
Nonlinear Finite Elements for Continua and Structures, , Second Edition.

© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

Nonlinear Finite Elements for

Continua and Structures, Second Edition

Solution Manual

Miguel A. Bessa

Department of Mechanical Engineering

Northwestern University

Evanston, Illinois, USA

Khalil I. Elkhodary

Department of Mechanical Engineering

The American University in Cairo

Cairo, Egypt

Wing Kam Liu

Department of Mechanical Engineering

Northwestern University

Evanston, Illinois, USA

Ted Belytschko

Department of Mechanical Engineering

Northwestern University

Evanston, Illinois, USA

Brian Moran

Physical Sciences and Engineering Division

King Abdullah University of Science and Technology

Thuwal, Kingdom of Saudi Arabia

2

Acknowledgements

Special thanks to Jifeng Zhao, Patrick Lea and Rajiv Malhotra for providing feedback and

correcting important parts of this manual. We would also like to thank Brendan Abberton, Ying

Li, John Moore, and Wylie Stroberg.

The first author would like to thank his wife for her enormous patience and support, and even for

typing some of the equations of this manual!

3

CHAPTER 1: Introduction

1.1. Show that the diffusion equation (heat conduction is one example) u,xx = αu,t, where

α is a positive constant, is parabolic.

Solution to 1.1.

The above equation can be reduced to a first order form following the same procedure

presented in Section 1.5. We let and from which we obtain the two first-

order equations:

Expressing the derivatives of the dependent variables as

And writing the above system in matrix form,

[

]

{

} {

}

 () ()

Dividing by

4

From which we conclude that the diffusion equation is parabolic.

1.2. Determine the classification of the equation for the dynamics of beams, u,xxxx = αu,tt.

Solution to 1.2.

Considering the solution for exercise 1, by inspection, the equation for the dynamics of

beams is also parabolic. Note that, if and we get

5

CHAPTER 2: Lagrangian and Eulerian finite elements in one

dimension

2.1. Transform the principle of virtual work to the principle of virtual power by letting

δu = δv and using the conservation of mass and the transformations for the stresses.

(Note that this is possible since the admissibility conditions on the two sets of test

and trial function spaces are identical).

Solution to 2.1.

The Principle of virtual work is:

∫ ()

 (
)| ∫

 ∫

 ̈

The transformation to the principle of virtual power is possible by letting using the

conservation of mass, , the transformation for the stresses, , and

using the chain rule

∫ ()

 ()| ∫

 ∫ ̇

∫ [() (̇)] ()|

2.2. Consider a tapered two-node element with a linear displacement field as in Example

2.1 where the cross-sectional area A0 = A01 (1 – ξ) + A02ξ, where A01 and A02 are the

initial cross-sectional areas at nodes 1 and 2. Assume that the nominal stress P is

also linear in the element, i.e. P = P1(1 – ξ) + P2ξ.

6

(a) Using the total Lagrangian formulation, develop expressions for the internal

nodal forces. For a constant body force, develop the external nodal forces.

Compare the internal and external nodal forces for the case when A01 = A02 =

A0 and P1 = P2 to the results in Example 2.1.

(b) Develop the consistent mass matrix. Then obtain a diagonal form of the mass

matrix by the row-sum technique. Find the frequencies of a single element

with consistent mass and the diagonal mass by solving the eigenvalue

problem

2 01 02

0

1 1()
where

1 12

PFE A A


 
   

 
Ky My K

Solution to 2.2a).

Similarly to example 2.1, the displacement field is given by the linear Lagrange

interpolant expressed in terms of the material coordinates:

 ()

 [] {

 ()

 ()
}

where

 [] and .

The strain measure is evaluated in terms of the nodal displacements by using

 ∑

 () ∑

 [] {

 ()

 ()
}

where

[].

However, the displacement field can also be expressed in parent coordinates

 () [] {
 ()

 ()
}

7

where () [], with

 .

Using parent coordinates, the displacement field becomes

 ()
 ()

 ()

 [] {

 ()

 ()
}

where
 ()

[]

We can now obtain the internal nodal forces:

 ∫

 ∫
 ()

 ∫

[

] (())(())

 () ()

{

}

The external nodal forces are:

 ∫

 ∫

 ()

 ∫

[

] (())

 {

}

Finally, we can compare these results with the ones obtained in example 2.1. The internal

and external nodal forces for the case when and become:

 [

]

8

 [

]

Which are the same results obtained in example 2.1 (provided that)

Solution to 2.2b).

Consistent mass matrix:

 ∫

 ∫

 () () ()

[

]

Diagonal Mass matrix (∑)

[

]

In order to find the natural frequencies, we need to solve the eigenvalue problem using

the stiffness matrix provided in the problem statement:

 ()

Hence,

 ()

Solving for the consistent mass matrix
 , we find (besides the trivial):

9

 √ ()

 ()
√

Solving for the diagonal mass matrix
 , we find (besides the trivial):

 ()

 √()()
√

Note that .

2.3. Consider a tapered two-node element with a linear displacement field in the updated

Lagrangian formulation as in Example 2.4. Let the current cross-sectional area be

given by A = A1(1 – ξ) + A2ξ, where A1 and A2 are the current cross-sectional areas at

nodes 1 and 2. Develop the internal nodal forces in terms of the Cauchy stress for

the updated Lagrangian formulation assuming σ = σ1(1 – ξ) + σ2ξ where σ1 and σ2

are the Cauchy stresses at the two nodes. Develop the nodal external forces for a

constant body force.

Solution to 2.3.

Internal nodal forces:

 ∫

 ∫

()

 ()

 []

 {

} ()

10

 ∫ [

]

 (())(())

 [

()

()] {

}

External nodal forces:

 ∫

 ∫ [

] (())

{

}

2.4. Consider a 2-element mesh consisting of elements of length ℓ with constant cross-

sectional area A. Assemble a consistent mass matrix and a stiffness matrix and

obtain the frequency for the two element mesh with all nodes free (the eigenvalue

problem is 3 × 3). The frequency analysis assumes a linear response so the initial

and current geometry are identical. Repeat the same problem with a lumped mass.

Compare the frequencies for the lumped and consistent mass matrices to the exact

frequency for a free-free rod, ,
c

n
L


  where n = 0, 1, … Observe that the

consistent mass frequencies are above the exact, whereas the diagonal mass

frequencies are below the exact.

Solution to 2.4.

Calculating the consistent mass matrix for each element:

11

 ()
 ()

 ∫

 ∫

For a two-node element with length :

 []

 [] {

} ()

Then,

 ∫ [

] []

 [

]

Assemble the mass matrix for the two element mesh according to the connectivity

matrices:

 () ()
 () ()

 [

]

 [

] [

]

 [

]

[

]

The stiffness matrix for each element (considering linear elastic isotropic material):

 () () ∫

 [

]

Assembling the stiffness matrix for the two element mesh:

 () () () ()

[

]

12

We can now determine the natural frequencies solving the eigenvalue problem as in

exercise 2:

 ()

Using the consistent mass matrix:

 ()

√

√

 ̃

 √

√

Using the lumped mass matrix:

 [

]

 ()

√

√

√

The exact solution for the first 3 natural frequencies is ()

So we see that the frequencies obtained with the consistent mass matrix are above the

exact solution and the frequencies for the lumped mass matrix are below.

13

2.5. Repeat Example 2.6 for spherical symmetry, where

 ,

1
, , ,

rr rr

rr r r

D

D D v D D vr
r

D

   

 







   
   

       
   
   

D σ

Solution to 2.5.

For spherical symmetry,

 {

}

{

 }

Momentum equation in spherical coordinates, for this problem:

 () ̇

 ∫ ∫ ∫ (

)

 ∫

Considering a linear velocity field:

 () [] {
 ()
 ()

}

14

with [], the components of the rate-of-deformation can be determined as

follows:

 ()

 [] {
 ()
 ()

}

 {

} ()

Thus,

[] {

 ()

 ()
}

with . The remaining components of the rate-of-deformation are:

[] {

 ()

 ()
}

From which we obtain the rate-of-deformation:

[

]

 {
 ()

 ()
}

with () , and .

The internal forces can now be calculated:

 ∫ { }

15

 ∫

[

()

()

()

()]

 {

} (())

The consistent mass matrix can be calculated as:

 ∫ [

] []

 (())

[
 (

) (

)

 (

) (

)
]

2.6. (a) Develop an expression for the principle of virtual power and derive the

corresponding strong form.

(b) For a two node element with a linear velocity field, develop B, the internal

nodal forces
int

ef in terms of the stresses, and the consistent mass matrix Me.

For constant body force, develop an expression for the nodal external forces

ext

ef .

Solution to 2.6a).

See sections 2.6 & 2.7.

Solution to 2.6b).

For a two node element with a linear velocity field, the shape functions are:

 []

16

From which we can write:

 [] {

} ()

 []

Therefore, the internal nodal forces are:

 ∫

 ∫

[

]

 {

}

The consistent mass matrix is:

 ∫ [

] []

[

]

And the external nodal forces are:

 ∫ [

]

{

}

17

CHAPTER 3: Continuum mechanics

3.1. Consider the element shown in Figure 3.4. Let the motion be given by

1

,
2

x X Yt y Y Xt   

(a) Sketch the element at time t = 1. Evaluate the deformation gradient and the

Green strain tensor at this time.

(b) Evaluate the velocity and acceleration of the element at t = 1.

(c) Evaluate the rate-of-deformation and the spin tensor of the element at t = 1.

(d) Repeat the above at t = 0.5.

(e) Evaluate the Jacobian determinant as a function of time and determine for

how long it remains positive. Sketch the element at the time that the Jacobian

changes sign. What can you say about the motion at that time?

Solution to 3.1a).

For the nodal coordinates are:

2
2 x,X

y,Y

3

1

3

1

2

x

y

1

1

1

Deformed at t=1

1

Undeformed

Sketches of the element in the undeformed configuration and the deformed configuration at t=1.

18

Deformation gradient:

[

]

 [

]

 | [

]

Green-Lagrange strain tensor:

 ()

[

]

 | [

]

Solution to 3.1b).

{

 } [

] {

 }

The velocity is obtained by taking the derivative of this motion with respect to time,

{

} {

 ̇
 ̇
} [

] {

}

The acceleration in the material description is obtained by taking the time derivatives of

the velocities:

{

} {

 ̇
 ̇
} [

] {

}

19

Since it is asked for the velocity and acceleration of the element at t=1, we should

substitute that value in t, but looking to the obtained velocities and accelerations we see

that they are constant in time so:

 | [

] {

} {

}

 | [

] {

} {

}

Solution to 3.1c).

Rate-of-deformation:

()

The velocity gradient can be calculated from:

 ̇

 ̇ [

]

 [

]

Therefore,

 ̇ [

]

[

]

20

 | [

]

The spin tensor is simple to obtain:

() [

]

 | [

]

Solution to 3.1d).

Repeating the exercise, now considering t=0.5:

2
2 x,X

y,Y

3

1

3

0.5

2

x

y

1

1

0.5

Deformed at t=0.5

1.5

Undeformed

0.5

Sketches of the element in the undeformed configuration and the deformed configuration at t=0.5.

21

Deformation gradient and Green strain tensor at t=0.5:

 | [

]

 | [

]

Velocity and acceleration at t=0.5:

 | {

} [

] {

} {

}

 | [

] {

} {

}

Rate of deformation:

 | [

]

Spin tensor:

 | [

]

Solution to 3.1e).

The Jacobian is obtained as:

 () |

|

 (√ √) [√ [

The Jacobian changes sign at √ , and the motion at that time is:

22

 √

 √

We conclude that the element collapses in itself leading to a zero element area which

causes a singularity because the deformation gradient cannot be inverted anymore.

3.2. Consider the motion given in Example 3.13, (E3.13.1). Find the velocity gradient L,

the rate-of-deformation D, the spin tensor W and the angular velocity Ω as

functions of time. Plot the spin and the angular velocity as function of time on the

interval t  [0,4]. Does this shed any light on the difference between the Green-

Naghdi and Jaumann material shown in Fig. 3.13?

Solution to 3.2.

Motion of the element given in Example 3.13:

3

1

2

x

y

1

1 √

.5

√

.5
Sketch of the element at the time the Jacobian changes sign.

23

The deformation gradient, its time derivative and its inverse are:

 [

] ̇ [

] [

]

The velocity gradient, the rate of deformation and the spin tensor are:

 ̇ [

]

 () [

]

() [

]

The angular velocity Ω is calculated by:

 ̇

where and ()

Therefore,

 [

]

The eigenvalues of are obtained from:

 ()

 √

 (√) √

 (√)

The eigenvectors of are obtained from:

(
)

First eigenvector

()

 (√)

24

Normalizing the vector to be a unit vector:

(
) [

 (√)

]

√

()

 √√

√
 (√)

() √√

Second eigenvector

()

(√)

Normalizing the vector to be a unit vector:

(
) [

(√)

]

√

()

 √√

√
 (√)

()

 √√

We can finally determine the stretch tensor from:

 [

] [

] [

]

This results in very long components of the stretch tensor. The same happens for the

computation of the rotation tensor, which requires to determine the inverse of U and to

multiply that by the gradient tensor F:

After computing the rotation tensor it is possible to obtain the angular velocity from:

 ̇

25

Due to the size of the components of each of the above referred tensors it is inadequate to

write them here. Therefore, here we present the plot of the only nonzero component of

the spin tensor and the angular tensor as a function of time on the interval

 [].

Spin and angular velocity as function of time on the interval [].

Observing the plot it is clear that the spin tensor and the angular velocity tensor have very

different values over time, although they start with the same value at t=0. The spin tensor,

for this problem, is constant. On the other hand, the angular velocity is not. It decreases

as time passes.

Therefore, looking to the expressions that define the Jaumann rate and the Green-Naghdi

rate,

26

We see that the rates will have different values because they measure the rotation with

different entities: the Jaumann rate uses the spin tensor, whereas the Green-Naghdi rate

uses the angular velocity tensor. Hence, the latter will have a lower value when compared

with the first.

3.3. Consider the three-node rod element shown in Figure 3.15. Use the standard 3-node

shape functions for ˆ
xv and ˆ .yv The nodal coordinates are given by

 1 2 3 1 2 3sin , 0, sin 0, (1 cos), 0x r x x r y y r y         

The nodal velocities at each node are in the radial direction as shown. Evaluate the

corotational rate-of-deformation at node 2 in terms of the nodal velocities. For this

point, the corotational coordinate system is coincident with the global system.

Compare the result with the result obtained by using cylindrical coordinates,

.rv

r
D  Repeat the procedure at the Gauss quadrature point ξ = – 3

–½
for θ = 0.1

rad and θ = 0.05 rad and compare to ;rv

r
D  the corotational system for the

quadrature point is shown on the RHS of Figure 3.15.

Solution to 3.3.

Evaluating the figures it is possible to write the nodal coordinates with respect to a

corotational system based on any given point with a parent coordinate :

 ̂ () ()

 ̂ () ()

where and .

27

Using the above result we can write the current coordinates in the corotational system by

using the shape functions to interpolate the nodal values:

 ̂ ̂

Also by evaluating the figure, the nodal velocities in the corotational frame can be written

as:

 ̂ ()

 ̂ ̂

If we want to determine the corotational rate-of-deformation at node 2, the corotational

system is located at:

For this point, the nodal coordinates have the following value:

 ̂ ̂ ()

So, each node has the coordinates:

 ̂ ̂ ()

 ̂ ̂

 ̂ ̂ ()

And the nodal velocities are:

 ̂ ̂

 ̂ ̂

 ̂ () ̂ ()

Now, using the shape functions for a 3 node rod element:

 [

 ()

 ()]

28

We can determine at node 2 in order to compare it with the result obtained using

cylindrical coordinates .

 ̂
 ̂

 ̂

 ̂

 ̂

 (
 ̂

)

 ̂

 ̂

 { }

[

]

|
|

Since,

(
 ̂

)

the corotational rate-of-deformation at node 2,

 ̂
 ̂

(
 ̂

)

 ̂

 ̂
 { }

[

]

is then proven to be the same as the rate-of-deformation using cylindrical coordinates

 ̂

 .

Now we need to repeat the problem for

√

For this point the nodal coordinates in the corotational system can be calculated as

before. For instance, the x-component of the corotational coordinate for node 1 is:

29

 ̂ (() (

√
)) (

√
)

 (() (

√
)) (

√
)

Calculating the values for :

 ̂ | ̃ ̂ | ̃

 ̂ | ̃ ̂ | ̃

 ̂ | ̃ ̂ | ̃

Calculating the values for :

 ̂ | ̃ ̂ | ̃

 ̂ | ̃ ̂ | ̃

 ̂ | ̃ ̂ | ̃

Also, following the same procedure as before, the nodal velocities for can

be determined:

 ̂ | ̃ ̂ | ̃

 ̂ | ̃ ̂ | ̃

 ̂ |
 ̃ ̂ |

 ̃

While the nodal velocities for are:

 ̂ | ̃ ̂ | ̃

 ̂ | ̃ ̂ | ̃

 ̂ |
 ̃ ̂ |

 ̃

We can now calculate ̂ :

30

 ̂
 ̂
 ̂

 ̂

 ̂

 ̂
 (

 ̂

)

 ̂

|

 ̂

 { }

{

 (

√
)

 (

√
)

 (

√
)
}

 ̂

|

 ̃

 ̂

|

 ̃

 ̂
 ̂

|

 { }

{

 (

√
)

√

√ }

 ̃

 ̂
 ̂

|

 ̃

Therefore, we again conclude that ̂ | ̂ |

 .

3.4. Use Nanson’s relation (3.4.5) to show that the material time derivative of a surface

integral is given by

 () T

S S

d
g dS g g g dS

dt
       n v I L n

This result is used in Chapter 6 in the derivation of load stiffness.

31

Solution to 3.4.

From Nanson’s relation:

We can write:

∫

∫

 ∫ (̇
 ̇

 ̇
)

 ∫ [(̇)
 ̇

]

Considering ̇

 ̇ ̇

∫ ∫[(̇)]

 ∫[(̇)]

 ∫[(̇)]

Noting that:

() ̇ ̇

Therefore,

 ∫

 ∫[(̇)]

32

3.5. (a) Show that for any two second order tensors A and B, the Jaumann rate has

the property that

 (:) : : : :J J   A B A B + A B A B A B

(b) Show that for symmetric tensors A and B, the additional results

 : : or : :J J  A B A B A B A B

hold if A and B commute (i.e., are coaxial or have the same principal

directions).

(c) Finally, show that the results in a) and b) hold for any spin-based rate, i.e.,

T    A A A  

where Ω = –Ω
T
 is a spin tensor.

These results, due to Prager, are used in Chapter 5 in developing the elasto-plastic

tangent modulus.

Solution to 3.5a).

From the definition of Jaumann rate:

We want to show that

() ̇ ̇

Developing the RHS:

 (̇) (̇)

 ̇ () () ̇ () ()

 ̇ () () ̇ () ()

Where in the last line we used the definition of skew-symmetric tensor for and the

property of the double dot product .

33

Recalling that any skew-symmetric second-order tensor can be expressed in terms of the

components of a vector , called axial vector, we can rewrite the above equation as:

 ̇ () () ̇ () ()

Therefore, we can now permute the order of the entities accordingly (odd permutations

need a negative sign):

 ̇ () () ̇ () ()

 ̇ ̇

Hence,

() ̇ ̇

Solution to 3.5b).

It is enough to prove one of the results, let's prove that ̇

 (̇) ̇ () ()

 ̇ () ()

Recalling as a property of the double dot product, and noting that and

are symmetric tensors, we can rewrite the above equation as:

 ̇ () () ̇ () ()

 ̇ () () ̇ ()

Rewriting the above result using the axial vector :

 ̇ ()

34

If and are co-axial tensors they have the same eigenvectors; therefore, they can be

written as:

 ∑
() ()

 ∑
() ()

where stands for the dyadic product.

We can then write:

 ̇ ∑
() ()

 (∑
() ()

)

 ̇ ∑

∑

(() ())(() ()) ̇

Where the last equality is obtained if we note that:

 For () () , because the eigenvectors are orthogonal;

 For () () () () , due to the fact that the cross

product of () with produces a perpendicular vector to both these vectors,

which is also perpendicular to ().

Solution to 3.5c).

Trivial considering the previous answers.

3.6. (a) Use the results in Problem 3 and the expressions for the principal invariants

of a tensor in Box 5.2 to show that the material time derivatives of the

principal invariants can be written as

35

1

2 1

1 1

3 3 3

: :

: () : : () :

trace () trace()

J

J J

J

I

I I

I I I



 

  

 

     

   

I I

I I I I

 

     

   

It follows that if the Jaumann rate of Cauchy stress vanishes, i.e., 0,J 

then the principal invariants of the Cauchy stress are stationary.

(b) Show that if the material time-derivative of the Cauchy stress is deviatoric

then the Jaumann rate of Cauchy stress is deviatoric.

From Problem 5(c), it follows that these results also hold for any symmetric tensor

and for any spin-based rate.

Solution to 3.6a).

Let’s start with the first invariant:

 ()

Therefore, calculating the time derivative of :

 ̇

() ̇ ̇

Since ̇ , and using the result obtained in Problem 5b):

 ̇ ̇

Now, considering the second invariant:

{[()] ()}

[
]

Calculating the time derivative of this invariant:

 ̇

[̇ ̇ ̇]

36

Recalling that for any two tensors and , the following holds: () , we

can rewrite the above expression as:

 ̇

[̇ (̇) (̇)]

From the following property of the double dot product of two tensors: ,

and recalling that the Cauchy stress is symmetric:

 ̇

[̇ (̇) (̇)]

[̇ (̇) (̇)]

 ̇ ̇ (̇)

Now, we can rewrite the above as:

 ̇ ̇ ̇ ̇ ̇ ̇ ̇

Therefore, using the results of Problem 5b):

 ̇ ̇ (̇)
 ()

Finally, let’s consider the third invariant:

 ()

Recalling that the derivative of the determinant of a square matrix can be expressed

using Jacobi’s formula:

[()] [()

] () [

]

We can write the time derivative of the third invariant as:

 ̇ () [̇] [̇
] [̇]

We can rewrite the above as:

37

 ̇ (̇) ̇

From the results of Problem 5b)

 ̇
 (

) [
]

Solution to 3.6b).

The first invariant of a deviatoric tensor is zero; therefore, if ̇ is deviatoric:

 (̇) (̇) ̇

However, in part (a) we derived the following result:

 ̇

Therefore,

 ()

Proving that the Jaumann rate of Cauchy stress is also deviatoric.

3.7. Starting from Eqs. (3.3.4) and (3.3.12), show that

12 2 Td d d d       x D x x F E F x

and hence that Eq. (3.3.22) holds.

Solution to 3.7.

Equation (3.3.4) is:

 ()

Equation (3.3.12) is:

38

 ()

()

From equation (3.3.4) it is possible to define as:

 ()

Going back to equation (3.3.12) and using this result:

()

() ̇

since the reference configuration does not change with time. Recalling that

 , and substituting this result in the previous equation:

() ̇

3.8. Using the statement of the conservation of momentum in the Lagrangian description

in the initial configuration, show that it implies

T T P F FP

Solution to 3.8.

From the conservation of the linear momentum in the Lagrangian description in the initial

configuration, one can write:

∫

 ∫

 ∫

39

The integral form of the conservation of the angular momentum can then be obtained by

taking the cross product of each term in the corresponding linear momentum principle

with the position vector x (in the current configuration, even though the linear momentum

is expressed in terms of the initial configuration):

∫

 ∫

 ∫

The last term on the RHS can be rewritten as:

∫

 ∫ ()

 ∫ ()

 ∫ ()

Or using the component form:

∫

 ∫

 ∫

()

 ∫ (

)

Therefore, going back to the equation of the conservation of angular momentum, using

the above obtained result, and using the component form:

∫ [

 (

)]

Noting that the first term is zero (cross product of parallel vectors), and rearranging the

remaining terms:

 ∫

(

) ∫

Noting that the expression inside the brackets is the linear momentum conservation, we

get:

 ∫

For an arbitrary volume:

40

Multiplying by

()

3.9. Extend Example 3.3 by finding the conditions at which the Jacobian becomes

negative at the Gauss quadrature points for 2 × 2 quadrature when the initial

element is rectangular with dimension a × b. Repeat for one-point quadrature, with

the quadrature point at the center of the element.

Solution to 3.9.

Since this element is not a square, the motion is not the same as in Example 3.3.

Although the motion can be easily determined for this problem we will use the

isoparametric mapping for a four node element to find the Jacobian.

The nodal coordinates in the reference configuration:

The nodal coordinates in the deformed configuration are:

The shape functions for this element are:

[()() ()() ()() ()()]

We can then write:

41

 {

} [

]

[

()()

()()

()()

()()]

{
 ()

 ()
}

 {

 } [

]

[

()()

()()

()()

()()]

{
 ()() ()()()

 ()() ()()()
}

From the result for the Lagrangian coordinates for this problem it is possible to find the

motion by explicitly writing the parent coordinates in terms of the Lagrangian

coordinates (note that this is not necessary to solve the problem; we could solve it by

writing the derivatives using the chain rule, as usual):

 {

} {

}

Substituting this result in the current coordinates we determine the motion:

 {

 }

{

()

 (

)

()

 (

)}

We can now determine the deformation gradient:

[

()

(

)

()

()

()

(

)]

Since we have the expression for the deformation gradient as a function of the

Lagrangian coordinates, to find the value of the Jacobian for the 4 Gauss points we need

to determine the coordinates of the Gauss points in the reference domain:

42

First Gauss point in parent coordinates:

√

√

In the reference domain using the mapping obtained for :

(

√
)

(

√
)

Calculating the Jacobian at this point:

 ()
(√)

(√)

Therefore, the Jacobian at the first Gauss point becomes negative for:

 √

Doing the same for the remaining Gauss points:

{

√

√ }

{

√

√ }

{

√

√ }

We arrive to the following conditions for the respective Jacobians:

 √
 (√)

 √

 √
 (√)

Finally, it was asked to calculate when the Jacobian becomes negative for the case of a

single Gauss point in the middle of the element:

 {

}

43

So, the following condition arises:

3.10. Derive (3.2.19).

Solution to 3.10.

Trivial from the textbook.

44

CHAPTER 4: Lagrangian meshes

4.1. Consider the element shown in Figure 3.4 with the motion

(,) (1) cos (1) sin
2 2

(,) (1) sin (1) cos
2 2

x t at X t bt Y t

y t at X t bt Y t

 

 

   

   

X

X

Sketch the element in the deformed configuration at t = 1 (this was already done in

Exercise 3.1).

(a) Let the only nonzero PK2 stress component in the deformed configuration be

S11. Find the nodal internal forces.

(b) For the same state of stress, find the nodal internal forces in the under-

formed configuration. What is the effect of rotating the body on the nodal

internal forces?

(c) Repeat the above parts a and b with the only non-zero components being S22

and S12. Explain the nodal internal forces in the undeformed and deformed

configurations.

Solution to 4.1a).

 | |

 | | ()

 | () |

The map between the parent element and the initial configuration is:

{

} {

} {

}

The inverse of this relation is given by:

45

{

}

 {

} {

}

where , , and .

The shape functions for the linear displacement triangle are the triangular coordinates

so This way, the matrix is given by:

 [

] [

]

 [

]

[

]

 [

]

[

]

Now, using Voigt notation the expression to calculate the internal nodal forces is:

 ∫

 { }

where

[

]

.

The terms and were calculated for the matrix; the terms of the

gradient tensor are calculated by:

 ()

|

46

()

|

 ()

|

 ()

|

Thus,

 |

[

]

We can now calculate the nodal internal forces at t=1 for a stress state at that time

with the only nonzero component being . Note that the element is considered to

have a thickness of .

 |

{

 }

 ∫

 {

}
 {

}

 |

{

 }

47

Solution to 4.1b).

For this part, it is necessary to recalculate the matrix for time t=0 (undeformed

configuration).

 |

|

|

|

|

Therefore,

 | [

]

Thus,

 |

{

 }

 ∫

 {

}

{

 }

We conclude that the effect of rotating the body on the nodal internal forces does not

change the direction of those forces relative to the body. This is explained by the fact

that the PK2 stress is an objective stress. However, the nodal internal forces change in

intensity due to the fact that the body is being stretched.

Solution to 4.1c).

If the only nonzero component is :

48

 |

 ∫
 |

 {

}

{

 }

 |

 ∫
 |

 {

}

{

 }

If the only nonzero component is :

 |

 ∫
 |

 {

}

{

 ()

 () }

 |

 ∫
 |

 {

}

{

 }

We conclude that the same effect is caused on the nodal internal forces by the rotation

of the body: the nodal forces follow the rotation, changing the intensity due to the

stretching applied to the body.

4.2. Consider the block under shear shown in Figure 3.13 with the motion given in

(E3.13.1). Evaluate the Green strain as a function of time. Plot E12 and E22 for

49

  []; explain why E22 is nonzero. Evaluate the PK2 stress for a Kirchhoff

material, using a [C
SE

] given by (5.4.58) (the matrix given in (5.4.58) is [C
τ
], but use

the same matrix).

Solution to 4.2.

The motion of the element is given by

The deformation gradient is simple to calculate:

 [

]

The Green strain as a function of time is:

 ()

[

]

The explanation for the fact that the is nonzero is simple to understand by

drawing the undeformed and deformed configurations and knowing what the Green

strain measures:

The motion to which the block is subjected imposes that the y coordinate does not

change. On the other hand, since the block is under shear, if one follows what

2 x,X

y,Y

4 3

1

Undeformed

2

x

y

4 3

1

Deformed

2

dS ds

Sketch of the deformation of the block under shear.

50

happens to an infinitesimal line segment in the Y direction in the undeformed

configuration and to what happens to the length of that infinitesimal line segment

after deformation we see that it increases such that the upper face of the block

remains at the same height.

Knowing that the Green strain measures the difference of the square of the length of

an infinitesimal segment in the deformed configuration and the undeformed

configuration, it is then intuitive to understand that is nonzero.

Finally, we need to evaluate the PK2 stress using a tangent modulus tensor

 [

]

Thus:

{

} [

] {

}

{

 ()

}

4.3. (a) Use Nanson’s relation (3.4.5)

1 0 1

0 0 0i j jid J d n d Jn F d       n n F

to show that the external nodal forces for an applied pressure p acting on the

plane – are given by

1 1

ext

0
1 1

,T

I IpN J d d    

 
   f F n

where 0 3
ˆ

  n e is the unit normal vector in parent coordinates to the plane

 – in the parent element,

(b) By using the definition of the inverse of a tensor in terms of Cramer’s rule,

i.e.

51

1 *1

det()
 



    F F
F

where
*

F is the adjoint (transpose of the matrix of co-factors) of Fξ, show

that the above expression for the external nodal forces reduces to (E4.3.16).

Solution to 4.3a).

The pressure force can be written as:

With being the normal vector to the lower face of the element corresponding to the

parent element face ς = – 1, and p being the applied pressure.

Therefore, the external nodal forces are given by:

 ∫

Using Nanson’s formula to relate the current normal to the reference normal in the parent

domain:

We can express the external nodal forces as:

 ∫ ∫

 ∫ ∫

Solution to 4.3b).

From the definition of the inverse of a tensor in terms of Cramer’s rule, we can express

the external nodal forces as:

 ∫ ∫

 ∫ ∫ ̂

 ∫ ∫ (
)

 ̂

Since (), and ̂ . The deformation gradient, which is a two-point

tensor, is given by:

52

[

]

 ̂

where are the unit vectors in the current configuration and ̂ are the unit vectors in the

parent configuration. The transpose of the adjoint matrix, which is the matrix of co-

factors is given by:

(
)

[

]

[

||

|| ̂ ||

|| ̂ ||

|| ̂

||

|| ̂ ||

|| ̂ ||

|| ̂

||

|| ̂ ||

|| ̂ ||

|| ̂

]

Therefore, from the orthonormality of the unit vectors within the same configuration,

 ̂ ̂ , it is clear that the following equality holds:

(
)

 ̂ ||

|| ||

|| ||

|| |

|

|

|

Substituting back in the equation obtained for the external nodal forces we get:

 ∫ ∫ (

)

 ̂

 ∫ ∫ |

|

|

|

53

4.4. To illustrate the flexibility in choice of reference configuration for the formulation

of the finite element equations, consider the tensor quantity,
1 ,J  

 P F σ which

can be thought of as the nominal stress tensor on the parent element domain. Show

that the equilibrium equation and boundary conditions can be written as

. 0  P in e (union of parent element domains)

0 . t  n P on Гt (traction boundary)

and derive the corresponding weak form. Introduce parent element shape functions

NI (ξ) and show that the element internal force vector can be written directly in

terms of the parent element domain as

 ∫

Solution to 4.4.

The given stress quantity can be expressed in terms of the Cauchy stress as:

The equilibrium equation in the absence of body forces is given by:

Using the result obtained for the Cauchy stress in terms of , and substituting in the

above equation:

 (

)

 (
)

 (

)

 (

)

Evaluating each term separately, starting with the first derivative and using the definition

of determinant of a tensor in index notation:

54

 (
)

 ()

 (

)

 (

)

 [

 (

)

 (

)

 (

)

]

 [

 (

)

 (

)

 (

)

]

Since

 .

For the same reason,

 (

)

Thus,

 (

)

 (

)

 (

)

 (

)

 (

)

 e

The boundary conditions can be obtained by converting:

55

Using Nanson’s relation,
 , and using the definition for given in

the problem statement. Starting with the LHS of the above equation:

From conservation of angular momentum

 , so:

Since,

We finally obtain:

Deriving the weak form is then trivial, leading to:

 ∫

 ∫ (

)

 ∫

 ∫ ̈

The internal nodal forces can then be obtained by discretizing the expression for the

internal energy:

 ∫ (

)

56

 ∫

Denoting the parent domain as the problem statement:

 ∫

57

CHAPTER 5: Constitutive models

5.1. Show that if p is the pressure, the relations 3Jp = τ:g = : eS C hold.

Solution to 5.1.

From Equation (5.7.4)

   
1 T

e e
 

  S F τ F

From Equation (5.7.3)

e eT e  C F g F

Therefore,

   
1

: : :
Te

e e eT e
 

     S C F τ F F g F τ g

In Euclidean space g I ; therefore,

11 22 33: : : () 3J J Jp       τ g τ I σ I q.e.d.

where, 11 22 33() / 3p     

5.2. Show that (sym r)  
1

: 0e


C and hence that
dev: : .p pS D S D See (5.7.39) and

(5.7.40).

Solution to 5.2.

From (5.7.40),

3
 sym

2

p e dev e

 


 

   D r C S C

Therefore,

3
sym

2

e dev e


  r C S C

58

And

   
1 13 3

sym : : :
2 2

e e dev e e e dev

 

 

    r C C S C C C S I

Since the trace of a deviatoric tensor is zero

 
1 3

sym : : 0
2

e e dev





  r C C S I q.e.d.

5.3. Derive expressions for the Lie derivatives Lvτ
dev

 and Lvτ
hyd

 in terms of the material

time derivative of the stress and the spatial velocity gradient L.

Solution to 5.3.

From equation (5.10.5), we know that

TL



    τ τ L τ τ L

Since dev hyd Jp   τ τ τ τ I , and noting how equation (5.10.5) was derived, we can

calculate the Lie derivative of the hydrostatic part of the Kirchhoff stress by replacing τ

by hyd Jpτ I :

      tracehyd T TL Jp Jp Jp Jp       τ I v L L I L L L ,

Since
 

 trace
D Jp

Jp Jp
Dt

  
I

I v I L .

Therefore, we can now determine the Lie derivative of the deviatoric part of the

Kirchhoff stress:

    tracedev hyd T TL L L Jp Jp  



         τ τ τ τ L τ τ L I L L L

Note that we could simplify the last term by using  
1

2

T D L L .

59

CHAPTER 6: Solution methods and stability

6.1. Use Nanson’s law (3.4.5) and the result obtained in exercise 4 of Chapter 3 for the

material time derivative of a surface integral,

() T

S S

d
g dS g g g dS

dt
       n v I L n ,

to develop a linearization of the load stiffness K
ext

 = f
ext

/d for a pressure load

applied on a surface mapped from the biunit square in the parent element.

Solution to 6.1.

The external nodal forces are given by

ext

I IN p d


  f n

Using the relation derived in exercise 4.3,

() T

S S

d
g dS g g g dS

dt
       n v I L n

We obtain the following expression for the time derivative of the external nodal forces:

()ext T

I IN p p p d


        f v I L n

Similarly to what was done in the textbook in equation (6.4.29), we omit the term with

the rate of change of the pressure (0p ). Thus, the external load stiffness is given by:

 ext ext T

I IJ J IpN d


        f K v v I L n

Rewriting the integral with respect to the parent domain using , ,d d d     n x x

   
1 1

, ,
1 1

ext ext T

I IJ J IpN d d   
 

         f K v v I L x x

60

Next, we switch to index notation and use , ,i k iJ J kv v N

 
1 1

, , , ,
1 1

ext

ikIJ kJ I nJ J n ik kJ J i klm l mK v pN v N v N e x x d d   
 

   

Noting that ,

qJ
J p

q p

N
N

x







 

 and
q r

pr

p q

x

x






 


 
, and evaluating the first term of the

integral separately:

, , ,

qJ l m
nJ J n ik klm l m nJ ilm

q n

N x x
v N e x x v e

x
 




  

  


   

J l m J l m
ilm nJ ilm nJ

n n

N x x N x x
e v e v

x x

 

     

      
 

       

J m J l
nJ ilm nl nJ ilm nm

N x N x
v e v e 

   

   
 

   

, , ln , ,inm nJ J m i nJ J le v N x e v N x    

, , , ,inm n m iln l ne v x e x v    

Now, evaluating the second term using the same procedure:

, , ,

T
qT J l m

kJ J i klm l m kJ klm

q i

N x x
v N e x x v e

x
 



  

  


   

J l m J l m
klm kJ klm kJ

i i

N x x N x x
e v e v

x x

 

     

      
 

       

J m J l
kJ klm il kJ klm im

N x N x
v e v e 

   

   
 

   

, , , , , , , ,kim kJ J m kli kJ J l ikm k m ilk l ke v N x e v N x e v x e x v           

Therefore, we conclude that

 
1 1

, , , ,
1 1

2ext

ikIJ kJ I inm n m iln l nK v pN e v x e x v d d     
 

   

61

Which is the same result as equation (6.4.30) in the textbook, leading to equation (6.4.33)

as shown there.

6.2. Show that (6.3.60) corresponds to the stationary points of (6.3.59).

Solution to 6.2.

Equation (6.3.60) is:

1
(, ,) () ()

2

T T

PLW W g   d λ d λ d λ λ

To examine the stationary points we will differentiate the above with respect to d and λ

separately and equate them to zero about an equilibrium point da as below:

0PL I
I

a a a

W gW

d d d


 
  

  

0PL
I I

I

W
g 




  



Rewriting the above two equations in terms of the residual r and the gradient of the

matrix G yields:

T r λ G 0

 g λ 0

6.3. Show that (6.3.61), the linearized perturbed Lagrangian equations, can be converted

to the linearized penalty equations by eliminating the Lagrange multipliers.

62

Solution to 6.3.

The linearized perturbed Lagrangian equations are:

 
 

TT

I I

 

     
     

       

r λ GdA H G

λG I g λ

Writing the equations separately:

  T T

I I      A H d G λ r λ G (1)

       G d I λ g λ (2)

Equation (6.3.47) derived for the penalty method is:

T r g G 0
(3)

Using the results obtained in exercise 2:

T r λ G 0
(4)

 g λ 0
(5)

From equations (3) and (4):

63

T Tλ G g G
(6)

Substituting equation (6) into (1):

  T T

I Ig       A H d G λ r g G

Also, from equation (5) we can write equation (2) as:

   G d I λ 0

From which we obtain

 
1 1





    λ I G d G d

(7)

Substituting equation (7) into (6)

1 T T

I Ig 


 
      

 
A H G G d r g G

Which is identical to the linearized penalty equation (6.3.49) since  is a very small

number and  is a very large number.

6.4. Obtain (6.4.20) by letting the reference configuration in (6.4.4) be the current

configuration.

64

Solution to 6.4.

Equation (6.4.4) is:

 
0

int

0
I

iI jr ir jr ir

j

N
f S F S F d

X



  



In order to obtain (6.4.20) let’s evaluate each term of the above equation separately.

Starting with the first term,

0

0
I

jr ir

j

N
S F d

X





 , if we let the reference configuration be

the current configuration (i.e. if x coincides with X) then the following equalities hold:

I I

j j

N N

X x

 


 
 ; jr jrS   ; ir irF  ; 0 

Where the second relation in the above is expressed in equation (3.7.19). Therefore, we

have obtained the first term of equation (6.4.20):

0

0
I I

jr ir ji

j j

N N
S F d d

X x

 

 

 
  

  

To obtain the second term of equation (6.4.20),

0

0
I

jr ir

j

N
S F d

X





 , we first convert the

integral to the current domain by writing:

0

1 1

0

TI I I
jr ir jr ir

j j

N N N
S F d S F J d J d

X X

 

  

  
    

     SF
X

Where in the last equality we have converted to tensor notation for convenience. Then we

can substitute in the above expression the definition of PK2 stress in terms of the Cauchy

stress,
1 1 TJ     S F σ F , and the relation F LF , resulting in:

65

 1 1 1T T T TI IN N
J d J J d   

 

 
         

  S F F σ F F L
X X

TI I
jr ir

j

N N
d L d

x


 

 
     

  σ L
x

Hence, we have obtained equation (6.4.20):

 int I
iI jr jr ir

j

N
f L d

x

 




  



6.5. Show that the critical time steps given by the updated and total Lagrangian

formulations in (6.6.61) and (6.6.63) are identical. Use the relations between tangent

moduli in Example 5.1 for uniaxial strain.

Solution to 6.5.

This can be proven by showing that the relations in equations (6.6.59) and (6.6.62) are

equivalent.

The relation in equation (6.6.59) is

  1 1

2 2

1 1 1 0

1 1 0 12

xxA C y yAl

y yl

          
      

      

and the relation in equation (6.6.62) is

 2

0 11 1 10 0 0

2 20

1 1 1 0

1 1 0 12

SEA F C S y yA l

y yl

        
      

      

The relationship between the tangent moduli for uniaxial strain is:

66

4SEC J C

Since
0 0

Al
J

A l
 and

0

l

l
  , then:

3

0

3

0

SE Al
C C

A l



Also, using the definition of PK2 stress,
1

11

T

xxS JF F  , and since a uniaxial strain

problem is being considered
0

l

F
l

 :

0
11

0

xx

Al
S

A l


Therefore, equation (6.6.62) can be re-written as:

 2

0 11 1 10 0 0

2 20

1 1 1 0

1 1 0 12

SEA F C S y yA l

y yl

        
      

      

0 0
0

1 10 0 0 0 0

2 20

1 1 1 0

1 1 0 12

xx

Al Al
A C

y yA l A l A l

y yl

 


 
 

               
      

  1 10 0 0

2 2

1 1 1 0

1 1 0 12

xxA C y yA l

y yl

          
      

      

67

Assuming conservation of mass i.e., 0 0 0Al A l  , we reach to the desired equivalence:

  1 1

2 2

1 1 1 0

1 1 0 12

xxA C y yAl

y yl

          
      

      

6.6. Develop the tangent stiffness for an axisymmetric 2-node membrane element.

Solution to 6.6.

Assuming the material is elastic isotropy with Young’s modulus E and Poisson’s ratio 

  
 

1 0

1 0

1 01 1 2

0 0 0 1 2 / 2

r r

z z

rz rz

E

 

   

   

    

 

    
           
     
 

       

which can be represented as :σ D ε .

mat T

I J d


 K B DB

ˆ ˆgeo T

I J d


 K B σB

Following the example 2.6, we have the 2D membrane with thickness a . Since the radius

of membrane is much larger than its thickness, we only consider the plane stress

condition as 0z  and shear stress free 0rz  . From example 2.6, we have

   1 2 1N N    N

68

1

21

1

1

1

1 1

21

10 0

0 00

1
0

0

1
0

N

r r
N

z

N
r

r

N N
r

z r



   
   

      
        
   
   
    
      

B
 and

2

21

2

2

2

2 2

21

10 0

0 00

0
0

1
0

N

r r
N

z

N
r

r

N N
r

z r



   
   
      
       
   
   
    
      

B

Thus,

21 21

1 2

21 21

1 1
0 0

0 0 0 0

[] 1
0 0

1 1
0 0

r r

r r

r r

 

 
 
 
 
    
 
 

 
  

B B B

where 21 2 1r r r  ,

1

21

r r

r



 and ar is the area of one radian segment.

mat TK ardr


 B DB

From Eq. (E4.6.4), we have ˆ B B , thus

geo TK ardr


 B σB

Here the integrals are taken from 2r to 1r and
int mat geoK K K  .

69

6.7. Examine the stability of a solution of the two-dimensional heat conduction equation

(kijθ,j),i = 0 in the following way. Consider an infinite slab under a uniform

temperature and apply the perturbation
t ie    n x

 where  is real. Using the

transient equations of heat conduction, determine the conditions under which the

solution is stable if kij is symmetric.

Solution to 6.7.

The heat conduction equation in 2D can be written as

  0ij

i j

f k
x x




  
     

The Taylor series expansion about the uniform temperature 0 gives

   
 

0 0 higher order terms
f

f f


   



   



The first term vanishes because the temperature is uniform, and if we neglect the higher

order terms we can write:

 
 

0 ij ij

i j i j

f
f k k

x x x x

  
    

  

            
                           

ij

ij

i j j

k
k

x x x

 


 

    
        

The second term vanishes, therefore we obtain:

 
2

0

ij

i j

k
f

x x
  


 

 

Since the transient heat conduction equation is:

 ij

i j

k f
t x x

 


   
      

Then,

70

2

0
ij

i j

k

t x x





 

  

Now considering the perturbation given in the problem statement,
t ie    n x

 where 

is real,

2

0
ij t i

i j

k
e

x x

   
 

     

n x

From which we obtain:

2

ij

i j

k

x x




 

Therefore, we conclude that

2

0, the solution is stable
ij

i j

k

x x



 
 

2

0, the solution is unstable
ij

i j

k

x x



 
 

71

CHAPTER 7: Arbitrary Lagrangian Eulerian formulations

7.1. Develop your own code (Matlab, FORTRAN, C, Maple and etc.) to solve the 1D

advection-diffusion equation

2

2

dx

d

dx

d
u







with Galerkin and SUPG method separately. [See Example 7.2]

The BCs and parameters are assigned to a real world problem to determine the particles

distribution at the steady state. Consider a 1m length segment in a long tube filled with a

solution. At steady state, the particle concentration at end A is 5% and that at end B is

20%, i.e.   05.00 x ,   2.01 x . The solvent flows in the tube from end A to B

under a constant velocity m/s. The particles diffusion coefficient in the solvent is

 m
2
/s. Please provide the distribution of particles concentration distribution

along the tube segment.

Simulate and discuss the following situations:

 (a) Mesh the domain with 10, 20, 50, 100 and 200 uniform size elements. What is

the element Peclet number Pe for each mesh? Compare the analytical solution,

Galerkin and SUPG prediction. In SUPG method, select   














e

e
P

P
x 1

coth
2

 for

each case. Discuss the stability and accuracy of the results.

(b) In the mesh with 20 uniform size elements, conduct the SUPG with

 and , where   














e

e
P

P
x 1

coth
2

0 . Discuss the

influence of .

(c) Mesh the domain with a nonuniform mesh. Discuss the following:

c.1) Where should the finer mesh be?

72

c.2) How to select a proper ?

Solution to 7.1.

Analytical solution:

The steady state linear advection-diffusion equation in one dimension is

 [] (1)

where is the dependent variable, is the kinematic viscosity (diffusion coefficient) and is a

given velocity of the system. The analytical solution of equation (1) is straightforward to obtain,

see for example Kreyszig
1
,

Substituting the given boundary conditions of () , () , and the

given flow velocity of and the particles diffusion coefficient in the solvent of

Galerkin method:

The development of the Galerkin discretization of the advection-diffusion equation using linear

shape functions is given in the book. We need to multiply equation (1) by a test function, , and

integrate over the domain

∫ (

)

 (2)

Integrating by parts and using the divergence theorem, one obtains the weak form of the

advection-diffusion equation

1
 Kreyszig, E.. Advanced Engineering Mathematics. Wiley, 2011.

73

∫

 ∫

 (3)

Performing the usual discretization using finite elements, , equation (3) for each element can

be rewritten as

(∫

) (∫

)

where and are the finite element shape functions that discretize the test and trial functions,

 and , respectively. Rewriting this equation in indicial form

where the convective matrix and the diffusion matrix are

 ∫

 ∫

Therefore, as it is shown in the book, using linear shape functions for elements of length

[

]

[

]

Finally, after assembly, the FEM matrix equations become

() (4)

SUPG method:

The Streamline Upwind Petrov-Galerkin method is obtained using the same reasoning explained

previously but replacing the test function in equation (2) by ̃, which is defined as

 ̃

where

, with being defined differently according to the problem. The idea is quite

simple: without changing the method of discretizing the advection-diffusion equation, one just

74

inserts a stabilization parameter that can be seen as an artificial viscosity. This way, the strong

form for the SUPG method is obtained as

∫ (

)

 ∑ ∫

(

)

 (5)

The first integral corresponds to the strong form of the Galerkin method, while the second term

corresponds to the upwind Petrov-Galerkin method. It is important to refer that this second term

has been subdivided into element integrals due to the fact that

 and

 are both discontinuous

in their derivatives, i.e., .

Integrating by parts the second term of Galerkin integral in equation (5)

∫

 ∫

 ∑ ∫

 ∑ ∫

 (6)

Now, if one applies the same discretization procedure shown for the Galerkin method and using

linear shape functions, one sees that the last term in the above equation is zero,

∑ ∫(

)

with . Therefore, the discretized form of equation (6) is

()

where the only difference when compared to equation (4) is the diffusion matrix, , that is

calculated replacing for . This way, the convective matrix and the diffusion matrix are

 ∫

 ∫

75

Finally, it is shown in the book how the parameter can be determined for the one dimensional

case of the advection-diffusion equation that is being evaluated in this work, leading to the

following expression

(()

)

Solution to 7.1a).

Simulation and discussion of the results.

The analytical solution and the results obtained from the Galerkin method and the SUPG method

will be presented for 5 different mesh sizes with 10, 20, 50, 100 and 200 uniform size elements.

The element Peclet number for each mesh is

Table 1. Element Peclet number for each mesh.

 10 20 50 100 200

 4 2 0.8 0.4 0.2

76

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 10 uniform elements.

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 20 uniform elements.

77

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 50 uniform elements.

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 100 uniform elements.

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 200 uniform elements.

78

All of the previous figures show the results obtained for different mesh sizes using uniform

length elements for the Galerkin and SUPG methods by comparing them with the analytical

solution. The results are consistent to Example 7.2 of the book. Indeed, when the Peclet number

is larger than 1, the Galerkin method shows an unstable solution. On the contrary the SUPG

method is stable for any Peclet number due to the stabilization parameter previously discussed.

Therefore, the Galerkin method returns spurious oscillatory concentration values, being the

oscillation higher for higher values of the Peclet number. Not surprisingly, the accuracy of the

predictions for both Galerkin and SUPG methods improves with increasing number of elements.

Due to the fact that the variation of concentration is very abrupt very close to end B, only when a

sufficient number of elements are used close to this end (roughly the last 8% of the tube) the

results are very accurate.

Finally, when comparing the accuracy of the Galerkin method and the SUPG method it is

important to understand that for the problem that is being solved there are two different physical

processes that are being modeled: 1) the transport of particles caused by the flow within the tube

of a solvent at a certain speed (in this case from end A to end B), i.e., the advective (or

convective) term; 2) the diffusion of particles from end B to end A due to the fact that the

concentration at end B is higher than at end A. This is important to keep in mind because the

SUPG method is based on introducing a parameter on the diffusion term that can be thought of

as an artificial viscosity. Hence, adding viscosity (i.e., increasing the diffusion coefficient)

increases the contribution of the diffusion term, which leads to an earlier increase of the

concentration of the particles. In conclusion, the SUPG method tends to the analytical solution

with an overestimation of the dependent variable, , when compared to the Galerkin method.

This will be clear with the analysis performed next, where we will assess the contribution of to

the solution obtained by the SUPG method.

79

Solution to 7.1b).

Influence of the parameter.

The figure below shows the predictions using different values for the parameter:

 and , where

(()

). As was predicted in the previous

section by comparing the Galerkin method with the SUPG method, it is clear that increasing the

 parameter causes an overestimation of the distribution of the concentration in the tube because

it increases unrealistically the weight of the diffusion term in the advection-diffusion equation;

the system becomes over damped.

On the other hand, if one uses lower than

(()

) then the response starts

being oscillatory due to the fact that not enough damping was introduced in the system. The

lower is, the more oscillatory the response is; in the limit, if the same response given by

the Galerkin method will be achieved.

This parametric study is very important to keep in mind once a three-dimensional system is

being analyzed, because the correct parameter is not known a priori. Therefore, one might be

over damping the system without knowing it because the response is smooth. When is too low

and the system is underdamped it is easier to detect due to the instability of the response.

Influence of the parameter in the predictions using the SUPG method.

80

Solution to 7.3c).

Nonuniform mesh.

As referred previously, increasing the number of elements increases the accuracy of the solution.

However, it was also mentioned that it is predictable that using smaller elements at end B and

larger elements at end A will produce better results, even without changing the total number of

elements, because the change in concentration is very localized at end B, being very close to zero

until the last 8% of the tube.

Several different meshes can be used to prove this hypothesis. One of the most effective meshes

for this problem can be obtained considering an exponential variation of the number of elements

along the tube towards the end B:

 () (

) (S7.1.17)

where

(

)

, with being the total number of elements of the mesh, and is a

parameter to avoid a resolution that is too low at end A (the code uses). This distribution

generates a mesh that is very coarse at the beginning of the tube and that is very refined at the

end, just like it is needed. A plot of the mesh and the distribution is shown in the figure below for

10 elements.

81

Element distribution and nonuniform mesh obtained for 10 elements.

The results obtained with this nonuniform mesh of 10 elements are also plotted in the next

figure. As predicted, even for such a low number of elements, the simulations lead to an

excellent result for both methods: Galerkin and SUPG. This was possible for the Galerkin

method because the Peclet number was calculated for each element and the elements that lead to

a variation of the particle concentration had a Peclet number lower than 1 (the first element is

 long, whether the second element is only , with the remaining elements

getting even smaller). This way, after the sixth element (, thus)

which has its first node at , the eliminating the oscillation because it is at

approximately that length that the concentration starts to increase.

82

Comparison of Analytical solution and results from the Galerkin and SUPG methods: 10 nonuniform elements.

As a final comment, the variation of the parameter was also studied using the nonuniform

mesh. As can be seen in the next figure, the influence of on the response is less pronounced

when compared with the influence on the response obtained for a uniform mesh with the double

of elements. This is reassuring because it means that if the mesh resolution is fine enough, even

if one does not know the exact value of the parameter for a tridimensional case, the response

may be accurate enough.

Influence of the parameter in the predictions using the SUPG method for a nonuniform mesh with 10 elements.

MATLAB code for Problem 7.1
%%%%%%%%%%%%%%%%%%%%% Advection-Diffusion problem %%%%%%%%%%%%%%%%%%%%%%%%%
%
% M. A. Bessa (mbessa@u.northwestern.edu)
% Northwestern University, Mechanical Engineering

83

%
% April 15, 2012
%%%
function [] = Project1_AdvectionDiffusion()
 close all; clear all; clc;
 %% Input parameters.
 uni_mesh = 1; % Select uniform [1] or nonuniform [0] mesh
 ne = 10; % Number of elements
 nn = ne+1; % Number of nodes.
 tube_length = 1.0; % Length of the tube. [m]
 phi_BC = [0.05,0.2]; % Particle concentration at end A and B
 BC_dof = [1,nn];% Degrees-of-freedom of Boundary Conditions
 u = 2; % Velocity of the solvent flow in the tube from...
 % end A to end B [m/s]
 nu = 0.025; % Particles diffusion coef. in the solvent [m^2/s]
 beta = 0.10; % Parameter for nonuniform mesh

 %% Preprocessing.
 switch uni_mesh
 case 1
 % Nodal coordinates for uniform mesh.
 X = linspace(0, tube_length, nn)';
 case 0
 % Nodal coordinates for nonuniform mesh.
 A = ne/(exp(beta*u/nu*tube_length)-1);
 for el = 0:ne
 X(el+1) = 1/beta*nu/u*log(el/A+1);
 end
 end

 % Initialize nodal variables to zero.
 phi = zeros(nn,1);

 % Connectivity matrix (each row gives nodes in an element.)
 connect = [1:length(X)-1; 2:length(X)]';

 % Calculate the length of each element
 le = zeros(ne,1); % length of each element [m]
 count = 0;
 for conn = connect'
 count = count+1;
 le(count) = X(conn(2))-X(conn(1));
 end

 %%
 % For this simple problem, using linear shape functions it is easy...
 % obtain the Convective matrix and Diffusion matrix for each element:
 L_Gal = zeros(nn,nn);
 K_Gal = zeros(nn,nn);
 L_SUPG = zeros(nn,nn);
 K_SUPG = zeros(nn,nn);
 K_SUPG_gam1 = zeros(nn,nn);
 K_SUPG_gam2 = zeros(nn,nn);
 K_SUPG_gam3 = zeros(nn,nn);
 K_SUPG_gam4 = zeros(nn,nn);
 for conn = connect'
 % Element Convective matrix
 L_Gal_e = u/2*[-1, 1; ...
 -1, 1];
 % Element Diffusion matrix
 K_Gal_e = nu/le(conn(1))*[1, -1; ...

84

 -1, 1];
 L_Gal(conn,conn) = L_Gal(conn,conn) + L_Gal_e;
 K_Gal(conn,conn) = K_Gal(conn,conn) + K_Gal_e;

 Pe = u*le(conn(1))/(2*nu);
 alpha = coth(Pe)-1/Pe;
 gamma = le(conn(1))/2*alpha;
 nu_bar = u*gamma;
 % Element Convective matrix
 L_SUPG_e = u/2*[-1, 1; ...
 -1, 1];
 % Element Diffusion matrix
 K_SUPG_e = (nu+nu_bar)/le(conn(1))*[1, -1; ...
 -1, 1];
 L_SUPG(conn,conn) = L_SUPG(conn,conn) + L_SUPG_e;
 K_SUPG(conn,conn) = K_SUPG(conn,conn) + K_SUPG_e;

 % PARAMETRIC STUDY OF GAMMA
 nu_bar1 = 10*nu_bar; % 10 times gamma
 K_SUPG_gam1_e = (nu+nu_bar1)/le(conn(1))*[1, -1; ...
 -1, 1];
 K_SUPG_gam1(conn,conn) = K_SUPG_gam1(conn,conn) + K_SUPG_gam1_e;

 nu_bar2 = 2*nu_bar; % 2 times gamma
 K_SUPG_gam2_e = (nu+nu_bar2)/le(conn(1))*[1, -1; ...
 -1, 1];
 K_SUPG_gam2(conn,conn) = K_SUPG_gam2(conn,conn) + K_SUPG_gam2_e;

 nu_bar3 = 0.5*nu_bar; % 0.5 times gamma
 K_SUPG_gam3_e = (nu+nu_bar3)/le(conn(1))*[1, -1; ...
 -1, 1];
 K_SUPG_gam3(conn,conn) = K_SUPG_gam3(conn,conn) + K_SUPG_gam3_e;

 nu_bar4 = 0.1*nu_bar; % 0.1 times gamma
 K_SUPG_gam4_e = (nu+nu_bar4)/le(conn(1))*[1, -1; ...
 -1, 1];
 K_SUPG_gam4(conn,conn) = K_SUPG_gam4(conn,conn) + K_SUPG_gam4_e;
 end

 % Since both matrices operate on phi, they can be added:
 M_Gal = L_Gal + K_Gal;
 M_SUPG = L_SUPG + K_SUPG;

 M_SUPG_gam1 = L_SUPG + K_SUPG_gam1;
 M_SUPG_gam2 = L_SUPG + K_SUPG_gam2;
 M_SUPG_gam3 = L_SUPG + K_SUPG_gam3;
 M_SUPG_gam4 = L_SUPG + K_SUPG_gam4;

 F = zeros(nn,1);
 BigNumber = 10^9;
 for i=1:length(BC_dof)
 M_Gal(BC_dof(i),BC_dof(i)) = BigNumber;
 M_SUPG(BC_dof(i),BC_dof(i)) = BigNumber;

 M_SUPG_gam1(BC_dof(i),BC_dof(i)) = BigNumber;
 M_SUPG_gam2(BC_dof(i),BC_dof(i)) = BigNumber;
 M_SUPG_gam3(BC_dof(i),BC_dof(i)) = BigNumber;
 M_SUPG_gam4(BC_dof(i),BC_dof(i)) = BigNumber;

 % RHS term ("force")

85

 F(BC_dof) = phi_BC*BigNumber;
 end

 % Solution
 phi_Gal = M_Gal \ F;
 phi_SUPG = M_SUPG \ F;

 phi_SUPG_gam1 = M_SUPG_gam1 \ F;
 phi_SUPG_gam2 = M_SUPG_gam2 \ F;
 phi_SUPG_gam3 = M_SUPG_gam3 \ F;
 phi_SUPG_gam4 = M_SUPG_gam4 \ F;

 %% Analytical solution
 phi_A = phi_BC(1);
 X_A = X(1);
 phi_B = phi_BC(end);
 X_B = X(end);

 C1 = (phi_B-phi_A)/exp(u/nu*(X_B-X_A));
 C2 = phi_A-C1*exp(u/nu*X_A);

 X_ana = X_A:(0.001*abs(X_B-X_A)):X_B;
 phi_ana = zeros(length(X_ana),1);
 phi_ana = C1*exp(u/nu*X_ana)+C2;

 figure();
 plot(X, phi_Gal, X, phi_SUPG, X_ana, phi_ana);
 title('Particles concentration vs. Tube length: 10 elements uniform mesh',...
 'FontWeight', 'bold', 'Color', [0,0,1]);
 xlabel('X (m)', 'FontWeight', 'bold');
 ylabel('\phi', 'FontWeight', 'bold');
 legend('Galerkin method', 'SUPG method', 'Analytical solution');

 figure();
 plot(X, phi_SUPG_gam1, X, phi_SUPG_gam2, X, phi_SUPG, X,...
 phi_SUPG_gam3, X, phi_SUPG_gam4, X_ana, phi_ana);
 title('Particles concentration vs. Tube length: 10 elements uniform mesh',...
 'FontWeight', 'bold', 'Color', [0,0,1]);
 xlabel('X (m)', 'FontWeight', 'bold');
 ylabel('\phi', 'FontWeight', 'bold');
 legend('10\gamma_0', '2\gamma_0', '\gamma_0', '0.5\gamma_0', '0.1\gamma_0',...
 'analytical solution');

 %% Nonuniform mesh plot

 if uni_mesh == 0
 elem_dist = A*(exp(beta*u/nu*X)-1);

 plot_nodes = 0.0.*elem_dist;

 figure();
 plot(X, elem_dist, 'bo:', X, plot_nodes, 'ro-');
 title('Element distribution', 'FontWeight', 'bold', 'Color',...
 [0,0,1]);
 xlabel('X (m)', 'FontWeight', 'bold');
 ylabel('Number of elements', 'FontWeight', 'bold');
 end

end

86

87

CHAPTER 8: Element technology

8.1. Show that when X2 ≠ 1
2

 (X1 + X3), then the 3-node element in Example 2.5 does not

reproduce the quadratic displacement field. Hint: set the node displacements by a

quadratic field in X and examine the resulting field.

Solution to 8.1.

The map between the reference configuration and the parent element is given by

 () ()

With the shape functions:

 [

()

()]

And the reference coordinates:

 {()

 }] [{ }

For an isoparametric element, the dependent variable u is interpolated by the same shape

functions, so

 () ()

Let the dependent variable be a linear function of the spatial coordinates, so

Where are arbitrary parameters. If the nodal values of the field are given by the above,

then

88

Substituting the nodal values of the dependent variable given by the above expression

into the displacement field obtained with the discretization:

 () () (
)

After some algebra, we can reach the following expression:

 {() [
 ()

] () }

 {
 () [

()()[() ()]

]}

Reaching the conclusion that for

:

The quadratic displacement field is reproduced. However, for] [{ } the

quadratic displacement field is not reproduced:

] [{ }

8.2. Show that the weak form (8.5.12) leads to the following strong form:

 dev

,, , ,ii ii ij j i i ip p D D p b v      

    dev dev

inton , [] 0oni ij ij j t i ij ijn p t n p        

Solution to 8.2.

Due to the symmetry of
 , the internal power (8.5.12) can be written as:

89

 ∫(
 ̅) ∫ [̅ (̅]

With the external power and kinetic power given by:

 ∫

 ̅ ∫

 ∫

 ̇

Taking the variations of the second term in the internal power yields

∫ [̅ (̅] ∫[̅ (̅) ̅ (̅)]

Considering the third term on the RHS of the above:

∫ ̅ ∫ [(̅) ̅]

 ∫

 ̅ ∫ ⟦ ̅ ⟧ ∫ ̅

Where the Gauss divergence theorem was used to obtain the first two terms of the RHS,

noting that was changed to because on .

Evaluating the 1
st
 term of the internal power:

∫
 ∫ [(

)

]

 ∫

 ∫

⟦
 ⟧ ∫

Substituting each of the results in we obtain:

90

 ∫ [(̅) ̅ (̅) ̅ (̅)]

 ∫ (

 ̅) ∫ (⟦
 ⟧ ⟦ ̅ ⟧)

 ∫ ̅

 ∫

 ∫ ̇

Using the arbitrariness of the test functions then gives the strong form:

 ̅ ̇

 ̅

 ̅

 (
 ̅) ̅

 ⟦ (
 ̅ ⟧

8.3. Show that the weak form (8.5.13) leads to the following strong form:

 dev

, , , , 0ij j i i i iip b v p p D      

    dev dev

inton , [] 0oni ij ij j t i ij ijn p t n p        

Solution to 8.3.

This proof is obvious because the only difference is that , so only one equation in

the strong form is changed

 ̅

91

8.4. By using the transformation for stresses and letting δD = δF, show that (8.5.1) can

be transformed to (8.5.14).

Solution to 8.4.

Equation (8.5.1) is:

 (̅ ̅)

 ∫ ̅ (̅)

 ∫

[̅ (() ̅)]

Let’s start by converting the integrals to the reference configuration:

∫ ̅

 (̅) ∫ [̅ (() ̅)]

Now, noting that by definition of and symmetry of stress ,

Applying the chain rule,

Using the definition of ,

 ̇

And finally using the appropriate stress transformation:

 ̇

Now, using this relation we can write:

 ̅ (̅) ̇̅ (̇̅)

 ̅ () () ̅ ̇ (̇) ̅

 ̅ ̅ ̅ ̇̅

92

Hence, the three-field weak form becomes

 (̇ ̇̅ ̅)

 ∫ ̇̅ (̇̅)

 ∫ [̅ (̇̅ ̇̅)]

Finally, noting that equation (8.5.14) is a virtual work instead of a virtual power, the

above expression needs to be converted accordingly:

 (̅ ̅)

 ∫ ̇̅ (̅)

 ∫ [̅ (()]

This can be expressed in index notation, leading to equation (8.5.14).

93

CHAPTER 9: Beams and shells

9.1. Consider the three-node CB element shown in Figure 9.16. The shape functions are

quadratic in ξ. Develop the velocity field and the rate-of-deformation in the

corotational coordinates. Give an expression for the nodal forces. Develop an

expression for the angle between the pseudonormal p and the true normal to the

midline.

Solution to 9.1.

The motion of the 6-node continuum element is:

 ()

With the following shape functions and respective derivatives,

 ()() {

(

) ()

 ()

()() {

 ()

()

 ()() {

(

) ()

 ()

 ()() {

(

) ()

 ()

()() {

 ()

()

 ()() {

(

) ()

 ()

94

Replacing the shape functions in the motion equation and rearranging the terms:

() ()

() ()

()()

()()

() ()

() ()

Considering,

()

()

()

()

()

() ‖ ‖

‖ ‖
 ‖ ‖

We can then rewrite the equation of motion as:

 () ()

 ()

 ()

 ()

 ()

The velocity field can now be determined to be:

 () ()

 ()

 ()

()

 ()

with ̇ , and , and .

To develop the velocity field in corotational coordinates, we need to determine the

laminar base vectors:

 ̂

(

)

 ̂

(

)

Where,

 ∑ ()

 ∑ ()

95

Substituting the derivatives of the shape functions with respect to :

 (

) (

)

 (

)

 (

)

with .

From which we can calculate the rotation tensor:

 [
 ̂ ̂

 ̂ ̂

]

(

)

[

]

The velocity field in corotational coordinates is obtained from the nodal velocities

transformed by the above rotation tensor:

 ̂

 ()

 ()

 ()

 ()

()

 ()

The rate-of-deformation can be determined once all the previous quantities are defined.

First, we determine:

 ̂

 ̂

where ̂ is determined following the same procedure used for ̂:

 (

)

 (

)

 (

)

 (

)

We can then calculate the velocity gradient and the rate-of-deformation in corotational

coordinates:

 ̂ ̂ ̂ ̂

(̂ ̂)

The nodal forces are given by:

96

 {

}

 {

 }

 [

]

{

 }

Leading to:

 () () () ()

Finally, we need to evaluate the angle between the pseudonormal and the true normal to

the midline. The pseudonormal to the midline () is:

 () ()

 ()

with .

The true normal to the midline is:

 ̂

(

)

Therefore, the angle ̅ between and is then given by:

 ̅ ̅ [

(

)

]

9.2. Consider a plate (a flat shell) in the x–y plane governed by the Mindlin–Reissner

theory. Show that the rate-of-deformation is given by

1
, , –

2 2

1 1
,

2 2

M M M M
y yx x x x x x

xx yy xy

M M

z z
xz y yz x

v v v v z
D z D z D

x x y y y x y x

v v
D D

x y

  

 

         
         

         

    
       

    

Solution to 9.2.

The Mindlin-Reissner theory for a flat plate leads to a simple velocity field:

97

 {

} {

}

 {

} {

} {

}

Therefore, obtaining each component of the rate-of-deformation is straightforward:

(

)

(

)

(

)

(

)

(

)

(

)

(

)

9.3. Consider the lumped mass for a rectangular CB-beam element (Figure 9.17),

1
8

M̂ I,m m = ρ0a0b0h0 where ρ0, a0, b0, and h0 are the initial density and dimensions

of the rectangular continuum element underlying the beam element. Using the

transformation (9.3.24), develop a mass matrix for the 2-node CB element and

diagonalize the result with the row-sum technique.

Solution to 9.3.

The transformation matrix for the 2-node CB element is:

98

[

]

Where

With and . The transformation matrix is then written as:

[

]

The mass matrix for the rectangular continuum element underlying the beam element (in

the expanded 8x8 form) is:

 ̂

99

Therefore, the mass matrix for the 2-node CB element is obtained using the

transformation (9.3.24):

 ̂

[

(

)

(

)]

9.4. Develop the consistent mass matrix for a rectangular continuum element.

(a) develop a consistent mass for the CB beam using (9.3.24), i.e. ˆTM T MT for

a beam element lying along the x-axis as shown in Figure 9.17;

(b) develop the complete inertia term including the time-dependent term in

(9.3.26).

Solution to 9.4a).

From example 4.2 in the book, equation (E4.2.17), we can calculate the mass matrix for a

quadrilateral element and expand it to an 8x8 matrix, resulting in the following matrix:

 ̂

[

]

The transformation matrix is the same as in the previous problem, hence:

100

 ̂

[

 (

)

()

() (

)]

Solution to 9.4b).

From example 4.2 in the book, equation (E4.2.17), we can calculate the mass matrix for a

quadrilateral element and expand it to an 8x8 matrix, resulting in the following matrix:

 ̂

[

]

The transformation matrix is the same as in the previous problem, and the time derivative

of the transformation matrix is given by:

 ̇

[

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()]

101

 ̂ ̇

[

]

102

CHAPTER 11: Extended Finite Element Method

11.1. Consider a 1D bar that has a total length of 20mm with its left end at -10mm and

right end at 10mm and a discontinuity surface at 0cx  mm. The bar is stretched by an

external load (P=1MPa) on the left end and fixed on the right. Assuming that the bar is

made of linear elastic material with material properties ,  = 7.83 g/cm
3
,

 .

Write a 1D code to solve this problem using explicit formulation with standard Verlet time

integrator. Implement XFEM to model the crack surface. To simplify the solution, no

cohesive force on the crack surface needs to be considered. One of two ways of

implementing XFEM can be used: the original XFEM or phantom node method. The hints

below are given for implementing original XFEM.

Hints:

(a) Calculate the level set values (signed distance function to the crack surface) for each

node. Note that only one element cut by the crack will be enriched in this case. It will

have both positive and negative nodal level set values.

(b) Derive the B matrix for the enriched element and use the shifted enrichment function

introduced in this chapter for strong discontinuity. Keep in mind that the dimension for

B matrix has changed, since it now has double the degrees of freedom as before.

However, the dimension of the stress shouldn’t change. Keep the standard form for the

B matrix for all the other unenriched elements.

(c) Integrate Bσ over the enriched element carefully to get the internal force. Since B is

now a discontinuous function over the enriched domain, using the same number of

gauss integration points as the unenriched elements will give poor results. There are

two ways around: a) Use a lot of integration points. b) Integrate the two parts of the

enriched element formed by the crack separately.

103

Solution of 11.1. (solved by P. D. Lea)

MATLAB code for Problem 11.1
%%%%%%%%%%%%%% 1D XFEM code using a consistent mass matrix %%%%%%%%%%%%%%%%
%
% P. D. Lea (Patrick.Lea@u.northwestern.edu)
% Northwestern University, Theoretical and Applied Mechanics
%
% May 30, 2013
%%%
function [] = XFEM1D()
clc
close all
clear all
 %% Input parameters.
 nn = 100; % Number of nodes.
 barstart = -10; % Location fo the bar starting point
 barend = 10; % Location fo the bar ending point
 runtime = 4.0; % Number of times for wave to cross domain.
 youngs = 2e5; % Modulus of elasticity (for linear).
 rho = 7.85e-6; % Density per unit length.

 %%XFEM Parameters
 xc = 0; % Location of discontinuity

 %% Calculated parameters.
 bar_length = barend-barstart; % Determines overall length of bar
 c = sqrt(youngs/rho); % Wave speed.
 t_crit = bar_length/(nn-1)/c; % Critical timestep for lumped mass matrix of non-

cut bar.
 dt = t_crit * .2; % Timestep size (Needs to be reduced for XFEM and

consistent mass matrix.
 num_timesteps = ceil(runtime*bar_length/c/dt); % Number of time steps.

 %Accounting for XFEM
 ndof = nn+2;

 %% Preprocessing.
 % Nodal coordinates in reference configuration.
 X = linspace(barstart, barend, nn)';

 % Initialize nodal variables to zero.
 u = zeros(ndof,1);
 v = zeros(ndof,1);
 a1 = zeros(ndof,1);

 % Connectivity matrix (each row gives nodes in an element.)
 connect = [1:length(X)-1; 2:length(X)]';

 % Defines the element shape functions.
 % See MATLAB help for "anonymous function" if you don't understand.
 N = @(x) (0.5*[1-x, 1+x]);
 % Defines the stress as a function of strain.
 stressfunction = @(eps) (youngs * eps);
 % Defines the applied load as a function of time.
 applied_load = @(t) (-10e3 * (t<Inf).*(t>=0));
 %Level Set

104

 LV = @(x) (x-xc);
 %Heaviside function 1 for x>0 and 0 otherwise
 Hx = @(x) floor(heaviside(x));
 %Shifted enrichment for strong discontinuity
 Psi = @(x,xI) (Hx(LV(x)) - Hx(LV(xI)));

 %Determines value of xi for real point xp inside of element bounded by XI(1) and

XI(2)
 Getxi = @(xp,XI) ((xp-.5*(XI(1) + XI(2)))/((XI(2)-XI(1))/2));
 %Determines the value of X given xi
 GetX = @(xi,XI) ((xi*(XI(2)-XI(1)))/2 + (XI(1)+XI(2))/(2));
 %Heaviside * Shape functions
 NPsi = @(xp,XI) (0.5*[(1-xp) * Psi(GetX(xp,XI),XI(1)) ,

(xp+1)*Psi(GetX(xp,XI),XI(2))]);

 %Determine what element has a crack in it
 CrackElem = DetermineCrackedElement(X,xc,nn);
 %% Compute mass matrix.
 M = sparse(ndof,ndof);
 connCrack = (CrackElem:CrackElem+1);
 for conn = connect'
 xi = sqrt(3)/3;
 Me = 0.5*(N(xi)'*N(xi) + N(-xi)'*N(-xi));
 Me = Me * range(X(conn)) * rho;
 M(conn,conn) = M(conn,conn) + Me;
 end
 conn = (CrackElem:CrackElem+1); %Connectivity of cracked element
 qconn = (nn+1:nn+2); %connectivity of extra degrees of freedom
 lce = range(X(conn)); %length of cracked element
 XI = X(conn); %locations of nodes of element
 l1 = xc - X(CrackElem); %length from first node to crack
 l2 = lce -l1; %length from crack to second node
 xic = Getxi(xc,X(conn)); %Determine location of crack in parent coordinates
 %Calculate location values for cracked element Gauss quadrature
 xi1 = (-sqrt(3)/3)*(xic+1)/(2) + ((xic-1)/2);
 xi2 = (sqrt(3)/3)*(xic+1)/(2) + ((xic-1)/2);
 xi3 = (-sqrt(3)/3)*(1-xic)/(2) + ((xic+1)/2);
 xi4 = (sqrt(3)/3)*(1-xic)/(2) + ((xic+1)/2);
 %Numerical integration of Mass matrix
 Meqq1 = .5*l1*rho*(NPsi(xi1,XI)'*NPsi(xi1,XI) + NPsi(xi2,XI)'*NPsi(xi2,XI));
 Meqq2 = .5*l2*rho*(NPsi(xi3,XI)'*NPsi(xi3,XI) + NPsi(xi4,XI)'*NPsi(xi4,XI));
 Meqq = Meqq1 + Meqq2;
 M(qconn,qconn) = M(qconn,qconn) + Meqq;
 Meuq1 = .5*l1*rho*(N(xi1)'*NPsi(xi1,XI) + N(xi2)'*NPsi(xi2,XI));
 Meuq2 = .5*l2*rho*(N(xi3)'*NPsi(xi3,XI) + N(xi4)'*NPsi(xi4,XI));
 Meuq = Meuq1+Meuq2;
 M(conn,qconn) = M(conn,qconn) + Meuq;
 Mequ1 = .5*l1*rho*(NPsi(xi1,XI)'*N(xi1) + NPsi(xi2,XI)'*N(xi2));
 Mequ2 = .5*l2*rho*(NPsi(xi3,XI)'*N(xi3) + NPsi(xi4,XI)'*N(xi4));
 Mequ = Mequ1+Mequ2;
 M(qconn,conn) = M(qconn,conn) + Mequ;

 %% Allocate arrays for output.
 figure(1);
 u_mid = zeros(num_timesteps,1);
 P_mid = zeros(num_timesteps,1);
 u_left = zeros(num_timesteps,1);
 u_right = zeros(num_timesteps,1);
 %% Loop over time steps.
 for ts = 1:num_timesteps
 %% Displacement update.
 % Current simulation time, t.

105

 t = (ts-1) * dt;
 % Update displacements to time t + dt.
 u = u + dt*(v + 0.5*dt*a1);
 %% Apply boundary conditions.
 % Fix right most node.
 u(end-2) = 0;
 % Initialize nodal forces to zero.
 f = zeros(ndof,1);
 % Apply load at left end.
 f(1) = applied_load(t);
 %% Element nodal force loop.
 for conn = connect'
 lce = range(X(conn)); % Compute element reference length.
 Be = [-1, 1] / lce; % Element B matrix (dN/dX).
 eps = Be * u(conn);
 % Evaluate constitutive law.
 P = stressfunction(eps);
 % Compute element forces with 1pt integration.
 fe = Be' * P * lce;
 f(conn) = f(conn) - fe; % Scatter element internal forces.
 end
 % Integrating fractured element internal stress
 conn = [CrackElem:CrackElem+1];
 qconn = [nn+1:ndof];
 X1 = X(CrackElem);
 X2 = X(CrackElem+1);
 lce = range(X(conn)); % Compute element reference length.
 l1 = abs(LV(X(CrackElem))); %length from first node to crack
 l2 = lce-l1; %length from crack to second node
 % B matrices from N and N Psi
 Be = [-1,1]/lce;
 Bp1 = [-(Psi((X1+l1/2),X1)), (Psi((X1+l1/2),X2))]/lce;
 Bp2 = [-(Psi((X2-l2/2),X1)), (Psi((X2-l2/2),X2))]/lce;
 % Strains for u and q displacements
 epsq1 = Bp1*u(qconn);
 epsq2 = Bp2*u(qconn);
 eps = Be * u(conn);
 P = stressfunction(eps); %Stress from real displacements
 %Stress from q degrees of freedom
 Pq1 = stressfunction(epsq1);
 Pq2 = stressfunction(epsq2);
 %Internal stress calculation associated with XFEM degrees of freedom
 feuq = (Be' * Pq1 * l1) + (Be' * Pq2 * l2);
 fequ = (Bp1' * P * l1) + (Bp2' * P * l2);
 f(conn) = f(conn) - feuq;
 f(qconn) = f(qconn) - fequ;
 feqq = (Bp1' * Pq1 * l1) + (Bp2' * Pq2 * l2);
 f(qconn) = f(qconn) - feqq;
 %
 %% Velocity update.
 % Consistent.
 a2 = M\f;

 % Update velocities to time t + dt.
 v = v + 0.5*dt*(a1 + a2);
 % Push back a2 to a1.
 a1 = a2;
 %% Post processing
 if (mod(ts,5) == 0)
 Xe = 0.5*(X(2:end)+X(1:end-1));
 eps = (u(2:end-2)-u(1:end-3)) / (bar_length/(nn-1));
 eps(CrackElem) = 0; %zeros stress in the cut element (for post processing

only)

106

 P = stressfunction(eps);
 plot(Xe, P);
 pause(0.001);
 end
 eps = (u(ceil(end/4))-u(ceil(end/4)-1)) / (bar_length/(nn-1));
 P_mid(ts) = stressfunction(eps);
 u_mid(ts) = u(ceil(end/4));
 u_left(ts) = u(CrackElem);
 psin = N(1) * u(nn+1:ndof);
 u_right(ts) = u(CrackElem+1) + Psi(X(CrackElem+1),X(CrackElem+1)) * N(1) *

u(nn+1:ndof);

 end
 figure(2);
 t = (1:num_timesteps)'*dt;
 plot(t, u_mid);
 title('Displacement Quarter Point')
 figure(3);
 plot(t, P_mid);
 title('Quarter Point Stress')
 figure(4);
 plot(t,u_left);
 title('Displacement Left')
 figure(5);
 plot(t,u_right);
 title('Displacement Right')

end

function [BrokenElem] = DetermineCrackedElement(X,xc,nn)
% Determines which element are cut
 for i =1:nn-1
 if(X(i) < xc && X(i+1) > xc)
 BrokenElem = i;
 end
 end
end

107

CHAPTER 12: Introduction to Multiresolution Theory

12.1 In section 12.5.3 the kinetic power is defined for MCT theory. Beginning with the

definition of kinetic energy density Eq. 12.5.6, show that Eq. 12.5.7 results for the

kinetic power. (Hint: See derivation in [38]).

Solution to 12.1.

Beginning with the expression of kinetic energy density,

    1
0 0 0 1 0 0a a

n n
kin n n n nn V V

e dV            v v v vv v

Take the material time derivative

 

    

0 0 0

1
1 0 0

()

 ()a a
n n

kin

n n n nn V V

D D
e d d

Dt Dt
D

dVd
Dt

  

  

 




   

     

 

 

v v

v vv v

We now focus on each term from the RHS separately:

A- Focusing on the first term of the right hand side,

   

  

   

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

()

 () ()

 0 ()

 0

D
d

Dt

d d
t

d

d

 

     

   

   



 





  

 
        

 

         

       



 





v v

v v v v v v v v

v v v v v v v

v v v v v v

108

We wish to drop the term containingdv0
 to simplify the resulting expressions. To do so,

we notice that for small increments of time  , using integration by parts

   

 

0 0 0 0 0 0

0 0 0

1
() ()

 ()

t t t

tt t

t

t

d dt d dt

d
d dt

dt

  



   


 

  

 





    

 
   

 

   

 

v v x v v x

v v x

The variation dv0
can be assumed roughly constant over interval . We will thus use its

mid-interval value dv0

t+t /2 to approximate the time integral,

   

 

   

0 0 0 0 0 0

0 0 0

0 0 0 0

1
() ()

 ()

1

t t t t

tt t

t
t

t

t

t

d dt d dt

d
d dt

dt

d

dt

   






   


 

 


    

 


 





    

 
   

 


 



   

 

v v x v v x

v v x

v v 0 ()
t

t

t
d





 




 


  v x

Since  was assumed to be small and arbirtrary, if we exclude sudden jumps in

momentum, we find the quantity in the parentheses is zero to the first order, thus the

volume integral must be zero, so that the term may be dropped as desired. Thus, the

material rate becomes,

   

  

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0
0 0 0 0 0

()

()

D
d d

Dt

d

DD
d d

Dt Dt

    

 

   

 



 

        

    

    

 



 

v v v v v v v

v v v v

v
v v v

In an updated Lagrangian formulation,

Dv0(x)

Dt
= v0(f(X,t)), so

109

0 0 0 0 0 0()
D

d d
Dt

   
 

     v v v v

B- Focusing on the second term from the RHS,

We define vn = ln ×yn . The material time derivative is thus,

    

      

    

    

     

1
1 0 0

1
1 0 0

1
1 0 0

1
1 0

1
1 0

1

(

a a
n n

a a
n n

a a
n n

a a
n n

a a
n n

n

n n n nn V V

n n n n n n n nn V V

n nn V V

n n n n n nn V V

n n n nn V V

V

D
dVd

Dt

dVd

dV d

dV d

dV d

  

  

  

  

  
















    

         

   

      

    



 

 

 

 

 

v v

v l l l y v l y

v v

l l l y v

y v l

v v

      1 :a a
n

n n n n n n n nn V
dV d  


       l l l y y l

Noting that 1

Vn
a rn - rn-1()yn dV = 0,
Vn
aò since the integrand is an odd function. Hence,

the material derivative

Where the last equation follows from the definitions of  and P given in chapter 12.

Combining the results of (A) and (B) yields Eq. 12.5.7.

    

      

      

1
1 0 0

1
1

1 0 0

:

:

a a
n n

a a
n n

n nn V V

n n n n n n n nn V V

n n n n nn n

dV d

dV d

d d

  

  

    








 

   

      

     

 

 

  

v v

l l l y y l

v v l

110

12.2 Using the assumptions outlined in Section 12.5.4, derive the MCT strong form Eq.

12.5.8 and Eq. 12.5.9. (Hint: See derivation in [38]).

Solution to 12.2.

The main effort lies in re-writing the internal power expression in terms of variations of

the degrees of freedom only, by getting rid of the variations in their gradients using

integration by parts and the divergence theorem. Thus,

 int 0 0 1
: d : d

N

n n n nn
P   

 
  xL s l ss L


   

Focusing on the first term on the RHS,

   0 0 0 0 0 0 0 0: d : d dd   
   

   xL v n v v             

Focusing on the second term,

 

  
    

    

1

01

0 0

1

: d

 : d d

: d d d
 =

: d : d

N

n n n nn

N

n n n nn

n n n nN

n

n n n n

 

 

  

 



 

  

 

 

  

  

 

x

x

x

x

s l ss L

s L L ss L

s L s n v s v

ss n L ss L









  

      
 
     
 



  

  


 

Thus the variation of internal power is given by,

111

   

    
    

int 0 0 0 0

0 0

1

d

: d d d

: d : d

n n n nN

n

n n n n

P d  

  

 

 

  

 

 

  

 

x

x

x

n v v

s L s n v s v

ss n L ss L


     

      
 
     
 

 

  


 

 

We now turn our attention to the variations of kinetic and external powers, and use the

simplifying assumption and n n n n  l L l L for the case of large deformations, then

   

 

0 01 1

0 0 1

: d : d

:

N N

n n n nn n

N

n n nn

P

P

    

   

  



       

    

  



ext

kin

b v B L t v T L

v v L d

Finally, we set

intP P P   ext kin

Noting that all variations are arbitrary, and must vanish at Dirichlet boundaries, the

strong forms 12.5.8 and 12.5.9 result.

12.3 Show that the stress rate n



s and double stress rate n



ss in Eq. 12.6.4 are objective.

Solution to 12.3

(A) Focusing on n



s .

We begin by relating ns to *

ns in a starred coordinate system,

* T

n ns Qs Q

112

Where Q is the rotation matrix between the starred and un-starred coordinates. Taking the

material derivative

* T T T

n n n n  s Qs Q Qs Q Qs Q

Recall that

*

*T T T

 

  

Q W Q QW

Q Q W WQ

Then,

   

   

   

 

* * *

* * *

* * * * *

* * * * *

T T T T

n n n n

T T T T T

n n n n n n

T T T

n n n n n n

T

n n n n n n

     

     

     

    

s W Q QW s Q Qs Q Qs Q W WQ

s W Qs Q QWs Q Qs Q Qs Q W Qs WQ

s W s QWs Q Qs Q s W Qs WQ

s W s s W Q s Ws s W Q

Thus, stress rate  n n n n



  s s Ws s W transforms as a second rank Eulerian tensor and

is objective.

(B) Focusing on ss
Ñ

n. We use index notation for clarity. Relating starred to un-starred

components we find,

   *

n il jm kn nijk lmn
ss Q Q Q ss

Taking the material derivative,

113

     
*. .

n nil jm kn n il jm kn n il jm kn n il jm knlmn lmn lmn
lmnijk

ss Q Q Q ss Q Q Q ss Q Q Q ss Q Q Q ss
   

      
  

Given that the rotation rates can be written as,

*

*

*

il ip pl ip pl

jm jp pm jp pm

kn kp pn kp pn

Q W Q Q W

Q W Q Q W

Q W Q Q W

 

 

 

We find the double stress rate is,

   

   

  

*.
*

*

*

.

N ip pl ip pl jm kn N lmn
ijk

il jp pm jp pm kn N lmn

il jm kp pn kp pn N lmn

nil jm kn

lmn

ss W Q Q W Q Q ss

Q W Q Q W Q ss

Q Q W Q Q W ss

Q Q Q ss

 
  

 

 

 

 
  

 

Plugging in the for    *

n il jm kn nijk lmn
ss Q Q Q ss we find,

    

    
    

*.
* *

* *

* *

.

N ip n ip pl jm kn Npjk lmn
ijk

jp n il jp pm kn Nipk lmn

kp n il jm kp pn Nijp lmn

nil jm kn

lmn

ss W ss Q W Q Q ss

W ss Q Q W Q ss

W ss Q Q Q W ss

Q Q Q ss

 
  

 

 

 

 
  

 

114

Relabeling repeated indices as appropriate,

     

      

     

*.
* * * * * *

.

N ip n jp n kp npjk ipk ijp
ijk

il jm kn lo N il jm kn mo N il jm kn no Nomn lon lmo

nil jm kn lo N mo N no Nomn lon lmo
lmn

ss W ss W ss W ss

Q Q Q W ss Q Q Q W ss Q Q Q W ss

Q Q Q ss W ss W ss W ss

 
   

 

   

  
     

  

Thus, stress rate ss
Ñ

n transforms as a third rank Eulerian tensor and is objective.

12.4 (a) What condition on the stresses and double stresses would permit rewriting the

variation of MCT internal power as,

  int 0 0 1
: : d

N

n n n nn
P   


xD s d ss D


     ,

where 0n n d D D .

(b) What savings in degrees of freedom per node could be achieved as a result?

Solution to 12.4a).

First we re-write the internal power as,

   int 0 0 0 1
: () : () d

N

n n n n n nn
P   


 xD W s d w ss D W


      

0If , are symmetric, and is symmetric in its first two indices,n ns ss then

for the term,

115

               

           
           

0 0 0 0 0 0 0 0 0 011 11 22 22 33 33

0 0 0 0 0 012 12 23 23 31 31

0 0 0 0 0 012 21 23 32 31 13

:

ij ij
W W W W

W W W

W W W

    

  

  

W    

 

 



 0

Same for : 0n ns w  ,

   
,

Now n n n nijk ij k
ss Wxss W  ,

           

           
11 11, 22, 22, 33 33,

12 12, 23, 23, 31 31,

For = 1,2,3

n n n n n nk k k k k k

n n n n n nk k k k k k

k

ss W ss W ss W

ss W ss W ss W

  

 

           
12 21, 23, 32, 31 13,

 0

n n n n n nk k k k k k
ss W ss W ss W 



Finally, the internal power could be written as,

   int 0 0 1
: () : () d

N

n n n nn
P   


     x

D s d ss D

Remark: This assumption ignores Micropolar effects.

Solution to 12.4b).

The savings in degrees of freedom per node would be in three dimensions computed

from:

Saving = 1 - (6N+3)/(9N+3)

12.5 Computer project: Write a code for the finite element implementation of a two-scale

MCT model (i.e., a micromorphic continuum with a macro- and micro-scale), applied to a

one-dimensional rod, using explicit time stepping.

116

The 1D bar is subjected to uniaxial tension by applying on both ends a constant velocity of

 . Consider a constant cross sectional area of and initial length

 , as shown in the figure above. The origin of the coordinate system lies in the

center of the bar. The body forces and body couples are considered negligible for this

problem. The macro-scale is defined as elastic and perfectly plastic with a yield stress of

250 MPa, while the micro-scale is considered linear elastic. To induce localized

deformation, set the yield strength in the middle element of your mesh to have a yield stress

of 237.5 MPa (imperfection of 5%). The micro-scale is considered to be a cubic cell with

length () . The remaining properties that need to be considered are:

 Density () () Young's modulus (E) (GPa)

Macro-scale 7.85e-3 200

Micro-scale 7.065e-3 2

In order to write the FEM code to solve this problem consider doing the following:

 (a) Write the equations of motion (the strong form) and explain the meaning of

each variable.

(b) State the constitutive equations used in the code for each set of degrees-of-

freedom.

(c) Write the weak form of the problem and discretize it such that it can be

solved in a finite element procedure.

117

(d) Write the FEM code and an outline of the algorithm.

(e) Plot the different stress and strain measures over the entire bar for the

parameters given in this problem statement. Compare the results with the

classic continuum case.

(f) Evaluate the influence on the result of different input parameters.

Solution to 12.5a).

Strong form:

The equations of motion are derived from the conservation of linear momentum and the

conservation of angular momentum. The multiresolution continuum equations of motion for this

problem coincide with the equations of a micromorphic continuum since only one extra scale is

considered. The strong form can then be written as follows, noting that no body forces or double

body forces are present:

 ()
(

()

()
) () ̇

()

 ()

 ()
(

())
()

()

()

 ()

where
()

,
()

 and
()

 are the macro-stress, moicro-stress and double micro-stress,

respectively. () and () are the macro-density and micro-density,
()

 ()
(())

 is the

moment of inertia along per unit micro-volume (cube with length ()). ̇
()

 is the macro-

acceleration, and
()

 is the micro-acceleration defined by:

()

 ̇
()

()

()

 ̇
()

()

()

Note that since this is a 1D problem there are no couple stresses (moments per unit area) and

there is no spin tensor, leaving just the rate-of-deformation to be equal to the velocity gradient.

Also note that the double stress
()

 is a couple stress without moment, i.e. a pair of stresses

acting along the same line. This measure of stress is characteristic of the micromorphic

118

continuum and does not exist in the classic continuum neither in the Cosserat continuum. Rather,

it is a higher order stress that is often used in strain gradient plasticity formulations. Therefore,

its existence in this formulation is expected to regularize the localization of the deformation at

the center of the bar (as will be verified with the results).

The boundary conditions are:

()

()

 ()

()

()

 ()

Solution to 12.5b).

Constitutive equations:

The generalized stresses and strain measures are gathered into a single vector as follows

 [() () ()]

 [
()

()

()

 ()
]

Since the problem of interest is 1-dimensional, there is no need to define a rotationally invariant

stress measure. The generalized constitutive law in rate form becomes:

[
 ()

 ()

 ()

] [
 ̅()
 ̅() ̅()

 ̅() ̅̅()
] [

 ()

 ()

()
]

The constitutive constants for the micro-scale are obtained by averaging procedures (recall that

the micro-cell is considered as a cube of length () in this problem):

 ̅()

(())
∫ ()

 ()

 () ()

119

 ̅()

(())
∫ () ()

 ()

 ()

 ()(())

 ̅̅()

(())
∫ () () ()

 ()

 ()

 ()(())

 ()

(())

A simple perfect plasticity law defined by the following yield surface is defined

 () | |

where is the yield stress.

Solution to 12.5c).

Weak form and FEM discretization:

Obtaining the weak form from the above written strong form is very similar to what we did for

the classic continuum. For the conservation of linear momentum, we multiply both sides of the

equation for the virtual velocity
()

, and after using the chain rule and the divergence theorem

we obtain:

∫ (())
 (

()
)

 () ()

 () ∫ [() ̇
()

()
 (

()
)

 () ()

 ()

For the conservation of angular momentum the procedure is similar in every way, with the

difference that the power conjugate is now the relative micro velocity gradient (note that the

relative micro velocity gradient is equal to the total micro velocity gradient subtracted with the

macro velocity gradient). Therefore, we multiply both sides of the equation by a virtual relative

micro velocity gradient
 ()

 (), with "rel" standing for relative. Then using the

chain rule and the divergence theorem we get:

120

∫ [()
 (

 ())

 () ()

 () ∫ ()
 ()

 ()

 () ∫ ()
()

 ()

 ()

 ()

Writing the relative micro velocity gradient as:
 ()

()

()
, and assuming that

 (
()

)

 ()
 , we can write the above equation as:

∫ [()
 (

()
)

 () ()

 () ∫ ()(
()

()
)

 ()

 ()

 ∫ ()
()
(

()

()
)

 ()

 ()

Then, we can discretize these two equations in a similar way to the regular FEM. First define a

generalized stress vector ∑ and generalized rates of deformation as follows (we omit the

subscript from now on):

∑ [() ()]

 [() () ()
 ()

 ()
]

Then define a vector , which contains 2 degrees of freedom at node :

 [

()]

Let be the assembly of all of the in an element. For a one-dimensional two-node rod

element at node ,

 [

]

Defining the matrix as the shape function matrix, we interpolate the nodal values as follows:

[

 ()]

121

Similarly, it can be defined the matrix containing spatial derivatives of shape functions (the

generalized matrix) so that one writes the generalized strain rate measure in the form:

The generalized mass matrix is defined as follows:

 [
 ()

 ()
]

Using these definitions, the finite element discretization is written as follows:

 ∑∫ ()

 ()

() ()

 ∑∫ () () ̈
() () ̈

()

where the number of elements is given by . The mass of the system is given by the matrix M,

the internal force by the vector and the external force by the vector . Defining as the

connectivity matrix of the system, then the discretization could be:

 ∑
 {∫ }

 ∑
 {∫() }

Finally, the semi-discrete equation of motion is written in a similar form as the standard finite

element method:

This equation is then integrated explicitly following the algorithm described below.

122

Solution to 12.5d).

Algorithm for 1D problem (with n scales):

1. Initial conditions and initialization:

Define generalized displacement d, generalized velocity v;

set generalized stress ∑ , generalized strain , d=0, v=0, energy variables=0, t=0,

n=1

2. getmass and compute the lumped mass matrix and its inverse.

3. getforce

4. Compute the accelerations for every scale:

()

 (())
()

,
()

 (())
()
 (())

5. Time update: ,

()

6. First partial update of nodal generalized velocities: ()

7. Enforce velocity boundary conditions:

If node I on :

 ̅(

)

8. Update nodal displacements:

9. getforce

10. compute

11. Second partial update nodal velocities: ()

12. Check energy balance at time step n+1:

(

)

(

)

 (

)

(

)

(

)

 (

)

| | ()

13. Update counter:

14. Output; if simulation not complete, go to 5.

123

Subroutine getmass

0. Initialization: , Global Gauss point

1. Loop over elements e

i. Set , initialization of mass in all scales

ii. Compute quadrature Gauss point and weight

iii. Loop over quadrature points

1. Compute shape function, Jacobian, and partial derivatives

2. Compute element mass matrix for macro-scale:

()

()

 () ̅

3. Loop over microscale

i.
()

() () () ̅

END loop over microscale

4. Update global Gauss points

END loop over quadrature points

 iii. SCATTER to , put microscale mass in the end

 END loop over elements

124

 Subroutine getforce

0. Initialization: generalized stress ∑ , generalized strain ,and global Gauss point

1. Compute global external nodal generalized forces

2. Loop over elements e

i. Set , and compute quadrature Gauss point and weight

ii.

=0

iii. Loop over quadrature points

1. Compute shape function N, Jacobian, B matrix and relative derivatives

2. Compute rate of deformation of macro-scale: () ()

3. Loop over microscale

i. Compute () ()

 ,

 ()

 ()

END loop over microscale

4. SCATTER to generalized strain measure ,

 ()

 ()
()

 ()

…..

5. Update

6. Compute generalized stress at the Gauss point from the constitutive law

7. Reassign the stress in the generalized stress for this element to macro

stress, micro stress, micro stress couple

8. Update the internal force in macro scale:

 (()

 ()) ̅

9. Update the internal force in microscale:
 ()

 ()

 (()

 ()) () () ̅

10. SCATTER internal force from all scales

11. Update global Gauss points

END loop over quadrature points

iv. SCATTER
 to global

END loop over elements

Compute nodal force:

125

Solution to 12.5e).

Discussion of the results of the code:

Code outputs for the macro-scale.

Code outputs for the micro-scale.

The above figures show the results for the input parameters defined in the problem statement.

Observing first the outputs for the macro-scale it is clear that there is a strain localization at the

center of the bar over several elements. Readers familiar with strain gradient plasticity

immediately identify the macro-strain plot versus position to have the same shape as a plot for a

126

one-scale strain gradient plasticity continuum. In fact, identifying this similarity is very

important. Since there are no forces on the boundary conditions of the micro-scale, the second

equation of the strong form,

∫ [()
 (

()
)

 () ()

 () ∫ ()(
()

()
)

 ()

 ()

 ∫ ()
()
(

()

()
)

 ()

 ()

only leads to an increase of the micro-stress due to the macro rate-of-deformation
()

.

Therefore, the micro-stresses and micro double stresses influence the macro-scale right from the

beginning of the simulation. This influence can be interpreted as the effect of the microstructure

of the material that is being averaged for each macro-deformation state. This averaging

procedure does not occur concurrently, but it is the result of previous analyses such that the

constitutive laws for the micro-scale are calibrated. This may be viewed as a drawback of the

method, since it is difficult to assign meaningful values for those extra laws. The most successful

solution is to calibrate those laws by performing representative volume element (RVE)

simulations of the microstructure for different load states and averaging the stresses at that scale

such that approximate constitutive laws are obtained. Nevertheless, in this problem we are trying

to understand the numerical details of the implementation of the method as well as understanding

the influence of the extra stress measures without considering the development of the

constitutive laws.

Once the macro-stress reaches the yield value at the center element (with the imperfection), this

causes the macro-strain to localize in a sharp peak that leads to a sharp peak of the micro-stress

and subsequentlly to a sharp peak of the micro rate-of-deformation. Once the micro rate-of-

deformation develops that peak then the gradient of the micro rate-of-deformation presents an

abrupt change with a different sign on each side of the peak (slope of the peak of
()

), as can be

seen in the second figure above. This has the effect of diffusing the deformation to the

neighboring elements, similar to what is observed in strain gradient plasticity. Note that in strain

gradient plasticity there is no micro-stress, only the double stress is present (usually called higher

order stress).

127

Solution to 12.5f).

The reader is invited to run the code and to study the influence of the various parameters in the

result. In particular, it is interesting to observe that the micro-scale length paramater has a much

smaller influence on the localization zone than the elastic constants of the constitutive laws of

the micro-scale. Although, the expected effect of increasing the size of the micro-cell causing an

increase of the localization zone happens, this increase is small.

As a final note, the code is prepared to use a different number of integration points, any number

of elements, different input parameters, and any number of extra scales.

MATLAB code for Problem 12.5
%%%%%%%%%%%%%%%%%% Multiresolution Continuum 1D code %%%%%%%%%%%%%%%%%%%%%%
%
% M. A. Bessa (mbessa@u.northwestern.edu)
% Northwestern University, Mechanical Engineering
%
% June 14, 2013
%%%
function [] = multiresolution_in_1D()
 close all; clear all; clc; tic
 %% CONSISTENT UNITS:
 % MASS LENGTH TIME FORCE STRESS ENERGY
 % g mm ms N MPa N-mm (mJ)
 %
 %% Input parameters.
 % Termination time
 endtime = 2.0e-2; % total time of simulation [ms]
 prescribed_v_0 = 5.0; % Prescribed velocity [mm/ms]
 output_frames = 'all'; % Number of times that every plot will be shown
 %(for output_frames = 'all' every time
 %step will have a plot)
 % Mesh definition
 nel = 99; % Number of elements
 ngp = 1; % Number of Gauss points per element
 % Geometric properties
 mesh.L = 100.0; % Length of the bar [mm]
 Xmin = -mesh.L/2; % Position of the left end of the bar [mm]
 mesh.area = 30; % Cross-section Area of the bar [mm^2]
 % Material properties
 youngsC_0 = 2.0e5; % Modulus of elasticity (for linear). [MPa]
 rho_0 = 7.85e-3; % Density per unit length. [g/mm^3]
 sigy_0 = 250.0; % Macro-yield stress [MPa]
 imperfection = 0.95; % Imperfection at the middle element (0: no ele-
 %ment; 1: no imperfection)
 %
 % Number of extra sets of degrees of freedom ('scales' in lack of a
 %better term)
 nscales = 1; % Number of extra 'scales' (NOT including the

128

 %macro-scale). Use nscales = 0 for a regular FEM
 %analysis
 %
 % Extra dof input parameters
 % Initilize variables
 l_n = zeros(nscales,1);
 youngsC_n = zeros(nscales,1);
 youngsB_n = zeros(nscales,1);
 rho_n = zeros(nscales,1);
 %
 % (Extra) Scale 1:
 l_n(1) = mesh.L/nel * 4; % Horizontal size of domain in scale 1 (in
 %the x direction [mm]
 h_n(1) = l_n(1); % Vertical size of domain in scale 1 (in the y
 %direction) [mm]
 thick_n(1)= l_n(1); % Width of domain in scale 1 (z direction or
 %out-of-plane direction) [mm]
 %
 youngsC_n(1) = youngsC_0*0.01; % Constant for scale 1 constitutive law
 youngsB_n(1) = 0.0; % Constant for scale 1 constitutive law
 %(gradient term)
 rho_n(1) = rho_0*0.9; % Density for scale 1
 %
 %
 % Scale 2:
% l_n(2) = mesh.L/nel*0.5; % Horizontal size of domain in scale 2 (in
% %the x direction [mm]
% h_n(2) = l_n(2); % Vertical size of domain in scale 2 (in the y
% %direction) [mm]
% thick_n(2)= l_n(2); % Width of domain in scale 2 (z direction or
% %out-of-plane direction) [mm]
% %
% youngsC_n(2) = youngsC_0*0.002; % Constant for scale 2 constitutive law
% youngsB_n(2) = 0.0; % Constant for scale 2 constitutive law
% %(gradient term)
% rho_n(2) = rho_0*1.5; % Density for scale 2
 %% Calculated parameters.
 mesh.nn = nel+1; % Number of nodes
 l_0 = mesh.L/nel; % Element reference length
 %
 area_n = zeros(nscales,1);
 I_n = zeros(nscales,1);
 for iscale=1:nscales
 % Compute the cross-section of the domain of scale i
 area_n(iscale) = h_n(iscale)*thick_n(iscale);
 %
 % Compute the I term of the mass matrix for scale i. This is the
 %moment of inertia DIVIDED by the 'volume' of that domain.
 I_n(iscale) = rho_n(iscale)*(h_n(iscale)^2+thick_n(iscale)^2)/12;

 end
 %
 % Calculate the total number of Gauss points
 ngp_tot = ngp*nel;
 %
 sigygp_0 = sigy_0*ones(ngp_tot,1); % Macro-yield stress in each Gauss
 %point
 %
 % Include imperfection at middle element
 num_imp = floor(nel/2)+1; %imperfection element
 %
 for igp = 1:ngp
 sigygp_0((num_imp-1)*ngp+igp)= imperfection*sigy_0;

129

% epsygp_0((num_imp-1)*ngp+igp) = imperfection*epsy_0;
 end
 %
 c_0 = sqrt(youngsC_0/rho_0); % Macro-wave speed [mm/ms]
 tcrit_0 = l_0/c_0; % Critical timestep (macro scale) [ms].
 %
 c_n = zeros(nscales,1);
 tcrit_n = zeros(nscales,1);
 for i = 1:nscales
 c_n(i) = sqrt(youngsC_n(i)/I_n(i)); % Wave speed in each scale
 %
 if c_n(i) ~= 0
 tcrit_n(i) = l_0/c_n(i); % Critical time step in each scale
 tcrit = min(tcrit_0, tcrit_n(i));
 cmax = max(c_0, c_n(i));
 else
 tcrit = tcrit_0;
 cmax = c_0;
 end
 end
 %
 if nscales == 0
 dt = tcrit_0 * 0.9;
 else
 dt = tcrit * 0.9; % Time step of simulation.
 end
 num_ts = round(endtime/dt); % Total number of time steps.
 %
 % Output some information about the simulation
 fprintf('INFORMATION:\n');
 if nscales == 0
 fprintf('-> Critical time step: %d miliseconds\n',tcrit_0);
 elseif nscales > 0
 fprintf('-> Critical time step: %d miliseconds\n',tcrit);
 end
 fprintf('-> Total number of time steps: %d \n',num_ts);
 endtime = num_ts*dt; % Termination time
 if output_frames == 'all'
 output_frames = num_ts;
 end
 %
 % Save material properties for all scales in one variable:
 matprops = zeros((1+nscales),3);
 matprops(1,:) = [youngsC_0 , 0 , rho_0];
 for iscale=1:nscales
 matprops(1+iscale,:) = [youngsC_n(iscale) , youngsB_n(iscale) ,...
 rho_n(iscale)];
 end
 %% Preprocessing.
 % Nodal coordinates in reference configuration.
 Xmax = Xmin + mesh.L;
 mesh.X = linspace(Xmin, Xmax, mesh.nn)';
 % Connectivity matrix (each row gives nodes in an element.)
 mesh.conn = [1:length(mesh.X)-1; 2:length(mesh.X)]';
 %
 %%
 % ..::: Now following the flowchart for explicit time integration :::..
 % Belytschko et al book (box 6.1 - p.313)
 %
 %% 1. Initial conditions and initialization
 % Nodal Array definition
 gen_u = zeros((1+nscales)*mesh.nn,1); % generalized displacement
 gen_v = zeros((1+nscales)*mesh.nn,1); % generalized velocity

130

 % Initialize variables with information from the previous time step
 old.gen_sigma = zeros((1+2*nscales),ngp_tot); % old gen. stresses
 old.gen_truestrain = zeros((1+2*nscales),ngp_tot); % old generalized
 %true strains
 % Initialize energy variables and others
 Wint = zeros(num_ts,1);
 Wext = zeros(num_ts,1);
 Wkin = zeros(num_ts,1);
 Wtot = zeros(num_ts,1);
 displacement = zeros(num_ts,1);
 reaction = zeros(num_ts,1);
 time = zeros(num_ts,1);
 fint_old = zeros(mesh.nn*(nscales+1),1);
 fext_old = zeros(mesh.nn*(nscales+1),1);
 Wint_old = 0;
 Wext_old = 0;
 Wkin_old = 0;
 %
 %
 t = 0; % time
 ts = 1; % n + 1 (where 'n' is the counter used in box 6.1, point 1)
 %
 % Compute the consistent mass matrix
 [Mc,Xgp] = getMass(mesh,nscales,ngp,rho_0,I_n,area_n);
 %
 % Compute lumped mass matrix
 [M,invM] = getLumpedMass(Mc,mesh,nscales);
 %
 %
 %% 2. getforce
 % No residual stresses considered:
 fint = zeros(mesh.nn*(nscales+1),1);
 % Get external nodal forces
 [fext] = getFext(t,mesh,nscales);
 % Compute nodal forces
 force = fext - fint;
 %
 %
 %% 3. Compute accelerations a^n
 gen_a = invM*force;
 % NOTE: for the extra DOF what we obtain is GAMMA, which is NOT the
 %time derivative of D, that is used in the explicit time integration
 % Therefore, dotD^(n) = gamma^(n) - D^(n)*D^(n)
 gen_a((mesh.nn+1):end) = gen_a((mesh.nn+1):end)...
 - gen_v((mesh.nn+1):end).^2;
 %
 %
 while(t <= endtime)
 %% 4. Time update
 tnew = t + dt; % tnew = t^(n+1); t = t^n
 thalf = 1/2*(t + tnew); % thalf = t^(n+1/2)
 %
 %% 5. First partial update nodal velocities
 gen_vhalf = gen_v + (thalf-t)*gen_a;
 %
 %% 6. Enforce velocity boundary conditions
% gen_vhalf(mesh.nn) = 0.0;
 gen_vhalf(1) = -prescribed_v_0;
 gen_vhalf(mesh.nn) = prescribed_v_0;
 %
 %% 7. Update nodal displacements
 gen_u = gen_u+dt*gen_vhalf;
 %

131

 % Determine the current position of the nodes
 mesh.x = gen_u(1:mesh.nn) + mesh.X;
 %% 8. getforce
 % Get internal nodal forces
 [fint,gen_sigma,gen_truestrain] = getFint(dt,mesh,nscales,ngp,...
 matprops,old,l_n,h_n,thick_n,...
 gen_vhalf,sigygp_0);
 % Get external nodal forces
 [fext] = getFext(t,mesh,nscales);
 % Compute nodal forces
 force = fext - fint;
 %
 %% 9. Compute a^(n+1)
 gen_a = invM*force;
 % NOTE: for the extra DOF what we obtain for gen_a (generalized
 %acceleration) is GAMMA, which is NOT the time derivative of D,
 %that is used in the explicit time integration. Therefore,
 %dotD^(n) = gamma^(n) - D^(n)*D^(n)
 gen_a((mesh.nn+1):end) = gen_a((mesh.nn+1):end)...
 - gen_v((mesh.nn+1):end).^2;
 %
 %% 10. Second partial update nodal velocities
 gen_vnew = gen_vhalf + (tnew-thalf)*gen_a;
 %% 11. Check energy balance at time step n+1
 Wint_inc = 0;
 Wext_inc = 0;
 Wkin_inc = 0;
 Wint_inc = Wint_inc + 1/2*dt*(gen_vhalf(1:mesh.nn)')...
 *(fint_old(1:mesh.nn)+fint(1:mesh.nn));
 Wext_inc = Wext_inc + 1/2*dt*(gen_vhalf(1:mesh.nn)')...
 *(fext_old(1:mesh.nn)+fext(1:mesh.nn));
 Wkin_inc = Wkin_inc + 1/2*(gen_vhalf(1:mesh.nn)')...
 *M(1:mesh.nn,1:mesh.nn)*gen_vhalf(1:mesh.nn);
 Wint(ts) = Wint_old + Wint_inc;
 Wext(ts) = Wext_old + Wext_inc;
 Wkin(ts) = Wkin_old + Wkin_inc;
 %
 Wtot(ts) = Wint(ts) + Wext(ts) + Wkin(ts);
 time(ts) = t;
 %% 12. Update counter
 ts = ts + 1;
 gen_v = gen_vnew;
 t = tnew;
 fint_old = fint;
 fext_old = fext;
 old.gen_sigma = gen_sigma;
 old.gen_truestrain = gen_truestrain;
 %% 13. Output
 displacement(ts) = gen_u(mesh.nn);
 reaction(ts) = force(mesh.nn);
 if mod(ts,round(num_ts/output_frames)) == 0
 figure(1)
 % Displacement vs Position
 subplot(2,2,1);
 plot(mesh.X,gen_u(1:mesh.nn),'m*-',...
 mesh.X,zeros(1,size(mesh.X,2)),'bo-');
 title('Displacement vs Position', 'FontWeight', 'bold',...
 'Color', 'm');
 xlabel('Position (mm)', 'FontWeight', 'bold');
 ylabel('Displacement (mm)', 'FontWeight', 'bold');
 %
 % Macro-force at 1st node vs Displacement
 subplot(2,2,2);

132

 plot(displacement,reaction,'k-');
 title('Macro-Force at last node vs Displacement',...
 'FontWeight', 'bold', 'Color', 'k');
 xlabel('Displacement (mm)', 'FontWeight', 'bold');
 ylabel('Force (N)', 'FontWeight', 'bold');
 %
 % Macro-strain (true strain) vs Position
 subplot(2,2,3);
 plot(Xgp,gen_truestrain(1:(2*nscales+1):end)','r*-',...
 mesh.X,zeros(1,size(mesh.X,2)),'bo-');
 title('Macro-strain vs Position', 'FontWeight', 'bold',...
 'Color', 'r');
 xlabel('Position (mm)', 'FontWeight', 'bold');
 ylabel('Macro-strain (mm/mm)', 'FontWeight', 'bold');
 %
 % Macro-stress vs Position
 subplot(2,2,4);
 plot(Xgp,gen_sigma(1:(2*nscales+1):end)','k*-',...
 mesh.X,zeros(1,size(mesh.X,2)),'bo-');
 title('Macro-stress vs Position', 'FontWeight', 'bold',...
 'Color', 'k');
 % axis([xminplot xmaxplot yminplot ymaxplot])
 xlabel('Position (mm)', 'FontWeight', 'bold');
 ylabel('Macro-Stress (MPa)', 'FontWeight', 'bold');
 hold off;
 %
 %
 if nscales > 0
 % Plots of the first micro-scale
 figure(2)
 %
 % Micro-strain vs Position
 subplot(2,2,1);
 plot(Xgp,gen_truestrain(2:(2*nscales+1):end)','r^-',...
 mesh.X,zeros(1,size(mesh.X,2)),'bo-');
 title('Micro-strain vs Position', 'FontWeight', 'bold',...
 'Color', 'r');
 xlabel('Position (mm)', 'FontWeight', 'bold');
 ylabel('Micro-strain (mm/mm)', 'FontWeight', 'bold');
 %
 % Micro-stress vs Position
 subplot(2,2,2);
 plot(Xgp,gen_sigma(2:(2*nscales+1):end)','k^-',...
 mesh.X,zeros(1,size(mesh.X,2)),'bo-');
 title('Micro-stress vs Position', 'FontWeight', 'bold',...
 'Color', 'k');
 % axis([xminplot xmaxplot yminplot ymaxplot])
 xlabel('Position (mm)', 'FontWeight', 'bold');
 ylabel('Micro-Stress (MPa)', 'FontWeight', 'bold');
 %
 % Gradient of micro-strain vs Position
 subplot(2,2,3);
 plot(Xgp,gen_truestrain(3:(2*nscales+1):end)','r^-',...
 mesh.X,zeros(1,size(mesh.X,2)),'bo-');
 title('Gradient of micro-strain vs Position', ...
 'FontWeight','bold', 'Color', 'r');
 xlabel('Position (mm)', 'FontWeight', 'bold');
 ylabel('Gradient of micro-strain', 'FontWeight', 'bold');
 %
 % Double-stress vs Position
 subplot(2,2,4);
 plot(Xgp,gen_sigma(3:(2*nscales+1):end)','k^-',...
 mesh.X,zeros(1,size(mesh.X,2)),'bo-');

133

 title('Double-stress vs Position', 'FontWeight',...
 'bold', 'Color', 'k');
 % axis([xminplot xmaxplot yminplot ymaxplot])
 xlabel('Position (mm)', 'FontWeight', 'bold');
 ylabel('Double-stress', 'FontWeight', 'bold');
%
% figure(3)
% %
% % Micro-strain vs Position
% subplot(2,2,1);
% plot(Xgp,gen_truestrain(4:(2*nscales+1):end)','r^-',...
% mesh.X,zeros(1,size(mesh.X,2)),'bo-');
% title('Micro-strain vs Position', 'FontWeight', 'bold', 'Color',

'r');
% xlabel('Position (mm)', 'FontWeight', 'bold');
% ylabel('Micro-strain (2) (mm/mm)', 'FontWeight', 'bold');
% %
% % Micro-stress vs Position
% subplot(2,2,2);
% plot(Xgp,gen_sigma(4:(2*nscales+1):end)','k^-',...
% mesh.X,zeros(1,size(mesh.X,2)),'bo-');
% title('Micro-stress vs Position', 'FontWeight', 'bold',...
% 'Color', 'k');
% % axis([xminplot xmaxplot yminplot ymaxplot])
% xlabel('Position (mm)', 'FontWeight', 'bold');
% ylabel('Micro-Stress (2) (MPa)', 'FontWeight', 'bold');
% %
% % Gradient of micro-strain vs Position
% subplot(2,2,3);
% plot(Xgp,gen_truestrain(5:(2*nscales+1):end)','r^-',...
% mesh.X,zeros(1,size(mesh.X,2)),'bo-');
% title('Gradient of micro-strain vs Position', 'FontWeight',...
% 'bold', 'Color', 'r');
% xlabel('Position (mm)', 'FontWeight', 'bold');
% ylabel('Gradient of micro-strain (2)', 'FontWeight', 'bold');
% %
% % Double-stress vs Position
% subplot(2,2,4);
% plot(Xgp,gen_sigma(5:(2*nscales+1):end)','k^-',...
% mesh.X,zeros(1,size(mesh.X,2)),'bo-');
% title('Double-stress vs Position', 'FontWeight',...
% 'bold', 'Color', 'k');
% % axis([xminplot xmaxplot yminplot ymaxplot])
% xlabel('Position (mm)', 'FontWeight', 'bold');
% ylabel('Gradient of micro-stress (2)', 'FontWeight', 'bold');
%
 hold off;
 end % end if nscales
 end % end if mod
 %
 end % end while loop
 toc
end
%% Returns the consistent mass matrix
function [Mc,Xgp] = getMass(mesh,nscales,ngp,rho_0,I_n,area_n)
 % Allocate space for mass matrix.
 Mc = zeros(mesh.nn*(nscales+1),mesh.nn*(nscales+1));
 nel = 0;
 ngp_global = 1;
 Xgp = zeros((mesh.nn-1)*ngp,1);
 for conn = mesh.conn'
 nel = nel+1; % Element number inside this loop
 nne = length(conn); % Number of nodes of this element

134

 %
 Me_0 = zeros(nne,nne); % element mass matrix for macro-scale
 Me_n = zeros(nne,nne,nscales); % element mass
 %matrix for
 %extra scales
 %
 [qpt, qwt] = quadrature(ngp); % Quadrature points and weights
 for i=1:ngp
 xigp = qpt(i); % Gauss point in parent coordinates
 % Get the shape functions:
 N = getN(xigp);
 % Gauss point in ref. coordinates (not needed):
 Xgp(ngp_global) = (mesh.X(conn)')*N;
 %
 dN = getGradN(xigp); % dN/dxi (wrt parent coords)
 dXdxi = (mesh.X(conn)')*dN; % dx/dxi (Jacobian of the ref.
 %config. wrt parent coords)
 Jac0xi = det(dXdxi); % Jacobian determinant ref./parent
 % Compute element mass matrix for macro-scale
 Me_0 = Me_0 + rho_0*N*(N')*Jac0xi*mesh.area*qwt(i);
 %
 % Compute element mass matrix for each extra scale
 for iscale=1:nscales
 Me_n(:,:,iscale) = Me_n(:,:,iscale)+I_n(iscale)*N*(N')...
 *Jac0xi*area_n(iscale)*qwt(i);
 end
 %
 ngp_global = ngp_global + 1;
 end
 %
 % Mass matrix assembly
 %Indices of rows and columns for each type of dof:
 i_0 = conn;
 Mc(i_0,i_0) = Mc(i_0,i_0) + Me_0;
 for iscale=1:nscales
 i_n = mesh.nn*iscale+conn;
 Mc(i_n,i_n) = Mc(i_n,i_n) + Me_n(:,:,iscale);
 end
 %
 end
end
%% Returns quadrature points and quadrature weights.
function [qpt, qwt] = quadrature(ngp)
 if ngp == 1
 x = zeros(ngp,1);
 wt = zeros(ngp,1);
 x(1) = 0;
 wt(1) = 2;
 elseif ngp == 2
 x = zeros(ngp,1);
 wt = zeros(ngp,1);
 x(1) = -sqrt(1/3);
 x(2) = -x(1);
 wt(1) = 1;
 wt(2) = 1;
 elseif ngp == 3
 x = zeros(ngp,1);
 wt = zeros(ngp,1);
 x(1) = -sqrt(3/5);
 x(2) = 0;
 x(3) = -x(1);
 wt(1) = 5/9;
 wt(2) = 8/9;

135

 wt(3) = wt(1);
 elseif ngp == 4
 x = zeros(ngp,1);
 wt = zeros(ngp,1);
 x(1) = -sqrt((3+2*sqrt(6/5))/7);
 x(2) = -sqrt((3-2*sqrt(6/5))/7);
 x(3) = -x(2);
 x(4) = -x(1);
 wt(1) = (18-sqrt(30))/36;
 wt(2) = (18+sqrt(30))/36;
 wt(3) = wt(2);
 wt(4) = wt(1);
 else error('More than 4 point quadrature is not implemented');
 end
 %
 qpt = x;
 qwt = wt;
end
%% Returns a 2x1 matrix that gives the shape functions
function [N] = getN(xi)
 % xi is the parent coordinate
 %
 N = 1/2*[(1-xi) , (1+xi)]';
 % NOTE: N is defined as a COLUMN vector: 2x1 (instead of a row vector
 %as in the book)
end
%% Returns the lumped mass matrix and its inverse
function [M,invM] = getLumpedMass(Mc,mesh,nscales)
 M = spalloc(mesh.nn*(nscales+1),mesh.nn*(nscales+1),mesh.nn);
 for i=1:(mesh.nn*(nscales+1))
 for j=1:(mesh.nn*(nscales+1))
 M(i,i) = M(i,i)+Mc(i,j);
 end
 end
 %
 % Compute the inverse of the lumped mass matrix
 invM = spalloc(mesh.nn*(nscales+1),mesh.nn*(nscales+1),mesh.nn);
 %
 for i=1:(mesh.nn*(nscales+1))
 for j=1:(mesh.nn*(nscales+1))
 if M(i,i) == 0;
 invM(i,i) = 0;
 else
 invM(i,i) = 1/M(i,i);
 end
 end
 end
end
%% Computes the force.
function [fint,gen_sigma,gen_truestrain] = getFint(dt,mesh,nscales,ngp,...
 matprops,old,l_n,h_n,...
 thick_n,gen_v,sigygp_0)
 % Allocate space for generalized stresses and strain measures
 gen_sigma = zeros(size(old.gen_sigma)); % generalized stresses
 gen_truestrain = zeros(size(old.gen_sigma)); % generalized strains
 % Allocate space for the nodal forces matrix
 fint = zeros(mesh.nn*(nscales+1),1);
 nel = 0;
 ngp_global = 1; % Counter for the total number of Gauss points
 % Loop over element nel
 for conn = mesh.conn'
 nel = nel+1; % Element number inside this loop
 nne = length(conn); % Number of nodes of this element

136

 %
 [qpt, qwt] = quadrature(ngp); % Quadrature points and weights
 fe_int = zeros(nne*(nscales+1),1);
 for i=1:ngp
 xigp = qpt(i); % Gauss point in parent coordinates
 % Get the shape functions:
 N = getN(xigp);
% % Gauss point in current coordinates (not needed):
% xgp = (mesh.x(conn)')*N;
 % dN/dxi (wrt parent coords):
 dN = getGradN(qpt(i));
 % dx/dxi (Jacobian of the current config. wrt parent coords):
 dxdxi = (mesh.x(conn)')*dN;
 % Jacobian determinant
 Jac_xi = det(dxdxi);
 % Calculate the scripted B matrix in current configuration
 %for the regular dofs:
 Bscript = dN/dxdxi; % Scripted B matrix
 %
 %
 % Compute rate-of-deformation
 D_0 = (gen_v(conn)')*Bscript;
 %
 D_n = zeros(nscales,1);
 gradD_n = zeros(nscales,1);
 %
 for is=1:nscales
 D_n(is) = (gen_v(mesh.nn*(is)+conn)')*N;
 gradD_n(is) = (gen_v(mesh.nn*(is)+conn)')*Bscript;
 end
 %
 % Generalized strain measures (assemble previous rate-of-
 %-deformation measures in one vector):
 gen_D = zeros((1+2*nscales),1);
 gen_D(1) = D_0;
 for is=1:nscales
 gen_D(2*is) = D_n(is)-D_0;
 gen_D(2*is+1) = gradD_n(is);
 end
 %
 % Determine the true strain (logarithmic strain) for this Gauss
 %point
 gen_truestrainGP = old.gen_truestrain(:,ngp_global) +...
 gen_D * dt;
 %
 % Get the stress from the constitutive law:
 [gen_sigmaGP] = getGenStress(ngp_global,dt,matprops,l_n,h_n,...
 thick_n,nscales,old,gen_D,sigygp_0);
 % Note: "gen_sigmaGP" is the vector with the generalized
 %stresses for this element
 %
 % The generalized stress vector containing all the information
 %for every Gauss point is:
 gen_sigma(:,ngp_global) = gen_sigmaGP;
 % The generalized true strain vector containing all the
 %information for every Gauss point is:
 gen_truestrain(:,ngp_global) = gen_truestrainGP;
 % Rename the stresses in the generalized stress vector for this
 %element:
 sigma_0 = gen_sigmaGP(1);
 sigma_n = zeros(nscales,1);
 gradsigma_n = zeros(nscales,1);
 for is=1:nscales

137

 sigma_n(is) = gen_sigmaGP(2*is); % micro-stresses
 gradsigma_n(is) = gen_sigmaGP(2*is+1); % double-stresses
 end
 %
 auxsigma = sigma_0;
 for is=1:nscales
 auxsigma = auxsigma - sigma_n(is);
 end
 % Calculate the nodal internal forces
 fe_int(1:nne) = fe_int(1:nne) + Bscript*auxsigma*Jac_xi...
 *mesh.area*qwt(i);
 %
 for is=1:nscales
 ind = 1+nne*is;
 fe_int(ind:(ind+nne-1)) = fe_int(ind:(ind+nne-1)) + ...
 (N*sigma_n(is) + Bscript*gradsigma_n(is)) ...
 *Jac_xi*h_n(is)*thick_n(is)*qwt(i);
 end
 %
 ngp_global = ngp_global + 1;
 end % end element mass matrix for enriched element
 %
 % Scatter the force
 % Indices of rows and columns for each type of dof:
 i_0 = conn;
 fint(i_0) = fint(i_0) + fe_int(1:nne);
 for is=1:nscales
 i_n = mesh.nn*is+conn;
 ind = 1+nne*is;
 fint(i_n) = fint(i_n) + fe_int(ind:(ind+nne-1));
 end
 %
 end
end
%% Returns a 2x1 matrix that gives the derivative of the shape functions.
function [dN] = getGradN(xi)
 % xi is not necessary for linear shape functions.
 dN = 1/2*[-1 , 1]';
 % Note: dN is a COLUMN vector: 2x1 matrix (instead of 1x2 as in the
 %book)
end
%% Returns the generalized stress according to chosen constitutive law
function [gen_sigmaGP] = getGenStress(ngp_global,dt,matprops,l_n,h_n,...
 thick_n,nscales,old,gen_D,sigygp_0)
 % The generalized stresses for this ELEMENT are given by the vector:
 %
 % | sigma^(0) | <--- macro stress
 % | sigma^(1) | <--- micro stress (1)
 % | sigma-sigma^(1) | <--- double-stress (1)
 % | sigma^(2) | <--- micro stress (2)
 %gen_sigmaGP = | sigma-sigma^(2) | <--- double-stress (2)
 % | . |
 % | . |
 % | . |
 % | sigma^(n) | <--- micro stress (n)
 % | sigma-sigma^(n) | <--- double-stress (n)
 %
 %% Read material properties for every scale:
 youngsC_0 = matprops(1,1);
 %
 youngsC_n = zeros(nscales,1);
 youngsB_n = zeros(nscales,1);
 rho_n = zeros(nscales,1);

138

 for iscale=1:nscales
 youngsC_n(iscale) = matprops(1+iscale,1);
 youngsB_n(iscale)= matprops(1+iscale,2);
 rho_n(iscale) = matprops(1+iscale,3);
 end
 %
 Cmat = zeros((1+2*nscales),(1+2*nscales));
 Cmat(1,1) = youngsC_0;
 for i=1:nscales
 Cmat(2*i,2*i:(1+2*i)) = [youngsC_n(i) , youngsB_n(i)];
 Cmat(2*i+1,2*i:(1+2*i))= [youngsB_n(i) , youngsC_n(i)...

 *(h_n(iscale)^2+thick_n(iscale)^2)/12]];
 end
 %
 %% Apply the constitutive law
 % Get the generalized stresses for this Gauss Point before yielding
 gen_sigmaGP = old.gen_sigma(:,ngp_global) + Cmat * gen_D * dt;
 %
 % Get the generalized stresses after yielding
 if abs(gen_sigmaGP(1)) > sigygp_0(ngp_global)
 gen_sigmaGP(1) = sign(gen_sigmaGP(1))*sigygp_0(ngp_global);
 end
 %
end
%% Returns external nodal forces
function [fext] = getFext(t,mesh,nscales)
 fext = zeros(mesh.nn*(nscales+1),1);
% fext(1) = 1e3 * mesh.area;
end

139

CHAPTER 13: Single Crystal Plasticity

13.1 Show that for cubic crystals the unit normal n
hkl

 =  
1/2

2 2 2

1 2 3()h k l h k l


   e e e .

Solution to 13.1

Beginning with the definition of the reciprocal lattice vector,

1 2 3hkl h k l  g b b b

The reciprocal bases are given by,

   

   

   

1 2 3 1

1 2 3 1 2 3

2 3 1 2

1 2 3 1 2 3

3 31 2

1 2 3 1 2 3


 

   


 

   


 

   

a a a
b

a a a a a a

a a a
b

a a a a a a

aa a
b

a a a a a a

Thus, the reciprocal lattice vector is given by,

 
 1 2 3

1 2 3

1hkl h k l  
 

g a a a
a a a

In a cubic crystal, all lattice vectors are of equal length, say a, therefore,

 1 2 32

1hkl h k l
a

  g e e e

The inverse of its norm is given by,

2
1

2 2 2

hkl a

h k l




 

g

The unit normal is therefore,

 
1

1 2 3
2 2 2

1hkl hkl hkl h k l
h k l



   
 

n g g e e e

140

Which proves that the normal vector is in the direction [hkl].

13.2 Show that according to Fig. 13.10
1

e
F V e and *

1 R R , where
1 1 1

e eF V R .

Solution to 13.2

Two definitions are of interest,

 1 1 1 1 1, so , and

, with symmetric

e p e p

e p e

 



F F F F V R F

F F F F

Now, configurations Intermediate II and Intermediate-Polar both follow from

Intermediate I by rigid rotations only, R* and R1 respectively. Going from Intermediate

II and Intermediate-Polar to the deformed configuration only symmetric tensors are to be

used,
eF and 1

e
V respectively. Since Intermediate II and Intermediate-Polar follow

from intermediate I by rigid rotation, symmetric
eF and 1

e
V must describe the same

total elastic stretching of the crystal that yields the final configuration. That is, 1F V
e e

.

But then
-1

1V
e

 maps into intermediate II from the deformed configuration, just as
1e

F

Intermediate

Polar

R1

V1

e

141

does. In this manner, intermediate II and intermediate-Polar must be the same

configuration, since
-1

1 aV
e

, a 1-to-1 function, maps to both, and
*

1 R R .

13.3 Show that crystalline plasticity is incompressible (Hint: use Eq. 13.5.7).

Solution to 13.3

Beginning with the relation

1 1: :e p e  


 C D C P

Noting that Ce serves as a metric tensor g on intermediate configuration I, we can write

   1 : :e trace     

  
       C P G P G P

where G = g-1 . Substituting the definition of Pa
in its covariant form we find,

 () () () ()1

2

         P g s n n s g , where

() () is defined with contravariant components, and with covariant components s n

Thus,

    

    

() () () ()

() () () ()

1

2
1

2

trace trace

trace trace

      

 

      

 

 

 

       

      

 

 

G P G g s n n s g

G P s n G n s g

In index notation, and noting that the g lowers an index and G raises an index,

   

 

() () () ()

() () () ()

1

2
1

 0
2

i i

j j

i i

i i

trace trace s n n s

s n n s

      

 

    



 



  

  

 



G P

() ()By the orthogonality of and . n s

142

13.4 Show that the second of Eq. 13.8.5 results from the skew symmetry of .

Solution to 13.4

Beginning with the relation,

 () * * * *: :dev dev dev dev   
 

     
 

P P P      

In index notation,

 () * * * *dev dev dev dev dev

ij ij kj ik ij ik kj ij ij ik kj ij kj ikP P P P P          


        

Substituting T  for the third and fourth terms, and rearranging terms we find,

 () * * * * dev dev dev dev dev

ij ij kj ik ij ij ki kj ik kj ij ij jk ikP P P P P          


        

Swapping i and k indices in the second term, and j and k in the third term,

 () * * * * dev dev dev dev dev

ij ij kj ik ij kj ik ij ij jk ik ij jk ikP P P P P          


        

Thus,

() :dev 


 P

13.5 Find the explicit expression for , in Eq. 13.5.4, in component form. (Hint: See

derivation in [9].)

Solution to 13.5

Beginning from the definition

1 1 1e e e p p e   L F F F F F F

where
1p p p p D W F F .

143

Post multiplying by F
e
,

1e e e p p LF F F F F

Solving for F
e

   e e e p p   F D W F F D W

Using the symmetry of F
e
we find,

   e eT e p p e    F F F D W D W F

Subtracting the two expressions, for F
e

       e p p e e e p p      F D W D W F D W F F D W

Regrouping terms

       p e e p p e e p      D D F F D D W W F F W W

Now

     :e p p e pW    F W W W W F W W

where  e e

ijkl ik jl ik jlW F F  

Thus

    1p p e e pWW W D D F F D D
    

Also,

     :p e e p p
D D F F D D D D    V

where  e e

ijkl ik jl ik jlV F F   .

Therefore,

 1p p

ij ij ijmn mnkl kl
W VW W D D

  

Hence .

144

13.6 Computer problem.

(a) Write a poly-slip, rate-dependent, single crystal plasticity subroutine, based on Box

13.2 and Table 13.3, to reproduce the results in Fig. 13.11 to Fig. 13.13.

(b) Change the Euler angles to (0, 60, 0) and compare the deformation pattern at

30% nominal strain. Use Box 13.1 to help re-define your slip directions and normals

correctly, or use Table E13.1.

Solution to 13.6 (a)

Here we list a FORTRAN material subroutine, VUMAT to be used in ABAQUS\Explicit.

The results of this code reproduce Fig. 13.11 to Fig. 13.13 based on Box 13.2 and Table

13.3.

The code, however, does not present the details of the ODE solver (ODEINT.inc), since

different available solvers could be chosen from. Nonetheless, the parameters to be

passed in and out of the ODE solver are clearly indicated and setup.

Solution to 13.6 (b)

The same code will be used for this part. Only, Table E13.1 should be used to define the

initial values for slip directions and normals.

145

% FORTRAN CODE FOR PROBLEM 13.6 %

C #===

C _______

C \ / | | |\ /| /\ |

C \ / | | | \/ | /__\ |

C \/ |____| | | / \ |

C

C This subroutine is the MAIN MATERIAL SUBROUTINE:

C It updates: stresses, internal variables (SDV array), and energies

C

C Khalil El Khodary <khalile@aucegypt.edu>

C Assistant Professor at the American University in Cairo

C ===

 subroutine vumat (

C Read only -

 1 nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal,

 2 stepTime, totalTime, dt, cmname, coordMp, charLength,

 3 props, density, strainInc, relSpinInc,

 4 tempOld, stretchOld, defgradOld, fieldOld,

 5 stressOld, stateOld, enerInternOld, enerInelasOld,

 6 tempNew, stretchNew, defgradNew, fieldNew,

C Write only -

 7 stressNew, stateNew, enerInternNew, enerInelasNew)

 include 'vaba_param.inc'

 include 'DataInitialize.inc'

 include 'ElasticStarter.inc'

C

C #===

C # LOADING MATERIAL DATA FROM INPUT FILE #

C (independent of Element), (nprops = 7*nslip+27)

C Note: Not all data in props is loaded here.

C Some will be loaded when needed

C #===

 nslip = int(props(1))

 e = props(2)

 xnu = props(3)

 yield = props(4)

 g_source = props(10)

 g_immob = props(11)

 g_minter = props(12)

 g_recov = props(13)

 Cp = props(14)

 tempR = props(15)

 H_K = props(16)

 xi = props(17)

 Chi = props(18)

 EM_factor = props(20)

 b_v(1:nslip) = props(21:20+nslip)

C

146

C Derived material constants

 g = e/(two*(one + xnu))

 twomu = two*g

 bulk = e/three/(one - two * xnu)

C

C Note H/K is assumed constant, so temp must stay at tempR

 thermal_coef = H_K/tempR

C

C Derived Pointers/Flags

 ibeginN = 20 + nslip

 ibeginS = nslip*3 + ibeginN

C #===

C # WORKING WITH ELEMENT "k" #

C #===

 do k = 1,nblock

C Load Internal variables independent of slip system

 Psi21 = stateOld(k,1)*pi/180.d0

 Psi32 = stateOld(k,2)*pi/180.d0

 Psi13 = stateOld(k,3)*pi/180.d0

 gamma = stateOld(k,4)

 temp = stateOld(k,6) + tempR

C Load Internal variables dependent on slip system

 do j = 1, nslip

 tau(j) = stateOld(k,8 + (j-1)*10)

 gdot(j) = stateOld(k,9 + (j-1)*10)

 den_im(j) = stateOld(k,10 + (j-1)*10)

 den_m(j) = stateOld(k,11 + (j-1)*10)

 slip_n(j,1) = stateOld(k,12 + (j-1)*10)

 slip_n(j,2) = stateOld(k,13 + (j-1)*10)

 slip_n(j,3) = stateOld(k,14 + (j-1)*10)

 slip_s(j,1) = stateOld(k,15 + (j-1)*10)

 slip_s(j,2) = stateOld(k,16 + (j-1)*10)

 slip_s(j,3) = stateOld(k,17 + (j-1)*10)

 end do

C

C Compute derived slip-specific mechanical constants

 do j = 1, nslip

 recip_m(j) = one / props(6)

 ref_gdot(j) = props(7)

 end do

C

C ---

C # IF APPLICABLE: REPLACE ZEROED VARIABLES WITH INITIAL DATA #

C ---

 if (dt .eq. totalTime) then

 do i = 1, nslip

 den_im(i) = props(8)

 den_m (i) = props(9)

147

 do j = 1, 3

 slip_n(i,j) = props(ibeginN + 3*(i-1) + j)

 slip_s(i,j) = props(ibeginS + 3*(i-1) + j)

 enddo

 enddo

 endif

C ---

C # COMPUTE TOTAL SPIN and RATE OF DEFORMATION #

C # COMPUTE ROTATION FROM F = RU #

C # (Rnew is the Transpose of R) #

C ---

C Compute Spin, Dij and Rotation tensors

 call getSpinDij(dt,defgradNew(k,:),defgradOld(k,:),Spin,Dij)

 call getRot(defgradNew(k,:),stretchNew(k,:),Rnew)

C

C Deviatoric Dij tensor

 traceDij = Dij(1) + Dij(2) + Dij(3)

 Dij_dev(1) = Dij(1) - traceDij/3.d0

 Dij_dev(2) = Dij(2) - traceDij/3.d0

 Dij_dev(3) = Dij(3) - traceDij/3.d0

 Dij_dev(4) = Dij(4)

 Dij_dev(5) = Dij(5)

 Dij_dev(6) = Dij(6)

C

C ---

C # COMPUTE Pij & Wij #

C ---

C SYMMETRIC SCHMID TENSOR (EXPRESSED W.R.T GLOBAL AXES)

C This is for the sake of Dij tensor compuations.

 do j = 1, nslip

 p(j,1) = 0.5d0*(slip_s(j,1)*slip_n(j,1) +

 1 slip_s(j,1)*slip_n(j,1))

 p(j,2) = 0.5d0*(slip_s(j,2)*slip_n(j,2) +

 1 slip_s(j,2)*slip_n(j,2))

 p(j,3) = 0.5d0*(slip_s(j,3)*slip_n(j,3) +

 1 slip_s(j,3)*slip_n(j,3))

 p(j,4) = 0.5d0*(slip_s(j,1)*slip_n(j,2) +

 1 slip_s(j,2)*slip_n(j,1))

 p(j,5) = 0.5d0*(slip_s(j,2)*slip_n(j,3) +

 1 slip_s(j,3)*slip_n(j,2))

 p(j,6) = 0.5d0*(slip_s(j,3)*slip_n(j,1) +

 1 slip_s(j,1)*slip_n(j,3))

 end do

C

C ANTI-SYMMETRIC SCHMID TENSOR (EXPRESSED W.R.T GLOBAL AXES)

C This is for the sake of spin tensor compuations, which are

C also computed and expressed w.r.t. Initial (global) Axes

 do j = 1, nslip

 w12(j) = 0.5d0 * (slip_s(j,1)*slip_n(j,2) -

 1 slip_s(j,2)*slip_n(j,1))

 w23(j) = 0.5d0 * (slip_s(j,2)*slip_n(j,3) -

148

 1 slip_s(j,3)*slip_n(j,2))

 w31(j) = 0.5d0 * (slip_s(j,3)*slip_n(j,1) -

 1 slip_s(j,1)*slip_n(j,3))

 end do

C

C

C ---

C # PijDij #

C For the Computation of Tau_dot

C ---

 do j = 1, nslip

 PijDijDev(j)= p(j,1)*Dij_dev(1) + p(j,2)*Dij_dev(2)

 1 + p(j,3)*Dij_dev(3) + 2.d0*p(j,4)*Dij_dev(4)

 2 +2.d0*p(j,5)*Dij_dev(5) + 2.d0*p(j,6)*Dij_dev(6)

 end do

C

C ---

C # UPDATE Resolved Shear stress: TAU (alpha) #

C ---

C

C Thermal Multiplier

 thermal_factor = (tempR/temp)**xi

 tauR(1:maxSS) = 0.d0

C

C Compute Tau Reference (crystal strength)

 do j = 1, nslip

 do kk = 1,nslip

 alphaInt = abs(p(j,1)*p(kk,1) + p(j,2)*p(kk,2)

 1 + p(j,3)*p(kk,3) + 2.*p(j,4)*p(kk,4)

 2 + 2.*p(j,5)*p(kk,5) + 2.*p(j,6)*p(kk,6))/0.5d0

 tauR(j) = tauR(j) + alphaInt*g*b_v(kk)*sqrt(den_im(kk))

 enddo

 enddo

 tauR(1:nslip) = (tauR(1:nslip) +yield/EM_factor)*thermal_factor

C

C Define Integration Parameters to pass to ODEINT (initial value ODE problem)

 tauStart(1:nslip) = tau(1:nslip)

 NVAR = nslip

 Time = totalTime - dt

 eps = 0.01d0

 hmin = dt/24.d0

C PACK Parameters into Array PAR to send to tauDot and tauResidual

C These are all required input to solve for the resolved shear stress

 PAR (1) = dble(nslip)

 PAR (2 : NVAR+1) = recip_m(1:nslip)

 PAR (NVAR+2 : 2*NVAR+1) = ref_gdot(1:nslip)

 PAR (2*NVAR+2 : 3*NVAR+1) = PijDijDev(1:nslip)

 PAR (3*NVAR+2 : 4*NVAR+1) = p(1:nslip,1)

 PAR (4*NVAR+2 : 5*NVAR+1) = p(1:nslip,2)

 PAR (5*NVAR+2 : 6*NVAR+1) = p(1:nslip,3)

 PAR (6*NVAR+2 : 7*NVAR+1) = p(1:nslip,4)

 PAR (7*NVAR+2 : 8*NVAR+1) = p(1:nslip,5)

 PAR (8*NVAR+2 : 9*NVAR+1) = p(1:nslip,6)

149

 PAR (9*NVAR+2 : 10*NVAR+1) = tau(1:nslip)

 PAR (10*NVAR+2 : 11*NVAR+1) = tauR(1:nslip)

 PAR (11*NVAR+2) = twomu

 PAR (size(PAR,1)) = 0.d0 !This takes the value of time step increment

'h'

C Integrate tauDot using an ODE solver subroutine

 call odeint(tauDot, tauResidual, tauStart, NVAR,

 1 Time, Time + dt, eps, dt, hmin, PAR)

C Update Tau

 tau(1:nslip) = tauStart(1:nslip)

C

C ---

C # COMPUTE CRYSTALLOGRAPHIC SHEAR STRAIN RATE #

C ---

 do j = 1, nslip

C Power-law

 gdot(j) = ref_gdot(j)*(tau(j)/tauR(j))*

 1 (abs(tau(j)/tauR(j)))**(recip_m(j)-1.)

 end do

C ---

C # COMPUTE PLASTIC RATES OF DEFORMATION & SPIN #

C ---

C Initialize Values

 D11_p = 0.d0

 D22_p = 0.d0

 D33_p = 0.d0

 D12_p = 0.d0

 D23_p = 0.d0

 D31_p = 0.d0

 spin_p12 = 0.d0

 spin_p23 = 0.d0

 spin_p31 = 0.d0

 spin_21 = Spin(1)

 spin_32 = Spin(2)

 spin_13 = Spin(3)

 spin_12 =-Spin(1)

 spin_23 =-Spin(2)

 spin_31 =-Spin(3)

 do j = 1 , nslip

C Plastic Deformation Rate,

 if (abs(gdot(j)).gt.abs(ref_gdot(j))) then

 D11_p = D11_p + p(j,1)*gdot(j)

 D22_p = D22_p + p(j,2)*gdot(j)

 D33_p = D33_p + p(j,3)*gdot(j)

 D12_p = D12_p + p(j,4)*gdot(j)

 D23_p = D23_p + p(j,5)*gdot(j)

 D31_p = D31_p + p(j,6)*gdot(j)

 spin_p12 = spin_p12 + w12(j)*gdot(j)

 spin_p23 = spin_p23 + w23(j)*gdot(j)

 spin_p31 = spin_p31 + w31(j)*gdot(j)

 endif

 end do

150

C

C

C

C ---

C # COMPUTE ELASTIC SPIN #

C ---

 spin_p21 = -spin_p12

 spin_p13 = -spin_p31

 spin_p32 = -spin_p23

 spin_e21 = spin_21 - spin_p21

 spin_e12 = -spin_e21

 spin_e32 = spin_32 - spin_p32

 spin_e23 = -spin_e32

 spin_e13 = spin_13 - spin_p13

 spin_e31 = -spin_e13

C

C ---

C # UPDATE/NORMALIZE SLIP NORMALS AND DIRECTIONS #

C NOTE: STILL REFERENCED TO GLOBAL AXES

C ---

 do j = 1 , nslip

C n_dot and s_dot,

 an_dot1 = spin_e12*slip_n(j,2) + spin_e13*slip_n(j,3)

 an_dot2 = spin_e21*slip_n(j,1) + spin_e23*slip_n(j,3)

 an_dot3 = spin_e31*slip_n(j,1) + spin_e32*slip_n(j,2)

 as_dot1 = spin_e12*slip_s(j,2) + spin_e13*slip_s(j,3)

 as_dot2 = spin_e21*slip_s(j,1) + spin_e23*slip_s(j,3)

 as_dot3 = spin_e31*slip_s(j,1) + spin_e32*slip_s(j,2)

C n and s updated

 slip_n(j,1) = slip_n(j,1) + an_dot1*dt

 slip_n(j,2) = slip_n(j,2) + an_dot2*dt

 slip_n(j,3) = slip_n(j,3) + an_dot3*dt

 slip_s(j,1) = slip_s(j,1) + as_dot1*dt

 slip_s(j,2) = slip_s(j,2) + as_dot2*dt

 slip_s(j,3) = slip_s(j,3) + as_dot3*dt

 end do

C Normalize slip vectors to unit magnitude

 call unit_vector(3,nslip,slip_n,slip_s)

C

C ---

C # EXPRESS THE ROTATED STRESS AT BEGINNING OF INCREMENT #

C # AS CAUCHY STRESS:: S = R*S(corot)*R^T ,for R = FU^-1 #

C # NOTE: RNEW is the Transpose of that in F=R*U #

C ---

C Cauchy Stress

 Rnew = Transpose(Rnew)

 call ROTATE(stressNew(k,:),Rnew,stressOld(k,1),stressOld(k,2),

 1 stressOld(k,3),stressOld(k,4),stressOld(k,5),

 2 stressOld(k,6))

 sigGLB1 = stressNew(k,1)

 sigGLB2 = stressNew(k,2)

 sigGLB3 = stressNew(k,3)

151

 sigGLB4 = stressNew(k,4)

 sigGLB5 = stressNew(k,5)

 sigGLB6 = stressNew(k,6)

 Rnew = Transpose(Rnew)

C COMPUTE THE DEVIATORIC PARTS

 press = (sigGLB1 + sigGLB2 + sigGLB3)/3.d0

 sigGLB1 = sigGLB1 - press

 sigGLB2 = sigGLB2 - press

 sigGLB3 = sigGLB3 - press

C

C ---

C # UPDATE CAUCHY STRESSES #

C ---

C COMPUTE THE NON-CONSTITUTIVE PART OF STRESS RATE: "SIGMA.W* - W*.SIGMA"

 o11 = - 2.d0*(spin_e12*sigGLB4 + spin_e13*sigGLB6)

 o22 = - 2.d0*(spin_e21*sigGLB4 + spin_e23*sigGLB5)

 o33 = - 2.d0*(spin_e31*sigGLB6 + spin_e32*sigGLB5)

 o12 = spin_e12*sigGLB1 - spin_e12*sigGLB2 -

 1 spin_e13*sigGLB5 - spin_e23*sigGLB6

 o23 = spin_e23*sigGLB2 - spin_e23*sigGLB3 -

 1 spin_e21*sigGLB6 - spin_e31*sigGLB4

 o31 = spin_e13*sigGLB1 - spin_e13*sigGLB3 -

 1 spin_e32*sigGLB4 - spin_e12*sigGLB5

C

C UPDATE THE CAUCHY STRESSES, BUT EXPRESSED W.R.T. GLOBAL AXES

 sigGLB1 = sigGLB1 + dt*o11 + twomu*dt*(Dij_dev(1)-D11_p)

 sigGLB2 = sigGLB2 + dt*o22 + twomu*dt*(Dij_dev(2)-D22_p)

 sigGLB3 = sigGLB3 + dt*o33 + twomu*dt*(Dij_dev(3)-D33_p)

 sigGLB4 = sigGLB4 + dt*o12 + twomu*dt*(Dij_dev(4)-D12_p)

 sigGLB5 = sigGLB5 + dt*o23 + twomu*dt*(Dij_dev(5)-D23_p)

 sigGLB6 = sigGLB6 + dt*o31 + twomu*dt*(Dij_dev(6)-D31_p)

C

C ---

C # UPDATE TEMPERATURE AND PLASTIC WORK INC#

C ---

C (Deviatoric) StressPower,

 DijSij = sigGLB1*D11_p + sigGLB2*D22_p +

 1 sigGLB3*D33_p + 2.d0*sigGLB4*D12_p +

 2 2.d0*sigGLB5*D23_p + 2.d0*sigGLB6*D31_p

C Update plastic work from stress power

 plasticWorkInc = dt*abs(DijSij)

 eta = density(k)*Cp

C Adiabatic Temp Update,

 tempInc = plasticWorkInc/eta* Chi

C Update normal stress components with volumetric part

 press = press + bulk*dt*(traceDij)

 sigGLB1 = sigGLB1 + press

 sigGLB2 = sigGLB2 + press

 sigGLB3 = sigGLB3 + press

152

C ---

C # STORE UPDATED COROTATIONAL STRESS :: R^T*S*R

C ---

 call ROTATE(stressNew(k,:),Rnew,sigGLB1,sigGLB2,sigGLB3,

 1 sigGLB4,sigGLB5,sigGLB6)

C ---

C # UPDATE INTERNAL VARIABLES: RHO_M & RHO_IM #

C ---

C Define Integration Parameters to pass to ODEINT (initial value ODE problem)

 eps = 0.05d0

 hmin = dt/24.d0

 Time = totalTime - dt

 NVAR = 2

C

C Reset PAR

 PAR(1: size(PAR,1)) = 0.d0

C PACK Parameters into Array PAR to send to rhoDot and rhoResidual

 PAR (1) = dble(nslip)

 PAR (2) = g_source

 PAR (3) = g_immob

 PAR (4) = g_minter

 PAR (5) = g_recov

 PAR (6) = thermal_coef

 PAR (11 : nslip+10) = gdot(1:nslip)

 PAR (nslip+11 : 2*nslip+10) = b_v(1:nslip)

 PAR (size(PAR,1)) = 0.d0!This later takes on a value'h'

C

C Call rho_dot integrator 'nslip' times

 do j = 1, nslip

 rhoStart(1) = den_im(j)!Rho_im Starting Value

 rhoStart(2) = den_m(j) !Rho_ m Starting Value

 PAR (2*nslip+11) = dble(j) !assigns jslip

 PAR (2*nslip+12:2*nslip+13) = rhoStart(1:2)

C

C Call Nested Subroutines for Adaptive RK5 Integration or Back Euler

 call odeint(rhoDot,rhoResidual,rhoStart, NVAR,

 1 Time, Time + dt, eps, dt, hmin, PAR)

 den_im(j) = rhoStart(1) !Rho_im Updated Value

 den_m(j) = rhoStart(2) !Rho_ m Updated Value

 end do

C

C Reset PAR

 PAR(1: size(PAR,1)) = 0.d0

C

C ---

C # UPDATE ALL OTHER INTERNAL VARIABLES #

C ---

C Increment in shear slip:: Using an 'effective' measure;

C dgamma = dt*sqrt([D_p]:[D_p])

 dgamma = dt*sqrt((D11_p**2.d0 + D22_p**2.d0 + D33_p**2.d0+

 1 2.d0*D12_p**2.d0 +2.d0*D23_p**2.d0 +2.d0*D31_p**2.d0))

153

C

C

C

C Internal variables not dependent on slip system

 Psi21 = Psi21 + spin_e21*dt

 Psi32 = Psi32 + spin_e32*dt

 Psi13 = Psi13 + spin_e13*dt

 stateNew(k,1) = Psi21*(180.d0/pi)!Angle21 that Slip systems rotated,

 stateNew(k,2) = Psi32*(180.d0/pi)!Angle32 that Slip systems rotated,

 stateNew(k,3) = Psi13*(180.d0/pi)!Angle13 that Slip systems rotated,

 stateNew(k,4) = stateOld(k,4) + dgamma !New Shear Slip,

 stateNew(k,5) = sum(tauR(1:nslip))/nslip !New Reference Tau

 stateNew(k,6) = stateOld(k,6) + tempInc !New Temperature

C

C Internal variables dependent on slip system

 do j = 1, nslip !Loop over slip-system alpha:

 stateNew(k,8 + (j-1)*10) = tau(j) !shear stress

 stateNew(k,9 + (j-1)*10) = gdot(j)!shear strain-rate

 stateNew(k,10 + (j-1)*10) = den_im(j) !rho mobile

 stateNew(k,11 + (j-1)*10) = den_m(j)!rho immobile

 stateNew(k,12 + (j-1)*10) = slip_n(j,1)!slip plane normal (x)

 stateNew(k,13 + (j-1)*10) = slip_n(j,2)!slip plane normal (y)

 stateNew(k,14 + (j-1)*10) = slip_n(j,3)!slip plane normal (z)

 stateNew(k,15 + (j-1)*10) = slip_s(j,1)!slip direction (x)

 stateNew(k,16 + (j-1)*10) = slip_s(j,2)!slip direction (y)

 stateNew(k,17 + (j-1)*10) = slip_s(j,3)!slip direction (z)

 end do

C ---

C # UPDATE THE ENERGIES #

C ---

C Update the dissipated inelastic specific energy -

 enerInelasNew(k) = enerInelasOld(k) +

 1 plasticWorkInc / density(k)

C Update the specific internal energy -

 stressPower = half * (

 1 (stressOld(k,1)+stressNew(k,1)) * (Dij(1) - D11_p)*dt +

 2 (stressOld(k,2)+stressNew(k,2)) * (Dij(2) - D22_p)*dt +

 3 (stressOld(k,3)+stressNew(k,3)) * (Dij(3) - D33_p)*dt) +

 4 (stressOld(k,4)+stressNew(k,4)) * (Dij(4) - D12_p)*dt +

 5 (stressOld(k,5)+stressNew(k,5)) * (Dij(5) - D23_p)*dt +

 6 (stressOld(k,6)+stressNew(k,6)) * (Dij(6) - D31_p)*dt

C

 enerInternNew(k) = enerInternOld(k)

 1 + stressPower / density(k)

 enddo

 return

 end

C #===

 include 'TensorSubs.inc'

 include 'UpdateRhos.inc'

 include 'UpdateTaus.inc'

 include 'ODEINT.inc'

154

C ==

155

C ElasticStarter.inc
C **

C THIS LOOP IS FOR ABAQUS TO COMPUTE INITIAL ELASTIC WAVE SPEED

C **

 if (totalTime .eq. zero) then

 do k = 1,nblock

C ---

C # MATERIAL DATA #

C ---

C material properties not dependent on slip system

 e = props(2)

 xnu = props(3)

C derived mechanical constants

 g = e/(two*(one + xnu))

 twomu = two*g

 bulk = e/three/(one - two * xnu)

C ---

C # COMPUTING VUMATS INITIAL STRESSES #

C ---

C Trial/Elastic stress

 trace = (strainInc(k,1) + strainInc(k,2) + strainInc(k,3))

 stressNew(k,1) = stressOld(k,1)

 1 + twomu * strainInc(k,1) + bulk * trace

 stressNew(k,2) = stressOld(k,2)

 1 + twomu * strainInc(k,2) + bulk * trace

 stressNew(k,3) = stressOld(k,3)

 1 + twomu * strainInc(k,3) + bulk * trace

 stressNew(k,4) = stressOld(k,4) +

 1 twomu * strainInc(k,4)

 stressNew(k,5) = stressOld(k,5) +

 1 twomu * strainInc(k,5)

 stressNew(k,6) = stressOld(k,6) +

 1 twomu * strainInc(k,6)

 enddo

 return

 endif

C ***

C THIS LOOP IS FOR ABAQUS TO COMPUTE INITIAL ELASTIC WAVE SPEED

C **

156

C Datainitialize.inc
C #===

C # ABAQUS-SPECIFIC ARRAYS/VARIABLES

C #

 dimension coordMp(nblock,*), charLength(nblock),

 1 props(nprops),density(nblock), strainInc(nblock,ndir+nshr),

 2 relSpinInc(nblock,nshr), tempOld(nblock),

 3 stretchOld(nblock,ndir+nshr),

 4 defgradOld(nblock,ndir+nshr+nshr),

 5 fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr),

 6 stateOld(nblock,nstatev), enerInternOld(nblock),

 7 enerInelasOld(nblock), tempNew(nblock),

 8 stretchNew(nblock,ndir+nshr),

 9 defgradNew(nblock,ndir+nshr+nshr),

 1 fieldNew(nblock,nfieldv),

 2 stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev),

 3 enerInternNew(nblock), enerInelasNew(nblock)

 character*80 cmname

C # ========# CRYSTAL PLASTICITY ARRAYS/VARIABLES #==============

 real*8, PARAMETER:: zero = 0.d0,one = 1.d0,two = 2.d0,

 1 three = 3.d0,half = 0.5d0,pi = 3.141592654d0

C Integer Scalars

 integer, parameter:: maxSS = 14

 integer i,j,k,kk, nslip, NVAR,IBEGINN, IBEGINS, IER

C

C Real Scalars

 real*8 g_source, g_immob, g_minter, g_recov, thermal_coef

 real*8 tauOld,g,e,xnu,trace,yield

 real*8 Cp, tempR, H_k, xi, Chi, alphaInt, EM_factor

 real*8 TWOMU,BULK, PSI21

 real*8 PSI32, PSI13, GAMMA, TEMP

 real*8 TRACEDIJ, THERMAL_FACTOR,STRESSPOWER

 real*8 TIME, EPS, HMIN, PRESS, DIJSIJ

 real*8 D11_P, D22_P, D33_P, D12_P, D23_P, D31_P

 real*8 SPIN_21, SPIN_32, SPIN_13,SPIN_12, SPIN_23, SPIN_31

 real*8 SPIN_P12, SPIN_P23, SPIN_P31, SPIN_P21, SPIN_P32, SPIN_P13

 real*8 SPIN_E12, SPIN_E23, SPIN_E31, SPIN_E21, SPIN_E32, SPIN_E13

 real*8 AN_DOT1, AN_DOT2, AN_DOT3, AS_DOT1, AS_DOT2, AS_DOT3

 real*8 sigGLB1, sigGLB2, sigGLB3, sigGLB4, sigGLB5, sigGLB6

 real*8 O11, O22, O33, O12, O23, O31

 real*8 PLASTICWORKINC, ETA, TEMPINC, DGAMMA,SNRM2

C

C Vectorial/Matrix Definitions

 real*8 Dij_dev(6),w12(maxSS),w23(maxSS), w31(maxSS),Dij(6)

 real*8 slip_n(maxSS,3),slip_s(maxSS,3),p(maxSS,6)

 real*8 Spin(3),PijDijDev(maxSS),Rnew(3,3),tauStart(maxSS)

 real*8 rhoStart(2), tau(maxSS), recip_m(maxSS),TAUR(maxSS)

 real*8 den_im(maxSS),den_m(maxSS),PAR(10*maxSS+4)

 real*8 ref_gdot(maxSS),gdot(maxSS),b_v(maxSS),PijDij(maxSS)

C #===

 external tauDot, tauResidual, rhoDot, rhoResidual

157

C #===

158

C #===

C -------- /\ _____ _____ --------

C | / \ | | | \ | | |

C | /____\ | | | | | | |

C | / \ | | | | | | |

C | / \ |------| |_____/ |_____| |

C Computes tau dot

c ... Define the system of nonlinear differential equations for each

c ... active slip-system (k)

c tau_dot(k) = 2*mu*Pij(k)*[Dij_dev - Dij_p_dev]

c Dij_p_dev = Pij(n)*gamma_dot(n)

c gamma_dot(n) = ref_gamma_dot(n)*[tau(n)/tau_r(n)]**(1/m)

C #===

 subroutine tauDot (y, yprime, PAR)

 include 'vaba_param.inc'

 integer, parameter:: maxSS = 14

 integer nslip, i, j

 real*8 TWOMU, DUMMY

 real*8 PAR(10*maxSS+4)

 real*8 p(maxSS,6), TAUR(maxSS)

 real*8 recip_m(maxSS), ref_gdot(maxSS), PijDijDev(maxSS)

 real*8 y(maxSS), yprime(maxSS), r(maxSS), g(maxSS)

C UN-PACK Parameters from Array PAR

 nslip = int(PAR (1))

 recip_m(1:nslip) = PAR (2 : nslip+1)

 ref_gdot(1:nslip) = PAR (nslip+2 : 2*nslip+1)

 PijDijDev(1:nslip) = PAR (2*nslip+2 : 3*nslip+1)

 p(1:nslip,1) = PAR (3*nslip+2 : 4*nslip+1)

 p(1:nslip,2) = PAR (4*nslip+2 : 5*nslip+1)

 p(1:nslip,3) = PAR (5*nslip+2 : 6*nslip+1)

 p(1:nslip,4) = PAR (6*nslip+2 : 7*nslip+1)

 p(1:nslip,5) = PAR (7*nslip+2 : 8*nslip+1)

 p(1:nslip,6) = PAR (8*nslip+2 : 9*nslip+1)

 tauR(1:nslip) = PAR (10*nslip+2 :11*nslip+1)

 twomu = PAR (11*nslip+2)

 dummy = 0.0

 do i = 1, nslip

 r(i) = ((abs(y(i)/tauR(i)))**(recip_m(i)-1.0)) *

 1 (y(i)/tauR(i))

 g(i) = 0.0

 end do

 do i = 1, nslip

 do j = 1, nslip

 dummy = r(j)*ref_gdot(j) * (p(i,1)*p(j,1) +

 1 p(i,2)*p(j,2) +

 2 p(i,3)*p(j,3) +

 3 2.*p(i,4)*p(j,4) +

 4 2.*p(i,5)*p(j,5) +

 5 2.*p(i,6)*p(j,6))

 g(i) = g(i) + dummy

 end do

 end do

 do i = 1, nslip

 yprime(i) = twomu*(PijDijDev(i) - g(i))

159

 end do

 return

 end

C #===

C #===

C -------- /\ ----- ----- -----

C | / \ | | | | | |

C | /____\ | | |_____| |_____ |_____

C | / \ | | | \ | |

C | / \ |______| | \ |_____ _____|

C #===

 subroutine tauResidual(y,f,n,PAR)

 include 'vaba_param.inc'

 integer, parameter:: maxSS=14

 integer n, nslip, i

 real*8 dt

 real*8 y(n), yold(n), yprime(n), f(n), PAR(10*maxSS+4)

C UN-PACK Parameters from Array PAR

 nslip = int(PAR(1))

 yold(1:n) = PAR (9*nslip+2 :10*nslip+1)

 dt = PAR (size(PAR,1))

 call tauDot(y, yprime, PAR)

 do i = 1, n

 f(i) = y(i)-yold(i)-dt*yprime(i)

 end do

 return

 end

C #==

160

#===

C ____ _____ _____ _____ _______

C | | | | | | | \ | | |

C |_____| |____| | | | | | | |

C | \ | | | | | | | | |

C | \ | | |_____| |_____/ |_____| |

C Computes dRho_m(alpha)/dt and dRho_im(alpha)/dt

#===

 subroutine rhoDot (y,yprime,PAR)

 include 'vaba_param.inc'

C Integer Scalar

 integer,parameter:: maxSS = 14

 integer NSLIP, JSLIP

C Real Scalar

 real*8 G_SOURCE, G_IMMOB, G_MINTER, G_RECOV, THERMAL_COEF

 real*8 ABSGDOT, C1, C2, C3, C4, C5

C Vectorial/Matrix Definitions

 real*8 y(2),yprime(2), gdot(maxSS), b_v(maxSS)

 real*8 PAR(10*maxSS+4)

C Un-PACK Parameters from Array PAR

 nslip = int (PAR(1))

 g_source = PAR (2)

 g_immob = PAR (3)

 g_minter = PAR (4)

 g_recov = PAR (5)

 thermal_coef = PAR (6)

 gdot(1:nslip) = PAR (11 : nslip+10)

 b_v(1:nslip) = PAR (nslip+11 : 2*nslip+10)

 jslip = int (PAR (2*nslip+11))

C Compute Local Parameters

 absGdot = abs(gdot(jslip))

 c1 = g_immob/b_v(jslip)

 c2 = g_recov

 c3 = g_minter*y(2)

 c4 = g_source/(b_v(jslip)*b_v(jslip))

 c5 = - thermal_coef

 yprime(1) = absGdot* (-c2*exp(c5)*y(1) + c3*exp(c5)

 1 + c1*sqrt(y(1))) !rho_im_dot

 yprime(2) = absGdot* (c4*y(1)/y(2) - c3*exp(c5)

 1 - c1*sqrt(y(1))) !rho_m_dot

 return

 end

 ==

161

C #===

C ____ _____ _____ _____ ____

C | | | | | | | | | |

C |_____| |____| | | |_____| |____ |____

C | \ | | | | | \ | |

C | \ | | |_____| | \ |_____ ____|

C #===

 subroutine rhoResidual(y,f,n,PAR)

 include 'vaba_param.inc'

 integer, parameter:: maxSS=14

 integer n, nslip

 real*8 dt

 real*8 y(n),yold(n),yprime(n),f(n),PAR(10*maxSS+4)

C Un-PACK relevant parameters from Array PAR

 nslip = int (PAR(1))

 yold(1:n) = PAR (2*nslip+12:2*nslip+13)

 dt = PAR (size(PAR,1))

C

 call rhoDot(y,yprime,PAR)

 f(1) = y(1) - yold(1) - dt*yprime(1)

 f(2) = y(2) - yold(2) - dt*yprime(2)

 return

 end

C ==

162

C #===

C _______ __ ___

C | | |\ | | | \ / | |

C | | | \ | | | \ / | -- |

C |____| | \| | | \/ | __ |___

C

C

C This subroutine rescales all slips directions and normals to unity

C #===

 subroutine unit_vector(m,n,slipn,slips)

 include 'vaba_param.inc'

 integer n, m, i, k, j

 real*8,dimension(n,m):: slipn, slips

 real*8 anorm_n, anorm_s, sum_n, sum_s

 sum_n = 0.0

 sum_s = 0.0

 do i = 1, n

 do k = 1, m

 sum_n = sum_n + (abs(slipn(i,k)))**2.

 sum_s = sum_s + (abs(slips(i,k)))**2.

 end do

 anorm_n = sqrt(sum_n)

 anorm_s = sqrt(sum_s)

 do j = 1, m

 slipn(i,j) = slipn(i,j)/anorm_n

 slips(i,j) = slips(i,j)/anorm_s

 end do

 sum_n = 0.0

 sum_s = 0.0

 end do

 return

 end

C ==

163

C #===

C ____ ____ _____ ______ ______

C | | | | | /\ | |

C |___/ | | | / \ | |_____

C | \ | | | / -- \ | |

C | | |____| | / \ | |______

C

C #===

 subroutine rotate(stressNew,Rnew,sigGLB1,sigGLB2,sigGLB3,

 1 sigGLB4,sigGLB5,sigGLB6)

 include 'vaba_param.inc'

C Real Scalar

 real*8 stressNew(6), Rnew(3,3),sigGLB1,sigGLB2,sigGLB3

 real*8 sigGLB4,sigGLB5,sigGLB6

 stressNew(1) =

 1 Rnew(1,1)**2.d0*sigGLB1+2.d0*Rnew(1,1)*Rnew(1,2)*sigGLB4+

 2 2.d0*Rnew(1,1)*Rnew(1,3)*sigGLB6+Rnew(1,2)**2.d0*sigGLB2+

 3 2.d0*Rnew(1,2)*Rnew(1,3)*sigGLB5+Rnew(1,3)**2.d0*sigGLB3

 stressNew(2) =

 1 Rnew(2,1)**2.d0*sigGLB1+2.d0*Rnew(2,1)*Rnew(2,2)*sigGLB4+

 2 2.d0*Rnew(2,1)*Rnew(2,3)*sigGLB6+Rnew(2,2)**2.d0*sigGLB2+

 3 2.d0*Rnew(2,2)*Rnew(2,3)*sigGLB5+Rnew(2,3)**2.d0*sigGLB3

 stressNew(3) =

 1 Rnew(3,1)**2.d0*sigGLB1+2.*Rnew(3,1)*Rnew(3,2)*sigGLB4+

 2 2.d0*Rnew(3,1)*Rnew(3,3)*sigGLB6+Rnew(3,2)**2.d0*sigGLB2+

 3 2.d0*Rnew(3,2)*Rnew(3,3)*sigGLB5+Rnew(3,3)**2.d0*sigGLB3

 stressNew(4) =

 1 Rnew(1,1)*Rnew(2,1)*sigGLB1+Rnew(1,1)*Rnew(2,2)*sigGLB4+

 2 Rnew(1,1)*Rnew(2,3)*sigGLB6+Rnew(1,2)*Rnew(2,1)*sigGLB4+

 3 Rnew(1,2)*Rnew(2,2)*sigGLB2+Rnew(1,2)*Rnew(2,3)*sigGLB5+

 4 Rnew(1,3)*Rnew(2,1)*sigGLB6+Rnew(1,3)*Rnew(2,2)*sigGLB5+

 5 Rnew(1,3)*Rnew(2,3)*sigGLB3

 stressNew(5) =

 1 Rnew(2,1)*Rnew(3,1)*sigGLB1+Rnew(2,1)*Rnew(3,2)*sigGLB4+

 2 Rnew(2,1)*Rnew(3,3)*sigGLB6+Rnew(2,2)*Rnew(3,1)*sigGLB4+

 3 Rnew(2,2)*Rnew(3,2)*sigGLB2+Rnew(2,2)*Rnew(3,3)*sigGLB5+

 4 Rnew(2,3)*Rnew(3,1)*sigGLB6+Rnew(2,3)*Rnew(3,2)*sigGLB5+

 5 Rnew(2,3)*Rnew(3,3)*sigGLB3

 stressNew(6) =

 1 Rnew(1,1)*Rnew(3,1)*sigGLB1+Rnew(1,1)*Rnew(3,2)*sigGLB4+

 2 Rnew(1,1)*Rnew(3,3)*sigGLB6+Rnew(1,2)*Rnew(3,1)*sigGLB4+

 3 Rnew(1,2)*Rnew(3,2)*sigGLB2+Rnew(1,2)*Rnew(3,3)*sigGLB5+

 4 Rnew(1,3)*Rnew(3,1)*sigGLB6+Rnew(1,3)*Rnew(3,2)*sigGLB5+

 5 Rnew(1,3)*Rnew(3,3)*sigGLB3

 return

 end

C ==

164

C #===

C _____ ____ _______ ____ ____

C | | | | | | | |\ |

C | -- |--- | |___ |___ | | | \ |

C | | | | | | | | \ |

C |____| |____ | ____| | | | \|

C

C This subroutine computes the spin and deformation rate

C #===

 subroutine getSpinDij(dt,fNew,fOld,Spin,Dij)

 include 'vaba_param.inc'

C Real Scalar

 real*8 F11DD,F22DD,F33DD,F12DD,F23DD,F31DD,F21DD,F32DD,F13DD

 real*8 F11DI,F22DI,F33DI,F12DI,F23DI,F31DI,F21DI,F32DI,F13DI

 real*8 F11DV,F22DV,F33DV,F12DV,F23DV,F31DV,F21DV,F32DV,F13DV

 real*8 VG11, VG22, VG33, VG12, VG23, VG31, VG21, VG32, VG13

 real*8 fdet, dt

C Vectorial/ Matrix Definitions

 real*8 fNew(9),fOld(9),Spin(3),Dij(6)

 Spin(1) = 0.d0

 Spin(2) = 0.d0

 Spin(3) = 0.d0

 Dij(1) = 0.d0

 Dij(2) = 0.d0

 Dij(3) = 0.d0

 Dij(4) = 0.d0

 Dij(5) = 0.d0

 Dij(6) = 0.d0

C F_ij and F_dot_ij:

 f11dd = fNew(1)

 f22dd = fNew(2)

 f33dd = fNew(3)

 f12dd = fNew(4)

 f23dd = fNew(5)

 f31dd = fNew(6)

 f21dd = fNew(7)

 f32dd = fNew(8)

 f13dd = fNew(9)

 f11dv = (fNew(1) - fOld(1))/dt

 f22dv = (fNew(2) - fOld(2))/dt

 f33dv = (fNew(3) - fOld(3))/dt

 f12dv = (fNew(4) - fOld(4))/dt

 f23dv = (fNew(5) - fOld(5))/dt

 f31dv = (fNew(6) - fOld(6))/dt

 f21dv = (fNew(7) - fOld(7))/dt

 f32dv = (fNew(8) - fOld(8))/dt

 f13dv = (fNew(9) - fOld(9))/dt

 fdet = (f11dd*f22dd*f33dd - f11dd*f23dd*f32dd-

 1 f21dd*f12dd*f33dd + f21dd*f13dd*f32dd+

 2 f31dd*f12dd*f23dd - f31dd*f13dd*f22dd)

165

C inv(F_ij)

 f11di = (f22dd*f33dd - f23dd*f32dd)/ fdet

 f22di = (f11dd*f33dd - f13dd*f31dd)/ fdet

 f33di = (f11dd*f22dd - f12dd*f21dd)/ fdet

 f12di = (-f12dd*f33dd + f13dd*f32dd)/ fdet

 f23di = (-f11dd*f23dd + f13dd*f21dd)/ fdet

 f31di = (f21dd*f32dd - f22dd*f31dd)/ fdet

 f21di = (-f21dd*f33dd + f23dd*f31dd)/ fdet

 f32di = (-f11dd*f32dd + f12dd*f31dd)/ fdet

 f13di = (f12dd*f23dd - f13dd*f22dd)/ fdet

C L_ij = F_dot_ik * inv(F_kj)

 vg11 = f11dv*f11di+f12dv*f21di+f13dv*f31di

 vg22 = f21dv*f12di+f22dv*f22di+f23dv*f32di

 vg33 = f31dv*f13di+f32dv*f23di+f33dv*f33di

 vg12 = f11dv*f12di+f12dv*f22di+f13dv*f32di

 vg23 = f21dv*f13di+f22dv*f23di+f23dv*f33di

 vg31 = f31dv*f11di+f32dv*f21di+f33dv*f31di

 vg21 = f21dv*f11di+f22dv*f21di+f23dv*f31di

 vg32 = f31dv*f12di+f32dv*f22di+f33dv*f32di

 vg13 = f11dv*f13di+f12dv*f23di+f13dv*f33di

C Wij = asym(L_ij)

 Spin(1) = 0.5d0*(vg21 - vg12)

 Spin(2) = 0.5d0*(vg32 - vg23)

 Spin(3) = 0.5d0*(vg13 - vg31)

C Dij = sym(L_ij)

 Dij(1) = vg11

 Dij(2) = vg22

 Dij(3) = vg33

 Dij(4) = 0.5d0*(vg21 + vg12)

 Dij(5) = 0.5d0*(vg32 + vg23)

 Dij(6) = 0.5d0*(vg13 + vg31)

 return

 end

C ==

166

C #===

C _____ ____ _____ ____ ____ _____

C | | | | | | | |

C | -- |--- | |___ | | | |

C | | | | | \ | | |

C |____| |____ | | | |____| |

C

C This subroutine computes the Element Rotation Matrix

C #===

 subroutine getRot(fNew,strtchNew,R)

 include 'vaba_param.inc'

 real*8 fnew(9), strtchNew(9), R(3,3)

 real*8 detFU, U11,U12,U22,U23,U31,U33

 real*8 F11,F12,F13,F21,F22,F23,F31,F32,F33

C Define Deformation gradient components

 F11 = fNew(1)

 F22 = fNew(2)

 F33 = fNew(3)

 F12 = fNew(4)

 F23 = fNew(5)

 F31 = fNew(6)

 F21 = fNew(7)

 F32 = fNew(8)

 F13 = fNew(9)

C Define Stretch Matrix components

 U11 = strtchNew(1)

 U22 = strtchNew(2)

 U33 = strtchNew(3)

 U12 = strtchNew(4)

 U23 = strtchNew(5)

 U31 = strtchNew(6)

C Compute rotation matrix using R = F*inv(U){Polar decomposition of F}

C Actually, store R_transpose

 detFU = U11*U22*U33-U11*U23**2.d0-U12**2.d0*U33+

 1 2.d0*U31*U12*U23-U22*U31**2.d0

 R(1,1) = (F11*U22*U33-F11*U23**2.d0-F12*U12*U33+

 1 F12*U23*U31+F13*U12*U23-F13*U22*U31)/detFU

 R(2,1) = (-F11*U12*U33+F11*U23*U31+F12*U11*U33-

 1 F12*U31**2.d0-F13*U11*U23+F13*U12*U31)/detFU

 R(3,1) = (F11*U12*U23-F11*U22*U31-F12*U11*U23+

 1 F12*U12*U31+F13*U11*U22-F13*U12**2.d0)/detFU

 R(1,2) = (F21*U22*U33-F21*U23**2.d0-F22*U12*U33+

 1 F22*U23*U31+F23*U12*U23-F23*U22*U31)/detFU

 R(2,2) = (-F21*U12*U33+F21*U23*U31+F22*U11*U33-

 1 F22*U31**2.d0-F23*U11*U23+F23*U12*U31)/detFU

 R(3,2) = (F21*U12*U23-F21*U22*U31-F22*U11*U23+

 1 F22*U12*U31+F23*U11*U22-F23*U12**2.d0)/detFU

 R(1,3) = (F31*U22*U33-F31*U23**2.d0-F32*U12*U33+

 1 F32*U23*U31+F33*U12*U23-F33*U22*U31)/detFU

 R(2,3) = (-F31*U12*U33+F31*U23*U31+F32*U11*U33-

 1 F32*U31**2.d0-F33*U11*U23+F33*U12*U31)/detFU

 R(3,3) = (F31*U12*U23-F31*U22*U31-F32*U11*U23+

 1 F32*U12*U31+F33*U11*U22-F33*U12**2.d0)/detFU

 return

167

 end

C ==

