======================================================================  


