

194

باسخ مسئلهها

آشکار است که اگر در مدار شکل (۵ - ۱۳) جای R_۱ و R_۲ را با هم عوض کنیم، دقیقاً مدار شکل (۵ - ۱۴) بهدست می آید. بنابراین به جای عوض کردن باتری و آمپرسنج، می توان R_۱ و R_۲ را با هم عوض کرد. در این صورت اگر در رابطهٔ (۵ ـ ۵) به جای R_۱ ، R_۱ و به جای R_۲ ، R_۱ را قرار دهیم، جریان آمپرسنج در حالت دوم به دست می آید. اگر این کار را انجام دهیم داریم:

$$i'_{\gamma} = \frac{R_{\gamma}}{R_{\gamma}R_{\gamma} + R_{\gamma}R_{\gamma} + R_{\gamma}R_{\gamma}}E$$

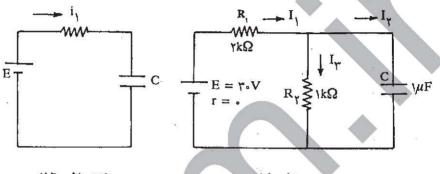
این جریان دقیقاً همان جریان قبلی است. پ - جریانهای مدار در حالت اول چنین است.

$$i_{1} = \frac{\psi + \psi}{\gamma \times \psi + \gamma \times \psi + \gamma} \times 1\psi = \gamma/\delta$$
$$i_{\gamma} = \frac{\psi}{\gamma \varphi} \times 1\psi = \gamma A$$
$$i_{\psi} = \frac{\psi}{\gamma \varphi} \times 1\psi = 1/\delta A$$

۲ ـ این مسئله را از دو راه می توان حل کرد.

راه اول _ قطعهای از سیم به طول V_d را در نظر میگیریم. چون الکترونهای آزاد موجود در سیم به طور متوسط با سرعت V_d حرکت میکنند، پس از یک ثانیه، همهٔ الکترونهای آزاد موجود در حجم قطعهٔ انتخاب شده از مقطع کامیگذرند. اگر الکترونهای آزاد موجود در این قطعه سیم را N فرض کنیم ، پس از یک ثانیه، بارالکتریکی که از مقطع کا گذشته است، q=Ne خواهد بود که ع بار یک الکترون است. بنابراین جریان سیم از رابطهٔ زیر به دست می آید.

$$I = \frac{q}{t} = \frac{Ne}{V} = Ne$$
 (V- Δ)


از طرفی تعداد اتمهای مس در هر اتم گرم آن، N_A، یعنی به اندازه عدد آووگادرو است. حجم یک اتم گرم مس چنین است.

$$V_A = \frac{M}{\rho} = \frac{\varphi \varphi}{\varphi} = v/11 \text{ cm}^{\gamma}$$

۱۹۸پنجمین المیاد فیز یک ایراناگر تعداد اندهای موجود در واحد حجم را با n نشان دهیم، داریم:
$$n = \frac{N_A}{V_d} = \frac{N_A + e^{\gamma} + e^$$

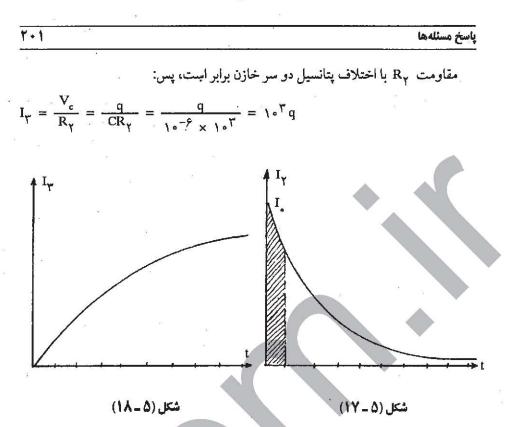
ينجمين الميياد فيزيك أيران

می رود و جریانی که خازن را پر می کند، کمتر می شود. می توان گفت بارهای الکتریکی مثبت روی صفحهٔ بالایی، با انباشته شدن بیشتر، با آمدن بارهای مثبت بعدی مخالفت می کنند و حرکت آنها را کندتر می کنند، یعنی جریان پI به تدریج کم می شود. تغییرات جریان پI بر حسب زمان که در صورت مسئله آمده است و در شکل (۵-۱۷) نیز رسم شده است، همین روند را نشان می دهد.

شکل (۵ ـ ۱٦)

شکل (۵ – ۱۵)

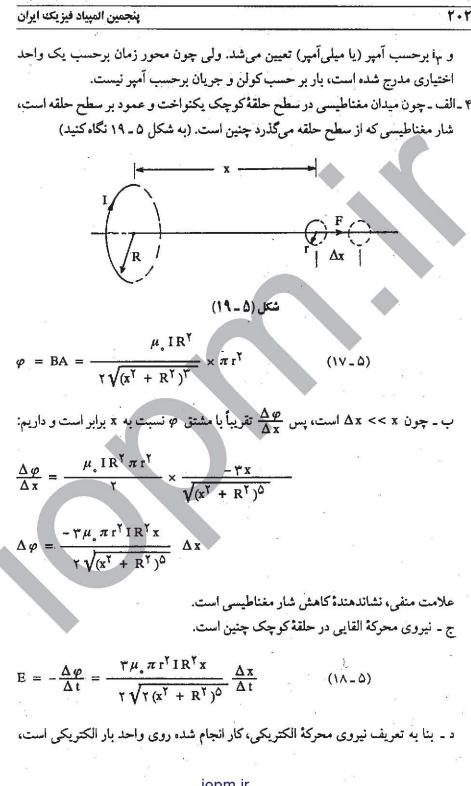
4 ..


الف - در لحظهٔ • = t که کلید را می بندیم، بار خازن و در نتیجه اختلاف پتانسیل آن صفر است. چون مقاومت R_R با خازن به طور موازی قرار دارد، پس در لحظهٔ • = t اختلاف پتانسیل R_R نیز صفر است و در نتیجه جریانی که از آن میگذرد نیز صفر است. در این صورت در لحظهٔ • = t، مدار مانند شکل (۵ - ۱۶) است و همان جریانی که از R_N میگذرد، از خازن نیز عبور میکند. در این مدار داریم:

 $E = I_1 R_1 + V_c$

 $t = \circ \longrightarrow E = I_{\circ}R_{1} + \circ$

$$I_{\circ} = \frac{\gamma_{\circ}}{\gamma \times 1^{\circ}} = 10 \,\mathrm{mA}$$


ب - نمودار تغییرات جریان I₁ بر حسب زمان در شکل (۵-۱۷) رسم شده است. در لحظهٔ ۱۰دختلاف پتانسیل دو سر خازن برابر با ج است که و بار الکتریکی خازن است که از لحظهٔ بستن کلید تا لحظهٔ t روی صفحات آن جمع شده است. چون اختلاف پتانسیل دو سر

بنابراین برای یافتن ، I در هر لحظه، مثلاً ، باید بار الکتریکی راکه تا آن لحظه روی خازن جمع شده است، به دست آورد. در مدت کوتاه Δt پس از بستن کلید، می توان فرض کرد که جریان ، I، تقریباً برابر با ، I است. در این مدت بار خازن به اندازهٔ Δt) است. باگذشت زمان تقریباً برابر با مساحت اولین ستون سمت چپ نمودار شکل (۵-۱۷) است. باگذشت زمان بار خازن به اندازهٔ مساحت ستونهای بعدی زیر نمودار اضافه می شود. به این ترتیب بار خازن در هر لحظه، برابر با مساحت زیر نمودار جریان ، I تا آن لحظه است. نمودار تغییرات جریان ، I برحسب زمان در شکل (۵ - ۱۸) رسم شده است. پس از گذشت مدت طولانی خازن پر می شود و بار الکتریکی آن ثابت می ماند. از این پس جریان • = ، I خواهد بود و داریم:

$$I_{\tau} = I_{1} = \frac{E}{R_{1} + R_{\tau}} = \frac{\tau \circ}{\tau \times 1 \circ \tau} = 1 \circ mA$$

اگر در شکل (۵ ـ ۱۷) محور زمان برحسب ثانیه مدرج شده بود، مساحت زیر منحنی یعنی بار خازن، برحسب اَمپرثانیه (یا میلیاَمپر ثانیه) یعنی کولن (یا میلیکولن) به دست میاَمد

$$E = \frac{W}{q}$$

W = qE =
$$\frac{\gamma \mu_{o} \pi t^{\gamma} I R^{\gamma} x q}{\gamma \sqrt{\gamma (x^{\gamma} + R^{\gamma})^{o}}} \frac{\Delta x}{\Delta t}$$

هـ عامل خارجی برای جابجایی حلقهٔ کوچک باید به آن نیرویی به طرف راست وارد کند،
 زیرا جابهجایی حلقهٔ کوچک همراه با تغییر شار و القای نیروی محرکه است و مطابق قانون
 لنز، باید با عامل خارجی مخالفت شود. پس عامل خارجی نمی تواند آزادانه حلقهٔ کوچک را
 چابهجا کند. اگر عامل خارجی نیروی F را بر حلقه وارد کرده باشد، کاری که روی حلقه
 انجام می دهد، معادل همان انرژی الکتریکی است که در حلقه کوچک ظاهر می شود. داریم:
 W = F Δ x

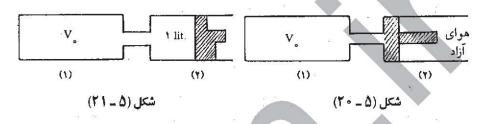
$$F = \frac{W}{\Delta x} = \frac{\gamma \mu_{\circ} \pi r^{\gamma} I R^{\gamma} x q}{\gamma \Delta t \sqrt{(x^{\gamma} + R^{\gamma})^{\Delta}}}$$

 $\varphi =$ با توجه به این که زمان جابه جایی Δt بسیار کوچک است، $\frac{\Delta \varphi}{\Delta t}$ ، تقریباً با مشتق φ نسبت به t برابر است. در رابطه (۵–۱۷)، تنها کمیت متغیر، شدت جریان I است. داریم:

$$\frac{\Delta \varphi}{\Delta t} = \frac{\mu_{\circ} \pi r^{\gamma} R^{\gamma}}{\gamma \sqrt{(x^{\gamma} + R^{\gamma})^{\gamma}}} \frac{\Delta I}{\Delta t}$$

بنابراین نیروی محرکهٔ القایی در اثر تغییر جریان، چنین است: $E = - \frac{\mu_{\pi} \pi r^{\Upsilon} R^{\Upsilon}}{r \sqrt{(x^{\Upsilon} + R^{\Upsilon})^{\Upsilon}}} \frac{\Delta I}{\Delta t} \qquad (19 - 0)$

از تساوی رابطه های (۵ ـ ۱۸) و (۵ ـ ۱۹) داریم:


 $\Delta I = \frac{-\gamma I x}{x^{\gamma} + R^{\gamma}} \Delta x$

علامت منفی نشاندهندهٔ آن است که با افزایش x (۰ < Δx) ،باید جریان کاهش یابد (۰>ΔI). این نتیجه کاملاً آشکار است، زیرا با افزایش x شار مغناطیسی که از حلقهٔ کوچک

ينجمين الميياد فيزيك ايران

میگذرد کم میشود و اگر بخواهیم، تغییر شار مغناطیسی با تغییر جریان حلقهٔ بزرگ پدید آید، باید جریان حلقهٔ بزرگ راکاهش دهیم.

۵ - وضعیبت پیستون در دو حالت در شکلهای (۵ - ۲۰) و (۵ - ۲۱) نشان داده شده است.
 چون یک طرف پیستون هوای آزاد است، پس باید در شکل (۵ - ۲۰) طرف دیگر آن نیز
 فشار، برابر با فشار هوای آزاد، ۹ باشد.

راہ اول ۔ دمای آب داغ را T_1 فرض میکنیم. اگر دمای همهٔ گاز داخل مخزن ۱ در فشار ثابت از ۲۷۳ = T_1 به T_1 برسد، حجم آن ۷ چنین خواهد بود: $\frac{V}{T_1} = \frac{V_1}{T_2}$ $V = \frac{F \times T_1}{T_2}$ lit

بخشی از گاز در مخزن ۱ مانده و مابقی به مخزن ۲ میرود. حجم گاز وارد شده به مخزن ۲ در دمای T₁ چنین است:

$$V' = V - V_{\circ} = \frac{T \times I_{1}}{Y \vee Y'} - Y$$
$$V' = F(\frac{T_{1}}{Y \vee Y'} - 1)$$

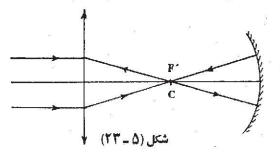
اگر این مقدار گاز به دمای "T برود، باید حجم آن ۱ lit = ۷ شود. پس داریم:

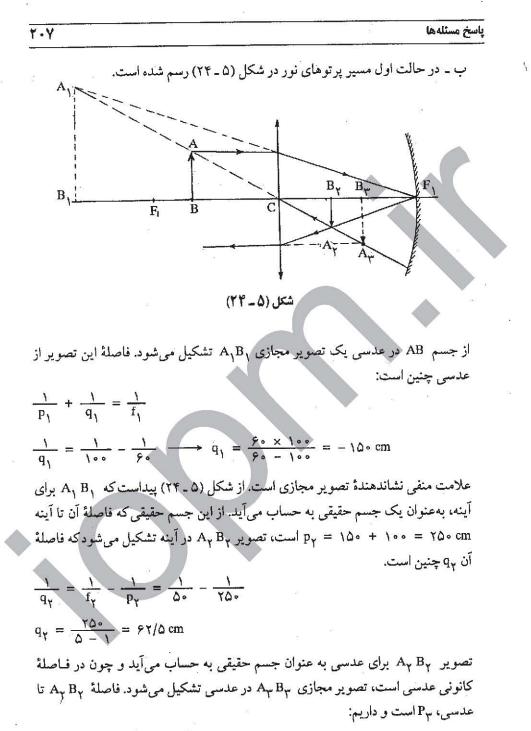
$$\frac{V'}{T_1} = \frac{V_T}{T_*} = \frac{1}{VVT}$$
$$F(\frac{T_1}{VVT} - 1)$$

$$\frac{1}{T_1} = \frac{1}{T_V r}$$

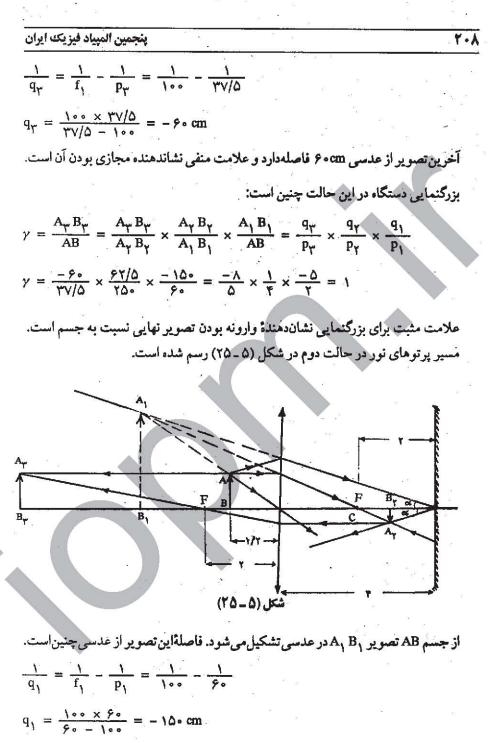
 $F(T_1 - Y \vee T) = T_1$

iopm.ir

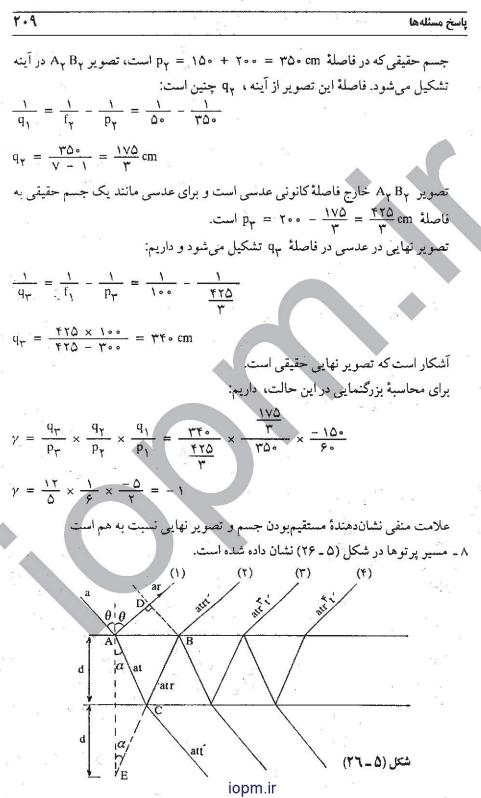

4.4


7.0	پاسخ مسئلهها
"T ₁ = 1.97	
$T_1 = 1 \circ 9T$ $T_1 = T \sim F K \longrightarrow \theta_1 = 91 c$	м Х.
ناز دادهشده به مخزن ۲ همان شرایط اولیه گاز مخزن ۱ را دارد، پس گاز	را، دوم ـ چون گ
ن ۱ ، معادل ۳ lit در دمای T است. این مقدار گاز در دمای T، همهٔ	باقيمانده در مخز
$\frac{V_{\bullet}}{T_{\downarrow}} = \frac{V_{\bullet} - 1}{T_{\bullet}} = \frac{W}{T_{\bullet}}$	مخزن ۱ را پرکر
$T_{1} = \frac{V_{o}T_{o}}{\gamma} = \frac{\gamma \times \gamma \gamma}{\gamma} = \gamma \gamma \gamma k \qquad \theta_{1} = \gamma \gamma c$	
بم خطکش بر اثر تغییر دما منبسط نمی شود. اگر در دمای صفر ارتفاع مایع	
طع ظرف شیشهای را مA فرض کنیم، داریم:	را _د آ و سطح مع
$V_{\bullet} = h_{\bullet} A_{\bullet}$	
: θ، حجم مایع و سطح مقطع ظرف شیشهای زیاد می شود و داریم:	در دمای ۲ ۵۰ =
$V = V_{a}(1 + a\theta)$	2 2
$A = A_{o} (1 + \gamma \lambda_{\gamma} \theta)$	
$V = V (1 + a\theta) + a\theta$	\$
$h = \frac{V}{A} = \frac{V_{\circ}(1 + a\theta)}{A_{\circ}(1 + \gamma\lambda_{\gamma}\theta)} = h_{\circ}\frac{1 + a\theta}{1 + \gamma\lambda_{\gamma}\theta}$	æ
کش نیز منبسط شده است و در نتیجه هر تقسیمبندی آن بزرگتر شده است.	$t_{\rm c}$ در دمای θ ، خط
θ طول ستون مايع با اين خط کش کمتر از مقدار واقعي بدست آمده است.	
ی خطکش در دمای صفر برابر با ۱٫۰ و در دمای θ برابر با ۱ باشد، داریم:	
$1 = 1_{0} (1 + \lambda_{1} \theta)$	a ang ang ang ang ang ang ang ang ang an
$I_{\circ} = \frac{1}{1 + \lambda_{1} \theta}$	u.
واقعی ارتفاع ستون مایع را در دمای 0 به دست آوریم، باید عددی را که	برای آنکه مقدار و
بسط شده خواندهایم، در نسبتی که هر درجه بزرگتر شده است ضرب کنیم،	

۲۰۰۲ پنجمین المپیاد فیزیک ایران


$$\begin{aligned} & \text{rively} \quad \text{rivel} \quad \text{rively} \quad \text{rivel} \quad \text{rively} \quad \text{rivel} \quad \text{rively} \quad \text{rively} \quad \text{rivel} \quad \text{riv$$

در شکل (۵ ـ ۲۲) کانون عدسی بر رأس آینه منطبق است. در این حالت فاصلهٔ عدسی از آینه، d₁ = f₁ = ۱ m است. در شکل (۵ ـ ۲۳) ، کانون عدسی بر مرکز آینه منطبق است. در ین حالت فاصلهٔ عدسی از آینه، d₁ = f₁ + R = ۲ m است.



$$p_{\varphi} = 1 \circ \circ - 97/\Delta = \gamma V/\Delta cm$$

مانند حالت قبل این تصویر، برای آینه به عنوان یک جسم حقیقی به حساب می آید. از این

.....

ينجمين المبياد فيزيك ايران

الف - از نقطهٔ B، محل خروج پرتو ۲ خطی بر پرتو ۱ عمود میکنیم. دو پرتو ۱ و ۲ تا نقطهٔ A مشترک هستند. از آن پس، پرتو ۱ مسیر AD را در هوا و پرتو ۲ مسیر ACB را در شیشه پیموده است. اگر پرتو BC را امتداد داده تا خط عمود بر سطح تیغه را در نقطهٔ B قطع کند، آشکار است که مسیر ACB با مسیر EB برابر است. پرتو ۱ پس از نقطهٔ A و پرتو ۲ پس از نقطهٔ B مسیر مشابهی را در هوا می پیمایند.

بنابراین اختلاف راه دو پرتو ۱ و ۲ تنها مربوط به اختلاف دو تکهٔ AD و EB است. سرعت نور را در خلاء C و در شیشه V فرض میکنیم. اگر نور مسیو AD را در هوا در t_۱ و مسیو EB را در شیشه در _۲ بپیماید، داریم:

$$t_{\gamma} = \frac{AD}{C}$$
 $t_{\gamma} = \frac{BE}{V}$

AD = AB sin θ = Y d tg α sin θ = Y d $\frac{\sin \alpha \cos \theta}{\cos \alpha}$

$$BE = \frac{AB}{\sin \alpha} = \frac{Y d tg \alpha}{\sin \alpha} = \frac{Y d}{\cos \alpha}$$
$$t_{Y} - t_{V} = \frac{Y d}{\cos \alpha} \left[\frac{V}{V} - \frac{\sin \alpha \sin \theta}{C} \right]$$

جون $\frac{\sin \theta}{\sin \alpha} = n$ و نيز $n = \frac{C}{v}$ ، پس داريم:

$$t_{\gamma} - t_{\gamma} = \frac{\gamma \alpha}{c \cos \alpha} [n - \sin \alpha \sin \theta]$$

 $= \frac{\tau d}{c \cos \alpha} [n - \sin \alpha (n \sin \theta)]$

 $\frac{\Upsilon n d}{C \cos \alpha} = (1 - \sin^{\gamma} \alpha) = \frac{\Upsilon n d \cos \alpha}{C}$

ب ـ از شکل پیداست که دامنهٔ پرتوهای ۲ به بعد، یک تصاعد هندسی با قدر نسبت ۲^۲ و جملهٔ اولیهٔ 'atrt میسازند. چون ۲ > r است، پس مجموع جملات تصاعد هندسی در حد چنین است:

 $A = \frac{a t r t'}{\gamma - r^{\gamma}}$

iopm.ir

11.

۲۱۱
 پاسخ مسئلهها

$$r = 1$$
 ج - اگر دامنه پرتو ۱ را یا مجموع دامنههای پرتوهای ۲ به بعد برابر قرار دهیم داریم:

 $A = ar$
 $r = 1$
 $A = ar$
 $atrt' - r$
 $r = ar$
 $atrt' - r$
 $r = ar$
 $atrt' - r$
 $r = 11$
 $r = 11$
 $r = r^{Y} = 11$
 $r^{Y} = 11$
 $r = 10$
 $r^{Y} = 10$
 $r = 10$
 $r^{Y} = 10$

$$\Delta I = \sqrt{\left(\frac{1}{\gamma}\right)^{\gamma} + x^{\gamma}} - \frac{1}{\gamma}$$

نیروی کشش فنرها که در شکل با F' نشان داده شده است، چنین است.

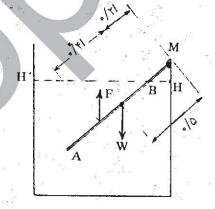
$$\mathbf{F} = \mathbf{k} \Delta \mathbf{l} \Rightarrow \mathbf{Y} \mathbf{k} \cdot \left[\sqrt{\frac{\mathbf{l}_{\mathbf{x}}^{\mathbf{Y}}}{\mathbf{r}} + \mathbf{x}^{\mathbf{Y}}} - \frac{\mathbf{l}_{\mathbf{x}}}{\mathbf{r}} \right]$$

بنجمين المبياد فيزيك ايران

فنرها صفرباشد. از شکل پیداست که:

$$F = YF \cos \theta = Yk \left[\sqrt{\frac{l_v^{Y}}{Y} + x^{Y}} - \frac{l_v}{Y} \right] \frac{x}{\frac{1}{Y} + x^{Y}}$$

$$F = Yk_v x | 1 - \sin \theta |$$


$$\psi = \int_{V} K_v (\Delta I)^{Y} = k \left[\sqrt{\frac{l_v^{Y}}{\frac{1}{Y}} + x^{Y}} - \frac{l_v}{\frac{1}{Y}} \right]$$

$$U_v = \frac{1}{Y}Yk \left[(\Delta I)^{Y} = k \left[\sqrt{\frac{l_v^{Y}}{\frac{1}{Y}} + x^{Y}} - \frac{l_v}{\frac{1}{Y}} \right]$$

$$V_v = \frac{1}{Y} \int_{V} \frac{1}{Y} \int_{V} \frac{1}{Y} + x^{Y} - \frac{1}{Y} \int_{V} \frac{1}{Y}$$

W =
$$\Upsilon U_{\tau} = \Upsilon k_{\tau} \left[\sqrt{\frac{1^{\tau}_{\tau}}{\Upsilon} + x^{\tau} - \frac{1}{\Upsilon}} \right]^{\tau}$$

۱۰ ـ مطابق شکل (۵ – ۲۸) نیروی وزن W از نقطهٔ وسط AM و نیروی ارشمیدس ۲ از نقطهٔ وسط AB بر میله وارد می شود. چون میله در حال تعادل است، باید گشتاورنیروهای وارد بر آن به دور محوری که از نقطهٔ M می گذرد، صفر باشد. داریم:

شکل (۵ ـ ۲۸)

 $W \times \circ/\Delta 1 - F \times (\circ/f + \circ/f) I = \circ$

iopm.ir

111

דוד	اسخ مسئلهها
	برای نیروهای وارد بر میله داریم:
$W = \rho s l g$, , , , , , , , , , , , , , , , , , ,
$\mathbf{F} = \rho' \mathbf{s} (\circ/\Lambda) \mathbf{I} \mathbf{g}$	
	a. Basala aya Ama
$\circ/\partial \rho 1^{7} sg = \circ/f \wedge \rho' 1^{7} sg$	در نتيجه داريم:
20. 42	
$\operatorname{Tm/gk} \circ \mathfrak{P} = \circ \circ \circ 1 \times \mathfrak{P} / \circ = \rho$	
· · · · ·	
e g e é a _	
	ан са
	an a
	5 ¹ 8 ⁶ 8 82
	8
	а ° 6 в
	а.
	1 2
	н 4 2
	8
р а е	a aya i
a a the second sec	
້ ເມັນເ ^{ຫຼື} ່ນໃຫຼ ເ ເ	с