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Preface

This book provides an overview of the developments in the area of Bayesian
evaluation of informative hypotheses that took place since the publication of
the first paper on this topic in 2001 [Hoijtink, H. Confirmatory latent class
analysis, model selection using Bayes factors and (pseudo) likelihood ratio
statistics. Multivariate Behavioral Research, 36, 563–588]. The current state
of affairs was presented and discussed by the authors of this book during a
workshop in Utrecht in June 2007. Here we would like to thank all authors
for their participation, ideas, and contributions. We would also like to thank
Sophie van der Zee for her editorial efforts during the construction of this book.
Another word of thanks is due to John Kimmel of Springer for his confidence
in the editors and authors. Finally, we would like to thank the Netherlands
Organization for Scientific Research (NWO) whose VICI grant (453-05-002)
awarded to the first author enabled the organization of the workshop, the
writing of this book, and continuation of the research with respect to Bayesian
evaluation of informative hypotheses.

Utrecht, Herbert Hoijtink
Irene Klugkist

May 2008 Paul A. Boelen
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1

An Introduction to Bayesian Evaluation of
Informative Hypotheses

Herbert Hoijtink1, Irene Klugkist1, and Paul A. Boelen2

1 Department of Methodology and Statistics, Utrecht University, P.O. Box 80140,
3508 TC Utrecht, the Netherlands h.hoijtink@uu.nl and i.klugkist@uu.nl

2 Department of Clinical and Health Psychology, Utrecht University, P.O. Box
80140, 3508 TC Utrecht, the Netherlands p.a.boelen@uu.nl

1.1 Bayesian Evaluation of Informative Hypotheses

Null hypothesis significance testing (NHST) is one of the main research tools in
social and behavioral research. It requires the specification of a null hypothesis,
an alternative hypothesis, and data in order to test the null hypothesis. The
main result of a NHST is a p-value [3]. An example of a null hypothesis and
a corresponding alternative hypothesis for a one-way analysis of variance is:

H0 : µ1 = µ2 = µ3

and
Ha : µ1, µ2, and µ3, are not all equal,

where µ1, µ2, and µ3 represent the average score on the dependent variable of
interest in three independent groups. The implication of the null hypothesis
has been often criticized. Cohen [1] calls it the “nil hypothesis” because he
finds it hard to imagine situations, especially in psychological research, where
“nothing is going on,” and three means are exactly equal to each other. The
meaning of the alternative hypothesis can also be criticized. If H0 is rejected,
and thus Ha is implicitly accepted, we find ourselves in a situation that can be
labelled “something is going on but we don’t know what.” Knowing that three
means are not all equal (Ha) does not tell us which means are different or what
the order of the means is. Stated otherwise, the null hypothesis describes the
population of interest in an unrealistic manner, and the alternative hypothesis
describes the population of interest in an uninformative manner.

In this book we will introduce and exemplify the use of informative hy-
potheses. An informative hypothesis can be constructed using inequality (<
denotes smaller than and > denotes larger than) and about equality (≈) con-
straints. Two examples of informative hypotheses are

H1a : µ1 > µ2 > µ3
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and
H1b : {µ1 ≈ µ2} > µ3.

The first hypothesis states that µ1 is larger than µ2 and that µ2 is larger
than µ3. The second hypothesis states that µ1 is about equal to µ2 and that
both are larger than µ3. The inequality constraints < and > can be used
to add theoretical expectations to the traditional alternative hypothesis Ha,
thus making it more informative. The about equality constraint ≈ has two
advantages. First of all, if, like Cohen [1], researchers consider the traditional
null hypothesis H0 to be a “nil hypothesis,” they can replace it by

H1c : µ1 ≈ µ2 ≈ µ3.

Of course it has to be specified what is meant by ≈. In words, µ1 ≈ µ2 means
that µ1 is not substantially different from µ2. In a simple formula this means
that

|µ1 − µ2| < δ,

where δ is the smallest difference between two means that is considered to
be relevant by the researchers formulating the hypotheses. This immediately
leads to the second advantage of using ≈ constraints. If the traditional null
hypothesis is rejected by a significance test, it still has to be determined
whether the effect found is relevant or not. If H1c : µ1 ≈ µ2 ≈ µ3 is rejected,
this is not necessary, because the relevance of an effect is already included in
H1c.

Classical and informative hypotheses differ not only in the manner in which
they are formulated but also in the manner in which they are evaluated. The
classical null and alternative hypotheses can be evaluated using a p-value. For
a one-way analysis of variance the p-value is, loosely speaking, the probability
that the differences in means observed in the data or larger differences come
from a population where the null hypothesis is true. According to a popular
rule, the null hypothesis is rejected if the p-value is smaller than .05. Informa-
tive hypotheses can be evaluated using Bayesian model selection. The main
result of Bayesian model selection is the posterior probability [2]. The poste-
rior probability represents the support in the data for each hypothesis under
investigation. For H1a and H1b these probabilities could, for example, be .90
and .10, respectively. This implies that after observing the data, H1a is nine
times as probable as H1b.

1.2 Overview of the Book

The book consists of four parts. The first part, “Bayesian Evaluation of In-
formative Hypotheses,” consists of Chapters 2 through 5. Subsequently, in-
formative hypotheses, Bayesian estimation, Bayesian model selection, and the
usefulness of the traditional null, alternative and informative hypotheses will
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be discussed in the context of analysis of variance models. The first part is an
introduction and tutorial in which all the steps involved in the formulation
and evaluation of informative hypotheses are subsequently discussed. This
part of the book is suited for both social scientists and statisticians.

The second part, “A Further Study of Prior Distributions and the Bayes
Factor,” which consists of Chapters 6 through 9, contains a further elabo-
ration of the use of Bayesian model selection for the evaluation of informa-
tive hypotheses. The second part of the book is rather technical and aimed
at statisticians. Subsequently, different specifications of prior distributions,
Bayesian alternatives for the use of posterior model probabilities, and the
contrast between classical and Bayesian analysis will be discussed.

The third part of the book, “Beyond Analysis of Variance,” discusses the
application of informative hypotheses beyond the context of analysis of vari-
ance. It consists of Chapters 10 through 13, in which the application of infor-
mative hypotheses will subsequently be discussed for analysis of covariance,
latent class models, models for contingency tables, and multilevel models. The
third part of the book is suited for both social scientists and statisticians.

The fourth part of the book, “Evaluations,” consists of Chapters 14
through 16. The concept of informative hypotheses will be discussed from
the perspectives of psychologists, statisticians, and philosophers of science.
This part of the book is also suited for both social scientists and statisticians.

1.3 Software

For many of the models and approaches discussed in this book software, and
manuals are available. Software for inequality constrained analysis of variance
and covariance, inequality constrained latent class models, and models for
contingency tables as discussed in Chapters 3, 4, 10, 11, and 12, respectively,
can be found at http://www.fss.uu.nl/ms/informativehypotheses. Soft-
ware for inequality constrained analysis of variance as discussed in Chapter
6 can be found at http://rosselldavid.googlepages.com. Readers inter-
ested in software for the other approaches/models discussed should contact
the authors of the respective chapters.

References

[1] Cohen, J.: The earth is round (p < .05). American Psychologist, 49, 997–
1003 (1994)

[2] Kass, R.E., Raftery, A.E.: Bayes factors. Journal of the American Statis-
tical Association, 90, 773–795 (1995)

[3] Schervish, M.J: P values: what they are and what they are not. The
American Statistician, 50, 203–206 (1996)
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Illustrative Psychological Data and Hypotheses
for Bayesian Inequality Constrained Analysis
of Variance

Paul A. Boelen1 and Herbert Hoijtink2

1 Department of Clinical and Health Psychology, Utrecht University, P.O. Box
80140, 3508 TC Utrecht, the Netherlands p.a.Boelen@uu.nl

2 Department of Methodology and Statistics, Utrecht University, P.O. Box 80140,
3508 TC Utrecht, the Netherlands h.hoijtink@uu.nl

2.1 Introduction

In this chapter, three datasets from existing psychological research programs
will be introduced that allow for an investigation of differences between groups
on a single outcome variable. The first dataset was gathered to study amne-
sia in people with Dissociative Identity Disorder. The second dataset was
originally generated to study emotional reactivity and emotional regulation
in children subjected to different kinds of social evaluation by peers. The
third dataset was obtained from research on coping with loss that, among
other purposes, was used to study gender differences in coping. These three
datasets will be used in subsequent chapters to illustrate Bayesian inequal-
ity constrained analysis of variance. To set the stage for these illustrations,
in the current chapter, we will provide background information for the three
datasets and will introduce theories and corresponding hypotheses that can be
tested with these datasets. Some of these hypotheses were (implicitly) formu-
lated by the researchers who gathered the data. However, since the approach
introduced in this book allows more flexibility (viz. construction of hypothe-
ses using inequality constraints), additional hypotheses will be formulated.
We will describe how traditional hypothesis testing could be used to evaluate
these hypotheses. Limitations of more conventional approaches to hypothesis
testing will also be addressed. In the chapters that follow, these hypotheses
will be evaluated using Bayesian inequality constrained analysis of variance.

2.2 Amnesia in Dissociative Identity Disorder: The
Investigation of a Controversy

In psychiatry and clinical psychology, the Diagnostic and Statistical Manual
of Mental Disorders (DSM [1]) is probably the most frequently used system to
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classify mental disorders. It includes specific criteria for dozens of disorders,
subdivided into several categories among which are the categories of mood
disorders, anxiety disorders, and personality disorders. There is a lot of con-
troversy surrounding the system. Among other things, critics have noted that
many of the disorders in DSM lack reliability and construct validity [40]. One
of the most controversial disorders in the DSM is the Dissociative Identity
Disorder (DID) – among the lay public also known as Multiple Personality
Disorder. According to the last edition of the DSM, DID is defined as present
when the person has at least two distinct identities or personality states that
recurrently take control of the person’s behaviour and has an inability to re-
member important personal information that cannot be explained by ordinary
forgetfulness [1].

The controversy surrounding DID basically comes down to the question
if it is indeed possible that people can have two or more separable identi-
ties (so called “alters”), with currently dominant identities being amnesic for
events experienced by the other identity. Some say that this is indeed possi-
ble, whereas others have questioned if this is indeed so (for a review see [20]).
A lot of research has been conducted to study this topic. Yet, as with the
disorder itself, much of this research has been criticized. For instance, some
studies have simply asked one alter of a DID-patient if he/she remembered
what was experienced by the other alter. Potentially problematic is that, say,
subjective experience of amnesia does not necessarily reflects the objective
presence of this phenomenon as present in people with, for instance, dementia
or other organic mental disorders. To curb this problem, researchers have used
implicit measures of amnesia that allow for an examination of amnesia with-
out study participants being aware that amnesia is tested. Elegant examples
of this approach are represented in several studies by Huntjens [16], who used
experimental designs to answer the question if inter-identity amnesia reported
by DID-patients represents true, objectively verifiable amnesia or is perhaps
attributable to other processes. In the present book, one of the studies by
Huntjens et al. [17] will be used for illustrative purposes in several chapters.

As a starting point of their study, Huntjens et al. [17] observed that it is
still uncertain whether or not the amnesia of DID-patients is “real” amnesia,
if it is iatrogenic (i.e., induced by therapists), or if it is caused by suggestive
influence of media and cultures on suggestible individuals. Noticing limitations
of extant studies on this topic, they felt it was timely to further examine the
issue of symptom simulation in DID-patients. To this end, a group of DID-
patients (Npat = 19) and three controlgroups were subjected to a recognition
task. In the first phase of this task, which was the learning episode, patients
were subjected to part of the Wechsler Memory Scale-revised (i.e., the Logical
Memory-story A and the Visual Reproduction subtests [39]); patients were
told a brief story and they were shown several drawn figures after which
they performed a recall test of both the story and the figures. Then, after a
delay, patients were asked to switch to another alter that was subjected to
the second phase of the task. In this phase, these other alters were subjected
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to a recall test and a 15-item multiple-choice recognition test. Ten multiple-
choice questions asked participants about particular story details, offering
three possible answers for each question (e.g., “Was the story about a man,
a woman, or an animal?”). Five questions asked participants to pick out the
previously seen figure among five alternatives including four foils. The number
of correct answers were summed to obtain a total “Recognition Score.” This
score ranged from 0 to 15 and represented an index of remembering.

As noted, apart from the DID-patients (Npat = 19), three control groups
were included. The first control group was a normal control group (Ncon = 25).
The second group consisted of normal people who were asked to deliberately
simulate inter-identity amnesia (Nsim = 25). One week before the experiment
took place, participants in this group were extensively informed about DID
and its possible iatrogenic nature. They were asked to make up an imaginary,
amnesic identity and to practice switching from one identity to the other.
The third control group consisted of normal people who only underwent the
second phase of the experimental task and had to guess the right answers to
the recognition questions (Namn = 25). As such, they represented a “truly
amnesic control group” in that they were truly unable to remember anything
about the story because they didn’t get a chance to hear the story in the first
place.

The design allowed the authors to compare the overall memory perfor-
mance (recognition scores) among true DID-patients, Controls, Simulators,
and True amnesiacs. There were at least two hypotheses implicated in the
study. A first hypothesis was based upon the viewpoint that DID-patients
actually suffer from “real amnesia.” From this viewpoint, it could be hypoth-
esized that, in terms of differences in memory performance between groups,
Controls would remember the story details best and that both DID-patients
and True amnesiacs would perform worse than normals but would not dif-
fer from each other. Finally, Simulators could be expected to perform worst
because they knew the correct answer and thus could deliberately choose a
wrong answer. Their score could be expected to be worse than the score of the
True amnesiacs who had to guess the right answer and obviously occasionally
guessed right. Using equality and inequality constraints, this hypothesis could
be represented as

H1a : µcon > {µamn = µpat} > µsim, (2.1)

where µ denotes the mean recognition score in the group indicated and >
means larger than. A second hypothesis was based upon the viewpoint that
DID-patients actually feign their amnesia. From this viewpoint, it could be
hypothesized that the memory performance of DID-patients would be similar
to that of Simulators and that both groups would have a poorer memory
performance than both normals and True amnesiacs. This hypothesis could
be depicted as

H1b : µcon > µamn > {µpat = µsim}. (2.2)
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Table 2.1. Recognition scores in the DID data

M SD N

1. DID-patients 3.11 1.59 19
2. Controls 13.28 1.46 25
3. Simulators 1.88 1.59 25
4. True amnesiacs 4.56 1.83 25

As a means to enhance clarity on the validity of both hypotheses, Huntjens
et al. [17] compared the memory performance (recognition scores) of the four
groups, using analysis of variance (see [32] for a nice introduction) followed
by pairwise comparisons of means (see [37] for a nice introduction). Table 2.1
describes the recognition scores in each group.

Analysis of variance can be used to test the hypothesis

H0 : µcon = µamn = µpat = µsim (2.3)

versus
H2 : µcon, µamn, µpat, µsim, (2.4)

that is, testing “nothing is going on” versus “something is going on but I don’t
know what.” Note that this is not what the researchers wanted to know. They
wanted to know which of the hypotheses H1a and H1b was the best. As can
be seen in Table 2.2, the significance of H0 is .00, implying that “something
is going” on. To further clarify this, Scheffe’s posthoc tests were computed.
All pairwise tests had significance smaller than .05, except the comparison
of DID-patients with Simulators (a significance of .11). We additionally con-
ducted other pairwise comparison procedures (Tukey HSD, Sidak, Gabriel,
Hochberg), which all rendered the same result. These results are in accor-
dance with H1b but not with H1a. Further support for H1b is obtained from
a visual inspection of the means in the four groups in Table 2.1: Controls in-
deed scored higher than True amnesiacs and both groups scored higher than
DID-patients and Simulators.

All in all, outcomes indicated that, in terms of memory performance, the
performance of DID-patients was worse than the performance of True amne-
siacs and close to those who simulated DID. These findings led Huntjens et

Table 2.2. Significances for the analysis of variance and Scheffe’s post-hoc tests

Hypothesis Significance

H0 : µcon = µamn = µpat = µsim .00
H0 : µcon = µpat .00
H0 : µpat = µsim .11
H0 : µamn = µpat .04
H0 : µcon = µsim .00
H0 : µcon = µamn .00
H0 : µamn = µsim .00
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al. [17] to conclude that DID-patients are similar to Simulators in providing
incorrect answers to questions about the recognition of information to which
they were previously subjected.

The study represents an elegant example of testing amnesia in DID-
patients, without them being made aware that amnesia is tested. As such,
it adds to our knowledge of DID in showing that it is an oversimplification to
say that DID-patients indeed suffer from true amnesia. However, it is ques-
tionable whether hypothesis testing using analysis of variance and Scheffe’s
post hoc tests is the most elegant way to evaluate H1a and H1b (note that
the authors did not have access to the Bayesian procedures that will be intro-
duced in this book). First of all, the authors were not particularly interested
in H0 and H2. Hence, testing these hypotheses is a rather indirect manner
to evaluate H1a and H1b. Second, testing H0 versus H2 did not provide all
answers: post hoc tests needed to be executed, followed by a visual inspection
of the sample means, in order to be able to reach a conclusion. A number of
issues threaten the viability of this procedure:

• The results might not be in agreement with either H1a or H1b, in which
case no conclusion can be obtained.

• For the example at hand, the procedure consists of testing seven hypothe-
ses. Of course Scheffe can be used to control the probability of type I errors,
also known as errors of the first kind (i.e., the probability of incorrectly
rejecting null hypotheses), but also leads to a reduction of power, which
will increase the probability of type II errors, also known as an errors of
the second kind (i.e., incorrectly accepting one or more null hypotheses).
Since power issues are important in psychological research because sample
sizes are often limited, this is an undesirable feature of procedures that
are used to control the amount of type I errors.

• A visual inspection of means is not a well-established formalized proce-
dure that can be used to evaluate informative hypotheses (i.e., hypotheses
formulated using inequality constraints). If four means are expected to be
ordered from small to large, and the sample means are 0.2, 0.1, 4, and 8, a
formal procedure might show substantial support for the expectation even
though the order of the first two means is reversed.

• Finally, the results of pairwise comparisons of means may be inconsistent.
Results like “accept H0: µA = µB ,” “accept H0: µB = µC ,” and “reject
H0: µA = µc” cannot be straightforwardly interpreted because they are
logically inconsistent: The three conclusions cannot be simultaneously true
(see also [12]).

In the next chapters, Bayesian inequality constrained analysis of variance
will be introduced. There are a number of differences between this Bayesian
and traditional analysis of variance:

• The Bayesian approach requires a researcher to translate a number of
competing theories into inequality constrained hypotheses before looking
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at the data (see (2.1) and (2.2) and the examples that will be given in the
next sections).

• Subsequently the data will be used to quantify the support for each hy-
pothesis under investigation. This quantification is called the posterior
probability and will be introduced and discussed in Chapter 4 and later
chapters, the interested reader is also referred to Chapter 7 of [14]. For the
example at hand it might turn out that the posterior probabilities of H1a

and H1b are .2 and .8, respectively. Such a result would imply that after
observing the data, H1b is four times as likely as H1a.

• With the Bayesian approach, a conclusion with respect toH1a andH1b will
always be obtained (a possible conclusion is that both are equally likely).
There is no multiple testing problem and a visual inspection of means is
not necessary in order to reach a conclusion.

However, Bayesian analysis can benefit from an evaluation of H0 and H2 in
addition to H1a and H1b: If neither H1a nor H1b is a better model than H2, it
can be concluded that both sets of constraints are not in accordance with the
data. Furthermore, if H0 is a better model than H1a and H1b, the conclusion
for the present DID example could be that the experimental manipulation has
completely failed.

Note, finally, that there is an alternative to the formulation of H1a and
H1b:

H1c : µcon > {µamn, µpat} > µsim (2.5)

and
H1d : µcon > µamn > {µpat, µsim}. (2.6)

Here it is no longer required that µamn = µpat but only that they are located
between µcon and µsim. Something similar can be observed for H1b. The al-
ternative formulation is less restrictive than the original, without altering the
core message of each hypothesis. Which formulation should be preferred, if
any and whether or not it is wise to include H0 and H2 in the set of hypotheses
under investigation will be further discussed in Chapter 4.

2.3 The Effect of Peer Evaluation on Mood in Children
High and Low in Depression

A second study that will be used to illustrate the subsequent chapters ad-
dressed the influence of depression severity on emotional reactivity after dif-
ferent types of peer evaluation feedback in preadolescent children [26]. The
interplay of moods (diffuse, slow moving feeling states) and emotions (quick
moving reactions) is an intriguing study topic. Intuitively, it makes sense to
think that moods potentiate like-valenced or matching emotions in a way that
irritable mood strengthens angry reactions, anxious mood facilitates the ex-
perience of panic, and depressed mood facilitates reactions of sadness [29].



2 Illustrative Data 13

Yet, studies on the interplay of moods and emotions do not unambiguously
support this so-called mood-facilitation hypothesis; there is evidence for this
mood facilitation effect in anxiety [2], but little evidence that depressed mood
inflates depressed emotional reactivity [29].

Reijntjes et al. [26, 27] studied the interaction between depressed mood and
emotions in preadolescent children as one of the topics in a larger research
program designed to enhance knowledge on emotional reactivity, emotional
regulation, and depression in children. In this program, social evaluation by
peers, manipulated by the authors, was chosen as a means to generate change
in emotions. The reason to choose peer evaluation as a way of manipulating
affect was chosen, because peer praise and rejection are common emotion-
eliciting events in childhood [11] and exert an important influence on the
development and maintenance of both externalizing problems (e.g., conduct
disorder) [13] and internalizing problems (e.g., depression, cf. [21]). For the
purpose of the present book, we will focus on a small aspect of this research
program, in which the link between depressed mood and changes in current
emotions in response to the manipulated peer evaluation was explored. This
issue was addressed in detail in one of the studies of Reijntjes et al. [27].

In this study, 139 children, between the ages of 10 and 13 years, were led to
believe that they were participating in an Internet version of a peer evaluation
contest that was based on and named after an American television show called
Survivor. Each participant was seated in front of a laptop computer and told
that he/she participated in the online computer contest, together with four
same-sex contestants. In actuality, contestants were fictitious. The objective
of the game was presented as getting the highest “likeability” score from a
jury consisting of 16 members, 8 boys and 8 girls. To this end, children were
asked to provide information about themselves. They were asked questions
about their favourite musical group, hobbies, and future occupation, and a
number of character traits (e.g., sense of humour, agreeableness, intelligence,
trustworthiness). Apart from that, their picture was taken with a web-cam.

All participants were led to believe that all the information and the picture
would be transmitted to the judges over the Internet, who would then give
them a “likeability” score ranging from 0 to 100. A short while after trans-
mitting the information, the outcome of the likeability contest was presented.
Specifically, the names of the players with the highest and the lowest score
appeared on the screen. This is where the manipulation of the authors came
in, that is, all participants were randomly assigned to a success feedback, a
failure feedback, and a neutral feedback condition. Participants in the success
feedback condition were told that they had obtained the highest score, those
in the failure feedback condition were led to believe that they got lowest score,
and those in the neutral feedback condition were told that they received nei-
ther the highest nor the lowest score. This last condition represented a control
condition.

All participants completed a number of questionnaires over the course of
the experiment. For the assessment of depressed mood, they completed the
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Children’s Depression Inventory (CDI) before the contest. The CDI is a 27-
item measure for the assessment of social, behavioural, and affective symptoms
of depression in children [19]. Each of the 27 items asks children to pick out
the statement that applies to them from 3 alternatives (e.g., I like myself, I
do not like myself, I hate myself). For each question, the first answer (absence
of the symptom) is rated as 0, the second answer (mild symptom) is rated
as 1, and the third answer (definite symptom) is rated as 2. Item scores are
summed to form an overall depression score that can range from 0 to 54.

To assess changes in affect induced by the peer evaluation, children com-
pleted the Positive And Negative Affect Schedule (PANAS; [38]) before and
after the contest. In the current illustration, we focus on the Positive Af-
fect scale, the PANAS-P. This scale presents children with 10 mood-related
adjectives (e.g., enthusiastic, active, alert) and asks them to rate the extent
to which these moods are experienced on 5-point scales ranging from “very
slightly or not at all” to “extremely”. Scale scores can range from 10 to 50.

The data of Reijntjes et al. [27] allowed us to test several hypotheses about
the influence of depressed mood on emotional reactivity induced by peer eval-
uation. The improvement in affect/emotion, defined as post-Survivor positive
affect minus pre-Survivor positive affect, represents emotional reactivity and
was the dependent variable. Positive values of this emotional reactivity (like
in the high depressed success feedback group; see Table 2.3) indicate an im-
provement in positive mood, and negative values (like in the low depressed
failure feedback group) indicate a decrease in positive mood. To compare be-
tween children with different levels of depression, the sample was divided in
three groups of equal size: the “Low Depressed” group, the “Moderately De-
pressed” group, and, the “High Depressed” group. The hypotheses for this
study addressed differences in emotional reactivity for children in these three
groups, who were subjected to success, failure, or neutral peer feedback. This
created nine groups of children. Table 2.3 shows the labelling of these groups,
as well as the mean Emotional Reactivity Scores across groups.

We were particularly interested in reactivity after success feedback and
after failure feedback. Mood improvement after success feedback is defined
as emotional reactivity in the success condition minus emotional reactivity in
the neutral condition (µ1 − µ2, µ4 − µ5, and µ7 − µ8). Note that the sub-
scripts correspond to the group labelling displayed between [.] in Table 2.3.
Positive differences between means indicate that mood improved more in the
success condition than in the neutral condition. Negative differences indicate
the opposite. Similarly, mood improvement after failure feedback is defined
as emotional reactivity in the failure condition minus emotional reactivity in
the neutral condition (µ3 − µ2, µ6 − µ5, and µ9 − µ8). Here positive differ-
ences between means indicated that mood improved more in the failure than
in the neutral condition, and negative differences indicate that the opposite
occurred. The neutral condition was chosen as a reference group because it
may well be that the emotional reactivity in the neutral condition is different
for different levels of depression. Our interest was not primarily in whether
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Table 2.3. Emotional reactivity: Mean (M), standard deviation (SD), and sample
size (N) per subgroup of depression by feedback condition

Feedback condition

Positive Neutral Negative

Depression M SD N M SD N M SD N

Low [1] 0.27 4.67 18 [2] 0.29 4.76 17 [3] −9.33 8.77 12
Moderate [4] 0.41 4.96 12 [5] −1.50 5.99 14 [6] −5.78 5.75 19
High [7] 5.76 4.39 17 [8] −0.56 4.25 16 [9] −3.85 6.49 14

Note: Numbers in square brackets denote the group labelling as used in the hypotheses.

emotional reactivity differs among depression levels in the success an failure
conditions, but whether these differences persisted if we controlled for differ-
ences in emotional reactivity in the neutral condition.

Considering the issue of emotional reactivity, we could define at least three
competing theories on the influence of depressed mood on emotional reactivity
after peer praise (i.e., success feedback) and peer rejection (i.e., failure feed-
back). As noted, the mood-facilitation hypothesis states that mood potentates
matching emotions. Based on this hypothesis, we could expect that success
feedback would elicit a less pronounced mood improvement in depressed com-
pared to nondepressed children and that failure feedback would generate a
more pronounced worsening of mood in depressed compared to nondepressed
children; cf. [28]. Translated into an inequality constrained hypothesis this
becomes

H1a : {µ7 − µ8} < {µ4 − µ5} < {µ1 − µ2},

{µ9 − µ8} < {µ6 − µ5} < {µ3 − µ2}. (2.7)

One alternative hypothesis can be drawn from recent research on emotional
context insensitivity in depression. Emotional context insensitivity comes
down to the notion that the presence of depression causes attenuated emo-
tional reactivity to both positive and negative stimuli; that is, depressed mood
states are said to prompt withdrawal and to cause reduction in motivated ac-
tivity and pessimism, such that both positive and negative triggers from the
environment lead to little or no emotional reactivity [30]. In a recent study
among adults, Rottenberg et al. [31] found evidence that depression coincides
with such insensitivity. Based on this viewpoint, it could be expected that suc-
cess feedback would lead to a weaker increase in mood in depressed compared
to nondepressed children and that failure feedback would lead to stronger
mood improvement (or, stated otherwise, failure feedback has less impact on
depressed children and will thus lead to a smaller reduction in positive mood)
in depressed compared to nondepressed children:
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H1b : {µ7 − µ8} < {µ4 − µ5} < {µ1 − µ2},

{µ9 − µ8} > {µ6 − µ5} > {µ3 − µ2}. (2.8)

We could think of an additional third hypothesis, one that is interesting
but not explicitly mentioned and examined in existing literature. It is possible
that, since depressed mood coincides with negative cognitions about self-worth
[3], children higher in depression expected to get lower scores from their peers
in the Survivor contest. From this viewpoint it could be expected that success
feedback would actually lead to a stronger increase in mood in depressed
compared to nondepressed children, because this success was highly discrepant
with their self-view and expectations. In a related vein, it would be possible
that failure feedback would lead to a weaker mood reduction (or, taking into
account the way that we have defined our dependent variable, a stronger mood
improvement) in depressed compared to nondepressed children, because, at
some level, the depressed children were already expecting to fail; cf. [15].
Translated into an inequality constrained hypothesis, what could be called
discrepancy hypothesis could be formulated as

H1c : {µ7 − µ8} > {µ4 − µ5} > {µ1 − µ2},

{µ9 − µ8} > {µ6 − µ5} > {µ3 − µ2}. (2.9)

Evaluation of H1a, H1b, and H1c using a traditional two-way analysis of
variance does not render a straightforward evaluation of the hypotheses of
interest. Both main effects are significant (p = .00 for the feedback condition;
and, p = .01 for the depression condition) but the interaction effect is not (a
significance of .08).

Using Figure 2.1 to interpret the significant main effects, the following
conclusions seem valid: The main effect of feedback condition can be described
as a decrease of emotional reactivity from the success via the neutral to the
failure feedback condition. The main effect of depression level is less clear, but
there is a tendency for more emotional reactivity in children with high levels in
depression compared to those with moderate and low levels of depression. For
a number of reasons, it is questionable whether these results can and should
be used to evaluate H1a, H1b, and H1c:

• The significant main effects do not address emotional reactivity in the suc-
cess and failure condition corrected for emotional reactivity in the neutral
condition.

• As mentioned earlier, if the null hypothesis (“nothing is going on”) is re-
jected in favour of the alternative hypothesis (“something is going on but
I don’t know what”), a further inspection of tabled data summaries (e.g.,
a table of means) or a visual representation of the data (e.g., using figures
like Figure 2.1) may be needed in order to determine what is going on.
Evaluation of tabled data summaries and figures is never straightforward.
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Fig. 2.1. Visual display of average emotional reactivity in the nine experimental
groups

Without additional testing it is not clear whether the main effect of de-
pression level was significant because of mean differences in one or more
of the success, neutral, and failure feedback conditions. If, for example,
standard errors of the means in the success and failure feedback condition
would be large compared to the standard errors in the neutral feedback
condition, the main effect of depression level would mainly be caused by
the neutral feedback condition, which would change the “prima facie” in-
terpretation of Figure 2.1 such that it is not in accordance with either of
the three hypotheses.

• With additional testing to support the interpretation of Figure 2.1 (e.g.,
a pairwise comparison of means within each of the three feedback condi-
tions), there is again a multiple testing problem; that is, due to the fact
that more than one hypothesis is tested, the probability of type I errors
will increase. This can be remedied using procedures that control the prob-
ability of type I errors like Scheffe and Bonferroni. However, this will lead
to an increase of type II errors, that is, a reduction in power (the prob-
ability to correctly reject the null hypothesis). Furthermore, results may
not be consistent with either one of H1a, H1b, or H1c.

• A better approach is to execute four smaller two-way analyses of vari-
ance. In each analysis the focus is on the interaction effect in the sub-
table consisting of the first or last two groups of the factors feedback
condition and depression level. Consider, for example, the subtable con-
sisting of low/moderate levels of depression, and success/neutral feedback,
that is, groups 1, 2, 4, and 5. If {µ4 − µ5} < {µ1 − µ2} like in H1a, or
{µ4 − µ5} > {µ1 − µ2} like in H1c, there should be an interaction among
feedback and depression in the subtable at hand. However, the significance
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of the interaction was .46. This implies that {µ4−µ5} = {µ1−µ2}, which
is not consistent with either H1a, H1b, or H1c. In a similar manner the
interaction in the other three subtables were tested. Neither of these was
significant (moderate/high and success neutral, p = .09; low/moderate and
neutral/failure, p = .10; moderate/high and neutral/failure, p = .12) and
thus not helpful to choose the best of H1a, H1b, or H1c.

Briefly stated, it appears that traditional hypothesis testing using two-way
analyses of variance is not very helpful when evaluating H1a, H1b, and H1c. In
the following chapters it will be shown that Bayesian inequality constrained
analysis of variance renders informative results and is able to select the best
of the three hypotheses. Like in the previous example, one can extend H1a,
H1b, and H1c with the traditional null hypothesis (i.e., “nothing is going on”)
and an alternative hypothesis (i.e., “something is going on but I don’t know
what”). As in the DID example these hypotheses could be used to verify if
the experimental manipulation was at all successful and whether at least one
of H1a, H1b, and H1c is supported by the data in the sense that it is a better
model than the unconstrained alternative hypothesis.

2.4 Coping with Loss: The Influence of Gender, Kinship,
and Time from Loss

Gender differences in psychological problems after stressful life events have
received considerable attention in the literature. A recent review of the litera-
ture on gender differences in posttraumatic stress disorder (PTSD) has shown
that in the general population this disorder is more prevalent among women
than among men, even when controlling for the fact that men generally have a
greater chance of being confronted with events that are potentially traumatiz-
ing [36]. Stated otherwise, among people who are confronted with traumatic
events, women have a greater chance of developing PTSD than do men. It
has been argued that this difference may well be due to the fact that bases
rates of psychopathology are higher in women than in men. Indeed, studies
have shown that women are generally more prone to develop anxious and de-
pressive symptoms (e.g., [22, 33]). Nevertheless, there is evidence that women
have a greater risk of developing problems, even when controlling pretrauma
levels of distress [9].

The issue is obviously a complex one. For instance, some have noted that
the relative severity of posttrauma psychopathology levels in women com-
pared to men may well be at least partially attributable to the fact that men
generally tend to underreport depressive and anxious symptoms [34, 36]. In
addition, it is conceivable that gender differences in emotional problems after
traumatizing events are moderated by demographic variables such as age and
marital status and trauma-related variables such as the nature of the event
and the severity of the event. With respect to the severity, it is noteworthy
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that Kendler et al. [18] found women to have a considerable greater chance of
developing depression after exposure to a relatively minor threat, whereas the
excess risk in women nearly disappeared in groups exposed to a more severe
threat.

So, although female gender seems to be a risk factor for the development
of psychological problems after confrontation with adversity, this conclusion
is far from definitive to say the least. As a third example of Bayesian inequal-
ity constrained analysis of variance, we focussed on gender differences in the
consequences of a stress full life-event different from trauma, namely the loss
of a loved one. More specifically, we sought to address gender differences in
the development of complicated grief. Complicated grief refers to a group of
grief-specific symptoms that have been found to be distinct from depression
and anxiety and to be predictive of severe mental health impairments [24].
These include intense and persistent yearning, difficulties in accepting the
loss, avoidance, and shattered worldview.

Little is known about gender differences in this area. To our knowledge,
there are four studies that addressed this issue, using the same conceptual-
ization of complicated grief and the same questionnaire to measure it. Very
roughly, these generated different results: In one study there were indications
that men were worse off after a loss [4], in another study no differences were
found [5], and two studies showed that women suffered more [10, 41]. As an
additional illustration of Bayesian approaches, we examined the impact of
gender further. In doing so, we focussed on the consequences of losing a part-
ner and the consequences of losing a child, given that these losses are generally
regarded as the most devastating (and mostly studied) losses that people may
suffer [35]. Our aim was not to get a definitive answer to the question “who
suffers more?” but, as with the other studies described in this chapter, to
illustrate how the Bayesian inequality constrained analysis of variance can be
used to test hypotheses about scores of groups on a single variable.

There were two hypotheses that guided our examination. The first of these
is that women have a greater risk of developing complicated grief than do men.
This hypothesis was fuelled by the fact that two of four studies that addressed
gender differences found women to suffer more and by the fact that research on
PTSD has shown that women are more at risk for problems after other types of
adversity [36]. The second hypothesis was fuelled by the notion that the loss of
partner or child may well work out differently for men and women. It has been
claimed that women generally grow more attached to their children than do
men [8]. This could make them more prone to develop emotional complications
after loss. At the same time, there are reasons to believe that men are more
vulnerable to get problems after the loss of a partner for instance, because
their well-being is more strongly dependent on their relationship with the
partner than that of women (cf. [25]). So, our second key hypothesis was that
the influence of gender is moderated by kinship such that women suffer more
after losing a child and men suffer more after losing a partner. In keeping with
this notion, the study that addressed gender differences in parental bereaved
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Table 2.4. Complicated grief: Mean (M), standard deviation (SD) and sample size
(N) per subgroup of the Gender by Kinship by Time from loss design

Time from loss

Recent Remote

Gender Kinship M SD N M SD N

Men Partner [1] 84.91 21.59 106 [2] 78.60 20.31 131
Child [3] 79.77 21.88 26 [4] 77.79 22.37 52

Women Partner [5] 86.42 18.56 229 [6] 78.36 19.28 374
Child [7] 84.88 17.33 91 [8] 83.02 21.74 165

Note: Numbers in square brackets denote the group labelling as used in the hypotheses.

individuals showed that women suffered more [41], whereas such results were
not found in two studies that focussed on conjugal loss [4, 6].

To test these hypotheses, data were obtained from research programs on
grief conducted by the first author of this chapter. We selected 760 bereaved
partners and parents from a group of 1321 mourners who participated in a
study on the distinctiveness of complicated grief, depression, and anxiety [6]
and 419 similarly bereaved individuals from a group of 943 mourners included
in a study on the dimensionality of complicated grief [7]. The final sample for
this illustration thus included N = 1179 mourners.

To assess complicated grief symptoms, all participants completed the
Dutch version of the Inventory of Complicated Grief-revised (ICG-r). The
ICG-r is a self-report measure that taps each of the symptoms of complicated
grief as well as other potentially problematic responses to loss [23]. The 29-
item Dutch version was developed by Boelen et al. [7]. Examples of items are
“I feel that I have trouble accepting the death” and “I feel myself longing
and yearning for the lost person.” Respondents rate the presence of these
symptoms in the preceding month, on 5-point scales ranging from “almost
never” to “always.” The overall complicated grief severity score is calculated
by summing item scores. This score ranged from 29 to 145.

As we wished to include possible effects of time from loss, the group was
divided into those who were bereaved less than 1 year (the “recent loss” group)
and those whose losses occurred more than 1 year ago (the “remote loss”
group). Table 2.4 shows complicated grief severity scores across the groups
that were included in the analyses.

As noted, our key hypotheses were that (a) women generally have a higher
risk of developing severe complicated grief symptoms than do men and, al-
ternatively, (b) that losing a child leads to higher complicated grief levels in
women, whereas the loss of a partner leads to higher complicated grief lev-
els in men. Yet, for illustrative purposes, we included these hypotheses in a
sequence of expectations, also including (main) effects of time from loss and
kinship to the deceased. The first hypothesis in this sequence was based on
the fact that studies have convincingly shown that, in general, complicated
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grief levels are stronger in the early months of bereavement than later [24].
So, the first hypothesis was formalized as follows:

• The directional (an inequality constraint is used to specify the direction
of the effect) simple effect of time in the three-factor design at hand; that
is, recent loss leads to more grief that remote loss: H1a: µ1 > µ2, µ3 > µ4,
µ5 > µ6, µ7 > µ8. Note that the subscripted numbers refer to the group
numbers in Table 2.4 listed between [.].

To investigate our first key hypothesis that women always have higher com-
plicated grief levels than men, H1a could be extended with the following:

• The directional simple main effect of gender in the three-factor design at
hand; that is, the grief scores for the women are always higher than the
grief scores for the men in the corresponding groups to render H1b: µ5 >
µ1, µ6 > µ2, µ7 > µ3, µ8 > µ4, µ1 > µ2, µ3 > µ4, µ5 > µ6, µ7 > µ8. Note
that this is a model containing the simple main effects of time and gender.

Although there may be an interaction between gender and kinship, some schol-
ars have claimed that, both for men and for women, losing a child poses a
stronger risk for the development of complicated grief than does losing a part-
ner (cf. [41]). This could be investigated via an extension of H1b with the
following:

• The directional simple effect of kinship in the three-factor design at hand;
that is, losing a child leads to more complicated grief than losing a partner:
H1c: µ3 > µ1, µ4 > µ2, µ7 > µ5, µ8 > µ6, µ5 > µ1, µ6 > µ2, µ7 > µ3,
µ8 > µ4, µ1 > µ2, µ3 > µ4, µ5 > µ6, µ7 > µ8. Note that this is a model
containing the simple main effects of time, gender, and kinship.

Whether losing a child is more devastating for women could be investigated
with the following hypothesis, which contains three elements:

• The simple effect of time (i.e., H1a), the notion that losing a child is more
severe for women than losing a partner and the notion that losing a child
is more severe for women than for men. Together these three components
render the following hypothesis: H1d: µ1 > µ2, µ3 > µ4, µ5 > µ6, µ7 >
µ8, µ7 > µ5, µ8 > µ6, µ7 > µ3, µ8 > µ4.

Our second key hypothesis that losing a child is more devastating for women,
whereas men are worse of after partner loss could be investigated via an
extension of the previous hypothesis with two elements:

• Complicated grief levels of men who lose a partner are higher than com-
plicated grief levels of men who lose a child, and complicated grief levels of
men who lose a partner are higher than complicated grief levels of women
who lose a partner. This renders the following model: H1e: µ1 > µ2, µ3 >
µ4, µ5 > µ6, µ7 > µ8, µ7 > µ5, µ8 > µ6, µ7 > µ3, µ8 > µ4, µ1 > µ3, µ2

> µ4, µ1 > µ5, µ2 > µ6.
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Table 2.5. Three-way analysis of variance of complicated grief scores

Effect Significance

Main effect of Gender .064
Main effect of Time .004
Main effect of Kinship .652
Interaction between Gender and Time .794
Interaction between Gender and Kinship .148
Interaction between Time and Kinship .093
Three-way interaction Gender, Time, Kinship .765

As in the previous two examples, it may be useful to add the traditional null
hypothesis and an unconstrained hypothesis to H1a until H1e. The uncon-
strained hypothesis H2: µ1, ..., µ8 is particularly useful in this example. If
none of the models under investigation has a better fit than H2, none of the
sets of constraints is supported by the data.

It is difficult to obtain information with respect to the inequality con-
strained hypotheses under investigation, using traditional analysis of variance.
A straightforward three-way analysis of variance does not test the hypotheses
under investigation (combinations of sets of directional simple effects where
inequality constraints are used to specify the direction of the effects) since
it evaluates only main, two- and three-way interaction effects. For illustrative
purposes we executed such a three-way analysis of variance; the results are dis-
played in Table 2.5. As can be seen, only the main effect of time was found to
have a significance smaller than .05. Although this provides some support for
H1a, in subsequent chapters it will be shown that using these results to eval-
uate H1a through H1e will render misleading results, because the hypotheses
tested are not directly related to the hypotheses under investigation.

Another approach could be to apply Scheffe’s procedure for pairwise com-
parisons of means to the eight groups that constitute the three-way design
at hand (note that other pairwise comparison procedures rendered similar re-
sults). The results with a significance smaller than .10 are displayed in Table
2.6. As can be seen, the results are not clearly in agreement with one of the
hypotheses under investigation. Furthermore, as will be shown in subsequent
chapters, it would be wrong to conclude that none of the hypotheses under
investigation is supported by the data. In following chapters it will also be
shown how Bayesian inequality constrained analysis of variance can straight-

Table 2.6. Pairwise comparisons with a significance smaller than .10 for the com-
plicated grief scores

Group Group Significance

Women, Recent, Partner vs. Women, Remote, Partner .002
Women, Recent, Partner vs. Men, Remote, Partner .077
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forwardly be used to determine to which degree each hypothesis is supported
by the data.

2.5 Conclusions

In the context of analysis of variance models this chapter has illustrated at
least two things. First, theories can often be translated into hypotheses that
are formulated using inequality constraints among a set of means. Second,
it may be difficult, relatively ad hoc, or even impossible to evaluate these
hypotheses using traditional null hypotheses testing. The following features
appeared in the three examples that have so far been discussed:

• Traditional null (“nothing is going on”) and alternative hypotheses (“some-
thing is going on but I don’t know what”) do not render straightforward
evaluations of the informative (specified using inequality constraints) hy-
potheses under investigation.

• An informal evaluation of the sample means is often needed in addition
to traditional hypothesis testing to be able to evaluate informative hy-
potheses. Since informal analysis, sometimes also referred to as “eyeball
testing,” can be misleading, this is not a proper mode of inference.

• Results obtained with traditional hypothesis testing may not be in agree-
ment with any of the informative hypotheses under investigation.

• Often multiple smaller null hypotheses and alternative hypotheses have to
be tested in order to be able to evaluate informative hypotheses. There are
two drawbacks of multiple hypothesis testing: It is hard to control both the
type I and type II errors and results obtained using multiple hypothesis
testing may be mutually inconsistent.

In the following chapters it will be shown that it is relatively easy to evaluate a
set of informative hypotheses using Bayesian inequality constrained analysis
of variance. The use of inequality constraints is not limited to analysis of
variance type models. In the third part of the book it will be shown how
inequality constrained hypotheses can be formulated in the context of analysis
of covariance models, latent class models, multilevel models, and models for
contingency tables.

The following types of constraints have been used in this chapter:

• Mean restricted to be larger than another mean (e.g., µ1 > µ2).
• Combination of means restricted to be larger than another combination of

means (e.g., {µ1 − µ2} > {µ3 − µ4}). Note that the restriction in which
the minus sign is replaced by a plus sign is also possible.

Restrictions that have not been used but that can also be helpful to translate
a theory into an inequality constrained hypothesis are as follows:
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• Mean restricted to be larger than a number (e.g., µ > 0). This restric-
tion will be used in Chapter 13 of this book, which deals with inequality
constrained multilevel analysis.

• Mean restricted to be larger than another mean plus a number, for in-
stance, µ1 > {µ2 + 2}. This restriction can be used if researchers want
to include a minimally required effect size in their hypotheses; that is, the
first mean should be at least 2 larger than the second mean. The number
2 is not the traditional effect size in terms of Cohen’s d, in which case it
would be written as µ1−µ2

σ > d. However, rewriting Cohen’s d, we obtain
µ1−µ2 > dσ; stated otherwise, the number 2 is Cohen’s d multiplied with
the within-group standard deviation σ.

• Absolute difference between means restricted to be smaller than a number
(e.g., |µ1 − µ2| < 2). This restriction can be used to specify that two
means are not relevantly different, where, again, researchers should specify
the minimally required effect size needed for two means to be required
relevantly different.

All these types of restrictions can be combined, thus rendering a flexible tool
that can be used to translate one or more theories into a number of compet-
ing hypotheses. In this book many examples will be given, and references to
software with which these hypotheses can be evaluated will be provided.
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3.1 A Short Introduction to Bayesian Statistics

In Chapter 2, several examples of research questions in the analysis of vari-
ance (ANOVA) context were presented. The model parameters of an ANOVA
are two or more population means and the common and unknown residual
variance. In the examples, the hypotheses or research questions of interest
impose inequality constraints on the means. For instance, for the four-group
ANOVA in the Dissociative Identity Disorder (DID) data from Huntjens et al.
[10], the hypothesis µcon > µamn > {µpat, µsim} represents one of the theories
of the researchers. In this chapter, Bayesian estimation of the parameters of
inequality constrained ANOVA models is introduced.

In the Bayesian approach, knowledge about model parameters is repre-
sented by a probability distribution. Two important ingredients of Bayesian
analyses are the prior distribution and the posterior distribution of the pa-
rameters. The prior represents the knowledge (or uncertainty) about model
parameters before observing the data. After observing data, the information
in the data is combined with the information in the prior, leading to the pos-
terior. Stated otherwise, the posterior distribution represents the knowledge
about model parameters after observing the data.

In Bayesian analyses, the role of prior distributions is a point of discus-
sion. Many prior specifications can be made and different prior distributions
may lead to different conclusions. Before moving to the inequality constrained
ANOVA model, the basic principles of Bayesian analyses and the role of prior
distributions herein will be explained based on a simple, one-parameter prob-
lem. The example deals with estimation of a population mean µ assuming that
the variance is known. Elaborate introductions into Bayesian methodology are
provided by, for instance, [2, 6, 8, 14].
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Table 3.1. Recognition scores of DID-patients

Patients’ scores 0 1 2 2 2 2 3 M = 3.11
3 3 3 3 3 3 SD = 1.59
4 4 4 4 6 7 N = 19

3.1.1 The Data

The example will be illustrated by part of the DID data introduced in Chapter
2. The focus is on estimation of the mean recognition score for DID-patients.
The outcome variable Recognition is measured on a scale with a range of
possible scores between 0 and 15. The observed recognition scores for the
N=19 DID-patients can be found in Table 3.1. Also, the sample mean (M)
and sample standard deviation (SD) are provided.

It is assumed that the data are normally distributed with a mean µ and
variance σ2. Both in classical and Bayesian approaches, a key element of
any analysis is the function that represents the information in the data with
respect to the model parameters. This is called the likelihood function. It is
a formal representation of the knowledge with respect to µ and σ2 contained
in the data.

Assuming normally distributed data, the likelihood function of y =
{y1, . . . , yN} given µ and σ2 is

f(y|µ, σ2) = (2πσ2)−N/2 exp

{
−1
2σ2

N∑
i=1

(yi − µ)2
}
. (3.1)

The observed recognition scores of N=19 DID-patients are used for further
illustration. To simplify the example, the population variance will be assumed
known and equal to 3. The model parameter of interest is therefore just µ and
the likelihood function is

f(y|µ, σ2 = 3) ∝ (2π · 3)−19/2 exp

{
−1
2 · 3

19∑
i=1

(yi − µ)2
}
. (3.2)

From (3.2) it can be seen that the information about µ follows a normal dis-
tribution with the mean equal to ȳ = 3.11 and variance equal to the squared
standard error σ2/N = 3/19 = 0.16; that is, N (µ|3.11, 0.16). Figure 3.1 pro-
vides a graphical representation of (3.2). The likelihood summarizes the infor-
mation with respect to µ that is available in the data. For example, the value
µ = 3.11 has the largest likelihood, because the sample mean is 3.11. Values
for µ that are further away from 3.11 have decreasing likelihoods. Stated oth-
erwise, the likelihood tells us which values of µ are more and less supported
by the data.
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Fig. 3.1. Likelihood function for DID-patients’ recognition data

3.1.2 Prior Distributions

Summarizing the information contained in the data with respect to model
parameters is something that classical and Bayesian approaches have in com-
mon. However, Bayesian estimation also requires the specification of a prior
distribution for µ (i.e., the knowledge with respect to µ before seeing the data).
A simple and not uncommon choice for the prior could be p(µ) ∝ 1. Speci-
fying p(µ) ∝ 1 means that every value for µ between −∞ and ∞ is equally
likely a priori and is known as an unbounded uniform or a constant prior. It is
uninformative with respect to the parameter µ, since the prior does not add
information. Bayesian estimates of µ based on this prior will lead to results
that are comparable with non-Bayesian (e.g., maximum likelihood) estimates.

One could also argue that in this particular example, a prior that allows
every value for µ (i.e., −∞ < µ < ∞) is somewhat strange, because the
recognition scores and consequently the mean of this variable can only obtain
values between 0 and 15. Therefore, a bounded uniform prior is suggested
in this example. The prior distribution, denoted p1(µ), adds no other infor-
mation about µ than that it can only have values between 0 and 15. Stated
differently, it is flat between 0 and 15 and zero otherwise. In Figure 3.2, p1(µ)
is represented by the solid line. The function describing this prior is

p1(µ) = U(µ|lb = 0, ub = 15) =
{

1/15 for µ ∈ [0, 15]
0 otherwise, (3.3)

where lb denotes the lower and ub the upper bound of the uniform distri-
bution. Note that p1(µ) is not informative with respect to the parameter of
interest and only allows values that can actually be obtained. Since the range
of variables is indeed regularly bounded in the social sciences (often scales
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Fig. 3.2. Three suggestions for p(µ): a bounded uniform distribution U(µ|lb =
0, ub = 15) (solid line); a diffuse normal distribution N (µ|µ0 = 7.5, τ2

0 = 100)
(dashed line); an informative normal distribution N (µ|µ0 = 6, τ2

0 = 0.25) (dotted
line)

with fixed lower and upper bounds are used), this appears to be a useful
choice when no (subjective) prior information is available.

Alternatively, another common choice for the prior distribution is a so-
called conjugate prior [15, 16]. Conjugacy means that the functional form
of the prior distribution is such that combined with the likelihood, it leads
to a posterior distribution of the same functional form. Note again that the
posterior distribution represents the knowledge about model parameters after
observing data. The posterior is obtained by combining the information in
prior and likelihood (this will be elaborated in Section 3.1.3). For the example
at hand, where data are assumed to be normally distributed, a normal prior
distribution for µ is conjugate because it leads to a posterior for µ that is
again a normal distribution. The prior distribution is further specified by
assigning values for the mean and variance of the normal prior, denoted by
µ0 and τ2

0 , respectively. Assume that we still want to specify a (relatively)
uninformative prior. This is obtained by specifying a large value for the prior
standard deviation. The dashed line in Figure 3.2 represents the second prior,
denoted p2(µ), and is a normal distribution centered around a mean of 7.5
and with a standard deviation of 10. It can be seen that the distribution is
relatively flat and thus providing little or no prior information in the region
of interest (0 ≤ µ ≤ 15). The function representing p2(µ) is the formula of a
normal distribution with values µ0 = 7.5 and τ2

0 = 102 = 100, leading to
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p2(µ) = N (µ|µ0 = 7.5, τ2
0 = 100)

= (2π · 100)−1/2 exp
{

(µ− 7.5)2

−2 · 100

}
. (3.4)

However, it is also possible to model (subjective) prior knowledge about the
mean recognition score for DID-patients. Assume it is known from previous
research that values below 4.5 and above 7.5 are highly unlikely and that an
average of about 6 is usually found. This prior knowledge can be represented
by, for instance, an informative normal prior distribution for µ with mean 6
and standard deviation 0.5 (dotted line in Figure 3.2); that is,

p3(µ) = N (µ|µ0 = 6.0, τ2
0 = 0.25)

= (2π · 0.25)−1/2 exp
{

(µ− 6.0)2

−2 · 0.25

}
. (3.5)

This prior distribution gives high probabilities to values close to 6, as can
be seen by the high peak at 6 in the figure, and, a very small probability
(approximately 0.1%) to values larger than 7.5 and smaller than 4.5.

3.1.3 Posterior Distributions

The observed data are used to “update” the knowledge that is represented
by the prior distribution. This leads to a new probability distribution, the so-
called posterior. The posterior distribution represents the knowledge about
model parameters after observing the data taking both the prior knowledge
and the observed data into account.

The foundations are found in Bayes’ theorem which (loosely formulated)
states that posterior knowledge is the product of prior knowledge and knowl-
edge provided by the data. To provide the theorem more formally and in
general notations, let p(θ) denote the prior for a parameter vector θ (for in-
stance, in a four-group ANOVA: θ = {µ1, µ2, µ3, µ4, σ

2}). Let f(y|θ) denote
the likelihood of data y given θ and let p(θ|y) denote the posterior distribu-
tion.

Bayes’ theorem: p(θ|y) =
f(y|θ)p(θ)
m(y)

∝ f(y|θ)p(θ). (3.6)

The numerator m(y) is called the marginal density or the normalizing con-
stant. However, often only information about the shape of the posterior dis-
tribution is required (i.e., the posterior up to proportionality). This is also the
case in this chapter: Later on we will sample the posterior distribution and
for this sampling the normalizing constant is not required. In other situations
the marginal density is crucial. This will be elaborated in subsequent chapters
about model selection.

Returning to the one-parameter example, we can derive the posterior dis-
tribution for each of the priors in Figure 3.2. The posterior following from the
first prior is
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p1(µ|y, σ2 = 3) ∝ f(y|µ, σ2 = 3)p1(µ)
= N (µ|3.11, 0.16) U(µ|lb = 0, ub = 15)
= N (µ|µN = 3.11, τ2

N = 0.16) Iµ∈[0,15], (3.7)

where µN and τ2
N denote the mean and variance of the posterior normal

distribution, and Iµ∈[0,15] is an indicator function that has the value one if µ
is between 0 and 15, and zero otherwise. Stated otherwise, the posterior is a
normal distribution proportional to the likelihood, but with the tails truncated
at the values 0 and 15. In Figure 3.3, the solid line represents this posterior
distribution and it can be seen that p1(µ|y, σ2 = 3) is indeed equivalent to
the likelihood function presented in Figure 3.1. Because in this example the
posterior is centered around 3.11 with a small posterior variance (0.16), the
truncation at values that are highly unlikely does not noticeably change the
distribution (compared to the same normal distribution without the indicator
function). Later in this chapter, however, truncation of normal distributions
will play an important role in the specification of and sampling from posterior
distributions under inequality constraints.

The two normal priors are conjugate, and derivation of the posterior dis-
tribution of a mean (with known variance) using a conjugate prior is standard
and can be found in the literature. See, for instance, [6, pp. 46 – 49]. It is also
briefly summarized here:

• Given a normal prior N (µ0, τ
2
0 ), the mean of the posterior normal distri-

bution is equal to
µ0/τ

2
0 +M(N/σ2)

1/τ2
0 +N/σ2

.

It can be seen that the posterior mean is a combination of the prior mean
µ0 and the sample meanM . The weight given to the prior mean is based on
the prior variance τ2

0 . A large value (i.e., a diffuse, vague prior distribution)
gives a small weight to the prior mean. The term N/σ2 is the inverse of the
squared standard error (σ2/N) and gives a weight to the sample mean M .
Here it can, for instance, be seen that for larger sample sizes, the sample
mean gets a larger weight.

• A similar mix of sources of information is seen in the formula for the
posterior variance:

(1/τ2
0 +N/σ2)−1.

Application of these formulas to the data and normal priors of our example
leads to the following two posteriors:

p2(µ|y, σ2 = 3) ∝ f(y|µ, σ2 = 3)p2(µ)
= N (µ|3.11, 0.16) N (µ|µ0 = 7.5, τ2

0 = 100)
= N (µ|µN = 3.11, τ2

N = 0.16) (3.8)

and



3 Bayesian Estimation 33

2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

2
3.11 4.23

4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

�

Fig. 3.3. Posterior resulting from uninformative priors p1(µ) and p2(µ) (solid line)
and the posterior resulting from the subjective prior p3(µ) (dotted line)

p3(µ|y, σ2 = 3) ∝ f(y|µ, σ2 = 3)p3(µ)
= N (µ|3.11, 0.16) N (µ|µ0 = 6.0, τ2

0 = 0.25)
= N (µ|µN = 4.23, τ2

N = 0.10). (3.9)

In (3.8), it can clearly be seen that the data dominate the prior. Com-
pared to the information in the prior (which was indeed chosen to be low– or
uninformative) there is far more information in the N=19 observations: The
posterior mean is equal to the data mean and the posterior variance is equal to
the squared standard error. Stated differently, p2(µ|y, σ2 = 3) is proportional
to the likelihood function. The only difference between this posterior distri-
bution and p1(µ|y, σ2 = 3) is the truncation of the tails for values smaller
than 0 and larger than 15 in the latter. However in the range where the pos-
terior has considerable density (i.e., the range visible in Figure 3.3), the first
two posteriors overlap. It can be concluded that the two uninformative priors
p1(µ) = U(µ|lb = 0, ub = 15) and p2(µ) = N (µ|µ0 = 7.5, τ2

0 = 100) lead to
virtually the same posterior distribution.

The results for the last prior are different. The corresponding posterior
is represented by the dotted line in Figure 3.3. It can be seen that the pos-
terior mean has a value of 4.23, which shows indeed that the posterior is a
compromise between the information contained in the data (M=3.11) and
the information contained in the prior distribution (µ0 = 6.0). The difference
between the two posteriors is not only seen in the posterior means but also
in the posterior variances (0.16 and 0.10, respectively). This can be explained
by the fact that the last posterior is based on more information; that is, the
same amount of information is present in the data, but this information is
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Table 3.2. Sampled values for µ from the three posterior distributions

Iteration p1(µ|y, σ2 = 3) p2(µ|y, σ2 = 3) p3(µ|y, σ2 = 3)

1 2.75 3.31 4.61
2 3.10 3.57 4.16
3 3.00 3.85 4.19
4 2.97 3.84 4.02
5 2.37 2.94 4.66
6 2.40 3.72 4.37
7 2.98 3.50 3.54
8 3.76 4.09 4.04
9 3.04 3.48 4.19
...

...
...

...
997 2.70 3.23 4.53
998 2.90 2.91 4.34
999 2.54 2.90 3.69

1000 3.34 3.34 4.16

combined with the information in the prior distribution. In Section 3.1.5 the
topic of uninformative versus informative priors is further elaborated.

3.1.4 Bayesian Estimation

In simple examples, the posterior distribution and posterior estimates (like
the mean and standard deviation) can be derived analytically. This is what
we have just done for the one-mean example. However, in models with more
than one parameter, this is often not possible. For instance, for inequality
constrained analysis of variance models with several means and a variance
parameter, analytic derivation of the posterior distribution and its summary
statistics is not at all straightforward. Therefore, one often uses sampling
methods to obtain the posterior distribution and subsequent posterior esti-
mates.

To illustrate the use of sampling methods, samples from the three posterior
distributions of the one-mean example are drawn. Note that the sampling for
this simple example is straightforward and basically redundant, because we
already derived exactly what the form of the posterior is. Here we just want
to illustrate that sampling methods provide the same answers as analytic
derivation and thus can provide a good alternative when models are more
complex.

Sampling from the second and third posterior is very straightforward since
both are normal distributions with known mean and variance. Most statistical
programs (e.g., SPSS) provide the option to draw random numbers from a
specified distribution. A sample from the posterior consists of several of these
random draws, also called iterations. In Table 3.2, it can, for instance, be
seen that the first randomly sampled number from p2(µ|y, σ2 = 3) (i.e., from
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�

Fig. 3.4. A histogram of 1000 iterations from p1(µ|y, σ2 = 3)

N (µN = 3.11, τ2
N = 0.16)) delivered the value 3.31. In subsequent iterations

the values 3.57, 3.85, 3.84, and so on are obtained. The last column of Table
3.2 shows the sample (consisting of 1000 iterations) from the third posterior
(i.e., from N (µN = 4.23, τ2

N = 0.10) providing values like 4.61, 4.16, 4.19 and
so on).

Sampling from p1(µ|y, σ2 = 3) seems somewhat more complicated because
the posterior is a truncated normal distribution. A sample from a truncated
distribution is, however, easily obtained by sampling from the corresponding
not-truncated distribution and subsequently discarding all values that are
not allowed. In general, this is not the most efficient method (this will be
elaborated in Section 3.2), but for the example at hand it works very well
since values outside the 0–15 range are highly unlikely and will therefore rarely
or never be sampled. The first column of Table 3.2 provides 1000 randomly
sampled values from p1(µ|y, σ2 = 3) and indeed all 1000 values were within
the 0–15 range, so no iterations needed to be discarded.

The 1000 draws provide a good approximation of the posterior distribution
and this can best be seen by plotting all iterations in a histogram. To provide
an illustration, the sample from p1(µ|y, σ2 = 3) is plotted in Figure 3.4. Any
level of precision of the approximation of the normal posterior can be obtained
by increasing the number of iterations.

With a sample from the posterior, the computation of posterior estimates
is straightforward. For instance, the posterior mean is the average of all the
sampled values. Likewise, the posterior standard deviation is the standard
deviation of the 1000 sampled values. By ordering the values from low to high
and taking the 2.5th and 97.5th percentile, a Bayesian 95% central credibility
interval (CCI) is obtained (the Bayesian counterpart of confidence intervals).
The summary statistics for the three posteriors are presented in Table 3.3.
Note, again, that the resulting posterior mean and standard deviation are (not
surprisingly) equal to the mean and standard deviation in p1(µ|y, σ2 = 3),
p2(µ|y, σ2 = 3), and p3(µ|y, σ2 = 3). The fact that these values are equal
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Table 3.3. Posterior estimates based on a sample of 1000 iterations

p1(µ|y, σ2 = 3) p2(µ|y, σ2 = 3) p3(µ|y, σ2 = 3)

Posterior mean: 3.11 3.11 4.23
Posterior standard deviation: 0.41 0.40 0.31
Lower bound 95% CCI: 2.31 2.31 3.62
Upper bound 95% CCI: 3.91 3.92 4.87

shows that the sample of 1000 iterations is large enough to provide a good
approximation of the posterior. An elaboration on sampling methods and the
required number of iterations is provided in Sections 3.2 and 3.3, where models
with several (constrained) parameters are discussed.

3.1.5 Objective Versus Subjective

Prior distributions are often seen as the bottleneck of Bayesian analyses be-
cause conclusions (e.g., estimates) depend on the specification of the prior.
Stated differently, critical remarks are often made about Bayesian methods
being subjective. In many applications however, uninformative priors can be
used leading to results that are determined just by the observed data. In the
example above, both the uniform and the normal prior with large standard
deviation can be considered uninformative for Bayesian estimation because
a priori every value for µ is (approximately) equally likely, and the resulting
estimates do not depend on the prior. Bayesian analyses with uninformative
priors are also referred to as “objective” Bayesian methods. Both terms – un-
informative and objective – should, however, be used with care. One reason
is that an uninformative prior for a certain parameter (e.g., a uniform prior
for a mean) is not necessarily uniform for a transformation of this parameter
(e.g., the logarithm of the mean). For an elaboration on this issue, see, for
instance, [2, 6, 11, 12]. A second reason to be careful with the labels objec-
tive and uninformative is that priors that are uninformative with respect to
the estimation of model parameters can be extremely informative in model
selection. Model selection will be elaborated in later chapters.

Besides problematic, prior distributions can also be seen as an advantage
of Bayesian methods. Often, prior knowledge is available before collecting
the data (for instance, from previous research) and the Bayesian approach
allows formal inclusion of this knowledge in the analysis. The third prior
applied to the recognition data is subjective and informative with respect to
the unknown mean µ. We have seen that the prior distribution used in the
Bayesian analysis can affect the resulting estimates and this is usually the
case if the prior specified is informative. The resulting estimate for µ under
the third prior was clearly different from the estimate based on the first or
second prior (the latter two being uninformative). An interesting question is:
Should we conclude that the prior must have been “incorrect” because it is not
clearly supported by the observed data (recall that the prior mean was 6 and
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the data mean was 3.1)? Or should we trust our prior knowledge, which may
be the result of many research years in the field and several previous observed
samples with a mean around 6? Stated differently: Should we throw our beliefs
overboard based on the observation of these 19 patients, or should we update
our prior beliefs with this newly collected information? The latter is exactly
what is done in a Bayesian analysis, represented in the posterior distribution.
We refer to [9] for an elaboration on subjective Bayesian methods.

This book is centered around inequality constrained models. Inequality
constraints among parameters are also an example of the inclusion of prior
knowledge. A priori, certain combinations or orderings of parameters are not
allowed based on a theory or hypothesis stated before observing any data.
Examples of these hypotheses were presented in Chapter 2 – for instance, in
the DID data, certain expectations existed a priori about the ordering of the
four groups (DID-patients, Controls, Simulators, and True amnesiacs) in their
ability ro retrieve previously presented information.

In these inequality constrained applications, one approach that can be
taken in the specification of the prior distribution is a two-step approach:
An initial prior is specified for the unconstrained counterpart of the model
of interest, and, subsequently, the inequality constraints are incorporated by
truncating this distribution according to the constraints at hand. This is the
approach taken in this and the next chapter. Because the main interest lies in
the role of the inequality constraints in the model, in most examples the un-
constrained prior is specified to be low or uninformative. In this way, the only
subjective and informative ingredient of the model is the ordering imposed
on certain model parameters. In the remainder of this chapter, the analysis of
variance (ANOVA) model with ordered mean parameters and unknown vari-
ance is discussed. Bayesian estimation for inequality constrained analysis of
variance models was also discussed in [13].

In Section 3.2, likelihood, prior, and posterior of the general ANOVA model
are presented, as well as a sampling method that is often used to obtain a sam-
ple from a multiparameter posterior. Furthermore, the inclusion of inequality
constraints in the sampling method is discussed. Note that Section 3.2 is rel-
atively technical. Readers that prefer to focus on the applications can skip
this section and move on to the illustration in Section 3.3. The illustration
concerns the DID data including all four groups. A specific theory about the
order of the mean recognition scores in these groups is incorporated in the
estimation. It will be shown how a sample from the truncated posterior dis-
tribution provides estimates like the posterior mean and posterior standard
deviation as well as central credibility intervals.

3.2 The Analysis of Variance Model

In Section 3.2.1, the general ANOVA model as well as an uninformative prior
and resulting posterior for this model are presented without the inclusion
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of inequality constraints. Subsequently, in Section 3.2.2 it is shown how the
Gibbs sampler provides a sample from the (unconstrained) multidimensional
posterior distribution. Section 3.2.3 presents a diagnostic to monitor the ad-
equacy of the size of this sample. The inclusion of inequality constraints in
the prior distribution and consequently in the posterior and Gibbs sampler is
discussed in Section 3.2.4.

3.2.1 Likelihood, Prior, and Posterior

The general ANOVA model [4, 17] with J groups,N respondents, and criterion
variable yi, for i = 1, . . . , N , is given by

yi =
J∑

j=1

µjdji + εi, (3.10)

where µ is a vector of length J with the group means, dji is the group indi-
cator,

dji =
{

1 if the ith observation belongs to group j
0 otherwise,

and εi is assumed to be i.i.d. normally distributed with common and un-
known variance σ2. Note that a nonstandard dummy coding is used with J
dummies for J groups, resulting in a model without intercept and parameters
µj representing group means.

Because the N observations yi are independent, the likelihood of y is equal
to the product of the separate likelihood functions of yi. Hence,

f(y|µ, σ2, D) =
N∏

i=1

1√
2πσ2

exp

{
−

(yi −
∑J

j=1 µjdji)2

2σ2

}
, (3.11)

where D is a J ×N matrix with the (j, i)th element equal to dji.
For the model parameters {µ, σ2}, a prior distribution must be specified.

For estimation of model parameters without inequality constraints, the ref-
erence prior p(µ, σ2) = σ−2 will be used. This is a standard uninformative
prior for models with mean and variance parameters and implies a constant
prior for each mean µj and a constant prior for log σ2. The motivation for the
latter or reference priors in general will not be elaborated here. The interested
reader is referred to [1].

The J + 1-dimensional joint posterior p(µ, σ2|y, D) is proportional to the
product of the likelihood and the prior:

p(µ, σ2|y, D) ∝ σ−2f(y|µ, σ2, D). (3.12)

Although posterior estimates for the general ANOVA model are still rela-
tively easy to obtain, this is not the case when inequality constraints are
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additionally imposed on model parameters. The Gibbs sampler is a method
that simplifies the sampling of multidimensional distributions and can also
straightforwardly be applied in the case of inequality constrained parameters.
For an introduction of the general Gibbs sampler, see [18]; for the introduction
of the constrained parameter Gibbs sampler, see [5]. In the next section, the
Gibbs sampler is explained and applied to the unconstrained analysis of vari-
ance model. In Section 3.2.4 and [13], the inclusion of inequality constraints
is presented.

3.2.2 The Gibbs Sampler

In Section 3.1 it was shown how sampling random numbers from the posterior
distribution of a mean µ provides posterior estimates for µ. In the analysis
of variance model, the (joint) posterior contains J + 1 parameters. The basic
idea of the Gibbs sampler is that sampling from a multidimensional posterior
distribution can be done via repeatedly sampling from the univariate distri-
bution of each parameter, conditional upon the current values of the other
parameters [18]. The conditional posterior distributions generally have sim-
pler structures than the joint posterior, so that they are easier to sample
from.

In the Gibbs sampler, parameters are sampled iteratively and in a fixed
sequence. Let s = 1, . . . , S denote the iteration number and {µ(s), σ2(s)} the
parameter values sampled in the sth iteration. For the posterior in (3.12), the
Gibbs sampler consists of four steps:

1. Specify initial values for the model parameters, {µ(0), σ2(0)}.
2. For j = 1, . . . , J , sample µ(s)

j from

p(µj |µ(s)
1 , . . . , µ

(s)
j−1, µ

(s−1)
j+1 , . . . , µ

(s−1)
J , σ2(s−1)

,y, D).

3. Sample σ2(s) from p(σ2|µ(s),y, D).
4. Repeat steps 2 and 3 until S draws have been obtained for all model

parameters.

Each of these four steps will be elaborated below.

Ad 1. To be able to sample parameters from the corresponding condi-
tional distributions in the first iteration of the Gibbs sampler, values must be
assigned to each parameter. These so-called initial values can be chosen ar-
bitrarily. This implies, however, that the first iterations will depend on these
arbitrary starting values, and, consequently, these iterations are not draws
from the joint posterior distribution. Therefore, a first set of iterations must
be discarded. This part is referred to as the burn-in period. The length of the
required burn-in depends on the starting values, the number of parameters,
and the complexity of the model at hand. For the unconstrained ANOVA
model, within just a few iterations the effect of the initial values is no longer
noticeable. When inequality constraints are included in the ANOVA model,



40 Klugkist, Mulder

the burn-in period is somewhat longer but is in our experience still within say
100 to 500 iterations (depending mainly on the number of parameters and,
moreover, on the number and type of constraints). For each model, a check for
the size of burn-in is important and can be done using multiple starting values
and examination of the resulting multiple chains, as will be illustrated in the
example in Section 3.3. Several formal diagnostics are also available (cf. [3, 7]),
and can be used to monitor the chain(s) and provide information whether the
size chosen for the burn-in period was sufficient. One such diagnostic, the R̂
presented in [7], will be discussed in Section 3.2.3.

Ad 2. The conditional posterior of the µj ’s can be determined with Bayes’
theorem and is proportional to the product of the conditional prior of µj and
the likelihood. Hence,

p(µj |µ1, . . . , µj−1, µj+1, . . . , µJ , σ
2,y, D) ∝ f(y|µ, σ2)π(µj)

= N (µj |µN,j = Mj , τ
2
N,j = σ2/Nj), (3.13)

where Mj is the sample mean of group j and Nj is the number of observations
in group j. The conditional distribution of each µj is a normal distribution
with posterior mean µN,j equal to the jth group sample mean, and, posterior
variance τ2

N,j equal to the current value of σ2 divided by the jth group sample
size. Sampling from a normal distribution with known mean and variance is
straightforward.

Ad 3. The conditional posterior of the variance σ2 can be determined in a
similar way:

p(σ2|µ1, . . . , µJ ,y, D) ∝ f(y|µ, σ2)π(σ2)
= Inv-χ2(σ2|νN = N,σ2

N ), (3.14)

which is a scaled inverse χ2-distribution [14] with degrees of freedom νN equal
to the total sample size N and scale parameter σ2

N equal to the residual sum
of squares:

σ2
N =

1
N

N∑
i=1

yi −
J∑

j=1

µjdji

2

.

Note that within step 3, each µj has a current value making the computation
of σ2

N and, consequently, sampling from the scaled inverse χ2-distribution
straightforward.

Ad 4. As stated in the first step, the initial set of draws depend on the
arbitrary starting values. The burn-in period is discarded and the remaining
draws provide a sample from the joint posterior distribution. After the burn-
in period, the number of draws must be large enough for the sample to be
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Fig. 3.5. Chain of 1100 sampled values for θ

a good approximation of the posterior distribution. This is known as conver-
gence of the Gibbs sampler. For the model at hand, convergence is reached
relatively fast. Like with the burn-in period, it is important to always closely
monitor convergence – for instance, by visual inspection of multiple chains.
This will also be illustrated in Section 3.3. A formal diagnostic that can be
used to monitor burn-in and convergence is R̂ [7] and will be presented in the
next section. For a more elaborate presentation and discussion of convergence
diagnostics, the interested reader is referred to [3].

3.2.3 The Convergence Diagnostic R̂

Consider the Gibbs output with respect to a parameter θ (θ could, for in-
stance, be one of the means µj or σ2). In Figure 3.5, the results of a sample of
1100 draws from the posterior distribution of θ are presented. On the x-axis
the iteration number is plotted; on the y-axis the sampled value for θ. Visual
inspection shows that a first set of iterations must be discarded because the
first few sampled values are different from the subsequent iterations. Discard-
ing a burn-in period of say 100 iterations leads to a sample that seems to be
converged according to an eyeball test. This visual inspection is, for instance,
based on comparing several subsets of iterations (e.g., iterations 300–500, 500–
700, and 900–1100) and concluding that the subsets look rather similar. The
diagnostic R̂ is based on the same principle: The sample after burn-in is di-
vided in K sequences of Q iterations and the between and within sequence
variations in the sampled parameter values are evaluated. To compute the
diagnostic, let θqk be the qth iteration in the kth sequence, θ̄k = 1

Q

∑Q
q=1 θqk

and θ̄ = 1
K

∑K
k=1 θ̄k. The between sequences variance is

-20
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40
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B =
Q

K − 1

K∑
k=1

(θ̄k − θ̄)2, (3.15)

and the within-sequences variance is

W =
1
K

K∑
k=1

(
1

Q− 1

Q∑
q=1

(θqk − θ̄k)2
)
, (3.16)

providing the ingredients for

R̂ =

√
Q−1

Q W + 1
QB

W
. (3.17)

The larger the number of iterations, the closer the value for R̂ gets to one
(i.e., R̂ → 1.0 if Q → ∞). According to Gelman and Rubin [7], values of R̂
smaller than 1.1 are indicative of convergence of the Gibbs sampler.

For the sampled θ values presented in Figure 3.5, the 1000 iterations re-
maining after burn-in are divided in K = 5 blocks of Q = 200 subsequent
iterations. Computation of R̂ gives a value of 1.03, confirming the conclu-
sion of our eyeball test. For this example with a sample of 1000 iterations
after a burn-in of 100 iterations convergence is reached. Note that in multiple
parameter models, R̂ must be smaller than 1.1 for each model parameter.

3.2.4 Constrained Analysis of Variance

In Chapter 2 several illustrations of inequality constrained hypotheses in the
analysis of variance model were introduced. An a priori expected ordering of
three means can, for instance, be modeled as µ1 < µ2 < µ3. Also, an exam-
ple with constraints on differences between specific means was presented, the
corresponding hypothesis being of the form {µ1−µ2} < {µ3−µ4}. Inequality
constraints like these can be included in the Bayesian procedure by incorpo-
ration of the constraints in the prior distribution. The estimation of each µj is
then based on a sample from the constrained posterior; that is, the resulting
estimates will be in accordance with the constraints imposed.

Let Ht denote a model that imposes certain inequality constraints on the
group means µj . The constraints are included in the prior distribution accord-
ing to

p(µ, σ2|Ht) ∝ σ−2IµεHt
, (3.18)

where IµεHt
is the indicator function with

IµεHt
=
{

1 if µ satisfies the inequality constraints of model Ht

0 otherwise.

This means that the prior proposed for the corresponding unconstrained
model is truncated on the region that satisfies the inequality constraints on
µ under model Ht.
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Fig. 3.6. Illustration of truncation of parameter spaces for the model µ1 > µ2

The posterior distribution under model Ht changes accordingly since it is
proportional to the product of the truncated prior (3.18) and the likelihood
(3.11). Hence,

p(µ, σ2|y,Ht) ∝ σ−2f(y|µ, σ2)IµεHt
. (3.19)

This is the joint posterior (3.12) truncated to the region that satisfies µεHt.
In Figure 3.6, the formulation of a prior distribution for an inequality

constrained model is illustrated for J = 2 and (to simplify the graphical
representation) assuming that the variance is known. Assume a uniform prior
distribution for both µ1 and µ2. The two-dimensional unconstrained prior is
plotted in Figure 3.6 with µ1 and µ2 on the x- and y-axis, respectively. The
prior distribution for the constrained hypothesis µ1 > µ2 is

p(µ1, µ2|µ1 > µ2) = p(µ1, µ2)Iµ1>µ2 .

The indicator function denotes that the density is zero in the area that is not
in agreement with the constraint (i.e., the area above the line µ1 = µ2). The
prior distribution for the part of the parameter space in agreement with the
constraint µ1 > µ2 (the area below the line µ1 = µ2) is proportional to the
prior in the unconstrained model.

Furthermore, let the ellipses in Figure 3.6 represent the posterior distri-
bution under the unconstrained hypothesis. The center of the ellipses is the
point (1,−3) and represents the values µ1 and µ2 with the highest posterior
density. Larger ellipses that are further away from the center represent values
for µ1 and µ2 with lower posterior densities. The posterior distribution for
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the model µ1 > µ2 is proportional to the unconstrained posterior for the area
below the line µ1 = µ2 and is zero above this line.

Let us see how the Gibbs sampler is adjusted to incorporate the inequality
constraints. Compared to the sampling scheme presented in Section 3.2.2,
the Gibbs sampler consists of the same four steps. In step 2, however, the
conditional distributions of the µj subjected to inequality constraints are now
truncated normal distributions. In each iteration s and for each j, µ(s)

j is
sampled from

p(µj |µ(s)
1 , . . . , µ

(s)
j−1, µ

(s−1)
j+1 , . . . , µ

(s−1)
J , σ2(s−1)

,y, D,Ht)

= N (µj |µN,j = Mj , τ
2
N,j = σ2/Nj)IµεHt

. (3.20)

The function IµεHt
indicates that each value µ(s)

j sampled from (3.20) has to
satisfy the constraints under modelHt. Stated otherwise, a sampled value from
the conditional normal distribution is only accepted if it is allowed according
to the constraints of Ht and the current values of the other µj ’s.

Returning to Figure 3.6, consider that within the current iteration of the
Gibbs sampler a value of zero was obtained for µ1. This implies that the
(unconstrained) conditional posterior distribution of µ2 is proportional to the
cross section at µ1 = 0 (the y-axis) of the bivariate normal distribution that
is represented by the ellipses. This cross section is a normal distribution with
a mean of −3.0 (the µ2 value with the highest posterior density). For the
constrained hypothesis µ1 > µ2, a draw from this normal distribution must
be obtained under the condition that only values smaller than 0 are allowed.

A correct method to obtain a sample from the constrained model is sam-
pling from the unconstrained conditionals until a value is sampled that is al-
lowed by the constraints at hand. However, it can be very inefficient, especially
if the constraints are such that only a small part of the normal distribution
is allowed. A more efficient method is sampling directly from the truncated
distribution using inverse probability sampling [5]. Let the truncation be de-
noted by a and b, where a is the largest current value of all µj ’s that are
restricted to be smaller than µ(s)

j . Likewise, b is the smallest current value of

all µj ’s that are restricted to be greater than µ(s)
j . Note that a and b can also

be −∞ and ∞, respectively, denoting that the conditional distribution is not
truncated in one or both of the tails. For instance, in the previous example
(Figure 3.6) where µ2 must be sampled according to µ1 > µ2 and a current
value for µ1 of zero, a = −∞ and b = 0.

Inverse probability sampling is illustrated in Figure 3.7. The bottom panel
presents a normal distribution with the values a and b to denote the area from
which the new value µ(s)

j must be drawn (i.e., a < µ
(s)
j < b). In the top panel,

the corresponding cumulative normal distribution is plotted. The values Φ(a)
and Φ(b) on the y-axis are the cumulative probabilities of a and b, respectively.

To obtain the sth draw of µj from its conditional posterior (3.20) a devi-
ate U (s) is randomly drawn from the uniform distribution U(Φ(a), Φ(b)) and



3 Bayesian Estimation 45

a

a

b

b

�( )a

�( )b

�

�

� j

j

j

( )s

Fig. 3.7. A normal density (bottom) and corresponding cumulative normal distri-
bution (top) to illustrate inverse probability sampling in order to obtain a draw from
a truncated normal distribution

subsequently the corresponding value in the truncated normal is computed,
by application of

µ
(s)
j = Φ−1(U (s)).

In Figure 3.7, the arrow plotted on the y-axis represents the random deviate
U (s) (i.e., a randomly drawn value between Φ(a) and Φ(b)). The corresponding
value on the horizontal axis is the new value sampled for µj satisfying the
constraint a < µ

(s)
j < b. This value is a random draw from (3.20).

Inverse probability sampling adjusts Step 2 of the unconstrained Gibbs
sampler that was presented in the previous section such that µj ’s are sampled
directly from the conditional truncated normal distributions. Step 3 of the
unconstrained Gibbs sampler – that is, sampling the variance parameter σ2

– does not change since constraints are only imposed on group means. With
respect to Steps 1 and 4 (i.e., burn-in and convergence), carefully monitoring
the chain(s) is important as usual, and more, because inequality constraints
in the model can slow down the convergence rate.

In the next section, an illustration for a four-group inequality constrained
ANOVA is provided. Gibbs output and estimates are shown, as well as con-
vergence and burn-in diagnostics.
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Table 3.4. Recognition scores in the DID data

M SD N

DID-patients 3.11 1.59 19
Controls 13.28 1.46 25
Simulators 1.88 1.59 25
True amnesiacs 4.56 1.83 25

3.3 Illustration

3.3.1 The Data

The illustration is based on the DID data introduced in Chapter 2. Recall
that DID-patients were compared with three different types of control groups
on their ability to retrieve information that they obtained in a prior phase of
the experiment. The groups are DID-patients, Controls, Simulators, and True
amnesiacs. The criterion variable is the score on a recognition test and the
obtained scores per group are summarized in Table 3.4.

The recognition scores (denoted by y) are assumed to be i.i.d. normally
distributed. Let µj (j = pat, con, sim, amn) denote the parameters for the
group means and σ2 denote the common but unknown residual variance. A
(nonstandard) dummy coding with four dummy variables, denoted by dji

(with dji = 1 if the ith respondent belongs to subgroup j and zero otherwise),
leads to the following model without intercept:

yi = µpatdpat,i + µcondcon,i + µsimdsim,i + µamndamn,i + εi, (3.21)

with i = 1, . . . , 94 respondents and εi ∼ N (0, σ2).
A theory or expectation for this experiment is that both DID-patients

and Simulators will score lower than respondents who just guess (i.e., the
True amnesiacs). Furthermore, it is expected that Controls score higher
than each of these three groups. This leads to the following inequality con-
strained hypothesis: µcon > µamn > {µpat, µsim}. In this and the next sec-
tion it is shown how parameter estimates are obtained by a sample from
the posterior conditional on the constraints – that is, after including the in-
equality constraints as prior knowledge. We refer the interested reader to
http://www.fss.uu.nl/ms/informativehypotheses for software for the es-
timation of inequality constrained analysis of variance models.

3.3.2 Prior, Posterior, and Gibbs Sampling (Revisited)

In Section 3.1 we have seen that Bayesian estimation requires the specification
of a prior distribution for all model parameters. In this example the parame-
ters are µpat, µcon, µsim, µamn, and σ2. For unconstrained estimation we will
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use the prior π(µpat, µcon, µsim, µamn, σ
2) = σ−2. This is a standard uninfor-

mative prior for models with mean and variance parameters and implies a con-
stant prior for each mean µj and a constant prior for log σ2. The resulting (un-
constrained) posterior p(µpat, µcon, µsim, µamn, σ

2|y,dpat,dcon,dsim,damn) is
a five-dimensional distribution and equal to (up to proportionality) the prod-
uct of prior and likelihood (data).

At this point it is useful to repeat once more that Bayesian estimation is
not sensitive to the exact specification of the prior as long as it is relatively
uninformative. Both constant and conjugate priors with large variances will
lead to similar results. This is usually not the case when the goal is comparing
different models using a Bayesian approach. Bayesian model selection is much
more sensitive to the prior distribution and will be thoroughly discussed and
examined for inequality constrained models throughout the remainder of this
book.

In the application at hand (i.e., estimating inequality constrained param-
eters) the initial uninformative prior for the unconstrained model becomes
informative with the inclusion of the constraints. The constraints are incor-
porated in the formulation of the prior distribution, which boils down to
truncating the prior parameter space according to the constraints at hand.
Truncation of unconstrained prior distributions was explained in Section 3.2
based on the illustration provided in Figure 3.6. This figure represents the
prior distribution for an unconstrained model µ1, µ2. The area below the line
µ1 = µ2 represents the prior (up to proportionality) for the constrained model
µ1 > µ2; the area above the line µ1 = µ2 represents the part of the uncon-
strained prior that contains (µ1, µ2) combinations that are not in agreement
with the constraint and therefore have zero prior density. This results in a
posterior distribution of the parameters for the constrained model that is still
equal (up to proportionality) to the product of prior and likelihood for pa-
rameter values in agreement with the constraint. The posterior density for the
parts of the parameters space that are not allowed by the hypothesis is zero.

To get all the desired estimates for each of the five parameters, a sample
from the posterior is drawn. This is done using the so-called Gibbs sampler,
described extensively for the general ANOVA model (both unconstrained and
including inequality constraints) in the previous section. Here a short sum-
mary with the key ideas required for those who skipped Section 3.2 is provided.

In the Gibbs sampler, parameters are sampled iteratively from their con-
ditional posterior distributions; that is, µ1 is sampled from the distribution of
µ1 given that the other parameters are known (i.e., have a value assigned to
them). The reason to apply the Gibbs sampler is that sampling from the joint
posterior for the constrained model at hand is not straightforward, whereas
all conditional posterior distributions are known and easy to sample.

To be able to sample the first values for each parameter, initial or starting
values must be assigned to all parameters. These starting values are arbitrary
and thus are not (yet) draws from the posterior at hand. Therefore, a first set
of draws of the Gibbs sampler is discarded, the so-called burn-in period. The
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Table 3.5. Gibbs output and posterior estimates based on last 1000 iterations

Iteration µpat µcon µsim µamn σ2

1 −4.49 100.87 2.29 2.73 2769.65
2 1.53 22.56 −18.20 2.74 145.69
3 1.49 14.18 −3.22 1.93 13.01
4 1.40 13.46 1.37 4.78 2.69
5 3.18 13.32 1.77 4.74 2.00
...

...
...

...
...

...
101 3.24 13.40 2.18 3.81 3.13
102 2.82 13.08 2.05 4.24 3.31
103 3.96 13.11 2.24 4.79 3.53
104 2.22 13.77 2.30 4.50 2.38
105 3.28 13.40 1.81 4.83 2.58
...

...
...

...
...

...
1096 3.14 13.52 2.08 4.60 2.54
1097 3.59 12.24 2.01 4.26 2.72
1098 3.25 13.65 2.15 4.89 2.38
1099 3.30 12.91 1.74 4.34 1.93
1100 2.89 13.65 1.28 4.75 2.69

Convergence diagnostic R̂: 1.00 1.00 1.00 1.00 1.00

Posterior mean: 3.09 13.28 1.88 4.54 2.78
Posterior SD: 0.38 0.34 0.34 0.32 0.43
Lower bound 95% CCI: 2.39 12.63 1.24 3.89 2.06
Upper bound 95% CCI: 3.86 13.97 2.52 5.19 3.69

remaining set of iterations must be large enough to provide a good approxi-
mation of the joint posterior distribution. Convergence must be monitored to
examine the size of burn-in and the total number of iterations required.

In the next section, it will be shown how the output of the Gibss sampler
provides all posterior parameter estimates, as well as diagnostics for monitor-
ing convergence of the Gibbs sampler.

3.3.3 Posterior Parameter Estimates

In Table 3.5, parts of the output of the Gibbs sampler for the model µcon >
µamn > {µpat, µsim} are presented.

The first thing that can be noted is that in each row of the table, the
sampled values for the four mean parameters are indeed in accordance with
the constraint µcon > µamn > {µpat, µsim}. This is how the Gibbs sampler is
constructed: In each iteration (that is a step providing one sampled value for
each parameter) the constraints are incorporated in the sampling scheme.

Furthermore, looking at the first couple of rows in Table 3.5, the influence
of the (randomly chosen) starting values can be seen. However, it can also be
seen that for this relatively simple model, the burn-in period is very short: The
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Fig. 3.8. Two chains with sampled values for µamn in the first 100 (top panel) and
subsequent 1000 iterations (bottom panel)

sampled parameter values in the fourth and fifth iterations are already very
similar to the draws with an iteration number larger than 100. Furthermore,
comparison of subsets of iterations (e.g., comparing iterations 100–200 with
1000–1100; sets that are partly printed in Table 3.5) show similar values based
on an eyeball inspection. Burn-in and convergence can also be inspected by
drawing plots of sampled values in subsequent iterations. Figure 3.8 shows the
results of the first 100 (top panel) and subsequent 1000 (bottom) iterations for
one of the parameters (µamn). Note that two chains are sampled – that is, the
Gibss sampler is run twice, each time with a different starting value. It can be
seen that after less than 50 iterations the results are very similar, irrespective
of the starting values used. This again indicates a short burn-in period and
fast convergence. Based on Figure 3.8 and similar plots for the other four
parameters, the first 100 iterations are considered the burn-in period, and
1000 iterations after burn-in are considered enough to derive the posterior
estimates.

Also according to R̂, a formal diagnostic for convergence [7], this conclu-
sion is supported. Values for R̂ smaller than 1.1 are considered indicative for
convergence, and in Table 3.5 it can be seen that all values are (rounded to
two decimals) 1.00.

The iterations remaining after discarding the burn-in form an approxi-
mation of the posterior distribution. For each parameter, the iterations after
burn-in can be plotted in a histogram. This is done for one of the mean pa-
rameters (µpat) and for the residual variance (σ2) in Figure 3.9.
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μpat

 

σ2

Fig. 3.9. Posterior distributions of µpat and σ2 based on a Gibbs sample of 1000
iterations after burn-in

Finally, posterior estimates can be derived from the posterior sample. In
the last four rows of Table 3.5, the most common summary measures are
provided for each parameter. The posterior mean is computed by taking the
average of the 1000 draws from the posterior of the parameter at hand. So,
the value 3.09 for µpat is computed by summing all values (discarding the first
100 iterations) in the corresponding column and dividing the sum by 1000.
Likewise, computing the standard deviation of the same column of numbers
provides the posterior standard deviation of µpat (0.38). Central credibility
intervals (CCI; the Bayesian alternative for confidence intervals) are obtained
by sorting the 1000 draws from smallest to largest and letting the 25th draw
be the lower bound and the 975th draw the upper bound of a 95% CCI.
For µpat this provided the values 2.39 and 3.86, respectively. These results
correspond to what can be seen in Figure 3.9, in which the left histogram is
indeed centered around 3, with approximately lower and upper bound values
of 2.4 and 3.9 for a 95% interval.

Taking the a priori assumed ordering µcon > µamn > {µpat, µsim} into
account, the estimates for the mean recognition scores for the Controls, True
amnesiacs, DID-patients, and Simulators are 13.3, 4.5, 3.1, and 1.9, respec-
tively. The control group clearly shows considerably higher recognition skills
than the other three subgroups. This is confirmed by the 95% credibility in-
tervals: the interval for the Controls (12.6; 14.0) has no overlap with any of
the other intervals. The posterior mean of 13.3 tells us that “healthy” respon-
dents who are motivated to retrieve as much information as possible score on
average more than 13 out of 15 points (the latter being the maximum score
on the recognition test).

The True amnesiacs were asked to “retrieve” information that they never
received (they skipped the learning phase of the experiment). Since the
multiple-choice items had either three (10 items) or five (5 items) answer cat-
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egories, the expected score based on random guessing is 4.33. The posterior
mean of the True amnesiacs (4.5) is therefore almost exactly as expected.

Furthermore, an interesting observation is that the average recognition
score for the DID-patients (posterior mean 3.1) is larger than the posterior
mean recognition of the Simulators (1.9) but smaller than the True amnesiacs
(posterior mean is 4.5). Examination of the 95% credibility intervals shows
that the intervals for DID-patients and True amnesiacs are not overlapping,
but for DID-patients and Simulators, they do overlap. According to these esti-
mates, DID-patients are more similar to Simulators than to True amnesiacs in
terms of their recognition skills. Note, however, that these estimates are based
on the information contained in the observed data as well as on information
provided by the a priori ordering imposed on the means.

One of the questions of interest in this research (see [10] or Chapter 2)
was whether DID-patients suffer from real amnesia or feign their amnesia.
Stated differently, we are not in the situation that a priori knowledge about
the ordering is available, because there is uncertainty about the order of the
means. In this chapter we chose one of the hypotheses as prior knowledge just
to serve as an illustration of inequality constrained Bayesian estimation. The
real issue in the DID-example is, however, that we have two (or more) con-
flicting hypotheses, represented by different inequality constrained hypothe-
ses. In the next chapters, choosing the best hypothesis from a set of inequality
constrained hypotheses using Bayesian model selection will be discussed and
applied to (among others) the DID data.
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4.1 Competing Theories Based on (In)Equality
Constraints

In Chapter 2, three psychological datasets with competing, informative hy-
potheses were introduced. For instance, with respect to the Dissociative Iden-
tity Disorder (DID) data of Huntjens, two competing theories about interi-
dentity amnesia were presented [11]. Some believe that information provided
to one identity cannot be retrieved by another identity of the DID-patient;
that is, there is no transfer of information between identities. Others con-
cluded that the interidentity amnesia is not “real”; that is, patients simulate
their inability to retrieve information provided to an alternative identity. To
investigate these conflicting theories, an experiment was performed where the
ability to retrieve information of DID-patients (the information was provided
to one alter and retrieved from another) was compared with three different
control groups. The Controls received information and were asked to retrieve
as much as possible in a later phase in the experiment. Simulators were asked
to simulate switching to another alter after the learning phase and retrieve
the information in the role of the simulated alter. True amnesiacs skipped
the learning phase and were therefore asked to retrieve information that they
never received.

In both competing theories, the Controls were expected to retrieve the
most information. Furthermore, Simulators were expected to perform worse
than random guessing (i.e., True amnesiacs), because they will deliberately
choose a wrong answer. The theories differ with respect to the position of the
DID-patients. Is their score comparable to the mean of the True amnesiacs
or do they show more resemblance with the Simulators? In Chapter 2, two
different translations of the competing theories were suggested. In the first set
of hypotheses, the equivalence of DID-patients with either True amnesiacs or
Simulators was formulated using (about) equality constraints. This leads to
the following models:
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H1a : µcon > {µamn ≈ µpat} > µsim,

H1b : µcon > µamn > {µpat ≈ µsim}.

In the Bayesian approach introduced in this chapter, an equality restriction
will always be evaluated using about equality constraints (i.e.,≈). This implies
that, for instance, µ1 = µ2 is evaluated using the constraint |µ1 − µ2| < δ,
with a small δ. The value for δ can be specified by the researcher and reflects
relevant differences (subjective judgement) or a procedure where δ approaches
zero can be applied. The latter will be elaborated in Section 4.3.3.

A less restrictive translation of the competing expectations is using just
an imposed ordering on the group means without restricting some means to
be (about) equal:

H1c : µcon > {µamn, µpat} > µsim,

H1d : µcon > µamn > {µpat, µsim}.

The results for both sets of hypotheses may be different and it is up to the
researcher to carefully consider which set he or she prefers; that is, which
formulation reflects best what the researcher wants to be able to conclude from
the analysis. In Section 4.4, for illustrative purposes both sets of hypotheses
in the DID example will be analyzed so that results can be compared.

A special feature of the hypotheses considered is that they all consist of
parameters that are constrained to be larger, smaller, or about equal to other
parameters. As a consequence, each hypothesis under consideration is nested
in an unconstrained version of the hypothesis. The unconstrained hypothesis
is also called the encompassing model, because it encompasses all the con-
strained hypotheses. The encompassing model for the DID data is

H2 : µcon, µamn, µpat, µsim, σ
2,

where a comma is used to denote that no constraints are imposed on any of
the parameters. Note that σ2 is also a parameter of the ANOVA model and for
completeness here it is included in the notation. In most cases, the variance
term is not included in the presentation of hypotheses, since the focus in all
models is on the constraints that are imposed on the µ’s. The Bayesian model
selection approach presented in this chapter explicitly uses the nesting and
the encompassing model and is called the encompassing prior approach.

In Section 4.3, Bayesian model selection using the encompassing prior
approach is presented for the general ANOVA model. In Section 4.4, the three
illustrative datasets introduced in Chapter 2 (Huntjens’ DID data, Reijntjes’
emotional reactivity data, and Boelen’s complicated grief data) are analyzed
and the results discussed. However, first, in Section 4.2 we will present the
encompassing prior approach based on a simplified example using just a part
of the DID data.
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Table 4.1. Recognition scores of True amnesiacs and DID-patients

True amnesiacs 1 1 2 3 3 4 4 4 4 Mamn = 4.56
4 4 4 5 5 5 5 5 5 SDamn = 1.83
5 6 6 6 6 8 9 Namn = 25

DID-patients 0 1 2 2 2 2 3 3 3 Mpat = 3.11
3 3 3 3 4 4 4 4 6 SDpat = 1.59
7 Npat = 19

4.2 The Encompassing Prior Approach

In this section the encompassing prior approach to Bayesian model selection
will be introduced based on a simple example dealing with two (constrained)
means and assuming that the variance is known. Using this example, the
concepts marginal likelihoods, Bayes factors, and prior and posterior model
probabilities will be explained at an intuitive, nontechnical level. A more elab-
orate explanation for the general ANOVA model is provided in Section 4.3 but
can be skipped by readers who are more interested in practical implications
than in the technical details.

To illustrate the two-means example, again part of the DID data will be
used. Consider just the data from the True amnesiacs and the DID-patients.
The data as well as sample means (Mamn and Mpat), standard deviations
(SDamn, SDpat), and sample sizes (Namn, Npat) are presented in Table 4.1.
Three theories are formulated in the following hypotheses: H0 : µamn ≈ µpat,
H1 : µamn > µpat, and H2 : µamn, µpat, where µamn and µpat denote the
mean recognition score of the True amnesiacs and DID-patients, respectively.
The variance σ2 is assumed known and equal to 3. Note that with H0 and H1

the two types of constraints (inequality and about equality) are represented.
Other constrained hypotheses considered in the illustrations are based on
combinations and variations of each of these constraints.

To determine which theory or hypothesis best fits the data, a confronta-
tion of each hypothesis with the data is needed. Like in the previous chapter
about Bayesian estimation, the two basic ingredients of the analysis are the
prior distribution of the model parameters and the information contained in
the data as represented by the likelihood function. In the subsequent sections
it will be shown how the different hypotheses, stated in terms of different
constraints imposed on the model parameters, can be captured in the spec-
ification of different prior distributions (Section 4.2.1). As we have also seen
in Chapter 3, different priors lead to different posteriors. Likewise, different
priors lead to different so-called marginal likelihoods, the latter being the key-
ingredients of Bayesian model selection. The marginal likelihood of a model
will be explained in Section 4.2.2. Comparison of marginal likelihoods of dif-
ferent models or hypotheses is done using Bayes factors (Section 4.2.3) or
posterior model probabilities (Section 4.2.4). This section is concluded with a
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Fig. 4.1. Prior distributions for the three hypotheses H2, H1, and H0

short discussion on sensitivity of results to the prior specification in Section
4.2.5.

4.2.1 Specification of Prior Distributions

In general, a prior distribution for the parameters must be specified for each
model or hypothesis under consideration. However, we are dealing with hy-
potheses that are all nested in the unconstrained, encompassing model; that
is, both H0 : µamn ≈ µpat and H1 : µamn > µpat are nested in H2 : µamn, µpat.
The nesting makes the specification of prior distributions considerably easier.
In the encompassing prior approach, just one prior is specified, namely the
prior for the unconstrained model. The prior distributions for the nested (con-
strained) hypotheses follow directly from this so-called encompassing prior.
The constraints restrict the parameter space according to the hypothesis at
hand, as was previously seen in Chapter 3 and is illustrated for the two-means
example in Figure 4.1.

In the left graph, the square denotes the prior distribution for the uncon-
strained model H2. It can, for instance, represent a flat plane with specific
upper and lower bounds for both µamn and µpat. But it could also represent a
bivariate normal or any other prior distribution p(µamn, µpat|H2). The spec-
ification of the prior for the unconstrained model will be discussed later in
this section. Constraints among model parameters are included in the prior
by setting the prior density at zero in the area that is not allowed accord-
ing to the constraints at hand. In Figure 4.1, the area with nonzero prior
density is shaded. In the central graph, the line µamn = µpat splits the un-
constrained prior in two parts: The nonshaded upper triangle is the area that
is excluded by the constraint µamn > µpat and therefore has a prior density
of zero. The shaded lower triangle is the part of the prior that has nonzero
density because it is in agreement with H1 : µamn > µpat. In that area, the
prior p(µamn, µpat|H1) has the same shape as the unconstrained prior (it is
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proportional to the unconstrained prior), but the density is multiplied by a
constant to get the same overall density. For instance, if exactly half of the
unconstrained prior density is set to zero in the constrained prior, the density
of the latter is equal to the density in the unconstrained prior times 2 for
parameter values that are in agreement with the constraints. The same idea
is represented in the right-hand graph for the constraint µamn ≈ µpat. The
shaded area is the only area that has nonzero prior density and in that area
the prior distribution is proportional to the unconstrained prior.

The only prior distribution that needs to be specified is the prior of the
unconstrained model (H2). In the encompassing prior approach, the specifica-
tion is based on some general guidelines. The first is that all model parameters
are a priori considered to be independent. This implies that the joint prior
p(µamn, µpat|H2) is specified as the product of a prior for µamn and a prior
for µpat. This is not strictly required for the approach to be applicable but
simplifies the prior specification and the resulting computations. The second
specification rule is that the prior distributions for all parameters that are
constrained in one or more of the hypotheses are equal. For the example, this
implies p(µamn|H2) = p(µpat|H2). There are two motivations for this guide-
line. Since the interest is in the ordering and/or equality of parameters, it is
reasonable not to benefit any of the orderings a priori. Specifying the prior
for µamn with the mode at say 4 and µpat with a mode at say 2, a priori
supports the ordering µamn > µpat. Since our interest lies in finding out to
what extent H1 : µamn > µpat is supported, this is considered undesirable.
The second motivation for specifying equal prior distributions for parame-
ters that are constrained in one or more of the hypotheses is that it leads to
nice properties in terms of (in)sensitivity to the prior specification. This will
be elaborated later. The last specification guideline is that the encompassing
prior is a relatively uninformative, conjugate distribution for each parameter.
The conjugate prior for a mean parameter is a normal distribution, for the
example leading to p(µamn|H2) = p(µpat|H2) = N (µ0, τ

2
0 ) and this prior is

low informative as long as τ2
0 is large. The final step is to specify µ0 and

τ2
0 , where the value for µ0 hardly affects the results since the value for τ2

0 is
specified to be relatively large.

The three criteria ensure that the model comparison of H1 with H2 is
objective (i.e., not sensitive to the exact specification of µ0 and τ2

0 ). This will
be shown in Section 4.2.5. However, as will also be illustrated, the results for
comparison of H0 with H2 are sensitive for the exact value that is specified for
τ2
0 . In the encompassing prior approach, we use the range in the observed data

to find values for µ0 and τ2
0 that provide a low informative but reasonable (not

too diffuse) prior distribution. The procedure used to derive the encompassing
prior from the range of the observed data is elaborated in Section 4.3.1 and
in the illustration discussed in Section 4.4.1. The motivation and the conse-
quences of the criteria for the encompassing prior will be further elaborated
in the following sections. The encompassing prior approach was previously
introduced and evaluated in [15, 16, 17].



58 Klugkist

Summarizing, in this section we have seen that theories translated into
constrained hypotheses can be represented by different prior distributions.
Since the constrained hypotheses are all nested in the unconstrained version
of the model, initially just one prior needs to be specified, the encompassing
prior. The priors of the constrained models follow from the encompassing prior
by truncation according to the constraints. Differences in subsequent marginal
likelihoods (discussed in the next section) represent the amount of support the
data provide for each of the constrained hypotheses.

4.2.2 The Marginal Likelihood

To determine which theory is mostly supported, a confrontation of each hy-
pothesis with the data is needed. The support in the data is measured by the
so-called marginal likelihood. In Figure 4.2, on each row the three hypotheses
are presented by three plots (from left to right: H2, H1, and H0). As was in-
troduced in the previous section, the square denotes the unconstrained prior
distribution and the shaded area denotes the part of the prior with nonzero
density. According to the specification guidelines, the unconstrained prior is
the product of two equal and low informative (diffuse, that is almost flat)
normal distributions. Therefore, H2 implies that a priori each combination of
values for µamn and µpat is about equally likely, H1 implies that a priori each
combination of values for which µamn > µpat is about equally likely, and H0

implies that each combination for which µamn ≈ µpat is about equally likely.
The nonshaded areas have zero prior density.

Furthermore, in the figure isodensity ellipses denote the density of the
data. They contain the information about µamn and µpat in the observed
data. Loosely formulated, the small ellipse implies that the data are quite
likely given these parameter values. For other parameter values, the density of
the data is smaller and in Figure 4.2 this is denoted by ellipses on increasing
distances from the central ellipse. Each row of three plots represents three
hypothetical observed datasets (from top to bottom: Mamn > Mpat, Mamn <
Mpat, Mamn = Mpat). In the first row, the data therefore support H1, in the
second row the data are supporting neither H1 nor H0, and in the third row
the data support H0.

The support for a model provided by the data is measured by the so-called
marginal likelihood. For a model Ht (here t = 0, 1, 2), the marginal likelihood
is the average density of the data over the prior for the hypothesis at hand
(i.e., over all combinations of parameter values that are admitted by the prior).
Consider the results on the first row with sample means Mamn > Mpat. H2

admits all values of µamn and µpat thus also including a lot of values for
which the density of the data is rather small (the region outside the largest
ellipse). H1 excludes many values of µamn and µpat for which the density
of the data is rather small. The marginal likelihood of H1 will therefore be
substantially larger than the marginal likelihood of H2. H0 excludes the values
of µamn and µpat for which the density of the data is relatively large (the
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Fig. 4.2. Interpretation of the marginal likelihood for three hypothetical data out-
comes: Mamn > Mpat (first row), Mamn < Mpat (second row), Mamn = Mpat (third
row)

smallest ellipses), so the marginal likelihood of H0 will be relatively small. In
conclusion, comparing H0, H1, and H2 for the data on the first row, H1 seems
to be the best model; that is, based on visual inspection it has the largest
marginal likelihood.

In the three plots on the second row, both H1 and H0 exclude those values
of µamn and µpat that have large densities: The small ellipses are located in
the part of the prior with zero density. Therefore, the marginal likelihood
of the constrained models will be smaller than the marginal likelihood of the
unconstrained model. Neither of the constrained models is supported by these
data. Finally, in the bottom row the smallest ellipse falls exactly in the shaded
area of H0. Many parameter values with low densities are excluded; parameter
values with high densities remain. Therefore, the marginal likelihood of H0

will be large compared to the marginal likelihood of H1 and H2, where both
large and very small density values are included.

Returning to the DID example, the data are in line with the results of the
first row. As presented in Table 4.1, Mamn = 4.56 and Mpat = 3.11; that is,
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the likelihood has its top below the line µamn = µpat. This is represented by
the smallest ellipse, which therefore falls in the shaded lower triangle of the
plot. As a consequence, the marginal likelihood of H1 will be larger than the
marginal likelihood of H0 and H2. Based on visual inspection, the data seem
to support H1 : µamn > µpat.

So far, we examined marginal likelihoods intuitively without quantifying
the support in numbers. To provide a numerical measure of support, the
marginal likelihoods need to be estimated, which is not always easy. Several
estimation procedures have been developed (cf. [8, 9, 13, 21]). In the approach
presented in this chapter, however, estimation of the marginal likelihood for
each hypothesis is not required. Due to the nesting and the proposed method
for the specification of priors, Bayes factors are easily computed without the
need to estimate the marginal likelihood of the separate models. To elaborate
this, the Bayes factor needs to be introduced first.

4.2.3 The Bayes Factor

In the previous section, we have seen that the marginal likelihood of a hypoth-
esis Ht represents the amount of support the data provide for that hypothesis.
A Bayes factor (BF ) is the ratio of the marginal likelihoods of two hypotheses,
say Ht and Ht′ :

BFtt′ =
m(y|Ht)
m(y|Ht′)

. (4.1)

The interpretation is straightforward: A Bayes factor of, for instance, 4 implies
that the support for Ht is four times larger than the support for Ht′ . Likewise,
if BFtt′ = 0.5, the support for Ht′ is two times larger than for Ht.

For readers familiar with classical model selection criteria like Akaike’s
information criterion (AIC [1]) and corrected AIC (CAIC [7]), it will be known
that both the fit of a model and the model complexity are taken into account
when models are compared. Each of these criteria contains separate terms for
model fit and complexity, where the latter is some function of the number of
model parameters. Problematic in inequality constrained hypotheses is that
the number of parameters of both H2 : µ1, µ2 and H1 : µ1 > µ2 is two;
however, the complexity of the model, or stated differently, the size of the
parameter space, is different.

The Bayes factor is a model selection criterion with an implicit fully au-
tomatic Occam’s razor [12, 13, 23]; that is, the complexity of the model is
accounted for automatically, without needing an explicit penalty term based
on the number of parameters. The Bayes factor is therefore useful for model
selection in the context of inequality constrained hypotheses. See for a gen-
eral introduction to the Bayes factor, for instance, [13, 21]; for applications in
inequality constrained model comparison, see [15, 16, 17].

In the encompassing prior approach, Bayes factors for constrained models
versus the encompassing model are computed; that is, BFt2. It can be shown
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that as a consequence of the nesting of Ht in H2, a simple algorithm that does
not require the computation of each of the marginal likelihoods provides BFt2.
The derivation of this algorithm will not be presented here. The interested
reader is referred to Section 4.3. The result of the derivation is that BFt2

is equal to the proportion of the encompassing posterior in agreement with
the constraints of the nested model Ht, divided by the proportion of the
encompassing prior in agreement with these constraints. In the sequel the two
proportions are denoted by 1/dt and 1/ct for posterior and prior, respectively,
giving

BFt2 =
1/dt

1/ct
=
ct
dt
. (4.2)

The two proportions represent the fit (1/dt) and the complexity (1/ct) of
hypothesisHt compared toH2. This will be illustrated using the three plots on
the bottom row of Figure 4.2. Recall that the square denotes the encompassing
prior and the ellipses denote the density of the data. Since the unconstrained
prior is relatively uninformative (i.e., almost flat), the unconstrained posterior
will be virtually proportional to the density of the data. For the first plot,
the posterior has the same shape as the density of the data and is therefore
represented by the same ellipses. In the second plot it can be seen that half of
the unconstrained posterior mass lies in the area µamn > µpat. Compared to
the unconstrained hypothesis, the fit of H1 is half as good. In the third plot,
quite a large part of the unconstrained posterior lies in the area µamn ≈ µpat

(the mass is largest within the smallest ellipse); let us say it is 40% of the total
mass. Compared to the unconstrained hypothesis, H0 also has a worse fit. The
values for 1/dt are .5 for H1, .4 for H0, and (always) 1 for H2. The best fit
is obtained if no constraints are imposed on the means. This is, however, not
very informative since the model complexity is not yet taken into account.
The proportions of the unconstrained prior in agreement with the constraints
of H1 and H0, respectively, provide information about the complexity of the
models (i.e., the sizes of the parameter spaces). For H1 it is easily seen that
the proportion 1/c1 is .5. For H0 it is a small value, say 1/c0 = .1 (estimating
that the shaded area is 10% of the total square).

The resulting BF12 = .5/.5 = 1.0 shows that compared to the uncon-
strained model, H1 is neither better nor worse. For H0, BF02 = .4/.1 = 4 is
obtained. Since the size of the constrained parameter space was .1 of the en-
compassing model a priori, the posterior proportion of .4 shows an increased
amount of support for H0 : µamn ≈ µpat after inclusion of the information in
the observed data. The resulting Bayes factor represents this support.

As a final remark, note that although the algorithm 4.2 is restricted to
the estimation of Bayes factors of constrained with the encompassing model,
the Bayes factor of two constrained hypotheses easily follows from the BFt2

values through

BFtt′ =
BFt2

BFt′2
. (4.3)
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Estimation of BFt2

The BFt2 values are computed by estimation of the two proportions 1/dt and
1/ct. Estimation of these proportions will be discussed for prior and posterior,
respectively.

In Section 4.2.1 we have seen that for H1 : µamn > µpat, part of the prior
parameter space is in agreement with the constraint (the shaded area in the
central plot in Figure 4.1). The specification guidelines of the encompassing
prior ensured symmetry around the line µamn = µpat and this leads to a
value of .5 for the part of the encompassing prior in agreement with the
constraint. So, for some hypotheses the value for 1/ct needs not be estimated:
It is known as a consequence of the (symmetric) prior specification. For other
hypotheses, it is not so easily seen what this proportion is, for example, forH0 :
|µamn − µpat| < δ (i.e., the shaded area in the right-hand plot in Figure 4.1).
For such a hypothesis, 1/ct can be estimated by taking a large sample from the
unconstrained prior and counting how often the sampled values of µamn and
µpat are in agreement with the constraint. This will be illustrated for the two
groups in the DID data. The encompassing prior, specified according to the
guidelines presented in Section 4.2.1 and further elaborated in Section 4.4.1, is
p(µamn, µpat) = N (µamn|µ0 = 3.75, τ2

0 = 3.42)N (µpat|µ0 = 3.75, τ2
0 = 3.42).

For H0 : |µamn − µpat| < δ, the value δ = 0.3 is used.
To estimate 1/ct for each of the hypotheses, 10, 000 draws of µamn and

µpat are sampled from the encompassing prior. In Table 4.2 the first 20 draws
are listed, as well as the information about whether each of these draws is a
“hit” for both H0 and H1 (a value 1 if the sampled values are in agreement
with the constraint and 0 otherwise). For instance, the first draw delivers the
sampled values µamn = 2.07 and µpat = 7.35. These values are therefore not
in agreement with the constraint of H1 : µ1 > µ2 nor with H0 : |µ1−µ2| < 0.3.
Iteration 4, with µ1 = 3.08 and µ2 = 3.25, provides an example of a “hit” for
H0 but not H1. The total number of hits in 10, 000 iterations is provided at
the bottom of the table. The proportions 1/ct for both H1 and H0 are simply
computed by division of the obtained sum by the total number of iterations
(i.e., 10, 000). Note that the value for 1/c1 obtained by estimation is indeed
about .5.

The encompassing posterior distribution combines the information in the
encompassing prior and the information in the data (i.e., the likelihood).
One of the specification guidelines for the encompassing prior is that it is
specified to be noninformative or low informative. Therefore, the encom-
passing posterior is dominated by the information in the data. The poste-
rior provides objective information (i.e., without a subjective prior) about
the model parameters after taking the observed data into account. A sam-
ple of µamn and µpat values is drawn from the encompassing posterior
p(µamn, µpat|y, damn, dpat, σ

2 = 3) ∝ N (µamn|4.53, 0.12)N (µpat|3.14, 0.15).
Note that without constrained means and with σ2 known, the posterior dis-
tributions of µamn and µpat are independent. Therefore, the posterior means
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Table 4.2. Estimation of 1/ct and 1/dt using sampled values for µamn and µpat

from encompassing prior and posterior

Prior Posterior

Iteration µamn µpat H1 H0 µamn µpat H1 H0

1 2.07 7.35 0 0 4.48 3.28 1 0
2 3.68 4.25 0 0 4.25 2.05 1 0
3 3.24 4.14 0 0 4.89 3.74 1 0
4 3.08 3.25 0 1 4.26 2.18 1 0
5 0.32 4.66 0 0 5.03 3.69 1 0
6 0.48 6.79 0 0 4.91 2.73 1 0
7 3.16 2.72 1 0 4.38 2.67 1 0
8 6.77 5.47 1 0 4.40 3.70 1 0
9 3.40 4.29 0 0 5.40 2.71 1 0

10 3.16 3.78 0 0 3.83 3.98 0 1
11 3.12 7.67 0 0 4.08 3.84 1 1
12 1.60 4.25 0 0 5.28 3.65 1 0
13 6.39 2.70 1 0 4.20 3.31 1 0
14 2.14 5.36 0 0 4.35 3.54 1 0
15 2.92 2.63 1 1 4.70 4.17 1 0
16 0.45 3.56 0 0 4.28 3.37 1 0
17 0.93 4.80 0 0 4.59 3.08 1 0
18 5.62 0.99 1 0 4.56 3.07 1 0
19 5.11 4.09 1 0 4.22 3.01 1 0
20 4.83 7.07 0 0 4.37 2.39 1 0
...

...
...

...
...

...
...

...
...

Sum 4997 908 9963 159
Proportion .500 .091 .996 .016

are
µ0/τ

2
0 +Mj(Nj/3)

1/τ2
0 +Nj/3

, for j = amn, pat,

and the posterior variances are

(1/τ2
0 +Nj/3)−1, for j = amn, pat,

(see Chapter 3). Again, the total number of “hits” for both H1 and H0 in
10, 000 iterations provide information about the amount of agreement with
the constraints. The total number of hits out of 10, 000 iterations provides the
required proportions.

The resulting proportions for the DID illustration (last row of Table 4.2)
provide the ingredients required to compute all Bayes factor values:

BF12 = 0.996/0.500 = 1.99,
BF02 = 0.016/0.091 = 0.18,
BF10 = 1.99/0.18 = 11.06.
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The first Bayes factor shows that the data support the constraint of H1

(BF12 > 1). Likewise, the Bayes factor of H0 with H2 shows that the null
hypothesis is not supported by the data (BF02 < 1). It is therefore not sur-
prising that a confrontation of H1 with H0 provides strong support for the
former (BF10 = BF12/BF02 = 11.06). This value shows that after observing
the data and taking both fit and complexity of both hypotheses into account,
H1 is about 11 times more likely than H0.

Summarizing, the Bayes factor for each of the constrained models with the
encompassing model equals the ratio of the proportions 1/dt and 1/ct, which
can be estimated by taking large samples from the unconstrained prior and
unconstrained posterior and counting the numbers of iterations in agreement
with the constrained model at hand. In the case of more than one constrained
hypothesis, all Bayes factors BFt2 can be estimated with just one prior and
one posterior sample. The Bayes factor provides a measure of support where
both fit and complexity are included and is therefore especially useful for
inequality constrained modeling.

4.2.4 Posterior Model Probabilities

Bayes factors contain the information about the relative support each model
receives after observing the data and taking both model fit and complexity
into account. However, when a finite set of hypotheses is under consideration,
it can be helpful to compute so-called posterior model probabilities for all the
models within this set. A posterior model probability (PMP) combines the
information represented by the Bayes factors with user-specified prior model
probabilities. To obtain an as objective as possible model selection procedure,
in this chapter each hypothesis will be considered equally likely a priori. For
our example with three hypotheses, this implies that the prior probability of
each hypothesis is specified as 1/3. Note that in the sequel, the results and
the formulas used for computation of PMPs are based on the assumption of
equal prior model probabilities.

The support found in the data as represented by the Bayes factor val-
ues updates the prior probabilities into posterior probabilities. A PMP has
a value between zero and one, where a larger value implies more support.
PMPs for a finite set of hypotheses are computed such that the sum of the
probabilities equals one. Therefore, they represent the relative support for a
hypothesis within a set. Note that, in contrast with the usual interpretation
of p-values in null hypothesis testing, a PMP is not used to draw dichotomous
decisions based on some arbitrary critical value. A PMP provides the amount
of evidence for a model relative to the other models under consideration.

For the three hypotheses H0, H1, and H2 the PMP for each hypothesis Ht

is computed by

PMP(Ht) =
BFt2

2∑
t′=0

BFt′2

,
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Table 4.3. Posterior model probabilities

Hypothesis Full set Set: H0 and H1

H0 : µ1 ≈ µ2 .06 .08
H1 : µ1 < µ2 .63 .92
H2 : µ1, µ2 .32 –

with BF22 = 1. The results for the example at hand are provided in Table
4.3. The inequality constrained hypothesis receives the largest support with a
PMP of .63. Note that the unconstrained hypothesis is also part of the set that
is evaluated. It may be more interesting to include only hypotheses that rep-
resent a theory (i.e., hypotheses with equality and/or inequality constraints).
In this small example this implies the inclusion of just H0 and H1, leading to
a PMP of 0.18/(0.18+1.99)=.08 for H0 and 1.99/(0.18+1.99)=.92 for H1.

4.2.5 Types of Constraints and Corresponding Prior Sensitivity

In Chapter 3, with respect to Bayesian estimation, we have seen that diffuse
(low informative, vague) prior distributions can be used and lead to estimates
that represent the information in the observed data and are not affected by
the prior. Consider, for instance, the situation that a prior normal distribution
with a variance of 10 can be considered not very informative for the data
at hand. This means that the data dominate the prior and, consequently,
posterior estimates are determined almost by the data alone. For the same
data, a normal prior with a variance of say 50 is then uninformative as well
and will lead to the same posterior estimates.

Unfortunately, this does not hold for Bayesian model selection. Even if two
priors are both low informative compared to the data at hand (e.g., the nor-
mal priors with variances 10 and 50, respectively), the resulting Bayes factors
and posterior model probabilities can differ substantially. Low or uninforma-
tive priors in the estimation context are therefore not necessarily objective
priors in the context of model selection. Worse, in many applications low or
uninformative priors lead to arbitrary results that are completely determined
by the priors and not by the data [3].

In this chapter, a general approach that can be used for inequality and
about equality constrained hypotheses was presented, in which the proposed
specification of the encompassing prior is relatively uninformative and sym-
metric with respect to the parameters that are constrained in one or more of
the hypotheses. These specification guidelines make sense from an intuitive
point of view given that we aim for “objective” model selection; that is, we
do not wish to favor any of the constrained hypotheses a priori. These speci-
fication guidelines also provide a procedure that is not sensitive for the exact
specification of the (diffuse) encompassing prior for inequality constrained
hypotheses. This does, however, not hold for hypotheses with about equality
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Fig. 4.3. Effect of the encompassing prior on 1/ct for an inequality constrained
hypothesis (first row) and an about equality constrained hypothesis (second row)

constraints. Prior sensitivity for both types of constraints will be elaborated
in this section.

The simplified example with H0, H1, and H2 provides illustrations of two
basic types of constraints under consideration: the inequality constraint and
the about equality constraint. For both constraints, sensitivity to the exact
specification of the encompassing prior is discussed by examining 1/ct and
1/dt separately. Starting with the latter, it is well known that for relatively
noninformative, diffuse prior distributions, the posterior is dominated by the
data and thus not sensitive to the prior specification. The third criterion in the
specification guidelines proposed in Section 4.2.1 states that the encompassing
prior is low informative (i.e., relatively diffuse). As a consequence, the value
1/dt is hardly affected by the exact specification of the encompassing prior,
irrespective of the type of constraints used.

This is not always the case for the value 1/ct; however, it is for a subset
of constraints. Let us start with the results for H1 and BF12 derived from the
results in Table 4.2. The proportion of sampled µamn and µpat values from the
encompassing prior in agreement with H1 is .50. This result is not surprising
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and shows a nice property of the encompassing prior approach and the cri-
teria for specification of the encompassing prior. This is illustrated in Figure
4.3. In the top row, the three squares denote three different specifications of
the encompassing prior distribution for µamn and µpat. The smallest square
represents a prior with a relatively small value for τ2

0 , the middle square rep-
resents a prior with a larger value, and the largest square represents a very
diffuse prior with the largest value for τ2

0 . The proportion of the prior in agree-
ment with the constraint µamn > µpat is the part of the square below the line
µamn = µpat (i.e., the shaded area). It can be seen that in each plot, 1/c1 = .5
irrespective of the size of the square (i.e., irrespective of the diffuseness of
the encompassing prior). By criterion 1 and 2 of the specification guidelines
for the encompassing prior approach, symmetry in the prior is obtained for
all constrained parameters. As a consequence, the value for 1/ct is a fixed
constant that depends only on the number of inequality constraints and not
on the specification of µ0 and τ2

0 of the prior distribution.
Since we also specified the prior to be relatively uninformative, leading to

a value for 1/d1 that does not or hardly depend on the prior distribution,
a model selection approach is formulated that is not sensitive to the prior
specification for the model µamn > µpat. This result generalizes to models
with more constrained means (e.g., H1c : µcon > {µamn, µpat} > µsim).

However, this result does not generalize to (about) equality hypotheses.
This can be seen in the second row of Figure 4.3. Again, the three squares
represent priors with increasing values for τ2

0 (i.e., different levels of diffuse-
ness). For a small but fixed value for δ, the shaded area contains parameter
values in agreement with H0 : µ1 ≈ µ2. Therefore, the proportion of each
of the squares that falls within these bounds must be evaluated to obtain
the value 1/c0. The size of this proportion depends clearly on the size of the
square. For the largest square, for instance, the proportion in agreement with
H0 becomes rather small. Stated formally, if τ2

0 approaches ∞, it follows that
the proportion 1/c0 approaches 0. Since BF02 = (1/d0)/(1/c0), this implies
that the Bayes factor becomes infinitely large in favor of the null model irre-
spective of the observed data. This is a phenomenon known as Bartlett’s or
Lindley’s paradox [4, 20].

In the specification of the encompassing prior, a balance must be found be-
tween low informative, leading to values for 1/dt that are virtually objective
for all types of constraints, but not too diffuse to avoid the Lindley prob-
lem for about equality models. This explains and motivates the last criterion
in the specification guidelines given earlier. The results for about equality
constrained hypotheses can only be interpreted conditional on the prior spec-
ification. It seems a natural choice to specify the prior on a range that is
relevant for the data at hand. In the encompassing prior approach, the range
of the observed data is used for the specification of the encompassing prior.
This is elaborated in the illustration in Section 4.4.1. The encompassing prior
is therefore data-based, but only little information of the data is used, and the
resulting prior distribution is still relatively uninformative. Simulation studies
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show satisfactory results for the encompassing prior approach based on these
specification guidelines [15].

4.3 The Encompassing Prior Approach for Inequality
Constrained ANOVA

The encompassing prior approach to model selection introduced in the previ-
ous section is elaborated here for the general ANOVA model. This section is
more technical than the previous sections. Readers more interested in prac-
tical applications than equations can skip Section 4.3 and continue with the
illustrations in Section 4.4.

The density of the data and the prior and posterior distributions for the
general ANOVA model are provided in Section 4.3.1. They form the ingredi-
ents of the Bayes factor for a nested with the encompassing model within this
context. The derivation of the Bayes factor is provided in Section 4.3.2. So
far, we defined about equality hypotheses with a not too small user-specified
relevance measure δ, but in Section 4.3.3 an adjustment is presented that can
be used to let δ approach zero and therefore approach the (strict) equality
constrained hypothesis. In Section 4.3.4, an elaboration on prior sensitivity in
the encompassing prior approach will be given.

4.3.1 The Encompassing Prior for ANOVA Models

The general ANOVA model

yi =
J∑

j=1

µjdji + εi, with εi ∼ N (0, σ2) (4.4)

has the likelihood function

f(y|µ, σ2, D) =
N∏

i=1

1√
2πσ2

exp

{
−

(yi −
∑J

j=1 µjdji)2

2σ2

}
. (4.5)

The encompassing prior is the prior distribution specified for the model pa-
rameters for the unconstrained hypothesis. Since prior independence between
model parameters is assumed, p(µ, σ2|H2) = p(σ2|H2)

∏J
j=1 p(µj |H2). The

conjugate prior for a mean parameter is a normal distribution, so p(µj |H2) ∼
N (µj |µ0, τ

2
0 ). Note that in the encompassing prior approach, each µj is spec-

ified to have the same prior distribution (see the specification guidelines pre-
sented in Section 4.2.1). The normal prior is low informative (diffuse, vague)
for large values of τ2

0 . The conjugate prior for the variance is a scaled inverse
χ2-distribution: p(σ2|H2) ∼ Inv-χ2(σ2|ν0, σ2

0). Loosely formulated, this distri-
bution can be interpreted as adding ν0 prior observations with a scale σ2

0 to
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the analysis. Therefore, this distribution is low informative for small values of
ν0. We use ν0 = 1 in all analyzes. This leads to the encompassing prior

p(µ, σ2|H2) ∝ Inv-χ2(σ2|ν0, σ2
0)

J∏
j=1

N (µj |µ0, τ
2
0 ). (4.6)

The specification of µ0, τ2
0 , and σ2

0 is data-based. To obtain values, a sample
is drawn from the unconstrained posterior using a constant prior; that is,
p(µ, σ2) ∝ c. Note, again, that although such a prior should not be used for
the actual model selection, it does provide objective parameter estimates. For
σ2

0 , the posterior mean of σ2 is used. This provides a value that is reasonable
for the data at hand and, since we always use ν0 = 1, a posterior that is
hardly affected by the prior. For µ0 and τ2

0 , the information about each of
the µ’s obtained by the posterior sample is combined as follows: Based on the
posterior sample, the 99.7% credibility interval for each µj (j = 1, . . . , J) is
determined; the smallest lower bound and the largest upper bound of the J
intervals define one broad interval containing all reasonable values for each of
the µ’s; µ0 is defined to be the center of this interval (i.e., the average of the
lower and upper bound) and τ2

0 gets a value that is equal to the range of the
interval divided by 2. An illustration is provided in Section 4.4.1, where the
DID data and hypotheses are evaluated.

The product of the encompassing prior distribution and the likelihood
provides the posterior of the unconstrained ANOVA model:

p(µ, σ2|y, D,H2) ∝ f(y|µ, σ2, D)Inv-χ2(σ2|ν0, σ2
0)

J∏
j=1

N (µj |µ0, τ
2
0 ). (4.7)

Note once more that all the constrained hypotheses Ht are nested in the
unconstrained, encompassing model H2. The constraints of a hypothesis are
incorporated in the prior distribution by truncation of the parameter space
through an indicator function Iµ∈Ht . This leads to the general prior distribu-
tion for any hypothesis Ht:

p(µ, σ2|Ht) ∝ Inv-χ2(σ2|ν0, σ2
0)

J∏
j=1

N (µj |µ0, τ
2
0 )Iµ∈Ht

, (4.8)

where Iµ∈Ht
= 1 if the means µj are in agreement with the constraints of

hypothesis Ht, and zero otherwise.
Subsequently, we also obtain the general posterior for a hypothesis Ht:

p(µ, σ2|y, D,Ht) ∝

f(y|µ, σ2, D)Inv-χ2(σ2|ν0, σ2
0)
∏
j

N (µj |µ0, τ
2
0 )Iµ∈Ht

. (4.9)
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The unconstrained prior (4.6) and the constrained prior (4.8) of any nested
model are similar except for the truncation of the parameter space by the con-
straints. The same similarity exists in the encompassing (4.7) and constrained
(4.9) posterior distributions. This aspect is used in the derivation of the Bayes
factor for a nested with the encompassing hypothesis.

4.3.2 Deriving the Bayes Factor

The marginal likelihood m(y|Ht) for an ANOVA model with data y, group
membership denoted by D, and parameters µ and σ2 a priori assumed inde-
pendent, can be expressed as

m(y|Ht) =
f(y|µ, σ2, D,Ht)p(µ, σ2|Ht)

p(µ, σ2|y, D,Ht)
; (4.10)

see also [9]. A Bayes factor is the ratio of two marginal likelihoods; so, for two
models Ht and H2

BFt2 =
f(y|µ, σ2, D,Ht)p(µ|Ht)p(σ2|Ht)/p(µ, σ2|y, D,Ht)
f(y|µ, σ2, D,H2)p(µ|H2)p(σ2|H2)/p(µ, σ2|y, D,H2)

. (4.11)

Since no constraints are imposed on σ2, p(σ2|Ht) = p(σ2|H2) and therefore
these terms cancel. Furthermore, due to the nesting of Ht in the encompassing
modelH2, the models contain the same parameters; so, for a value of µ, say µ′,
that exists in both models Ht and H2, f(y|µ′, σ2, D,Ht) = f(y|µ′, σ2, D,H2)
and therefore the Bayes factor as given in (4.11) reduces to

BFt2 =
p(µ′|Ht)/p(µ′, σ2|y,Ht)
p(µ′|H2)/p(µ′, σ2|y,H2)

. (4.12)

Finally, the µ’s have the same prior distributions, except for the truncation
of the prior for Ht by the constraints, formally denoted by

p(µ′|Ht) =
(

Iµ′∈Ht∫
p(µ′|H2)Iµ′∈Ht

δµ′

)
p(µ′|H2) = ct · p(µ′|H2). (4.13)

Likewise, p(µ′, σ2|y,Ht) = dt · p(µ′, σ2|y,H2). This leads to

BFt2 =
ct · p(µ′|H2)/dt · p(µ′, σ2|y,H2)

p(µ′|H2)/p(µ′, σ2|y,H2)
=
ct
dt
. (4.14)

Due to the nesting and the encompassing setup, the Bayes factor BFt2

reduces to the ratio of two constants. These constants are the inverse of the
proportions of the unconstrained prior and posterior in agreement with the
constraints of the nested model, respectively 1/ct and 1/dt. This approach
using (4.14) is previously presented and investigated in [15] and successfully
applied in analysis of (co)variance models [17], in multilevel models [14], and in
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contingency tables [18]. Note that inequality constrained hypotheses in models
other than the ANOVA are also presented in the last part of this book.

The proportions 1/ct and 1/dt are easily estimated by taking large sam-
ples from both the encompassing prior and posterior by application of the
Gibbs sampler. If several constrained models are under consideration, the
Bayes factor for each of these constrained hypotheses with the unconstrained
hypothesis can be estimated with the same prior and posterior sample. Fur-
thermore, for many hypotheses the value for 1/ct needs not to be estimated
because it is known exactly from the constraints, as we have seen before in
1/c1 for H1 : µ1 < µ2. This value is known to be .5 (see Figure 4.2) and no
prior sample is required. Therefore, the estimation approach is rather efficient.

However, efficiency may be a problem for constrained hypotheses that
severely limit the parameter space. The value for 1/ct for a fully ordered model
with J groups is 1

J! . So, for instance, 1/c1 forH1 : µ1 < · · · < µ8 is 1
8! , meaning

that in an unconstrained sample of 100,000 iterations about 2 or 3 will be in
agreement with the constraint. More iterations will be required to get a stable
estimate. Obviously, in this example with 1/c1 known, no sample is required at
all. However, for a constraint of the type H1 : µ1 < cldots < µ6 < (µ7 ≈ µ8),
the value 1/c1 is not that straightforward, and the parameter space is again
very small, leading to the requirement of large samples. Another example of
a constrained model severely limiting the parameter space is H0 : µ1 ≈ µ2

(i.e., H0 : |µ1 − µ2| < δ with a very small value for δ). So far, we have chosen
δ to be a user-specified relevance measure large enough to be estimated with
reasonable samples and thus rather efficiently. However, if the user-specified
δ-value is very small or when researchers do prefer to approach the (strict)
equality hypothesis, an adjustment of the estimation approach is required.
This adjustment is presented for about equality constrained hypotheses in
the next section but can also be applied to complex inequality constrained
models.

4.3.3 ANOVA Models with (About) Equality Constraints

In this chapter, null hypotheses (i.e., equality constraints) are evaluated as
“about equality” constraints. The motivation is twofold. The encompassing
prior approach is based on the nesting of constrained models and the subse-
quent equal dimension of the parameter space for all hypotheses under con-
sideration. A strict equality constrained hypothesis would change the dimen-
sion of the parameter space and therefore does not fit in the approach. The
Bayes factor BFt2 for a nested model Ht also shows that strict equalities are
problematic: The proportions of encompassing prior and posterior that are in
agreement with the constraints of a strict equality hypothesis are both zero.
This would lead to a Bayes factor that is not defined.

The second motivation for about equality constraints is that they are often
more realistic. It seems more natural to hypothesize “no relevant effect” than
an effect of exactly zero. See, for further discussion, [2, 10]. Therefore, we often
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do not hypothesize two or more means to be exactly equal, but restricted to
differ less than a prespecified number δ. The number δ can be chosen such
that it represents irrelevant differences between means from a substantive
(psychological, not statistical) perspective.

However, for small values of δ the estimation may become very inefficient.
For two means restricted to be about equal, the value for δ determines the size
of the interval around the line µ1 = µ2. This interval can become very small
compared to the unconstrained parameter space. To estimate the value for
1/c0 for such a hypothesis may require a very large sample from the uncon-
strained prior since a certain minimum number of hits is necessary to obtain a
stable estimate. Similar efficiency problems may occur when estimating 1/d0

based on a sample from the unconstrained posterior. Therefore, an adjust-
ment of the sampling and estimation procedure is suggested. See also [19]
and Chapters 12 and 15 in this book. Consider the hypothesis H0 : µ1 ≈ µ2

with δ → 0. This is the situation where any difference between the means is
considered relevant (i.e., the approximation of a strict null hypothesis).

The following procedure leads to an estimate of BF02:

1. Choose a (not too) small value δ1 and define H01 : |µ1 − µ2| < δ1.
2. Sample from the encompassing prior and posterior and compute 1/c01 and

1/d01 by counting for how many samples |µ1 − µ2| < δ1 holds. Compute
BF(01)2 = c01/d01.

3. Define δ2 < δ1 and H02 : |µ1 − µ2| < δ2.
4. Sample from the constrained (|µ1 − µ2| < δ1) prior and posterior and

compute 1/c02 and 1/d02 by counting for how many samples |µ1−µ2| < δ2
holds. Compute BF(02)(01) = c02/d02.

Repeating steps 3 and 4, with δ1 > δ2 > · · · > δr−1 > δr leads to a sequence
of Bayes factors BF(01)2, BF(02)(01), . . . , BF(r)(r−1). The estimate for BF02

follows from the product rule

BF(01)2 ×BF(02)(01) × · · · ×BFr(r−1).

This procedure decreases the δ-value used for evaluation of the hypothesis
in a stepwise procedure. In each step, it is calculated how the Bayes factor
changes compared to the previously used δ-value. At a certain point (here
denoted by r), a further decrease of the value for δ no longer changes the
Bayes factor [2]. At this point, the value for BF(r)(r−1) will therefore be very
close to one and convergence of δ → 0 is obtained.

Using this approach, BF02 can be estimated for very small values of δ with
a still relatively efficient sampling procedure.

4.3.4 Prior Sensitivity for the ANOVA Model

In Section 4.2.5, we concluded that for constraints of the type µ1 > µ2, the
model selection is not sensitive to the exact specification of the encompassing
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prior and that for constraints of the type µ1 ≈ µ2, it is. In this section,
the results will be elaborated for different types of inequality constraints (cf.
[16, 17]).

In the previous section, it was already seen that π(σ2) does not influence
1/ct for any hypothesis Ht. In BFt2 the prior for σ2 cancels in numerator
and denominator. This does not hold for the effect of π(σ2) on 1/dt, but
since we specified π(σ2) to be low informative, the effect on the posterior
will be negligible (the data will dominate the prior). What remains is the
possible effect of the specification of the prior distribution for each of the
µ’s. Again, the effect on the posterior (i.e., 1/dt, can be neglected since we
always use noninformative or low informative priors. This leaves only the
possible influence of π(µj) on 1/ct. Several types of inequality constraints are
discussed.

In Section 4.2.5, we concluded that 1/c1 = .5 for H1 : µ1 > µ2 due to the
symmetry in the encompassing prior. This was graphically illustrated in Figure
4.3. Before extending the result to more than two constrained parameters,
another way of explaining the resulting value of .5 is helpful. Note that since
π(µ1) = π(µ2), sampling both µ1 and µ2 gives two random values from the
same distribution. It is easily seen that the probability that the first is larger
than the second is equal to .5.

Likewise for more than two means, all having the same prior distribution,
the probability of each possible ordering of the means is equally likely. For
instance, three means can have six different orderings and therefore the value
for 1/ct for any fully ordered hypothesis about three means (e.g., µ1 < µ2 <
µ3) is 1/6. In general, for J means and fully ordered hypotheses, the value for
1/ct = 1/(J !). The only assumption made to obtain this result is that each
mean comes from the same (prior) distribution, which is one of the properties
of the encompassing prior approach.

Based on similar arguments, a few more types of hypotheses lead to 1/ct
values that are not affected by the exact specification of the prior. They are
presented for J = 4, but hold in general for any J . The first type of constraint
that is useful has subgroups of parameters that are mutually constrained, but
no constraints between parameters in different subgroups are formulated. An
example is H1 : {µ1 > µ2}, {µ3 > µ4}. Since the prior probability for both
µ1 > µ2 and µ3 > µ4 is .5, the value for 1/c1 is .5 · .5 = .25.

The value for 1/ct for {µ1 + µ2} > {µ3 + µ4} as well as for {3µ1} >
{µ2 +µ3 +µ4} is .5. In general, as long as the number of means on each side of
the inequality constraint is equal, or the sum of the weights is equal, the value
for 1/ct is fixed (i.e., does not depend on the prior). Similar considerations
hold for constraints of the form {µ1 · µ2} > {µ3 · µ4}. However, this type
of constraint may be not very realistic in the context of analysis of variance
models (i.e., for hypotheses about group means). In the context of cross-
tabulated data and odds ratios, it turns out to be a valuable result though
(see Chapter 12 for constrained hypotheses in contingency tables).
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Table 4.4. Recognition: Mean (M), standard deviation (SD), and sample size (N)
per subgroup

M SD N

1. DID-patients 3.11 1.59 19
2. Controls 13.28 1.46 25
3. Simulators 1.88 1.59 25
4. True amnesiacs 4.56 1.83 25

Summarizing, we have seen that model selection using the encompassing
prior approach and the specification guidelines as outlined provides virtually
objective results for certain types of constraints. Essentially, these are the
constraints that restrict certain parameters to be larger or smaller than other
parameters. The insensitivity does not hold for about equality constraints. In
that case, the results are conditional on the specification of the encompassing
prior. In those cases, the observed data are used to obtain information about
a reasonable range for the prior.

4.4 Illustrations

In this section, the three datasets introduced in Chapter 2 will be analyzed
using the encompassing prior approach. A competing set of models is formu-
lated, Bayes factors for comparison of each constrained model with the un-
constrained (encompassing) model are computed, and, assuming equal prior
model probabilities for each hypothesis under investigation, posterior model
probabilities for a set of models follow from the Bayes factors. We refer the
interested reader to http://www.fss.uu.nl/ms/informativehypotheses for
software for Bayesian model selection using the encompassing prior approach
in the context of inequality constrained analysis of variance models.

4.4.1 Dissociative Identity Disorder Data

The Data and Competing Theories

In Table 4.4, the sample means and standard deviations for the four groups in
the DID illustration are presented. The data are analyzed twice to compare
and illustrate the differences in results as a consequence of different specifi-
cations of hypotheses. In the first analysis, a set of four models contains the
null hypothesis (H0), the unconstrained, encompassing model (H2), and the
two competing informative alternatives (H1a and H1b):

H0 : µcon ≈ µamn ≈ µpat ≈ µsim,

H1a : µcon > {µamn ≈ µpat} > µsim,

H1b : µcon > µamn > {µpat ≈ µsim},
H2 : µcon, µamn, µpat, µsim.
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The second set of models that will be analyzed contains the same H0 and H2,
but the informative alternative hypotheses are now formulated as

H1c : µcon > {µamn, µpat} > µsim,

H1d : µcon > µamn > {µpat, µsim}.

The encompassing prior approach is used to evaluate each set of hypothe-
ses. The observed data are used to specify the parameters of the encompassing
prior. This is done such that the prior is low informative but with reasonable
values for the data at hand. For µj(j = con, amn, pat, sim) this is done fol-
lowing the next steps:

• The 99.7% credibility intervals for each µj(j = con, amn, pat, sim) are
estimated based on a sample from the unconstrained posterior using a
constant prior (i.e., noninformative with a range from −∞ to ∞). The
resulting intervals were 〈0.9, 2.8〉, 〈2.0, 4.2〉, 〈3.5, 5.6〉, and 〈12.3, 14.3〉, re-
spectively.

• The smallest of the lower bounds and the largest of the upper bounds are
used to define one interval l − u, which led to l = 0.9 and u = 14.3.

• The prior distribution for each µj is chosen such that the mean of the prior
minus one standard deviation equals l and the mean plus one standard
deviation equals u. This leads to the normal prior distribution with a prior
mean µ0 of (u+ l)/2 = 7.6 and a prior variance τ2

0 of ((u− l)/2)2 = 45.3:
p(µj) = N (µj |µ0 = 7.6, τ2

0 = 44.9).

This procedure ensures that, per group, the range for each µj corresponds to
the range of values seen in y, but excludes values that are highly unlikely.
The prior for σ2 is the scaled inverse χ2-distribution with parameters ν0 and
σ2

0 . Specifying ν0 = 1 leads to a diffuse (low informative) prior distribution.
The posterior mean of σ2 (derived from the posterior sample just described)
provides a reasonable value for σ2

0 . A similar approach for the specification of
prior distributions is used in the illustrations in Sections 4.4.2 and 4.4.3.

Results and Conclusions

For the first set of hypotheses including H1a and H1b, the Bayes factor of
the null hypothesis with the encompassing model is 0.0 confirming that the
“nothing relevant is going on” hypothesis is not at all supported by the data.
The Bayes factors for the informative alternative hypotheses with the un-
constrained model are both larger than one (2.24 and 8.02, respectively),
confirming that both theories are reasonably supported by the data. The pos-
terior model probabilities for the four models (assuming equal prior model
probabilities) are presented in the left panel of Table 4.5.

For this set of models, we would conclude that the informative hypothesis
stating that DID-patients score equivalent to Simulators is mostly supported
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Table 4.5. Posterior model probabilities for the DID data

Model Full set Set: 1a and 1b Model Full set Set: 1c and 1d

H0 .000 – H0 .000 –
H1a .199 .218 H1c .479 .499
H1b .712 .782 H1d .481 .501
H2 .089 – H2 .040 –

by the data (PMP(H1b) = .712). However, after seeing the data, the alterna-
tive hypothesis stating that DID-patients score equivalent to True amnesiacs
cannot completely be ruled out, since it has a posterior probability of .199.
Note that the two numbers provide the relative amount of evidence found for
each hypothesis and that this information is not used to draw a dichotomous
decision or reject one of the theories.

The posterior probability of the null hypothesis is < .001. Note, how-
ever, that this hypothesis does not reflect any theory of the researchers and
is not at all helpful for deciding which of the two competing theories about
DID-patients is more likely. A difference can certainly be expected between
people who are asked to remember facts from a short story (Controls) and
people whose answers are based on random guessing (True amnesiacs) and
that difference alone is enough to reject the null. Also, the unconstrained,
encompassing model is not very helpful for the question the researchers want
to investigate. A reason to include it in the (initial) analysis is to evaluate the
fit of each of the constrained hypotheses. To illustrate this, consider the fol-
lowing results for a set of three constrained hypotheses A, B, and, C: PMP(A)
= .20, PMP(B) = .00, PMP(C) = .80. The conclusion based on these num-
bers would be that model B is not supported, model C is “the best model”
with a posterior probability of .80, but model A also gets some support (.20).
Note, however, that the unconstrained hypothesis is not included in the set.
The Bayes factors of each of the three models with the unconstrained model
could have been 0.01, 0.00, and 0.04, respectively, telling us that even the
constraints imposed in model C reduces the fit with a factor 25 compared to
the unconstrained model. In this case, the posterior model probabilities listed
above just tell us that from three basically not supported theories, model C
is “less wrong” than the other two. Including the unconstrained model (de-
noted D) in the set would lead to very different probabilities and conclusions:
PMP(A) = .01, PMP(B) = .00, PMP(C) = .04, PMP(D) = .95.

It is up to the researcher which hypotheses to include in the set; that is,
which hypotheses he or she wants to evaluate. The posterior model probabili-
ties are, however, conditional on which other hypotheses are contained in the
set. Adding or deleting a hypothesis can change the results in terms of PMPs
considerably. For the example at hand, let us assume that the researchers
most of all want to confront hypotheses H1a and H1b with each other. After
having seen that the two Bayes factor values for each model with the encom-
passing model are larger than 1, the posterior model probabilities within a set
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containing just the two hypothesis of interest may be the most informative
in this case. In Table 4.5, these probabilities are also provided. Although the
numbers are slightly different, the conclusion remains the same. H1a cannot
completely be ruled out (with a probability of .22) but H1b has a considerably
stronger support (.78). Note, finally, that the Bayes factor value for compar-
ison of H1a and H1b does not depend on the number of models included in
the set: BF1b,1a = .712/.199 = .782/.218 = 3.58.

For the second set of hypotheses (replacing H1a and H1b with H1c and
H1d), the results for the null model are the same (BF02 = 0.0). The Bayes
factors for both informative alternative hypotheses with the unconstrained
model are again larger than one, confirming that also these two theories are
reasonably supported by the data. The values for the two Bayes factors are
larger than in the first set of models (for H1c and H1d, respectively 11.94
and 12.00) and virtually equal to each other. In the formulation of hypotheses
where just order information is imposed on the group means, no preference
for either of the alternative theories is found after observing the data. This is
also reflected in the posterior model probabilities computed from the Bayes
factors assuming equal prior model probabilities. They are presented in the
right panel of Table 4.5.

4.4.2 Emotional Reactivity Data

The Data and Competing Theories

Reijntjes et al. studied the influence of depression severity on emotional reac-
tivity after different types of peer evaluation feedback in preadolescent chil-
dren between the age of 10 and 13 years [22]. For assessment of depressed
mood, all participants filled in the Children’s Depression Inventory (CDI).
They were subsequently divided in three groups of about equal size (low,
moderate, and high depression) based on their CDI scores.

All children were led to believe that they participated in an Internet ver-
sion of a peer evaluation contest but in reality the contestants were fictitious.
Social evaluation by peers was thus manipulated. Each child was randomly as-
signed to one of three conditions: success feedback, failure feedback, or neutral
feedback. In the success (failure) feedback condition the child was told that
he or she got the highest (lowest) “likeability” score. In the neutral condition,
the child’s name was not presented as highest or lowest score.

To assess changes in positive affect induced by the peer evaluation, the
scores on the positive affect scale of the Positive And Negative Affect Schedule
(PANAS-P) before and after the experimental phase were compared. The
change in positive affect (i.e., the difference score of these two measurements)
provides the outcome variable. The data are summarized in Table 4.6.

Three competing informative hypotheses were formulated for this research
(note that group labels can also be found in Table 4.6). In the translation of
the theoretical expectations, the neutral feedback group serves repeatedly as
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Table 4.6. Emotional reactivity: Mean (M), standard deviation (SD), and sample
size (N) per subgroup of depression by feedback condition

Feedback condition

Positive Neutral Negative

Depression M SD N M SD N M SD N

Low [1] 0.27 4.67 18 [2] 0.29 4.76 17 [3] −9.33 8.77 12
Moderate [4] 0.41 4.96 12 [5] −1.50 5.99 14 [6] −5.78 5.75 19
High [7] 5.76 4.39 17 [8] −0.56 4.25 16 [9] −3.85 6.49 14

Note: Numbers in square brackets denote the group labelling as used in the hypotheses.

a reference for the results of both the positive and negative feedback groups.
Expectations are translated in terms of the hypothesized difference between
the positive and neutral condition within each of the depression groups (µ1−
µ2, µ4 − µ5, µ7 − µ8), as well as between the negative and neutral condition
(µ3−µ2, µ6−µ5, µ9−µ8). The mood facilitation hypothesis, for instance, states
that positive feedback will have a larger positive effect for lower depression
groups. Imposing this expectation on the differences between means as just
formulated gives {µ7 − µ8} < {µ4 − µ5} < {µ1 − µ2}. Similar translation of
expectations into differences between negative and neutral feedback conditions
leads to the remaining part {µ9−µ8} < {µ6−µ5} < {µ3−µ2}. Both orderings
must be supported for the mood facilitation hypothesis to be supported. In
a similar way, the emotion context insensitivity hypothesis (H1b) and the
discrepancy hypothesis (H1c) were formulated:

H1a : {µ7−µ8} < {µ4−µ5} < {µ1−µ2}, {µ9−µ8} < {µ6−µ5} < {µ3−µ2},
H1b : {µ7−µ8} < {µ4−µ5} < {µ1−µ2}, {µ9−µ8} > {µ6−µ5} > {µ3−µ2},
H1c : {µ7−µ8} > {µ4−µ5} > {µ1−µ2}, {µ9−µ8} > {µ6−µ5} > {µ3−µ2}.

See Chapter 2 for a more elaborate introduction of this research and the
development of the hypotheses.

Results and Conclusions

Using the specification guidelines of the encompassing prior approach, the
priors for each of the model parameters under the unconstrained hypothesis
are derived from the observed ranges in the data. For each µ, a normal prior
with µ0 = −2.3 and τ2

0 = 145.1 is used, and for the variance σ2, the scaled
inverse χ2-distribution has ν0 = 1 degrees of freedom and a scale parameter
σ2

0 = 31.7. Note that this encompassing prior is low informative (relatively
diffuse) for each of the model parameters, meaning that the posterior will be
dominated by the data. Furthermore, the constraints in all three hypotheses
are of a type that leads to model selection results that are not sensitive to the
exact specification of the (low informative) encompassing prior. The model
selection procedure can therefore be considered virtually objective.
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Table 4.7. Posterior model probabilities for the emotional reactivity data

Model Full set Set: 1a, 1b, 1c

H1a .000 .000
H1b .003 .003
H1c .881 .997
H2 .116 –

The results are presented in Table 4.7. In the first column with poste-
rior model probabilities, the unconstrained model is included in the set of
hypotheses; in the second column it is not. The latter seems to be more
appropriate since the unconstrained model does not reflect a hypothesis of
interest. The results are quite conclusive and in favor of the discrepancy hy-
pothesis (PMP(H1c) = .997). It is concluded that success feedback leads to a
stronger increase in mood for children with higher depression and that neg-
ative feedback leads to a stronger decrease in mood for children with lower
depression.

4.4.3 Complicated Grief Data

The Data and Competing Theories

The last illustration addresses gender differences in the development of com-
plicated grief (CG) after the loss of partner or child [5, 6]. Eight subgroups of
respondents are compared in a Gender (2) by Kinship (2) by Time from loss
(2) design. The data are summarized in Table 4.8.

The following set of hypotheses is evaluated:

Table 4.8. Complicated grief: Mean (M), standard deviation (SD), and sample
size (N) per subgroup of the Gender by Kinship by Time from loss design

Time from loss

Recent Remote

Gender Kinship M SD N M SD N

Men Partner [1] 84.91 21.59 106 [2] 78.60 20.31 131
Child [3] 79.77 21.88 26 [4] 77.79 22.37 52

Women Partner [5] 86.42 18.56 229 [6] 78.36 19.28 374
Child [7] 84.88 17.33 91 [8] 83.02 21.74 165

Note: Numbers in square brackets denote the group labelling as used in the hypotheses.
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H0 : µ1 ≈ µ2 ≈ µ3 ≈ µ4 ≈ µ5 ≈ µ6 ≈ µ7 ≈ µ8,

H1a : {µ1 > µ2}, {µ3 > µ4}, {µ5 > µ6}, {µ7 > µ8},
H1b : constraints of H1a and {µ5 > µ1}, {µ6 > µ2}, {µ7 > µ3}, {µ8 > µ4},
H1c : constraints of H1b and {µ3 > µ1}, {µ4 > µ2}, {µ7 > µ5}, {µ8 > µ6},
H1d : constraints of H1a and {µ7 > µ5}, {µ8 > µ6}, {µ7 > µ3}, {µ8 > µ4},
H1e : constraints of H1d and {µ1 > µ3}, {µ2 > µ4}, {µ1 > µ5}, {µ2 > µ6},
H2 : µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8.

In this illustration the informative hypotheses differ substantially in their
amount of restrictiveness. For instance, H1a just imposes directional simple
main effects of Time from loss. In each subgroup formed by gender and kin-
ship, it is expected that the average CG is larger for Recent than for Remote.
Since previous studies have convincingly shown that CG levels are stronger
in the early months of bereavement than later on, in all subsequent infor-
mative hypotheses this time effect is included. Hypotheses H1b contains the
directional simple main effects of both time and gender (CG larger for women
than for men). Subsequently, H1c contains the directional simple main effects
of time, gender, and kinship (CG larger for child loss than for partner loss).
Hypotheses H1d and H1e impose constraints that represent specific expected
interaction effects of gender and kinship on CG. For an elaboration of the
motivation for each of these theories, we refer to Chapter 2. In the set, also
the unconstrained (H2) and null model (H0) are included. For the latter, a
δ-value of 3.0 is used.

Results and Conclusions

The specification of the encompassing prior is again based on the observed
data. For each µ, a normal prior with µ0 = 79.9 and τ2

0 = 131.8 is used, and
for the variance σ2, the scaled inverse χ2-distribution has ν0 = 1 degrees of
freedom and a scale parameter σ2

0 = 396.9.
The results are presented in Table 4.9. The interpretation of the posterior

model probabilities is a bit more complicated here than in the previous exam-
ples, since the hypotheses investigated are not really representing competing
theories but are of increasing specificity. Let us first conclude from the results
that the null model (“nothing relevant is going on”) can be discarded. The
results show hardly any support for this hypothesis (BF02 = 1.06). Subse-
quently, let us examine the results of hypotheses H1a, H1b, and H1c. These
are the hypotheses just representing directional simple main effects of respec-
tively Time (H1a), Time and Gender (H1b), and Time, Gender, and Kinship
(H1c). Compared to the unconstrained model, the addition of the simple main
effect of Time increases the support (BF1a,2 = 7.9; i.e., larger than one). Ad-
dition of Gender to this model further increases the support (BF1b,2 = 20.8,
which is larger than BF1a,2). This is, however, not the case when the direc-
tional simple main effect of Kinship is also added. Compared to the previous
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Table 4.9. Posterior model probabilities for the complicated grief data

Model BFt2 PMP

H0 1.06 .02
H1a 7.87 .14
H1b 20.78 .38
H1c 3.81 .07
H1d 13.44 .25
H1e 6.79 .12
H2 1.00 .02

hypothesis (H1b), the support has decreased (BF1c,2 = 3.8). The theory stat-
ing three directional simple main effects seems not to be the best explanation
of the complicated grief data.

Possible explanations could be that there is no substantial effect of Kin-
ship, or the hypothesized direction of the effect of Kinship is not supported,
or there are specific interaction effects of the different factors that need to
be taken into account. The last explanation is conform two of the alterna-
tive hypotheses and is therefore already included in the analysis. Hypothesis
H1d represents the expectation that losing a child is especially devastating
for women. This hypothesis receives considerable support (BF1d,2 = 13.4).
However, compared to the hypothesis stating just simple main effects of Time
and Gender, the support is lower. Hypothesis H1e represents the expectation
that losing a child is more devastating for women and losing a partner is more
devastating for men. This extended hypothesis about interaction of Gender
and Kinship receives less support than the previous one (BF1e,2 = 6.8).

In conclusion, it is not entirely clear which hypothesis is the best. All
constrained theories have a Bayes factor value larger than one, stating that
compared to the unconstrained model, (some) support is found for the con-
straints. However, this support can be due mainly to the directional simple
main effect of Time. Therefore, the Bayes factors of more specific theories
were compared to less restricted hypotheses (e.g., H1b with H1a and H1c with
H1b). This tells us that examining main effects only (in the form of directional
simple main effects), the expected effect of Time and Gender were supported
but the expected effect of Kinship was not. Furthermore, within different spec-
ifications of the expected interaction of Gender and Kinship, the part stating
that losing a child is more devastating for women than for men was supported,
but the part stating that losing a partner is more devastating for men than
for women was not.

In Chapter 5 in this book, we will further reflect on the results and the
interpretation of the three illustrations. In that chapter, inequality constrained
analysis of variance using Bayesian model selection will be evaluated from a
statistical point of view, including a comparison with a classic null hypothesis
testing approach and corresponding advantages and disadvantages.
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5.1 Introduction

In Chapters 2, 3, and 4 inequality constrained analysis of variance was in-
troduced and illustrated. This chapter contains an evaluation of inequality
constrained analysis of variance. Section 5.2 contains an evaluation from the
perspective of psychologists on the use of inequality constrained analysis of
variance. The questions raised will be discussed in Sections 5.3 and 5.4. Among
other things, the interpretation of posterior model probabilities and the sen-
sitivity of Bayesian model selection with respect to the choice of the prior
distribution will be discussed.

5.2 An Evaluation from a Psychological Perspective

5.2.1 The DID Data

Certain controversies in clinical psychology are long-standing and heated, like
the mechanisms underlying the technique of Eye Movement Desensitisation
and Reprocessing (EMDR) and the advantages versus the risks of hypnotic
techniques in the recovery of memories of the past, to name but a few. As
noted in Chapter 2, the controversy surrounding Dissociative Identity Disor-
der (DID) certainly classifies as heated, with proponents and opponents not
even agreeing on the basic phenomena that are at the core of this condition
(i.e., the existence of multiple identities and the corresponding amnesia be-
tween identities). Such a controversy sometimes results in articles in which
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opposing claims are systematically evaluated [10, 16]. At the same time, con-
troversies such as these sometimes lead those involved to use arguments by
authority or arguments based on emotion rather than reason. Moreover, they
can cause researchers to focus solely on research that is in accord with their
own line of thinking, ignoring other theoretical and empirical contributions
and, important in the current context, alternative hypotheses.

It is precisely the area of hypothesis formulation in which Bayesian anal-
yses seems to have additional value over and above traditional hypothesis
testing. By allowing for a test of informative hypotheses, the Bayesian ap-
proach encourages researchers to explicitly formulate expected and alterna-
tive hypotheses. In the context of DID research, proponents of the so-called
“trauma model” [12] argue that dissociative amnesia is a defensive reaction
to overwhelming trauma, resulting in painful memories becoming fragmented
or separated from other parts of autobiographical memory, rendering them
inaccessible to normal consciousness. Proponents of the opposing model, the
so-called “sociocognitive model” [16], argue that people adopt the role of DID-
patient, acting according to their perception of how a DID-patient should be-
have, which is shaped by therapist education, television documentaries, and
self-help books. In this model, reported amnesia is regarded an element of
the immersed role enactment. Informative hypothesis formulation results in
explicitly juxtaposing “the patients resembling amnesiacs hypothesis” and
“the patients resembling simulators hypothesis.” Hopefully this approach will
encourage researchers from both theoretical stances to use designs incorporat-
ing the hypotheses generated by both the trauma model and sociocognitive
model, with past research in the sociocognitive tradition only focusing on the
ability of normal controls to simulate symptoms of DID and most studies in
the trauma model tradition testing patients without including DID simulators
and/or objective memory tasks.

Bayesian statistics seems specifically worthwhile in studies including mul-
tiple hypothesis testing (i.e., designs with more than two comparison groups
and/or multiple measures). In the DID study, besides a recognition test, we
also included a recall test, and besides a normal control group and a simula-
tor group, an additional control group was included to assess the unusualness
of each answer alternative selected by patients (i.e., choosing an answer like
“animal” when the correct answer was “woman” to the question “was the
story about a man, woman, or animal?”). This entailed a lot of (post hoc)
testing, while actually, we were interested in the same two critical hypotheses
in all these tests. The multiple post hoc testing needed to reach a conclusion
regarding these measures in the classical approach could have been reduced by
using the informative hypothesis testing procedure that is part of the Bayesian
approach.

Not only does the informative hypotheses formulation in the Bayesian tra-
dition encourage the explicit formulation of competing hypothesis, but it also
enables the systematic evaluation of these competing hypotheses by directly
comparing hypotheses against each other instead of evaluating them one by
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one against the traditional null hypothesis. The calculated posterior proba-
bilities and Bayes factor provide a clear-cut quantitative index of hypothesis
support. If there are any disadvantages to be mentioned, it should be that
in some situations, it may be difficult for the researcher to decide when the
difference between probabilities is “big enough” to favor one hypothesis over
another.

One way to guard against indecisive Bayes factors is to specify more in-
formative hypotheses. In the DID example, DID-patients were expected to
perform either comparable to Simulators (as hypothesized by the sociocogni-
tive model) or comparable to True amnesiacs (as hypothesized by the trauma
model). The equivalence of DID-patients to either True amnesiacs or Simula-
tors can be formulated using (about) equality constraints, as in the following
hypotheses:

H1a : µcon > {µamn = µpat} > µsim,

H1b : µcon > µamn > {µpat = µsim}.

Alternatively, a less restrictive translation of the competing expectations is
using an imposed ordering on the group’s means without restricting some
means to be (about) equal, as in the hypotheses

H1c : µcon > {µamn, µpat} > µsim,

H1d : µcon > µamn > {µpat, µsim}.

If one assumes the mean of DID-patients to be about equal to either the
True amnesiacs or the Simulator mean (H1a and H1b), this allows for more
specific evaluation of hypotheses compared to only assuming that the means
of these three groups are ordered (H1c and H1d). As can be seen in Table 4.5
in Chapter 4, the more specific formulation using (about) equality constraints
yielded a clear preference for the patients equal simulators hypothesis (with
a posterior model probability of .782 for H1a compared to .218 for H1b).
The less restrictive translation yielded a less informative “no preference” for
either of the alternative theories (with PMPs of .499 and .501 for H1c and
H1d, respectively).

Additionally in the formulation of hypotheses, there is another important
way of incorporating previous theoretical knowledge in Bayesian analyses, and
that is in specifying the prior distribution of the parameters. While psycholo-
gists have experience in theoretical hypothesis formulation (e.g., in specifying
group comparisons) be it sometimes with less restrictive hypotheses (cf. hy-
pothesis (2.5) and (2.6) in Chapter 2), it is harder to come up with hypotheses
about the expected values of test parameters like means or variances, or even
more so, expectations about the distribution of those parameters. This is espe-
cially true in the case of a new patient group for which comparable test results
are not available or in the situation where large differences in test performance
have been found due to group differences in, for example, age, education, and
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symptom severity. Moreover, knowing that different prior distributions may
lead to different conclusions may render colleagues not to become enthusias-
tic about using Bayesian statistics in their research. However, as is explained
in previous chapters, in most examples the unconstrained prior is chosen to
be low or noninformative, in the sense that parameters are assumed to be
normally distributed and the range determined by the minimal and maxi-
mal scores possible on the test or the highest and lowest scores found in the
data. These kind of constraints do not pose problems in most instances of
psychological research, be it either experimental or survey research, and lead
to “objective” results determined by the observed data, not overly restricted
or influenced by “subjective” priors.

5.2.2 The Emotional Reactivity Data

It has been noted for a long time that proficiency in emotion regulation is
a fundamental prerequisite for adaptive daily functioning, including feelings
of general well-being and the capacity to work and to relate to others (cf.
[9]). However, people can experience serious difficulties in modulating their
emotions in response to contextual demands.

Depression in particular has been increasingly conceptualized as a disorder
of emotion regulation (cf. [11, 15, 19]). Indeed, the core emotional symptoms
of depression – persistent sad mood and the diminished capacity to experience
pleasure and enjoyment (i.e., anhedonia) – strongly allude to difficulties with
emotion regulation.

Most researchers agree that depression involves abnormalities in the tem-
poral course of an emotional response as it unfolds over time (i.e., emotion
dysregulation), such as difficulty sustaining or enhancing positive affect, diffi-
culty terminating sadness, or both (cf. [8, 18]). However, as noted in Chapter
2, the linkage between depression and the magnitude of emotional reactivity
(i.e., emotion activation) when faced with a salient stimulus event is less undis-
puted. Specifically, according to the proponents of the “mood-facilitation”
hypothesis, enduring mood states potentiate matching emotions. They thus
predict that those higher in depression experience higher levels of emotional
distress (e.g., sadness) when faced with a negative event like peer rejection and
weaker increases in happiness/joy after being faced with a ”success” event like
peer praise. In contrast, based on research among adults suffering from a major
depressive disorder (MDD), the “emotional context insensitivity” hypothesis
has been advanced, positing that depressed mood is linked to attenuated emo-
tional reactivity to both positive and negative stimuli and hence predicts that
those higher in depression react in a more flattened way to both peer praise
and peer rejection (i.e., with relatively low levels of emotional reactivity). Fi-
nally, it may be that emotional reactivity in depression is mainly governed
by the extent to which the peer evaluation outcome is (in)consistent with in-
dividuals’ expectations and/or self-views. If this “discrepancy” hypothesis is
correct, children high in depression will display higher increases in state mood
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after (unexpected) success and weaker decreases in mood after (presumably
less unexpected) failure, both relative to children low in depression.

To test these three competing hypotheses (i.e., mood facilitation, emotion-
context insensitivity, and discrepancy), it stands to reason to compare mood
changes after success and failure relative to mood changes following a neu-
tral/reference condition (in the neutral condition, emotional reactivity may
also differ across different levels of depression; see Chapter 2). A traditional
frequentist approach typically entails a 3 × 3 ANOVA analysis, with depres-
sion status (e.g., low, medium, high) and feedback condition (succes, neu-
tral, and failure) serving as the between-subjects factors and changes in state
mood from prefeedback to postfeedback serving as the dependent variable.
This approach will yield results that are informative with regard to the
(non)significance of depression status, feedback outcome, and their interac-
tion.

However, an important drawback of this approach is that the obtained
results do not directly speak to the major question of interest; namely “which
of these three competing hypotheses should be preferred because they fit the
data best?” Rather, designs with multiple comparison groups or multiple mea-
sures typically require post hoc testing procedures and pairwise comparisons
that may exert detrimental effects on either type I or type II error. In fact, the
typical (somewhat cumbersome) procedure is to test each of the hypotheses
separately against the traditional null hypothesis.

It has been suggested that in these instances the informative hypothesis
testing procedure that is part of the Bayesian approach may prove useful
because it allows for directly comparing the relative merit of competing hy-
potheses. Indeed, as noted earlier in this chapter, one major advantage of this
alternative approach is the possibility to directly test competing hypotheses
against each other in the context of a single analysis. Moreover, it appears
that by forcing researchers to be explicit about all their hypotheses (both ex-
pected and alternative) and allowing for the possibility to incorporate theoret-
ical knowledge in the specification of the prior distribution of the parameters,
scientific progress may be more rapidly brought about.

Taken together, when conducting studies that involve testing multiple
competing hypotheses, it appears that the Bayesian approach offers important
strengths and may outperform more traditional approaches (e.g., ANOVA).

However, it should be noted that the Bayesian approach is mute with
regard to one pivotal issue, namely based on what criterion can we decide
that one hypothesis is “better” than the other? Sure, one can easily say that
a hypothesis with a PMP of .80 is more strongly confirmed than a hypothesis
with a PMP of .01. However, how should we judge the difference between the
fit of competing hypotheses if the differences between the two PMPs would
be, say, .05, rather than .79?

Moreover, formulation of inequality constrained hypotheses with respect
to means may prove difficult, especially when research on a certain topic is
still in its infancy. It may therefore be that the added value of the Bayesian
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approach increases as a function of the amount of similar prior research from
which competing hypotheses can be derived.

5.2.3 The Grief Data; Everybody Has Won?

Gender differences in psychological functioning is an intriguing topic that
lends itself to nice discussions. As noted in Chapter 2, gender differences is
also a popular topic in psychological research. Among other areas, gender dif-
ferences have been studied in the field of coping with trauma and loss. There
are several theoretical reasons why it is important to study gender differences
in coping with stressors. Generally stated, it is known that there are differ-
ences between men and women in the way they cope with stress. Men are
generally more inclined to engage in problem-focused coping strategies (What
is the problem? How can I solve it?), whereas women have a tendency to
engage in emotion-focused coping (How can I deal with my feelings concern-
ing this problem?). In addition, men and women have different roles and are
treated differently in our Western society. Noteworthy too is that there are
obviously biological differences between men and women (e.g., differences in
sex hormones and immune system functioning). With this in mind, it seems
fair to say that knowledge of the differential impact of stress on the psycholog-
ical and emotional well-being of men and women sheds light on coping styles,
societal influences, and biological factors that potentially contribute to this
differential impact.

Although scientifically important, the question “who suffers more?” in the
context of loss and trauma is all but decided. From the viewpoint of scientific
research, there is no final answer. For instance, in literature on coping with
loss, some studies have found no differences [5], others found that men suffer
more [4], and still others concluded that loss has a more profound emotional
impact on women [22].

Although we seem to continue to have an urge to look for a simple answer,
the question “who suffers more?” is a difficult one, simply because there is
whole range of variables that moderate the impact of gender on problems after
negative life events. One of the things that we stressed in Chapter 2 is that we
cannot ignore variables such as time since the death occurred and the kinship
relationship with the deceased when studying differences between men and
women in coping with loss. But that is where it easily gets complicated.

As noted in Chapter 2, we had a few hypotheses concerning the interplay of
gender, time from loss, and kinship in contributing to grief symptomatology.
Specifically, we hypothesized that (a) recent losses coincide with stronger grief
reactions than remote losses, (b) women suffer more than do men, irrespective
of time and kinship, and (c) the loss of a child is always more devastating than
the loss of a partner, irrespective of time and gender. Apart from the expec-
tation of such one-sided simple main effects, there were two additional, more
complex hypotheses: (d) one stating that losing a child is more devastating for
women than for men, and more devastating for women than losing a partner
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and (e) a final hypothesis stating that for men, but not women, partner loss
results in more severe grief, whereas for women, but not men, the loss of a
child is more disrupting.

From a conventional viewpoint, one could consider exploring the impact
of these variables on grief, in a 2 (men, women) × 2 (recent, remote loss)
× 2 (partner, child death) ANOVA design. Yet, again, this easily becomes
complex. The complexity of such a design starts when setting up a study to
test it, given that the inclusion of this number of variables requires a fairly
large sample size. Moreover, when performing such a three-way ANOVA, one is
immediately faced with findings that are difficult to interpret. For instance, in
itself, the finding of a significant interaction among gender, time, and kinship
is difficult to interpret and requires a whole set of additional dismantling steps
and pairwise comparisons. Moreover, if one does engage in running such an
ANOVA and exploring the outcomes of pairwise comparisons, as was done in
Chapter 2, one only gets two statistically significant findings. Together, these
suggest that recent losses coincide with stronger grief reactions than remote
losses among women confronted with the death of a partner. Although such
a conclusion tells us something about gender differences in coping with loss,
it leaves us wondering if this is really the only thing that can be said based
on such an extensive set of analyses and to what extent limitations of the
sample size are responsible for the fact that so little is found. So, all in all, a
conventional approach to the examination of the contribution of gender, time
from loss, and kinship to grief severity would leave us with a whole bunch of
outcomes that are difficult to interpret and with an unsatisfactory evaluation
of our a priori hypotheses.

It was exactly this observation that formed the starting point for the
Bayesian evaluation of the competing hypotheses about the grief data, in
Chapter 4. The analyses in that chapter nicely illustrated one of the key
points of this book that were also noted in the earlier sections of this chap-
ter: that the Bayesian approach to inequality constrained hypothesis testing
allows for a relatively easy examination of the appropriateness or fit of dif-
ferent competing hypotheses. More or less explicitly, Huntjens et al. [14] had
competing hypotheses about the relative performance of different groups on
a memory task and the Bayesian approach allowed for a direct comparison of
these hypotheses (see Chapters 2 and 4). Likewise, the research on gender dif-
ferences in grief included similar alternative hypotheses, with one important
additional feature and that is that the hypotheses in that research gradually
included more group comparisons and more specific competing ideas about
interactions. The analyses in Chapter 4 showed that the Bayesian approach
allowed for a relatively easy evaluation of these hypotheses. In the end, these
analyses suggested that gender and time, but not kinship had an impact on
grief severity. Moreover, findings indicated that the hypothesis that women
(but not men) suffered more after losing their child than after losing their
partner was supported by the data more than the hypotheses that women
suffer more after losing a child and men more after losing a partner. Although
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one can argue that these findings leave room for alternative interpretations,
they seem more informative than the conclusion that grief only varies as a
function of time, in women who lost a partner based on the conventional
ANOVA.

So, this summary further underscores the pros of the Bayesian approach
that have been pointed out at several places in this chapter and other parts of
this book. However, one can also be more critical and point at the potential
drawbacks of this approach. One pitfall is the construction and selection of
informative hypotheses. It seems that the usefulness of applying the Bayesian
versus the traditional, frequentist approach to the test of group differences
varies as a function of the degree to which one is able to formulate informative
competing hypotheses.

In a related vein, when looking at the matter through the eyes of a “tradi-
tional Null Hypothesis Significance Testing (NHST) psychologist,” one might
well continue to have a need for “rules of thumb”: When do we know for sure
that one of our competing hypotheses fit best – a Bayes factor of 20.78 is
higher than a Bayes factor of 13.44, how exactly should we interpret this dif-
ference in magnitude? Moreover, it is conceivable that some researchers prefer
to have clear rules of thumb for determining an appropriate subjective prior
(but see Section 5.4 in which it is elaborated that priors that may look sub-
jective are not really subjective). An additional question is: What particular
findings of earlier research are worthy of being included in the determination
of priors that have the form of inequality constrained hypotheses and what
findings should be excluded in such a process? Generally, the issue of how
to translate a theory into inequality constrained hypotheses and which con-
straints should and should not be included in a set of alternative hypotheses
is a largely unexplored territory that needs further scrutiny.

But then, when looking at the matter through the eyes of a “Bayesian
psychologist,” one can easily argue that “NHST psychologists” think that
they have more sound rules of thumb than their Bayesian counterparts, but
this is an incorrect assumption; that is, as will be elaborated further on in
this chapter, why is p = .049 but not p = .051 a significant finding?

Nevertheless, the frequentist approach is still more popular than the
Bayesian approach. One can argue that if Bayesians have the ambition of be-
coming more popular, they should perhaps develop rules of thumb (although,
by their very nature, they seem inclined to avoid doing so at all costs) or –
more realistically – should try to make a stronger case in showing that the
existence of rules of thumb in NHST is based on illusions. Or perhaps the
Bayesians should make a stronger case in defending the parts of the statisti-
cal realm that they are much better at handling than are the frequentists (e.g.,
directional hypotheses such as the ones formulated for the grief data). This
might lead to a fruitful struggle that eventually could result in the situation
in which “everybody has won, and all must have prices.”
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5.3 Classical Hypotheses Testing Versus Bayesian
Evaluation of Informative Hypotheses

In all the three research projects introduced in Chapter 2 the research ques-
tions could be represented by a set of informative hypotheses. A few of these
hypotheses are the following

H1b : µcon > µamn > {µpat = µsim} (5.1)

from the DID project, which states that controls perform better than true
amnesiacs, who, in turn, perform better than patients and simulators (who
perform equally well);

H1a : {µ7 − µ8} < {µ4 − µ5} < {µ1 − µ2},

{µ9 − µ8} < {µ6 − µ5} < {µ3 − µ2} (5.2)

from the emotional reactivity in children project, which states (a) that rela-
tive to the neutral condition, children in the success condition are increasingly
emotionally reactive moving from low via moderate to highly depressed chil-
dren and (b) that controlled for the neutral condition, children in the failure
condition are increasingly emotionally reactive moving from low via moderate
to highly depressed children; and

H1a : µ1 > µ2, µ3 > µ4, µ5 > µ6, µ7 > µ8 (5.3)

from the gender differences in coping with loss project, which states that recent
loss leads to more grief than remote loss for each combination of gender of the
respondent and kinship to the deceased (partner or child).

For each of the three research projects, Chapter 2 also presented traditional
data analyses based on null hypothesis testing. For the DID data, for example,
the null hypothesis

H0 : µcon = µamn = µpat = µsim (5.4)

was tested against the alternative

H2 : µcon, µamn, µpat, µsim. (5.5)

Since the p-value was rather small (.00), H0 was rejected in favor of H2. Sub-
sequently, a pairwise comparison of means analysis was executed to determine
which means differ from each other. All pairs of means were significantly dif-
ferent with the exception of µpat and µsim. Since this is in accordance with
(5.1), in a final step the sample means were inspected to determine if their
order was in agreement with (5.1). This inspection revealed that the order of
the means and (5.1) were in agreement.
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Fig. 5.1. Visual display of average emotional reactivity in the nine experimental
groups

Another example is the traditional analysis executed on the emotional
reactivity in children data. A two-way analysis of variance rendered two sig-
nificant main effects (depression level and feedback condition) and a non-
significant interaction effect. Since this rendered insufficient information to
determine whether the data are in accordance with (5.2) and the other in-
formative hypotheses, Figure 5.1 was inspected, which displays the means
for each combination of depression level and feedback condition. Since from
Figure 5.1 it is hard to determine which differences between means are sig-
nificant, it was concluded that further testing of differences between means
would be necessary to avoid overinterpretation of the figure. In the end, no
real conclusion with respect to the informative hypotheses under investigation
was obtained. As was illustrated in Chapter 2, classical hypothesis testing was
also not helpful for the evaluation of the informative hypotheses formulated
for the gender differences in grief project.

5.3.1 Classical Hypothesis Testing

The disadvantages of traditional data analysis based on hypothesis testing if
the goal is to evaluate a set of informative hypotheses were also discussed in
Chapter 2. The main issues will now be summarized.

The Null Hypothesis

In none of the three examples is the traditional null hypothesis of impor-
tance. Stated otherwise, in none of the three research projects did the null
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hypothesis seem to represent a reasonable theory. Since statistical inference
should provide information with respect to the hypotheses that are of interest
to a researcher, this renders NHST an insignificant tool for the evaluation of
informative hypotheses.

Furthermore, what if the null hypothesis is not rejected? Not many social
scientists think that the null hypothesis gives a reasonable description of the
population in which they are interested [7, 23]. Scientifically interesting pop-
ulations where truly nothing is going on are probably very rare. Furthermore,
many statisticians ([2, 3, 20]; see also Chapter 9) consider effects or differ-
ences that are exactly null unrealistic and consequently share the opinion of
the social scientists. Only one answer to the question posed in the first line
of this paragraph seems possible: There is not enough power [6] to reject the
null; that is, the sample size is too small to reject the null hypothesis.

The Alternative Hypothesis

Loosely formulated, alternative hypotheses like (5.5) state “something is going
on, but I don’t know what.” Consequently, if the null is rejected in favor of the
alternative, it is still not clear what is going on. A common course of action is
to continue with further testing (e.g., pairwise comparison of means) followed
by a visual inspection of the data (e.g., tables of means or figures displaying
means) to determine “what is going on.” Two examples of this process were
given above for the amnesia data and the emotional reactivity data.

This procedure has several disadvantages if the goal is to evaluate a set of
informative hypotheses. Consider again the hypothesis (5.1). What should be
done if all pairwise comparisons would have been significant? In that case, nei-
ther (5.1) nor the competing hypothesis H1a : µcon > {µamn = µpat} > µsim

would be supported by the data. Should it be concluded that both hypotheses
are wrong? To give another example, suppose that all but one of the differ-
ences in Figure 5.1 are in agreement with a hypothesis like (5.2). Does this
imply that the hypothesis is strongly supported by the data, or does it imply
that the hypothesis should be rejected? What if all but two of the differences
are in agreement with a hypothesis? What if the violation of the hypothesis
is minor; that is, the data are almost in accordance with the restrictions?

There are two reasons for further testing. First, for the amnesia data it is
clear that the alternative hypothesis (5.5) has a relation with the informative
hypotheses under consideration since (5.1) is just a further specification of
(5.5). However, looking at the sample means to check if their values are in
accordance with an informative hypothesis like (5.1) may lead to overinter-
pretation. A rejection of the null hypothesis does not imply that all pairwise
differences between means are different from zero; it implies that at least one
of the pairwise differences is different from zero. Overinterpretation – that
is interpretation of nonsignificant differences between means – can only be
avoided if each pairwise difference is tested before checking whether the val-
ues of the means involved are in agreement with the informative hypothesis
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under investigation. In the next section the disadvantages of such multiple
hypothesis testing will be discussed.

Second, there may not be a straightforward relation between the alter-
native hypothesis and the informative hypotheses under investigation. The
hypotheses tested for the emotional reactivity in children data (main and in-
teraction effects of depression level and feedback condition) do not have a
straightforward relation with the informative hypotheses under investigation.
The hypotheses tested for the coping with loss data (main and interaction
effects in a three-way analysis of variance) also do not have a straightforward
relationship with the directional simple effects that are used to construct in-
formative hypotheses like (5.3). This problem can be solved by testing more
specific hypotheses like the two-way analysis of variance executed for pairs of
groups from both conditions in the emotional reactivity in children data.

Multiple Hypothesis Testing

Classical statistical inference can handle the testing of one hypothesis. The
probability of a type I error (also called the alpha-level) is under control. A
usual value is .05; that is, if the null hypothesis is true, the probability that it
is incorrectly rejected is 5%. Once the sample size is known and a researcher
has specified the smallest effect size (e.g., the smallest difference between two
means) that he is interested in, the probability of a type II error (also called
the beta-level) can be computed. A usual value is .20; that is, the probability
that the null hypothesis is accepted if it is false is 20%. Perhaps better known
is the counterpart of the type II error, the power [6]. Power is the probability
to reject the null hypothesis if it is false. A usual value for the power is .80.

However, classical statistical inference is in trouble when more than one
hypothesis is tested. For example, pairwise comparison of means for the am-
nesia data involves the evaluation of six null hypotheses (one for each pair of
means). This implies that there are six opportunities to obtain a type I error.
Stated otherwise, the probability of one or more type I errors will be (much)
larger than .05. To give an example, for six independent tests this probability
is 1 − .956 = .265. If the fact that multiple hypotheses are tested is ignored,
data analysis will render many effects that do not exist in the population from
which the data were sampled.

There are procedures that can be used to control the number of type I er-
rors when multiple hypotheses are tested. Perhaps the best known procedure
is the Bonferroni correction [13]. It can be proven that the probability of one
or more type I errors is smaller or equal to .05 if the p-value of each hypothesis
is compared to .05/K (where K denotes the number of hypotheses tested).
Stated otherwise, if a p-value is smaller than .05/K, reject the corresponding
hypothesis; otherwise, accept the hypothesis. More refined procedures than
the Bonferroni correction exist [1], but the basic principles involved are simi-
lar. However, corrections for multiple hypothesis testing come at a price: they
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lead to an increase in the number of type II errors. There is a relation be-
tween type I errors and power: smaller probabilities (e.g., .05/K instead of
.05) of incorrectly rejecting the null hypothesis imply smaller probabilities of
correctly rejecting the null hypothesis. If the power was computed to be .80
for an alpha-level of .05, it will be smaller than .80 for an alpha-level of .05/K.
Stated otherwise, if many hypotheses are tested and the researcher chooses to
control the number of type I errors, this implies an increase in the number of
type II errors; that is, data analysis will not render many effects that do exist
in the population from which the data are sampled.

Another disadvantage of multiple hypothesis testing, as we applied it to
the amnesia, the emotional reactivity, and the grief data, is the fact that
the inequality constraints in the alternative hypothesis are ignored. It would
be much better if the null hypothesis is tested directly against hypotheses
like (5.1), (5.2), and (5.3). This would avoid the multiple testing problem.
Furthermore, such a test would also be more powerful because hypotheses
like (5.1), (5.2), and (5.3) are more specific than the unconstrained alternative
(5.5). A nice overview of such testing procedure is given in [21]. However, even
these procedures have disadvantages. Tests like

H0 : µcon = µamn = µpat = µsim (5.6)

against
H1b : µcon > µamn > {µpat = µsim} (5.7)

exist only for a limited class of models and hypotheses and cannot generally be
applied. Furthermore, suppose that besides (5.7) a researcher is also interested
in

H1a : µcon > {µamn = µpat} > µsim (5.8)

and that both the test of H0 against H1b and the test of H0 against H1a render
a p-value smaller than .05. What is then to be concluded? Furthermore, what
is to be concluded if both p-values are larger than .05. In that case is the
null hypothesis the best hypothesis? But we were not interested in the null
to begin with! With which we have gone full circle, and have returned to the
beginning of the subsection “The Null Hypothesis” that can be found above.

5.3.2 Bayesian Model Selection

Chapter 4 introduced Bayesian model selection as a method for the evaluation
of informative hypotheses. In this section it will be argued that Bayesian
model selection is better suited for the evaluation of informative hypotheses
than classical hypothesis testing. The structure of the argument will be similar
to the structure of our criticism of classical hypothesis testing in the previous
section. Bayesian model selection also has an Achilles’ heel (the specification
of the prior distribution). This will be discussed in the next section.
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As was explained in Chapter 4, Bayesian evaluation of informative hy-
potheses consists of three steps. In the first step a researcher has to trans-
late his theories into a set of competing hypotheses. An example of a set
of competing hypotheses is H1a : µcon > {µamn = µpat} > µsim and
H1b : µcon > µamn > {µpat = µsim} from the amnesia example. If there
is a theory that H0 : µcon = µamn = µpat = µsim could actually represent an
interesting state of the population, it can be added to the set of competing hy-
potheses. In the second step a researcher has to compute the posterior model
probability (PMP) of each hypothesis under consideration. In Chapter 4 it can
be found that these probabilities were .22 and .78 for H1a and H1b, respec-
tively. This implies that after observing the data H1b was about 3.5 ≈ .78/.22
as likely as H1a. In the third step the researcher has to decide how to evaluate
the PMPs. In contrast to classical statistics, clear decision rules do not exist.
The “.05-rule” that is so abundantly used for the evaluation of p-values does
not have a counterpart that can be used for the evaluation of posterior model
probabilities. The reason for this is that such rules are often more a nuisance
than a help. What if a researcher finds a p-value of .051? Most researchers
would have preferred to find .049. But, paraphrasing [17], “surely god loves
the [.051] almost as much as the [.049].” To give just another example. Sup-
pose a researcher tests six hypotheses and finds the following p-values: .051,
.051, .051, .051, .051, and .051. Should he conclude that nothing is going on
(strict adherence to the “.05-rule”)? Or should he conclude that six such small
p-values are very unlikely if nothing is going on, so something must be going
on? Thus, it is likely that strict guidelines for the evaluation of posterior model
probabilities are bound to have the same flaws as the “.05-rule.” Furthermore,
since posterior model probabilities are straightforward quantifications of the
support in the data for the hypotheses under investigation, such guidelines
are not necessary. Consequently, posterior probabilities of .22 and .78 for H1a

and H1b, respectively, do not have to be transformed into a dichotomous “it is
H1a” or “it is H1b” decision. The message is clear: H1b receives more support
from the data than H1a, but the latter cannot yet be ruled out completely.

The Null Hypothesis

For a Bayesian evaluation of informative hypotheses the null hypothesis is not
needed. Stated otherwise, if the null hypothesis does not represent a plausible
theory, it does not have to be considered. The Bayesian approach is not tied
to the null hypothesis (and null hypothesis related problems) in a way that
classical hypothesis testing is.

The Alternative Hypothesis

The Bayesian approach directly evaluates the hypotheses of interest. This
avoids the problems that occur when classical hypothesis testing is used for
the evaluation of informative hypotheses. PMPs directly quantify the support
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in the data for each hypothesis under consideration. This avoids the problem
that it can be hard or impossible to determine to which degree analysis re-
sults support each of the hypotheses under consideration. This removes the
necessity to inspect tables of means or figures to determine the support for
each informative hypothesis. This also avoids the problem of a vague relation
between the hypotheses tested and the hypotheses of interest, because in the
Bayesian approach there is no difference between both sets of hypotheses.

What can happen in a Bayesian analysis is that none of the informative
hypotheses under consideration appropriately reflects the state of affairs in
the population of interest. Note that this can only happen if the researchers
who formulate the hypotheses are completely ignorant with respect to the
state of affairs in the population. The latter is probably as unlikely as the
possible truth of a classical null hypothesis. Nevertheless, it can happen.
This problem can be detected if the unconstrained hypothesis (i.e., the clas-
sical alternative hypothesis) is added to the set of competing hypotheses.
The amnesia example can be used to illustrate this. The informative hy-
potheses considered there were H1a : µcon > {µamn = µpat} > µsim and
H1b : µcon > µamn > {µpat = µsim} with PMPs of .22 and .78, respec-
tively. Although it is clear that H1b is preferred to H1a, it may still be a bad
representation of the population of interest. However, if H1b is also a better
hypothesis than H2 : µcon, µamn, µpat, µsim, this means that the constraints
in H1b receive more support from the data than the absence of constraints
in H2. As can be read in Chapter 4, the PMPs for H1a, H1b, and H2 were
.20, .71, and .09, respectively. This shows that H1b is preferred to H1a and
that a hypothesis with constraints is a better hypothesis than a hypothesis
without constraints. Had the PMPs been, .20, .09, and .71, respectively, it
would have been concluded that neither H1a nor H1b is preferred to H2 and
that the constraints in both hypotheses are not supported by the data.

Multiple Hypothesis Testing

Since Bayesian model selection does not use p-values, multiple testing prob-
lems like too many false positives if the number of type I errors is not controlled
or too many false negatives if the number of type I errors is controlled do not
occur. However, it is worthwhile to shortly consider a related problem that
can occur.

Suppose a researcher has formulated two competing hypotheses. The re-
sulting PMPs could be .92 and .08 for hypotheses 1 and 2, respectively. The
support in the data is .92/.08=11.5 times stronger for hypothesis 1 than for
hypothesis 2. From these results many researchers would conclude that it is
relatively safe to discard hypothesis 2. Suppose now the same researcher did
not start with a set of two hypotheses, but with a set of eight competing
hypotheses (including the original two). The resulting PMPs could now be
.69, .06, .05, .05, .04, .04, .04, and .03, respectively. The support in the data
for hypothesis 1 versus the combination of the other seven hypothesis is now
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.69/.31 ≈ 2. Although hypothesis 1 is still clearly the best hypothesis, the
certainty with which this can be claimed has been reduced because of the
extension of the set of hypotheses under investigation.

If only a limited number of competing theories/hypotheses are under in-
vestigation, a researcher has either excluded all other theories through the
design of his study or is very knowledgeable with respect to his area of re-
search, which allows him to exclude all other theories prior to looking at the
data. This holds, for example, for each of the three research projects that were
discussed in Chapter 2. Larger sets of hypotheses can occur if the design is
more complicated and/or the amount of prior knowledge is limited. Consider,
for example, a researcher who wants to determine which of four variables can
be used to predict a fifth variable using multiple regression. This researcher
has to consider one hypothesis with four predictors, four with three predictors,
six with two predictors, four with one predictor, and one hypothesis without
predictors; that is, a total of 16 hypotheses. Model selection with only a few
well-chosen competing hypotheses is confirmatory of nature. The example
with 16 hypotheses is completely exploratory: Which of all possible hypothe-
ses is the best? The latter could also be described with the phrase “fishing
for the best hypothesis.” As illustrated in the previous paragraph, the larger
the number of hypotheses under consideration, the larger the probability of
an erroneous decision.

This once more illustrates one of the main messages we try to bring across
in this book: Use the existing knowledge, ideas, experience and previous re-
search to formulate a set of plausible competing hypotheses. This ensures that
a research project does not start from scratch, but that all irrelevant hypothe-
ses are a priori excluded from the analysis and, consequently, that the current
state of knowledge is appropriately accounted for in the set of hypotheses
that are under consideration. Assuming that researchers are knowledgeable
with respect to their research field, this will strongly decrease the probabil-
ity of erroneous decisions and thus lead to a faster advancement of scientific
knowledge.

However, Bayesian model selection has an Achilles’ heel: the specification
of the prior distribution. The next section will show that in the context of
selecting the best of a set of (in)equality constrained hypotheses, three differ-
ent ways to specify the prior distribution renders rather similar results. Stated
otherwise, for (in)equality constrained hypotheses, Bayesian model selection is
rather robust with respect to the precise specification of the prior distribution
of the model parameters.

5.4 Bayes’ Achilles’ Heel: The Prior Distribution

As shown and discussed in Chapter 4, selecting the best from a set of hy-
potheses is sensitive to the prior specification, if equality constraints are used
to specify one or more of the hypotheses. Therefore, the prior distribution
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should be chosen carefully; that is, those aspects of prior distributions that
hypotheses like

H0 : µ1 = µ2,

H1 : µ1 > µ2, (5.9)
H2 : µ1, µ2

have in common must have little impact on the support in the data for each hy-
pothesis. As was shown in Chapter 4, this can be achieved if the the prior dis-
tribution for constrained hypotheses like H0 and H1 is derived from the prior
distribution of the corresponding unconstrained hypothesis (in this simple
example, H2). Differences between the hypotheses (unconstrained, inequality
constrained, or equality constrained) must have a large impact on the support
in the data for each of the hypotheses. In what follows, three different prior
specifications that attempt to achieve this will be discussed and compared:

• The specification of the encompassing prior (described in Chapter 4)
• The specification of a (normalized) conditional prior (to be described in

Chapter 8)
• The specification of a prior distribution for the noncentrality parameter of

a relevant test statistic (to be described in Chapter 6).

In this chapter the main features of each prior specification will be summa-
rized. Subsequently, using the three examples from Chapter 2, it will be shown
that Bayesian model selection using PMPs, renders rather similar evaluations
of the hypotheses under consideration for each of the three different prior
specifications.

5.4.1 The Encompassing Prior

In the encompassing prior approach described in Chapter 4, the prior dis-
tribution of constrained hypotheses (like H0 : µ1 ≈ µ2 and H1 : µ1 > µ2)
can be derived from the prior distribution of the corresponding uncon-
strained/encompassing hypothesis (like H2 : µ1, µ2). Consequently, only the
(encompassing) prior distribution for H2 needs to be specified. Note that in
Chapter 4, ≈ is defined as |µ1 − µ2| < d. In the tables that follow, the value
of d used in the computation of PMPs will be reported.

The encompassing prior is specified using the following guidelines:

• All model parameters are a priori independent.
• The prior distributions for all parameters that are constrained in one or

more of the hypotheses are equal.
• The encompassing prior is a relatively noninformative, conjugate, data-

based distribution.

According to the first specification guideline, µ1 and µ2 are independent, so it
holds that p(µ1, µ2|H2) = p(µ1|H2)p(µ2|H2). The second guideline indicates
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that the prior distributions for µ1 and µ2 are the same: p(µ1|H2) = p(µ2|H2).
The conjugate prior distribution for a mean parameter is a normal distribution
with mean µ0 and variance τ2

0 . From these three requirements it follows that
p(µ1|H2) = p(µ2|H2) = N (µ0, τ

2
0 ).

The parameters µ0 and τ2
0 are data based, the details can be found in

Chapter 4. Besides the means, there is also a variance term (σ2). The en-
compassing (conjugate) prior for σ2 is a scaled inverse χ2-distribution, with
data-based parameters ν0 = 1 and σ2

0 . In this section we will focus on the
prior distribution for the means, because the prior distribution of σ2 is of
little importance when the goal is to select the best of a set of hypotheses like
(5.9).

The prior distribution for µ1 and µ2 is shown in Figure 5.2. The data-based
mean (µ0) and the data based variance (τ2

0 ) of the distribution are based on
the 99.7% credibility intervals for both µ1 and µ2. The smallest value of the
two lower bounds (l) and the largest value of the two upper bounds (u) are
used to determine µ0 = u+l

2 and τ2
0 =

(
u−l
2

)2
.
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5.4.2 Specification of a (Normalized) Conditional Prior

The (normalized) conditional prior described in Chapter 8 resembles the
specification of the encompassing prior in Chapter 4. The adjective “nor-
malized” is used because the normalization constant is taken into account
such that this prior integrates to 1.0 not only for the unconstrained but also
for the constrained hypotheses. A difference with respect to the encompass-
ing prior is that the prior for µ is now specified conditional on the value of
σ2. For the unconstrained/encompassing hypothesis the (normalized) condi-
tional prior for µ1 given σ2 equals p(µ1|H2, σ

2) = N (0, σ2

a0N1
) and for µ2 given

σ2: p(µ2|H2, σ
2) = N (0, σ2

a0N2
). The prior distribution for µ1 and µ2, in case

N1 = N2 = N (i.e., N (0, σ2

a0N )) is shown in Figure 5.3. In this method the
variation in the prior is determined by a0. In Chapter 8 it is elaborated how
the data can be used to determine a value for a0. In the examples that follow
we will use the “best” values determined in Chapter 8. The (conjugate) prior
for the residual variance σ2 is an inverse gamma distribution, with hyperpa-
rameters α0 and β0. Since the prior for σ2 is of minor importance, it will not
be further discussed in this chapter.
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The resemblance between this approach and the encompassing prior ap-
proach is that every µ has the same prior if N1 = N2 and that the variance
of the prior distribution of each µ is data based (via a0 for the (normalized)
conditional prior) for both approaches. The difference between the two ap-
proaches is that the (normalized) conditional prior approach assumes that
the prior distribution of each µ has a mean of zero and the encompassing
prior approach has a data based mean.

5.4.3 Specification of Prior Distributions for the Noncentrality
Parameter of a Relevant Test Statistic

The approach by which the Bayes factor is computed in Chapter 6 is quite
different from the approaches described in Chapters 4 and 8. Computation of
Bayes factors requires the evaluation of the marginal likelihood of the data
under each hypothesis. As was elaborated in Chapter 4, in order to be able to
compute the marginal likelihood, a prior distribution has to be specified for
the hypothesis under investigation. In the previous two sections, priors were
determined both for the means and the residual variance.

An alternative is to compute the marginal likelihood of a test statistic
instead of the marginal likelihood of the data. If the test statistic is well
chosen, it contains almost the same information as the data. The T statistic
used in Chapter 6 applied to the hypotheses in (5.9) contains information
with respect to the differences between the means of group 1 and group 2. As
shown in Chapter 6, the T statistic can be generalized to a situation where
more than two groups are involved.
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The T statistic contains one unknown parameter, namely the noncentrality
parameter δ. As is visually displayed in Figure 5.4, in the case of two means
δ = µ2−µ1

σ . In order to be able to compute the marginal likelihood of T , a
prior has to be specified for δ. In Chapter 6 the prior for δ equals p(δ | H2) =
N (0, τ2) (Figure 5.5). In the sequel, τ2 is set to 0.5 because a priori it is
expected that “the standardized differences between means δ are not large”
(Chapter 6). Stated otherwise, a priori it is expected that the standardized
difference between the means is, on average, 0, with a standard deviation of√
.5 = .707.

“To implement this method, one chooses a test statistic and then computes
the density of the test statistic under each hypothesis. Bayes factors are ob-
tained as ratios of these densities” (Chapter 6). This method greatly reduces
associated computations, because the specification of prior distributions is
only required for the noncentrality parameter δ and not for all model parame-
ters µ and σ2 as in the encompassing prior and (normalized) conditional prior
approaches.

5.4.4 Posterior Model Probabilities Resulting from Three
Different Prior Specifications

Four of the hypotheses specified in Chapter 2 for the DID data are
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Table 5.1. PMPs obtained for the DID data using the prior distributions from
Chapters 4, 8, and 6

Ch. 4 PMP (d = 0.3) Ch. 8 PMP (a0 = 0.001) Ch. 6 PMP (τ = 0.5)

H1b 0.71 H1b 0.71 H1b 0.67
H1a 0.20 H1a 0.22 H1a 0.21
H2 0.09 H2 0.08 H2 0.13
H0 0.00 H0 0.00 H0 0.00

H0 : µcon ≈ µamn ≈ µpat ≈ µsim,

H1a : µcon > {µamn ≈ µpat} > µsim,

H1b : µcon > µamn > {µpat ≈ µsim},
H2 : µcon, µamn, µpat, µsim.

In Table 5.1 the PMPs obtained using the three different prior specifications
discussed in the previous sections are displayed for the DID data. Note that the
hypotheses in Chapters 6 and 8 are based on equality restrictions (“=”) and
order restrictions (“<”, “>”), and in Chapter 4 on about equality restrictions
(“≈”) and order restrictions (“<”, “>”). As explained above, ≈ is defined
as |µ1 − µ2| < d. For the DID data, d = 0.3. As can be seen, the three
approaches are very much in agreement with respect to the support in the
data for each of the hypotheses under investigation. In Table 5.2 the PMPs
obtained using two of the three prior specifications discussed in the previous
sections are displayed for the hypotheses that were specified in Chapter 2
for the emotional reactivity data. As can be seen, the results are again very
similar for the hypotheses that were evaluated by both approaches (H0 was
not evaluated in Chapter 4).

In Table 5.3 the PMPs obtained using two of the three prior specifications
discussed in the previous sections are displayed for the hypotheses that were
specified in Chapter 2 for the grief data. As can be seen the results are again
rather similar (both in size and order of the PMPs), with the exception of
H1e.

The overall conclusion is that Bayesian model selection of (in)equality con-
strained hypotheses using Bayes factors or PMPs is rather robust with respect

Table 5.2. PMPs obtained for the emotional reactivity data using the prior distri-
butions from Chapters 4 and 8

Ch. 4 PMP Ch. 8 PMP (a0 = 1)

H1c 0.88 H1c 0.74
H2 0.12 H2 0.13

H0 0.09
H1b 0.00 H1b 0.03
H1a 0.00 H1a 0.00
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Table 5.3. PMPs obtained for the grief data using the prior distributions from
Chapters 4 and 6

Ch. 4 PMP (d = 3) Ch. 6 PMP (τ = 0.5)

H1b 0.40 H1b 0.30
H1d 0.26 H1e 0.26
H1a 0.15 H1d 0.20
H1e 0.13 H1a 0.15
H1c 0.07 H1c 0.08

to the specification of the prior distribution. This conclusion is based on two
results. First of all, as was shown in this chapter, three sensible but different
ways to specify the prior distributions render similar PMPs for the hypothe-
ses specified for the empirical examples introduced in Chapter 2. Second, as
was shown in Chapter 4, if only inequality constraints are used to specify
hypotheses, prior distributions can be specified such (see, for example, the
encompassing prior discussed in Section 5.4.1) that the resulting PMPs are
independent of the mean and variance of the prior distribution.
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6.1 Introduction

The subject of statistical inference under order restrictions has been stud-
ied extensively since Bartholomew’s likelihood-ratio test for means under
restricted alternatives [1]. Order restrictions explicitly introduce scientific
knowledge into the mathematical formulation of the problem, which can im-
prove inference.

Here we restrict our attention to the comparison of means of normally
distributed random variables under ordered alternatives; that is, we assume
yi =

∑J
j=1 µjdji + εi with εi ∼ N (0, σ2) with independence for i = 1, . . . , N

and where dji is 1 if individual i is in group j and 0 otherwise. There is abun-
dant literature addressing this problem from a frequentist standpoint. Most
authors consider simple ordering (i.e., µ1 ≤ µ2 ≤ . . . ≤ µJ). Classical reviews
can be found in [2, 19, 20]. In some situations it is sensible to consider other
orderings. In [21] it was suggested that experimenters occasionally know which
mean is smallest and which is largest, but do not know the relative ordering
of the remaining means. In [17] unimodal or umbrella orderings for which
µ1 ≤ . . . ≤ µj∗−1 ≤ µj∗ ≥ µj∗+1 ≥ . . . ≥ µJ for some j∗ were considered.

From a Bayesian standpoint, inference for a wide variety of models using
Gibbs sampling was considered in [8]. In [6] posterior draws from an uncon-
strained generalized linear model were obtained, and then an isotonic trans-
formation that enforces monotonicity was applied. In [14] it was argued to
use encompassing prior distributions, which condition an overall prior to the
range of allowable parameter values under each hypothesis, and they discussed
an intuitive interpretation of the resulting Bayes factors. In [13] encompassing
priors were used for estimation and hypothesis testing of ordered group means
in general linear models. More details about their approach can be found in
Chapter 4. All these Bayesian approaches test either inequality or approxi-
mate equality constraints, but they do not extend to testing an exact equality
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constraint. For instance, they cannot be used to test the null hypothesis that
all group means are exactly equal.

A difficulty that may be encountered with fully Bayesian approaches like
those just described is that they require the specification of prior distribu-
tions on all the model parameters. This can be a challenging task in situations
where there is not much prior knowledge, since formal Bayesian hypothesis
tests cannot generally be performed with improper priors. In [12] an alterna-
tive approach for computing Bayes factors was proposed, which only requires
specifying prior distributions on noncentrality parameters and which greatly
reduces associated computations. To implement this method, one chooses a
test statistic and then computes the density of the test statistic under each
hypothesis. Bayes factors are obtained as ratios of these densities.

In this chapter we propose the use of methodology from [12] in the context
of problems with order restrictions. In Section 6.2 we formulate our approach,
and in Section 6.3 we assess its behavior by applying it to real data. Finally,
in Section 6.4 we present some concluding remarks.

R functions to implement the methodology described in this chapter are
in the R library isoregbf, see http://rosselldavid.googlepages.com.

6.2 Methods

Normally, computing Bayes factors requires evaluating the marginal density
of the data under each hypothesis. In this chapter, we instead define Bayes
factors by evaluating the density of a relevant test statistic under each hy-
pothesis. The choice of test statistic is described in Section 6.2.1. In Section
6.2.2 we show how the sampling density of the test statistic depends on a
noncentrality parameter vector δ, and in Section 6.2.3 we discuss the speci-
fication of a prior distribution for δ. The computation of Bayes factors and
posterior probabilities is addressed in Section 6.2.4.

6.2.1 Choice of Test Statistic

As a first step, we summarize the data with the statistic (ȳ1, . . . , ȳJ , s
2
p), where

ȳj is the mean of the jth group and s2p is the pooled estimate of the variance.
Note that this is the sufficient statistic under the unrestricted hypothesis that
all group means are different. We then define T = (T1, . . . , TJ−1)′ to be the
following function of the sufficient statistic:

Tj =
ȳj+1 − ȳj

sp

√
1

Nj
+ 1

Nj+1

, j = 1, . . . , J − 1; (6.1)

that is, we construct pairwise statistics that compare each pair of consecutive
groups. This may look like an arbitrary decision at first, since one could also
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consider other pairwise comparisons; for example, one could compare each
category to the first. In Appendix 6.1 we prove that our approach is essentially
invariant to this choice in the sense that we obtain the same result no matter
which pairwise comparisons are used to define the test statistic.

It is important to emphasize that our goal is to make inferences about
differences in group means. Since T contains the information of all possible
pairwise comparisons, most of the information in the sufficient statistic that is
relevant for model comparisons is preserved in T. We note that other authors
have also argued for the use of pairwise t-test statistics in an ANOVA setup
with order restrictions [9, 10].

Finally, note that the test statistic in (6.1) remains a reasonable choice
when a hypothesis specifies a unimodal ordering or some other form of non-
simple ordering.

6.2.2 Distribution of the Test Statistic

We first introduce some notation. LetNj be the number of individuals in group
j and let δ = (δ1, . . . , δJ−1)′, where δj = (µj+1−µj)/σ for j = 1, . . . , J−1 are
standarized mean differences. We use the notation X ∼ N (µ, Σ) to indicate
that a random vector X follows a multivariate normal distribution and X ∼
Tν(µ, Σ) to indicate that a random vector X follows a multivariate T with
ν degrees of freedom, where µ and Σ denote the location parameter and the
scale matrix, respectively. For ν > 2 the covariance matrix is defined and it is
equal to ν

ν−2Σ.
Proposition 1 states that the sampling distribution of T is a noncentral

multivariate T . Here the noncentral T is defined as in [18], i.e. by dividing a
normal with nonzero mean by the square root of an independent chi-square
divided by its degrees of freedom. A difficulty with this definition is that its
density function cannot be evaluated explicitly, but it is possible to approxi-
mate it with the more usual definition of the non-central T , which is obtained
by shifting a central T [7, 15]. See Appendix 6.2 for more details and an
outline of the derivation of this result.

Proposition 1. Given δ, T ∼ TN−J(Bδ, ΣT ), where B and ΣT are (J−1)×
(J − 1) symmetric matrices with elements Bj,j′ and Σj,j′ given by

Bj,j =

√
N − J

2
Γ
(

N−J−1
2

)
Γ
(

N−J
2

) (√
1
Nj

+
1

Nj+1

)−1

,

Bj,j′ = 0,
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Σj,j′ = I(j = j′) +
√
cjcj′δjδj′

− I(|j − j′| = 1)
Nj+1

(
1
Nj

+
1

Nj+1

)−1/2( 1
Nj′

+
1

Nj′+1

)−1/2

, for j ≤ j′,

cj =
(

1
Nj

+
1

Nj+1

)−1
1− N − J − 2

2

(
Γ
(

N−J−1
2

)
Γ
(

N−J
2

) )2
 , (6.2)

where I(·) is the indicator function. Notice that for δj = 0 we get E(Tj |δj =
0) = 0 and Σjj = 1, i.e. a standard Student-t distribution with N − J degrees
of freedom. If δj = 0 for all i, then

Σj,j+1 = − 1
Nj+1

(
1

Nj
+ 1

Nj+1

)−1/2 (
1

Nj+1
+ 1

Nj+2

)−1/2

and Σj,j′ = 0 for
|j − j′| 6= 1.

6.2.3 Prior Specification

In Section 6.2.2 we demonstrated that the distribution of the test statistic
T depends solely on a non-centrality parameter vector δ having components
δj = (µj+1−µj)/σ. We complete the model by specifying a prior distribution
on δ under each of the hypotheses that we wish to compare. We focus the
ensuing discussion on hypotheses that specify monotonic orderings, although
extensions to more complicated orderings are straightforward.

By monotonic ordering of hypotheses we mean that increments between
two consecutive hypothesized means are either always positive (negative) or
exactly 0. Denote by ∆ the set of all standardized increments and ∆+ the
subset of those that are non-zero. It is important to notice that the ordering
specified by each of the hypotheses will, in general, not coincide with the
original ordering µ1, . . . , µJ , which is the ordering that is used to compute
the test statistic T; that is, to find δ from ∆, one generally needs to apply a
linear transformation, say ∆ = Aδ, where A is a square matrix. For example,
if we have three groups and the current hypothesis specifies that µ2 < µ1 = µ3,
we have that ∆1 = (µ1−µ2)/σ and ∆2 = (µ3−µ1)/σ = 0 (hence ∆+ = ∆1).
We then define δ1 = (µ2 − µ1)/σ = −∆1 and δ2 = (µ3 − µ2)/σ = ∆2 +∆1.

We first define a prior specification under the full alternative hypothe-
sis that does not impose any restrictions on the group means. We specify a
multivariate T centered on the null hypothesis of homogeneity of means,

∆ ∼ T1(0, τ2
0Σ

∆), (6.3)

where 0 is a J-dimensional vector of zeroes and τ0 > 0 is the only prior
parameter that needs to be specified. The (i, j) element of the scale matrix is
given byΣ∆

j,j′ = 1 if j = j′,Σ∆
j,j′ = −0.5 if |j−j′| = 1, and 0 elsewhere. The use

of a multivariate T as a default prior has been advocated by several authors
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and has been shown to have desirable properties [3, 4]. The choice of Σ∆ is
motivated by an invariance property that is explained in Appendix 6.1. Here
we note that (6.3) is the implied prior on ∆ when µ ∼ N (0, 0.5τ2

0 I), where 0
is a vector of zeroes and I is the identity matrix, and σ arises independently
from a chi-square distribution with 1 degree of freedom.

We now consider hypotheses with order constraints (i.e., a prior for ∆+).
We condition the prior in (6.3) to the region of allowable parameter values un-
der the current hypothesis. This results in a truncated multivariate T prior for
∆+, possibly of lower dimensionality than (6.3) to account for some elements
of ∆ being exactly equal to zero. We denote a multivariate truncated T with
ν degrees of freedom by TruncTν(µ, Σ,R), where µ is the location parameter,
Σ is the scale matrix, and R indicates the region in which the variable is
allowed to take values (typically the positive axis or quadrant, according to
the ordering).

∆+ ∼ TruncT1(0+, τ2
0Σ

∆+
,∆+ > 0), (6.4)

where 0+ and Σ∆+
are the appropriate subvector and submatrix of 0 and Σ∆

in (6.3), respectively.
Our approach thus implies a prior density on the standardized differences

in means δ, which is the natural scale on which to specify hypotheses since
it represents signal-to-noise ratios or, in the social sciences, the standardized
effect size. The parameter τ0 is easily interpretable, since (6.3) places .5 prior
probability on the univariate interval (−τ0, τ0) and (6.4) on the interval (0, τ0).
The use of τ0 = 1 is advocated in [4] and [3], which would assign .5 prior
probability that the signal-to-noise ratios δ are between −1 and 1. In general,
when reliable prior information is not available, we recommend setting τ0
between 0.1 and 2, since signal-to-noise ratios much smaller than 0.1 or larger
than 2 are not common in practice.

6.2.4 Bayes Factors and Posterior Probabilities

The Bayes factor to compare hypotheses Hp and Hp′ is computed as the ratio
of the marginal densities that they imply for T, given by

BFpp′ =
m(T|Hp)
m(T|Hp′)

, (6.5)

where

m(T|Hp) =
∫
f(T|∆,Hp)dP (∆|Hp) (6.6)

and P (∆|Hp) denotes the prior distribution of ∆ under Hp. The term
f(T|∆,Hp) denotes the sampling distribution of T given in (6.2) and inte-
gration is with respect to the prior distribution on ∆ under Hp, as described
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in Section 6.2.3. Note that integration is really only with respect to ∆+ since
the remaining elements of ∆ are set to be exactly zero.

Once the marginal densities in (6.6) have been obtained, it is straightfor-
ward to compute the posterior probability of each hypothesis as P (Hp|T) ∝
m(T|Hp)πp, where πp is the prior probability assigned to hypothesis Hp.

In summary, to compute Bayes factors and posterior probabilities, we need
only to evaluate the integrals in (6.6). When ∆+ is one dimensional, there are
numerous numerical integration routines that can be used for this purpose.
This task is more challenging in higher dimensions, however. In such cases we
have adopted an importance sampling approach; more sophisticated methods
might also be used. Details concerning integration of ∆+ are provided in
Appendix 6.3.

If ∆ has the same number of nonzero elements under all hypotheses, then
BFpp′ simplifies to P (Rp|T)P (Rp′)/(P (Rp′ |T)P (Rp)), where P (Rp|T) and
P (Rp) are the proportions of the posterior and prior distribution for which δ
falls in the region specified by Hp [14]. Therefore, it is enough to sample from
the prior and posterior of ∆ under the unrestricted model.

6.3 Results

To illustrate our approach, we analyze data from the dissociative identity
disorder study (DID) [11] and the grief study detailed in Chapter 2. We also
simulate data with the same structure as the DID study.

6.3.1 DID Data

Our goal is to compare the mean values of a recognition score, which measures
the recognition of text and pictures of subjects categorized into one of the
following four groups: persons simulating to suffer from DID (Simulators,
sim), DID-patients (pat), persons who guessed the answers to the questions
(True amnesiacs, amn), and a group with healthy control patients (Controls,
con). We wish to test the following hypotheses:

H0 : µsim = µpat = µamn = µcon,

H1a : µsim < {µpat = µamn} < µcon,

H1b : {µsim = µpat} < µamn < µcon,

H2 : not H0; (6.7)

that is, we expect a priori that the Simulators will have the lowest scores and
the Controls the highest, but it is not clear what the relative ordering of the
remaining two groups should be. To address this issue, one could begin by
excluding H0 and H2 and compare the remaining two hypotheses and then
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Fig. 6.1. Recognition score for each group

conduct a second comparison that includes all four hypotheses. However, in a
Bayesian framework it seems more natural to start by computing the posterior
probabilities for all four hypotheses and basing conclusions on these values.

We start with a descriptive analysis. Figure 6.1 provides a boxplot of the
recognition score for the four groups. The Controls present the highest scores,
the True amnesiacs have the second highest, and the Simulators tended to
have slightly lower scores than the DID-patients. The pairwise t-test statistics
for this dataset are T1 = 2.48 to compare µpat versus µsim, T2 = 2.94 for µamn

versus µpat and T3 = 18.97 for µcon versus µamn. The associated two-sided
p-values under the assumption of normality and common variance are .0151,
.0042, and <.0001, respectively. These results qualitatively suggest that H0

does not hold; they provide some evidence against H1a and weaker evidence
against H1b (the Bonferroni correction for multiple comparisons results in a
p-value cutoff of .017).

To compute Bayes factors based on the observed value of the test statis-
tic we only need to specify a single prior parameter, namely the prior scale
parameter τ0 that was defined in Section 6.2.3. We obtain results for τ0 rang-
ing from 0.1 to 1 in increments of 0.1 and from 1 to 10 in increments of 1,
so that we can assess the conclusions that would be reached under different
prior specifications. In most datasets one observes standardized differences
between means smaller than 1 in absolute value. A value of τ0 = 1 assigns .5
prior probability for δj < 1 ∀j = 1, . . . , J ; that is, we deliberately obtain re-
sults for values of τ0 larger than what most practitioners would typically use,
so that we can assess the performance of our approach under these conditions.

●

●

●

●

●

Simulators DID−patients Amnesiacs Controls

0
5

10
15

R
ec

og
ni

tio
n 

sc
or

e



118 Rossell, Baladandayuthapani, Johnson

Fig. 6.2. Bayes factors as a function of the prior scale parameter τ0

To evaluate the integral in (6.6) we use an importance sampling scheme with
1,000,000 Monte Carlo samples per dimension of the integral.

Figure 6.2 provides the Bayes factors (in log-scale) comparing H0 with all
the other hypotheses. For all the considered values of τ0 there is overwhelming
evidence against the null hypothesis. The preferred hypothesis is H1b, followed
by H1a and H2; that is, the Bayes factors favor the more parsimonious model
H1b and even H1a over the full alternative H2, even though the p-values
comparing µsim versus µpat and µpat versus µamn were significant. We consider
this to be an attractive feature of the Bayesian approach.

To obtain posterior probabilities, we assume that all hypothesis are equally
likely a priori. Table 6.1 summarizes results obtained under this assumption.
We see that H1b has the largest posterior probability for all values of τ0
considered, with probabilities ranging from .665 for τ0 = 0.1 to .740 for τ0 =

Table 6.1. Posterior probabilities for DID data and selected values of τ0

τ0 H0 H1a H1b H2

0.1 <.001 .206 .665 .129
0.5 <.001 .205 .666 .129
1.0 <.001 .204 .667 .129

10.0 <.001 .155 .740 .105
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Fig. 6.3. Bayes factors as a function of the prior scale parameter τ0 for simulated
dataset with Nj = 10

10. The second most probable hypothesis is H1a, whereas H0 has a negligible
posterior probability for all the selected values of τ0. The results appear to be
quite robust with respect to the prior specification.

6.3.2 Simulated Data

We now consider a study with the same structure as the DID study from
Section 6.3.1; that is, we assume that there are four groups and the hypotheses
are as defined in (6.7). We generate both a small and a large dataset under
the null hypothesis H0 (i.e., yi ∼ N (0, σ2) ∀i), and obtain results for values
of the prior parameter τ0 ranging between 0.01 and 10. The small and large
datasets contain 10 and 10,000 observations per group, respectively, and in
both cases the observational variance is set to σ2 = 1.625, the value estimated
from the DID dataset.

Figures 6.3 and 6.4 plot log-Bayes factors as a function of τ0 for Nj = 10
and Nj = 10, 000, respectively. Qualitatively we observe similar results for
both datasets, even though for any fixed value of τ0 the evidence in favor of
H0 is stronger in the large dataset. The results are positive in the sense that for
all values of τ0 there is moderate evidence in favor of H0 in the small dataset
and strong evidence in the large dataset. Also, H1a and H1b are favored over
H2, since they assume that some of the group means are equal to each other.
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Fig. 6.4. Bayes factors as a function of the prior scale parameter τ0 for simulated
dataset with Nj = 10, 000

The smaller the value of τ0, the more mass that the alternative hypotheses
concentrate around ∆ = 0 and the more similar to H0 that they become,
resulting in log-Bayes factors closer to 0. As τ0 increases evidence favoring H0

becomes stronger.
Table 6.2 provides the posterior probability of H0 for several values of τ0.

In the large dataset the results are robust with respect to τ0. In the small
dataset, H0 is always favored, but for τ0 = 0.1, the other hypotheses also have
relatively high posterior probabilities. As argued in Section 6.2.3, τ0 = 1 is a
reasonable default choice. In both simulated datasets τ0 = 1 results in a high
posterior probability for the correct hypothesis.

Table 6.2. Posterior probabilities for simulated data and selected values of τ0

Large data (Nj=10,000) Small data (Nj = 10)

τ0 H0 H1a H1b H2 H0 H1a H1b H2

0.1 .913 .044 .021 .022 .374 .211 .144 .271
0.5 .997 .002 .001 <.001 .665 .098 .078 .159
1.0 .999 .001 <.001 <.001 .844 .045 .043 .069

10.0 1.000 <.001 <.001 <.001 .998 .001 .001 <.001
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6.3.3 Grief Data

We next consider a study that examined a measure of complicated grief (CG)
resulting from the loss of a loved one. The study recorded the CG score for
1179 patients along with their gender, whether a child or spouse had died,
and whether the loss was recent or not. Thus, patients were divided in eight
groups according to their sex, kinship, and time from loss. In Chapter 2 each
group was labeled by a number between 1 and 8. Our goal is to assess the
following statements:

H0: there are no differences between groups,
H1a: grief from a recent loss is greater than from a remote loss,
H1b: additionally to H1a, women grieve more than men,
H1c: additionally toH1b, losing a child causes more grief than losing a spouse,
H1d: additionally to H1a, losing a child is more severe for women than losing

a partner, and losing a child is more severe for women than for men,
H1e: additionally to H1d, losing a partner is more severe for men than losing

a child, and losing a partner is more severe for men than for women,
H2: otherwise (i.e., neither H0 nor H1a hold).

These statements are made precise in Chapter 2 by stating inequalities be-
tween pairs of group means. We define H2 in a slightly different manner than
it is done in Chapter 2. Chapter 2 defines H2 as an unrestricted hypothesis,
whereas here we restrict H2 so that it only contains the parameter values
that are not allowed by any of the other hypotheses. The inequalities can
be trivially re-expressed in terms of δ. For instance, µ2 > µ1 if and only if
δ1 = (µ2 − µ1)/σ > 0. See Appendix 6.4 for a detailed elicitation of the hy-
potheses in terms of δ. As before, we use the vector of t-test statistics T to find
Bayes factors and posterior probabilities for the above-mentioned hypotheses.
For these data we find T = (−2.43, 0.27,−0.41, 2.82,−4.83, 2.80,−0.72). The
large values of some of the components of T suggest that the null hypothesis
does not hold.

From the results of previous studies (see Chapter 2), a priori we expect
that the standardized differences between means δ are not large. Therefore,
it is unreasonable that τ0 is larger than 1. We set τ0 = 0.5 as our primary
choice, although we also use τ0 = 0.1 and τ0 = 1 to assess the sensitivity
of the results. We assign prior probability 1/2 to the existence of differences
between groups (i.e., P (H0) = 1/2). This results in a posterior probability
P (H0|T) < .001 for the three values of τ . Since H0 has negligible posterior
probability, we do not consider it further.

To compute Bayes factors for the remaining hypotheses, we generated
100,000 samples from the posterior distribution of δ given T using Metropolis-
Hastings sampling as implemented in the function MCMCmetrop1R from the R
library MCMCpack [16]. As explained in Section 6.2.4, BFpp′ in (6.5) can be
approximated by (P̂ (Rp|T)P̂ (Rp′)/(P̂ (Rp′ |T)P̂ (Rp)), where Rp is the region
of allowable parameter values under Hp. P (Rp|T) and P (Rp) are the posterior



122 Rossell, Baladandayuthapani, Johnson

Table 6.3. Bayes factors and posterior probabilities for the grief data

Bayes factor vs. H2 Posterior probability

τ0 H1a H1b H1c H1d H1e H1a H1b H1c H1d H1e H2

0.1 15.00 23.14 7.08 17.12 21.32 .891 .347 .044 .449 .136 .109
0.5 16.76 32.64 9.12 22.03 28.00 .908 .409 .045 .481 .141 .092
1.0 16.38 36.26 9.92 22.35 29.94 .913 .441 .047 .484 .145 .087

and prior proportions of δ values, respectively, in Rp under the unrestricted
prior (6.3).

Table 6.3 provides the Bayes factors for each of the hypotheses versus H2.
For τ0 = 0.5 the data provides very strong evidence in favor of H1b when
compared to H2, strong evidence for H1e, H1d, and H1a, and substantial
evidence for H1c. Similar results are observed for τ0 = 1 and for τ0 = 0.1,
although in the later case the evidence in favor of all these hypotheses is
somewhat weaker.

We now complete our analysis by obtaining the posterior probabilities
P (Hp|T) for each hypothesis. It is important to distinguish these from
P (Rp|T), which is the proportion of the posterior distribution falling in the
region specified by Hp. P (Hp|T) depends on the prior probability πp, whereas
P (Rp|T) depends on the prior proportion P (Rp) (i.e., the volume of the multi-
variate T prior (6.3) that falls in Rp). For instance, under (6.3), the prior prob-
ability for R1a is P (δ1 < 0, δ3 < 0, δ5 < 0, δ7 < 0) = .54 = .0625 and the prior
probabilities for R1b, . . . , R1e are substantially smaller. Since H1a, . . . ,H1e

arise from psychological considerations and the results of previous studies,
setting πp = P (Rp) would make H1a, . . . ,H1e too unlikely a priori. Instead,
we consider that each statement made in H1a, . . . ,H1e is equally likely. As
an illustration, suppose we only considered H1a, H1b, and H2. In this case
we would assign .5 probability that grief from a recent loss is greater and .5
probability that women grief more than men, with independence. H1b holds if
both statements are true simultaneously, which occurs with prior probability
.5 × .5, whereas π1a = .5 and π2 = 1 − π1a = .5. Since H1b is nested within
H1a (i.e., H1b is true ⇒ H1a is true), we have that π1a + π2 = 1 instead of
π1a + π1b + π2 = 1.

When considering all hypotheses, we arrive at the following prior proba-
bilities (see Appendix 6.4 for a detailed explanation): π1a = .5, π1b = .167,
π1c = .056, π1d = .278, π1e = .056, and π2 = 1− π1a = .5. Of course, we use
these prior probabilities as an illustration; other values are also possible.

The posterior probabilities must be computed carefully, for the hypotheses
are not mutually exclusive. For instance, if H1c is true, then H1b and H1a are
also true, and hence we should have that P (H1c|T) ≤ P (H1b|T) ≤ P (H1a|T).
As a consequence, the posterior probabilities of H1a, . . . ,H1e,H2 should not
add up to 1. It is the posterior probabilities of H1a and H2 that should add
up to 1, since they are mutually exclusive and complementary. To deal with
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this issue, we divide the parameter space into mutually exclusive regions and
then add their posterior probabilities (Appendix 6.4).

Table 6.3 provides the posterior probability of each hypothesis. For τ0 =
0.5 there is .908 posterior probability that recent loss leads to more grief
than remote loss (H1a). There is .409 probability that, additionally, women
grieve more than men (H1b) and .481 probability that women grieve more
for the loss of a child than men (H1d). Hypotheses H1c and H1e have low
posterior probability, despite their large Bayes factor. This is due to their a
priori probability being small.

To summarize, we confirm that recent loss causes more grief. We find
evidence that women grieve more than men in general and that they grieve
more after the loss of a child. Since this contradicts most earlier studies, this
evidence is not conclusive. It is unlikely that losing a child causes more grief
both for men and women, or that men are more attached to their spouse than
to their children.

6.4 Conclusions

We have presented an approach for computing Bayes factors and posterior
probabilities that can be used to compare several competing probability mod-
els or hypotheses under order restrictions. Because the resulting Bayes factors
are based on test statistics rather than on all the observed data, there is a
possibility that some information is lost. However the selected test statistic
is closely related to the sufficient statistic under the model that specifies no
order restrictions, which suggests that the loss of information will be negligi-
ble unless there is substantial prior information about attributes of the data
not reflected in the test statistic. In addition, we have proven some invariance
properties that make this choice of test statistic more compelling.

The main advantage of our approach is that it requires only the specifica-
tion of prior distributions for the parameters that govern the sampling distri-
bution of the test statistic, which can be substantially simpler than specifying
priors for all the parameters that index the distribution of the original data.

The sampling distribution of our proposed test statistic is fully determined
by a noncentrality parameter vector. We have proposed a prior distribution
that only requires setting the value of a single scalar parameter τ0. Based on
practical considerations we have argued that reasonable default values for τ0
may be between 0.1 and 2, and in analyzing both real and simulated data,
this range of values seems to perform satisfactorily. For example, in simulated
data with only 10 observations per group, our approach chose the correct
model for any value of τ0 within this range, albeit the posterior probability of
competing models was not negligible. Indeed, we have observed that in larger
datasets the approach can be quite robust to the specification of τ0.

With minor modifications, our methodology can be extended beyond the
case of simple ordering. For example, the so-called umbrella ordering can be
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addressed simply by truncating certain parameters to be negative instead of
positive. Another possible extension would be to consider multiple regression
models in a generalized linear models setup; that is, while one is still mainly
interested in studying possible orderings between groups, the response may
be non-normal and one may wish to include some additional explanatory
variables in the model. In such a setup, one could define the test statistic using
estimated regression coefficients instead of sample means, as we have done
here. Note that the dimensionality of this statistic does not increase as more
variables are added to the model, which results in considerable computational
savings.

In summary, we have defined an approach that substantially simplifies
prior specification and that appears to be reasonably robust with respect to
this specification. We believe that this makes our approach an appealing choice
when informative prior knowledge is not available.
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Appendix 6.1

We now prove that our approach delivers the same results no matter what
pairwise comparisons are chosen to construct the test statistic T defined in
Section 6.2.1, provided that the pairs are chosen in such a way that the test
statistic has a nondegenerate distribution; that is, the only requisite is that
the covariance matrix be of full rank.

Since Bayes factors depend uniquely on integrals of the form presented in
(6.6), we will show invariance of this integral both for ordered hypotheses and
the full alternative hypothesis.

First, consider an arbitrary ordered hypothesis. Since ∆ measures dif-
ferences between groups that are adjacent under the order specified by the
hypothesis, its prior distribution f(∆|Hp) is the same for any choice of pair-
wise comparisons. Therefore, we only need to establish the equivalence of the
probability density function f(T|∆,Hp). Recall that δ is a one-to-one linear
function of ∆ and therefore we can equivalently write f(T|δ,Hp). Using (6.2),
we have that

f(T,Hp|δ) ∝
(

1 +
1

N − J
(T−Bδ)′Σ−1

T (T−Bδ)
)(N−1)/2

. (6.8)

Let T∗ be another test statistic obtained through another set of J − 1
pairwise comparisons. Since the elements in T∗ are linear combinations of
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those in T, we can write T∗ = DT, where D is a (J − 1) × (J − 1) matrix.
Since T|δ ∼ TN−J(Bδ, ΣT ) and D is assumed to be of full rank, it is a well-
known result that T∗|δ ∼ TN−J(DBδ, DΣTD

′). Therefore, the density of T∗

given δ is proportional to

f(T∗|δ,Hp) ∝
(

1 +
1

N − J
(T∗ −DBδ)′(DΣTD

′)−1(T∗ −DBδ)
)(N−1)/2

=
(

1 +
1

N − J
(T−Bδ)′D′D′−1ΣTD

−1D(T−Bδ)
)(N−1)/2

=
(

1 +
1

N − J
(T−Bδ)′Σ−1

T (T−Bδ)
)(N−1)/2

,

which is equivalent to (6.8). This proves the result for any ordered hypothesis.
Now consider the full alternative hypothesis specifying that all group

means are different. Using the same argument as that for ordered hypotheses
proves the invariance of f(T|∆,Hp). However, note that for the full alterna-
tive the groups could have been given in any order; that is, the definition of
what categories are adjacent is arbitrary. Hence, we need to prove that the
prior is invariant with respect to reorderings of the groups.

To prove this it is convenient to consider the prior in terms of (µ, σ) and
then derive the implied prior for ∆. Let µ ∼ N (0, 0.5τ2

0 I), where 0 is a vector
of zeroes and I is the identity matrix, and let σ arise independently from a
chi-square distribution with 1 degree of freedom. Then δ can be computed as
δ = Pµ/σ, where P is a (J − 1) × J contrast matrix taking the differences
between µj+1/σ and µj/σ for j = 1, . . . , J − 1. Then by definition of the
multivariate T distribution we get that

δ ∼ T1

(
0, 0.5τ2

0PP
′) , (6.9)

where 0.5PP ′ is a matrix with ones in the diagonal, −0.5 in the upper and
lower subdiagonals, and 0 elsewhere.

Suppose that we reorder the elements of µ, say by defining µ∗ = Qµ where
Q is a matrix with canonical unit vectors as rows (i.e., QQ′ = I). Then if we
define δ∗ = Pµ∗ = PQµ/σ, again by definition we get that

δ∗ ∼ T1

(
0, 0.5τ2

0PQQ
′P ′
)
. (6.10)

But since QQ′ = I, this is equivalent to (6.9); that is, any group reordering
results in the same prior distribution for the noncentrality parameters, which
proves the result.
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Appendix 6.2

To find the distribution of T, we start by considering Z = (Z1, . . . , ZJ)′,
where Zj =

√
Nj ȳj/sp for j = 1, . . . , J . It is well known that

√
Nj ȳj/σ ∼

N (
√
Njµj/σ, 1) and (N − J)s2p/σ

2 ∼ χ2
N−J with mutual independence, from

which it follows that Z ∼ TN−J(µZ , ΣZ) in the sense defined by [18].
This definition of the noncentral T is obtained by dividing normal vari-

ates with nonzero mean by the square root of an independent scaled chi-

square; that is, Tj =
N (
√

Njµj/σ,1)√
χ2

N−J/(N−J)
. A difficulty with this definition is

that its probability density function cannot be evaluated explicitly. For this
reason, we approximate it with the more common definition of the non-
central T , obtained with a location shift of a central T [7, 15]; that is,
Tj = N (0,1)√

χ2
N−J/(N−J)

+
√
Njµj/σ. It is worthwhile noticing that for the central

multivariate T case, both definitions are equivalent and that as N − J →∞,
both approximate the same limiting normal distribution. Also, for both defi-
nitions, any linear combination or subvector remain within the family.

After some algebra, one finds that

E(Zj) = an

√
Nj

µj

σ
,

V (Zj) =
N − J

N − J − 2
(1 +Njµ

2
j/σ

2)− E(Zj)2,

Cov(Zj , Zj′) =
√
NjNj′

µjµj′

σ2

(
N − J

N − J − 2
− a2

N

)
,

aN =

√
N − J

2
Γ (0.5(N − J − 1))
Γ (0.5(N − J))

. (6.11)

Now, note that we can obtain T = DZ where D is a matrix with elements

dj,j =
−1√

Nj

√
1

Nj
+ 1

Nj+1

,

dj,j+1 =
1√

Nj+1

√
1

Nj
+ 1

Nj+1

,

dj,j′ = 0, elsewhere.
(6.12)

Following standard results for the multivariate T (see, e.g., [5]) we get that
T ∼ TN−J(µT , ΣT ), where µT = DµZ and ΣT = DΣZD

′. Working out the
algebra gives the expressions for µ and ΣT given in (6.2).
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Appendix 6.3

We discuss the choice of importance sampling distribution in the numerical
evaluation of (6.6). Ideally, this distribution should give high probability to
the regions in which the integrand takes large values.

Since there are two functions contributing to the integrand, namely the
likelihood f(T|∆,Hp) and the prior f(∆|Hp), we use a mixture of two trun-
cated multivariate normal distributions: one centered at the likelihood and
the other at the prior. Both multivariate normals have independent compo-
nents that are left-truncated at zero, so that the mixture has the same support
as the integrand. We use independent components out of convenience, since
under independence one only needs to deal with univariate truncation regions.

To find the normal component centered at the likelihood, recall that the
likelihood increases with (T − Bδ)′Σ−1

T (T − Bδ) and that ∆ = Aδ. This
can be rewritten as (δ − B−1T)′BΣ−1

T B(δ − B−1T); that is, the maximum
is achieved at δ = B−1T. Therefore, we set the mean of the proposal to
m = AB−1T. For the variance we use the diagonal elements of Σ̂, where Σ̂
is obtained by plugging in m for δ in (6.2). To center the other multivariate
normal on the prior we simply take a normal with zero mean and variance
equal to τ2

0 for all its components.
All that is left to set is the mixing weights. We set the weight for the

component centered at the likelihood to be proportional to the value of the
integrand at m relative to its value at 0, that is,

f(T|m, Σ̂,Hp)f(m|Hp)

f(T|m, Σ̂,Hp)f(m|Hp) + f(T|0, Σ0,Hp)f(0|Hp)
, (6.13)

where Σ0 is obtained by plugging in 0 for δ in (6.2); that is, the smaller the
value of this function at the origin the proportion of observations that will be
generated from the multivariate normal centered at zero will be smaller.

Appendix 6.4

Here we specify the hypotheses for the grief data in terms of δ (Chapter 2
states them in terms of the group means µ1, . . . , µ8), and we assign prior
probabilities to them. Since δj = (µj+1 − µj)/σ, we have that (µj − µj′)/σ =
(µj − µj−1 + µj−1 − . . .+ µj′+1 − µj′)/σ =

∑j
l=j′ δl. The five conditions used

to define H1a, . . . ,H1e, which we denote C1, . . . , C5, are as follows:

C1: µ1 > µ2, µ3 > µ4, µ5 > µ6, µ7 > µ8 if and only if

δ1 < 0, δ3 < 0, δ5 < 0, δ7 < 0,

C2: µ5 > µ1, µ6 > µ2, µ7 > µ3, µ8 > µ4 if and only if
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j=1 δj > 0,

∑5
j=2 δj > 0,

∑6
j=3 δj > 0,

∑7
j=4 δj > 0,

C3: µ3 > µ1, µ4 > µ2, µ7 > µ5, µ8 > µ6 if and only if

δ1 + δ2 > 0, δ2 + δ3 > 0, δ5 + δ6 > 0, δ6 + δ7 > 0,

C4: µ7 > µ5, µ8 > µ6, µ7 > µ3, µ8 > µ4 if and only if

δ5 + δ6 > 0, δ6 + δ7 > 0,
∑6

j=3 δj > 0,
∑7

j=4 δj > 0,

C5: µ1 > µ3, µ2 > µ4, µ1 > µ5, µ2 > µ6 if and only if

δ1 + δ2 < 0, δ2 + δ3 < 0,
∑4

j=1 δj < 0,
∑5

j=2 δj < 0.

The hypotheses can thus be stated as

H1a: C1 holds,
H1b: C1, and C2 hold,
H1c: C1, C2 and C3 hold,
H1d: C1, and C4 hold,
H1e: C1, C4 and C5 hold,
H2: C1 does not hold.

We assign a prior probability of .5 that C1 holds (i.e., π1a = π2 = .5).
For the remaining hypotheses we consider that all the possible combinations
of C2, . . . , C5 are equally likely, after excluding the combinations that are not
possible. For instance, C2 and C5 require a different sign for

∑4
j=1 δj and,

hence, they are mutually exclusive. Similarly, C3 and C5 are also mutually
exclusive. After careful examination, we find that only the following 9 out of
the 16 possible combinations are feasible:

1. C2, C3, C4 hold, C5 does not hold,
2. C2, C4 hold, C3, C5 do not hold,
3. C2 holds, C3, C4, C5 do not hold,
4. C3, C4 hold, C2, C5 do not hold,
5. C3 holds, C2, C4, C5 do not hold,
6. C4, C5 hold, C2, C3 do not hold,
7. C4 holds, C2, C3, C5 do not hold,
8. C5 holds, C2, C3, C4 do not hold,
9. C2, C3, C4, C5 do not hold.

To compute the prior and posterior probability of each hypothesis, we sum the
appropriate combinations. Consider, for example, H1b, which requires both C1

and C2 to hold. C2 holds in combinations 1, 2, and 3, and hence a priori it
has probability 3/9. C1 holds with probability 1/2 (with independence), so
the prior probability of H1b is 1

2
3
9 = .167. For the probability a posteriori, we

compute Bayes factors for each of the nine combinations, find their posterior
probabilities and then sum the appropriate combinations.

The prior probabilities presented here should be considered illustrative. In
particular, it would also be reasonable to consider some degree of subjectivity
or dependence between hypotheses.
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7.1 Introduction

Informative hypotheses are particular hypotheses about the vector of means
µ in the classical normal ANOVA model:

Y = Xµ+ ε,

where ε is the vector of uncorrelated normal errors with constant variance σ2.
Informative hypotheses involve a complex ordering of means like, say,

H1a : {µ1 = µ2} < µ3 < {µ4 = µ5}

or
H1b : µ1 < {µ2 = µ3} < µ4 < µ5,

among other possibilities. In order to compare models, in the canonical
Bayesian way (i.e., in terms of Bayes factors) and upon specification of a
prior under, say, H1a, π(µ1, µ2, µ3, µ4, µ5, σ|H1a), we need to calculate the
marginal densities:

m(y|H1a) =
∫

H1a

f(y|µ, σ,H1a)π(µ1, µ2, µ3, µ4, µ5, σ|H1a) dµ dσ. (7.1)

There are two difficulties with (7.1):

1. The difficulty of assessment of the prior π(.|H1a), which is potentially
highly influential.

2. The difficulty in the computation of integral in (7.1), due to the awkward
region of integration, which is in the very definition of an informative
hypothesis.
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A direct approach to deal with inequality constraints is in Berger and
Mortera, who studied in depth the simplest examples with inequality con-
straints [3]. However their detailed and incisive direct approach seems bound
to be restricted to very simple situations, unsuited to the kind of examples en-
countered for example in psychology, particularly for dimensions greater than
2. Our own approach however, is conceptually closest to Berger and Mortera’s
approach. Another general approach is presented in Chapter 4, which suggests
an encompassing approach plus the replacement of equality constraints by
constraints that the means are close. Other relevant references are [15], [16],
[17], and Chapter 8. The ideas in the present chapter have been developed
independently of these cited works.

Our own approach, which we call “completing and splitting” the informa-
tive hypothesis, circumvents both difficulties with (7.1), permits dealing with
complex hypotheses, and does not involve the assessment of extra parameters
of “proximity” in hypotheses of equality. The basic idea is to make a natu-
ral completion of an informative hypothesis. Take, for instance, H1a with a
completed hypothesis

H∗
1a : {µ1 = µ2} 6= µ3 6= {µ4 = µ5} ,

with a corresponding completion of H1b denoted by H∗
1b, in which all order

constraints are replaced by inequalities. These completions allow one to split
the problem in (7.1) in two factors: One of a usual objective marginal density
and (objective) Bayes factor and the other factor as a probability of a region
with positive measure, thus, the name “completing and splitting” approach.
In the sequel, it will be shown that

m(y|H1a) = m(y|H∗
1a)× Pr(H1a|y,H∗

1a), (7.2)

which is the pivotal identity of the completion and splitting approach. Equa-
tion (7.2) entails a substantive methodological simplification of (7.1). The first
factor can be dealt with using objective Bayes factor theory and the second
through Markov chain Monte Carlo (MCMC) methods.

In the next sections we briefly outline some theory of objective Bayes fac-
tors, after which the development of our approach is presented. Several exam-
ples of different objective factors are exposed that lead to different versions
of our general approach. A numerical illustration is presented and, finally,
conclusions are given.

7.2 Preliminaries: General Coherent Approach of
Posterior Model Probabilities

We start the general framework on posterior model probabilities and objective
Bayes factors presenting the general, coherent, and elegant Bayesian formalism
to tackle the problems of hypotheses testing and model selection. Notice,
however, that it is harder than it looks at first sight.
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7.2.1 Bayes Factors and Posterior Model Probabilities

Suppose that we are comparing q models for the data y,

Hi : Y has density fi(y|θi), i = 1, . . . , q,

where the θi = (µi, σ
2) are the unknown model parameters. Suppose that

we have available prior distributions, πi(θi), i = 1, . . . , q, for the unknown
parameters. Define the marginal or predictive densities of Y,

mi(y) =
∫
fi(y|θi)πi(θi) dθi.

A central quantity for comparing models, the Bayes factor of Hj to Hi, is
given by

BFji =
mj(y)
mi(y)

=
∫
fj(y|θj)πj(θj) dθj∫
fi(y|θi)πi(θi) dθi

.

The Bayes factor is often interpreted as the “evidence provided by the data
in favor or against modelHj versus the alternative modelHi,” but it should be
remembered that Bayes factors depend also on the priors. In fact, assuming
an objective Bayesian viewpoint, the priors may be thought of “weighting
measures” and the Bayes factor as the “weighted averaged likelihood ratio,”
which are in principle more comparable than maximized likelihood ratios, as
measures of relative fit. Notice that if Hi is nested in Hj , then, logically, the
maximized likelihood of Hj is a fortiori larger than the maximized likelihood
of Hi. On the other hand, Bayes factors introduce an automatic penalty for
overparametrization.

If prior probabilities P (Hi), i = 1, . . . , q, of the models are available, then
one can compute the posterior probabilities of the models from the Bayes
factors. Using Bayes’ rule, it is easy to see that posterior probability of Hi,
given the data y, is

PMP(Hi |y) =
P (Hi)mi(y)∑q

j=1 P (Hj)mj(y)
=

 q∑
j=1

P (Hj)
P (Hi)

BFji

−1

. (7.3)

A particularly common choice of the prior model probabilities is P (Hi) =
1/q, so that each model has the same initial probability, but there are other
possible choices; see, for example, [4].

7.2.2 Comparisons and Connections Frequentist and Bayesian
Evidences

In the frequentist literature, the different methods for model selection (as
Akaike Information Criterion, AIC, [2]) can be written as
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Likelihood Ratio × Correction Factor.

A Bayesian version for grouping the different methods is

Un-normalized Bayes Factor × Correction Factor,

or in symbols,

BFij =
mN

i (y)
mN

j (y)
× CFji = BFN

ij × CFji,

where BFN
ij is the ratio of marginal densities, calculated with noninformative,

and typically improper (do not integrate one in the parameter space), prior
densities πN (θk), k = i, j. A very important question is whether this correction
of BFN

ij is actually equivalent with the use of proper and sensible priors, to
calculate proper Bayes factors (i.e., scaled Bayes factors calculated with proper
priors). The next general principle addresses this issue.

Principle 1. Testing and model selection methods should correspond, in some
sense, to actual Bayes factors, arising from reasonable default prior distribu-
tions.

This principle was first stated in [4]. It is natural for a Bayesian to ac-
cept that the best discriminator between procedures is the study of the prior
distribution (if any) that give rise to the procedure or that is implied by it.
Other properties, like large sample size consistency, are rough as compared
with the incisiveness of Principle 1. In [5] it is shown that intrinsic Bayes
factors (see below) actually correspond to the use of (conditionally) proper
priors. Also, fractional Bayes factors often correspond to conditionally proper
priors. Training samples are important in several of the methods for objective
Bayes factors, like intrinsic and fractional Bayes factors.

Definition 1. Deterministic (minimal) training samples, are simply subsets
(of the sample y) y(l), l = 1, ..., L, of size m, as small as possible so that,
starting with improper priors πN , using the training sample as the sample in
Bayes’ theorem, all the updated posteriors under all models become proper.

A general discussion about different kinds of training samples can be found
in [8].

Consider two models, Hi and Hj , and take a minimal (or larger) training
sample y(l), which is a subset of the whole sample y(l) ⊆ y. Denote by y(−l)
the complement of the training sample. Now use y(l) to make the priors proper
and use y(−l) to form the (proper) Bayes factor, and use Bayes’ theorem to
get the following identity:

BFij(y(−l)|y(l)) =
∫
f(y(−l)|θi,y(l))πN (θi|y(l)) dθi∫
f(y(−l)|θj ,y(l))πN (θj |y(l)) dθj

= BFN
ij (y)×BFN

ji (y(l)),
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where

BFN
ji (y(l)) =

∫
f(y(l)|θj)πN (θj) dθj∫
f(y(l)|θi)πN (θi) dθi

,

and BFN
ij (y) is the same but replacing y(l) by y. Use of training samples

to scale Bayes factors seemed to have been pioneered in [18]. This general
reference is an important and often overlooked milestone, seminal in the area
of training samples and model selection. It is timely that this book rescues
this important monograph.

7.3 Different Approaches for Objective Bayes Factors

In this section a brief review is given to different approaches to objective
Bayes factors, which are of direct relevance to the completing and splitting
approach of informative hypothesis, as presented in (7.2) in the introduction.
Application of these methods to informative hypotheses will be presented in
Sections 7.4 and 7.5.

7.3.1 Conventional Prior Approach

It was Jeffreys [14] who recognized the problem of arbitrary constants aris-
ing in hypotheses testing problems, implied by the use of “Jeffreys’ Rule” for
choosing objective-invariant priors for estimation problems. For testing prob-
lems then, a convention has to be established. His approach is based on (i)
using non-informative priors only for common parameters in the models, so
that the arbitrary multiplicative constant for the priors would cancel in all
Bayes factors and (ii) using default proper priors for orthogonal parameters
that would occur in one model but not the other. These priors are neither
vague nor overinformative, but correspond to a definite but limited amount
of information.

Example 1: Normal Mean, Jeffreys’ Conventional Prior
Suppose the data is Y = (Y1, . . . , Yn), where the Yl are iid N (µ, σ2

2) under H2.
Under H1, the Yl are N (0, σ2

1). Since the mean and variance are orthogonal
in the sense of having diagonal expected Fisher’s information matrix, Jeffreys
equated σ2

1 = σ2
2 = σ2. Because of this, Jeffreys suggested that the variances

can be assigned the same (improper) noninformative prior πJ(σ) = 1/σ, since
the indeterminate multiplicative constant for the prior would cancel in the
Bayes factor. (See [20] for a formal justification.)

Since the unknown mean µ occurs in only H2, it needs to be assigned a
proper prior. Jeffreys came up with the following desiderata for such a prior
that in retrospect appears as compelling: (i) It should be centered at zero (i.e.,
centered at the null hypothesis), (ii) have scale σ (i.e., have the information
provided by one observation), (iii) be symmetric around zero, and (iv) have no
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moments. He then settled for the Cauchy prior Cauchy(0, σ2) as the simplest
distribution that obeys the desiderata. In formula’s, Jeffreys’s conventional
prior for this problem is

πJ
1 (σ1) =

1
σ1
, πJ

2 (µ, σ2) =
1
σ2
· 1
πσ2(1 + µ2/σ2

2)
. (7.4)

This solution is justified as a Bayesian prior, as shown in [20].

7.3.2 Intrinsic Bayes Factor (IBF) Approach

For the q modelsH1, . . . ,Hq, suppose that (ordinary, usually improper) nonin-
formative priors πN

i (θi), i = 1, . . . , q, have been chosen, preferably as reference
priors. The general strategy for defining IBFs starts with the definition of a
proper and minimal deterministic training sample, y(l). Using a particular
training sample scales the improper Bayes factor. But, in principle, a single
training sample is arbitrary. So it is necessary to perform some sort of average
among the corrections from different training samples.

A variety of different averages are possible; here consideration is given only
to the Arithmetic IBF (AIBF) defined as

BFAI
ji = BFN

ji (y) · 1
L

L∑
l=1

BFN
ij (y(l)). (7.5)

It turns out by [4] that it is the AIBF, which is equivalent to the use of proper
(conditional) priors.

7.3.3 Fractional Bayes Factor as an Average of Training Samples
for Exchangeable Observations

The Fractional Bayes Factor (FBF) was introduced in [19]. The FBF uses
a fraction, b, of each likelihood function, fi(y|θi), with the remaining 1 − b
fraction of the likelihood used for model discrimination. Using Bayes’ rule, it
follows that the FBF of model Hj to model Hi is then given by

BF
F (b)
ji = BFN

ji (y)
∫
f b(y|θi)πN

i (θi) dθi∫
f b(y|θj)πN

j (θj) dθj
= BFN

ji (y)
mb

i (y)
mb

j(y)
. (7.6)

The usual choice of b (as in the examples in [19] and the discussion in [3]
of [19]) is b = m/n, where m is the minimal training sample size (i.e., the
number of observations contained in a minimal training sample).

It has been pointed out in [10], that the FBF for exchangeable observations
at least can be thought of as a Bayes factor with a correction obtained through
the geometrical average of likelihoods over all training samples; that is, mb

j(y)
can be obtained by integrating the geometric average of the product of the
likelihoods over all training samples of equal size r = b× n,
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mb
j(y) =

∫ [∏
f(y(l)|θj)

] 1
N(r)

πN (θj) dθj ,

where the product is over all proper training samples of size r, and N(r) is
the total number of proper training samples of size m ≤ r < n. This property
is important to understand the conceptual connections between FBF’s and
IBF’s.

7.3.4 The Intrinsic Prior Approach

Methods closely related to the IBF approach are the intrinsic prior and the
Emprirical Expected Posterior Prior (EP) approach. The IBF approach can
be thought of as the long sought device for the generation of good conventional
priors for model selection in nested scenarios. See [12] and references therein.
As part of the general evaluation strategy of the methods, Principle 1 proposes
investigation of so-called intrinsic priors corresponding to a model selection
method.

The following is a key approximation to a Bayes factor associated with
priors πj and πi:

BFji = BFN
ji ·

πj(θ̂j)πN
i (θ̂i)

πN
j (θ̂j)πi(θ̂i)

(1 + o(1)), (7.7)

where θ̂i and θ̂j are the maximum likelihood estimates (m.l.e.s) under Hi and
Hj . This approximation holds in considerably greater generality than does
the Schwarz approximation and it is fundamental for Bayes factors theory
and practice. On the other hand, methods like the FBF and IBF yield

BFji = BFN
ji · CFij , (7.8)

where CFij is the it correction factor. To define intrinsic priors, equate (7.7)
with (7.8), yielding

πj(θ̂j)πN
i (θ̂i)

πN
j (θ̂j)πi(θ̂i)

(1 + o(1)) = CFij . (7.9)

In the nested model scenario (Hi nested in Hj), for the AIBF and under mild
assumptions, solutions are given by

πI
i (θi) = πN

i (θi), πI
j (θj) = πN

j (θj)BF ∗j (θj), (7.10)

the last expression having a simpler expression for exchangeable observations:

BF ∗j (θj) =
∫
fj(y(l)|θj)

mN
i (y(l))

mN
j (y(l))

dy(l).
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The intrinsic prior πI
j is proper under some generality. The following the-

orem was given in [4], assuming that the sampling model is absolutely con-
tinuous.

Theorem 1. Suppose that either the null model is simple or the prior under
the null model is proper. Then the intrinsic prior is proper. When the prior
under the null is not proper, in [4], a justification of intrinsic priors is given.

7.4 Informative Hypotheses

We now proceed to apply the objective Bayes factor methods to informative
hypotheses. Suppose we have, say, four groups, with data yi,j , i = 1, . . . , 4; j =
1, . . . , ni, and the data are assumed to be

Yi,j ∼ N (µi, σ
2).

The null hypothesis

H0 : µ1 = µ2 = µ3 = µ4, σ > 0

is compared against an informative hypothesis like

H1a : µ3 < {µ1 = µ4 = µ} < µ2, σ > 0.

This is not a standard comparison and has generated considerable interest
under the name of informative hypotheses, important among other areas in
psychology and is the subject matter of this book. We are going to follow
two different strategies (and different methods within each), but all the meth-
ods are based on the fundamental Lemma 1. In the first strategy (denoted
objective strategy and discussed in Section 7.5), we start just with standard
noninformative priors for hypotheses Hk. In the second strategy (denoted con-
ventional prior strategy and discussed in Section 7.6) we assume a prior which
is conditionally proper on the parameters under test and noninformative in
the remaining parameters. Denote by θk and σ the unknown parameters under
the hypothesis Hk; then

πN
k (θk, σ) ∝ 1/σ.

In the conventional prior approach, the above prior is assumed only for the
null, and a conditional proper prior is assumed for the “parameters under
test” – that is, the parameters that are bigger or smaller than the others
(i.e., parameters which are subject to order constraints). Alternatively, re-
parametrizing H1a calling θ = µ, θ1 = µ−µ3, and θ2 = µ2−µ, the alternative
hypothesis becomes H1a : θ1 > 0 and θ2 > 0 and the parameters under test
are [θ1, θ2].

We need to compute, calling θa all the mean parameters under H1a
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BFN
H1a,H0

=

∫
H1a

f(y|θa, σ)πN (θa, σ) dθa dσ∫
H0
f(y|θ0, σ)πN (θ0, σ) dθ0 dσ

, (7.11)

where θ0 are the unknown parameters under H0. Notice that using πN (θa, σ)
in (7.11) makes the comparison without a proper scaling, so we also have to
compute a correction factor CF0,1a, so that

BFH1a,H0 = BFN
H1a,H0

× CFH0,H1a
. (7.12)

The numerator in (7.11) is extremely difficult to evaluate, except perhaps in
the very simple situations considered in depth in [3]. Equation (7.12) is even
more difficult to be directly evaluated, due to the correction factor CFH0,H1a .
So we found the need to restate the problem, and we will see that such a
restatement allows a massive simplification.

7.4.1 A Restatement of the Problem of Informative Hypotheses:
Completing the Informative Hypothesis and Splitting the Bayes
Factors

A useful restatement of the problem is achieved invoking a variation of the
theme of the encompassing approach presented in Chapter 4, but instead of an
overall encompassing model, we have specific encompassing models for each
informative hypothesis. We call this novel approach Completing and Splitting
informative hypotheses.

1. Completing: First of all, it is useful to denote byH∗
1a the hypothesis formed

by replacing any inequality order constraints by inequalities – for example,
regarding the illustration above, where H1a : µ3 < {µ1 = µ4 = µ} < µ2

then H∗
1a : µ3 6= {µ1 = µ4 = µ} 6= µ2.

2. Splitting: Denote by Θa the parameter space, which contains H∗
1a.

Lemma 1. It turns out that

BFN
H1a,H0

=
mN

1a(y)
mN

0 (y)
× Pr(H1a|y,H∗

1a) (7.13)

or, equivalently,

BFN
H1a,H0

= BFN
H∗

1a,H0
× Pr(H1a|y,H∗

1a),

where

Pr(H1a|y,H∗
1a) =

∫
H1a

f(y|θa, σ)πN (θa, σ) dθa dσ∫
H∗

1a
f(y|θa, σ)πN (θa, σ) dθa dσ

,

mN
1a(y) =

∫
H∗

1a

f(y|θa, σ)πN (θa, σ) dθa dσ,

and
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mN
0 (y) =

∫
H0

f(y|θ0, σ)πN (θ0, σ) dθ0 dσ.

The proof follows from the following observation: In (7.11) multiply and
divide by (the marginal density of the completed hypotheses, which is
assumed to exist)

mN
1a(y) =

∫
H∗

1a

f(y|θa, σ)πN (θa, σ) dθa dσ.

The expression (7.13) is the completed and splitted version of (7.11) In
the example above, H∗

1a becomes the completed hypothesis of H1a, useful for
splitting the Bayes factors. The equation (7.13) entails an enormous simplifi-
cation of (7.11), (and potentially also of (7.12)), since the first factor is just
the familiar BFN

H∗
1a,H0

, calculated on unrestricted parameter spaces that can
be dealt with the usual methods of objective Bayesian model selection (which
is the reason to have introduced objective BFs methods in the previous sec-
tion), and it is only the second term, which involves the awkward parameter
region. But, a big but, the second term is, fortunately, a probability, and as
such can be dealt effectively by MCMC methods like Gibbs Sampler, or more
general samplers, in the following way: Generate a sample from the posterior,
and calculate the proportion of times that H1a is obeyed.

In the rest of the chapter, Lemma 1 will be used repeatedly. Equation
(7.13) under normal linear models is readily available. The first ratio is known
in closed form (e.g., see [4, 5]), and the second factor is a standard probability
(of an awkward region) that can be dealt effectively by the Gibbs for normal
linear models. It is important to notice that the computation of the prob-
ability in (7.13) is simple because, for each generated sample, it is easy to
verify whether H1a is obeyed or not and the probability is estimated as the
proportion of samples on which the restrictions specified by H1a are true.

An algorithm to compute the factors of Lemma 1 is given by the following
two steps:

1. Compute the factor BFN
H∗

1a,H0
, which is available in closed form in some

generality that covers all normal linear models as shown for example in
[4, 5].

2. The second factor Pr(H1a|y,H∗
1a) is computed by any standard MCMC

method (including Gibbs sampler in the context of normal linear models,
for example using the BUGS software): Generate samples from the pos-
terior density: π(θa, σ|y,H∗

1a); name the samples [θa(1), . . . , θa(L)], and
count how many of these samples fulfill the conditions that defines H1a,
like [θ1(l) > 0 and θ2(l) > 0]. Dividing by the total number of samples L
gives an estimate of the posterior probability.

Comment in passing: Another way to deal (approximately) with (7.11) is
through asymptotic expansions. This cannot be done directly via Laplace ex-
pansions, due to the nature of the parameter space of informative hypotheses,
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G. Liu (PhD thesis, UPR, in progress). It is possible however, to use methods
suited to this kind of comparisons such as in [11].

7.4.2 Extension to More Than One Informative Hypotheses

Suppose that it is also of interest to entertain the following informative hy-
pothesis:

H1b : {µ1 = µ3 = µ} < µ4 < µ2.

We can extend the discourse of Lemma 1. First, we complete this informative
hypothesis by

H∗
1b : {µ1 = µ3 = µ} 6= µ4 6= µ2.

Lemma 2. For more than one informative hypothesis the (unscaled) Bayes
factors can be calculated as

BFN
H1a,H1b

=
mN

H∗
1a

mN
H∗

1b

× Pr(H1a|y,H∗
1a)

Pr(H1b|y,H∗
1b)

.

The proof is by applying Lemma 1 to each of the hypotheses.
We now have Lemma 1 and Lemma 2 as computational devices, but we

present in Sections 7.5 and 7.6 strategies to scale the Bayes factors (recall that
the priors used so far in the informative hypotheses are improper and thus
unscaled).

7.4.3 General Notation for Informative Hypotheses

We now propose a general notation, seemingly useful for general informa-
tive hypotheses when a large number of different hypotheses is entertained.
Suppose that we have four means, without loss of generality. Rename the
hypotheses as follows:

H0 : µ1 = µ2 = µ3 = µ4, HM : Negation of H0,

H12,3,4 : {µ1 = µ2} < µ3 < µ4, H∗
12,3,4 : {µ1 = µ2} 6= µ3 6= µ4,

H1,23,4 : µ1 < {µ2 = µ3} < µ4, H
∗
1,23,4 : µ1 6= {µ2 = µ3} 6= µ4.

This notation is general, useful for complex studies, and descriptive of the
meaning of each hypothesis. However, in the present chapter (for simplicity
and ease of exposition) in the illustration we will use the simpler notation:
H1a = H3,14,2 and H1b = H13,4,2.

In the next two sections we will present several methods for scaling, di-
viding the methods in two cases: (i) Objective strategy (Section 7.5) and (ii)
conventional prior strategy (Section 7.6).
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7.5 Some Feasible Methods of Objective Bayes Factors
for Informative Hypothesis

We begin with two procedures (this is nonexhaustive; other methods are fea-
sible) that are objective and empirical. We selected these two methods for
simplicity of the programming.

7.5.1 Fractional Bayes Factor

The fractional Bayes factor (FBF) is given by

BFF
H1a,H0

=

∫
H1a

f(y|θa)πN (θa) dθa∫
H0
f(y|θ0)πN (θ0) dθ0

∫
H0
f b(y|θ0)πN (θ0) dθ0∫

H1a
f b(y|θa)πN (θa) dθa

. (7.14)

This expression can be converted into

BFF
H1a,H0

= BFF
H∗

1a,H0
× Prf (H1a|y,H∗

1a)
Prfb(H1a|y,H∗

1a)
. (7.15)

The passage from (7.14) to (7.15) is obtained by multiplying and
dividing by

∫
H∗

1a
f(y|θa)πN (θa) dθa and dividing and multiplying by∫

H∗
1a
f b(y|θa)πN (θa) dθa (assumed to exist).

If, as in Section 7.4.2, it is also of interest to entertain the informative
hypothesis

H1b : {µ1 = µ3 = µ} < µ4 < µ2,

a possible solution is to replicate the previous analysis and complete and split
as

H∗
1b : {µ1 = µ3 = µ} 6= µ4 6= µ2,

BFH1b,H0 = BFH∗
1b,H0 ×

Prf (H1b|y,H∗
1b)

Prfb(H1b|y,H∗
1b)

. (7.16)

Thus, if we take the ratio between H1a and H1b, we get

BFH1a,H1b
= BFF

H∗
1a,H∗

1b
× Prf (H1a|y,H∗

1a) · Prfb

(H1b|y,H∗
1b)

Prf (H1b|y,H∗
1b) · Prfb(H1a|y,H∗

1a)
. (7.17)

The preceding marginals, or any other marginal that will be developed
in the sequel, may be converted into probabilities, using the general formula
presented in Section 7.2.1. In this chapter we assume equal prior probabilities
for all the entertained hypothesis; that is, P (Hj) = 1/q, where q is the number
of competing hypotheses. The formula in Section 7.2.1 is valid under any of
the methods to be developed in the sequel, not only under the FBF.
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7.5.2 Empirical Expected Posterior Prior (EP)

Now, take the observations y(l) a training sample from the empirical data.
Again define the prior in two steps:

Step 1:

πEP
H∗

1a
(θa) =

1
L

∑
πEP

H∗
1a

(θa|y(l)).

Step 2:

πEP
H1a

(θa) =
πEP

H∗
1a

(θa)

PrπEP (H1a|H∗
1a)

IH1a
(θa).

By definition of the EP method and the prior specified in Step 2, we have

BFEP
H1a,H0

=

∫
H1a

f(y|θa)πEP (θa) dθa∫
H0
f(y|θ0)πEP (θ0) dθ0

× 1
PrπEP (H1a|H∗

1a)
.

We now multiply and divide by
∫

H∗
1a
f(y|θa)πEP (θa) dθa, and we obtain

the completed and splitted EP Bayes factor:

BFH1a,H0 = BFEP
H∗

1a,H0
× PrπEP

(H1a|y,H∗
1a)

PrπEP (H1a|H∗
1a)

. (7.18)

Notice that the last ratio involves a fraction of posterior over a prior proba-
bility. Both are perfectly well defined and can be calculated through MCMC
methods. The prior probability enters in the formula naturally, since it was
introduced in Step 2. See [16] for a related equation.

7.6 Conventional Conditionally Proper Priors

We now continue with procedures that do not have an integrable prior on all
parameters, but there is an integrable, and in fact proper (integrating one)
conditional prior on the subset of the parameters involved in the hypothesis.

Denote by θc = [θc1 , . . . , θck1
] the parameters under test, referred to in

Section 7.4, and call θ0 the remaining parameters, common with the null hy-
pothesis, which are not subjected to the informative hypothesis (e.g., in H1a,
θa = [θc, θ0]). We make explicit the following assumption.

Assumption 1. The prior π is such that∫
H∗

1

π(θc|θ0, σ) dθc = 1,

for all [θ0, σ] and
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H1

π(θc|θ0, σ) dθc

is the same for all [θ0, σ].

Assumption 1 has three distinct components: (i) The conditional prior is inte-
grable, (ii) it integrates one, and (iii) the integral for H1 and H∗

1 are indepen-
dent of the values of θ0 and σ. If (ii) is not fulfilled, it may be renormalized.
We will be computing ∫

H1

π(θc|θ0, σ) dθc, (7.19)

which will typically entail probabilities of the form

Pr(θc1 ≥ 0, . . . , θck1
≤ 0).

When θc is one dimensional (i.e. k1 = 1), a balanced prior yields a priori
probability of 1/2 (or close to a half), balancing in this way the probabilities
of the hypothesis and the alternative. For multivariate θc, if the components
θci

are independent, then the probability in (7.19) will be equal to (or close to)
to 1/2k1 , where k1 is the number of inequality constraints in H1a. Complete
independence is seldom fulfilled, however, but reasonable conventional priors,
should not give prior probabilities “too far” from 1/2k1 . We now see examples
on which Assumption 1 is obeyed.

7.6.1 Conventional Zellner-Siow Prior

Start with the Zellner-Siow kind of conventional prior: Assume that the
parameters under test (θc) have dimension k1, and θ0 are the common
mean parameters on H0 and H∗

1a. This latter hypothesis can be written as
θc = [θc1 , . . . , θck1

] = [0, . . . , 0]. Zellner and Siow’s prior is

πZ
H∗

1a
(θ0, θc|σ)π(σ) = Cauchyk1

(θc|0, (XtX/n)−1σ2)× 1/σ,

whereX is the design matrix associated with θc and n is the sample size. Thus,
the prior over the common parameters θ0 is uniform, and the parameters on
the null are assumed to be independent of the other parameters (in the sense
of mutually orthogonal Fisher information matrix). This prior is centered at
the null hypothesis (with location at zero) and with scale that is a simple
(too simple perhaps, particularly for very unbalanced designs) version of the
average (Fisher) information per observation. Now consider the restriction of
that prior on H∗

1a

πZ
H1a

(θc|σ) = Cauchyk1
(θc|0, (XtX/n)−1σ2)× C × IH1a(θc),

where C = 1/
∫

H1a
πZ

H∗
1a

(θc|σ) dθc = 1/PrπZ
H∗

1a
(θc|σ)(H1a) and IH1a

(θc) is the
indicator function of the alternative awkward hypothesis H1a . By multiplying
and dividing BFZ

H1a,H0
by
∫
f(y|θa, σ)πZ

H∗
1a

(θa, σ) dθadσ, we obtain
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BFZ
H1a,H0

= BFZ
H∗

1a,H0
× PrπZ

1a(H1a|y,H∗
1a)

PrπZ
1a(H1a|θ0, σ,H∗

1a)
. (7.20)

Important point: The reason why we can calculate the denominator in (7.20)
is because Assumption 1 is fulfilled here, as can be checked from Zellner and
Siow’s prior, as it is the case for the next priors in Sections 7.6.2 and 7.6.3.

We remark that the prior probability PrπZ
1a(H1a|θ0, σ,H∗

1a) should not
be too far from 1/2k1 , where k1 is the number of parameters under test.
Otherwise, there is a strong prior correlation among parameters or the prior
is unbalanced between the hypothesis and the alternative.

7.6.2 Intrinsic Prior

Let us call πI
1a(θa) the intrinsic prior for H∗

1a, and recall that the intrinsic prior
for H0 is still the non-informative prior (see (7.10)): πI(θ0) = πN (θ0). Under
the alternatives, we are going to define the intrinsic prior under informative
hypothesis as

πI
H1a

(θa) = πI
1a(θa)× IH1a

(θa)
PrπI (H1a|θ0, σ,H∗

1a)
.

Equation (7.10), which defines the intrinsic prior under H1a, can be rewritten
as in [7]:

πI
1(θa, σ) = πN

1 (θa)×
∫
f(y(l)|θa, σ)m0(y(l))/m1(y(l)) dy(l). (7.21)

Now, by completing and splitting the equation we find

BF I
H1a,H0

=
∫
f(y|θa, σ)πI(θa, σ)dθdσ∫
f(y|θ0, σ)πI(θ0, σ)

× PrπI

(H1a|y,H∗
1a)

PrπI (H1a|θ0, σ,H∗
1a)

. (7.22)

For linear models, exact equations for the intrinsic priors are available; see
[4, 5, 6].

7.6.3 Intrinsic EP Prior

The intrinsic prior which is also the expected posterior EP prior, generating
y(l) from the simplest of models (i.e., from m0(y(l)) in H0) would be in this
case defined in two steps as

Step 1:

πH1,I(θa) =
∫
πH1,N (θa|y(l))m0(y(l)) dy(l), (7.23)

which turns out to be mathematically equivalent with the intrinsic prior iden-
tity in (7.21). To see this, use Bayes’ rule in (7.10) to write mN

1 (y(l)) =
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f(y(l)|θa)πN (θa)
π(θa|y(l)) , and then simplification leads to the result. Equation (7.23)

is approximated by 1
L

∑
πH1,N (θa|y∗(l)), where y∗(l) are random training

samples, generated from m0(y∗(l)).

Step 2:

πH1a,I(θa) =
πH∗

1a,I(θa)
PrπH1,I(H1a|θ0,σ)

× IH1a
(θa). (7.24)

This definition through the encompassing model leads to a substantial sim-
plification, as compared with a direct definition in H1a.

The resulting Bayes factor is then

BF I
H1a,H0

=

∫
H∗

1a
f(y|θa)πI(θa) dθa∫

f(y|θ0)πN (θ0) dθ0
× PrπI

(H1a|y,H∗
1a)

PrπI (H1a|θ0, σ,H∗
1a)

(7.25)

or, equivalently,

BF I
H1a,H0

= BF I
H∗

1a,H0
× PrπI

(H1a|y,H∗
1a)

PrπI (H1a|θ0, σ,H∗
1a)

.

Note that the exact analytical solution for the first factor in (7.25) exists
for linear models, as presented in [4, 5, 6] in terms of the Kummer function
M(a, b, z) (for which efficient algorithms are available) and that is defined as
(see [1])

M(a, b, z) =
Γ (b)
Γ (a)

∞∑
j=0

Γ (a+ j)
Γ (b+ j)

· z
j

j!
.

For the point null hypotheses H∗
1a, the intrinsic prior is defined as

πI(θa|σ, θ0) = C
2k1/2

(2k1)1/2
· exp(−λ/2)
σ2k

1/2Γ ((p+ 2)/2)
M(1/2, (k + 2)/2, λ/2),

where C = π−k1/2 Γ ((k1+1)/2)
Γ ((1/2)) and the noncentrality parameter λ, for a training

sample of size 2k, is based on a convenient choice.
For the informative hypotheses H1a, the equation becomes

πI
H1a

(θa|σ, θ0) ∝ πI(θa|σ, θ0) · IH1a
(θa). (7.26)

This prior is called the restricted intrinsic prior. This prior can now be used
to get the (scaled) Bayes factors and posterior model probabilities.

7.7 Numerical Results

In this section, and as illustrations, we present the numerical results using one
method for each of the two classes of methodology introduced in Sections 7.5
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Table 7.1. Residual sums of squares (RSS) of completed hypotheses

Models RSS

H0 2196.47
H2 237.63
H∗

1a 260.48
H∗

1b 253.84

and 7.6. We use the fractional method of Section 7.5.1 and the Zellner and
Siow conventional priors, described in Section 7.6.1. We selected these two
methods for simplicity, because we were able to implement them using the
package BUGS, so no extensive programming was involved. Future useful work
would be to implement the other methods introduced here, for an exhaustive
comparison. We are going to present numerical results for selected hypotheses,
presumably the most important ones.

7.7.1 Illustration: Dissociative Identity Disorder

The example on interidentity amnesia in dissociative identity disorder is taken
from [13]. The hypotheses are

H0 : µ1 = µ2 = µ3 = µ4

its negation
H2 : not H0,

and
H1a : µcon > {µamn = µpat} > µsim

that is,
µ3 < {µ4 = µ1 = µ} < µ2

or, equivalently,
H1a : µ3 < µ < µ2,

and, finally,
H1b : µcon > µamn > {µpat = µsim},

{µ1 = µ3 = µ} < µ4 < µ2,

or
H1b : µ < µ4 < µ2.

Before going into the methods, in Table 7.1 the residual sum of squares of
the null and completed hypotheses are presented. For the completed hypothe-
ses, we see that H∗

1b is doing somewhat better than H∗
1a.
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Table 7.2. Posterior and prior probabilities implied by the fractional Bayes factor
for H1a given H∗

1a and for H1b given H∗
1b

Model Posterior (b = 1) Prior (b = 6
94

)

H1a 1.0 .981
H1b 1.0 .984

Table 7.3. Posterior probabilities given by the FBF for H0, H1a, H1b

Models FBF PMP

H0 vs H2 7.30e-41 1.31e− 40
H0 vs H1a 5.39e-40 .24
H0 vs H1b 1.73e-40 .76

7.7.2 Fractional BF

We employ here the theory of Section 7.5.1. We use the “zeros trick” in BUGS
(see BUGS help) in order to define the likelihood raised to the power b = 6/94.
Justification of this choice for b is in Berger and Mortera’s discussion of [19].

According to (7.15) (for the ratio of probabilities) we will be monitoring,
via MCMC (e.g., using BUGS), the proportion of times on which either H1a

or H1b is obeyed for samples drawn from the posterior distributions with the
likelihoods raised to the power b = 6/94 and b = 1, respectively, that we call
prior and posterior probabilities, the former rather metaphorically.

For the first factor, the ratio of marginal densities in (7.15), we have the
equation

BF
F (b)
ji =

Γ [(n− kj)/2]Γ [(m− ki)/2)]
Γ [(n− ki)/2)]Γ [(m− kj)/2]

×
[
Ri

Rj

](n−m)/2

,

where kj is the number of adjustable parameters under Hj , m = max[kj ]+ 1,
and Rj is the residual sum of squares under Hj .

Comments: (i) The prior probabilities of the hypotheses in Table 7.2, using
b = 6/94, are far too high. The reason for this, is that the fractional “prior,”
however diluted by the power b << 1, is still centered at posterior modal
values. This is not wholly satisfactory as a prior, since we would expect a
prior centered at the null hypothesis. (ii) We used (7.3) in Section 7.2.1 for
PMPs and (7.18) in order to convert the Bayes factors into probabilities. We
did not compute P (H2|y), since in a sense this hypothesis “intersects” with
H1a and H1b. However, if desired, using the Bayes factors of Table 7.2, and
now giving each of the four models prior probabilities of 1/4, then P (H2|y)
is obtained from (7.18). Here we only considered three models and gave them
equally 1/3 of prior probability. (iii) As expected, and shown in Table 7.3,
H1b is more probable than H1a but not overwhelmingly so, in a proportion of
about 3/1. (iv) The fractional is perhaps the simplest to calculate from the
factors considered here.
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7.7.3 Zellner-Siow Conventional Prior

We follow here the theory of Section 7.6.1. It should be noted that a param-
eter transformation is needed here, in order to assess the conventional prior.
In this illustration some ingenuity is needed, and we give the details of the
implementation of this conventional prior method.

As in the introduction, we have the ANOVA model

Y = Xθ + ε,

on which the first column of X should be a column of ones. Denote θ =
[θ0, α1, α2]. The hypothesis H∗

1a : µ3 6= µ 6= µ2 should become α1 6= 0;α2 6= 0.
In the conventional prior setup, a proper conditional prior is given to the
parameters under test (the α’s), but an improper uniform prior is given to
the common parameter θ0. For this to be justifiable as a Bayes factor, then
the first column of the matrix X ought to be orthogonal to the other columns
(i.e., xt

1 · xi = 0, i = 2, 3). We denote by ni the number of observations in the
group i. So we have n3 = 25 cases with mean µ3, n2 = 25 cases with mean
µ2, and n = 94 is the total number of cases, since n1 = 19 and n4 = 25.
For H1a, in the column of observations we place first the observations of the
first and fourth group (assumed equal), second the observations of the third
group (presumed to be lowest) and, finally, the observations belonging to the
second group (presumed to be highest). Recall that the first and the next two
columns of the design matrix ought to be orthogonal. So the design matrix
X1a for H1a is set to be

X1a =



1 −n3/n −n2/n
...

...
...

1 −n3/n −n2/n
1 (1− n3/n) −n2/n
...

...
...

1 (1− n3/n) −n2/n
1 −n3/n (1− n2/n)
...

...
...

1 −n3/n (1− n2/n)


.

Notice that xt
1 · [x2,x3] = 0. It turns out, as can be checked after simplifica-

tions, that

H1a : µ3 < µ < µ2 is equivalent to: α1 < 0, α2 > 0.

Numerically (which will be needed for the bivariate Cauchy to be used) it is
obtained that

[Xt
1aX1a]−1 =

0.011 0 0
0 0.063 0.023
0 0.023 0.063

 ,
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and [X∗t
1aX

∗
1a]−1 is the two by two lower right symmetric submatrix, which is

the only part used in the prior.
Turning now to the other hypothesis,

H1b : {µ1 = µ3 = µ} < µ4 < µ2,

we place, in the vector y of observations, first the amalgamated first and
third group, second the fourth group (assumed in the middle), and, finally,
the second group (presumed highest). For H1b we set the following design
matrix:

X1b =



1 −(n2 + n4)/n −n2/n
...

...
...

1 −(n2 + n4)/n −n2/n
1 (1− (n2 + n4)/n) −n2/n
...

...
...

1 (1− (n2 + n4)/n) −n2/n
1 (1− (n2 + n4)/n) (1− n2/n)
...

...
...

1 (1− (n2 + n4)/n) (1− n2/n)


.

Notice that xt
1 · [x2,x3] = 0. It turns out, as can be checked after simplifica-

tions, that

H1b : {µ1 = µ3 = µ} < µ4 < µ2 is equivalent to: α1 > 0, α2 > 0.

Numerically (which will be needed for the bivariate Cauchy to be used) it
obtains that

[Xt
1bX1b]−1 =

0.011 0 0
0 0.063 −0.04
0 −0.04 0.08

 ,
and the necessary matrix for the prior [X∗t

1bX
∗
1b]

−1 is the two by two lower
right symmetric submatrix.

Now we turn to the prior assessments: First, the hypotheses are

H0 : α1 = α2 = 0; H∗
1a : α1 and α2 6= 0,H1a : α1 < 0, α2 > 0.

Clearly, the design matrix under the null hypothesis is just a vector of ones.
It is customary here to assume references priors, under H0 and conditionally
proper under H∗

1a:
πN

0 (θ0, σ) = 1/σ

and

πN
1 (θ0, α1, α2, σ) = Cauchy[(α1, α2)|(0, 0), (X∗t

1aX
∗
1a/n)−1σ2] · 1/σ.



7 Objective Bayes Factors 151

Next, let us check that Zellner and Siow’s prior obeys Assumption 1 of
Section 7.6. A priori the probability of the entertained hypothesis should not
depend upon the conditioning parameters by symmetry of the Cauchy distri-
bution centered in zero. The Zellner and Siow prior for model selection is, in
our case of informative hypotheses, equal to

π(α|σ) = c

√
det[X∗tX∗/(nσ2)]

(1 + αtX∗tX∗α/(nσ2))3/2
, (7.27)

where c = Γ (3/2)/π3/2 and αt = (α1, α2).
The distribution (7.27) is a bidimensional Cauchy with location zero and

scale (quasivariance) matrix equal to (X∗tX∗/(nσ2))−1. We need to compute
the a priori probability of, say, H1b:

Pr(α1 > 0, α2 > 0) =
∫ ∞

0

∫ ∞

0

π(α|σ) dα1 dα2. (7.28)

This probability apparently depends upon σ which is unknown. Fortunately,
however, the following transformations show that the probability is indepen-
dent of σ. Make the transformation

λ1 = α1/
√
nσ2, and λ2 = α2/

√
nσ2. (7.29)

Note also that
√

det[X∗tX∗/(nσ2)] =
√

det[X∗X∗]/(nσ2). Then it follows,
applying the change of variables formula’s that

Pr(α1 > 0, α2 > 0) = Pr(λ1 > 0, λ2 > 0) =∫ ∞

0

∫ ∞

0

c

√
det[XtX]

(1 + λtXtXλ)3/2
dλ1 dλ2. (7.30)

This proves that our version of Zellner and Siow prior obeys Assumption 1.
The double integral can be solved in at least two ways: first, directly by

numerical quadrature or, second, by generating several variables [λ1(l), λ2(l)]
with the distribution above and counting what fraction of them are simultane-
ously positive. For the second we need an efficient bivariate Cauchy generator.
It has been pointed out to us that in fact there is a closed-form solution to the
integral, at least under certain assumptions (Dr. John Cook, personal com-
munication). Since it is simple and stable, we performed the computations by
simulation. In the numerical illustrations presented below, we computed the
prior probabilities by simulation of 100,000 bivariate Cauchy random vari-
ables.

From the a posteriori densities and simulating via BUGS (modeling a
Cauchy density as a scale mixture of a Normal and a Gamma, or using the
zeros trick) we get the results for H1a and H1b in Table 7.4.

For the Bayes factors in (7.20), there is the following approximation in
[21]:
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Table 7.4. Posterior and prior probabilities implied by the Zellner and Siow prior
for H1a given H∗

1a and for H1b given H∗
1b

Model Posterior Prior

H1a 1.0 .190
H1b 1.0 .153

Table 7.5. Posterior probabilities given by Zellner and Siow prior for H0, H1a, H1b

Models BFZ PMP

H0 vs H2 2.83e-40 1.72e–39
H0 vs H1a 6.14e-39 .28
H0 vs H1b 2.38e-39 .72

BFZ
12 = π1/2/Γ ((k1 + 1)/2)((n− k1)/2)k1/2(R1/R0)(n−k1−1)/2.

In Table 7.5 we display the Bayes factors and posterior model probabilities
for Zellner and Siow’s prior.

Comments: (i) Although we may calculate the posterior probability of H2

using the Bayes factors above, we do not, since H2 does not appear to be
the most interesting hypothesis and also because of interpretation: Both H?

1a

and H?
1b are well embedded in H2. But P (H2|y) can be easily calculated if

desired, as we pointed out in the previous method. (ii) The prior probabilities
of H1a and H1b are now theoretically more pleasant to the mind and natural.
However, the difference with the posterior probabilities from the FBF, are
rather small. This is reassuring and comes from the fact that the distortion in
the prior probabilities in the fractional occurs in both the models, which have
no negligible probability, therefore “canceling out.” If in an example, say, the
probability of H0 would have been higher, the difference between the methods
would have been more pronounced, giving the Zellner-Siow method the edge
here.

7.8 Conclusions

1. The informative hypothesis problem becomes feasible when it is split in
two problems, first by completing the informative hypothesis and sec-
ond by splitting into two factors: (i) a ratio of objective Bayes factor of
appropriate encompassing hypotheses that we call completions of the in-
formative hypotheses and (ii) a ratio of prior to posterior probabilities of
the informative hypothesis.

2. The first factor can be dealt with the usual methods of objective Bayes
factors. We have presented several techniques, so that researchers can
implement them as they judge more appropriate.

3. The second factor can be expressed, with some ingenuity, as an MCMC
problem of estimation.
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8.1 Introduction

Model assessment and model comparison are a crucial part of statistical
analysis. Due to recent computational advances, sophisticated techniques for
Bayesian model assessment are becoming increasingly popular. There is a rich
literature on Bayesian methods for model assessment and model comparison,
including [1, 3, 6, 9, 10, 13, 14, 16, 17, 18, 24, 26, 28, 30, 32, 33, 34, 36]. The
scope of Bayesian model assessment can be investigated via model diagnostics,
goodness of fit measures, or posterior model probabilities (or Bayes factors).
A comprehensive account of model diagnostics and related methods for model
assessment is given in [15].

Many of the proposed Bayesian methods for model comparison usually rely
on posterior model probabilities or Bayes factors. It is well known that Bayes
factors and posterior model probabilities are generally sensitive to the choices
of prior parameters, and thus one cannot simply select vague proper priors to
get around the elicitation issue. Alternatively, criterion-based methods can be
attractive in the sense that they do not require proper prior distributions in
general and thus have an advantage over posterior model probabilities. Several
recent articles advocating the use of Bayesian criteria for model assessment
include [2, 3, 13, 14, 24, 26, 30, 36].

For comparing the inequality constrained models, the posterior model
probabilities are considered in [21], and the Bayes factor approach using en-
compassing priors is discussed in detail in [29]. However, the literature on
criterion-based methods other than the Bayes factor or posterior model prob-
abilities for inequality constrained models is still sparse. In the subsequent
sections, several criterion-based methods proposed in the recent literature are
considered for the selection of constrained ANOVA models. A class of priors
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for constrained analysis of variance (ANOVA) models based on the conjugate
prior of [5] is constructed and the properties of these priors are examined. In
addition, computational issues for various Bayesian criteria will be addressed
for testing different hypotheses.

8.2 The Model and Notation

Suppose that yij equals the score of the ith person in the jth group on the
dependent variable and µj denotes the mean of the persons in group j with
respect to yij for i = 1, 2, . . . , nj , where nj is the size of group j and j =
1, 2, . . . , J . Write yj = (y1j , y2j , . . . , ynjj)′, y = (y′1,y

′
2, . . . ,y

′
J)′, and µ =

(µ1, µ2, . . . , µJ)′. We assume that yij independently follows from a normal
distribution with mean µj and variance σ2; that is,

yij ∼ N (µj , σ
2) (8.1)

for i = 1, 2, . . . , nj and j = 1, 2, . . . , J . Let n =
∑J

j=1 nj denote the total
sample size, let D = (n,y) denote the observed data, and let θ = (µ, σ2).
Then the likelihood function is given by

L(θ|D) = L(µ, σ2|D) = (2πσ2)−
n
2 exp

{
− 1

2σ2

J∑
j=1

nj∑
i=1

(yij − µj)2
}
. (8.2)

Note that (8.2) is the likelihood function corresponding to the standard one-
way ANOVA model.

8.3 The Prior and Posterior Distributions

For the ANOVA model given by (8.2), we let Θ denote the constrained pa-
rameter space with the form

Θ = {θ = (µ, σ2) : µ ∈ Θµ and σ2 > 0}, (8.3)

where Θµ is the constrained parameter space for µ. The various specific forms
of Θµ will be given in the later sections. Note that for the unconstrained
parameter space, we have Θµ = RJ , which implies Θ = RJ × (0,∞).

In the context of Bayesian model selection of inequality constrained mod-
els, a prior distribution for θ = (µ, σ2) needs to be specified for each model.
To this end, we consider a conjugate prior of [5]. Following [5], for the ANOVA
model given in (8.2), we first specify a conditional prior for µ given σ, which
takes the form

π(µ|σ2,y0,a0) ∝

[
J∏

j=1

{L(y0j |µj , σ
2)}a0j

]
IΘµ(µ), (8.4)
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where the indicator function IΘµ(µ) = 1 if µ ∈ Θµ and 0 otherwise,

L(y0j |µj , σ
2) = (2πσ2)−

nj
2 exp

{
− 1

2σ2

nj∑
i=1

(y0ij − µj)2
}
,

y0j = (y01j , y02j , . . . , y0njj)′ is an nj×1 vector of prior predictive values of the
response variables for the subjects in the jth group, y0 = (y′01,y

′
02, . . . ,y

′
0J)′,

a0j > 0 is a scalar prior parameter, and a0 = (a01, a02, . . . , a0J)′. From (8.4),
we can rewrite the conditional prior distribution for µ given σ2 as

π(µ|σ2,y0,a0) ∝
{ J∏

j=1

φ
(
µj |ȳ0j ,

σ2

a0jnj

)}
IΘµ(µ), (8.5)

where ȳ0j = 1
nj

∑nj

i=1 y0ij , and φ
(
µj |ȳ0j ,

σ2

a0jnj

)
is the density function of the

normal distribution N
(
ȳ0j ,

σ2

a0jnj

)
evaluated at µj for j = 1, 2, . . . , J . The

normalized conditional prior distribution for µ given σ2 is given by

π(µ|σ2,y0,a0) =
1

C0(σ2,y0,a0)

{ J∏
j=1

φ
(
µj |ȳ0j ,

σ2

a0jnj

)}
IΘµ(µ), (8.6)

where

C0(σ2,y0,a0) =
∫

Θµ

{ J∏
j=1

φ
(
µj |ȳ0j ,

σ2

a0jnj

)}
dµ. (8.7)

To complete the prior specification, we assume an inverse gamma distribution
for σ2, which is given by

π(σ2|α0, β0) =
βα0

0

Γ (α0)
× (σ2)−(α0+1) exp

(
− β0

σ2

)
, (8.8)

where α0 and β0 are prespecified hyperparameters. We write

σ2|α0, β0 ∼ IG(α0, β0).

Combining (8.6) and (8.8) gives the joint prior of θ = (µ, σ2) as follows:

π(θ|y0,a0, α0, β0) = π(µ|σ2,y0,a0)π(σ2|α0, β0). (8.9)

Next, we discuss the properties of the prior given in (8.6). As discussed
in [5], y0ij can be viewed as a prior prediction for the marginal mean of yij .
Thus, in eliciting y0, we may focus only on a prediction (or guess) for E(yij),
which narrows the possibilities for choosing y0ij . When the prior information
about y0ij is not available, the specification of all y0ij equal has an appealing
interpretation. A prior specification with y0ij = 0 for i = 1, 2, . . . , nj and
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j = 1, 2, . . . , J implies a prior in which the prior modes of µj ’s are 0 under
the unconstrained ANOVA model. This is intuitively appealing since in this
case the prior prediction on y0ij does not depend on the ith subject’s specific
information. In addition, y0 = 0 greatly eases the posterior computation
under the inequality constrained model. The parameter a0j in (8.6) can be
generally viewed as a precision parameter that quantifies the strength of our
prior belief in y0j . Note that when Θµ = RJ , y0ij = 0, and a0jnj = 1/κ0,
(8.6) and (8.8) essentially reduce to a standard conjugate prior for (µ, σ2),
that is, we specify

µj |σ2, κ0 ∼ N (0, κ0σ
2)

independently for j = 1, 2, . . . , J and σ2|α0, β0 ∼ IG(α0, β0). Another special
case of (8.4) is an improper uniform prior for µ over the constrained param-
eter space Θµ, which is obtained by taking a0j → 0. In this case, no prior
normalizing constant is available. In the context of Bayesian model selection,
(8.6) and (8.8) specify the priors for all constrained or unconstrained models
in the model space in an automatic and systematic fashion in the sense that
the forms of the priors are automatically determined by the models with or
without constraints and the hyperparameters (a0, α0, β0) need to be specified
only once for all models under considerations.

Due to the nature of the constrained parameter problem, the prior nor-
malizing constant C0(σ2,y0,a0) is often analytically intractable. However,
for many special cases, C0(σ2,y0,a0) is either analytically available or free
from σ2. For example, when Θµ = RJ , the prior normalizing constant
C0(σ2,y0,a0) = 1. When y0 = 0, C0(σ2,y0 = 0,a0) in (8.7) can be free
from σ2 under certain unbounded inequality constraints. As an illustration,
we consider the monotone constraints, µ1 < µ2 < · · · < µJ . By taking the
one-to-one transformation µ̃j = µj/σ for j = 1, 2, . . . , J , the constrained pa-
rameter space Θµ is transformed to Θµ̃ = {µ̃ : µ̃1 < µ̃2 < · · · < µ̃J}, where
µ̃ = (µ̃1, µ̃2, . . . , µ̃J)′. As the result of this transformation, we obtain

C0(σ2,y0,a0) =
∫

Θµ

{ J∏
j=1

φ
(
µj |0,

σ2

a0jnj

)}
dµ

=
∫

Θµ̃

{ J∏
j=1

φ
(
µ̃j |0,

1
a0jnj

)}
dµ̃ ≡ C0(a0),

where C0(a0) is free from σ2, as Θµ̃ is essentially the same as Θµ. When
C0(σ2,y0,a0) is an analytically intractable function of σ2, the posterior com-
putation is difficult to carry out. For example, when y0 6= 0 and µ is subject
to the monotone constraints, C0(σ2,y0,a0) is an analytically intractable func-
tion of σ2. Also, if the constraints, |µj − µj′ | ≤ K0 for certain j < j′, where
K0 > 0 is a fixed constant, are of interest, C0(σ2,y0,a0) does depend on σ2

as well. However, for these cases, the Monte Carlo method developed in [7]
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can be applied for sampling from the posterior distribution and computing
various posterior summaries.

To ease the posterior computation, we assume that the constrained pa-
rameter space Θµ satisfies the following invariant condition:

C0(τσ2,y0 = 0,a0) = C0(σ2,y0 = 0,a0) for all τ > 0. (8.10)

It is easy to see that the invariant condition (8.10) implies that C0(σ2,y0 =
0,a0) is free from σ2.

We note that if condition (8.10) does not hold, the prior normalizing con-
stant C0(σ2,y0 = 0,a0) is not free from σ2. In this case, sampling (µ, σ2)
from the joint prior distribution given in (8.9) and the respective posterior
distribution becomes difficult.

Based on the above discussions, we take y0 = 0 and a01 = a02 = · · · =
a0j = a0 in the rest of this chapter. With these special choices of y0 and
a0, we rewrite π(µ|σ2,y0,a0) with C0(σ2,y0,a0) in (8.6) as π(µ|σ2, a0) with
C0(σ2, a0). We note that when y0 = 0 and a01 = a02 = · · · = a0j = a0, the
invariant condition (8.10) also implies that C0(σ2, a0) is free from a0 as the
prior normalizing constant depends on σ2 and a0 only through σ2/a0. Using
the joint prior given in (8.9), the posterior distribution is thus given by

π(θ|D) ∝ L(θ|D)π(θ|a0, α0, β0)
= L(µ, σ2|D)π(µ|σ2, a0)π(σ2|α0, β0), (8.11)

where L(θ|D) is defined in (8.2).
Under the unconstrained ANOVA model (i.e., Θµ = RJ), the posterior

distributions of µ and σ2 are available in closed form as the joint prior given
in (8.9) is conjugate. In this special case, after some algebra, we obtain that
the conditional posterior distribution of µj given σ2 and D is

µj | σ2, D ∼ N
(
µ̂j , σ̂

2
µj

)
, (8.12)

where

µ̂j =
1

1 + a0
ȳj and σ̂2

µj
=

σ2

(1 + a0)nj
,

for j = 1, 2, . . . , J , and the marginal posterior distribution of σ2 is

σ2 | D ∼ IG (A,B) , (8.13)

where

A = α0 +
n

2
and B = β0 +

1
2

J∑
j=1

{ nj∑
i=1

(yij − ȳj)2 +
a0nj

1 + a0
(ȳj)2

}
. (8.14)
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8.4 Bayesian Model Selection Criteria

In this section, we consider four Bayesian model selection criteria, namely
the L measure (see [3, 13, 24]), Deviance Information Criterion (DIC) (see
[36]), Conditional Predictive Ordinate (CPO) statistic (see [11, 12, 15]), and
marginal likelihood or Bayes factor (see [28]) for the inequality constrained
models.

8.4.1 The L Measure

The L measure is constructed from the posterior predictive distribution of the
data. We note that we use L as L measure and Likelihood and it should be
clear from the context which is meant. Let z = (z′1,z

′
2, . . . ,z

′
J)′ denote future

values of an imagined replicate experiment, where zj = (z1j , z2j , . . . , znjj)′ for
j = 1, 2, . . . , J ; that is, z is a future response vector with the same sampling
density as y|θ. Then, the L measure is defined as

L(ν) =
J∑

j=1

nj∑
i=1

Var(zij |D) + ν

J∑
j=1

nj∑
i=1

{E(zij |D)− yij}2

=
J∑

j=1

nj∑
i=1

[
E{Var(zij |θ)|D}+ Var{E(zij |θ)|D}

]

+ ν

J∑
j=1

nj∑
i=1

[
E{E(zij |θ)|D} − yij

]2
, (8.15)

where 0 < ν < 1 and all expectations and variances are taken with respect to
the posterior distribution π(θ|D). The smaller the L measure, the better the
model fits the data. The quantity ν plays a major role in (8.15). This quantity
is specified as ν = 1 in [26], and this special choice of ν gives equal weight to
the squared bias and variance components. However, there is no theoretical
justification for such a weight and, indeed, using ν = 1 may not be desirable
in certain situations. Allowing ν to vary between zero and one gives the user
a great deal of flexibility in the trade-off between bias and variance. For the
linear model, it is theoretically shown in [24] that certain values of ν yield
highly desirable properties of the L measure. It is also demonstrated in [24]
that the choice of ν has much potential influence on the properties of the L
measure. Based on the theoretical exploration of [24], ν = 1

2 is a desirable and
justifiable choice for model selection.

Under the unconstrained ANOVA model, the closed-form expression of
L(ν) can be obtained. Using (8.12) and (8.13), we have

E{E(zij |θ)|D} = E(µj |D) = E{E(µj |σ,D)|D} = µ̂j =
1

1 + a0
ȳj , (8.16)
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Var{E(zij |θ)|D} = Var(µj |D)
= E{Var(µj |σ2, D)|D}+ Var{E(µj |σ2, D)|D}

= E
{ σ2

(1 + a0)nj

∣∣∣D} =
B

(A− 1)(1 + a0)nj
, (8.17)

where A and B are defined in (8.14) and

E{Var(zij |θ)|D} = E(σ2|D) =
B

A− 1
. (8.18)

Plugging (8.16), (8.17), and (8.18) into (8.15) gives the explicit expression of
the L measure L(ν).

For the inequality constrained ANOVA model, the analytical evaluation
of L(ν) does not appear possible. However, it is fairly easy to compute L(ν)
via a Monte Carlo method. First, we briefly discuss how to sample (µ, σ2)
from the posterior distribution in (8.11) via Gibbs sampling. For most in-
equality constraints on µ so that Θµ satisfies (8.10), the conditional posterior
distribution of µj given µj′ , j′ 6= j, σ2, and D is a truncated normal distribu-
tion. Therefore, we can use the algorithm given in [19] to generate µj . With
the conjugate prior in (8.9), the conditional posterior distribution of σ2 is an
inverse gamma distribution. Thus, the Gibbs sampling algorithm is easy to
implement.

Next, we discuss how to compute the L measure. Suppose that {θk =
(µk = (µ1k, µ2k, . . . , µJk)′, σ2

k), k = 1, 2, . . . ,K} is a Gibbs sample of size K
from the posterior distribution in (8.11). Then, a Monte Carlo estimate of
E(zij |D) = E{E(zij |θ)|D} = E(µj |D) is given by

µ̂j =
1
K

K∑
k=1

µjk, j = 1, 2, . . . , J. (8.19)

In (8.15), we observe

Var(zij |D) = E(z2
ij |D)− {E(zij |D)}2

= E{E(z2
ij |θ)|D} − {E(zij |D)}2 = E(σ2 + µ2

j |D)− {E(zij |D)}2.

Thus, a Monte Carlo estimate of Var(zij |D) is given by

V̂ar(zij |D) =
1
K

K∑
k=1

(σ2
k + µ2

jk)− µ̂2
j . (8.20)

Plugging (8.19) and (8.20) into the first equation in (8.15) gives a Monte Carlo
estimate of the L measure L(ν).

8.4.2 The DIC Measure

The Deviance Information Criteria (DIC) measure proposed in [36] is defined
as
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DIC = d(θ) + 2pd, (8.21)

where d(θ) is a deviance function and θ is the posterior estimate of θ depend-
ing on the observed data D. For example, θ can be posterior mean, posterior
median, and posterior mode. In (8.21), pd is the effective number of model
parameters, which is calculated as

pd = d(θ)− d(θ), (8.22)

where d(θ) = E{d(θ)|D} and the expectation is taken with respect to the
posterior distribution π(θ|D).

For the constrained ANOVA model given in (8.2), we set θ = (µ, σ2) and
take the deviance function to be of the form

d(θ) = −2 logL(θ|D) = n log(2πσ2) +
1
σ2

J∑
j=1

nj∑
i=1

(yij − µj)2. (8.23)

The DIC defined in (8.21) is a Bayesian measure of predictive model per-
formance, decomposed into a measure of fit (d(θ)) and a measure of model
complexity (pd). The smaller the DIC value, the better the model will predict
new observations generated in the same way as the data.

Similarly to the L measure, a Monte Carlo estimate of the DIC measure can
be obtained using a Gibbs sample, {θk = (µk = (µ1k, µ2k, . . . , µJk)′, σ2

k), k =
1, 2, . . . ,K}, from the posterior distribution in (8.11). First, it is straightfor-
ward to obtain Monte Carlo estimates of the posterior means or medians of
µj and σ2 using the Gibbs sample. Second, a Monte Carlo estimate of d(θ) is
simply the sample mean of {d(θk), k = 1, 2, . . . ,K}. Thus, the DIC measure
is easy to compute.

8.4.3 The Conditional Predictive Ordinate

Under the constrained ANOVA model given in (8.2), for the ith observation
in the jth group let f(yij |θ) denote the density of yij . Then, the CPO statistic
is the posterior predictive density of yij based on the data D(−ij) with the
ith observation in the jth group deleted. Mathematically, the CPO statistic is
defined as

CPOij = f(yij |D(−ij)) =
∫
f(yij |θ)π(θ|D(−ij)) dθ

=
∫

1
(2πσ2)

1
2

exp
{
− 1

2σ2
(yij − µj)2

}
π(θ|D(−ij)) dθ, (8.24)

where π(θ|D(−ij)) is the posterior distribution based on the data D(−ij). Note
that here we define π(θ|D(−ij)) as

π(θ|D(−ij)) ∝
[ ∏∏

(i′,j′)6=(i,j)

f(yi′j′ |θ)
]
π(θ|y0 = 0, a0, α0, β0),
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where the prior π(θ|y0 = 0, a0, α0, β0) is defined in (8.9). After some algebra,
we can show that

CPOij =
[∫

(2πσ2)
1
2 exp

{
1

2σ2
(yij − µj)

2

}
π(θ|D)dθ

]−1

, (8.25)

where π(θ|D) is the posterior distribution based on the entire observed data
D.

As suggested in [25], a natural summary statistic of the CPOij ’s is the
logarithm of the pseudomarginal likelihood (LPML) defined as

LPML =
J∑

j=1

nj∑
i=1

log(CPOij). (8.26)

We use LPML as a criterion-based measure for model selection. The larger
the LPML measure, the better the model fits the data.

As for the L measure and the DIC measure, we again use the Gibbs sample
{θk = (µk = (µ1k, µ2k, . . . , µJk)′, σ2

k), k = 1, 2, . . . ,K} from the posterior
distribution in (8.11) to compute the CPO statistic. A Monte Carlo estimate
of CPOij in (8.25) is given by

ĈPOij =

[
1
K

K∑
k=1

(2πσ2
k)

1
2 exp

{
1

2σ2
k

(yij − µjk)2
}]−1

,

for i = 1, 2, . . . , nj and j = 1, 2, . . . , J .

8.4.4 The Marginal Likelihood

For the constrained ANOVA model in (8.2) with the prior in (8.9), the
marginal likelihood is given by

m(D) =
∫ ∞

0

∫
Θµ

[
(2πσ2)−

n
2 exp

{
− 1

2σ2

J∑
j=1

nj∑
i=1

(yij − µj)2
}

× 1
C0(σ2, a0)

{ J∏
j=1

φ
(
µj |0,

σ2

a0nj

)}

× βα0
0

Γ (α0)
× (σ2)−(α0+1) exp

(
− β0

σ2

)]
dµ dσ2, (8.27)

where C0(σ2, a0) = C(σ2,y0 = 0,a0) with a01 = a02 = · · · = a0J = a0 and
C0(σ2,y0,a0) is defined in (8.7).

When Θµ = RJ , m(D) can be evaluated analytically. In this case, the
marginal likelihood, denoted by mU (D), is given by
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mU (D) = (2π)−
n
2
βα0

0 Γ (α0 + n
2 )

Γ (α0)

( a0

1 + a0

) J
2

×

[
β0 +

1
2

J∑
j=1

{ nj∑
i=1

(yij − ȳj)2 +
a0nj

1 + a0
(ȳj)2

}]−(α0+
n
2 )

. (8.28)

When Θµ ⊂ RJ but Θµ 6= RJ , we assume that Θµ satisfies the invariant
condition given in (8.10). As discussed in Section 8.3, this assumption ensures
that C0(σ2, a0) in (8.27) is free from both σ2 and a0. To compute m(D) in
(8.27), we write

π∗(µ, σ2|D) = (2πσ2)−
n
2 exp

{
− 1

2σ2

J∑
j=1

nj∑
i=1

(yij − µj)2
}

J∏
j=1

φ
(
µj |0,

σ2

a0nj

)
× βα0

0

Γ (α0)
(σ2)−(α0+1) exp

(
− β0

σ2

)
. (8.29)

Let Θ = Θµ × R+, where R+ = (0,∞). Suppose θ∗ = (µ∗, σ∗2) ∈ Θ, where
µ∗ and σ∗2 are arbitrary (but in accordance with the constraints) fixed values
of µ and σ2. Using the identity established in [8], we have

m(D) =
π∗(µ∗, σ∗2|D)

C0(σ∗2, a0)π(µ∗, σ∗2|D)
, (8.30)

where π(µ, σ2|D) is the posterior distribution with a support of Θ.
Let πU (µ, σ2|D) denote the posterior distribution under the unconstrained

ANOVA model. Note that

π(µ∗, σ∗2|D) =
π∗(µ∗, σ∗2|D)/C0(σ∗2, a0)∫

Θ
{π∗(µ, σ2|D)/C0(σ2, a0)} dµ dσ2

=
π∗(µ∗, σ∗2|D)∫

Θ
π∗(µ, σ2|D) dµ dσ2

(as C0(σ∗
2, a0) = C0(σ2, a0))

=
π∗(µ∗, σ∗2|D)

mU (D)
∫

RJ×R+ IΘ(µ, σ2)πU (µ, σ2|D) dµ dσ2

=
π∗(µ∗, σ∗2|D)

mU (D)EU{IΘ(µ, σ2)|D}
, (8.31)

where mU (D) is given in (8.28) and the expectation EU is taken with respect
to πU (µ, σ2|D). Plugging (8.31) into (8.30) leads to

m(D) =
mU (D)EU{IΘ(µ, σ2)|D}

C0(σ∗2, a0)
. (8.32)

Taking the natural logarithm of both sides of (8.32) gives
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logm(D) = logmU (D) + logEU{IΘ(µ, σ2)|D} − logC0(σ∗
2, a0). (8.33)

Note that m(D)/mU (D) is the Bayes factor for comparing the inequality
constrained model to the unconstrained model. Additionally note that the
identity in (8.32) is also discussed in [29].

The identity in (8.33) allows us to develop a Monte Carlo method for com-
puting the marginal likelihood m(D) of the constrained model. To this end,
we let {(µk, σ

2
k), k = 1, 2, . . . ,K} denote a random sample from the posterior

distribution πU (µ, σ2|D). Then, an Monte Carlo estimate of EU{IΘ(µ, σ2)|D}
is given by

ÊU{IΘ(µ, σ2)|D} =
1
K

K∑
k=1

IΘ(µk, σ
2
k), (8.34)

which is the proportion of the samples (µk, σ
2
k)’s that fall in Θ. Similarly, let

{µ0k, k = 1, 2, . . . ,K0} denote a random sample from the unconstrained prior
distribution

∏J
j=1 φ

(
µj |0, σ∗2

a0nj

)
. Then, a Monte Carlo estimate of C0(σ∗2, a0)

is given by

Ĉ0(σ∗
2, a0) =

1
K0

K0∑
k=1

IΘµ(µ0k). (8.35)

Plugging (8.34) and (8.35) into either (8.32) or (8.33) gives a Monte Carlo
estimate of m(D) or logm(D). Note that the Monte Carlo estimates given in
(8.34) and (8.35) are also discussed in [29]. However, for unfavorable inequality
constraints, the Monte Carlo estimates may not be efficient.

Another Monte Carlo method can be developed by using the Gibbs stopper
estimator (see [38]) of π(θ∗|D) = π(µ∗, σ∗2|D) given in (8.30). Note that when
the supportΘ is a constrained parameter space in (8.30), π(θ|D) = π(µ, σ2|D)
is the posterior distribution in which the constraints are accounted for. The
Gibbs sampling kernel moving from θ to θ∗ takes the form

q(θ,θ∗) = π(µ∗1|µ2, . . . , µJ , σ
2, D)π(µ∗2|µ∗1, µ3, . . . , µJ , σ

2, D)
× · · · × π(µ∗J |µ∗1, . . . , µ∗J−1, σ

2, D)π(σ∗2|µ∗, D), (8.36)

where π(µj |µ1, . . . , µj−1, µj+1, . . . , µJ , σ
2, D) is the conditional posterior den-

sity of µj given µ1, . . . , µj−1, µj+1, . . . , µJ , σ
2 and D for j = 1, 2, . . . , J , and

π(σ2|µ, D) denotes the conditional posterior density of σ2 given µ and D.
Then, we have ∫

Θ

q(θ,θ∗)π(θ|D) dθ = π(θ∗|D).

Suppose that {θk = (µk, σ
2
k), k = 1, 2, . . . ,K} is a Gibbs sample of size K

from the posterior distribution π(θ∗|D). Then, the Gibbs stopper estimator
of [38] is given by

π̂(θ∗|D) =
1
K

K∑
k=1

q(θk,θ
∗). (8.37)
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Under the inequality constraints, π(µj |µ1, . . . , µj−1, µj+1, . . . , µJ , σ
2, D) is the

density corresponding to a truncated normal distribution for j = 1, 2, . . . , J
and π(σ2|µ, D) is the density of an inverse gamma distribution. Therefore,
the closed-form expressions of these conditional posterior distributions are
available. The Gibbs stopper estimator can also be used for computing the
prior normalizing constant C0(σ∗2, a0) in (8.30). To see this, let

π(µ|σ∗2, a0) ∝
J∏

j=1

φ
(
µj |0,

σ∗2

a0nj

)
IΘµ(µ).

Then, we have

C0(σ∗
2, a0) =

∏J
j=1 φ

(
µ∗0j |0, σ∗2

a0nj

)
π(µ∗0|σ∗2, a0)

,

where µ∗0 = (µ∗01, . . . , µ
∗
0J)′ is a fixed value in Θµ, which may be different

from µ∗ used in (8.30). The Gibbs sampling kernel used for sampling µ from
the prior distribution π(µ|σ∗2, a0) is given as follows:

q0(µ,µ∗0) = π(µ∗01|µ2, . . . , µJ , σ
∗2, a0) · · ·π(µ∗0J |µ∗01, . . . , µ∗0,J−1, σ

∗2, a0).

Since ∫
Θµ

q0(µ,µ∗0)π(µ|σ∗2, a0) dµ = π(µ∗|σ∗2, a0),

a Monte Carlo estimator of C0(σ∗2, a0) may be computed as follows:

Ĉ0(σ∗
2, a0) =

1
K0

K0∑
k=1

q0(µ0k,µ
∗
0), (8.38)

where {µ0k, k = 1, 2, . . . ,K0} is a Gibbs sample from the prior distribution
π(µ|σ∗2, a0). Using (8.37) and (8.38), a Monte Carlo estimator of m(D) on
the log scale is given by

log m̂(D) = −n
2

log(2πσ∗2)− 1
2σ∗2

J∑
j=1

nj∑
i=1

(yij − µ∗j )
2

+ α0 log β0 − logΓ (α0)− (α0 + 1) log σ∗2 − β0

σ∗2

+ log
{ 1
K0

K0∑
k=1

q0(µ0k,µ
∗
0)
}
− log

{ 1
K

K∑
k=1

q(θk,θ
∗)
}
.(8.39)

The Gibbs stopper estimator can be potentially useful when EU{IΘ(µ, σ2)
|D} or C0(σ∗2, a0) in (8.32) is small. When EU{IΘ(µ, σ2)|D} and C0(σ∗2, a0)
in (8.32) are reasonably large, the Monte Carlo estimators given in (8.34) and
(8.35) are quite accurate. Thus, the Gibbs stopper estimators are not needed
in this case.
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Table 8.1. List of hypotheses

H01: µcon = µamn = µpat = µsim

H1a1: µcon > {µamn = µpat} > µsim

H1b1: µcon > µamn > {µpat = µsim}
H1a2: µcon > {µamn, µpat} > µsim

H1b2: µcon > µamn > {µpat, µsim}
H2: µcon, µamn, µpat, µsim

8.5 Examples

8.5.1 The Dissociative Identity Disorder Data

The illustration is based on the DID data [22] introduced in Chapter 2. Recall
that DID-patients were compared with three different types of control groups
on their ability to recall information that they obtained in a prior phase of the
experiment. The groups are (1) DID-patients, (2) Normal controls, (3) Simu-
lators, and (4) True amnesiacs. The response variable (yij) is the recognition
score. Let µcon = µcontrol, µamn = µtrueamnesiacs, µpat = µDID−patients, and
µsim = µDIDsimulators. Let θ = (µ, σ). The hypotheses considered in this ex-
ample are given in Table 8.1. Instead of performing conventional hypothesis
testing, we adopt the notion that each hypothesis defines a model. Thus, we
compare the six models defined by the six hypotheses listed in Table 8.1.

To apply the general notation introduced in the earlier sections, the model
corresponding to H2 is considered as the unconstrained model for the inequal-
ity constrained models corresponding to H1a2 and H1b2. For H1a1, the cor-
responding unconstrained model is the model with µcon, µamn = µpat, and
µsim as the three free mean parameters. Similarly, the corresponding uncon-
strained model for H1b1 is the model with µcon, µamn, and µpat = µsim as
the three free mean parameters. For the model under the hypothesis H01:
µcon = µamn = µpat = µsim, we may view the data from one group with
J = 1. In this way, the formulas developed in Sections 8.3 and 8.4 can be
directly applied to all six models under consideration. We then compare these
six models using each of the four Bayesian criteria, namely L measure, DIC,
LPML, and marginal likelihood. In all computations, a vague inverse gamma
IG(0.0001, 0.0001) is specified for σ2. In addition, several values of a0, such as
a0 = 0.01, a0 = 0.0001, and a0 = 0, in the prior (8.6) for µ are considered to
investigate the robustness of these four Bayesian criteria to the specification
of this key hyperparameter (a0). Additional values of a0 are also considered
for the marginal likelihood, as this criterion is more sensitive to the specifica-
tion of a0. Recall that we assume a01 = a02 = · · · = a0J = a0 and y0 = 0 in
(8.6). Note that in Table 8.1 the models under H01 and H2 are unconstrained
and the models under H1a1, H1b1, H1a2, and H1b2 are subject to inequality
constraints. It can be shown that all of these four hypotheses are in accor-
dance with the invariant assumption given by (8.10). Thus, the corresponding
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Table 8.2. Detailed summaries of the L measures for the DID data (a0 = 0.0001)

Sum of Sum of Sum of Sum of
E{Var(zij |θ)|D} Var{E(zij |θ)|D} Var(zij |D) Bias2

H01 2244.54 23.88 2268.42 2196.47
H1a1 266.63 8.50 275.12 260.48
H1b1 259.84 8.28 268.12 253.84
H1a2 243.33 10.24 253.57 237.63
H1b2 243.34 10.32 253.66 237.63
H2 243.33 10.35 253.68 237.63

prior normalizing constant C0(σ2,y0 = 0,a0) is free from σ2 and a0. In all
computations, 100,000 Gibbs iterations with a burn-in of 2000 iterations were
used to compute all the Bayesian criteria if the closed-form expressions are
not available.

Table 8.2 shows the detailed breakdown summaries of the L measures in
(8.15) under the six hypotheses based on the prior with a0 = 0.0001. It is
expected that the model under H2 gives the best prediction and the model
under H01 should lead to the worst prediction. This is exactly reflected in
the L measures as the sums of Bias2 (=

∑J
j=1

∑nj

i=1{E(zij |D) − yij}2) are
237.63 under H2 and 2196.47 under H01, where 237.63 is the smallest value
and 2196.47 is the largest value among the six models. When the inequality
constraints are plausible, we expect that the sum of Bias2 under the con-
strained model is comparable to that under the unconstrained model. From
Table 8.2, we see that the sums of Bias2 under the models corresponding to the
hypotheses H1a2 and H1b2 are nearly identical to the one obtained under the
hypothesisH2. Moreover, if the inequality constraints are favorable, the sum of
the variances of the conditional means, namely

∑J
j=1

∑nj

i=1 Var{E(zij |θ)|D},
under the constrained model should be smaller than the one under the un-
constrained model. From Table 8.2, we clearly observe this phenomenon by
comparing these quantities under H1a2 and H1b2 to that under H2. These re-
sults demonstrate that the L measure does indeed have a very nice statistical
interpretation.

The L measures for the DID data based on various values of a0 and ν are
given in Table 8.3. From this table, we see that the values of L measures are
sensitive to the choice of a0. However, when a0 is getting small, the L measure
tends to be more robust. Interestingly, the order of the L measures under the
six models does not change across all three values of a0 as well as across three
values of ν. Based on the L measure, the models under H1a2, H1b2, and H2

fit the DID data equally well, with the model under H1a2 fitting the data
slightly better. It is evident that these three models fit the DID data much
better than the other three models. In particular, the model under H01 fits
the data poorly. Although ν = 1

2 is a desirable choice in general, in comparing
the six models given in Table 8.3, the L measures with ν = 0.1 and ν = 0.9
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Table 8.3. The L measures for the DID data based on various priors

a0 = 0.01 a0 = 0.0001 a0 = 0

L(0.1) L(0.5) L(0.9) L(0.1) L(0.5) L(0.9) L(0.1) L(0.5) L(0.9)

H01 2520.67 3399.38 4278.10 2488.07 3366.65 4245.24 2487.73 3366.32 4244.91
H1a1 354.61 459.00 563.39 301.17 405.36 509.55 300.62 404.81 509.00
H1b1 347.02 448.76 550.50 293.51 395.04 496.58 292.96 394.50 496.03
H1a2 331.34 426.59 521.84 277.33 372.38 467.44 276.77 371.83 466.88
H1b2 331.54 426.79 522.05 277.42 372.47 467.52 276.87 371.92 466.97
H2 331.66 426.92 522.17 277.44 372.49 467.55 276.89 371.94 466.99

Table 8.4. The DIC values for the DID data

a0 = 0.01 a0 = 0.0001 a0 = 0

d(θ̄) pd DIC d(θ̄) pd DIC d(θ̄) pd DIC

H01 563.06 1.95 566.96 563.01 1.99 566.98 563.01 1.99 566.98
H1a1 364.49 3.62 371.74 362.59 3.97 370.54 362.59 3.98 370.55
H1b1 362.15 3.62 369.38 360.17 3.97 368.11 360.16 3.98 368.12
H1a2 356.17 4.52 365.21 353.96 4.93 363.83 353.96 4.94 363.84
H1b2 356.17 4.56 365.28 353.96 4.96 363.89 353.96 4.97 363.89
H2 356.18 4.59 365.35 353.96 4.98 363.92 353.96 4.98 363.92

lead to the same conclusion as the L measure with ν = 1
2 for the DID data.

In this sense, the L measure is quite robust in ν for the DID data.
Next, we computed the DIC values for all six models and the results are

shown in Table 8.4. The DIC values are quite robust to the choice of a0.
Similar to the L measure, the top DIC models are those under H1a2, H1b2,
and H2, with the model under H1a2 achieving the smallest DIC value. Note
that the DIC measure was computed based on the posterior mean of θ. To
examine the robustness of the DIC measure in the choice of θ in (8.21), we
computed the DIC values by taking θ to be the posterior mean, the posterior
median, and the posterior mode of θ. As an illustration, the DIC values under
these choices for θ are reported in Table 8.5 under the hypothesis H1a2 with
a0 = 0.0001. We see that those DIC values are very similar. Similar results
were obtained but not reported here under other hypotheses with different
values of a0.

Table 8.6 shows the LPML values. Similar to the DIC measure, the LPML
is extremely robust to the choice of a0. Again, the top three LPML models
are identical to those identified by the L measure and the DIC measure. The
best LPML model is the one under H1a2. The log marginal likelihoods were
also computed and the results are presented in Table 8.7. When a0 = 0.01, the
top marginal likelihood model is H1a2. When a0 = 0.0001, the top marginal
likelihood model becomes H1b1. When a0 is nearly 0, the worst model H01
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identified by the L measure, DIC, and LPML turns out to be the best based
on the marginal likelihood criterion. This result is expected, as the model
H01 has the smallest dimension. This phenomenon is known as Bartlett’s or
Lindley’s paradox (see [1, 31]).

As the marginal likelihood-based criterion is not robust to the choice of a0,
a0 needs to be more carefully elicited. When historical data or training data
are available, a guide value of a0 is discussed in [4, 23]. As for the DID data,
there are no historical data available, we use an empirical Bayes method to
choose a guide value of a0. We observe that for the DID data, the log marginal
likelihood is a concave function of a0 under each of the six models in Table 8.1,
which can be seen clearly from Figure 8.1, in which log marginal likelihoods
as functions of a0 are plotted under H1a1, H1b1, H1a2, H1b2, and H2. Let a0,H

denote the “best” value of a0 that maximizes the log marginal likelihood under
the hypothesis H. The log marginal likelihoods under the “best” values of a0

are given in Table 8.8. According to the marginal likelihood-based criterion,
H1b2 is the best model and H1a2 is the second best model for all six a0,H

values. We notice that the difference in the log marginal likelihoods between
H1b2 and H1a2 is quite small. In addition, under the “best” values of a0, the
phenomenon of the Bartlett’s or Lindley’s paradox disappears. In general,
we recommend choosing a guide value of a0 to be the smallest a0,H among
all hypotheses under consideration. The prior under this guide value is least
informative among the most “informative” priors under all the hypotheses
being considered.

In view of the four Bayesian criteria considered in this example, the pos-
terior predictive-based criteria, namely L measure, DIC, and LPML, consis-
tently selectH1a2 as the best model, whereas the log marginal likelihood-based
criterion selects H1b2 as the best model. However, the difference between mod-
els H1a2 and H1b2 in all four criteria is nearly indistinguishable. Thus, these
two models virtually fit the DID data equally well. Therefore, we recommend
that both H1a2 and H1b2 should be considered for further investigation.

8.5.2 The Emotional Reactivity Data

We consider the data from a study that addressed the influence of depres-
sion severity on emotional reactivity after different types of peer evaluation
feedback in preadolescent children (see [35]). As discussed in Chapter 2, 139
children, between the ages of 10 and 13 years, participated in this study. The

Table 8.5. The DIC values based on various estimates of θ underH1a2 (a0 = 0.0001)

Estimate µpat µcon µsim µamn σ2 d(θ̄) pd DIC

Mean 3.109 13.279 1.876 4.560 2.589 353.96 4.93 363.83
Median 3.106 13.279 1.877 4.560 2.551 353.94 4.96 363.85
Mode 3.189 13.289 1.776 4.589 2.434 354.18 4.72 363.62
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Table 8.6. The LPML values for the DID data

a0 = 0.01 a0 = 0.0001 a0 = 0

H01 -283.29 -283.29 -283.29
H1a1 -185.75 -185.42 -185.42
H1b1 -184.64 -184.31 -184.32
H1a2 -182.53 -182.26 -182.26
H1b2 -182.56 -182.28 -182.29
H2 -182.60 -182.30 -182.31

response variable is the score on the positive affect scale of the Positive And
Negative Affect Schedule (PANAS-P). The primary interest of this study was
to examine the effect of peer evaluation in mood under three conditions and
three levels of depression, as shown in Table 8.9. The hypotheses considered
in this example are given in Table 8.10.

We use the same notion as discussed in Section 8.5.1 that each hypoth-
esis defines a model. Thus, we compare the five models listed in Table 8.10
using each of the four Bayesian criteria, namely L measure, DIC, LPML, and
marginal likelihood. Again, we assume a01 = a02 = · · · = a0J = a0 and
y0 = 0 in (8.6). Note that in Table 8.10, the models under H0 and H2 are
unconstrained and the models under H1a, H1b, and H1c are subject to in-

Table 8.7. The log marginal likelihoods for the DID data

a0 = 0.01 a0 = 0.001 a0 = 0.0001 a0 = 10−50

H01 -294.70 -295.23 -296.32 -349.27
H1a1 -205.07 -200.99 -203.61 -362.40
H1b1 -204.07 -199.81 -202.40 -361.19
H1a2 -203.16 -199.54 -203.23 -414.96
H1b2 -203.15 -199.53 -203.23 -414.96
H2 -205.63 -202.02 -205.71 -417.44

Table 8.8. The log marginal likelihoods under the “best” value of a0 for the DID
data

“Best” Hypothesis

Value of a0,H H01 H1a1 H1b1 H1a2 H1b2 H2

H01 0.0074 -294.671 -203.452 -202.401 -201.513 -201.505 -203.988
H1a1 0.0017 -295.015 -200.835 -199.664 -199.178 -199.174 -201.656
H1b1 0.0016 -295.038 -200.835 -199.662 -199.200 -199.196 -201.678
H1a2 0.0021 -294.945 -200.868 -199.706 -199.148 -199.144 -201.627
H1b2 0.0020 -294.954 -200.861 -199.696 -199.149 -199.144 -201.627
H2 0.0021 -294.945 -200.868 -199.706 -199.148 -199.144 -201.627
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(a) (b)

Fig. 8.1. Plots of log marginal likelihoods versus a0 under H1a1, H1b1, H1a2, H1b2,
and H2 (a) and under H1a2 and H1b2 (b), respectively, for the DID data

equality constraints. It can be shown that the constrained parameter space
under each of three hypotheses H1a, H1b, and H1c satisfies the invariant con-
dition given by (8.10). Thus, the corresponding prior normalizing constant
C0(σ2,y0 = 0,a0) is free from σ2 and a0. Similar to Section 8.5.1, a vague
inverse gamma IG(0.0001, 0.0001) is specified for σ2 and several values of a0,
such as a0 = 0.01, a0 = 0.0001, and a0 = 0, in the prior (8.6) for µ are
considered to investigate whether these four Bayesian criteria are robust to
the specification of this key hyperparameter (a0). Also, 100,000 Gibbs itera-
tions with a burn-in of 2000 iterations were used to compute all the Bayesian
criteria if the closed form expressions are not available.

Table 8.9. The design of experiment

Condition

Depress Positive Neutral Negative

Low µ1 µ2 µ3

Moderate µ4 µ5 µ6

High µ7 µ8 µ9

Table 8.10. List of hypotheses

H0 : {µ7 − µ8} = {µ4 − µ5} = {µ1 − µ2}, {µ9 − µ8} = {µ6 − µ5} = {µ3 − µ2}
H1a: {µ7 − µ8} < {µ4 − µ5} < {µ1 − µ2}, {µ9 − µ8} < {µ6 − µ5} < {µ3 − µ2}
H1b: {µ7 − µ8} < {µ4 − µ5} < {µ1 − µ2}, {µ9 − µ8} > {µ6 − µ5} > {µ3 − µ2}
H1c: {µ7 − µ8} > {µ4 − µ5} > {µ1 − µ2}, {µ9 − µ8} > {µ6 − µ5} > {µ3 − µ2}
H2 : {µ7 − µ8}, {µ4 − µ5}, {µ1 − µ2}, {µ9 − µ8}, {µ6 − µ5}, {µ3 − µ2}
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Table 8.11. Detailed summaries of the L measures for the emotional reactivity data
(a0 = 0.0001)

Sum of Sum of Sum of Sum of
E{Var(zij |θ)|D} Var{E(zij |θ)|D} Var(zij |D) Bias2

H0 4378.42 157.48 4535.90 4315.20
H1a 4445.99 185.05 4631.04 4486.54
H1b 4330.44 188.96 4519.40 4356.33
H1c 4081.44 226.03 4307.47 4058.44
H2 4103.38 265.66 4369.04 4044.09

Table 8.11 shows the detailed breakdown summaries of the L measures in
(8.15) under the five hypotheses based on the prior with a0 = 0.0001. Simi-
lar to Table 8.2, the unconstrained model under H2 gives the best prediction
and the most restrictive model under H0 leads to the worst prediction, as the
sums of Bias2 (=

∑J
j=1

∑nj

i=1{E(zij |D) − yij}2) are 4044.09 under H2 and
4315.20 under H0. Note that under H2 with a0 = 0.0001, the posterior means
of µ7−µ8, µ4−µ5, and µ1−µ2 are 6.87, 2.13, and −0.64, respectively, and the
posterior means of µ9−µ8, µ6−µ5, and µ3−µ2 are −2.32, −4.76 and −10.01,
respectively. Thus, the inequality constraints under H1c are most plausible
for this dataset. As expected, the sum of Bias2 under H1c is most comparable
to that under the unconstrained model under H2. In addition, the sums of
the variances of the conditional means, namely

∑J
j=1

∑nj

i=1 Var{E(zij |θ)|D},
under all the constrained models are smaller than the one under the uncon-
strained model corresponding to the hypothesis H2. These results are consis-
tent with those obtained in Section 8.5.1.

The values of the L measures for the emotional reactivity data based on
various values of a0 (a0 = 0.01, 0.0001, and 0) and ν (ν = 0.1, 0.5, and 0.9) are
given in Table 8.12. These L measures suggest that there is an overwhelming
evidence in favor of the model with the favorable constraints under H1c. In
addition, for all values of a0 and ν, the L measures consistently show that the

Table 8.12. The L measure for the emotional reactivity data based on various
priors

a0 = 0.01 a0 = 0.0001 a0 = 0

L(0.1) L(0.5) L(0.9) L(0.1) L(0.5) L(0.9) L(0.1) L(0.5) L(0.9)

H0 4988.82 6714.99 8441.15 4967.42 6693.50 8419.58 4967.20 6693.28 8419.36
H1a 5101.41 6897.04 8692.67 5079.69 6874.31 8668.93 5080.28 6874.97 8669.65
H1b 4969.64 6712.10 8454.55 4955.03 6697.57 8440.10 4955.03 6697.55 8440.08
H1c 4735.73 6359.02 7982.31 4713.31 6336.69 7960.07 4713.20 6336.59 7959.97
H2 4797.29 6415.02 8032.76 4773.45 6391.08 8008.72 4773.20 6390.84 8008.48
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Table 8.13. The DIC values for the emotional reactivity data

a0 = 0.01 a0 = 0.0001 a0 = 0

d(θ̄) pd DIC d(θ̄) pd DIC d(θ̄) pd DIC

H0 872.02 5.94 883.90 872.00 6.00 884.00 872.00 6.00 884.00
H1a 877.48 6.67 890.81 877.41 6.75 890.91 877.41 6.76 890.93
H1b 873.30 6.96 887.23 873.31 7.06 887.42 873.31 7.06 887.43
H1c 863.46 8.60 880.66 863.46 8.69 880.85 863.46 8.69 880.85
H2 863.01 9.89 882.78 862.98 9.99 882.96 862.98 9.99 882.96

Table 8.14. The LPML values for the emotional reactivity data

a0 = 0.01 a0 = 0.0001 a0 = 0

H0 -442.67 -442.74 -442.74
H1a -446.31 -446.37 -446.38
H1b -444.58 -444.71 -444.71
H1c -441.50 -441.63 -441.63
H2 -442.65 -442.79 -442.79

model under H1c fits the data best and the model under H1a fits the data
worst.

Table 8.13 shows the DIC values. We can see from this table that the
DIC values are very robust to the choice of a0. The best and worst DIC
models are exactly the same as those based on the L measures. Among the
models corresponding to hypotheses H1a, H1b, and H1c, the model with least
favorable constraints has the smallest dimensional penalty. The values of pd

also indicate that all constrained models (H0, H1a, H1b, and H1c) are less
complex than the unconstrained model (H2).

The LPML values for the emotional reactivity data were computed and
the results are reported in Table 8.14. Similar to the L measure and DIC
criteria, the best model under the LPML criterion is the one under H1c and
the model under H1a is the worst. However, based on the LPML values, the
models corresponding to H0 and H2 are nearly indistinguishable. In addition,

Table 8.15. The log marginal likelihoods for the emotional reactivity data

a0 = 1 a0 = 0.1 a0 = 0.01 a0 = 0.0001 a0 = 10−50

H0 -464.09 -455.59 -458.30 -469.44 -734.23
H1a -467.51 -463.15 -470.93 -491.48 -968.11
H1b -465.33 -460.01 -467.00 -487.29 -963.92
H1c -462.01 -454.41 -460.96 -481.21 -957.84
H2 -463.72 -456.48 -463.09 -483.35 -959.98
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Fig. 8.2. Plots of log marginal likelihoods versus a0 under H0 , H1a, H1b, H1c, and
H2 for the emotional reactivity data

we computed the log marginal likelihoods for all the five models, which are
given in Table 8.15. When a0 = 1, the top marginal likelihood model is H1c.
However, when a0 ≤ 0.01, the top marginal likelihood model becomes H0.
Thus, Bartlett’s or Lindley’s paradox kicks in much earlier for the emotional
reactivity data than for the DID data, as shown in Table 8.7. Similar to Section
8.5.1, we also observe that the marginal likelihoods are concave functions of
a0 under all five hypotheses, as shown in Figure 8.2. We also compute the
“best” values (a0,H) of a0 that maximize the log marginal likelihoods under
H0, H1a, H1b, H1c, and H2. The log marginal likelihoods under the “best”
values of a0 are given in Table 8.16. Under these five a0,H values, the marginal
likelihood-based method consistently selects H1c as the best model and the
phenomenon of the Bartlett’s or Lindley’s paradox disappears. Similar to the

Table 8.16. The log marginal likelihoods under the “best” value of a0 for the
emotional reactivity data

“Best” Hypothesis

value of a0,H H0 H1a H1b H1c H2

H0 0.078 -455.52 -463.68 -460.38 -454.66 -456.75
H1a 0.165 -456.19 -462.61 -459.71 -454.48 -456.52
H1b 0.148 -456.00 -462.67 -459.69 -454.39 -456.44
H1c 0.124 -455.76 -462.85 -459.78 -454.33 -456.40
H2 0.126 -455.78 -462.85 -459.76 -454.33 -456.40



176 Chen, Kim

L measure, DIC, and LPML, the worst model is H1a for all values of a0,H , as
shown in Table 8.16. Based on the results given in Tables 8.12, 8.13, 8.14, and
8.16, all four criteria select the same best model, and, hence, the constrained
model, {µ7−µ8} > {µ4−µ5} > {µ1−µ2}, {µ9−µ8} > {µ6−µ5} > {µ3−µ2},
is most suitable to the emotional reactivity data.

8.6 Discussion

In this chapter, we have discussed the four commonly used Bayesian selection
criteria, including the L measure, DIC, and LPML and marginal likelihood,
for the selection of constrained models. One noticeable difference between the
marginal likelihood (or Bayes factor) and the Bayesian criteria based on the
posterior predictive distribution is that the Bayes factor suffers the Bartlett’s
or Lindley’s paradox and the other three criteria do not. This paradox makes
the Bayes factor extremely sensitive to the specification of the prior distri-
butions of model parameters. In Section 8.5.1, to select between the models
corresponding to hypotheses H01 and H2 for the DID data, we observe the
paradox when the prior (8.6) for µ with a0 = 0.0001 is specified. For the emo-
tional reactivity data discussed in Section 8.5.2, this paradox is observed even
when a much less vague prior, namely the the prior (8.6) for µ with a0 = 0.01,
is specified. In this sense, the other three criteria are more advantageous, as
these criteria are quite robust to the specification of the prior distributions.
However, when a0 is carefully elicited, the Bartlett’s or Lindley’s paradox
disappears and the marginal likelihood-based criterion is more in agreement
with the other posterior predictive-based criteria, as illustrated in Sections
8.5.1 and 8.5.2.

Among the L measure, DIC, and LPML, the L measure has some nice sta-
tistical interpretations; that is, the L measure allows us to monitor how well a
model fits the data in terms of the posterior predictive variance and bias. This
property may aid us in determining whether certain inequality constraints are
favorable for a given dataset. Specifically, a set of inequality constraints are
more favorable than another set of constraints if the corresponding model pro-
duces a smaller sum of Bias2 (viz.

∑J
j=1

∑nj

i=1{E(zij |D)− yij}2). The model
with inequality constraints may be considered to be simpler than the uncon-
strained one. The dimensional penalty term, pd, in DIC may be viewed as
a measure of the model complexity. This is a more direct measure of model
complexity than the one in the Bayes factor, which is the prior normalizing
constant under the constrained model. However, it is not clear whether pd can
be analytically available under certain models with inequality constraints. It
is of great theoretical interest to quantify the inequality constraints in terms
of the reduction of the number of parameters.

From the computational point view, it is much easier to compute the L
measure, DIC, and LPML than the Bayes factor. As long as we are able
to sample from the posterior distribution under the constrained model, the
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Monte Carlo estimates of these quantities discussed in Sections 8.4.1 to 8.4.3
are efficient and numerically stable. In Section 8.4.1, two Monte Carlo meth-
ods are discussed for computing the marginal likelihood. These methods work
well for the models considered in Sections 8.5.1 and 8.5.2 for the DID and
emotional reactivity data. However, when the prior probability that the pa-
rameters fall into the constrained parameter space under the unconstrained
model is extremely small, the Monte Carlo estimator given in (8.35) may be-
come very inefficient. In this case, the Gibbs stopper estimator given in (8.38)
may be more efficient. However, due to the complexity induced by inequality
constraints, the Gibbs stopper estimator may still not be satisfactory. There-
fore, a much more sophisticated and yet efficient Monte Carlo estimator of
the marginal likelihood or the Bayes factor needs to be developed. This is well
deserved to be an important future research project.

As discussed in [3], the L measure is not well calibrated since this measure
is not properly scaled. This is also true for the DIC and LPML measures. In
Sections 8.5.1 and 8.5.2, we have seen that for certain constrained models,
these measures are very similar numerically. Is a model with a smaller crite-
rion value statistically better than another model? Or is the difference in the
criterion values due to uncertainty in the random sample? One way to address
this important issue is to calibrate these criteria under certain distributions so
that they can be more easily interpreted. The idea of calibration is not totally
new. In fact, a calibration is proposed in [3] for the L measure based on the
prior predictive distribution. The extension of the calibration of [3] for the
L measure to the DIC and LPML measures appears to be straightforward.
However, the properties of the calibration for the models under inequality
constraints need to be examined carefully.

When we compare two nested models with different dimensions based on
the marginal likelihoods or the Bayes factor, we have observed the Bartlett’s
or Lindley’s paradox for both the DID and emotional reactivity data. This
paradox may partially be the direct consequence of the way to interpret the
strength of evidence according to the value of Bayes factor. A popular rule
for interpreting the strength of evidence is proposed in [27] and a slight mod-
ification of Jeffreys’ proposal is given in [28]. Based on this rule, for example,
if the Bayes factor for comparing model 1 to model 2 is greater than 150,
there is a strong evidence in favor of model 1 over model 2. The decision
rule of purely comparing the observed Bayes factor to a predetermined value,
which is independent of the sampling distribution of the Bayes factor, called
a “critical value”, can be misleading, since the sampling distribution depends
on the models being compared and the priors involved in deriving the poste-
rior distributions. More importantly, as discussed in [20], the prior predictive
distributions of the Bayes factor are asymmetric cross models. As a conse-
quence, the decision rules for determining the strength of evidence based only
on the observed value of the Bayes factor may be problematic. This problem
of the Bayes factor was also discovered in [37]. To address this problem, a
calibrating value of the Bayes factor based on the prior predictive distribu-
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tions and the decision rule based on this calibrating value for selecting the
model were proposed in [20]. Based on the calibrating value, the Bartlett’s or
Lindley’s paradox can be alleviated although it may not disappear completely.
In summary, similarly to the L measure, the Bayes factor should be properly
calibrated as well.
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9.1 Goals and Outline

Throughout this book, the topic of order restricted inference is dealt with
almost exclusively from a Bayesian perspective. Some readers may wonder
why the other main school for statistical inference – frequentist inference –
has received so little attention here. Isn’t it true that in the field of psychology,
almost all inference is frequentist inference?

The first goal of this chapter is to highlight why frequentist inference
is a less-than-ideal method for statistical inference. The most fundamental
limitation of standard frequentist inference is that it does not condition on the
observed data. The resulting paradoxes have sparked a philosophical debate
that statistical practitioners have conveniently ignored. What cannot be so
easily ignored are the practical limitations of frequentist inference, such as its
restriction to nested model comparisons.

The second goal of this chapter is to highlight the theoretical and practical
advantages of a Bayesian analysis. From a theoretical perspective, Bayesian
inference is principled and prescriptive and – in contrast to frequentist infer-
ence – a method that does condition on the observed data. From a practical
perspective, Bayesian inference is becoming more and more attractive, mainly
because of recent advances in computational methodology (e.g., Markov chain
Monte Carlo and the WinBUGS program [95]). To illustrate, one of our fre-
quentist colleagues had been working with the WinBUGS program and com-
mented “I don’t agree with the Bayesian philosophy, but the WinBUGS pro-
gram does allow me to implement complicated models with surprisingly little
effort.” This response to Bayesian inference is diametrically opposed to the
one that was in vogue until the 1980s, when statisticians often sympathized
with the Bayesian philosophy but lacked the computational tools to implement
models with a moderate degree of complexity.
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The outline of this chapter is as follows: Section 9.2 introduces the Fish-
erian and the Neyman-Pearson flavors of frequentist inference and goes on
to list a number of limitations associated with these procedures. Section 9.3
introduces Bayesian inference and goes on to lists a number of its advantages.
Section 9.4 briefly presents our conclusions.

9.2 Frequentist Inference and Its Problems

Frequentist inference is based on the idea that probability is a limiting fre-
quency. This means that a frequentist feels comfortable assigning probability
to a repeatable event in which the uncertainty is due to randomness, such as
getting a full house in poker (i.e., aleatory uncertainty [78]). When n hands
are played and a full house is obtained in s cases, then, with n very large,
the probability of a full house is just s/n. But a frequentist must refuse to
assign probability to an event where uncertainty is also due to lack of knowl-
edge, such as the event of Alexander Grischuk ever winning a major poker
championship (i.e., epistemic uncertainty [34, 78]).

Because uncertainty about parameters is epistemic, frequentist inference
does not allow probability statements about the parameters of a statistical
process. For instance, the fact that a frequentist 95% confidence interval for
the normal mean µ is [−0.5, 1.0] does not mean that there is a 95% probability
that µ is in [−0.5, 1.0]. Instead, what it means is that if the same procedure
to construct confidence intervals was repeated very many times, for all kinds
of different datasets, then in 95% of the cases would the true µ lie in the 95%
confidence interval (cf. the example presented in Section 9.2.1).

Discussion of frequentist inference is complicated by the fact that cur-
rent practice has become an unacknowledged amalgamation of the p-value
approach advocated by Fisher [32] and the α-level approach advocated by
Neyman and Pearson [76]. Hubbard and Bayarri [49, p. 176] summarized and
contrasted the paradigms as follows:

The level of significance shown by a p value in a Fisherian sig-
nificance test refers to the probability of observing data this extreme
(or more so) under a null hypothesis. This data-dependent p value
plays an epistemic role by providing a measure of inductive evidence
against H0 in single experiments. This is very different from the signif-
icance level denoted by α in a Neyman-Pearson hypothesis test. With
Neyman-Pearson, the focus is on minimizing type II, or β, errors (i.e.,
false acceptance of a null hypothesis) subject to a bound on type I, or
α, errors (i.e., false rejections of a null hypothesis). Moreover, this error
minimization applies only to long-run repeated sampling situations,
not to individual experiments, and is a prescription for behaviors, not
a means of collecting evidence.
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Clearly then, Fisher’s approach is very different from that of Neyman and
Pearson. Yet, most researchers believe the paradigms have somehow merged
and interpret the p-value both as a measure of evidence and as a repetitive
error rate. It appears that the confusion between the two different procedures
is now close to total, and it has been argued that this mass confusion “has
rendered applications of classical statistical testing all but meaningless among
applied researchers.” [49, p. 171]. Additional references include [9, 18, 37, 38,
39, 40, 43, 91].

We now discuss several general problems of both the Fisherian and the
Neyman-Pearson procedure (cf. [14, 26, 48, 53, 91, 97]). Although only the
Neyman-Pearson procedure is truly frequentist (i.e., it requires knowledge
about performance in long-run sampling situations), we will perpetuate the
confusion and refer to both the Fisherian and the Neyman-Pearson procedure
as “frequentist.”

9.2.1 Frequentist Inference Generally Does Not Condition on the
Observed Data

As argued by Berger and Wolpert [14], frequentist evidence is often pre-
experimental or unconditional.4 This means that “a particular procedure is
decided upon for use, and the accuracy of the evidence from an experiment is
identified with the long run behavior of the procedure, were the experiment
repeatedly performed.” [14, p. 5]. We illustrate the problem with this uncon-
ditional approach by an example that highlights the pathological properties
of frequentist confidence intervals (cf. [15, p. 468]).

Consider a uniform distribution with mean µ and width 1. Draw two val-
ues randomly from this distribution, label the smallest one s and the largest
one l, and check whether the mean µ lies in between s and l. If this proce-
dure is repeated very many times, the mean µ will lie in between s and l in
half of the cases. Thus, (s, l) gives a 50% frequentist confidence interval for µ.
But suppose that for a particular draw, s = 9.8 and l = 10.7. The difference
between these values is 0.9, and this covers 9/10th of the range of the distri-
bution. Hence, for these particular values of s and l we can be 100% confident
that s < µ < l, even though the frequentist confidence interval would have
you believe you should only be 50% confident.

This example shows why it is important to condition on the data that have
actually been observed. The key problem is that frequentist methods do not do
this, so that for data x, “(...) a procedure which looks great pre-experimentally
could be terrible for particular x(...)” [14, p. 9]. Other examples of pathological
behavior of frequentist confidence intervals can be found in [15, pp. 466–469],
[14], and, in particular, [52].

4 Frequentist’ procedures sometimes do condition on important aspects of the data.
Conditioning is always partial, however, and there exist situations in which it is
unclear what aspects of the data on which to condition.
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Table 9.1. Two different sampling distributions, f(y) and g(y) that lead to two
different p-values for y = 5

Data y

Distribution y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

f(y)|H0 .04 .30 .31 .31 .03 .01
g(y)|H0 .04 .30 .30 .30 .03 .03

9.2.2 Frequentist Inference Depends on Data That Were Never
Observed

The p-value is the probability under the null hypothesis of observing data at
least as extreme as the data that were actually observed. This means that the
p-value is partly determined by data that were never observed, as is illustrated
in the following example (cf. [4, 14, 19, 97]).

Assume the data y can take on six integer values, y ∈ {1, 2, ..., 6}, according
to one of the sampling distributions f(y) or g(y). Further assume that what
is observed is y = 5. As can be seen from Table 9.1, the observed datum is
equally likely under f(y) and g(y). Yet, a one-sided p-value is .03 + .01 = .04
under f(y) and .03 + .03 = .06 under g(y). This is solely due to the fact that
the more extreme observation y = 6, which was never observed, is less likely
under f(y) than it is under g(y). Jeffreys famously summarized the situation:
“What the use of P implies, therefore, is that a hypothesis that may be true
may be rejected because it has not predicted observable results that have not
occurred. This seems a remarkable procedure” [55, p. 385, italics in original].

9.2.3 Frequentist Inference Depends on the Intention With Which
the Data Were Collected

Because p-values are calculated over the sample space, changes in the sample
space can greatly affect the p-value. For instance, assume that a participant
answers a series of 17 test questions of equal difficulty; 13 answers are correct,
4 are incorrect, and the last question was answered incorrectly. Under the
standard binomial sampling plan (i.e., “ask 17 questions”), the two-sided p-
value is .049. The data are, however, also consistent with a negative binomial
sampling plan (i.e., “keep on asking questions until the fourth error occurs”).
Under this alternative sampling plan, the experiment could have been finished
after four questions, or after a million. For this sampling plan, the p-value is
.021.

What this simple example shows is that the intention of the researcher af-
fects statistical inference – the data are consistent with both sampling plans,
yet the p-value differs. Berger and Wolpert [14, pp. 30–33] discussed the result-
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ing counterintuitive consequences through a story involving a naive scientist
and a frequentist statistician.

In the story, a naive scientist has obtained 100 independent observations
that are assumed to originate from a normal distribution with mean θ and
standard deviation 1. In order to test the null hypothesis that θ = 0, the
scientist consults a frequentist statistician. The mean of the observations is 0.2,
and hence the p-value is a little smaller than .05, which leads to a rejection of
the null hypothesis. However, the statistician decides to probe deeper into the
problem and asks the scientist what he would have done in the fictional case
that the experiment had not yielded a significant result after 100 observations.
The scientist replies that he would have collected another 100 observations.
Thus, it may be hypothesized that the implicit sampling plan was not to collect
100 observation and stop; instead, the implicit sampling plan was to first take
100 observations and check whether p < .05. When the check is successful,
the experiment stops, but when the check fails, another 100 observations are
collected and added to the first 100, after which the experiment stops.

The statistician then succeeds in convincing the scientist that use of the
implicit sampling plan requires a correction in order to keep the type I error
rate at α = .05 [81]. Unfortunately, this correction for planning multiple tests
now leads to a p-value that is no longer significant. Therefore, the puzzled
scientist is forced to continue the experiment and collect an additional 100
observations. Note that the interpretation of the data (i.e., significant or not
significant) depends on what the scientist was planning to do in a situation
that did not actually occur. If the very same data had been collected by
a scientist who had answered the statistician’s question by saying, whether
truthfully or not, “I would not have collected any more observations,” then the
data would have been judged to be significant: Same data, different inference.

But the story becomes even more peculiar. Assume that the scientist col-
lects the next 100 observations and sets up another meeting with the statisti-
cian. The data are now significant. The statistician, however, persists and asks
what the scientist would have done in case the experiment had not yielded a
significant result after 200 observations. Suppose that the scientist now an-
swers “This would have depended on the status of my grant renewal. If my
grant is renewed, I would have had enough funds to test another 100 obser-
vations. If my grant is not renewed, I would have had to stop the experiment.
Not that this matters, of course, because the data were significant anyway.”

The frequentist statistician then explains that the inference depends on
the grant renewal; if the grant is not renewed, the sampling plan stands and
no correction is necessary. But if the grant is renewed, the scientist could
have collected more data, in the fictional case that the data would not have
been significant after 200 observations. This calls for a correction for planning
multiple tests, similar to the first one. Berger and Wolpert [14, p. 33] end
their story: “The up-to-now honest scientist has had enough, and he sends
in a request to have the grant renewal denied, vowing never again to tell the
statistician what he could have done under alternative scenarios.”
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We believe that most researchers find it awkward that the conclusions
from frequentist statistics depend critically on events that have yet to happen
– events that, moreover, seem to be irrelevant with respect to the data that
have actually been obtained.

9.2.4 Frequentist Inference Does Not Prescribe Which Estimator
Is Best

Frequentist inference is not derived from a set of simple axioms that describe
rational behavior. This means that any statistical problem potentially affords
more than one frequentist solution, and it may be unclear which one is best.
For instance, many different estimators may be proposed for a particular pa-
rameter θ. Which estimator for θ should we prefer? The common strategy is to
narrow down the set of admissible estimators by considering only estimators
that are unbiased. An estimator t(·) based on data y is unbiased when∫

Y

t(y)p(y|θ) dy = θ, (9.1)

for all θ, where Y indicates the sample space (cf. [65]); that is, the only
estimators taken into consideration are those that, averaged over the data
that could arise, do not systematically overestimate or underestimate θ.

Although the criterion of unbiasedness has intuitive appeal, it is in fact
highly contentious. First, the criterion is based on all possible datasets that
could be observed (i.e., the sample space Y ). This means that the intention
of the researcher affects which estimators are unbiased and which are not. For
instance, for the binomial sampling plan the unbiased estimator is s/n, where
s is the number of correct responses out of a total of n questions, but for the
negative binomial sampling plan the unbiased estimator is (s − 1)/(n − 1).
Second, an estimator that is unbiased for θ may well be biased for some
nonlinear transformation of θ such as

√
θ.

Finally, unbiased estimators may perform uniformly worse than biased
estimators. Consider, for instance, the datum y distributed as N (

√
θ, 1) with

θ > 0. The unbiased estimator for θ is t(y) = y2 − 1. But when |y| < 1, t(y)
is negative, which conflicts with the knowledge that θ > 0. A new estimator
tnew(y) may be proposed that is given by tnew(y) = y2 − 1 when |y| ≥ 1 and
tnew(y) = 0 otherwise. The new estimator tnew(y) is biased but does uniformly
better than the unbiased estimator t(y), this means that t(y) is inadmissible
(cf. [79]).

It should also be noted that in the above example, t(y) is biased downward
when |y| < 1, but biased upward when |y| ≥ 1. Thus, an estimator may be
unbiased for all possible datasets taken together, but it may – at the same
time – be biased for every single dataset considered in isolation [79, p. 122].

Frequentist statisticians are aware of this problem, in the sense that they
acknowledge that “(...) an overly rigid insistence upon unbiasedness may lead
to difficulties” [96, p.432]. This statement highlights an important problem:
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Frequentist inference does not specify a unique solution for every statistical
problem. When unfortunate consequences of, say, “an overly rigid insistence
upon unbiasedness” become apparent, adhoc estimators may be proposed that
remedy the immediate problem – but this clearly is not a satisfactory state of
affairs.

9.2.5 Frequentist Inference Does Not Quantify Statistical Evidence

According to the Fisherian tradition, p-values reflect the strength of evidence
against the null hypothesis. General guidelines associate specific ranges of p-
values with varying levels of evidence: A p-value greater than .1 yields “little
or no real evidence against the null hypothesis,” a p-value less than .1 but
greater than .05 implies “suggestive evidence against the null hypothesis,” a
p-value less than .05 but greater than .01 yields “moderate evidence against
the null hypothesis,” and a p-value less than .01 constitutes “very strong
evidence against the null hypothesis” [17, p. 9]; see also [101, p. 157].

If p-values truly reflect evidence, a minimum requirement is that equal p-
values provide equal evidence against the null hypothesis (i.e., the p-postulate
[97]). According to the p-postulate, p = .05 with 10 observations constitutes
just as much evidence against the null hypothesis as does p = .05 after 50
observations.

It may not come as a surprise that Sir Ronald Fisher himself was of the
opinion that the p-postulate is correct: “It is not true...that valid conclusions
cannot be drawn from small samples; if accurate methods are used in calculat-
ing the probability [the p-value], we thereby make full allowance for the size
of the sample, and should be influenced in our judgement only by the value
of probability indicated” [31, p. 182], as cited in [91, p. 70].

Nevertheless, some researchers believe that the p-postulate is false and
that p = .05 after 50 observations is more reliable than p = .05 after 10 ob-
servations. For instance, Rosenthal and Gaito [84] found that the confidence
with which a group of psychologists were willing to reject the null hypothesis
increased with sample size (cf. [75]). Consistent with the psychologists’ intu-
ition, an article co-authored by 10 reputable statisticians stated that “a given
p-value in a large trial is usually stronger evidence that the treatments really
differ than the same p-value in a small trial of the same treatments would be”
[80, p. 593], as cited in [91, p. 71].

Finally, several researchers have argued that when the p-values are the
same, studies with small sample size actually provide more evidence against
the null hypothesis than studies with large sample size (e.g., [1, 3, 69, 75]).
For a summary of the debate, see [90]. Abelson considered the very question
of whether a researcher would be happier with a p = .05 after testing 10 cases
per group or after testing 50 cases per group, and then firmly concluded “Un-
dergraduates inevitably give the wrong reply: Fifty cases per group, because
a bigger sample is more reliable.” The appropriate answer is “ten cases per
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group, because if the p values are the same, the observed effect size has to be
bigger with a smaller n” [1, p. 12].

In order to draw a firm conclusion about the veracity of the p-postulate,
we first need to define what “evidence” is. The details of a rational (i.e.,
coherent or Bayesian) definition of evidence are presented in Section 9.3. Here
it suffices to say that such an analysis must always reject the p-postulate (e.g.,
[26, 64, 98]): From a rational perspective, p = .05 after only 10 observations is
more impressive than p = .05 after 1000 observations. In fact, it may happen
that that for a large dataset, a frequentist analysis will suggest that the null
hypothesis should be rejected, whereas a rational analysis will suggest that
the null hypothesis is strongly supported.

9.2.6 Frequentist Inference Does Not Apply to Non-nested Models

Consider the study on Dissociative Identity Disorder (DID), introduced in
Chapter 2 and discussed throughout this book. In this study, Huntjens et al.
[50] set out to study memory processes in DID-patients. These patients often
report inter-identity amnesia (i.e., impaired memory for events experienced
by identities that are not currently present). For instance, the identity “lonely
girl” may have limited or no knowledge of the events experienced by the iden-
tity “femme fatale.” To test whether DID-patients were really affected by
interidentity amnesia or whether they were simulating their amnesia, the au-
thors assessed the performance of four groups of subjects on a multiple-choice
recognition test. The dependent measure was the number of correct responses.
The first group were the DID-patients, the second group were Controls, the
third group were controls instructed to simulate interidentity amnesia (Simu-
lators), and the fourth group were controls who had never seen the study list
and were therefore True amnesiacs.

From the psychological theorizing that guided the design of the experi-
ment, one can extract several hypotheses concerning the relative performance
of the different groups. One hypothesis, H1a, states that the mean recognition
scores µ for DID-patients and True amnesiacs are the same and that their
scores are higher than those of the Simulators: µcon > {µamn = µpat} > µsim.
Another hypothesis, H1b, states that the mean recognition scores µ for DID-
patients and Simulators are the same and that their scores are lower than
those of the True amnesiacs: µcon > µamn > {µpat = µsim}.

The hypotheses H1a and H1b are non-nested, and frequentist inference
is not well suited for the comparison of such models (e.g., [60]). The main
problem is that it is not clear whether H1a or H1b should be considered the
null hypothesis. One might try both possibilities, but this runs the danger of
simultaneously rejecting (or accepting) both H1a and H1b. Moreover, it is not
clear how to interpret the hypothetical result of p = .04 when H1a serves as
the null hypothesis, and p = .06 when H1b serves as the null hypothesis – even
though H1a is rejected and H1b is not, this does not mean that H1b is much
better than H1a.
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9.2.7 Interim Conclusion

In the preceding analyses we have argued that frequentist procedures suffer
from fundamental philosophical and practical problems. These problems are
not some kind of well-kept secret, as statisticians have written about these
frequentist flaws for many decades; the website http://biology.uark.edu/
coop/Courses/thompson5.html documents some of their efforts by listing
402 articles and books that criticize the use of frequentist null hypothesis
testing.

Indeed, the selection of problems mentioned in Sections 9.2.1 to 9.2.6 was
certainly not exhaustive. Other problems include the fact that α-levels are ar-
bitrary “surely, God loves the .06 nearly as much as the .05” [85, p. 1277], the
fact that inference in sequential designs is overly complicated and conserva-
tive “Sequential analysis is a hoax” [2, p. 381], the fact that p-values are often
misinterpreted, even by those teaching statistics [44], the fact that Fisherian
frequentist inference does not allow one to obtain evidence in support of the
null hypothesis, and the fact that frequentist inference is internally inconsis-
tent or incoherent. The latter means that when statistical conclusions need
to be backed up by betting on them, the frequentist will be a sure loser (for
details, see Section 9.3.1).

All of this makes one may wonder why – despite the harsh criticism – the
flogged horse of frequentist inference is still alive and well, at least in the field
of psychology [1]. We believe the reason for this is most likely an unfortunate
combination of several factors. Among the most important of these are ease
of application, presumed lack of an appealing alternative, limited statistical
knowledge among practitioners, faulty and one-sided teaching of statistics at
universities, historical precedent, and – for a few special cases – exact nu-
merical correspondence of frequentist “flogged horse” inference with rational
inference to be discussed below.

This concludes our summary of frequentist inference and its problems. We
now turn to a discussion of the other major statistical paradigms for statistical
inference, which differs from frequentist inference in a few key assumptions. We
will argue that, both philosophically and practically, this paradigm constitutes
a superior alternative to frequentist inference.

9.3 Bayesian Inference and Its Advantages

In Bayesian inference, parameters are random variables. Uncertainty or degree
of belief with respect to the parameters is quantified by probability distribu-
tions. For a given model, say H1, the prior distribution p(θ|H1) for a param-
eter θ is updated after encountering data y to yield a posterior distribution
p(θ|y,H1). The posterior information contains all of the relevant information
about θ. Note that the posterior distribution is conditional on the data y that
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have been observed; data that could have been observed, but were not, do not
affect Bayesian inference.

Specifically, Bayes’ rule states that the posterior distribution p(θ|y,H1) is
proportional to the product of the prior p(θ|H1) and the likelihood f(y|θ,H1):

p(θ|y,H1) = p(θ|H1)f(y|θ,H1)/m(y|H1). (9.2)

In this equation, m(y|H1) is the marginal probability of the data; it is com-
puted by integrating out the model parameters using the law of total proba-
bility:

m(y|H1) =
∫
p(y, θ|H1) dθ =

∫
p(θ|H1)f(y|θ,H1) dθ. (9.3)

This shows that m(y|H1) can also be interpreted as a weighted average likeli-
hood where the weights are provided by the prior distribution p(θ|H1). Because
m(y|H1) is a number that does not depend on θ, m(y|H1) can be conveniently
ignored when the goal is to estimate θ. However, when the goal is Bayesian
hypothesis testing, m(y|H1) becomes critically important.

For concreteness, consider the choice between two possibly non-nested
models, H1 and H2. The extension to more than two models is entirely possi-
ble and follows the same recipe. Bayes’ rule dictates how the prior probability
of H1, p(H1), is updated through the data to give the posterior probability of
H1, p(H1|y):

p(H1|y) = p(H1)m(y|H1)/
∑

t

p(Ht)m(y|Ht). (9.4)

In the same way, one can calculate the posterior probability of H2, p(H2|y).
The ratio of these posterior probabilities is given by

p(H1|y)
p(H2|y)

=
p(H1)
p(H2)

m(y|H1)
m(y|H2)

, (9.5)

which shows that the posterior odds p(H1|y)/p(H2|y) is equal to the prod-
uct of the prior odds p(H1)/p(H2) and the ratio of marginal probabilities
m(y|H1)/m(y|H2). Thus, the ratio of marginal probabilities – henceforth re-
ferred to as the Bayes factor [55] – quantifies the change from prior to posterior
odds brought about by the data. The Bayes factor, or the log of the Bayes
factor, is often interpreted as the weight of evidence coming from the data
[42]. Thus, a Bayes factor hypothesis test prefers the model under which the
observed data are most likely. For details see [13], [15, Chapter 6], [41, Chap-
ter 7], [56], and [77]; for an introduction in Bayesian inference, see Chapters
3 and 4 of the present book.

Jeffreys [55] proposed labeling the evidence provided by the Bayes factor
according to a classification scheme that was subsequently revised by Raftery
[82, Table 6]. Table 9.2 shows the Raftery classification scheme. The first
column shows the Bayes factor, and the second column shows the associated
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Table 9.2. Interpretation of the Bayes factor in terms of evidence

Bayes factor p(H1|y) Evidence
BF12

1–3 .50–.75 Weak
3–20 .75–.95 Positive

20–150 .95–.99 Strong
> 150 > .99 Very strong

posterior probability when it is assumed that both H1 and H2 are a priori
equally plausible. The third column shows the verbal labels for the evidence at
hand, in the case of a comparison between two models. Note that these verbal
labels are associated with the level of evidence that is provided by the Bayes
factor (i.e., a comparison between two models). These verbal labels should
not be associated with posterior model probabilities (PMPs) when the set
of candidate models is larger than two, for example, consider the problem of
finding the best set of predictors for a regression equation. By considering all
possible combinations of predictors, the model space can easily comprise as
many as 100,000 candidate models. When a single model out of such a large
set has a posterior probability of, say, .50, this would constitute a dramatic
increase over its prior probability of .000001, and hence the data provide “very
strong” rather than “weak” evidence in its favor.

Bayesian procedures of parameter estimation and hypothesis testing have
many advantages over their frequentist counterparts. Below is a selective list
of 10 specific advantages that the Bayesian paradigm affords.

9.3.1 Coherence

Bayesian inference is prescriptive; given the specification of a model, there
exists only one way to obtain the appropriate answer. Bayesian inference does
not require adhoc solutions to remedy procedures that yield internally incon-
sistent results. Bayesian inference is immune from such inconsistencies because
it is founded on a small set of axioms for rational decision making. Several
axiom systems have been proposed, but they all lead to the same conclu-
sion: Reasoning under uncertainty can only be coherent if it obeys the laws
of probability theory (e.g., [15, 20, 22, 23, 30, 53, 66, 68, 83, 92]).

One of the famous methods to prove this far-reaching conclusion is due to
Bruno de Finetti and involves a betting scenario [22]. Assume there exists a
legally binding ticket that guarantees to pay 1 euro should a proposition turn
out to be true. For instance, the proposition could be “In 2010, the Dutch
national soccer team will win the world cup.” Now you have to determine
the price you are willing to pay for this ticket. This price is the “operational
subjective probability” that you assign to the proposition.
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The complication is that this scenario also features an opponent. The
opponent can decide, based on the price that you determined, to either buy
this ticket from you or to make you buy the ticket from him. This is similar to
the “I cut, you choose” rule where the person who cuts a cake gets to choose
the last piece; it is then in that person’s own interest to make a fair judgment.

In the example of the ticket, it is obviously irrational to set the price higher
than 1 euro, because the opponent will make you buy this ticket from him
and he is guaranteed to make a profit. It is also irrational to set the price
lower than 0 euro, because the opponent will “buy” the ticket from you at a
negative price (i.e., gaining money) and is again guaranteed to make a profit.

Now suppose you have to determine the price of three individual tickets.
Ticket A states “In 2010, the Dutch national soccer team will win the world
cup”; ticket B states “In 2010, the French national soccer team will win the
world cup”; and ticket C states “In 2010, either the Dutch or the French
national soccer team will win the world cup.” You can set the prices any
way you want. In particular, there is nothing to keep you from setting the
prices such that price(ticket A) + price(ticket B) 6= price(ticket C). However,
when you set the prices this way, you are guaranteed to lose money compared
to your opponent; for instance, suppose you set price(ticket A) = 0.5 euro,
price(ticket B) = 0.3 euro, and price(ticket C) = 0.6 euro. Then the opponent
will buy ticket C from you, sell you tickets A and B, and he is guaranteed
to come out ahead. A set of wagers that ensures that somebody will make a
profit, regardless of what happens, is called a Dutch book.

Using betting scenarios such as the above, de Finetti showed that the only
way to determine subjective values and avoid a certain loss is to make these
values obey the rules of probability theory (i.e., the rule that probabilities lie
between 0 and 1, the rule that mutually exclusive events are additive, and the
rule of conditional probability); that is, the only way to avoid a Dutch book
is to make your prices for the separate tickets cohere according to the laws of
probability calculus.

The concept of coherence refers not just to the betting scenario, but more
generally to the combination of information in a way that is internally con-
sistent. For example, consider Bayesian inference in the case that the data
arrive in two batches, y1 and y2 [79, pp. 64-65]. Following the adage “today’s
posterior is tomorrow’s prior” [65, p. 2], we can update from the initial prior
p(θ) to a posterior p(θ|y1) and then update this posterior again, effectively
treating p(θ|y1) as a prior, to finally obtain p(θ|y1, y2). The crucial aspect is
that when the data are conditionally independent, it does not matter whether
we observe the dataset batch-by-batch, all at once, or in reverse order.

As an additional example of coherence, consider a set of three models: H1

postulates that µa = µb = µc, H2 postulates that {µa = µb} > µc, and H3

postulates that µa > {µb = µc}. Then, denoting the Bayes factor for model
Hi over model Hj by BFij , we can deduce from the identity
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m(y|H1)
m(y|H2)

=
m(y|H1)
m(y|H3)

m(y|H3)
m(y|H2)

, (9.6)

that BF12 = BF32 × BF13. This means that if the data are twice as likely
under H1 than under H3 and thrice as likely under H3 than under H2, we
know that the data are six times more likely under H1 than under H2. If the
Bayes factors would not commute like this, one could construct a situation in
which one could hold intransitive beliefs – a situation that would violate the
axioms of rational decision making upon which Bayesian inference rests.

9.3.2 Automatic Parsimony

In statistical hypothesis testing, the ideal model captures all of the replicable
structure and ignores all of the idiosyncratic noise. Such an ideal model yields
the best predictions for unseen data coming from the same source. When a
model is too complex, it is said to overfit the data; the model mistakenly
treats idiosyncratic noise as if it were replicable structure. When a model is
too simple, it is said to underfit the data, which means that the model fails
to capture all of the replicable structure in the data. Models that underfit
or overfit the data provide suboptimal predictions and are said to generalize
poorly (e.g., [73, 100]).

The main challenge of hypothesis testing or model selection is to identify
the model with the best predictive performance. However, it is not immedi-
ately obvious how this should be done; complex models will generally provide
a better fit to the observed data than simple models, and therefore one can-
not simply prefer the model with the best “goodness-of-fit” – such a strat-
egy would lead to massive overfitting. Intuition suggests that this tendency
for overfitting should be counteracted by putting a premium on simplicity.
This intuition is consistent with the law of parsimony or “Occam’s razor” (cf.
http://en.wikipedia.org/wiki/Occam’s_Razor), which states that when
everything else is equal, simple models are to be preferred over complex mod-
els [53, Chapter 20].

Formal model selection methods try to quantify the trade-off between
goodness-of-fit and parsimony. Many of these methods measure a model’s
overall performance by the sum of two components: One that measures de-
scriptive accuracy and one that places a premium on parsimony. The latter
component is also known as the Occam factor [70, Chapter 28]. For many
model selection methods, the crucial issue is how to determine the Occam
factor. One of the attractive features of Bayesian hypothesis testing is that it
automatically determines the model with the best predictive performance –
Bayesian hypothesis testing therefore incorporates what is known as an au-
tomatic Occam’s razor. In order to see why this is the case, we explore two
lines of reasoning.

First, recall that Bayesian model selection is based on the marginal prob-
ability of the data given model t, m(y|Ht). Now denote a sequence of n data
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points by yn = (y1, ..., yn); for example, yi−1 denotes the (i− 1)th individual
data point, whereas yi−1 denotes the entire sequence of observations ranging
from y1 up to and including yi−1. Quantify predictive performance for a single
data point by the logarithmic loss function − ln p̂i(yi): the larger the prob-
ability that p̂i (determined based on the previous observations yi−1) assigns
to the observed outcome yi, the smaller the loss. From the definition of con-
ditional probability (i.e., p(yi|yi−1) = p(yi)/p(yi−1)), it then follows that the
marginal probability of the data may be decomposed as a series of sequential,
“one-step-ahead” probabilistic predictions (e.g., [21, 99]):

m(yn|Ht) = p(y1, ..., yn|Ht)

= p(yn|yn−1,Ht)p(yn−1|yn−2,Ht)...p(y2|y1,Ht)p(y1|Ht). (9.7)

Thus, (9.7) shows that the model with the highest marginal probabil-
ity will also have the smallest sum of one-step-ahead prediction errors, as
− lnm(yn|Ht) =

∑n
i=1− ln p(yi|yi−1,Ht).

According to the second line of reasoning, every statistical model makes
a priori predictions. Complex models have a relatively large parameter space
and are therefore able to make many more predictions and cover many more
eventualities than simple models. However, the drawback for complex models
is that they need to spread out their prior probability across their entire
parameter space. In the limit, a model that predicts almost everything has to
spread out its prior probability so thinly that the occurrence of any particular
event will not greatly add to that model’s credibility. Formally, the marginal
probability of the data is calculated by averaging the likelihood f(y|θ,Ht)
over the prior p(θ|Ht). When the prior is very spread out, it will occupy a
relatively large part of the parameter space in which the likelihood is almost
zero, and this greatly decreases the average or marginal likelihood.

As a more concrete example, consider two people, Bart and Lisa, who each
get 100 euros to bet on the winner of the 2010 world cup soccer. Bart decides
to divide his money evenly over 10 candidate teams, including those from
Brazil and Germany. Lisa divides her money over just two teams, betting 60
euros on the team from Brazil and 40 euros on the team from Germany. Now
if either Brazil or Germany turn out to win the 2010 world cup, Lisa wins
more money than Bart. By betting all her money on just two teams, Lisa was
willing to take a risk, whereas Bart was just trying to keep his options open.
For Bart, this means that even if his prediction of Brazil winning turns out
to be correct, he will still lose the 90 euros he bet on the other countries to
win. The point of the story is that, both at the betting office and in Bayesian
inference, hedging your bets is not necessarily the best option, because this
requires you to spread your resources – be it money or prior probability mass
– thinly over the alternative options.
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9.3.3 Extension to Non-nested Models

Bayesian hypothesis testing is based on the marginal probability of the data
given model t, m(y|Ht), and therefore it does not make a fundamental dis-
tinction between nested and non-nested models. This means that Bayesian
hypothesis testing can be applied in many more situations than frequentist
hypothesis testing. In cognitive psychology, for instance, important substan-
tive questions concern the extent to which the law of practice follows a power
function versus an exponential function or the extent to which category learn-
ing is best described by an exemplar model or a prototype model. For Bayesian
inference, the substantive questions can be statistically tested in exactly the
same way, whether the competing models are nested or not. For frequentist
inference, however, the fact that the models are non-nested causes grave com-
plications.

Another class of possibly non-nested models that are of great relevance
for psychologists are those that incorporate order restrictions. For instance,
consider again the case of the Huntjens et al. study on DID discussed in
Section 9.2.6 and throughout this book. For the data from the study, hy-
pothesis H1a states that the mean recognition scores µ for DID-patients and
True amnesiacs are the same and that their scores are higher than those
of the Simulators: µcon > {µamn = µpat} > µsim, whereas hypothesis H1b

states that the mean recognition scores µ for DID-patients and Simulators are
the same and that their scores are lower than those of the True amnesiacs:
µcon > µamn > {µpat = µsim}. Within the frequentist paradigm, a compari-
son of these models is problematical. Within the Bayesian paradigm, however,
the comparison is natural and elegant (e.g., [35, 47, 59, 60, 61, 62, 94]).

The general recipe, outlined in O’Hagan and Forster [79, pp. 70-71] is to
carry out order restricted inference by first considering the posterior distri-
bution of the unconstrained model and then restricting one’s attention to the
part of the posterior distribution that obeys the parameter constraints. In
a Markov chain Monte Carlo (MCMC) simulation, for instance, this can be
accomplished automatically by retaining only those samples that are in line
with the constraints. The work reported in this book attests to the ability of
Bayesian inference to address substantive psychological questions that involve
order restrictions in a manner that is unattainable by frequentist means.

9.3.4 Flexibility

Bayesian inference allows for the flexible implementation of relatively compli-
cated statistical techniques such as those that involve hierarchical nonlinear
models (e.g., [71, 72, 74, 86, 87, 88, 89]). In hierarchical models, parameters
for individual people are assumed to be drawn from a group-level distribution.
Such multilevel structures naturally incorporate both the differences and the
commonalities between people and therefore provide experimental psychology
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with the means to settle the age-old problem of how to deal with individual
differences.

Historically, the field of experimental psychology has tried to ignore indi-
vidual differences, pretending instead that each new participant is a replicate
of the previous one [6]. As Bill Estes and others have shown, however, indi-
vidual differences that are ignored can lead to averaging artifacts in which the
data that are averaged over participants are no longer representative for any
of the participants (e.g., [28, 29, 45]). One way to address this issue, popular
in psychophysics, is to measure each individual participant extensively and
deal with the data on a participant-by-participant basis.

In between the two extremes of assuming that participants are completely
the same and that they are completely different lies the compromise of hierar-
chical modeling (cf. [63]). The theoretical advantages and practical relevance
of a Bayesian hierarchical analysis for common experimental designs has been
repeatedly demonstrated by Jeff Rouder and colleagues (e.g., [86, 88, 89]).
Although hierarchical analyses can be carried out using orthodox methodol-
ogy [46], there are strong philosophical and practical reasons to prefer the
Bayesian methodology (e.g., [36, 68]).

9.3.5 Marginalization

Bayesian statistics makes it easy to focus on the relevant variables by inte-
grating out so-called nuisance variables (e.g., [5, 12]). Consider, for instance,
the case of the normal distribution, for which the likelihood function is given
by

f(y|µ, σ) =
1

σ
√

2π
exp

(
− (y − µ)2

2σ2

)
. (9.8)

For this example, we follow [70, Chapter 24] and propose conjugate im-
proper priors for µ and σ. A prior is said to be conjugate when it is in the
same distributional family as the posterior distribution. For instance, when
the prior for µ is normal, the posterior for µ is also normal. Conjugate priors
are often the only ones that allow analytical derivation of the posterior. A
prior is said to be improper when it does not integrate to a finite number. For
instance, when the prior for µ is a normal distribution with mean µ0 = 0 and
standard deviation σµ → ∞, this yields a prior that is flat across the entire
real line. For the present example, we use conjugate improper priors on µ and
σ because they lead to elegant analytical results that correspond to results
from frequentist inference.

In particular, we assume here that the prior on µ is normal with mean
µ0 = 0 and standard deviation σµ →∞. This flat prior simply states that all
values of µ are equally likely a priori. Because σ is always greater than 0, but
log σ covers the entire real line, a standard “uninformative” prior is flat on
the log scale, which transforms to the prior p(σ) = 1/σ. Using these priors,
one can analytically derive the joint posterior distribution of µ and σ given
the data (i.e., p(µ, σ|y)) (e.g., [70, Chapter 24]).
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Now that we have defined the priors and know the joint posterior distri-
bution of µ and σ, consider two scenarios in which one needs to eliminate a
nuisance parameter. In the first scenario, we want to learn about the mean µ
of a normal distribution with unknown standard deviation σ. Thus, µ is the
parameter of interest, whereas σ is a parameter that one would like to ignore
(i.e., a nuisance parameter).

Using the law of total probability, it is straightforward to marginalize over,
or integrate out, σ, as p(µ|y) =

∫
p(µ, σ|y) dσ. The fact that this equation

can be rewritten as p(µ|y) =
∫
p(µ|σ, y)p(σ) dσ highlights the fact that the

nuisance parameter σ can only be integrated out once it has been assigned
a prior distribution. After integrating out σ, the resulting posterior marginal
distribution for p(µ|y) turns out to be the Student-t distribution, the famous
frequentist distribution for a test statistic that involves the mean of a normal
distribution with unknown variance [54].

In the second situation, we want to learn about the standard deviation
σ of a normal distribution with unknown mean µ. This means that σ is the
parameter of interest, whereas µ is now the nuisance parameter. From the
joint posterior distribution of µ and σ, we can again apply the law of total
probability, this time to integrate out µ, as follows: p(σ|y) =

∫
p(σ, µ|y) dµ =∫

p(σ|µ, y)p(µ) dµ. As before, this equation shows that the nuisance parameter
µ can only be integrated out when it has been assigned a prior distribution.
After computing the marginal posterior distribution p(σ|y), the Most Probable
value for σ (given the data y) turns out to be σMP =

√
S2/(n− 1), where n

equals the number of observations and S2 =
∑n

i=1(yi − ȳ)2. The factor n− 1
(instead of n) also occurs in frequentist inference, where S2/(n − 1) is the
unbiased estimator for the variance of a normal distribution with unknown
mean.

In sum, Bayesian inference allows the user to focus on parameters of in-
terest by integrating out nuisance parameters according to the law of total
probability. The resulting marginal posterior distributions may have matching
frequentist counterparts, but this only holds in a few special cases.

9.3.6 Validity

Bayesian inference yields results that connect closely to what researchers want
to know. To clarify this claim by analogy, Gerd Gigerenzer has suggested that
for many researchers statistical inference involves an internal Freudian strug-
gle amond the Superego, the Ego, and the Id (e.g., [37, 39]). In Gigerenzer’s
analogy, the Superego promotes Neyman-Pearson hypothesis testing, in which
an α-level is determined in advance of the experiment. The Ego promotes Fish-
erian hypothesis testing, in which the precise value of p supposedly measures
the strength evidence against the null hypothesis. Finally, the Id desires that
the hypotheses under consideration are assigned probabilities, something that
the Superego and Ego are unable and unwilling to do. As a result of this
unconscious internal conflict, researchers often report results from frequentist
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procedures, but often believe – implicitly or even explicitly – that they have
learned something about the probability of the hypotheses under considera-
tion.

We agree with Gigerenzer that, deep down inside, what researchers really
want is to draw Bayesian conclusions. Or, in the words of Dennis Lindley,
“Inside every Non-Bayesian, there is a Bayesian struggling to get out,” as
cited in [53]. This assertion is supported by the fact that researchers often
misinterpret frequentist concepts – and misinterpret them in a manner that
is decidedly Bayesian (i.e., the interpretation would have been correct if the
method of inference had been Bayesian) [44].

To illustrate the foregoing with a concrete example, consider a frequentist
confidence interval for the normal mean µ: µ ∈ [−0.5, 1.0]. As we have seen in
Section 9.2.1, the correct but counterintuitive interpretation of this result is
that when the frequentist procedure is applied very many times to all kinds of
possible datasets, the different intervals cover the true value of µ in 95% of the
cases. But why would this be relevant for the researcher who wants to learn
about µ for his or her data? In contrast, consider the same [−0.5, 1.0] interval
for µ, but now assume it is a Bayesian 95% credible interval. Consistent with
intuition and consistent with what researchers want to know, this Bayesian
interval conveys that there is a .95 probability that µ lies in [−0.5, 1.0]. From
the viewpoint of “operation subjective probability” discussed in Section 9.3.1,
this confidence interval means that when a coherent researcher is asked to set
a fair price for a ticket that promises to pay 1 euro should the assertion “µ
is in [−0.5, 1.0]” turn out to be true, that researcher will set the price of the
ticket at exactly 0.95 euro.

9.3.7 Subjectivity That Is Open to Inspection

A common objection to Bayesian inference is that it is subjective and therefore
has no place in scientific communication. For instance, in an article entitled
“Why Isn’t Everyone a Bayesian?” Bradly Efron argued that “Strict objec-
tivity is one of the crucial factors separating scientific thinking from wishful
thinking” and concluded that “The high ground of scientific objectivity has
been seized by the frequentists” [27, p. 4].

Efron’s claims need to be amended for several reasons. First, from a sub-
jective Bayesian perspective, there is no such thing as “strict objectivity,”
as reasoning under uncertainty is always relative to some sort of background
knowledge. In this view, the search for “strict objectivity” is a quixotic ideal.
Thus, subjective Bayesians might want to change Efron’s claim to “The high
ground of scientific objectivity is a concept that cannot be seized by anyone,
because it does not exist.”

Second, there exists a school of objective Bayesians, who specify priors ac-
cording to certain predetermined rules [58]. Given a specific rule, the outcome
of statistical inference is independent of the person who performs the analysis.
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Examples of objective priors include the unit information priors, that is, pri-
ors that carry as much information as a single observation [57], priors that are
invariant under transformations [55], and priors that maximize entropy [51].
Objective priors are generally vague or uninformative (i.e., thinly spread out
over the range for which they are defined). Thus, objective Bayesians might
want to change Efron’s claim to “Although the high ground of scientific objec-
tivity may appear to be seized by the frequentists, objective Bayesians have
a legitimate claim to scientific objectivity also.”

Third, frequentist inference is not as objective as one may (wishfully)
think. As illustrated in Section 9.2.3, the intention with which an experiment
is carried out can have a profound impact on frequentist inference. The undis-
closed ideas and thoughts that guided experimentation are crucial for calcu-
lating frequentist measures of evidence. Berger and Berry concluded that the
perceived objectivity of frequentist inference is largely illusionary [11]. Thus,
critics of frequentist inference might want to change Efron’s claim to “Al-
though the high ground of scientific objectivity may appear to be seized by
the frequentists, upon closer inspection this objectivity is only make-believe,
as in reality frequentists have to rely on the honesty and introspective ability
of the researchers who collected the data.”

In contrast to frequentist inference, Bayesian inference generally does not
depend on subjective intentions (cf. Section 9.2.3), or on data that were never
observed (cf. Section 9.2.2) [67]. The posterior distribution of parameters θ is
written p(θ|y), and the marginal probability of a model, say H0, is given by
m(y|H0); in both cases, y is the observed data, and it is irrelevant what other
data could have been observed but were not.

In Bayesian inference, the subjectivity that Efron alluded to comes in
through the specification of the prior distribution for the model parameters.
Regardless of whether this specification occurs automatically, as in the case
of objective priors, or whether it occurs through the incorporation of prior
knowledge, as in the case of subjective priors, the crucial point is that the
prior distribution is formally specified and available for all other researchers
to inspect and criticize. This also means that Bayesian subjectivity can be
analyzed by formal methods that quantify robustness to the prior (e.g., [8,
25]). Note how different the notion of subjectivity is for the two paradigms:
Bayesian subjectivity is open to inspection, whereas frequentist subjectivity
is hidden from view, carefully locked up in the minds of the researchers that
collected the data. Therefore, a final adjustment of Efron’s statement might
read “Scientific objectivity is illusionary, and both Bayesian inference and
frequentist inference have subjective elements; the difference is that Bayesian
subjectivity is open to inspection, whereas frequentist subjectivity is not.”
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9.3.8 Possibility of Collecting Evidence in Favor of the Null
Hypothesis

Bayesian hypothesis testing allows one to obtain evidence in favor of the null
hypothesis. In the Fisherian paradigm, p-values can only be used to reject
the null hypothesis. The APA task force on statistical inference stressed this
point by issuing the warning “Never use the unfortunate expression accept the
null hypothesis” [102, p. 599]. Of course, what is unfortunate here is not so
much the expression, but rather the fact that Fisherian p-values are incapable
of providing support for the null hypothesis. This limitation hinders scientific
progress, because theories and models often predict the absence of a difference.
In the field of visual word recognition, for instance, the entry-opening theory
[33] predicts that masked priming is absent for items that do not have a lexical
representation. Another example from that literature concerns the work by
Bowers et al. [16], who have argued that priming effects are equally large for
words that look the same in lowercase and uppercase (e.g., kiss/KISS) or that
look different (e.g., edge/EDGE), a finding supportive of the hypothesis that
priming depends on abstract letter identities.

A final example comes from the field of recognition memory, where Dennis
and Humphreys’ “bind cue decide model of episodic memory” (BCDMEM)
predicts the absence of a list-length effect and the absence of a list-strength
effect [24]. This radical prediction of a null effect allows researchers to distin-
guish between context-noise and item-noise theories of inference in memory.
Within the Fisherian paradigm, support for such informative predictions can
only be indirect.

In contrast to the Fisherian hypothesis test, the Bayesian hypothesis test
quantifies evidence by comparing the marginal probability of the data given
one hypothesis, say m(y|HA), to the the marginal probability of the data
given another hypothesis, say m(y|HB). The null hypothesis has no special
status in Bayesian inference, and evidence for it is quantified just as it is for
any other hypothesis, in a way that automatically strikes a balance between
goodness-of-fit and parsimony (cf. Section 9.3.2).

9.3.9 Opportunity to Monitor Evidence as It Accumulates

Bayesian hypothesis testing allows one to monitor the evidence as the data
come in [10]. In contrast to frequentist inference, Bayesian inference does not
require special corrections for “optional stopping” [97].

Consider, for instance, a hypothetical experiment on the neural substrate
of dissociative identity disorder. In this experiment, the researcher Marge has
decided in advance to use functional magnetic resonance imaging (fMRI) to
test 30 patients and 90 normal controls in a total of 4 between-subjects con-
ditions, using the same design as Huntjens et al. [50]. Marge inspects the data
after 15 participants in each condition have been tested and finds that the
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results quite convincingly demonstrate the pattern she hoped to find. Unfor-
tunately for Marge, she cannot stop the experiment and claim a significant
result, as she would be changing the sampling plan halfway through and be
guilty of “optional stopping.” She has to continue the experiment, wasting
not just her time and money, but also the time and efforts of the people who
undergo needless testing.

Within the frequentist paradigm, it is possible to adopt special sampling
plans that take into account the need or desire to monitor the data as they
accumulate; however, these sampling plans yield conclusions that are much
more conservative than the one that assumes a fixed sample size. Thus, the
very same data may lead to a clearly significant result under a fixed sample
size scheme, but to a clearly nonsignificant result under a variable sample size
scheme; the difference is due to the fact that the variable sample size scheme
incorporates a correction for the eventuality that the experiment could have
ended at a different point in time than it actually did.

In contrast, for Bayesian hypothesis testing there is nothing wrong with
gathering more data, examining these data, and then deciding whether or not
to stop collecting new data – no special corrections are needed. As stated
by Edwards et al., “(...) the rules governing when data collection stops are
irrelevant to data interpretation. It is entirely appropriate to collect data until
a point has been proven or disproven, or until the data collector runs out of
time, money, or patience.” [26, p. 193].

9.3.10 Possibility of Incorporating Prior Knowledge

Bayesian inference allows prior knowledge to influence conclusions [67]. Priors
are not only tremendously useful for incorporating existing knowledge, they
are also a prerequisite for rational inference: “If one fails to specify the prior
information, a problem of inference is just as ill-posed as if one had failed
to specify the data.” [53, p. 373]. Another perspective on priors was put for-
ward by Berger, who argued that “(...) when different reasonable priors yield
substantially different answers, can it be right to state that there is a single
answer? Would it not be better to admit that there is scientific uncertainty,
with the conclusion depending on prior beliefs?” [7, p. 125]. Thus, rather than
considering priors a nuisance, we believe they are useful [67], necessary [53],
and informative with respect to the robustness of one’s conclusions [7]. Priors
are an integral part of rational inference; one can only enjoy the Bayesian
omelet when one is prepared to break the Bayesian eggs [93, p. 578].

9.4 Concluding Comments

In experimental psychology, the dominance of frequentist inference is almost
complete. The first goal of this chapter was to demonstrate that the frequentist
framework, despite its popularity, has several serious deficiencies. The second
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goal of this chapter was to show how the Bayesian framework is both flexible
and principled. Our conclusion is that the field of psychology can gain a lot
by moving toward the Bayesian framework for statistical inference and by
moving away from the frequentist framework.

Perhaps frequentist inference has survived for so long because researchers
translate the frequentist statistical outcomes to informal Bayesian conclu-
sions. For instance, most experienced experimental psychologists would take
seriously a priming effect of 25 msec (p = .03, N = 30 subjects, k = 20 items
per condition), whereas they would be skeptical of a priming effect of 4 msec
(p = .03, N = 257 subjects, k = 20 items per condition). Such an informal
Bayesian interpretation of frequentist results is another indication of the in-
ternal conflict between the frequentist Superego and Ego versus the Bayesian
Id; see Section 9.3.6 and [37].

It is our hope that more and more psychologists will start to move away
from frequentist inference and turn instead to formal Bayesian inference. It
may take therapy, medication, or perhaps even surgery, but in the end, re-
searchers will be happier people once they allow their inner Bayesian to come
out.
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10.1 Introduction

This chapter deals with analysis of covariance (ANCOVA) with inequality
constrained adjusted means. Bayesian evaluation of inequality constrained
ANCOVA models was previously discussed in [3].

In an ANCOVA, two or more groups are compared on one outcome vari-
able after correcting for one or more covariates. The outcome as well as the
covariates are continuous variables. For general introductions of the ANCOVA
model, see, for instance, [9, 10]. As a small example, consider an experiment
where respondents with an anxiety disorder are randomly assigned to Ther-
apy 1 or 2. Anxiety is measured before and after therapy and a difference
score is computed for each respondent. The outcome variable of interest is
the decrease in anxiety. The expectation of the researcher is that Therapy 1
will have better effects than Therapy 2; that is, his hypothesis is µ1 > µ2,
where µ1 and µ2 denote the average decrease in anxiety for Therapy 1 and 2,
respectively.

Assume that before the experiment, motivation of respondents was mea-
sured. Since motivation differs among participants and it can be expected
that motivation is related to the therapy effect, motivation is included in the
analysis as a covariate. Denoting the outcome (decrease in anxiety) for the
ith respondent (i = 1, . . . , N) with yi and the covariate (motivation) with xi,
the statistical model is

yi = µ∗1d1i + µ∗2d2i + βxi + εi, (10.1)

where εi is assumed to be normally distributed with mean zero and variance
σ2. Note that the nonstandard dummy coding with one dummy for each sub-
group (d1 and d2, respectively) is used (see also Chapter 3). As a consequence,
the parameter µ∗1 represents the predicted decrease in anxiety for a respon-
dent from Therapy 1 (d1i = 1 and d2i = 0) with a motivation score xi = 0.
Likewise, µ∗2 represents the predicted decrease in anxiety for a respondent in
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Fig. 10.1. Analysis of covariance

Therapy 2 (d1i = 0 and d2i = 1) with a motivation score 0. The relation
between motivation and decrease in anxiety (in an ANCOVA model assumed
to be equal for subgroups) is modeled by linear regression lines with slope
β. For a graphical representation of this example, see Figure 10.1. It can be
seen that, on average, the group receiving Therapy 1 has a larger decrease in
anxiety than the group receiving Therapy 2 (ȳ1 > ȳ2). It can also be seen that
the Therapy 1 group has, on average, a lower motivation than the Therapy
2 group. Furthermore, we see a positive relation between motivation on the
x-axis and decrease in anxiety on the y-axis, as represented by the regression
lines.

Compared to an analysis of variance (ANOVA), the incorporation of one
or more covariates has two effects: (i) A correction is made for possible group
differences on the covariate(s) and (ii) the residual variance is reduced. Let us
start with the correction. By inclusion of the covariate, the average decrease
in anxiety of the two groups is compared for therapy groups with equal aver-
age motivation. The relation between motivation (x) and decrease in anxiety
(y) is used to compute the predicted average of y for a fixed value of x (for
both groups the same). At the value x = 0 this provides µ∗1 and µ∗2 (i.e.,
the intercepts of the two regression lines). It is however more common to re-
port so-called adjusted means. Adjusted means are the group mean outcomes
(predictions on the regression lines) evaluated at the average score on the
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covariate(s). Using (10.1), the adjusted means can be obtained by filling in
the average motivation score x̄ (see also Figure 10.1). Another approach is
centering the covariate(s) before it is entered in the model, in which case the
µ∗’s in (10.1) are the adjusted means. In the remainder of this chapter as well
as in the illustration, the covariate will always be centered before it is included
in the analysis, simplifying the interpretation of the parameters.

The second effect of including covariates is that the residual variation will
decrease. This can also be seen in Figure 10.1. In an ANOVA the residuals
are the vertical distances between each observed score (the dots) and the
corresponding subgroup’s mean (the horizontal lines through ȳ1 and ȳ2). For
many dots, these distances are relatively large. The residuals in the ANCOVA
are the vertical distances between the dots and the regression lines. Many
of these distances are much smaller. By decreasing the residuals and thus
explaining a larger part of the variation, more powerful analyses are obtained.

So in the example, motivation is included in the model to correct for
the difference in the average motivation of the two groups to obtain a fair
comparison between the two therapies and to decrease the residual variance.
Note, however, that the expectation of the researcher and the translation into
a constrained hypothesis remains the same. After correcting for the effect of
motivation, it is still expected that Therapy 1 will have a larger effect than
Therapy 2 (i.e., µ∗1 > µ∗2). The hypothesis now reflects an expected ordering
in the effects of the two therapies for subjects with the same motivation.

In Section 10.2, a psychological experiment is introduced for which the
researchers formulated several competing informative hypotheses. In Section
10.3, Bayesian evaluation for the general inequality constrained ANCOVA is
presented. This section is relatively technical but readers can choose to skip it
and continue with Section 10.4, where the results for the illustration presented
in Section 10.2 are provided and discussed.

10.2 Illustration

The illustration is based on a psychological experiment conducted by Van
Well, Kolk, and Klugkist [11] on the responsivity to stressors. Outcome vari-
ables contained several cardiovascular measures as well as a subjective stress
response measure and were obtained at baseline and in three stress phases: an-
ticipation, stressor, and recovery. Responsivity was investigated for two types
of stressors, the Cold Pressor Test (CPT) and the N-Back task, but in this
illustration only data from the CPT will be used. The CPT is a physiolog-
ical stress task where participants put their right hand up to the wrist in a
bucket of ice water for two minutes. Of interest were the effects of the gender
relevance of the stressor, the respondent’s sex, and gender role identification.
Gender relevance was manipulated by varying the introduction to the stres-
sor in masculine relevant, feminine relevant, or neutral terms. Gender role
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identification was measured with the GIAT [1, 12] and respondents were clas-
sified in the categories masculine or feminine. In total, 54 women and 40 men
participated in the experiment.

Researchers have found different results concerning responses to gender
relevant stressors. Lash, Eisler, and Southard [6] and Lash, Gillespie, Eisler,
and Southard [7] found that men were more responsive than women when
the stressor was presented as masculine relevant and that women were more
responsive than men when the stressor was presented as feminine relevant.
No sex differences were found when the stressor was presented as gender neu-
tral. Other researchers investigated responses to gender role identification and
gender relevance of the stressor. They also found stronger stress responses for
participants with a masculine gender role identification in the masculine rele-
vant condition, stronger responses for feminine role identification in the fem-
inine relevant condition, and no difference between masculine and feminine
role identification in the neutral condition [5, 8]. So both for sex and gender
relevance of the manipulation and for gender role identification and gender
relevance of the manipulation, there were indications for so-called match ef-
fects; that is, stronger responses for matching conditions (male-masculine,
female-feminine). Furthermore, Kolk and van Well [4] tested sex and gender
role identification match effects in one study and their results reveiled stronger
gender match effects than sex match effects. Other researchers, however, also
found opposite, so-called mismatch effects. In a study by Davis and Matthews
[2] responses were stronger in situations that were relevant to the opposite sex
or gender role identification. The results of another study suggested that easy
tasks produce mismatch effects, whereas more difficult tasks produce match
effects [13]. To further investigate the contradicting results, Van Well et al.
[11] designed an experiment to examine the relationship among sex, gender
role identification, and gender relevance of a stressor. They investigated sex
(mis)match as well as gender role identification (mis)match effects.

In this chapter just a part of the data of Van Well et al. will be used.
The illustration is limited to the outcome measures diastolic blood pressure
(DBP) and systolic blood pressure (SBP) obtained during the stressor phase
only. The two outcomes will be analyzed separately and in each analysis the
baseline measurement of the corresponding outcome (DBP or SBP) is included
as a covariate. This leads to an ANCOVA model with 12 subgroups (gender
relevance by sex by gender role identification) and one covariate. Table 10.1
presents the group numbering that will be used in the formulation of the
informative hypotheses.

Again using the dummy coding as explained before (one dummy variable
for each group; see Chapters 3 and 4), the following model is obtained:

yi =
12∑

j=1

µjdji + βxi + εi, (10.2)
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Table 10.1. Group labeling for the groups formed by sex (men, women), gender role
identification (masculine, feminine), and gender relevance of the condition (mascu-
line, feminine, neutral)

Condition

Masculine Feminine Neutral

Men
Masculine 1 2 3
Feminine 4 5 6
Women
Masculine 7 8 9
Feminine 10 11 12

for i = 1, . . . , N respondents. Note that, to simplify notations, covariate ad-
justed means are denoted by µj (in Section 10.1 they were denoted by µ∗j to
emphasize the difference between a mean and an adjusted mean). Two sep-
arate analyses are performed. In the first analysis, yi and xi are the scores
of the ith respondent on DBP in stressor phase and at baseline, respectively.
The second analysis is an application of (10.2) with SBP measurements in
stressor phase (yi) and at baseline (xi).

The sex (mis)match and gender role identification (mis)match theories are
translated into statistical hypotheses that impose inequality constraints on the
adjusted means. For instance, the sex match effect implies that men in the
masculine relevant condition (i.e., groups 1 and 4) and women in the feminine
relevant condition (i.e., groups 8 and 11) will have higher stress responses than
respondents in the other groups. This leads to the first constrained hypothesis,
H1a, presented below. In a similar way, the sex mismatch (H1b), the gender
role identification match (H1c), and the gender role identification mismatch
(H1d) hypotheses are formulated:

Sex effects

Match: H1a : {µ1, µ4} > {µ2, µ3, µ5, µ6}, {µ8, µ11} > {µ7, µ9, µ10, µ12},
Mismatch: H1b : {µ2, µ5} > {µ1, µ3, µ4, µ6}, {µ7, µ10} > {µ8, µ9, µ11, µ12}.

Gender role identification effects

Match: H1c : {µ1, µ5} > {µ2, µ3, µ4, µ6}, {µ7, µ11} > {µ8, µ9, µ10, µ12},
Mismatch: H1d : {µ2, µ4} > {µ1, µ3, µ5, µ6}, {µ8, µ10} > {µ7, µ9, µ11, µ12}.

Note that all hypotheses are nested in the unconstrained, encompassing hy-
pothesis

H2 : µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11, µ12.
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The unconstrained hypothesis has no restrictions on the adjusted means and
does not reflect a theory. It does, however, play a central role in the encom-
passing prior approach (see Chapter 4). For each constrained hypothesis Ht

(t ∈ {1a, 1b, 1c, 1d}), the Bayes factor (BF ) with the unconstrained hypothe-
sis is computed and reflects to what extent the constraints are supported by
the data.

Table 10.2 presents the means (M), standard deviations (SD), and sample
sizes (N) for DBP and SBP at baseline and during the stressor phase for the
12 groups. Before moving to the results of the analyses, however, Bayesian
model selection for inequality constrained ANCOVA models is introduced. In
Section 10.3, the prior and posterior distributions are presented as well as
the Gibbs sampler. This section is relatively technical and can be skipped by
readers who are more interested in the practical example (the results of the
illustration are discussed in Section 10.4). Note that, the Bayesian procedure
that is applied in this chapter is very similar to the approach presented in
Chapters 3 and 4 for the ANOVA model.

10.3 The Analysis of Covariance Model

10.3.1 The Model and Likelihood

The general ANCOVA model for i = 1, . . . , N respondents, outcome variable
yi, k = 1, . . . ,K (centered) covariates xki, and j = 1, . . . , J groups with group
membership denoted by dji (dji = 1 if the respondent is a member of group
j, and zero otherwise) is given by

yi =
J∑

j=1

µjdji +
K∑

k=1

βkxki + εi, (10.3)

where µj is the covariate adjusted mean for group j, βk is the slope parameter
for the relation of the kth covariate with the outcome variable, and εi is
assumed to be normally distributed with mean zero and variance σ2. This
leads to the likelihood function:

f(y|µ,β, σ2,D,X) = (10.4)

N∏
i=1

1√
2πσ2

exp


(yi −

J∑
j=1

µjdji −
K∑

k=1

βkxki)2

−2σ2

,
where µ and β are vectors with adjusted means µj and slopes βk, respectively,
D is a J ×N matrix with the (j, i)th element equal to dji, and X is a K×N
matrix with elements xki.
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Table 10.2. Sample means (M), standard deviations (SD), and sample sizes (N)
for DBP and SBP at baseline and during the stressor phase

Condition

Masculine Feminine Neutral

DBP M SD N M SD N M SD N

Men
Masculine baseline 79.25 22.06 5 73.64 9.13 9 66.93 6.57 6

stress 99.04 26.93 5 90.53 9.13 9 81.01 9.53 6
Feminine baseline 74.82 9.37 9 79.26 7.43 6 74.30 10.42 5

stress 88.98 8.54 9 100.36 16.72 6 96.46 13.10 5
Women
Masculine baseline 75.33 13.61 9 75.15 7.57 8 78.85 9.71 10

stress 92.69 11.89 9 95.13 14.08 8 91.83 15.14 10
Feminine baseline 71.23 9.85 8 69.66 11.48 9 67.07 8.95 10

stress 83.79 11.86 8 84.92 8.08 9 81.56 10.88 10

SBP M SD N M SD N M SD N

Men
Masculine baseline 134.77 24.25 5 126.56 13.64 9 123.41 7.75 6

stress 169.34 27.92 5 154.24 12.43 9 146.30 13.08 6
Feminine baseline 127.27 12.04 9 134.57 17.71 6 130.04 21.08 5

stress 152.04 15.04 9 165.93 24.66 6 163.36 19.78 5
Women
Masculine baseline 130.10 16.33 9 136.26 8.68 8 138.77 14.04 10

stress 156.27 10.93 9 161.89 18.53 8 156.55 19.88 10
Feminine baseline 128.78 11.52 8 131.44 14.28 9 127.30 16.66 10

stress 145.06 11.88 8 152.01 12.93 9 146.13 17.87 10

10.3.2 Prior and Posterior

A prior distribution has to be specified for the model parameters. Let us
assume that, other than the possible order constraints, there is no prior in-
formation. In that case, any noninformative prior can be used for estimation
problems; for example a constant prior p(µ,β, σ2) ∝ 1, a reference prior
p(µ,β, σ2) ∝ σ−2, or a diffuse conjugate or semiconjugate prior. In terms of
parameter estimation all noninformative priors will give (virtually) the same
results, as was previously shown in Chapter 3. However, for model selection
applications, the choice for a prior is more important. The encompassing prior
approach introduced in Chapter 4 is also applied in this chapter.

The encompassing prior assumes prior independence of all parameters:

p(µ,β, σ2) = p(σ2)
K∏

k=1

p(βk)
J∏

j=1

p(µj). (10.5)



218 Klugkist, Van Wesel, Van Well, Kolk

For each parameter a conjugate prior is specified; that is, a normal distribution
with mean µ0 and variance τ2

0 for each µj , a normal distribution with mean βk0

and variance ω2
k0 for each βk, and a scaled inverse χ2-distribution with degrees

of freedom ν0 and scale factor σ2
0 for σ2. Note that the same prior distribution

is specified for all µj (j = 1, . . . , J), since hypotheses with constraints on (some
of) the µj are considered (for the specification rules used in the encompassing
prior approach, see Chapter 4). This leads to the following specification of the
general prior for a hypothesis Ht:

p(µ,β, σ2|Ht) ∝

Inv-χ2(σ2|ν0, σ2
0)

K∏
k=1

N (βk|βk0, ω
2
k0)

J∏
j=1

N (µj |µ0, τ
2
0 )Iµ∈Ht , (10.6)

where the indicator function Iµ∈Ht
equals 1 if µ is in accordance with the

constraints of Ht and 0 otherwise. Through this indicator function the prior
information in the form of inequality constraints on (some of) the µj is incor-
porated: Areas that are not allowed according to the constraints receive zero
prior density. The remaining area is proportional to the unconstrained prior.

If no constraints are imposed, the indicator function is not activated; that
is, Iµ∈Ht

always has the value one. Stated differently, the encompassing prior
is (10.6) without the indicator term. The specification of the parameters of
the encompassing prior is data based and such that it is diffuse and thus low
informative. As was previously explained in Chapter 4, a sample is drawn
from the posterior distribution using a constant prior. The parameters of the
scaled inverse χ2-distribution are ν0 = 1 and σ2

0 is equal to the posterior
mean of the variance. The specification of µ0 and τ2

0 is done based on the
broad interval that is a combination of the J 99.7% credibility intervals for
each of the µj (see Sections 4.3.1 and 4.4.1 of Chapter 4). Finally, βk0 is equal
to the posterior mean of βk (k = 1, . . . ,K), and for the specification of ωk0,
we use three times the posterior standard deviation of βk (so that, also for the
β’s, the prior is low informative compared to the information in the data).

The product of the joint prior distribution (10.6) and the density of the
data (10.4) leads to the general posterior distribution:

p(µ,β, σ2|y, D,X,Ht) ∝ f(y|µ,β, σ2, D,X)

Inv-χ2(σ2|ν0, κ2
0)

K∏
k=1

N (βk|ηk0, ω
2
k0)

J∏
j=1

N (µj |α0, τ
2
0 )Iµ∈Ht

. (10.7)

The encompassing posterior is (10.7) without the indicator function.

10.3.3 The Gibbs Sampler

The joint posterior (10.7) contains J + K + 1 parameters. To sample this
multivariate posterior the Gibbs sampler is applied. In a Gibbs sampler, pa-
rameters are sampled iteratively from the univariate distribution of each pa-
rameter conditional upon the current values of the other parameters. This
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requires the specification of initial or starting values for all parameters and
then repeatedly sampling each µj , βk, and σ2 from the corresponding con-
ditional distributions. The sampling scheme for each iteration of the Gibbs
sampler for the ANCOVA model therefore consists of the following steps:

1. For j = 1, ..., J , sample µj from p(µj |µ−j ,β, σ
2,y, X,D,Ht). The nota-

tion µ−j is used to denote the vector µ with all except the jth element.
The posterior for µj is equal to a truncated normal distribution with ex-
pectation

1
τ2
0
α0 + 1

σ2 (
N∑

i=1

djiyi −
K∑

k=1

(βk

N∑
i=1

djixki))

1
τ2
0

+ 1
σ2

N∑
i=1

dji

(10.8)

and variance (
1
τ2
0

+
1
σ2

N∑
i=1

dji

)−1

. (10.9)

The constraints of Ht combined with the current values of µ−j define pos-
sible lower and upper bounds for the values allowed for µj in the iteration
at hand. The largest lower and smallest upper bound determine the trun-
cation. Sampling from truncated normal distributions is straightforward
via inverse probability sampling (see Chapter 3).

2. For k = 1, ...,K, sample βk from p(βk|µ,β−k, σ
2,y,X,D,Ht); that is, a

normal distribution with expectation

1
ω2

k0
ηk0 + 1

σ2

(
N∑

i=1

yixki −
N∑

i=1

J∑
j=1

xkiµjdji −
N∑

i=1

K−k∑
k′=1

βk′xkixk′i

)
1

ω2
k0

+ 1
σ2

∑N
i=1 x

2
ki

(10.10)

and variance (
1
ω2

k0

+
1
σ2

N∑
i=1

x2
ki

)−1

. (10.11)

The notation β−k denotes all except the kth elements of β, and K−k

denotes all except the kth element of {1, . . . , K}.
3. Sample σ2 from p(σ2|µ,β,y, X,D,Ht); that is, a scaled inverse χ2-

distribution with degrees of freedom

N + ν0 (10.12)

and scale parameter
ν0κ

2
0 +Ns2

ν0 +N
, (10.13)

with s2 = 1
N

N∑
i=1

(yi − [
J∑

j=1

µjdji +
K∑

k=1

βkxki])2.
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Note that the initial sampled values are affected by the arbitrary chosen start-
ing values. Therefore, a first set of draws is discarded, the so-called burn-in
period. The iterations after burn-in form the sample from the posterior dis-
tribution. Careful monitoring of the required size of the burn-in period and
the total number of iterations from the posterior is important. In Chapter 3,
graphical monitoring as well as a convergence diagnostic were discussed and
illustrated and therefore this topic will not be further elaborated here.

10.3.4 Model Selection

Model selection using the encompassing prior approach, requires a sample
from the unconstrained prior as well as a sample from the unconstrained pos-
terior. With these two samples, any hypothesis Ht with inequality constraints
imposed on (some of) the µj , can be evaluated using:

BFt2 =
1/dt

1/ct
, (10.14)

where 1/ct and 1/dt are the proportions of the unconstrained prior and pos-
terior in agreement with the constraints of Ht. To obtain a sample from the
unconstrained posterior the Gibbs sampler as presented in the previous section
can be used. Note that the indicator function is not active and therefore in Step
1 the conditional distributions are normal instead of truncated normal. To ob-
tain an estimate for 1/c, parameter values are sampled from the prior (10.6)
again with the indicator function not activated (i.e., for the unconstrained
prior it always has value 1). Because of independence of all parameters in the
unconstrained prior, sampling from (10.6) is straightforward.

With the samples from unconstrained prior and posterior, BFt2 for each
constrained hypothesis Ht with the unconstrained hypothesis H2 can be es-
timated. The Bayes factor for the comparison of two constrained hypotheses
Ht and Ht′ can be computed using

BFtt′ =
BFt2

BFt′2
. (10.15)

Finally, assuming equal prior probabilities for all hypotheses under considera-
tion, posterior model probabilities (PMP) for a finite set of T hypotheses can
be computed using

PMP(Ht) =
BFt2∑

t′∈T

BFt′2
. (10.16)

A PMP provides the relative support for each hypothesis. For a more elabo-
rate presentation and discussion of PMP values and their interpretation see
Chapters 4 and 15.
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10.4 Results

In this section we will discuss the results of the experiment described in Section
10.2 of this chapter. This psychological experiment consisted of 12 groups
formed by sex, gender role identification, and gender relevance of the stressor.
The dependent variables of interest were diastolic blood pressure (DBP) and
systolic blood pressure (SBP) measured in the stressor phase. To correct for
baseline DBP and SBP measurement, each of these variables was used as
covariate. The researchers were interested in hypotheses involving sex and
gender role identification match and mismatch effects.

In order to perform a Bayesian analysis, prior distributions need to be
specified for all model parameters µ1, ..., µ12, β, and σ2. Using the encompass-
ing prior approach introduced in Chapters 3 and 4, only a prior distribution
for the unconstrained model H2 needs to be specified. Priors for constrained
hypotheses are derived from the encompassing prior by truncation of the pa-
rameter space. In the encompassing prior approach, the unconstrained prior
is specified to be relatively vague (i.e., low informative). Since the data will
dominate the prior, objective estimates (not or hardly influenced by the prior)
are obtained for the model parameters. Also the model selection (i.e., the com-
parison of the different hypotheses) is (virtually) objective for the inequality
constrained hypotheses considered in this illustration, as was shown in Chap-
ter 4.

The procedure to construct priors as described in Section 10.3.2 leads to
the following encompassing prior for DBP:

p(µ,β, σ2|H2) ∝ Inv-χ2(σ2|1, 68.2) N (β|0.94, 0.07)
J∏

j=1

N (µj |122.85, 222.61)

and for SBP:

p(µ,β, σ2|H2) ∝ Inv-χ2(σ2|1, 136.1)N (β|0.85, 0.07)
J∏

j=1

N (µj |157.60, 844.48).

For each outcome measure, the prior is updated with the empirical data lead-
ing to the unconstrained posterior. The posterior represents the knowledge
with respect to the model parameters after seeing the data.

10.4.1 Posterior Estimates

Posterior estimates for all model parameters µ1, ..., µ12, β, and σ2 are obtained
by drawing a sample from the unconstrained posterior distribution, using a
Gibbs sampler (see Chapter 3 and Section 3 of this chapter). The number of
iterations used was 20,000 after a burn-in of 1000. This sample provides a
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Table 10.3. Posterior means (PM), posterior standard deviations (PSD), and lower
(LB) and upper bound (UB) of the 95% CCIs for all parameters under the uncon-
strained model H2 for both DBP and SBP

DBP SBP

95% CCI 95% CCI

PM PSD LB UB PM PSD LB UB

µ1 93.56 3.56 86.63 100.53 165.54 5.04 155.69 175.58
µ2 90.54 2.70 85.27 95.84 157.82 3.86 150.30 165.37
µ3 87.54 3.35 80.96 94.16 152.73 4.73 143.44 162.22
µ4 87.95 2.78 82.73 93.20 155.04 3.85 147.45 162.67
µ5 94.86 3.31 88.36 101.32 162.52 4.64 153.41 171.62
µ6 95.52 3.57 88.43 102.45 163.73 5.08 153.82 173.74
µ7 91.05 2.70 85.76 96.35 156.83 3.84 149.30 164.44
µ8 93.56 2.88 87.91 99.20 157.30 4.08 149.24 165.38
µ9 86.98 2.59 81.92 92.07 149.96 3.69 142.68 157.23
µ10 86.23 2.86 80.69 91.89 147.06 4.03 139.28 155.04
µ11 88.70 2.68 83.47 93.93 151.59 3.83 144.09 159.22
µ12 87.79 2.60 82.69 92.94 149.25 3.65 142.17 156.36
β 0.94 0.08 0.78 1.10 0.85 0.08 0.69 1.01
σ2 67.39 10.74 49.61 91.58 134.76 21.66 99.26 183.44

discrete representation of the posterior distribution and can be summarized
using, for instance, the posterior mean, posterior standard deviation, and 95%
Central Credibility Interval (CCI) for all model parameters of interest. The
results are presented in Table 10.3. For example, the parameter µ1 for DBP
has a posterior mean of 93.56 with a posterior standard deviation of 3.56.
The 95% CCI for µ1 (DBP) has lower and upper bounds of 86.63 and 100.53,
respectively. Furthermore, it can be seen that the 95% CCIs for the β param-
eters for both DBP and SBP (i.e., the regression coefficients representing the
relation between covariate and outcome), do not include the value zero. This
shows that the baseline measurements have a positive relationship with the
measurements in the stressor phase and that it was a good idea to take them
into account as covariates in the statistical model.

Note, again, that the estimates presented in Table 10.3 are computed us-
ing the unconstrained prior (i.e., without taking any inequality constraints
into account). The question of interest is, however, which of the informative
hypotheses presented in Section 10.2 is mostly supported by the data. The
results are presented in the next section.

10.4.2 Evaluation of the Informative Hypotheses

The informative hypotheses formulated by the researchers represent a sex
match effect (H1a), a sex mismatch effect (H1b), a gender role identification
match affect (H1c), and, finally, a gender role identification mismatch effect
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Table 10.4. Bayes factors (BFt2) and posterior model probabilities (PMP) for both
DBP and SBP

DBP SBP

BFt2 PMP BFt2 PMP

H1a 0.13 .04 0.32 .04
H1b 0.09 .03 0.06 .01
H1c 1.97 .62 5.85 .81
H1d 0.01 .00 0.00 .00
H2 1.00 .31 1.00 .14

(H1d). To evaluate these hypotheses the Bayes factor will be used as the
selection criterion.

Model selection based on the encompassing prior approach requires sam-
ples from both unconstrained prior and posterior (see Chapter 4 and Section
10.3.4 in this chapter). The amount of iterations used was 500,000 after a
burn-in of 1000. The BF for each informative hypothesis (Ht) against the
unconstrained hypothesis (H2) is calculated and denoted by BFt2. It provides
a measure of support for the constrained hypothesis (e.g., the value BF1c2 = 2
implies that H1c is 2 times better than H2 according to the data from this
experiment). From the BF s, posterior model probabilities (PMPs) can be de-
rived. A PMP represents the relative support for a hypothesis within a set
of hypotheses (see Chapter 4). In this illustration, again equal prior model
probabilities are assumed.

The resulting BF s and PMPs for the competing hypotheses regarding
DBP and SBP are presented in Table 10.4. What conclusions can be drawn
from these results? The BF s for H1a,H1b, and H1d are all smaller than 1 for
both DBP and SBP. This means that the incorporation of the constraints is
not supported by the data; that is, the unconstrained hypothesis is a better
hypothesis than each of these three informative hypothesis. The BF for H1c

for DBP is 1.97, which means that the support for this hypothesis is almost 2
times stronger than the support for the unconstrained hypothesis. The BF for
H1c for SBP is 5.85, concluding that for SBP, H1c is considered to be almost
6 times better than the unconstrained hypothesis. This is also reflected in
the PMP values. For both DBP and SBP, H1c received the highest PMP (.62
and .81, respectively); that is, within this set of hypotheses the gender role
identification match hypothesis receives most support from the data.

The conclusion for the data described in this illustration is that partici-
pants are most responsive to the CPT when their gender role identification
matches the gender relevance of the stressor. Note, once more, that the re-
search on which this illustration is based involves much more (i.e., multiple
outcome measures, two different stressor tasks, and additional measurement
moments (anticipation and recovery)). The interested reader is referred to
Van Well et al. [11].
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10.5 Conclusion

Comparison of the match and mismatch hypotheses H1a, H1b, H1c, and H1d

using a standard frequentist approach would have been quite complicated.
First of all, the point of departure in classical methods is almost invariably
the formulation of one or more null hypotheses. In this example, for instance,
the hypothesis stating that all 12 means are equal, or null hypotheses about
certain subsets of marginal means (i.e., stating no main effect of sex) would
have been formulated. The usual approach would be to test against uninfor-
mative alternative hypotheses (basically stating “not H0”), and in the case of
a significant result (rejection of the null) subsequent testing of several pairwise
comparisons combined with informal (subjective) evaluation of the estimated
means. Several disadvantages of this approach to the evaluation of order con-
strained informative hypotheses have been discussed in previous chapters (cf.
Chapters 2 and 5). Also a second disadvantage has been mentioned before:
Even if one succeeds in evaluating each informative hypothesis against a null
hypothesis, no direct confrontation of the informative hypotheses with each
other is made. Possible outcomes are that each, none, or several of the order
constrained hypotheses are preferred over the null. It would be very hard,
if not impossible, to draw conclusions about the match and mismatch theo-
ries in such a case. The Bayesian model selection approach, however, directly
evaluates each of the informative hypotheses and provides a measure for the
relative support for each of them. The resulting posterior model probabilities
have an easy and straightforward interpretation. The interested reader is re-
ferred to http://www.fss.uu.nl/ms/informativehypotheses for software
for inequality constrained analysis of covariance.
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11.1 Latent Class Analysis

11.1.1 Introduction

This chapter deals with inequality constrained latent class analysis. As will be
exemplified, researchers often have competing theories that can be translated
into inequality constrained latent class models. After this translation it is
rather straightforward to evaluate these theories.

In this section latent class models will be introduced. Introductions to
latent class analysis are given in [17, 18, 27]. The specification using inequality
constraints will be elaborated in the next section and is discussed further in
[8, 9, 11, 13, 14].

The data that will be analyzed in this chapter are the responses xij ∈
{0, 1} of i = 1, ..., N persons to j = 1, ..., J items. The item responses are
dichotomous and can represent responses like {no, yes}, {incorrect, correct},
{disagree, agree}, or {does not apply, does apply}. The main goal of latent
class analysis is to determine groups of persons with similar item responses.
Since it is unknown who belongs to which group, these groups are called latent
classes. Two subgoals can be distinguished: determination of the number of
latent classes and characterization of each latent class.

A simple example of latent class analysis is presented in Figure 11.1, where
the responses of N = 20 persons to J = 8 items are presented. The mean-
ing of the items is displayed at the top of the data matrix. As can be seen,
there are two types of items: arithmetic exercises that increase in difficulty
and questions with respect to the meaning of words that are also increas-
ing in difficulty. If this data matrix is subjected to a latent class analysis,
the persons are subsequently grouped into two, three, etc. classes such that
persons within groups are rather homogeneous, that is having rather similar
item responses, and that persons between groups are rather heterogeneous.
There are several methods that can be used to decide which number of classes
is optimal. Bayesian model selection is discussed in Section 11.2.2. Bayesian
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Fig. 11.1. A simple example of latent class analysis

goodness of fit testing is discussed in [9], and classical model selection and
classical goodness of fit testing are discussed in [6] and [16], respectively.

For the simple example Q = 4 classes are optimal. Each of these q =
1, . . . , Q classes can be described using a class weight ωq and class-specific
probabilities πqj . The class weight is an estimate of the proportion of persons
belonging to this class in the population of interest. As can be seen in Figure
11.1, the first class is rather small (a weight of .10) and the third class is
rather large (a weight of .50). The class-specific probability πqj denotes the
proportion of persons in class q responding 1 to item j. To give an example,
in the third class the probabilities of responding correctly to the arithmetic
exercises is rather small (smaller than .3) and the probabilities of correctly
explaining the words are rather high (larger than .6). This class appears to
contain the persons that have problems with arithmetic, but find it relatively
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easy to explain the meaning of words. An interpretation of the other classes
can be found in the same way. For example, the fourth class contains persons
that have both arithmetic and word explanation abilities.

The latent class analysis described in the previous paragraphs is ex-
ploratory. This means that before the analysis, both the number of classes
and the meaning of the classes (in terms of the class-specific probabilities) is
unknown. Although exploratory latent class analysis is a valuable technique,
there are a few unresolved issues:

1. The number of classes can only be determined approximately. The inter-
ested reader is referred to studies in [6, 11, 16]. The implication is that a
theoretically important latent class may not be found or that unimportant
classes are included.

2. The meaning of the classes is determined after execution of the analysis.
Since the human mind is flexible, even classes that may not reappear in
the analysis of new data will receive an interpretation. This will lead to an
incorrect description of the population from which the data were sampled.

3. Often researchers have (competing) theories with respect to the number
and meaning of the latent classes. However, the results of an exploratory
latent class analysis may not correspond with any of these theories. This
makes it complicated to decide which of the theories is the best.

As will be elaborated in the next section, these issues can be avoided
through the use of confirmatory latent class analysis, that is, latent class
models enhanced via the addition of inequality constraints among the class-
specific probabilities. Of course this gives rise to new issues. These will be
discussed both in the next section and in Section 11.4.

11.1.2 Informative Hypotheses Specified Using Inequality
Constraints

Inequality constraints can be added to a latent class model in order to specify
informative hypotheses. These models were first discussed in [5] with a sequel
in [26], in which inequality constraints to specify non-parametric item response
models were used. Both authors use maximum likelihood to obtain estimates
of the restricted parameters of the latent class model and likelihood ratio tests
with bootstrapped p-values to test the fit of each model. In [8, 9, 11] Bayesian
statistics is used for estimation, goodness of fit testing, and model selection of
inequality constrained latent class models. The range of models discussed by
these authors is more encompassing than nonparametric item response models
(cf. [13, 14]). The technical details of this approach will be presented in the
next section.

The inequality constraints are usually of the form

πqj > πq′j′ , or, πqj < πq′j′ , for j 6= j′ and/or q 6= q′, (11.1)
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although more elaborate constraints are possible [9]. Using these constraints,
four competing models can be specified for the data displayed in Figure 11.1.

The first model is the latent class counterpart of a one-dimensional non-
parametric item response model, also known as the model of monotone ho-
mogeneity [19, Chapters 3, 4, and 5]. This model assumes that each person
can be characterized by one ability and that for each of the items the prob-
ability of a correct response increases with ability (monotone homogeneity).
This model can be specified using the following constraints:

π1j < π2j < π3j < π4j , for j = 1, . . . , J ; (11.2)

stated in words, the probability of responding correctly increases with class
number for each of the items. The two-dimensional counterpart (see [8]) of the
monotone homogeneity model can also be formulated. Applied to the simple
example, this model assumes that persons are characterized by two abilities:
arithmetic ability and the ability to explain words. This model can be specified
using

{π1j , π2j} < {π3j , π4j}, for j = 1, . . . , 4; (11.3)

that is, classes 1 and 2 contain persons with a smaller arithmetic ability than
classes 3 and 4. Similarly,

{π1j , π3j} < {π2j , π4j}, for j = 5, . . . , 8; (11.4)

that is, classes 1 and 3 contain persons with a smaller ability to explain words
than classes 2 and 4.

A closer look at the items reveals a possibility to elaborate the models
specified in the previous paragraph. Since the items appear to differ in diffi-
culty, the following constraints could be added to both models (see also the
discussion with respect to double monotony in Chapter 6 of [19]):

πq1 > πq2 > πq3 > πq4, for q = 1, . . . , 4 (11.5)

and
πq5 > πq6 > πq7 > πq8, for q = 1, . . . , 4; (11.6)

that is, in each latent class item 1 is easier than item 2, etc.
This section provided a first illustration of the translation of competing

theories into inequality constrained latent class models. The resulting models
represent hypotheses with respect to whether persons use one or two abilities
to answer the items and with respect to the difficulty of the items. Bayesian
computational statistics can be used to estimate the parameters of each con-
strained model and to select the best of the models specified. The next section
contains a statistical elaboration of Bayesian estimation and model selection.
Readers who are less interested in the technical details can skip the next
section and continue in Section 11.3.
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11.2 Parameter Estimation and Model Selection

11.2.1 Likelihood, Prior, and Posterior Distribution

The first step in Bayesian estimation and model selection is the specification
of the likelihood function of the statistical model at hand and the specification
of the prior distribution of the parameters of this model. The multiplication
of both renders the posterior distribution, which is the point of departure for
both parameter estimation and model selection.

The likelihood function of the latent class model introduced before is

f(x1, . . . ,xN | ω,π1, . . . ,πQ) =
N∏

i=1

Q∑
q=1

P (xi | θi = q)ωq, (11.7)

where θi denotes the class membership of person i and

P (xi | θi = q) =
J∏

j=1

π
xij

qj (1− πqj)1−xij . (11.8)

The prior distribution of the latent class model is

p(ω,π1, . . . ,πQ | Ht) ∝ Iω,π1,...,πQ∈Ht , (11.9)

where Ht denotes the set of inequality constraints used to specify the t-th
model. The indicator function Iω,π1,...,πQ∈Ht

= 1 if the values of the class
weights and class-specific probabilities are in accordance with the restrictions
in model t, and 0 otherwise. This prior is uninformative because a priori all
parameter vectors in agreement with the constraints of model t are equally
likely. This prior is chosen for convenience and less well founded than the prior
distributions discussed in Chapters 4, 6, 7, and 8. Those priors were chosen
after careful thinking (encompassing priors), using a part of the data (intrinsic
priors), or teststatistics are used to compute the Bayes factor, thus avoiding
the need for prior distributions. Although [9] and [11] show that inferences
based on the prior in (11.9) have good properties, more research into the
choice of priors for inequality constrained latent class models is needed.

The posterior distribution of the latent class model is proportional to the
product of likelihood and prior: p(ω,π1, . . . ,πQ | x1, . . . ,xN ) ∝ f(·)p(·).
A data-augmented Gibbs sampler (cf. [28]) can be used to obtain a sample
from the posterior distribution of the latent class model. Using this sample,
parameter estimates, posterior standard deviations, and central credibility
intervals can easily be computed (cf. [10]). The Gibbs sampler is an iterative
sequence across three steps preceded by an initialization:

• Initialization: Assign initial values to the class weights and class-specific
probabilities. Any set of values that is in agreement with the constraints
imposed by the model at hand is allowed.
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• Step 1: Data augmentation. For i = 1, ..., N , sample class membership
θi from its posterior distribution conditional upon the current values of
ω,π1, . . . ,πQ:

p(θi = q | ω,π1, . . . ,πQ,x1, . . . ,xN ) =
P (xi | θi = q)ωq∑Q

q=1 P (xi | θi = q)ωq

, (11.10)

that is, a multinomial distribution with probabilities p(θi = q | ·) for
q = 1, . . . , Q.

• Step 2: Sample πqj for j = 1, . . . , J and q = 1, . . . , Q from its posterior
distribution conditional on the current values of θi for i = 1, . . . , N , and
the constraints imposed by the model at hand:

p(πqj | θ, x1j , . . . , xNj , L, U) ∝ Beta(sqj + 1, Nq − sqj + 1, L, U), (11.11)

where sqj denotes the number of persons currently allocated to class q
that responded 1 to item j, Nq denotes the number of persons currently
allocated to class q, and L and U denote the lower and upper bound, re-
spectively, on πqj resulting from the constraints to which πqj is subjected in
the model at hand. Note that this conditional distribution is independent
of ω because of the conditioning on θ. Using inverse probability sampling,
it is easy to sample a deviate from this truncated beta distribution: (a)
sample a random number ν from a uniform distribution on the interval
[0,1]; (b) compute the proportions α and β that are not admissible due to
L and U :

α =
∫ L

0

Beta(πqj + 1, Nq − Sqj + 1)dπqj (11.12)

and,

β =
∫ 1

U

Beta(πqj + 1, Nq − Sqj + 1)dπqj ; (11.13)

(c) compute πqj such that it is the deviate associated with the ν-th per-
centile of the admissible part of the posterior of πqj :

α+ ν(1− α− β) =
∫ πqj

0

Beta(πqj + 1, Nq − Sqj + 1)dπqj . (11.14)

• Step 3: Sample ω from its distribution conditional on the current value of
θ:

p(ω | θ) ∝ Dirichlet(N1 + 1, . . . , NQ + 1). (11.15)

Note that this conditional distribution is independent of π1, . . . ,πQ be-
cause of the conditioning on θ. Using algorithm DIR-2 from [20], it is
relatively easy to sample from a Dirichlet distribution subject to the con-
straint

∑Q
q=1 ωq = 1: (a) for q = 1, . . . , Q, sample a random variable zq

from a gamma distribution with parameters Nq + 1 and 1; (b) compute
ωq = zq/

∑Q
q=1 zq for q = 1, . . . , Q.



11 Inequality Constrained Latent Class Models 233

As explained in Chapter 3, after convergence the Gibbs sampler renders a
sample from the posterior distribution of interest. This implies that after
the deletion of a burn-in period, the sample can be used to: estimate the
parameters of the latent class model (for each parameter the average of the
values sampled); compute central credibility intervals (e.g., for each parameter
the 5-th and 95-th percentile of values sampled); and, as will be elaborated
in the next section, compute the marginal likelihood for each model under
investigation. For all examples in this chapter the Gibbs sampler is run for
110,000 iterations. The first 10,000 iterations serve as a burn-in period and
are discarded; subsequently the parameters sampled in every 100-th iteration
are saved and used for parameter estimation and computation of the marginal
likelihood.

11.2.2 Marginal Likelihood and Posterior Probabilities

Like in most of the other chapters, model selection will be based on the
marginal likelihood and posterior probabilities. The method used to com-
pute the marginal likelihood (and subsequently the Bayes factor and posterior
probabilities) is unlike the methods presented in Chapters 4, 6, 7, and 8. Let
ξt = (ω,π1, . . . ,πQ); then the marginal likelihood of a (constrained) latent
class model is given by

m(x1, . . . ,xN | Ht) =
∫

ξt

f(x1, . . . ,xN | ξt)Pr(ξt | Ht)dξt. (11.16)

The computation of the marginal likelihood is based on an idea that can be
found in [12] and [21]. They suggested using importance sampling to approx-
imate the integral in (11.16) using a large sample (e.g. 99%) of parameter
vectors from the posterior distribution and to imagine that a small sample
(e.g., 1%) comes from the prior distribution each with a density equal to the
marginal likelihood. An estimate log m̂ of logm(x1, . . . ,xN | Ht) can then be
obtained via a simple iterative procedure (see [11] for a fast algorithm with
known precision) based on the following implicit equation:

log m̂ = log
.01Bm̂+

∑.99B
b

f(x1,...,xN |ξt)

.01+.99f(x1,...,xN |ξt)/m̂

.01B +
∑.99B

b
1

.01+.99f(x1,...,xN |ξt)/m̂

, (11.17)

where b = 1, . . . , B denotes the number of iterations of the Gibbs sampler
after burn-in.

If each of the models under investigation, t = 1, . . . , T , has an equal prior
probability of 1/T , then posterior probabilities for each of the models are
easily computed using

P (Ht | x1, . . . ,xN ) =
BFt1

BF11 + ...BFT1
, for t = 1, . . . , T, (11.18)
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where the Bayes factor BFt1 is defined by

BFt1 =
m(· | Ht)
m(· | H1)

, if t 6= 1, (11.19)

and BF11 = 1.

11.2.3 Performance of the Estimate of the Marginal Likelihood

In this section a small simulation study will be used to obtain an indication
of the performance of the marginal likelihood. A more elaborate study can be
found in [11]. There exist numerous examples of competing models where the
marginal likelihood will almost always select the correct model. This happens
if theories are not nested; that is, this happens if it is not so that one theory
equals the other theory with extra restrictions added. In the next section,
two examples will be given. In these cases it is very easy to determine which
theory is correct, since usually one of the sets of constraints is clearly wrong.

However, consider the following three nested models:

1. An unconstrained latent class model with three classes (subsequently de-
noted by U3).

2. A monotone homogeneous three class model like (11.2), that is, π1j <
π2j < π3j for j = 1, . . . , 10 (subsequently denoted by M3).

3. A double monotonous three class model like the combination of (11.2) and
(11.5), that is, π1j < π2j < π3j for j = 1, . . . , 10, and πq1 > . . . > πq10 for
q = 1, . . . , 3 (subsequently denoted by D3).

If a dataset is used to determine the empirical support for each of these models,
it is rather difficult to determine which is the best model. If the third model
is correct, the second and first models are also correct (but less parsimonious,
less informative, and thus less desirable). If the second model is correct, so
is the first model. Stated otherwise, finding the best of a number of nested
models is a real challenge for the estimate of the marginal likelihood (11.17).
If the marginal likelihood performs satisfactorily in this context, it is likely
that it will also perform satisfactorily in the context of non-nested or partly
nested models.

In Table 11.1 the population used to generate 10 data matrices containing
the responses of 500 persons to 10 items is described. As can be seen, the
population is in agreement with hypothesis M3. Each of the 10 data matrices
was analyzed using U3, M3, and D3. The results are displayed in Table 11.2.

The goal of this simulation was to determine if M3 is preferred over U3
and whether D3 is disqualified. It is clear that according to log m̂, D3 has
to be disqualified: It has clearly smaller values for log m̂ than the other two
models. For 7 data matrices, log m̂ was between 1 and 2.5 larger for M3 than
for U3 (indicating preference for M3); for the other 3 data matrices it was
between 1 and 1.5 smaller.
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Table 11.1. Description of the population used to simulate 10 data matrices

πi1 πi2 πi3

1 .20 .55 .75
2 .25 .50 .80
3 .20 .55 .75
4 .25 .50 .80
5 .20 .55 .75
6 .25 .50 .80
7 .20 .55 .75
8 .25 .50 .80
9 .20 .55 .75

10 .25 .50 .80

ω .20 .30 .50

From this simulation study the following conclusions can be obtained (see
[11] for a further elaboration):

1. If a constrained model is not in accordance with the population from
which the data were generated, it will have a smaller log m̂ than the cor-
responding unconstrained model (compare the results for U3 and D3 in
Table 11.2).

2. If a constrained model is in accordance with the population from which
the data were generated, log m̂ is often larger for the constrained model
(compare the results for U3 and M3 in Table 11.2).

3. If one of two nested constrained models is correct, it will have a larger
log m̂ than the other model (compare the results for M3 and D3 in Table
11.2).

4. Based on experience with applications so far (see also the two examples
presented in the next section), log m̂ will clearly indicate which of two
non-nested constrained models is the best.

Table 11.2. Log m̂ for analyses of the 10 simulated data matrices

Matrix U3 M3 D3

1 −3189.31 −3188.80 −3203.70
2 −3177.96 −3179.07 −3189.74
3 −3122.71 −3121.62 −3145.39
4 −3204.65 −3202.39 −3216.77
5 −3165.45 −3164.31 −3178.37
6 −3163.79 −3164.55 −3176.30
7 −3188.22 −3184.88 −3203.91
8 −3114.56 −3113.69 −3139.60
9 −3144.34 −3141.95 −3151.72
10 −3141.23 −3142.69 −3152.11
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As can be seen, log m̂ performs rather good as a model selection criterion.
Only the comparison of two nested models that are both correct is less than
perfect. This is caused by the manner in which log m̂ is computed: If, for
example, an unconstrained and a constrained model are both correct (like U3
and M3 in the simulation), the constrained model ought to be preferred since it
is more parsimonious. However, looking at (11.17), it can be seen that log m̂ is
computed using a sample from the posterior distribution of the model at hand.
If the constrained model is correct, the sample from the posterior distribution
of the unconstrained model will not often contain parameter values that are
not in agreement with the constrained model (these regions of the parameter
space will have a rather small posterior density if the constrained model is
correct). Consequently, the samples obtained for both models will be rather
similar and thus the values for log m̂ will be rather similar. Stated otherwise,
in this situation log m̂ is biased against the constrained model.

Consequently, if log m̂ is used to compare two nested models, the following
decision rule can be used:

1. If log m̂ is larger (even if only slightly) for the most constrained model, it
should be preferred to the less constrained model.

2. If log m̂ is only slightly smaller for the most constrained model, it should
still be preferred to the less constrained model. In the simulation study
“slightly” should be about 2.

Currently, research is in progress that will render an estimator of the marginal
likelihood that is not biased in the situation discussed above. However, if the
above is carefully considered, researchers should be able to select the best of
a number of (un)constrained latent class models using (11.17).

11.3 Examples

11.3.1 Introduction

In the previous section the technical details of Bayesian estimation and se-
lection of inequality constrained latent class models were elaborated. In this
introduction to the example section, a nontechnical elaboration of Bayesian
model selection will be given such that readers who skipped the previous sec-
tion will understand the meaning of two quantities that will be used in the
sequel: the marginal likelihood and posterior probabilities. Both will be intro-
duced in the context of a simple example with two probabilities. The interested
reader is referred to [11] for a simple example with only one probability.

Table 11.3 contains the responses of 10 hypothetical persons to two hy-
pothetical items x1 and x2. The probabilities of a positive response will be
denoted by π1 and π2, respectively. The hypotheses under investigation are
H1 : π1, π2 (i.e., there is no theory about the relative sizes of both probabili-
ties) and H2 : π1 > π2.



11 Inequality Constrained Latent Class Models 237

Table 11.3. Responses of 10 hypothetical persons to two hypothetical items

Items Responses

x1 1 1 0 1 1 0 1 1 0 0
x2 0 0 1 1 0 0 0 1 0 1

The marginal likelihood is a measure of the degree of support for a hy-
pothesis provided by the data. In order to be able to compute a marginal
likelihood, two ingredients are needed: the prior distribution and the likeli-
hood of both probabilities. The square in Figure 11.2 represents the prior
distribution of H1. It is a uniform distribution; that is, a priori (before ob-
serving the data) each combination of values of π1 and π2 is equally likely.
The lower right-hand triangle denotes the prior distribution for H2; that is,
a priori each combination of values of π1 and π2 is equally likely, as long as
π1 > π2.

The ellipses in Figure 11.2 are so-called isodensity contours of the likeli-
hood of π1 and π2. If π1 = .6 and π2 = .4 (i.e.,if both probabilities are equal
to the probabilities of a positive response observed in the data) the maximum
of the likelihood is obtained (the center of the smallest ellipse). The further
the values of π1 and π2 are located from the maximum, the smaller the likeli-
hood (the larger an ellipse the smaller the likelihood), that is, the smaller the
support in the data for the values of π1 and π2 at hand.

Stated in words, the marginal likelihood (see also (11.16)) is the likelihood
integrated with respect to the prior distribution of the hypothesis at hand.

2

0 .6                      1

1

.4

0

1

Fig. 11.2. A visual elaboration of the marginal likelihood
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If uniform prior distributions are used (as is the case for H1 and H2), this
statement can be simplified to the following: The marginal likelihood is the
average height of the likelihood with respect to the prior of the hypothesis
at hand. As can be seen in Figure 11.2, for H1 the marginal likelihood is
an average over the whole square. This implies an average based on many
relatively large values (most of the likelihood is located in the lower right-
hand triangle), but also many relatively small values (only a small part of
the likelihood is located in the upper left-hand triangle). For H2 the marginal
likelihood is based on an average over the likelihood values in the lower right-
hand triangle only; that is, the marginal likelihood m(x | H2) of H2 is larger
than the marginal likelihood m(x | H1) of H1. Consequently, H2 is a better
model than H1 because it is better supported by the data.

The marginal likelihood is an automatic Occam’s razor (see also [12]).
As can be seen in Figure 11.2, neither hypothesis is in contradiction with
the data; that is, the fit of both hypotheses is similar. However, H2 is more
parsimonious than H1 because due to the inequality constraint in H2 a part of
the parameter space is excluded. To determine the support of the data for a set
of hypotheses, the marginal likelihood considers both fit and parsimoniousness
of the hypotheses. Since both hypotheses in this simple example have a similar
fit, H2 is better than H1 because it is more informative; that is, because it is
more parsimonious.

The values of two (or more) marginal likelihoods can only be interpreted in
relation to each other. With respect to the example at hand, m(x | H2) = .060
and m(x | H1) = .035; that is, H2 is a better model than H1. Assuming that
a priori both hypotheses are considered to be equally likely, the Bayes factor
(11.19) of both models is BF21 = .060/.035 = 1.71; that is, a posteriori (after
observing the data) H2 has become 1.71 times as likely as H1. The easiest way
to interpret marginal likelihoods is to translate them to posterior probabilities;
that is, the probability that the hypothesis at hand is the best of the set of
hypotheses under consideration after observing the data. For the hypotheses at
hand the posterior probabilities (11.18) are P (H2 | x) = 1.71/(1+1.71) = .63
and P (H1 | x) = 1.71/(1 + 1.71) = .37. In the sequel both the marginal
likelihood and posterior probabilities will be used to quantify the support in
the data for the hypotheses under investigation.

11.3.2 Masculinity and Femininity

A contribution to an ongoing discussion with respect to the sex role stereo-
types “masculinity” and “femininity” was given by [23]. Traditionally, mas-
culinity and femininity are considered to be different extremes of the same
(bipolar) dimension [15, 25]. However, this was criticized in [4] because there
were no relevant variables that were related to either this bipolar dimension,
masculinity or femininity. The author suggested that masculinity and femi-
ninity should be measured in a different way.
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Table 11.4. Two theories translated in inequality constrained latent class models

Bipolar Two-Dim.

1 2 3 4 Item N M F A

++ + − −− Vulnerable (F) − − + +
++ + − −− Changeable (F) − − + +
++ + − −− Intuitive (F) − − + +
++ + − −− Emotional (F) − − + +
−− − + ++ Selfassured (M) − + − +
−− − + ++ Exact (M) − + − +
−− − + ++ Individualistic (M) − + − +
−− − + ++ Rational (M) − + − +

Ten stereotypical masculine and 10 feminine characteristics from the
Groninger Androgyny Scale [7] were analyzed in [23]. This scale was con-
structed such that masculinity and femininity could be measured as separate
dimensions (implying that persons could be both, none, or one of both), and
not as the endpoints of a bipolar dimension. Eight of these characteristics (the
top four labeled (F) are feminine, the bottom four labeled (M) are masculine)
can be found in Table 11.4. As can be seen, the Groninger Androgyny Scale
contains many masculine characteristics that are usually positively evaluated
and feminine characteristics that are usually evaluated less positive or even
negative. This is in accordance with the findings in [3] with respect to the
feminine and masculine stereotype.

The items in Table 11.4 were scored by 166 students from the University
of Groningen for a benefit of 10 guilders. The students had an average age of
22.4 years, 88 of the students were female, and 78 were male. The responses
were originally scored on a 4-point scale. For the purpose of this chapter the
responses were recoded to 0: the characteristic does not apply to me, and 1:
the characteristic does apply to me.

In Table 11.4 the theories that “femininity and masculinity are the end
points of a bipolar dimension” and “feminity and masculinity are two separate
dimensions” are represented by an inequality constrained latent class model.
Class-specific probabilities are represented by −−, −, +, and ++ such that
−− < − < + < ++.

In the panel labeled “Bipolar” the restrictions are only within items (that
is, within a row of the table) and not between items (that is, not between rows
of the table). The numbers 1 through 4 refer to four latent classes that are or-
dered along a bipolar dimension ranging from “feminine” to “masculine”. The
class-specific probabilities are restricted such that the probability of choosing
feminine characteristics is decreasing from class 1 to 4 and the probability of
choosing masculine characteristics is increasing from class 1 to 4. This implies
that feminine persons will be allocated to class 1 and have relatively high
probabilities of choosing the feminine items and relatively small probabilities



240 Hoijtink, Boom

Table 11.5. Log marginal likelihood and posterior model probabilities (PMPs)

Theory log m̂ PMP

Bipolar −783.11 .013
Two-dimensional −778.74 .987

of choosing the masculine items and that masculine persons will be allocated
to class 4 with relatively high probabilities of choosing masculine items and
relatively small probabilities of choosing feminine items.

In the panel labeled “Two-Dim.” the first class contains the persons that
are neither feminine nor masculine. The second class contains the masculine
persons (the probabilities for the masculine characteristics are larger than the
probabilities for the feminine characteristics in the same class and larger than
all the probabilities in the first class). The third class contains the feminine
person, and the fourth class the androgynous persons.

As can be seen in Table 11.5 the posterior probabilities show clearly that
the support in the data is larger for the two-dimensional model than for the
bipolar model. This is in accordance with the results obtained (using differ-
ent methods) in [23]. In Table 11.6 the estimates of the parameters of the
two-dimensional model are displayed. As can be seen, the estimates are in ac-
cordance with the constraints: In the masculine class the masculine items have
high class-specific probabilities, in the feminine class the feminine items have
high class-specific probabilities, and in the androgenous class all items have
high class-specific probabilities. The number of persons in the androgenous
class is rather high (55%). Since the sample of persons consisted of students
who (at least in 1990) have less inhibition to show both feminine and mascu-
line characteristics than the average person, this is not surprising.

Table 11.6. Estimates for the two-dimensional theory

Item None Masc. Fem. Andro.

Vulnerable (F) .23 .30 .84 .84
Changeable (F) .36 .27 .64 .65
Intuitive (F) .41 .30 .82 .71
Emotional (F) .24 .31 .91 .85
Selfassured (M) .50 .78 .50 .76
Exact (M) .21 .82 .26 .69
Individualistic (M) .32 .83 .54 .86
Rational (M) .25 .89 .35 .87

ω .04 .17 .24 .55
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Table 11.7. The eight balance items

Left Side Item Right Side

Dist. Weight Add Torque Dist. Weight Add Torque

2 3 5 6 1 4 1 5 4
2 4 6 8 2 4 1 5 4
3 1 4 3 3 1 4 5 4
3 2 5 6 4 4 1 5 4
1 3 4 3 5 3 1 4 3
1 4 5 4 6 2 2 4 4
3 2 5 6 7 2 3 5 6
4 1 5 4 8 2 2 4 4

11.3.3 The Balance Scale Task of Piaget

A well-known experiment from the psychological literature is the balance scale
task of Piaget (cf. [1]). A picture of a simplified balance scale is shown to
children. While the beam is fixed, a number of identical weights are placed
on each side at certain distances from the fulcrum. For each of a number of
balances (the items) the children have to predict which side will tip, if any.
The weights on the balance differ with respect to their number and distance
to the center. The formal (torque) rule to obtain the correct answer is that the
balance is in equilibrium when the product of the number of weights and the
distance from the center is equal at both sides of the balance. The interested
reader can surf to http://zap.psy.utwente.nl/english and execute this
task himself.

Here 8 items from the 19 balance scale items previously analyzed in [14]
are used to compare 2 theories with respect to the strategies that children
use to come up with a solution for each of the balance items: Siegler’s theory
[24] and an adjustment by Normandeau et al. [22]. The items are described
in Table 11.7. Two types of items can be found in this table:

• Items 1 through 4 are “conflict weight” items. These are items for which
both sides differ in distance and weight, and the correct answer is that the
side with the most weight goes down.

• Item 5 through 8 are “conflict balance” items. For these items both sides
also differ with respect to distance and weight. However, overall, the bal-
ance is in equilibrium.

The items were responded to by 887 Dutch children ranging in age from 4
until 16 years. The data were collected by students from the Department of
Developmental Psychology of Utrecht University using a strict protocol of how
to administer the balance scale task to the children.

According to Siegler’s theory [24], children use one of three strategies to
respond to these items:
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Table 11.8. Two theories translated in inequality constrained latent class models

Siegler Normandeau et al.

Rule 1 Rule 3 Torque Item Rule 1 Add Qual. Torque

+ ± + 1,4 + − − +
+ ± + 2,3 + + − +
− ± + 6,8 − − + +
− ± + 5,7 − + + +

• Siegler’s “Rule 1” states that children will look at the number of weights
on each arm and will predict that the arm with the largest number of
weights will go down. This will lead to correct answers to items 1 through
4 and to incorrect answers to items 5 through 8.

• Siegler’s “Rule 3” states that children look at both distance and weight.
However, if both vary, they will give a random prediction. This will lead
to random answers to each of the eight items presented in Table 11.7.

• Children can also use the “Torque Rule”; in that case they will provide
the correct answer to each of the items.

Note that Siegler’s Rule 2 does not apply to the item set displayed in Table
11.7. To distinguish Rule 2 from Rule 1, items are needed that have an equal
weight at each side of the balance. Consequently, Rule 2 will not be considered
in the sequel.

According to Normandeau et al. [22] and Boom and ter Laak [2], Siegler’s
Rule 3 should be replaced by two other rules:

• The “Addition Rule” states that children will add the distance and weight
for each side of the balance and predict that the side with the largest sum
will go down. As can be seen in Table 11.7 this will render the correct
response for items 2, 3, 5 and 7.

• The “Qualitative Proportion Rule” states that children understand that
a heavy weight at a small distance from the fulcrum compensates for a
small weight at a large distance from the fulcrum. The children will pre-
dict “balance” for all conflict problems and, consequently, give the correct
answer to items 5 through 8.

As displayed in Table 11.8 the theories of Siegler and Normandeau et al.
can be translated into inequality constrained latent class models. The class-

Table 11.9. Log marginal likelihood and posterior model probabilities (PMPs)

Theory log m̂ PMP

Siegler −2834.61 .001
Normandeau et al. −2793.78 .999



11 Inequality Constrained Latent Class Models 243

Table 11.10. Estimates for the theory of Normandeau et al.

Item Rule 1 Add Qual. Torque

1 .96 .11 .17 .84
2 .99 .93 .17 .96
3 .97 .85 .13 .82
4 .94 .06 .17 .46
5 .00 .38 .27 .23
6 .03 .19 .34 .34
7 .05 .60 .28 .64
8 .07 .12 .26 .61

ω .57 .11 .05 .27

specific probabilities for combinations of items and classes are represented by
−,±, and + with the restriction that − < ± < +. To give an example, the
children in class Rule 1 have a higher probability to respond correctly to the
conflict weight items than to the conflict distance items. Table 11.9 presents
the marginal likelihood and posterior probabilities for both models. As can
be seen the support in the data is clearly in favor of the model proposed by
Normandeau et al. [22]. Stated otherwise, according to data the Addition and
Qualitative Proportion rules are better representations of the strategies that
children use to answer to the items of the balance scale task than Rule 3.
Estimates of the class-specific probabilities according to the restriction listed
in the right-hand panel of Table 11.8 can be found in Table 11.10. It would
have been nice if some of the large probabilities would have been larger (e.g.,
the probabilities for items 5, 6, 7, and 8 in the Qualitative Proportion class,
and the probabilities of items 5 and 6 in the Torque class). Apparently four
classes/response strategies are not yet enough to render a clear Torque class
(high probabilities for all the items) and a somewhat more pronounced Qual-
itative Proportion class. The interested reader is referred to [14], in which
more pronounced classes were obtained via the addition of two unrestricted
classes (that clarify the structure in the data by taking out some of the noise)
to the model of Normandeau et al.

11.4 Discussion: Exploratory and Informative Latent
Class Analysis

In the first section of this chapter three unresolved issues related to exploratory
latent class analysis were listed: The number of classes can only be determined
approximately; the meaning of the classes has to be determined after execution
of the analysis; and the results of an exploratory analysis may not correspond
with any of the theories a researcher has in mind.
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These issues are to a large extend solved using informative latent class
analysis. Here a researcher will translate each of a set of competing theories
into an inequality constrained latent class model. This avoids the third issue:
A researcher does not have to figure out which theory has the closest corre-
spondence with the results of an exploratory analysis; he straightforwardly
gets the support of the data for each theory expressed as a posterior prob-
ability. It also avoids the first and the second issue because the researcher
determines both the number of classes needed to adequately represent a the-
ory and, using inequality constraints among the class-specific probabilities, he
characterizes each class.

Of course this does not mean that there are no unresolved issues if a
researcher decides to use informative latent class analysis. Here the focus will
be on two methodological issues. The first issue can be phrased in questions
like “What if my set of models does not contain the best model?”, or “Can
I evaluate as many models as I like?”. The fear expressed in these questions
is that an informative analysis with a limited number of competing models
may not render the model that gives the best description of the data at hand.
The fear is justified; an informative analysis will not render the best model
for the data at hand. However, the questions should not address the data
at hand, but the population from which the data were sampled. The answer
to the question whether an informative analysis will render the best model
for the population from which the data were sampled is clear: no. The best
model is a model with the correct number of classes, and the class weights
and the class-specific probabilities fixed at their population value. However,
informative analysis will render a good model for the population from which
the data were sampled; that is, if one believes that the following assumption is
true: researchers know their research domain and are able to come up with a
number of competing theories of which at least one is a more or less adequate
description of the truth.

The second issue is the degree of precision with which a theory has to be
specified in an inequality constrained latent class model. To give an example,
the latent class containing the children applying the Torque rule in the balance
scale task could be specified more precisely if the restriction π4j > .90 for j =
1, . . . , J is added; that is, in the Torque class, the children have probabilities
larger than .90 to correctly respond to each of the items. The question then
becomes which specification better represents the theory of [22]. The answer
to the question depends on the researcher executing an informative analysis
(and of course on what his peers think). First of all, a theory should be clearly
recognizable from the constraints imposed on a latent class model. Second,
researchers should translate their theories into constrained latent class models
such (that is, make them precise enough) that the data can be used to select
the best of the models constructed. This makes translation of theories into
constrained latent class models a rather subjective activity. Stated otherwise,
the prior distributions formulated for each model are subjective and this makes
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selection of the best of a set of informative hypotheses a truly Bayesian way
of making inferences.

Consequently, the choice between exploratory and informative latent class
analysis is at the heart a choice between the classical and Bayesian way of
making inferences. It is up to each researcher to decide whether he finds it
easier to deal with the issues associated with exploratory or informative latent
class analysis. Software for inequality constrained latent class analysis can be
found at http://www.fss.uu.nl/ms/informativehypotheses.
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12.1 Introduction

In recent years, there has been growing interest in statistical models incorpo-
rating inequality constraints on model parameters. This is because the om-
nibus hypotheses can be replaced by more specific inequality constrained hy-
potheses [2]. In the extensive review in [3], literature is discussed on order
restricted statistical models for contingency tables. What becomes clear in
this review is that many order restricted models can be estimated and tested
– however, not without thorough technical knowledge of the matter. Even if
the software is provided, still the (applied) researcher is required to know a
great deal about parameterizations of log-linear models. In the approach dis-
cussed in this chapter, models for contingency tables are presented in terms
of cell probabilities or odds ratios rather than log-linear parameters. This al-
lows researchers to test inequality constrained hypotheses in a format that is
directly related to the data and in a way that researchers are used to think of
hypotheses.

Being able to provide parameter estimates for various inequality con-
strained hypotheses gives rise to two questions: (1) Which of the constrained
hypotheses fits the data? and (2) Which of the constrained hypotheses fits
best? The former question requires to compare the inequality constrained
hypothesis with the unconstrained alternative. The latter shows which con-
strained hypothesis out of a set of hypotheses is mostly supported by the data.
In this chapter both questions are answered using Bayes factors and posterior
model probabilities.

Throughout this chapter, one dataset is used to illustrate the approach.
The research questions are first answered using log-linear models, a standard
noninequality constrained approach that is widely available in statistical soft-
ware packages. It is then shown how the inequality constrained approach is
able to provide more specific answers to the research questions than the stan-
dard available methods. Note that it may seem “unfair” to compare a long ex-
isting method like log-linear analysis to a state-of-the-art Bayesian approach,
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Table 12.1. Frequencies of service level, customer satisfaction (satis), and attitude
toward next purchase

Attitude toward next purchase

Service level Satis unlikely likely

No account manager dissatisfied 23,174 23,140
satisfied 67,895 81,356

Telephonic account manager dissatisfied 2,104 2,223
satisfied 4,585 6,781

Account manager dissatisfied 331 257
satisfied 599 977

Account team dissatisfied 34 25
satisfied 60 80

especially if one considers the many extensions that have been developed for
log-linear models to handle a great variety of hypotheses, including inequality
constrained hypotheses. However, as mentioned before, many of those spe-
cialized models require a great deal of technical knowledge, apart from the
fact that they are not generally available in software. Thus, the comparison
shows the differences between what can be done using the “standard”, readily
available log-linear models and a conceptually simple to understand Bayesian
method. The example concerns the relation between customer satisfaction and
attitude toward the next purchase. Data are taken from a business market cus-
tomer satisfaction questionnaire conducted by a large telecom operator in the
Netherlands. The data are presented in Table 12.1. Customer satisfaction was
measured on a five-point Likert scale and then condensed to a dichotomous
item by removing the neutral (3) category and by summing the category “very
dissatisfied” and “dissatisfied” into a “dissatisfied” category, and by summing
the category “very satisfied” and “satisfied” into a “satisfied” category. The
question regarding attitude toward the next purchase is treated similarly and
results in a category “unlikely” and a category “likely”. The variable service
level indicates how the customer is served. “No account manager” customers
are served by general mailings, advertisements, and call centers. In general,
these customers are small companies and home offices. The next category of
customers are mostly medium enterprises and are served by telephonic account
managers; each telephonic account manager serves about 300 customers. The
major companies are served by an account manager who visits the company.
Each account manager serves about 15 customers. The large enterprises are
served by an account team; three to eight account managers serve exactly one
customer. Note that although the size of the company is highly correlated
with service level; the primary distinction between the categories is the way
the customers are served. Depending on the complexity of the portfolio, yearly
recurring revenues, and revenue potential, customers are appointed to a ser-
vice level. In the sequel the variable “customer satisfaction” is abbreviated



12 Inequality Constrained Contingency Table Analysis 249

Table 12.2. Examples of inequality constrained hypotheses

H0 θ1, θ2, θ3, θ4
H1 θ1 > 1, θ2 > 1, θ3 > 1, θ4 > 1
H2 θ1 < θ2 < θ3 < θ4

as “satisfaction” or “satis”; the variable “attitude toward next purchase” is
abbreviated as “attitude” or “att.” The variable “service level” is abbreviated
as “service” or “serv.” Moreover, service level can be perceived as an ordinal
variable; by increasing one service level is meant an increase toward a more
dedicated service (i.e., toward the category “account team”).

There are two research questions regarding these data. The first question
concerns customer satisfaction: How satisfied are customers, and how does
this relate to service level? The second question is: How is satisfaction related
to attitude toward next purchase, and how is this association related to service
level? These are fairly general questions and are specified in more detail in
Section 12.4. However, as the following sections deal with computational issues
regarding inequality constrained hypotheses, some examples are elaborated
below. The odds ratio is used as a measure of association between customer
satisfaction and attitude toward next purchase, and in each category of service
level defined as

θk =
π11kπ22k

π12kπ21k
,

where πijk denote the cell probabilities in the contingency table, i = 1, ..., I
denote the categories of satisfaction, j = 1, ..., J denote the categories of at-
titude and k = 1, ...,K denote the categories of service level. In this example
I = J = 2 and K = 4. Thus θk denotes the association between satisfaction
and attitude for the k-th service level. An odds ratio of one indicates inde-
pendence between satisfaction and attitude. As will be shown in the sequel,
the odds ratio θ1 equals 1.2, which indicates that for customers without an
account manager, the odds of answering “likely” on the attitude question is
1.2 times larger for satisfied customers than for dissatisfied customers. For a
detailed review of the odds ratio, see [1]. In Table 12.2, three hypotheses are
displayed. Hypothesis H0 does not impose any structure on the odds ratios.
This hypothesis always fits the data perfectly, but it is not informative, nor
parsimonious. In search for interpretable structure in the data, inequality con-
straints are specified: Hypothesis H1 specifies a positive association between
satisfaction and attitude for each service level. Hypothesis H2 specifies that
with increasing service level, the association between satisfaction and attitude
also increases. It is of interest to investigate which of the hypotheses fits the
data and which hypothesis fits the data best.

The chapter is built up as follows. First, in Section 12.2, the interpretation
and parametrization of classical log-linear models is discussed, as this serves
as comparison to the method proposed in this chapter. In Section 12.3, a
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Bayesian approach to the evaluation of inequality constrained hypotheses for
contingency tables is presented. It is shown how to obtain an estimate of
Bayes factors and how to calculate the posterior model probability using Bayes
factors. In Section 12.4, the various research questions are evaluated, both
using the classical log-linear approach and the Bayesian approach proposed
in this chapter.

12.2 Log-linear Models

A log-linear model decomposes a contingency table in an ANOVA-like manner
into main and interaction effects [1]. We use standard notation for contingency
tables with three variables A, B, and C with respective indexes i = 1, ..., I,
j = 1, ..., J , and k = 1, ...,K. Suppose there is a multinomial sample of size
N over the I × J × K cells of the contingency table. Let fijk denote the
observed frequency for cell (i, j, k). The cell probabilities πijk for the multino-
mial distribution form the joint distribution of the three categorical responses.
Those responses are independent when πijk = πi++π+j+π++k, for i = 1, ..., I,
j = 1, ..., J , and k = 1, ...,K, where πi++ =

∑
j,k πijk. The expression for the

independence on the scale of the frequencies is fijk = Nπi++π+j+π++k. On
a logarithmic scale, independence has the additive form

log(fijk) = log(N) + log(πi++) + log(π+j+) + log(π++k).

The log expected frequencies for cell (i, j, k) is an additive effect of the i-th
effect of variable A, the j-th effect of variable B and the k-th effect of variable
C. Identifiability constraints have to be included and the usual notation for a
log-linear independence model is

log(fijk) = µ+ λA
i + λB

j + λC
k . (12.1)

A common choice to identify the model is by setting the λ parameter of the
last category of each variable to 0, thereby implying that the effect of the other
parameters of that variable have to be interpreted as differences with respect
to the last category. The parameters are not as easy and straightforward
to interpret as one might like (e.g., in comparison to an ANOVA). The µ
parameter can be viewed as the categorical counterpart of the grand mean
in an ANOVA. The λ parameters are interpreted as additions to the log cell
frequencies, or multipliers of the frequencies of an effect, however, it is more
common to look at the signs and transform the parameters back to simple
probabilities. Examples will be given in Section 12.4.4

The saturated model, the model that always perfectly fits the data, has
the form

log(fijk) = µ+ λA
i + λB

j + λC
k + λAB

ij + λAC
ik + λBC

jk + λABC
ijk . (12.2)
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A two-way interaction effect (e.g., λAB
ij ) captures the association between

two variables. The three-way interaction effect(λABC
ijk ) shows how the associ-

ation between the two variables varies over a third variable. With respect to
the interpretation of a two-way effect, in the above explained parametrization,
in a two-way table with I = J = 2, the exponent of the parameter λAB

ij equals
the odds ratio as defined in Section 12.1. In tables where max(I, J) > 2, the
two-way effects are multiplication factors of the underlying one-way effects;
however, it is more common to look at the sign and the significance of each
two-way association term and use these to refer to the estimated or observed
odds ratios. This is illustrated in the example in Section 12.4. Also, a three-
way effect can be translated into a multiplication factor that shows how the
two-way odds ratio is modified by each category of the third variable; how-
ever, it is more common to interpret the sign and refer to the estimated or
observed odds ratios. As an example, suppose that the three-way interaction
odds ratio equals 2. This indicates that for any two out of three variables, the
odds ratio increases by a factor of 2 when moving one category up over the
third variable.

As becomes clear, the interpretation of the parameters of a log-linear model
is not straightforward. There is, however, another good use of log-linear mod-
els, and that is locating the source of dependencies. First, a shorthand notation
for log-linear models is introduced. The independence model (12.1) is given
by (A,B,C) and the saturated model (12.2) by (ABC), thus referring to the
highest (interaction) effect in the model. Since the saturated model (ABC) al-
lows for all effects, it always describes the data perfectly. Consider a saturated
three-way model with exactly one three-way interaction parameter (this is the
case when I = J = K = 2) that appears not to be significant. Then there
is reason to estimate the model again, but without the three-way interaction
term. The now highest interaction terms in the model are λAB

ij , λAC
ik , andλBC

jk ,
leading to the short notation (AB,AC,BC). This model allows for association
between each pair of variables, but requires the association to be the same for
each level of the third variable. The model (A,BC) shows an association be-
tween variables B and C, while this association is equal on each level of A. An
alternative description is that variable A is jointly independent of B and C.
There is a set of similarly structured models (e.g., (AB,C)) that have similar
interpretations as (A,BC). The model (AB,BC) requires variables A and C
to be independent for each level of B. This is called conditional independence.
Note that conditional independence does not imply marginal independence;
that is, A and C are independent for each level of B, but not when summed
over B.

A likelihood ratio test can be used to compare models with different effects
(i.e., different sets of λ parameters). The likelihood ratio test takes twice the
difference of the log-likelihood values of two models and evaluates this in a
chi-square distribution, with the degrees of freedom given by the difference in
the number of parameters in the two models. The null hypothesis states that
the smaller model does not fit worse than the larger model, and a significant
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effect indicates that the smaller model does indeed fit worse. Note that models
do have to be nested; that is, the larger model contains all effects from the
smaller model. The notation LR(10) = 675, p = .000 shows that a likelihood
ratio test yields a value of 675 with 10 parameters difference between the two
models, resulting in a significant effect. It is concluded that the smaller model
fits worse.

Summarizing, the main objective for log-linear analysis is to find the small-
est (i.e., fewest parameters) model that still fits the data. The various models
are compared using likelihood ratio tests. After the smallest model is found
that still fits the data, the observed odds ratios can be interpreted as be-
ing significant or not significant and references can be made to positive and
negative associations.

One extension to log-linear models that can be performed using the stan-
dard statistical software is discussed. By crafting a special vector in the data
matrix, and including this as a covariate, linear effects can be included in the
log-linear model. This linear effect captures any linear trend that can be found
over the consecutive categories of a variable, in one parameter. For example,
suppose that in the saturated model (ABC), the two-way effect parameters
λAB

ij take the values (2, 4, 6) over the third variable for k = 1, 2, 3; then a
linear term βAB = 2 would perfectly capture the trend. The values λAB

ij for
each category of k can be calculated by multiplying the βAB by the category
of k; that is, k ·βAB for category k = 3 equals 3 ·2 = 6. When the data show a
perfect linear trend, the linear effect model results in the same fit as the corre-
sponding log-linear model, but it is more parsimonious (i.e., less parameters).
Formally the example above is denoted as

log(fijk) = µ+ λA
i + λB

j + λC
k + βABuivj . (12.3)

The terms ui and vj are the respective category numbers of variables A and
B. To include such an effect using standard log-linear models, an extra column
in the data has to be added, containing the product of the category numbers
of variables A and B. For example, the value for u1 = 1 and v2 = 2 results
in the value 2 in the linear effect column. See [1] for a thorough review of
log-linear models.

12.3 Bayesian Analysis of Contingency Tables

In this section it is shown how a Bayesian analysis on contingency tables is
performed. First, it will be presented how to obtain parameter estimates, sub-
sequently estimation of Bayes factors and how they can be used to evaluate
competing hypotheses as shown in Table 12.2 will be discussed. With respect
to the former, Bayesian estimates are often obtained by a sampling procedure,
whereas the classical approach mainly uses optimization. The optimization is
performed with respect to the likelihood of the model. In Bayesian statistics,
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one element is added to the likelihood, namely the prior distribution. It is
convenient to assume that before observing the data, the parameters in the
model do not have one fixed value in the population, but rather have a vari-
ety of possible values, some values a priori more plausible than others, which
leads to a prior distribution of parameters, or short, the prior. This prior is
multiplied with the likelihood and results in what is called the posterior dis-
tribution: the distribution of the parameters after observing the data. As the
posterior distribution can be quite difficult to optimize (i.e., find the maxi-
mum), a common solution is to take a sample (of parameters) and compute
estimates using this sample. Note that the remainder of Section 12.3 is fairly
technical and can be skipped if one is only interested in the application. A
good introduction to Bayesian statistics can be found in [8].

12.3.1 Posterior Distribution

First, to enhance readability, vector notation is introduced. Let f = {fijk|i =
1, ..., I, j = 1, ..., J, k = 1, ...,K} and π = {πijk|i = 1, ..., I, j = 1, ..., J, k =
1, ...,K}. Similar to the log-linear section, it is assumed that f follows a
multinomial distribution, f |π ∼ M(π, N). Let α denote the parameters of
the prior distribution, p(π|α) ∼ Dirichlet(α) ∝

∏I
i=1

∏J
j=1

∏K
k=1 π

αijk−1
ijk .

Before the analysis, a choice has to be made with respect to α. A common
choice is a constant for each element of the vector α. In the examples, α = 1
is used, which leads to the estimate πijk = fijk/N for the posterior mode.

Denote inequality constraint z as rz(π) for z = 1, ..., Z. Examples of in-
equality constrained hypotheses are given in Table 12.2. The joint constraints
are R(π) = (r1(π), ..., rZ(π)). The inequality constraints are accounted for in
the prior distribution as follows:

p(π|R(π),α) =
p(π|α)IπεR(π)∫
p(π|α)IπεR(π) dπ

,

where Iπ∈R(π) is an indicator function that has the value one if π is in
accordance with R(π), and zero otherwise. The likelihood is given by L(f |π).
It follows that the posterior distribution p(π|f) ∝ L(f |π)p(π|R(π),α) is

p(π|f) ∝
I∏

i=1

J∏
j=1

K∏
k=1

π
fijk+αijk−1
ijk Iπ∈R(π),

restricted such that
∑

ijk πijk = 1.
Since the cell probabilities are restricted to sum to one, the cell probabil-

ities cannot be sampled successively. Narayanan [13] showed that a Dirichlet
distribution can be parameterized into a gamma distribution in such a way
that the sampling procedure is simplified. Let γijk ∼ Gamma(fijk + αijk, 1);
then the vector (π111, ..., πIJK) where πijk = γijk/γ+++ is distributed as
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Dirichlet(f111 +α111, ..., fijk +αijk, ..., fIJK +αIJK). Under this parameter-
ization the posterior becomes

P (π|f) ∝
I∏

i=1

J∏
j=1

K∏
k=1

(
γijk

γ+++

)fijk+αijk−1

Iγ∈R(γ), (12.4)

where γ+++ =
∑

ijk γijk. Note that the inequality constraints on π are now
also parameterized into inequality constraints on γ, since R(π) = R( γ

γ+++ ) =
R(γ). For example, suppose we have the following ordering: π111 > π112 >
π113 which equals γ111

γ+++ > γ112
γ+++ > γ113

γ+++ . This reduces to γ111 > γ112 > γ113.
It is now explained how the model parameters are sampled from the con-

strained posterior distribution. A sample is taken from γijk ∼ Gamma(fijk +
αijk, 1) for i = 1, ..., I, j = 1, ..., J, k = 1, ...,K. Without constraints, the pa-
rameters are independent, and an i.i.d. sample from the successive gamma
distributions provides a draw from the posterior distribution. If inequality
constraints are incorporated in the model, the successive draws of the gamma
distribution are dependent, and we resort to the Gibbs sampler [7, 8].

The Gibbs sampler is an iterative procedure. Suppose we want to draw
samples from the joint posterior distribution of γ under an inequality con-
straint R(γ). Taking the full conditionals required for the Gibbs sampler
reduces the multivariate constraints to univariate constraints. In the Gibbs
sampler, the gamma distribution of a parameter thus has a lower and an
upper bound, conditional upon the constraints and current values of all the
other parameters. These values are denoted by bounds(γ(s)

ijk) = (l, u), where l
denotes the maximum lower bound and u denotes the minimum upper bound
over all Z constraints in iteration s. To keep the notation simple, we omit
indexes for l and u.

In iteration s = 0, initial values have to be provided for γijk. Any set of
values that is in agreement with the constraints imposed upon the parameters
can be used. Each iteration s = 1, . . . , S consists of the following steps:

(1) Cycle step 1 ∀ i, j, k
(1a) Calculate bounds(γ(s)

ijk) = (l, u) given the current values of the
parameters and R(γ).

(1b) Sample γ(s+1)
ijk ∼ Gamma(fijk + αijk, 1|l, u).

(2) Compute πijk = γijk/γ+++ ∀ i, j, k and deliver (π111, ..., πijk, ..., πIJK) as
a draw of the correct truncated posterior.

Gelfand et al. [7] showed that in iteration s as s → ∞ under mild con-
ditions, the Gibbs sampler provides parameters that come from the correct
constrained joint posterior distribution.

The naive way to sample from a truncated gamma distribution is to sam-
ple from the nontruncated gamma distribution until a deviate is sampled that
satisfies the constraints. However, this is quite inefficient if only a small range
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of the distribution is admissible. Inverse probability sampling solves this prob-
lem. Details can be found in Chapter 3.

With regard to the sampling procedure, in our experience 9000 iterations
and a burn-in of 1000 iterations generally lead to stable estimates. The re-
quired burn-in period can be longer, depending on how flexibly the sampled
parameters can move through the parameter space, due to the constraints. The
mixing of the Gibbs sampler is visually inspected by plotting π(s) against s,
for s = 1, . . . , S iterations [5].

For all the restrictions used in this chapter, the estimation procedure is
basically the same. The author developed a software package that allows the
users to specify a model and input the inequality constraints as text. To evalu-
ate the inequality constraints in each sample of the posterior, a function parser
(http://www.its.uni-karlsruhe.de/∼schmehl/functionparser.html) is
used. This parser reads the inequality constraints as text elements and trans-
lates it into equations. Afterward, the equations are solved numerically, using
a simple root finder to obtain upper and lower bounds. Once the bounds are
obtained, the estimation procedure is as explained above. More details can be
found in [12].

12.3.2 Parameter Estimates, Posterior Standard Deviations, and
Credibility Intervals

After removing the burn-in, the sample of S iterations from the constrained
posterior distribution can be summarized to obtain parameter estimates, pos-
terior standard deviations, and credibility intervals for each model parameter.
By taking the averages over the S values, the Expected A Posteriori estimates
(EAP) are obtained [8]. The posterior standard deviations are obtained by
taking the standard deviations over the S values. The 90% central credibility
intervals can be calculated by taking the 5th and 95th percentiles of the pos-
terior sample. The posterior distribution may be skewed, in which case the
credibility interval then correctly provides an asymmetric interval.

Furthermore, the summary measures can also be calculated for functions
of the parameters. Let g(π) describe a function of interest; then the S iter-
ations of the posterior of the cell probabilities can be transformed accord-
ing to g(π). Summary measures can be calculated for this newly created
vector. For example, suppose a contingency table with I = J = K = 2
is estimated using the constraint that the odds ratio of the collapsed table
(π11+π22+)/(π21+π12+) > 1. Let g(π) = (π11+π22+)/(π21+π12+). The vector
g(s)(π) for s = 1, ..., S represents the posterior distribution of this odds ratio.
The EAP, the posterior standard deviation, and a central credibility interval
can subsequently be calculated.

12.3.3 Bayes Factors and Posterior Model Probabilities

In the previous section, the sampling procedure has been explained. For each
of the inequality constrained hypotheses, such a sampling procedure results
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in a set of (constrained) estimates. Subsequently, the question arises: Is the
hypothesis compatible with the data and which of the hypotheses is best?
Both questions can be evaluated using posterior model probabilities. Three
ingredients are required to compute posterior model probabilities: a finite set
of models or hypotheses, a prior model probability (not to be confused with
the prior distribution for the parameters) for each hypothesis in the set, and
marginal likelihoods or Bayes factors. The first ingredient requires careful
considerations of the researcher: Which theories or expectations should be
included? Should the unconstrained model be part of the set of hypotheses?
With respect to the second ingredient, throughout this chapter (the conven-
tional) equal prior model probabilities are used. So, for a set of T models the
prior probability for model t (t = 1, . . . , T ) equals 1/T . The last ingredient,
the marginal likelihood, can be interpreted as the likelihood that the data are
observed given that the hypothesis at hand is true. The fit of two hypotheses
or models can be compared by examining the ratio of the marginal likelihoods:
the Bayes factor [9, 10]. A great deal of literature shows that the computation
of marginal likelihoods can be burdensome [4, 6, 14]. However, the hypotheses
considered in this chapter are all constrained versions of the unconstrained
model. Stated otherwise, the (in)equality constrained hypotheses are nested
in the unconstrained model. Klugkist et al. [11] and Laudy and Hoijtink [12]
showed that the calculation of a Bayes factor for nested hypotheses (that is,
the Bayes factor for any constrained model with respect to the unconstrained
model) is greatly simplified and does not require the computation of marginal
likelihoods (see also Chapter 4).

Denote the unconstrained hypothesis as H0 : π and the t-th constrained
hypothesis as Ht : Rt(π), where Rt is a function that imposes restrictions on
π, as introduced in Section 12.3.1. Note that in the sequel, the unconstrained
hypothesis is always denoted by H0. The Bayes factor BFt0 can be written as

BFt0 = ct/dt, (12.5)

where 1/ct denotes the proportion of the unconstrained prior that is in ac-
cordance with the constraints Rt, and 1/dt denotes the proportion of the
unconstrained posterior that is in accordance with the constraints Rt. An es-
timate of 1/ct is obtained by sampling from the unconstrained prior distribu-
tion and calculating the proportion of parameter vectors that is in agreement
with hypothesis Ht. An estimate of 1/dt is obtained by sampling from the un-
constrained posterior distribution and calculating the proportion of samples
that is in agreement with the hypothesis Ht. The proportion of samples in
agreement with the constraints after observing the data (1/dt) is compared to
(or stated differently, penalized by) the proportion of samples in agreement
with the constraints a priori (1/ct), rendering an estimate for the Bayes fac-
tor in (12.5). With respect to the interpretation, suppose a Bayes factor of a
constrained hypothesis versus the unconstrained hypothesis takes the value 2;
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Table 12.3. Approximating hypotheses for the estimation of BF10

H0: π11, π12, π13 (unconstrained)
H1,1: π13 > .5
H1,2: π12 > π13 > .5
H1: π11 > π12 > π13 > .5

then given the data at hand, the constrained hypothesis is twice as likely as
the unconstrained hypothesis.

This approach works for any set of inequality constrained hypotheses and
does not need a sampling procedure that can handle inequality constraints.
However, when restrictions only allow a small part of the parameter space,
the procedure is not very efficient. The proposed method can be extended
such that also in complex restrictions, the procedure efficiently yields a Bayes
factor. The extension makes use of the inequality constrained sampling pro-
cedure, as explained in Section 12.3.1.

To illustrate the computation of the Bayes factor for a “complex” con-
strained hypothesis, H1 : π11 > π12 > π13 > .5, and the unconstrained
H0 : π11, π12, π13 are considered. Note that straightforward application of
(12.5) is possible; however, the following procedure is more efficient. The Bayes
factor (BF10) can be approximated by a stepwise procedure, by breaking up
the restriction in parts, such that in each subsequent step a more restricted
parameter space is taken into account. In several subsequent steps, the pa-
rameter space is more restricted (see Table 12.3). Note that the set of new
hypotheses is constructed such that H1 ⊂ H1,2 ⊂ H1,1 ⊂ H0.

The Bayes factor for hypothesesH1,1 andH0 (denoted by BF(1,1)0) is given
by (12.5); that is, samples from both the unconstrained prior and posterior
provide the proportions of these samples that are in agreement with H1,1. The
number of samples from both prior and posterior in agreement with H1,1 will
not be zero and the procedure is rather efficient.

In the next step, the Bayes factor for hypotheses H1,2 and H1,1 (denoted
by BF(1,2)(1,1)) is obtained by sampling from both the constrained prior and
posterior of hypothesis H1,1 and calculating the proportions of samples that
are in agreement with hypothesis H1,2. This procedure is repeated also for the
Bayes factor for hypotheses H1 and H1,2. The Bayes factor of interest, BF10

is computed applying the product rule:

BF10 = BF1(1,2) ×BF(1,2)(1,1) ×BF(1,1)0.

A Bayes factor provides the posterior odds of two hypotheses. For a finite
set of hypotheses, representing a set of competing theories or expectations,
posterior model probabilities for all models in the set can be computed from
the Bayes factors.

Consider a set of just the unconstrained hypothesis (H0) and one alterna-
tive hypothesis (H1). The question is whether hypothesis H1 is supported by
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the data. The posterior model probability PH1|H0,H1 – that is, the probability
that hypothesis H1 is true given the set of hypotheses H0,H1 – is given by

PH1|H0,H1 =
BF10

1 +BF10
.

The probability of H0 is 1 − PH1|H0,H1 . Note that a priori both hypotheses
are equally likely. When PH1|H0,H1 = .9, there is much evidence that the
hypothesis is true. However, when PH1|H0,H1 = .6, the evidence for hypothesis
H1 is much weaker.

If the set of hypotheses of interest consists of the unconstrained hypothesis
H0 and several alternative hypotheses Ht (t = 1, . . . , T ), the question is which
of the hypotheses supports the data best. The posterior model probabilities
(PMPs) are computed using all Bayes factors of the constrained models with
the unconstrained model (BFt0), applying

PMPHt|H0,...,HT
=

BFt0

1 +BF10 + · · ·+BFT0
.

To obtain the PMP of the unconstrained model (PH0|H0,...,HT
) the numerator

in the previous equation is replaced by the value 1.
Note that it is not always interesting to incorporate the unconstrained

hypothesis into the set of hypotheses. Incorporating the unconstrained hy-
pothesis H0 shows whether the constrained hypotheses in the set provide a
good description of the data: If the posterior probability of H0 is large, none
of the constrained hypotheses is supported by the data. However, it may be
of interest to choose between the best of two restricted hypotheses. In that
case, the unrestricted model (H0) is not included in the set. Note that it is
still part of the analyses because the unconstrained model is used to compute
all the Bayes factors BFt0. The PMPs of models Ht (t = 1, . . . , T ), exclusive
of the unconstrained model, are computed using

PMPHt|H1,...,HT
=

BFt0

BF10 + · · ·+BFT0
.

12.4 Example

In this section, both the classical log-linear models and the Bayesian inequality
constrained procedure are illustrated using the data concerning the relation
among service level, customer satisfaction, and attitude toward the next pur-
chase. For the log-linear models, the model parameters are interpreted, and
using a likelihood ratio test, it is tested which parameters are significant. For
the Bayesian inequality constrained model, inequality constrained hypotheses
are formulated and the posterior model probability is used to evaluate the
support for the constrained hypotheses. The two research questions are (1)
How satisfied are customers and does this relate to service level? and (2) How
is satisfaction related to attitude toward the next purchase and how does this
relate to service level?
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Table 12.4. Percentages and odds ratios for the data in Table 12.1

Satisfaction Attitude Satis * Att

Service level % satisfied % likely Odds ratio

No account manager 76 53 1.2
Telephonic account manager 72 57 1.4
Account manager 73 57 2.1
Account team 70 53 1.8

Total 76 54 1.2

12.4.1 Levels of Satisfaction, the Log-linear Approach

Table 12.4 shows the observed percentages and odds ratios for the data in
Table 12.1. The question of how satisfied are the customers can be answered
informatively using the column containing the satisfaction percentages. As
this is a sample of all customers, it is of interest to know whether it can be
safely assumed that more customers are satisfied than nonsatisfied; that is,
(a) Is the satisfaction percentage greater than 50%? (b) Is it true that for
each service level the satisfaction percentage is greater than 50%?

To answer question a), the independence model (Service, Satisfaction, At-
titude) is fit as explained in Section 12.2. Satisfaction has two levels; thus,
there is one λ parameter to estimate. This parameter shows how much the
observed counts differ from equally spread counts over the two categories; in
other words, how far are the two categories away from .50/.50? A significant
parameter indicates that indeed the counts are not equally spread over the
categories. The estimate for the category “satisfied” equals 1.15 and is highly
significant. It is concluded that customer satisfaction is different from 50%,
and since the observed percentage is larger than 50%, it is also inferred that
customer satisfaction is larger than 50%. Note that exp(1.15) = 3.15 equals
the ratio of .76 and .24 (1 − .76). Note, furthermore, that the model as a
whole does not fit the data (LR(10) = 675, p = .000); thus, although it can
be concluded that customer satisfaction is different from 50%, the search for
sources of dependencies has not yet finished.

To answer question b), the model (Service * Satisfaction, Attitude); that
is, a model of type (AB,C) as discussed in Section 12.2 is fit. This model
allows one parameter for satisfaction and for each service level a parameter
that codes for the deviation from this satisfaction parameter. A likelihood
ratio test for (Service, Satisfaction, Attitude) against (Service * Satisfaction,
Attitude) shows a highly significant effect (LR(3) = 132, p = .000), which
leads to the conclusion that the independence model does fit worse than the
model that allows satisfaction to vary over the levels of service. In Table 12.5,
the parameter estimates are displayed, along with their exponents and signifi-
cance values. The “Account team” category of service level serves as reference
category; thus, the value of satisfaction = “satisfied” can be filled in here. The
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Table 12.5. Relevant parameters for model (Service * Satisfaction, Attitude)

Effect λ Exp(λ) p

Satis=“satisfied” .86 2.4 .00
Satis=“satisfied,” Serv= No acc. man. .31 1.4 .05
Satis=“satisfied,” Serv= Telephonic acc. man. .10 1.1 .52
Satis=“satisfied,” Serv= Acc. man. .12 1.1 .45
Satis=“satisfied,” Serv= Acc. team – – –

exponentiated parameter for the reference category equals 2.4, indicating that
there are 2.4 times as many observations in the category “Account team, satis-
fied” than in “Account team, unsatisfied,” which can also be seen by the ratio
of .70 and .30. The exponentiated parameter “No account manager, satisfied”
equals 1.4, meaning there are 1.4 times more counts in the category “satis-
fied” than in the category “unsatisfied” with respect to the reference category.
Thus, the category by itself contains 2.4 x 1.4 = 3.2 times more counts in the
category “satisfied” than in “unsatisfied,” which again can be verified by the
ratio .76/.24. Note that also the significance should be interpreted as an effect
with respect to the reference category. Thus, the reference category shows a
highly significant effect, in the expected direction. All but the “No account
manager, satisfied” effect are not significant, meaning that they do not differ
with respect to “Account team, satisfied.” The category “No account man-
ager, satisfied” shows a marginally significant effect. Thus, the parameter for
category “satisfied” is different from zero, and as it is observed greater than
.5, and all deviations from this effect are not significant, it is concluded that
for each category of service level the percentage “satisfied” is greater than the
percentage “unsatisfied.”

Since it is concluded that the model allowing for different satisfaction lev-
els for each service level is a better model than the model with one main
satisfaction level, it is of interest to test for a structure among these levels. In
Table 12.4 it can be seen that the higher the service level, the lower the per-
centage satisfaction, with a small exception of the level “Account manager.”
It is of interest whether this trend can be shown to be significant. The model
representing a linear trend is

log(fijk) = µ+ λsatisfaction
i + λattitude

j + λservice
k + βuivk,

where ui and vk are scores that refer to each category of the corresponding
variable, as discussed in Section 12.2. To fit this model in standard software, a
vector has to be created in the data matrix, containing the product of ui and
vk, which are just the category labels 1, . . . , I and 1, . . . ,K. Furthermore, this
vector has to be added as covariate to the independence model. In Table 12.6,
the results for several likelihood ratio tests are displayed. Each cell in the table
displays the resulting likelihood ratio test for the hypotheses in the respective
row and column. First, there is no smaller model than (Service * Satisfaction,
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Table 12.6. Likelihood ratio tests for the linear trend (lin)

(Serv, Satis, Att, lin) (Serv * Satis, Att)

(Serv, Satis, Att) LR(1) = 116, p = .000 LR(3) = 132, p = .000
(Serv, Satis, Att, lin) – LR(2) = 15, p = .000

Table 12.7. Interpretation of the linear trend parameters

Effect λ exp(λ) p

Satis=“satisfied’ 1.67 3.2 .76
Satis=“satisfied,” Serv= No acc. man. 0 3.2 .76
Satis=“satisfied,” Serv= Telephonic acc. man. −.16 2.8 .73
Satis=“satisfied,” Serv= Acc. man. −.32 2.3 .70
Satis=“satisfied,” Serv= Acc. team −.48 2.0 .67

Attitude) that still fits the data, as all significant effects indicate that the
smaller models do fit worse. However, the distance between the independence
model and model (Service * Satisfaction, Attitude) is 132 likelihood ratio
points, whereas for the linear trend model, with only one parameter extra, this
distance has decreased to 15 points, indicating that a linear trend improves
the fit significantly (LR(1) = 116, p = .000).

Although the likelihood ratio test fails to recognize the linear trend model
as a good model for the data, the linear trend parameter is highly significant
(.000). The interpretation of this trend is discussed. The parameter for the
linear trend has value −.16, or exponentiated .85, meaning that in each sub-
sequent category of service level, the odds of being in the category “satisfied”
decreases with factor .85. In the column λ in Table 12.7, the effect of the linear
trend is displayed: Each step toward a higher service level, the linear trend
parameter decreases with−.16. With respect to the baseline odds (3.2 for cate-
gory “no account manager”) the odds decreases with exp(−.16) = .85. Finally,
in the last column, the estimated probabilities, calculated by odds/(1+odds),
under a linear trend are displayed; indeed, the probabilities are ordered and
similar to those in Table 12.4.

It is concluded that the log-linear model does provide answers to the re-
search questions at hand; however, the answers are not as straightforward as
one would like.

12.4.2 Levels of Satisfaction, the Bayesian Approach

The Bayesian approach requires a set of hypotheses to be defined in advance
of the model fitting. Table 12.8 displays these hypotheses. The cell probabil-
ities are indexed such that i indicates the levels of satisfaction, j indicates
the levels of attitude, and k indicates the levels of service level. Probability
π1+1 is calculated by summing over attitude; that is, π1+1 = π111 + π121.
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Table 12.8. Constrained hypotheses for levels of satisfaction

H0 : π111, π112, π121, ..., π222

H1 : π2++ > π1++

H2 : {π2+1 > π1+1}, {π2+2 > π1+2}, {π2+3 > π1+3}, {π2+4 > π1+4}
H3 : π2+1/π++1 > π2+2/π++2 > π2+3/π++3 > π2+4/π++4

H4 : π2+1/π1+1 > π2+2/π1+2 > π2+3/π1+3 > π2+4/π1+4

Table 12.9. Results for the constrained hypotheses for levels of satisfaction

Hypothesis PMP BFt0

H1 .02 2.0
H2 .13 15.7
H3 .05 6.3
H4 .80 98.0

Hypothesis H0 is the unconstrained hypothesis. To be able to learn from the
model a constrained hypothesis should at least fit better than H0. Hypothesis
H1 states that, summed over all service levels and irrespective of attitude, the
probability of falling into the category “satisfied” is larger than in the category
“unsatisfied.” Hypothesis H2 specifies that for each category of service level,
the probability of falling into the category “satisfied” is larger than in the
category “unsatisfied.” Note that if H2 is true, also H1 is true; however, the
reverse is not necessarily true. Hypothesis H3 specifies that the probability
of being in the category “satisfied” is decreasing with service level. Note that
each probability π2+k is divided by π++k to correct for the different number of
observations in each service level. HypothesisH2 andH3 have different charac-
ter: Hypothesis H2 is in terms of probabilities within one level and hypothesis
H3 orders probabilities among levels. If both hypotheses are supported by the
data, it is of interest whether they are simultaneously supported by the data,
hence hypothesis H4, which is the combination of hypotheses H2 and H3. Hy-
pothesis H4 requires that in each category of service level, the probability of
being satisfied is greater than being unsatisfied, and with increasing service
level, the probability of being satisfied is restricted to decrease.

For each of the constrained hypotheses, the Bayes factor is calculated
against the unconstrained hypothesis. This indicates whether the constrained
hypotheses are supported by the data. A Bayes factor of one indicates that the
unconstrained and the constrained hypothesis are equally supported. Next,
the posterior model probabilities are calculated. These show which of the
constrained hypotheses is mostly supported by the data. Note that the un-
constrained hypothesis is not included in the set of hypotheses. The results
are displayed in Table 12.9. First, for hypothesis H1, it can be concluded
that there is some evidence that the probability of being satisfied is larger
than being unsatisfied; however, the PMP is not very large. This result occurs
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because the hypothesis does not restrict large parts of the parameter space;
hence, when it is found to be true, this does not result in a large surprise. Hy-
pothesis H2 is much more restrictive, and as can be seen in the observed data
(or the basic statistics in Table 12.4), the restrictions all conform to the data,
which results in a large PMP. Hypothesis H3 shows that the ordered proba-
bilities hypothesis fits the data rather well. Hypothesis H4, the combination
of hypotheses H2 and H3, fits the data best (PMP = .80).

12.4.3 Comparison Between Log-linear and Bayesian Approach

As the Bayesian constrained hypotheses show, all hypotheses are directional
(i.e., have a clear sign indicating in which direction the effect is expected). In
the log-linear context, the parameter for satisfaction was found significantly
different from zero, and then because the observed data showed it was larger
than zero, it was automatically concluded that this significance could be inter-
preted as the parameter being significantly larger than zero. The latter step
is not more than an eyeball test, which is rather subjective and informal. Al-
though it is possible to do proper directional testing in a log-linear context, it
requires a lot more effort – for example, setting up a Wald-test using specially
crafted contrasts. Second, in the log-linear model, all hypothesis concerning
satisfaction were tested in the larger model (Service * Satisfaction, Attitude),
meaning that certain effects (e.g., the three-way interaction effect) are set to
zero, whereas the Bayesian approach allows any effect, as long as it is satis-
fying the inequality constraints. The latter could also have been done in the
log-linear context; however, it would have required a lot more interpretation
of parameters (namely all effects higher than (Service * Satisfaction, Atti-
tude)). Third, the log-linear hypotheses test whether the observed data could
have occurred from a population where certain parameters are set to zero,
thus only taking the deviation from the null hypothesis into account, whereas
the Bayesian approach shows the evidence for both the null and alternative
hypothesis. The latter is preferred, as when both the null and alternative hy-
potheses are not true, in a log-linear model, the null is rejected, and thus the
alternative is accepted, whereas in the Bayesian approach, both hypotheses
receive little support from the data. It can then correctly be decided that
both the null and alternative hypothesis do not fit. Fourth, the linear trend
hypothesis in the log-linear context requires that the differences between the
adjacent categories are equal, whereas the inequality constrained approach
only requires a decrease with increasing service level.

12.4.4 Association Between Satisfaction and Attitude, the
Log-linear Approach

The question of interest in this section concerns the association between sat-
isfaction and attitude. This breaks down in the following subquestions: (a)
Is there a positive association between satisfaction and attitude? (b) Does it
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Table 12.10. Relevant parameters for model (Service * Satisfaction * Attitude)

Effect λ exp(λ) p

Satis=“satisfied” * Att=“likely” .60 1.8 .06
Satis=“satisfied” * Att=“likely,” Serv= No acc. man. −.41 1.2 .19
Satis=“satisfied” * Att=“likely,” Serv= Telephonic acc. man. −.26 1.4 .41
Satis=“satisfied” * Att=“likely,” Serv= Acc. man. .15 2.1 .65
Satis=“satisfied” * Att=“likely,” Serv= Acc. team – – –

differ for different service levels? (c) If so, how do the different service levels
influence the association between satisfaction and attitude?

To answer question a), the model (Satisfaction, Attitude) is compared
with the model (Satisfaction * Attitude). For this question, the variable
service level has been excluded from the analysis, as the research question
does not concern service level. This results in a highly significant p-value
(LR(1) = 382, p = .000), and thus it is concluded that the independence
model is not a good model for the data. The interaction parameter in the
model (Satisfaction * Attitude) takes the value .198, which exponentiated in-
deed yields an odds ratio of 1.2 (see Table 12.4). Note that it is concluded
that the odds ratio is different from one, and from the fact that the odds
ratio takes the value 1.2, it is concluded that it is larger than one. Question
b) is answered by investigating the model (Service, Satisfaction * Attitude)
and compare it to (Service * Satisfaction * Attitude). In the latter model,
the association between satisfaction and attitude is allowed to vary over dif-
ferent service levels. The likelihood ratio test shows that the smaller model
is rejected (LR(9) = 293, p = .000). In Table 12.10, the relevant parameters
are displayed. Note that the odds ratio for a specific three-way interaction
is calculated by exponentiating the sum of the two-way effect (i.e., Satis =
“satisfied” * Att = “likely”) and the parameter for this specific three-way
effect. For example, the odds ratio of satisfaction and attitude for the service
level account team equals exp(.6) = 1.8. This is because the service level ac-
count team is the reference category. To compute the odds ratio of satisfaction
and attitude for the service level no account manager, the baseline parameter
.6 is summed with the specific three-way effect −.41, which yields exponen-
tiated an odds ratio of 1.2. Furthermore, note the discrepancy between the
parameter tests and the likelihood ratio test: None of the parameter effects
are significant, indicating that none of the associations in a specific service
level is different from the association in the reference category (“the account
team” level); however, the likelihood ratio test is significant, indicating that,
jointly, there is an effect.

Question c) deals with finding structure in the interaction terms. One
hypothesis is that the higher the service level, the stronger the association
between satisfaction and attitude. This hypothesis can be represented by fit-
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Table 12.11. Interpretation of the linear trend parameters

Effect Linear effect Odds

Satis=“satisfied” * Att=“likely” .18 1.2
Satis=“satisfied” * Att=“likely,” Serv= No acc. man. – 1.2
Satis=“satisfied” * Att=“likely,” Serv= Telephonic acc. man. .20 1.5
Satis=“satisfied” * Att=“likely,” Serv= Acc. man. .39 1.8
Satis=“satisfied” * Att=“likely,” Serv= Acc. team .59 2.2

ting a linear term across the three-way interaction parameters. Formally, the
model can be written as

log(fijk) = µ+λsatis
i +λatt

j +λserv
k +λsatis∗att

ij +λsatis∗serv
ik +λatt∗serv

jk +βuivjwk,

where ui, vj , and wk are scores that refer to each category of the corresponding
variable. Fitting this model in standard software requires a similar procedure
as the linear trend model discussed in Section 12.4.1. The likelihood ratio
test against the saturated model is not significant (LR(2) = 4.6, p = .10),
indicating that the linear trend model is a good model for the data. The
linear trend parameter β takes the value .195, which exponentiated equals
1.2. In Table 12.11, it can be seen that the ratio of each adjacent pair of
odds equals 1.2, or in other words, in each higher service level, the association
between satisfaction and attitude is increased with factor 1.2.

Finally, there exists the idea that up to the service level “account man-
ager,” the association between satisfaction and attitude is increasing, but one
service level up, it is decreasing. The reason for this is that the personal rela-
tionship with the account manager plays an important role in placing orders,
whereas placing orders in companies served by account teams is a matter of
pricing due to competitive pressure. This hypothesis can also be tested us-
ing the linear trend model, and the categories “account team” and “account
manager” are reversed. The observed data (see Table 12.4) indeed shows this
ordering. The nonsignificant likelihood ratio test (LR(2) = .490, p = .783)
shows that this is also a good model for the data. The question that remains
is which of the linear trend models is best? This cannot be answered using the
likelihood ratio test, as the number of parameters of both linear trend models
is equal.

12.4.5 Association Between Satisfaction and Attitude, the
Bayesian Approach

For the Bayesian scenario, the hypotheses are in an inequality constrained for-
mat as displayed in Table 12.12. Hypothesis H0 is the unconstrained hypoth-
esis. Hypothesis H1 requires the odds ratio between satisfaction and attitude
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Table 12.12. Constrained hypotheses for the association between satisfaction and
attitude

H0 : π111, π112, π121, ..., π222

H1 : (π11+ ∗ π22+)/(π21+ ∗ π12+) > 1
H2 : θ1 > 1, θ2 > 1, θ3 > 1, θ4 > 1
H3 : θ1 < θ2 < θ3 < θ4
H4 : θ1 < θ2 < θ3 > θ4

Table 12.13. Results for the constrained hypotheses for association between satis-
faction and attitude

Hypothesis PMP BFt0

H1 .07 2.0
H2 .51 15.4
H3 .25 7.5
H4 .15 5.5

to be greater than one, when summed over all service levels. Hypothesis H2

requires the association between satisfaction and attitude to be greater than
one, but for each service level separately. Note that θk denotes the odds ratio
of satisfaction and attitude at service level k. Hypothesis H3 requires the odds
ratios to be increasing with service level. Finally, H4 reflects the hypothesis
that up to the service level “account manager,” the association is increasing,
but for “account team,” it is decreasing.

The results are displayed in Table 12.13. First, hypothesis H1 is supported
by the data, however, not convincing, mainly due to its little restrictive char-
acter. Hypothesis H2 is strongly supported by the data, indicating that in
each service level there is a positive association between satisfaction and at-
titude. The hypothesis of ordered odds ratios (H3) is also supported by the
data, and it is supported more than hypothesis H4. Hypotheses H3 and H4

can be compared directly: Hypothesis H3 is supported 7.5/5.5 = 1.36 times
more than H4. With respect to the set of hypotheses, the posterior model
probabilities show that hypothesis H2 is mostly supported by the data (PMP
= .51).

Since, both hypotheses H2 and H3 are supported by the data, it is of
interest to investigate whether a combination of hypotheses H2 and H3 is also
supported by the data. This hypothesis is given byH5 : 1 < θ1 < θ2 < θ3 < θ4.
It is very strongly supported by the data (BF50 = 115).

12.4.6 Comparison Between Log-linear and Bayesian Approach

Two differences with the log-linear analysis are discussed. First, in the log-
linear context, apart from the linear trend hypotheses, all null hypotheses
were rejected, indicating that the smaller model fitted worse than the satu-
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Table 12.14. All log-linear models

Model LR df p

satis, att, serv 675 10 .000
satis * att, serv 293 9 .000
satis, att * serv 574 7 .000
satis * serv, att 543 7 .000
linear(satis * serv), att 558 9 .000
satis * att, satis * serv 161 6 .000
satis * att, att * serv 192 6 .000
satis * serv, att * serv 442 4 .000
satis * att, satis * serv, att * serv 50 3 .000
satis * att, linear(satis * serv), att * serv, linear three-way 22 4 .000
satis * att, satis * serv, att * serv, linear three-way 4.6 2 .100
satis * att * serv – 0 –

rated model, thus promoting the model with the least structure as the best
model. Instead, the Bayesian approach showed more support for each of the
constrained hypotheses than for the unconstrained hypothesis; thus, struc-
ture has been found, hence one learns something from the data. Second, in
the log-linear context, it is not possible to compare two hypotheses with the
same number of parameters. The idea that up to the service level “account
manager,” the association between satisfaction and attitude is increasing, but
one service level up, it is decreasing could not be tested in a log-linear model
(apart from the eyeball test); however, in the Bayesian analyses this was not
a problem at all.

12.4.7 The Best Model

In the log-linear context, it is of interest to find the smallest model (i.e., fewest
number of parameters that is not rejected against the saturated model). In
Section 12.4.4, the linear trend model was found to be a good model for the
data. This model included all possible effects (two-way and three-way inter-
action terms); however, the three-way interaction term was structured such
that the model was not yet saturated. There still may be a more parsimonious
model, and this is what is searched for in this section. Note that this is very
explorative; however, this is the main method in log-linear models.

The likelihood ratio tests of all possible models of interest against the
saturated model are displayed in Table 12.14. First, it can be seen that the fit
greatly improves when a model includes the association between satisfaction
and attitude. Next, the smallest (and only) model that is not rejected against
the saturated model is the structured three-way interaction. Regarding the
final model, all variables appear to be associated, whereby only the three-way
interaction effect can be structured due to the ordinal nature of the variable
service level.
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Table 12.15. Combining Bayesian hypotheses

H0 : π111, π112, π121, ..., π222

H1 : π2+1/π1+1 > π2+2/π1+2 > π2+3/π1+3 > π2+4/π1+4

H2 1 < θ1 < θ2 < θ3 < θ4
H3 : π2+1/π1+1 > π2+2/π1+2 > π2+3/π1+3 > π2+4/π1+4,

1 < θ1 < θ2 < θ3 < θ4

Table 12.16. Results for the combined constrained hypotheses

Hypothesis PMP BFt0

H1 .01 98
H2 .01 115
H3 .98 11250

The Bayesian approach is more theory driven, and as such, there is no
range of models to fit in search for structure. However, as is shown in the pre-
vious sections, supported hypotheses can be combined into a new hypothesis.
In Section 12.4.2, the most supported hypothesis was the ordering of proba-
bilities in combination with the restriction that the probability of falling into
the category “satisfied” had to be greater than the probability of falling into
the category “unsatisfied.” This hypothesis is again displayed in Table 12.15
as hypothesis H1. In Section 12.4.5, the most supported hypothesis was the
ordered odds ratios in combination with all odds ratios being greater than
one. This hypothesis is displayed as hypothesis H2 in Table 12.15. Hypothesis
H3 is the combination of both hypotheses.

The results displayed in Table 12.16 show that the combined hypothesis
H3 is decisively supported by the data (PMP = .98). The conclusion for the
Bayesian approach is that the satisfaction decreases with service level, and the
association between service level and attitude is greater than 1 and increases
with service level.

Finally, for the “final model,” the (transformed) parameter estimates are
displayed in Table 12.17, along with their observed counterparts. The column
“Obs. % satis” displays the observed satisfaction per service level, whereas the
column “Est. % satis.” displays the estimated satisfaction per service level.
The observed satisfaction is not strictly ordered with service level; however,
the violation seems not large. The estimated satisfaction is strictly decreasing
with service level, as the final hypothesis H3 required. The column “Obs.
OR” displays the observed odds ratio for the association between attitude
and satisfaction for each service level and is not strictly ordered. The column
“Est. OR” displays the estimated odds ratios. As can be seen, the estimates
under the order restrictions do not differ largely from the observed quantities,
hence the good fit.
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Table 12.17. Customer satisfaction and Attitude by Service level

Observed and Estimated quantities

Service level Obs. % satis. Est. % satis. Obs. OR Est. OR

No acc. man. 76% 76% 1.2 1.2
Telephonic acc. man. 72% 73% 1.4 1.4
Acc. man. 73% 72% 2.1 2.0
Acc. team 70% 69% 1.8 2.5

Summarizing, the best model in the log-linear context showed a rich source
of dependencies; however, they could not be reduced to clearly interpretable
structure, apart from the linear three-way interaction effect. The Bayesian
approach showed that both for the ordering of satisfaction and the associ-
ation between satisfaction and attitude, the ordinal nature of service level
played a role. Furthermore, the log-linear model agreed on counts that are
not equally distributed over levels of satisfaction and showed a significant as-
sociation between satisfaction and attitude. The Bayesian approach showed
that there were indeed more counts in the category “satisfied” than in the
category “unsatisfied” and showed a positive association between satisfaction
and attitude.

12.5 Conclusion

In this chapter, a comparison was made between standard log-linear models
and a Bayesian inequality constrained approach. It was shown how log-linear
parameters are interpreted and how associations are tested. For the Bayesian
approach, it was shown how the best of a set of hypotheses is selected using
posterior model probabilities. In the example, it was shown how certain ex-
pectations about the data were translated in hypotheses, and the differences
between the log-linear approach and the Bayesian approach were discussed.
For an overview, Table 12.18 is presented to show the log-linear models needed
to test the hypotheses together with their inequality constrained Bayesian
counterparts.

Summarizing, the following differences were found. First, the interpreta-
tion of parameters in the log-linear context requires a detailed knowledge of
the chosen parametrization and careful interpretation of the effects, as the
exponentiated parameters are all multiplication factors with respect to a ref-
erence category. In the Bayesian approach, the hypotheses are formulated
directly in terms of cell probabilities or odds ratios, which simplifies the in-
terpretation. Second, the classical p-value takes only the null hypothesis into
account, whereas the posterior model probability is both a measure of evidence
for the null hypothesis and for the alternative hypothesis. The interpretation
is straightforward: It is the probability that the hypothesis is true, given the



270 Laudy

Table 12.18. Comparison of log-linear models and constrained hypotheses

Log-linear Inequality constrained

satis * att (π11+ ∗ π22+)/(π21+ ∗ π12+) > 1
satis, att, serv π2++ > π1++

satis * serv, att {π2+1 > π1+1},{π2+2 > π1+2},
{π2+3 > π1+3},{π2+4 > π1+4}

satis * att * serv θ1 > 1, θ2 > 1, θ3 > 1, θ4 > 1
linear(satis * serv), att π2+1/π++1 > π2+2/π++2 > π2+3/π++3 > π2+4/π++4

all two-way, linear three-way θ1 < θ2 < θ3 < θ4
satis * att * serv π111, π112, π121, ..., π222

data and the set of hypotheses. Third, the use of the posterior model prob-
ability is not limited to two hypotheses, and the number of parameters does
not need to differ (thus nested and non-nested hypotheses can be compared).
Fourth, the Bayesian approach allows for directional testing, whereas in the
log-linear approach the direction of effects is inferred from a combination of
significant parameters and observed effects. The interested reader is referred
to http://www.fss.uu.nl/ms/informativehypotheses for software for in-
equality constrained contingency table analysis.

References

[1] Agresti, A.: Categorical Data Analysis. New York, Wiley (1990)
[2] Agresti, A., Coull, B.A.: Order-restricted inference for monotone trend al-

ternatives in contingency tables. Computational Statistics and Data Anal-
ysis, 28, 139–155 (1998)

[3] Agresti, A., Coull B.A.: The analysis of contingency tables under inequal-
ity constraints. Journal of Statistical Planning and Inference, 107, 45–73
(2002)

[4] Chib, S.: Marginal likelihood from the Gibbs output. Journal of the Amer-
ican Statistical Association, 90, 1313–1321 (1995)

[5] Cowles, M.K., Carlin, B.P.: Markov chain monte carlo convergence diag-
nostics: A comparative review. Journal of the American Statistical Asso-
ciation, 91, 883–904 (1996)

[6] Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85,
398–409 (1990)

[7] Gelfand A.E., Smith A.F.M., Lee, T.M.: Bayesian analysis of constrained
parameter and trucated data problems using Gibbs sampling. Journal of
the American Statistical Association, 87, 523–532 (1992)

[8] Gelman, A., Carlin J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Anal-
ysis. London, Chapman & Hall (1995)

[9] Kass, R.E.: Bayes factors in practice. The Statistician, 42, 551–560 (1993)
[10] Kass, R.E., Raftery, A.E.: Bayes factors. Journal of the American Statis-

tical Association, 90, 773–795 (1995)



12 Inequality Constrained Contingency Table Analysis 271

[11] Klugkist, I., Kato, B., Hoijtink, H.: Bayesian model selection using en-
compassing priors. Statistica Neerlandica, 59, 57–69 (2005)

[12] Laudy, O., Hoijtink, H.: Bayesian methods for the analysis of inequality
constrained contingency tables. Statistical Methods in Medical Research,
16, 123–138 (2007)

[13] Narayanan, A.: Computer generation of Dirichlet random vectors. Journal
of Statistical Computation and Simulation, 36, 19–30 (1990)

[14] Verdinelli, I., Wasserman, L.: Computing Bayes factors using a general-
ization of the Savage-Dickey density ratio. Journal of the American Sta-
tistical Association, 90, 614–618 (1995)



13

Inequality Constrained Multilevel Models

Bernet Sekasanvu Kato1 and Carel F.W. Peeters2

1 Twin Research and Genetic Epidemiology Unit, St. Thomas’ Hospital Campus,
King’s College London, Westminster Bridge Road, London SE1 7EH, United
Kingdom bernet.kato@kcl.ac.uk

2 Department of Methodology and Statistics, Utrecht University, P.O. Box 80140,
3508 TC Utrecht, the Netherlands c.f.w.peeters@uu.nl

13.1 Multilevel Models

13.1.1 Introduction

In many areas of research, datasets have a multilevel or hierarchical structure.
By hierarchy we mean that units at a certain level are grouped or clustered
into, or nested within, higher-level units. The “level” signifies the position
of a unit or observation within the hierarchy. This implies that the data are
collected in groups or clusters. Examples of clusters are families, schools, and
firms. In each of these examples a cluster is a collection of units on which
observations can be made. In the case of schools, we can have three levels
in the hierarchy with pupils (level 1) within classes (level 2) within schools
(level 3). The key thing that defines a variable as being a level is that its units
can be regarded as a random sample from a wider population of units. For
example, considering a multilevel data structure of pupils within classes within
schools, the pupils are a random sample from a wider population of pupils and
the classrooms are a random sample from a wider population of classrooms.
Likewise the schools are a random sample from a wider population of schools.
Data can then be collected at the pupil level (for example, a test score), at the
classroom level (for example, teacher experience in years), and at the school
level (for example, school’s mean socioeconomic status). Variables like gender
and social class are not levels. This is because they have a small fixed number
of categories. For example, gender has only two categories, male and female.
There is no wider population of gender categories that male and female are a
random sample from. Another usual form of clustering arises when data are
measured repeatedly on the same unit, for instance a patient. In this case the
measurements from each patient would be at level 1 and the patients would
be at level 2.

In all cases the elements of a cluster share some common characteristics.
Therefore, the observations within a cluster tend to be more alike than ob-
servations from different clusters that is, they are correlated. For instance,
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in the pupils within classrooms example, pupils in the same classroom share
some common characteristics (e.g., they have the same teachers); thus the test
scores of pupils within a classroom will tend to be more alike than test scores
from different classrooms. Multilevel data therefore have two sources of vari-
ation: In addition to the variation within clusters, the heterogeneity between
clusters introduces an additional source of variation. Therefore, any analysis
methods used should take the within cluster and between cluster variation
into account. Because data can be clustered at more than a single level (e.g.,
pupils within classrooms within schools), data clustered at a single level (e.g.,
pupils within classrooms) are referred to as two-level data and the statistical
models for the analyses are referred to as two-level models.

Multilevel or hierarchical data structures can occur in many areas of re-
search, including economics, psychology, sociology, agriculture, medicine, and
public health. Over the last 25 years, there has been increasing interest in de-
veloping suitable techniques for the statistical analysis of multilevel data, and
this has resulted in a broad class of models known under the generic name of
multilevel models. Generally, multilevel models are useful for exploring how
relationships vary across higher-level units taking into account the within and
between cluster variations. Considering an example of two-level data obtained
on pupils within schools, there are two possible ways to deal with the data:
either to focus separately on the pupils or on the schools. Focusing on the
pupils by pooling together the data from all the schools ignores differences be-
tween schools and thus suppresses variation that can be important. Ignoring
the clustering will generally cause standard errors of regression coefficients to
be underestimated. On the other hand, focusing on schools by analyzing the
data of each school separately ignores a lot of information and consequently
renders low power for inferences. Multilevel modeling offers a compromise be-
tween these two extremes and enables researchers to obtain correct inferences.

13.1.2 The Multilevel Model

In this chapter we will confine ourselves to two-level models for continuous
data, with one single outcome or response variable that has been measured
at the lowest level and explanatory variables (or covariates) that have been
measured at levels 1 and 2. For the sake of consistency, level 1 and level 2 units
will be referred to as individuals and groups, respectively. Stated otherwise,
individuals will be nested within groups.

To fix ideas, suppose we have J groups and Nj individuals in each group
such that the total number of individuals is N . Furthermore, assume that
one covariate a has been measured at the individual level and one covari-
ate w has been measured at the group level and an outcome variable y has
been measured on each individual. As an illustration suppose we have data
on mathematics grades from N high school students from J classes as well as
information on student socioeconomic background and teacher experience in
years. In this case, each of the classrooms would be a group and the students
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would be the individuals. Furthermore, y would be the student level outcome
variable “math grade,” a would be student “socioeconomic status,” and w
would be “teacher experience” in years. Our interest is in modeling the out-
come variable y in terms of the individual level variable a and the group level
variable w using a multilevel model. At the individual level, for individual k
(where k = 1, . . . , Nj for group j) within group j (j = 1, . . . , J groups in the
sample) and

∑
j Nj = N , we have the following model:

ykj = π1j + π2jakj + εkj . (13.1)

In (13.1), π1j is the intercept, π2j is the regression coefficient for the covariate
a, and ε is the residual error term. The residual errors εkj are assumed to have
a normal distribution with mean 0 and variance σ2. Model (13.1) implies that
each group j has its own regression equation with an intercept π1j and a slope
π2j . The next step in the modeling is to explain the variation of the regression
coefficients π1j and π2j by introducing variables at group level:

π1j = β1 + β2wj + u1j , (13.2)
π2j = β3 + β4wj + u2j , (13.3)

where u1j and u2j are random residual error terms at group level. Note that
in (13.2) and (13.3), the regression coefficients (β’s) do not vary across groups
and that is why they have no subscript j on them. Since they apply to all
groups, they are sometimes referred to as fixed effects. Furthermore, all be-
tween group variation left in the π coefficients after predicting them with the
group variable wj is assumed to be random residual variation (at group level)
which is captured by the terms u1j and u2j .

Substituting (13.2) and (13.3) into (13.1) renders the linear two-level re-
gression model:

ykj = β1 + β2wj + β3akj + β4akjwj + u1j + u2jakj + εkj . (13.4)

The right-hand side of model (13.4) has two parts to it: a fixed part
β1 + β2wj + β3akj + β4akjwj , where the coefficients are fixed, and a random
part u1j + u2jakj + εkj . Note that in practice one can have several covariates
measured at both individual and group level. Therefore, model (13.4) can be
written in a slightly more general form using vector notation:

ykj = xkjβ
T + zkju

T
j + εkj , (13.5)

where xkj is a vector of predictors (including main effects at levels 1 and 2
as well as interactions between level 1 and level 2 covariates) having coef-
ficients β. Furthermore, zkj is a vector of predictors having random effects
uj at the group level and εkj is an error term. In the example above, xkj

= (1, wj , akj , akjwj), zkj= (1, akj), β = (β1, β2, β3, β4), and uj = (u1j , u2j).
The vector of predictors zkj will usually be a subset of the fixed-effects pre-
dictors xkj , although this is not a necessary requirement. The random terms
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uj = (u1j , u2j) and εkj are assumed to be mutually independent and normally
distributed:

uT ∼ N (0,V ), εkj ∼ N (0, σ2), (13.6)

where V is the variance-covariance matrix of the random effects and σ2 is the
residual variance. Thus, we can see that multilevel models provide a natural
way to decompose complex patterns of variability associated with hierarchical
structure.

In a frequentist analysis, estimation of parameters in the linear multilevel
model is carried out by maximizing the likelihood function. To this end, direct
maximization using the Newton-Raphson or Expectation-Maximization (EM)
algorithm can be performed. For discussions on the methods, techniques, and
issues involved in multilevel modeling in general, the interested reader is re-
ferred to [5, 11, 12, 14, 18, 24, 26]. This chapter is intended to illustrate model
selection for inequality constrained two-level models. A Bayesian approach will
be used for parameter estimation and model selection [15]. Bayesian estima-
tion in multilevel models (without constraints on the model parameters) has
also been implemented in the statistical package MLwiN [4].

13.2 Informative Inequality Constrained Hypotheses

Research scientists often have substantive theories in mind when evaluating
data with statistical models. Substantive theories often involve inequality con-
straints among the parameters to translate a theory into a model; that is, a
parameter or conjunction of parameters is expected to be larger or smaller
than another parameter or conjunction of parameters. Stated otherwise and
using β as a generic representation of a parameter, we have that βi > βj

or βi < βj for some two parameters βi and βj . Additionally, inequality con-
straints also play a pivotal role when competing theories are presented as an
expression of a multitude of initial plausible explanations regarding a certain
phenomenon on which data are collected. Consider the following examples on
two common multilevel models: school effects models and individual growth
models. These examples will be the thrust of Sections 13.4 and 13.5.

Example 1: An educational researcher is interested in the effect of certain stu-
dent and school level variables on mathematical achievement (mathach), and
has obtained a dataset on students within schools. A students’ ethnic back-
ground (min), student socioeconomic status (ses), a schools’ average student
socioeconomic status (mses), and the dichotomy between Catholic (cat) and
public (pub) schools are hypothesized to be defining variables for the expla-
nation of math achievement (cf. [2, 5, 7, 8, 23]). A possible formulation of the
two-level model in the form (13.5) might be
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mathachkj = β1catj + β2pubj + β3msesj + β4catjseskj

+ β5pubjseskj + β6msesjseskj + β7minkj

+ u1j + u2jseskj + εkj .

The reason for assigning an indicator variable to both the Catholic and public
category of the constituent dichotomy is because this will enable one to esti-
mate the regression coefficients corresponding to the covariates cat and pub
and their interactions with other covariates rather than estimating contrasts.

The researcher can think of different plausible models regarding the di-
rection and (relative) strength of the effects of the mentioned variables on
the response math achievement. Subsequently, the researcher expresses the
idea that students in Catholic schools have higher math achievement than
those in public schools {β1 > β2}. Certain sociological work found that stu-
dents belonging to a minority have lower math achievement than students not
belonging to an ethnic minority {β7 < 0}. Additionally, the researcher has
the expectation that math achievement is positively related to socioeconomic
status and that the effect of student socioeconomic status on mathematical
achievement is more pronounced in public schools than in Catholic schools
{β4 < β5}. These theories allow for several plausible models of differing com-
plexity and with differing theoretical implications. The question of interest
becomes: Which of the plausible models best fits the data?

Example 2: A researcher in child and adolescent psychology has obtained
observational data on substance abuse collecting multiple waves of data on
adolescents. This researcher sets out to assess the effects of alcoholic intake
among peers (peer) and the fact that the adolescent has alcoholic (coa) or non-
alcoholic (ncoa) parents on the development of adolescent alcohol use (alcuse)
(cf. [6, 24]). The model can be formulated as

alcusekj = β1coaj + β2ncoaj + β3peerj + β4coajtkj + β5ncoajtkj

+ β6peerjtkj + u1j + u2jtkj + εkj ,

where tkj is a time variable.
For these data, competing theories abound in the researchers’ mind. A first

plausible theory for him or her could be that adolescents with an alcoholic
parent are more prone to have a higher alcoholic intake at baseline {β1 > β2},
as well as over time {β4 > β5}. A second plausible theory amends the first,
with the additional expectation that for initial alcoholic intake, the effect of an
alcoholic parent will be more influential that peer alcoholic intake {β1 > β3},
whereas for the time-dependent increase in alcoholic intake, peers will be more
influential {β4 < β6}. The question of interest is: Which of the theories best
fits the data?

The researchers’ hypotheses are in fact informative, as they are hypotheses
in which one explicitly defines direction or (relative) strength of relationships
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based on prior information for usage in confirmatory data analysis. Informa-
tive hypotheses have a direct connection to model translations of theory. For
instance, the researcher from Example 2 would be interested in the following
two hypotheses that have been arrived at by translating substantive theories
via constraints on model parameters:

H1 : {β1 > β2}, β3, {β4 > β5}, β6

versus H2 : {β1 > β2}, {β1 > β3}, {β6 > β4 > β5}.

The pertinent question is: Given H1 and H2, which of the two hypotheses has
more support from the data?

A researcher might bring the classical or frequentist statistical viewpoint
to bear on the central question of interest. One would then normally pro-
ceed to specify the traditional null hypothesis, which assumes that none of
the covariate variables are associated with the response variable of interest
against the alternative that at least one covariate variable is associated with
the response variable:

H0 : all βi equal 0 versus H3 : not all βi equal 0.

There are several problems related to this procedure that leads one to infer
little information regarding the actual hypotheses of interest, being H1 and
H2. Generally, in the usual frequentist sharp null hypothesis test setting, the
researcher often starts from the idea that H3 holds and then tests H0 using
an appropriate test statistic. If we assume β, the vector containing all βi, is
δ away from the zero vector 0, with δ > 0 but very small, then by the con-
sistency of the testing procedure, the rejection of H0 becomes the sure event
for N sufficiently large [21]. One could then actually choose N in accordance
with the rejection of H0. More specifically, if the null hypothesis is rejected,
no information is gained regarding the fit of the inequality constrained hy-
pothesis of interest. Note that the research questions of actual interest are
not directly incorporated into the alternative hypothesis. Post hoc directional
tests are then usually employed with certain corrections on the maintained
significance level to assess the inequalities deemed interesting in the actual
research hypothesis. If one considers H1 above, these post hoc tests would
amount to assessing:

H01 : β1 = β2 versus H11 : β1 − β2 > 0
and H02 : β4 = β5 versus H12 : β4 − β5 > 0. (13.7)

The researcher is left with the situation in which several test results (those
for the omnibus test and the post hoc tests) have to be combined to evaluate
a single model translated theory. Such a situation may eventually force the
researcher to make arbitrary choices. For example, how would one evaluate
the situation where not all directional alternatives are accepted, or when the
rather arbitrary significance threshold is surpassed by an arbitrarily small
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amount? Such problems abound especially in the social sciences where it is
not uncommon to find situations where power is sufficient for obtaining sig-
nificance somewhere while being insufficient to identify any specific effect [19].
The power gap between a single test and a collection of tests often renders the
situation in which the omnibus test proves significant in the sense that the ob-
tained p-value is smaller than or equal to the pre-specified significance level,
while the individual post hoc tests lack power such that successive testing
efforts may find erratic patterns of “significant” p-values.

If the null hypothesis is not rejected when testing H0 against H3, there is
still a possibility that it could be rejected when testing it against the hypothe-
ses of interest, namely H1 and H2. Inequality constraints contain information,
in the form of truncations of the parameter space, and when properly incorpo-
rated, more efficient inferences can result. To gain power, one could therefore
specify inequality constrained alternatives more in tune with substantive the-
oretical beliefs, instead of the traditional alternative H3. This way the null
hypothesis, if rejected, will be rejected in favor of the constrained alternative.
Our researcher would then embark on testing

H0 : β1 = β2 = β4 = β5 = 0
versus H4 : β1 − β2 > 0, β4 − β5 > 0, and

β1, β2, β4, and β5 do not all equal 0
and (13.8)

H0 : β1 = β2 = β3 = β4 = β5 = β6 = 0
versus H5 : β1 − β2 > 0, β1 − β3 > 0, β6 − β4 > 0, β4 − β5 > 0, and

β1, β2, β3, β4, β5 and β6 do not all equal 0

respectively, in order to convey more information regarding the model trans-
lated theories of interest. Yet again, there are certain problems that render
the information to be inferred from these omnibus tests to be limited.

First, there is an important difference between tests of the form (13.8) and
tests of the form (13.7). The former states that a directional effect is present
when the alternative is accepted, but it does not give which of the constituent
directional effects is significant. For such an evaluation one needs to resort to
tests of the latter form, which takes us back to the problems associated with
combining several test results to evaluate a single model translated theory
as discussed earlier. Moreover, for complex models and multivariate settings
there may not generally be optimal solutions for frequentist inequality con-
strained testing alternatives such as those in (13.8). The interested reader is
referred to [1, 22] for overviews on the possibilities of frequentist inequality
constrained hypothesis testing. But even if these frequentist alternatives were
available, the researcher would still run into a problem when wanting to eval-
uate which theory or plausible model fits the data best. One possibility is to
test the null hypothesis against each of the theories in the form of inequality
constrained alternatives. This would help one to obtain some evidence for the
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support for each of the separate theories, but it would still not answer the
question concerning which theory is best. It is very well possible that in all of
the tests the null hypothesis is rejected in favor of the inequality constrained
alternative.

To assess the researchers’ substantive theory in light of the available data,
one needs to directly compare the constrained alternatives. This involves the
simultaneous evaluation of multiple model translated theories, and for such an
exercise, no frequentist possibilities are available. Therefore, Bayesian model
selection is posed as an alternative to hypothesis testing. Posterior probabil-
ities can be computed for all models under consideration, which enables the
direct comparison of both nested and non-nested models. The incorporation of
inequality constrained theory evaluation in a Bayesian computational frame-
work has been formulated for multilevel models in [15]. In the next section
it will be shown how the inequality constrained multilevel linear model can
be given a Bayesian formulation, how the model parameters can be estimated
using a so-called augmented Gibbs sampler, and how posterior probabilities
can be computed to assist the researcher in model selection. Those wishing to
skip this section may find general information regarding Bayesian estimation
and model selection in Chapters 3 and 4. Subsequently, the two examples de-
scribed above will be analyzed in the inequality constrained Bayesian frame-
work to elaborate model selection among competing inequality constrained
model translated theories. This will be done in Sections 13.4 and 13.5. The
chapter will be concluded with a discussion in Section 13.6.

13.3 Bayesian Estimation and Model Selection

13.3.1 Introduction

In Bayesian analysis, model specification has two parts to it:

1. The likelihood function f(D|θ), which defines the probability distribution
of the observed data D conditional on the unknown (model) parameters
θ.

2. The prior distribution p(θ) of the model parameters θ.

Bayesian inference proceeds via specification of a posterior distribution p(θ|D)
for θ, which is obtained by multiplying the likelihood and the prior distribu-
tion:

p(θ|D) =
f(D|θ)p(θ)
m(D)

∝ f(D|θ)p(θ), (13.9)

where m(D) is the marginal distribution of D. The posterior distribution
p(θ|D) contains the state of knowledge about the model parameters given
the observed data and the knowledge formalized in the prior distribution.
Random draws from the posterior distribution are then used for inferences
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and predictions. In the sequel it will be explained how samples can be drawn
from the posterior distribution.

For (13.5), the likelihood f(D | θ) is

J∏
j=1

∫
uj


Nj∏
k=1

1√
2πσ

exp

(
−

(ykj−xkjβ
T−zkju

T
j )

2σ2

) p(uj |0,V ) duj , (13.10)

where D = (ykj ,xkj ,zkj : k = 1, . . . , Nj ; j = 1, . . . , J), θ = (β, V , σ2), and
p(uj | 0,V ) is a normal distribution with mean 0 and covariance matrix V .

Suppose we have a total of S competing hypotheses or model translated
theories Hs for s = 1, . . . , S, where H1 is the encompassing model (in the
remainder of the text we will use the terms “hypothesis” and “model” inter-
changeably). The encompassing model is one where no constraints are put on
the (model) parameters and therefore all other models are nested in H1. If
p(θ|H1) denotes the prior distribution of H1, then it follows that the prior
distribution of Hs for s = 2, . . . , S is

p(θ|Hs) =
p(θ|H1)Iθ∈Hs∫
p(θ|H1)Iθ∈Hs

dθ
. (13.11)

The indicator function Iθ∈Hs
= 1 if the parameter values are in accordance

with the restrictions imposed by model Hs, and 0 otherwise. Equation (13.11)
indicates that for each model under investigation, the constraints imposed
on the model parameters are accounted for in the prior distribution of the
respective model. Using independent prior distributions for each of the model
parameters, the prior distribution of the unconstrained encompassing model
H1 can be written as the product

p(θ|H1) = p(β)× p(V )× p(σ2), (13.12)

where p(β), p(V ), and p(σ2) are the prior distributions of β, V , and σ2, re-
spectively. In order to obtain a conjugate model specification, normal priors
will be used for the fixed effects β, a scaled inverse χ2 prior for σ2, and an in-
verse Wishart prior for V . It follows that for the unconstrained encompassing
model H1, the posterior distribution of the parameters in θ is proportional to
the product of (13.10) and (13.12).

In what follows, it is explained how prior distributions for β, V , and σ2 will
be specified. As mentioned in Chapter 4 (see also [15, 17]), the encompassing
prior should not favor the unconstrained or any of the constrained models.
Because all constraints are on the parameters in the vector β, each of the
βs will be assigned the same prior distribution. In general, the estimate for
the regression coefficient β0 in a linear regression model with no covariates,
y = β0 + ε, where y is the dependent variable and ε is an error term, is the
mean of y (i.e., β̂0 = E(y)). Each of the parameters in β will therefore be
assigned a normal distribution with mean equal to the mean of the response
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variable (from the data) and a large variance chosen so that the prior has
minimal influence on the posterior distribution of the parameter. The prior
distribution of σ2 will also be data based – σ2 will be assigned a scaled inverse
χ2-distribution with 1 degree of freedom and scale equal to the variance of
the response variable. Lastly, V will be assigned an inverse Wishart prior
distribution with R + 1 degrees of freedom and as scale matrix the R×R
identity matrix where R is the dimension of V . Estimating the covariance
matrix V is challenging especially when R > 2. This is because each of the
correlations (between the components of u in (13.6)) has to fall in the interval
[−1, 1] and V must also be positive definite. Setting the degrees of freedom
to R + 1 ensures that each of the correlations has a uniform distribution on
[−1, 1] ([11]). Although setting the degrees of freedom to R + 1 ensures that
the resulting model is reasonable for the correlations, it is quite constraining
for the estimation of the variance terms in V . Therefore, when R > 2, it is
recommended to model V using a scaled inverse Wishart distribution. The
interested reader is referred to [11] for more details on the implementation.

13.3.2 Estimation

In this section it is explained how samples can be obtained from the posterior
distribution of H1 and how they can be used for inferences. With conjugate
prior specifications, in (13.12), the full conditional distributions of V and σ2

are inverse Wishart and scaled inverse χ2 distributions, respectively, and the
full conditional distribution of each parameter in the vector of fixed effects β
is a normal distribution.

The Gibbs sampler (see, for example, [9, 15, 25]), which is an iterative
procedure, can be used to sample from the conditional distribution of each
model parameter – the set of unknown parameters is partitioned and then
each parameter (or group of parameters) is estimated conditional on all the
others. To sample from the posterior distribution of the encompassing model
H1 described in Section 13.3.1, first initial values are assigned to each of the
model parameters. Next, Gibbs sampling proceeds in four steps, namely:

• Sample uj for j = 1 . . . , J from N (Φj ,Σj) where

Φj =
Σj

σ2

Nj∑
k=1

zT
kj(ykj − xkjβ

T )

and

Σj =

[∑Nj

k=1 zT
kjzkj

σ2
+ V −1

]−1

.

• If the prior distribution p(σ2) of σ2 is an inverse chi-square distribution
with degrees of freedom γ and scale ω2, then sample σ2 from a scaled
inverse χ2-distribution with degrees of freedom γ +

∑J
j=1Nj and scale
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γω2 +
J∑

j=1

Nj∑
k=1

(ykj − xkjβ
T − zkju

T
j )2.

• If the prior distribution p(V ) of V is an inverse Wishart distribution
with degrees of freedom λ and scale matrix T , sample V from an inverse
Wishart distribution with degrees of freedom λ+ J and scale matrix

J∑
j=1

uju
T
j + T .

• Let β = {β1, . . . , βp, . . . , βP }. If the prior distribution of βp is a normal
distribution with mean µp and variance τ2

p , then sample βp from a normal
distribution with mean

µp

τ2
p

+ σ−2
∑J

j=1

∑Nj

k=1

[
ykj −

∑P
i=1
i6=p

βixikj −
∑Q

q=1 uqjzqkj

]
xpkj

τ−2
p + σ−2

∑J
j=1

∑Nj

k=1 x
2
pkj

and variance [
1
τ2
p

+

∑J
j=1

∑Nj

k=1 x
2
pkj

σ2

]−1

.

Effectively, the Gibbs sampler starts with initial values for all the pa-
rameters and then updates the parameters in turn by sampling from the
conditional posterior distribution of each parameter. Iterating the above
four steps produces a sequence of simulations u

(1)
1 , . . . ,u

(1)
J , σ2(1), V (1),

β
(1)
1 , . . . , β

(1)
P ; u

(2)
1 , . . . ,u

(2)
J , σ2(2), V (2), β(2)

1 , . . . , β
(2)
P ; u

(3)
1 , . . . ,u

(3)
J , σ2(3),

V (3), β(3)
1 , . . . , β

(3)
P ; and so on until the sequence has converged. The first set

of iterations, referred to as the burn-in, must be discarded since they depend
on the arbitrary starting values. See Chapter 3 and references therein for more
information on convergence diagnostics for the Gibbs sampler.

After convergence, samples drawn from the posterior distribution can be
used to obtain parameter estimates, posterior standard deviations, and central
credibility intervals. See, for example, [13]. To elaborate, suppose that β =
(β1, β2) and we have a sample (β(b)

1 , β
(b)
2 ), b = 1, . . . , B, from the posterior

distribution. To estimate the posterior mean of β1, a researcher would use

1
B

B∑
b=1

β
(b)
1 , (13.13)

and a 95% central credibility interval (CCI) for β1 would be obtained by
taking the empirical .025 and .975 quantiles of the sample of β(b)

1 values.
Furthermore, estimates of functions of parameters can also be obtained. For



284 Kato, Peeters

instance, suppose an estimate for the posterior mean of β1−β2 and a credibility
interval is required. This is easily obtained by taking the difference β(b)

1 −β(b)
2 ,

b = 1, . . . , B, and using the computed values to obtain the posterior mean and
credibility interval. Samples from the posterior distribution can also be used
to draw histograms to display the distributions of parameters and functions
of parameters.

13.3.3 Model Selection

If p(Hs) and m(D|Hs) denote the prior probability and marginal likelihood
of model Hs, respectively, then the posterior model probability (PMP) of Hs

is

PMP(Hs | D) =
m(D | Hs)p(Hs)∑S

s′=1m(D | Hs′)p(Hs′)
. (13.14)

The method of encompassing priors (see [15, 17] and Chapter 4), can be used
to obtain posterior probabilities for each model under investigation. If 1/cs
and 1/ds are the proportions of the prior and posterior distributions ofH1 that
are in agreement with the constraints imposed by model Hs, then the Bayes
factor BFs1 comparing Hs to H1 is the quantity cs/ds. Note that for each
constrained model Hs, the quantities 1/cs and 1/ds provide information about
the complexity (“size” of the parameter space) and fit of Hs, respectively.
Subsequently, if H1 is the encompassing model and assuming that each model
Hs is a priori equally likely, it follows that

PMP(Hs|D) =
BFs1

BF11 +BF21 + · · ·+BFS1
, (13.15)

for each s = 1, . . . , S and BF11 = 1. In practice, therefore, one only needs to
specify the prior distribution and correspondingly the posterior distribution
of the encompassing model. Next, samples are drawn from the specified prior
and posterior distributions, which are then used to determine the quantities
1/cs and 1/ds. Subsequently, posterior probabilities can be computed using
(13.15) and the model with the highest posterior probability is considered to
be the one that gets the highest support from the data. If the model with the
highest posterior probability is one of the constrained models, then parameter
estimates for the model can be obtained using the Gibbs sampling procedure
presented in Section 13.3.2 with an extra step, namely that the β’s are sampled
from truncated normal distributions (see Chapter 3).

Note that if a diffuse encompassing prior is used, then for the class of
models with strict inequality constraints, such as β1 > β2 > β3 or β4 > 0,
the PMPs obtained will not be sensitive to the prior specification. However
for models with equality constraints, such as β1 = β2 = β3 or β4 = 0, PMPs
strongly depend on the actual specification of the encompassing prior. For
details on this, the interested reader is referred to Chapter 4 and [15, 16, 17]. In
this chapter, models with equality constraints are not considered, so sensitivity
of PMPs to the choice of encompassing prior is not an issue.
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13.4 School Effects Data Example

13.4.1 Data

The data used in this section are a subsample of the 1982 High School and
Beyond Survey.3 It includes information on 7,185 students nested within 160
schools. Data were obtained from: http://www.ats.ucla.edu/stat/paper
examples/singer/default.htm.

The data set includes the following variables:

1. mathach: The response variable, which is a standardized measure of
mathematics achievement. The variable mathach has mean 12.75, stan-
dard deviation 6.88, and range −2.83 to 24.99.

2. ses: A composite and centered indicator of student socioeconomic status.
It was a composite of parental education, parental occupation, and income.
The variable ses has mean 0.00014, standard deviation 0.78, and range
−3.76 to 2.69.

3. minority: A student level dummy variable that was coded as 1 if the
student belonged to a minority and 0 otherwise. Numbers of minority and
nonminority students were 1974 and 5211, respectively.

4. meanses: School level variable indicating the average of student ses val-
ues within each school. As ses was centered around its mean a score of
0 can be interpreted as indicating a school with average (in fact average
average) student ses values, whereas −1 and 1 indicate schools with below
average and above average student ses values respectively. The variable
mses has mean 0.0061, standard deviation 0.41, and range −1.88 to 0.83.

5. sector: School level dichotomous variable where 1 indicates a Catholic
school and 0 indicates a public school. Numbers of Catholic and public
schools were 70 and 90, respectively.

Let mathachkj and seskj respectively represent the math achievement and
student socioeconomic status for the kth (k = 1, . . . , 7185) student in the jth
school (j = 1, . . . , 160). Let minj be an indicator variable defined to be 1 if
subject k in school j belongs to an ethnic minority, and 0 otherwise. Further-
more, let catj and pubj be school level indicator variables defined to be 1 if a
school is Catholic or public, respectively, and 0 otherwise. It should be noted
that the variable cat is equivalent to the original variable sector. The reason
for defining a new indicator variable pub is because in a regression model, this
will make it possible to estimate the regression coefficients corresponding to
the covariates cat and pub and their interactions with other covariates rather

3 This data collection provides the second wave of data in a longitudinal, multi-
cohort study of American youth conducted by the National Opinion Research
Center on behalf of the National Center for Education Statistics. In the first
wave, conducted in 1980, data were collected from 58,270 high school students and
1015 secondary schools by self-enumerated questionnaires, personal and telephone
interviews, and mailback questionnaires.
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than estimating contrasts. Furthermore, defining variables in this way enables
one to put constraints on the model parameters. Finally, let msesj represent
the continuous school level variable meanses.

13.4.2 Theory and Models

Research into child and adolescent mathematical achievement has spurred a
vast stream of sociological, psychological, and educational literature; see, for
example, [2, 5, 7, 8, 23]. Van den Berg, Van Eerde, and Klein [2] conducted
research into the mathematical skills of ethnic minorities in the Dutch ele-
mentary school system. They concluded that children from ethnic minorities
have less mathematical ability/maturity than children from the native Dutch
population. These effects were, in their view, attributable to a language bar-
rier and the differential use of educational skills between the home and the
school environment. These effects are expected to persist throughout high
school. Gamoran [7] found that Catholic schools produce higher overall math
achievement in comparison to public schools. The (partial) explanation for
this was found in the manner in which Catholic schools implement academic
tracking. In addition, [5, 23] have indicated that higher math achievement
occurs in schools where the average student socioeconomic status is higher. It
is these expectations we want to express in a set of informative hypotheses.

Assuming a linear relationship between a student’s mathematics achieve-
ment, ses and min, the relationship can be modeled using

mathachkj = π1j + π2jseskj + π3jminkj + εkj ,

where

π1j = β1catj + β2pubj + β3msesj + u1j ,

π2j = β4catj + β5pubj + β6msesj + u2j ,

π3j = β7,

and with
u = (u1j , u2j)T ∼ N (0,V ), εkj ∼ N (0, σ2).

Thus, the school-specific intercepts (π1j) and ses effects (π2j) are related to
the type of school and average socioeconomic status of the school. Note that
the coefficient π3j does not vary across schools. To keep things simple we are
assuming it has the same value β7 for each school (j = 1, . . . , 160). Making the
coefficient differ for each school, say by having π3j = β7 +u3j , would give rise
to a 3× 3 covariance matrix V for u = (u1j , u2j , u3j)T . Effectively, the extra
term u3j introduces three new variance components, namely cov(u1j , u2j),
cov(u2j , u3j), and var(u3j) that have to be estimated from the data.

The following competing inequality constrained model translated theories
will be compared:
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H1 : β1, β2, β3, β4, β5, β6, β7,

H2 : {β1 > β2}, β3, β4, β5, β6, β7,

H3 : β1, β2, β3, β4, β5, β6, β7 < 0,
H4 : {β1 > β2}, β3, β4, β5, β6, β7 < 0,
H5 : {β1 > β2}, β3, {β4 < β5}, β6, β7 < 0,
H6 : {β1 > β2}, β3, {β4 > β5}, β6, β7 < 0.

Model 1 is the unconstrained encompassing model. Model 2 expresses the idea
that students in Catholic schools have higher math achievement than those
in public schools {β1 > β2}. Model 3 expresses the viewpoint that students
belonging to a minority will have lower math achievement than students not
belonging to an ethnic minority. As minj is an indicator variable defined to be
1 if subject k in school j belongs to an ethnic minority, the previous expecta-
tion means that β7 should be negative, so that β7 < 0. Model 4 combines the
viewpoints in models 2 and 3, namely that student in Catholic schools perform
better than those in public schools and that students belonging to ethnic mi-
norities perform worse than those not belonging to an ethnic minority. Model
5 expresses the viewpoints of model 4, with the additional expectation that
the slopes for ses are higher in public compared to Catholic schools {β4 < β5}.
Lastly, model 6 expresses the viewpoints of model 4, with the additional ex-
pectation that the slopes for ses are higher in Catholic compared to public
schools {β4 > β5}.

13.4.3 Results

As mentioned before, Bayesian analysis requires specification of prior distri-
butions for all unknown parameters in the encompassing model (H1). For all
analyses diffuse priors were used. The regression coefficients β1, . . . , β7 were
each given normal prior distributions with mean 12.75 and variance 104 (that
is, standard deviation 100). What this means is that each of the coefficients is
expected to be in the range (−87, 113), and if the estimates are in this range,
the prior distribution is providing very little information in the inference. Be-
cause the outcome and all predictors have variation that is of the order of
magnitude 1, we do not expect to obtain coefficients much bigger than 20,
so prior distributions with standard deviation 100 are noninformative. The
variance covariance matrix V was given an inverse Wishart prior distribution
with 3 degrees of freedom and as scale matrix a 2× 2 identity matrix. Lastly,
σ2 was given a scaled inverse χ2 prior distribution with 1 degree of freedom
and scale 47.

To obtain posterior model probabilities for the competing models, 200, 000
samples (after a burn-in of 10, 000) were drawn from the prior and posterior
distributions of the encompassing model (H1), respectively. For each of the
constrained models H2, . . . ,H6, the proportion of samples from prior and pos-
terior in agreement with the constraints on β were used to estimate the pos-
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Table 13.1. Posterior model probabilities

Model PMP

H1 .059
H2 .117
H3 .118
H4 .235
H5 .471
H6 .000

terior probabilities of each model. Table 13.1 shows the resulting estimated
posterior probabilities, which express prior knowledge (model translated theo-
ries using inequality constraints) being brought up to date with empirical data.
As can be seen in Table 13.1, H5 gets most support from the data suggesting
that, on average, students in Catholic schools have higher math achievement
than those in public schools and that student level socioeconomic status is
positively associated with mathematics achievement with public schools hav-
ing higher slopes than Catholic schools. This is in line with the findings in [23].
Lastly, model 5 also suggests that students from an ethnic minority have lower
math achievement than those who are not from a minority. These findings are
similar to what was observed in a sample of children from the Netherlands [2].
It is worthwhile to note that models 2 and 3 are nested in model 5, implying
that in a sense there is more evidence to support model 5 than just the PMP of
0.47. Stated otherwise, if models 2 and 3 were not part of the competing set of
models, the PMP of model 5 would have been bigger than 0.47. Subsequently,
estimates for parameters of model H5 were obtained using constrained Gibbs
sampling. Posterior distributions of the model parameters were monitored for
20, 000 iterations after a burn-in of 10, 000 and were summarized by posterior
means, standard deviations, and 95% central credibility intervals. These are
displayed in Table 13.2. Relating the estimates to the theories behind model
H5, it can be concluded that controlling for all other predictors in the model:

Table 13.2. Estimates for H5

Parameter Mean SD 95% CCI

β1 14.33 0.20 (13.93, 14.73)
β2 12.67 0.19 (12.30, 13.03)
β3 4.18 0.33 (3.53, 4.84)
β4 1.16 0.18 (0.81, 1.51)
β5 2.64 0.16 (2.32, 2.95)
β6 0.98 0.30 (0.38, 1.57)
β7 −2.76 0.19 (−3.14, −2.38)

Var(u1j) 1.99 0.33 (1.42, 2.71)
Cov(u1j , u2j) −0.04 0.19 (−0.01, 0.35)

Var(u2j) 0.24 0.12 (0.09, 0.54)

σ2 35.88 0.61 (34.71, 37.09)
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1. Average predicted score for mathematics achievement is higher for Catholic
than public schools. The average predicted mathematics achievement
scores for students who are not minorities in schools with meanses = 0
are 14.33 and 12.67 for Catholic and public schools, respectively.

2. Students belonging to ethnic minorities have lower mathematics achieve-
ment than those who are not from minorities. The coefficient β7 for min
implies that the average predicted difference in mathematics achievement
scores between students from minorities and nonminorities is 2.76.

3. Student level ses is positively associated with mathematics achievement
with public schools having higher slopes than Catholic schools; for schools
with average student ses values (i.e.,mses = 0), each extra unit of ses cor-
responds to an increase of 2.64 and 1.16 in average mathematics achieve-
ment for public and Catholic schools, respectively. Furthermore, in both
Catholic and public schools, the student level ses effect on math achieve-
ment increases with increasing meanses. Stated otherwise, the importance
of ses as a predictor for math achievement is more pronounced for schools
with higher values of meanses.

13.5 Individual Growth Data Example

13.5.1 Data

As part of a larger study regarding substance abuse, Curran, Stice, and Chas-
sin [6] collected 3 waves of longitudinal data on 82 adolescents. Beginning at
age 14, each year the adolescents completed a 4-item instrument that sought
to assess their alcohol consumption during the previous year. Using an 8-point
scale (ranging from 0 = “not at all”, to 7 = “every day”), the adolescents de-
scribed the frequency with which they (1) drank beer or wine, (2) drank hard
liquor, (3) had 5 or more drinks in a row, and (4) got drunk. The data were
obtained from URL: http://www.ats.ucla. edu/stat/examples/alda/.

The dataset includes the following variables:

1. alcuse: The dependent variable. This (continuous) variable was generated
by computing the square root of the mean of participants’ responses across
its constituent variables (the frequency with which the adolescents (1)
drank beer or wine, (2) drank hard liquor, (3) had 5 or more drinks in a
row, and (4) got drunk). The variable alcuse has mean 0.92 and standard
deviation 1.06 (range 0 to 3.61).

2. age: Variable indicating age of adolescent.
3. peer: A measure of alcohol use among the adolescent’s peers. This pre-

dictor was based on information gathered during the initial wave of data
collection. Participants used a 6-point scale (ranging from 0 = “none”, to
5 = “all”) to estimate the proportion of their friends who (1) drank alco-
hol occasionally and (2) drank alcohol regularly. This continuous variable
was generated by computing the square root of the mean of participants’
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responses across its constituent variables. The variable peer has mean 1.02
and standard deviation 0.73 (range 0 to 2.53).

4. coa: A dichotomous variable where a 1 indicates that an adolescent is a
child of an alcoholic parent. Of the 246 adolescents, 111 are children of
alcoholic parents and the rest are children of nonalcoholic parents.

Now let alcusekj and agekj be the response (alcohol use) and age, respectively,
for the j th (j = 1, ..., 82) subject at age k = 14, 15, 16. Next, let tkj = (agekj−
14)/(2 × std(age)), where std(age) denotes the standard deviation of age. It
follows that tkj = 0 corresponds to the baseline age of 14. Also, let coaj and
ncoaj be indicator variables defined to be 1 if the subject is the child of an
alcoholic or not the child of an alcoholic parent, respectively, and 0 otherwise.
Additionally, let speerj be the centered and scaled measure of alcohol use
among the adolescent’s peers obtained by subtracting the mean and dividing
by two standard deviations. In regression models that include both binary
and continuous predictors, scaling the continuous predictors by dividing by 2
standard deviations rather than 1 standard deviation ensures comparability
in the coefficients of the binary and continuous predictors [10, 11]. Note that
for interactions between two continuous variables, say X1 and X2, each of the
variables is scaled before taking their product; that is, the interaction term is
not obtained by scaling (X1×X2). It is the product of (X1−mean(X1))/(2×
std(X1)) and (X2 −mean(X2))/(2× std(X2)), where mean(Xr) and std(Xr)
denote the mean and standard deviation of Xr, respectively.

13.5.2 Theory and Models

Previous longitudinal latent growth models have been used to examine the re-
lation between changes in adolescent alcohol use and changes in peer alcohol
use. Curran, Stice, and Chassin [6] found that peer alcohol use was predictive
of increases in adolescent alcohol use. Furthermore, Singer and Willett [24]
have shown that adolescents with an alcoholic parent tended to drink more
alcohol as compared to those whose parents were not alcoholics. Additionally,
it is expected that with regard to initial adolescent alcohol use, an alcoholic
parent may be of more influence than peers, whereas for rate of change with re-
gard to alcohol intake, peers may have more influence. It is these expectations
we want to investigate in a model and accompanying informative hypotheses.

Assuming that the profiles of each subject can be represented by a linear
function of time, the model can be written as

alcusekj = π1j + π2jtkj + εkj ,

where

π1j = β1coaj + β2ncoaj + β3speerj + u1j ,

π2j = β4coaj + β5ncoaj + β6speerj + u2j ,



13 Inequality Constrained Multilevel Models 291

and
u = (u1j , u2j)′ ∼ N (0,V ), εkj ∼ N (0, σ2).

Thus, the subject-specific intercepts (π1j) and time effects (π2j) are related
to peer alcohol use and whether parent(s) is/are alcoholic or not.

The following competing models will be compared:

H1 : β1, β2, β3, β4, β5, β6,

H2 : {β1 > β2}, β3, β4, β5, β6,

H3 : {β1 > β3}, β2, {β4 < β6}, β5,

H4 : {β1 > β2}, β3, {β4 > β5}, β6.

Model 1 is the unconstrained model. Model 2 expresses the theory that adoles-
cents with an alcoholic parent are more prone to higher alcohol use at baseline
{β1 > β2}. Model 3 expresses the theory that with regard to an adolescent’s
alcohol use, parents have more influence than peers at baseline {β1 > β3},
whereas over time peers have more influence {β4 < β6}. Model 4 expresses
the theory that adolescents with an alcoholic parent are more prone to higher
alcohol use at baseline {β1 > β2}, as well as over time {β4 > β5}.

13.5.3 Results

The prior distributions for the parameters in the encompassing model were
specified as follows. The regression coefficients β1, . . . , β6 were each given nor-
mal prior distributions with mean 0.92 and variance 104. The variance covari-
ance matrix V was given an inverse Wishart prior distribution with 3 degrees
of freedom and a 2×2 identity matrix as scale matrix. Turning to the prior on
σ2, we used a scaled inverse χ2-distribution with 1 degree of freedom and scale
1.12. Subsequently, 200, 000 samples (after a burn-in of 10, 000) were drawn
from the prior and the posterior distributions of the encompassing model, re-
spectively. For each of the models H2, H3, and H4, the proportion of samples
from prior and posterior distribution of H1 in agreement with the constraints
on β were used to estimate the posterior probabilities of each model. These
are displayed in Table 13.3.

The posterior probabilities suggest that the support in the data is highest
for model H2. Subsequently, estimates for parameters of model H2 were ob-
tained using constrained Gibbs sampling. Posterior distributions of the model

Table 13.3. Posterior model probabilities

Model PMP

H1 .208
H2 .416
H3 .000
H4 .375
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Table 13.4. Estimates for H2

Parameter Mean SD 95% CCI

β1 0.97 0.11 (0.75, 1.19)
β2 0.39 0.10 (0.19, 0.59)
β3 1.01 0.15 (0.70, 1.31)
β4 0.43 0.15 (0.15, 0.72)
β5 0.45 0.13 (0.19, 0.72)
β6 −0.35 0.20 (−0.74, 0.04)

Var(u1j) 0.27 0.08 (0.14, 0.46)
Cov(u1j , u2j) −0.01 0.05 (−0.12, 0.07)

Var(u2j) 0.18 0.05 (0.09, 0.29)

σ2 0.35 0.05 (0.26, 0.46)

parameters were monitored for 20, 000 iterations after a burn-in of 10, 000 and
were summarized by posterior means, standard deviations, and 95% central
credibility intervals, which are presented in Table 13.4. Looking at the PMPs
for models 2 and 4 in Table 13.3 suggests that model 4 is not much worse than
2. In Table 13.4, the estimate for β4 is less than that of β5; this is opposite to
the constraint β4 > β5 of model 4. This suggests that the reason why model 2
has a higher PMP than model 4 is because the constraint on the parameters
β4 and β5 in model 4 is not in accordance with the data, whereas model 2
does not put any constraints on these parameters. Based on the estimates in
Table 13.4, the following can be concluded:

1. Controlling for peer alcohol use, baseline (age = 14), adolescent alcohol
use was higher in children of alcoholics than in children with nonalcoholic
parents. The difference in average baseline alcohol use was β1−β2 = 0.58
with 95% central credibility interval (0.28, 0.88).

2. Since β3 is the coefficient for speer = (peer−mean(peer))/(2×std(peer)),
it follows that the coefficient for the original variable peer = 1.01/(2 ×
std(peer)) = 0.69. This implies that controlling for whether or not a par-
ent is alcoholic, for every point difference in peer alcohol use, baseline
adolescent alcohol use is 0.69 higher. Stated otherwise, teenagers whose
peers drink more at age 14 also drink more at 14.

3. Adolescent alcohol use tended to increase over time at rates of β4 = 0.43
and β5 = 0.45 per year for children of alcoholics and nonalcoholics, respec-
tively . However, there is no difference between the rates, β4−β5 = −0.02
with 95% central credibility interval (−0.41, 0.37).

4. Since β6 is the coefficient for the interaction between tjk = (age−14)/(2×
std(age)) and speer = (peer−mean(peer))/(2×std(peer)), it follows that
the coefficient for the interaction between peer and age is −0.35/(4 ×
std(peer) × std(age)) = −0.15. However, the CCI for β6 contains 0, so
there is no evidence to suggest that the coefficient is different from zero.
This implies that peer alcohol use does not influence adoloscents’ alcohol
use over time.
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13.6 Discussion

George Box is credited with the quote, “all models are wrong, but some are
useful” [3]. A basic principle of scientific inference is that a good fit of a model
to a set of data never proves the truth of the model. Indeed if one does find
the best fitting model, it may not be theoretically plausible or represent the
actual state of affairs. No (statistical) technique can prove that a model is
correct; at best, we can give evidence that a certain model or set of models
may or may not be a plausible representation of the unobservable forces that
generated the dataset at hand.

There is, therefore, the possibility of the existence of unexplored models
that may yield superior posterior probabilities compared to the set of models
considered by a researcher. In practice, it would be possible to evaluate all
possible combinations of constraints in the model set in order to obtain the
best possible model given a certain index of model fit. This however takes
us into the exploratory realm of data analysis, which may tempt us into hy-
pothesizing after results are known and, as such, imposes physical as well as
philosophical restrictions on a meaningful scientific method.

The crux of a meaningful scientific method is the exclusion of plausible
alternatives. In the exploratory mode many models are included that may
not be theoretically plausible or represent an approximation of the actual
state of affairs, even when they report superior fit. Exploratory analysis in
our view, as a tool of scientific advance, predates the scientific method in that
it should be used for developing ideas about relationships when there is little
or no previous knowledge. These ideas may then subsequently be tested in a
confirmatory analysis thatadheres to the scientific method.

The inequality constrained Bayesian approach to analysis of multilevel lin-
ear models as advocated in this chapter explicitly encourages researchers to
formulate plausible competing theories for confirmatory analysis and offers
a framework in which one is able to simultaneously evaluate all possible al-
ternative model translated theories with regard to model fit and complexity.
As such it has a strong connection with the hypothetico-deductive scientific
method and the concept of strong inference [20]. This method of scientific
advance has, coupled to inequality constrained Bayesian confirmatory data
analysis, the following form (also see [20]): (i) Devise on the basis of pre-
vious knowledge (such as a former exploratory data analysis on preliminary
data, previous results, or expert opinion) alternative theories. These alterna-
tive theories will usually have inequality constraints among the parameters
of its constituent hypotheses; (ii) devise a crucial experiment whose possi-
ble outcomes will be able to demarcate maximally the alternative theories or
(when experiments are not possible) establish which observational data one
would need to exclude one or more of the theories; (iii) perform the experiment
or obtain the observational data and establish the “best model(s)” with the
inequality constrained Bayesian confirmatory data analysis framework; (iv)
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repeat the cycle by refining the model(s) that remain(s) and/or by using the
outcome as prior knowledge in a natural process of Bayesian updating.

In this chapter, we have considered only multilevel linear models. However,
the ideas presented in this chapter can be extended and adapted to deal with
multilevel logistic regression and other multilevel generalized linear models.
In such settings extra complications are bound to arise because we are not
dealing with continuous data.

Furthermore, in situations in which the posterior probabilities are similar
or approximately equivalent for multiple models, the “best model” question
may not be most appropriate and one then may want to embark on model
averaging to take model uncertainty into account in a stricter manner. Such
issues may be the topic of further research.
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14.1 Introduction

Psychologists, like other scientists, gather and analyse data to evaluate the
explanatory power of theories. Typically they build on earlier studies, ex-
plicitly or implicitly formulating competing hypotheses and inferring different
predictions about, for instance, the relative scores of different groups on an
outcome measure in an experimental study. As a means to test their theories,
psychologists are accustomed to the classical statistical tradition and most
of them apply null hypothesis significance testing (NHST) that is dominant
within this tradition. They are trained to use the Statistical Package for the
Social Sciences (SPSS), which centers on NHST, and train their students to
do the same. Yet several authors have noted that NHST is a suboptimal way
to address the very questions that researchers are concerned with (cf. [13]).
In principle, NHST provides researchers with “yes-or-no” answers about the
tenability of H0, in which two or more parameters are constrained to be equal.
Rejection of H0, however, does not render the alternative hypothesis to be rel-
evant and the fact that deviations from H0 do not give us the answer we need
has not gone unnoticed. Within the realm of conventional statistics, a range
of strategies have been suggested to make the latter more informative (e.g.,
the use of point estimates of effect sizes (ESs) and confidence intervals (CIs)
[17]). Although these maneuvres denote an improvement, they remain adap-
tations to a statistical approach that is, according to its opponents, ultimately
inadequate (e.g., [5, 8] and Chapter 9).

The Bayesian approach is logically opposed to NHST, one of the main
differences between the two approaches being the basic question that is ad-
dressed. Let us suppose a researcher is interested in knowing whether treat-
ment A is more effective than treatment B. NHST yields information about the
probability of the data (or more extreme data) if H0 were true; that is, both
treatments are equally effective. The Bayesian approach, however, provides
information on the probability that the alternative (or any other) hypothesis
is true (e.g., treatment A is more effective than treatment B). This is the kind
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of information in which a researcher in psychology is actually interested [21].
It is intriguing, for that matter, that most students and even many researchers
misinterpret NHST in a Bayesian way and believe that p < .05 means that
the probability of this finding being coincidental is lower than 5%.

In this book convincing arguments are presented that Bayesian statis-
tics in many respects are superior to significance testing when dealing with
competing hypotheses. The Bayesian approach offers researchers an elegant
and informative alternative for testing the explanatory strength of rivaling
hypotheses. In this chapter, written by researchers in psychology, some con-
siderations are formulated on shifting from NHST to the advocated Bayesian
alternative.

14.2 Model Building and Model Selection

One of the major strengths of the Bayesian approach is its emphasis on prior
knowledge and deductive reasoning. As was demonstrated in Chapter 2, com-
plex psychological theories can often be converted into fine-grained models.
In these models, divers and competing hypotheses are formulated that are
characterized by a number of (in)equality constraints being imposed on rele-
vant parameters (e.g., expected ordering of means, or ordering of differences
between specific means). While NHST does not provide an incentive to devise
well-specified hypotheses, Bayesian model building forces researchers a priori
to explicitly state all expected relationships, preferably derived from “state of
the art” theories within the specific research domain. So, whereas NHST con-
tains explorative elements or is sometimes misused as a surrogate for theory
[7], the Bayesian approach presented in this book is confirmative.

An illustration of the tendency of scientists, using the classical statistical
approach, to rely on inductive data inspection instead of a priori theorizing,
is the widespread use of exploratory factor analysis (EFA) in psychological
research. Results obtained from exploratory techniques pose several inferen-
tial problems for researchers, as was discussed in Chapter 11 on latent class
analysis. When applying these remarks to factor analysis, the following issues
complicate the use of EFA: The number and the meaning of the factors has
to be determined afterward, and the results may not be consistent with any
of the theories researchers have in mind. See also [4] for a further elaboration
of these matters.

The use of EFA, an analysis that is primarily data driven, is inevitable
when no a priori information exists on the nature or dimensionality of the vari-
ables at hand. For example, Cattell performed an ambitious project to seek
individual differences in personality by compiling a lexicon of trait-descriptive
words. His assumption was that any language that has evolved over millen-
nia includes words that describe qualities of personality [18]. He took a set
of thousand English adjectives and removed obvious synonyms, after which a
list of 171 trait names remained. Factor analysis of collected ratings on these
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words yielded 16 traits. In this case an explorative approach seems appropri-
ate, as one has to rely on empirical data to reveal the underlying structure
of traits. Yet this is rare. Generally, aspects of human behavior are opera-
tionalized by measures that are constructed on the base of theory and/or rich
clinical experience. Therefore, in most cases it would be more appropriate
to conduct confirmatory factor analysis (CFA), a less often used technique
within the classical statistical tradition, which in contrast to EFA is theo-
retically grounded. Using CFA, psychologists are compelled to convert their
often conflicting a priori held ideas regarding the relationships between the
latent and observed variables into multiple alternative models. The relative
fit of each model can be estimated, yielding a more clear-cut interpretation
of the underlying structure. Moreover, an explicit test of measurement in-
variance across groups can be obtained [19], because multigroup CFA allows
the researcher to simultaneously test factor models in relevant groups (e.g.,
men/women; clinical/nonclinical; African/Caucasian). Hence, CFA is useful
for testing competing theories but also may provide valuable information to
further develop these theories.

Structural Equation Modeling (SEM) allows a further elaboration of CFA
models (cf. [1, 16]). Within the SEM framework, CFA models, path models,
and other regression models can be combined, allowing researchers to test a
wider variety of hypotheses than would be possible with traditional statistical
techniques [3, 22]. All these models are built before the data are examined, so
the approach is essentially confirmative in nature. Instead of absolute decisions
as to either reject or accept a certain model, one gains information on the
relative explanatory power of each model, whereby that model is selected that
shows the best fit while being most parsimonious. When competing models
are non-nested (i.e., not hierarchically related), using hypothesis testing to
determine their relative value is not possible in SEM software. However, an
alternative is the inspection of information criteria like Akaike’s information
criterion (AIC) and corrected AIC [2]. Both evaluate the value of a model
combining its fit (in terms of likelihood) and penalize this with its size (in
terms of the number of parameters needed to formulate a model). For SEM,
user-friendly software is developed (e.g., AMOS, LISREL, Mplus) and this
approach, which is close to psychologists’ statistical habits, is increasingly
popular in the social sciences. So, SEM advantageously allows researchers to
build competing models before they are fitted to the data, using easy and
understandable software.

Although within the SEM framework both direct and indirect effects can
be estimated simultaneously, no explicit test of the order of effects is pro-
vided. Hence, selection of models specified using inequality constraints on the
parameters are, until now, not handled by SEM software. In the Bayesian ap-
proach, a straightforward evaluation of both nested and non-nested models is
possible. Furthermore, as shown in this book, (in)equality or order constraints
on the parameters can easily be handled when selecting the best of a set of
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competing models. This leads to more realistic models, as will be illustrated
based on a CFA application.

Using standard procedures within SEM, a factor (e.g., Neuroticism) de-
termines a specific set of indicators (i.e., items of the Neuroticism scale).
Cross-loadings of other indicators within the model (items belonging to, e.g.,
Extraversion and Altruism) are not allowed and fixed at zero. In other words,
the influence of a specific factor on the remaining indicators is assumed to be
nonexistent. This, however, is not very realistic. In the process of instrument
construction it is quit common that each item is constructed to tap a certain
construct, but might reflect qualities embodied in other constructs as well.
Therefore, it would be more informative to estimate the relative influence of
each factor on all indicators. Bayesian methods allow for a test of these kind of
models, in which several inequality constraints are imposed on the factor load-
ings of each set of indicators (see [9]). For example, the Neuroticism indicators
(say items 1 to 5) should have substantial positive loadings on the factor Neu-
roticism (for instance, each loading should be larger than, e.g., .3), and small
loadings on the factor Extraversion (e.g., loadings smaller than .3), whereas
the Extraversion indicators (say items 6 to 10) should have low loadings on
the factor Neuroticism and large loadings on the factor Extraversion.

14.3 Cumulative Knowledge: Prior and Posterior
Distributions

At the heart of Bayesian statistics is the incorporation of prior knowledge
about the distribution of the relevant parameters. Within the frequentist tra-
dition, parameters are considered as fixed entities or truths one can get to
know by an infinite replication of experiments (operationalized by point es-
timates). In Bayesian statistics, on the other hand, parameters are deemed
random; that is, they are seen as unknown quantities that have a probabil-
ity distribution. Parameters cannot be fixed entities, whereas knowledge is
continuously changing. In this respect the Bayesian approach is fundamen-
tally distinct from conventional approaches and may well serve psychological
research in which multiple experiments are conducted or data of repeated
measures are collected. Let us illustrate what this difference of both statisti-
cal accounts may imply for clinical trials.

Within the NHST tradition, data are approached as if no prior knowledge
is available. Hence, in case a clinical trial is being replicated, no informa-
tion on former results is being incorporated into the analyses, rendering the
conclusions more or less independent from earlier knowledge. The only way
prior information is used is in setting up additional studies, by carefully de-
signing the study, and the calculation of the required sample size to reach
adequate power, given the expected effect size and desired alpha-level. As a
consequence, confidence intervals remain relatively large, leaving one uncer-
tain what to decide in case results are not significant. Moreover, reliance on
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NHST may not only lead to possible conflicting results within one study (e.g.,
in case of pairwise comparisons (see Chapter 2)) but also between studies.
All kinds of moderators (e.g., sample characteristics like age, SES, comorbid-
ity) might have caused these conflicting findings in the successively performed
studies, but since no direct test of these interactions was employed, ad hoc
inferences need to be made [20]. In the classical statistical tradition, therefore,
the use of meta-analytic procedures is promoted, allowing one to accumulate
data over studies. Meta-analysis, however, is useless for the many research
questions that have not been addressed empirically in previous studies.

The Bayesian approach provides an alternative, in that it incorporates
beliefs or knowledge on prior distributions of relevant parameters. Bayesians
dictate explicit use of a priori information derived from theory, earlier research
on the topic, and/or knowledge collected from experts in the field [21]. Thus,
relative to classical approaches, the Bayesian approach allows for existing
theoretical and empirical knowledge being accounted for in the analyses much
more easily. As Krueger and Funder [14, p. 324] put it: “Bayesianism permits
the integration of new evidence with theory and past research even at the
level of the individual study.”

To illustrate the possible inferential consequences of both statistical ap-
proaches, we adopt a practical example from Howard et al. [11, Study 1]. In
this example actual data are analysed using NHST and Bayesian methods.
In order to highlight the main disparities, a rather simplistic elaboration of
the NHST approach is given. The authors presented a study in which the ef-
fect of a Psychology of Healthy Lifestyles course (PHL) on student’s increase
in alcohol consumption from senior year of high school to freshman year of
college was evaluated. Students were randomly assigned to PHL or to other
psychology seminars, the latter serving as a control condition. Changes were
quantified by the difference in the mean number of drinks per week in the
high school senior and college freshman year; N = 49; PHL: M = 1.58, SD =
2.19; control: M = 2.21, SD = 2.98. Although the students in the treatment
condition seem better of compared to the control participants, a t-test for
independent groups yielded a nonsignificant result: t(47) = 0.70, p = .48. As
Howard et al. noted apart from taking into account the small sample size, a p-
value as such might lead researchers to consider giving up on the PHL course,
despite possible a priori (theoretical) ideas on the usefulness of the specific
training. As an alternative, the Bayesian way of approaching the study and
its resulting data was explicated. In the described example of Howard et al.,
before conducting the study, prior knowledge of experts (advanced graduate
students and faculty) on drinking habits of freshmen was collected. The ex-
perts were asked to give information on the expected mean increase in number
of drinks per week of freshmen in the absence of any intervention, and in case
the PHL course was followed, and, finally, on how certain they were about
their estimates given as a result of the first question. The assumptions on the
effect of the PHL treatment and no treatment were quantified. Prior estimates
of optimistic experts about the change in the mean number of drinks per week
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were 1.5 (SD = 0.5) for the PHL group and 5.5 (SD = 0.5) for the control
group. Hereafter, this prior information was modified by the data that were
gathered during the study, leading to the following posterior means: 1.53 (SD
= 0.40) for the treatment group and 3.85 (SD = 0.35) for the control group.
The difference between these two means is substantial and, as Howard et al.
commented, is likely to encourage the researchers to continue their enterprise
and to set up larger studies. Interestingly, in the example of Howard et al. two
more studies with larger samples were performed. In the NHST approach, data
of each study were analyzed in isolation, leading to conflicting results. In the
Bayesian approach, however, the posterior distributions of each study served
as priors for the newly collected data, which in the described study led to a
convergence of estimates in favor of PHL.

Besides the incorporation of prior knowledge in the analyses to be exe-
cuted, there are more grounds for Bayesian methods to provide an attractive
alternative for the analysis of clinical trials (see also Chapter 9). One of the
main advantages is that Bayesian inference permits unlimited inspection of
the data as they accumulate. As [15, p. 1331] pointed to: “Unlike a classical
trial, the number of patients to be enrolled in the trial or the timing of the
interim analyses do not need to be predetermined. Other considerations, such
as the rate of patient recruitment or funding constraints, can be used to deter-
mine the number and timing of the data analyses.” Hence, Bayesian inference
allows the researcher to constantly monitor the process, providing a means to
stop the inclusion of more patients at the point that the experimental therapy
appears to be ineffective or even harmful, or to quit the monitoring process
when enough certainty about the treatment effect has been reached [21].

14.4 Equivocalness (or Reliability) of Results

Notwithstanding the qualities of Bayesian inference shown above, there do
seem to be some problems around. The Achilles’ heel of the Bayesian ac-
count, so it seems to us, is the choice of the prior distribution. The so-called
“subjective” priors, or priors which are based on expert information, influ-
ence the outcome of the study. By way of illustration we return to the study
as described by Howard et al. [11] in which, besides the information of the
optimistic experts, the prognostic ideas of their pessimistic counterparts were
gathered. When this latter prior information was incorporated into the data,
in the first study far less favorable posterior probabilities were attained. Hence,
the initially chosen priors determined the results yielded. However, after two
replications of the study with larger samples this influence subsided and more
or less comparable results as in the optimistic condition were found [11].

Objective Bayesians provide an alternative for the use of subjective priors
(see Chapter 3; [10]) and have come up with ways to determine “objective”
priors, like the encompassing prior described in Chapter 4 and the prior distri-
butions described in Chapters 6, 7, and 8. However, in order for a technological
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innovation to become an attractive alternative for existing practices, the out-
come of the novel approach should be reliable. Different users of the novel
approach should end up with comparable conclusions. How do traditional
NHST and the Bayesian alternative compare in this respect? In the present
book the dataset of Huntjens et al. [12] served in a way as a testing case.

The study aimed at unraveling the nature of the interidentity amnesia
as reported by patients suffering from Dissociative Identity Disorder (DID).
For more details, see Chapter 2 and [12]. The dataset consisted of scores
on a recognition test of four groups: DID-patients (pat), normal Controls
(con), Simulators (sim), and True amnesiacs (amn). In the original article,
scores of the DID-patients were compared to the scores of the other groups,
using ANOVA with pairwise comparisons. Results obtained by Huntjens et
al. suggest that DID-patients did not differ significantly from the Simulators,
the latter ones being asked to deliberately simulate interidentity amnesia.

The classical ANOVA approach may have had its weaknesses, as was set
out in the foregoing debate, but within the frequentist framework there is little
room for doubt that the approach of Huntjens et al. was the right one. More-
over, colleagues, analyzing the same data set along conventional lines, would
most likely choose the same procedure and come up with next to identical
results. The ANOVA main effects and interactions may have been less infor-
mative than desirable, but we assume the interresearcher reliability would be
pretty high. Of course, due to multiple pairwise comparisons, generally alpha
corrections are performed. The options for these corrections are manifold, so
at this point, differences in outcome might occur (although in the case of the
Huntjens et al. data, the type of alpha correction did not influence the con-
clusions; Huntjens, personal communication). How about the “interevaluator
reliability” of the data-analytic experts who reanalyzed the Huntjens et al.
data along Bayesian lines?

The Bayesian statisticians who reanalyzed this data set all used “objec-
tive” priors, since they were solely equipped with material on the relevant
theoretical stances to build their models and with the data collected in the
study. All in the end dealt with the same question; that is, are DID-patients
more similar in their recognition scores to Simulators than to True amnesiacs?
Next to the null and the unconstrained model, the following two informative
hypotheses were tested:

H1a : µcon > {µamn = µdid} > µsim, (14.1)

H1b : µcon > µamn > {µdid = µsim}. (14.2)

The performed Bayesian analyses, entailing the way the “objective” prior
distributions have been determined (e.g., the encompassing prior) and the
model selection criteria being used (e.g., the Bayes factor), differ with each
contributor to this discussion (see Chapters 4, 6, 7, and 8). Irrespective of
the applied “objective” prior type and selection criteria, all found the model
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that DID-patients resemble Simulators (H1b) to be about three times more
likely than the model in which DID-patients resemble True amnesiacs (H1a).
Although H1a could not be ruled out completely, more support was yielded
for H1b. Thus, the various Bayesian statisticians drew comparable conclusions
from the very same dataset.

Hence, in case “objective” priors are used when analysing inequality con-
strained models, there seems to be high “interevaluator reliability” of the
divers Bayesian approaches. This, again, makes Bayesian statistics an appeal-
ing alternative for NHST in psychological research. Note, however, that the
above presented findings resemble those by Huntjens et al., except for the
fact that Bayesians are able to state on the relative account of each model.
Of course, the latter is an enormous improvement. But might it be attrac-
tive enough for researchers accustomed to classical approaches, considering
that Bayesian statistics are complicated to perform? To answer this question,
the reader is referred back to Chapters 2, 4, and 5. There it is shown for two
other datasets (the emotional reactivity data and the grief data) that classical
approaches are not very useful for the evaluation of the informative hypothe-
ses of interest, whereas this can straightforwardly be done with the Bayesian
approach.

14.5 Dissemination of Bayesian Statistics

Before a major statistical reform will take place, some skepticism needs to be
conquered. Resembling the history of psychology, classical and Bayesian ap-
proaches seem to be entangled in a battle of schools, each pointing to why the
other approach is flawed. Clearly, the dominance of simplistic NHST for half
a century in psychological research is at least problematic, but over the years
many efforts have been undertaken to reform the classical approach. Most
important is the discrediting of “mindless statistics” [8]. Researchers should
be aware of the limitations of NHST and use additional analytic strategies.
As Finch et al. [6] argued, this reform requires advocacy and support from
many sources. The publication manual of the American Psychological Associ-
ation has a vital role to play, but editors of peer reviewed journals should also
clearly recommend proper statistical practice. Last but certainly not least, a
lot can be won by changing the university curriculum in statistics.

Since the popularity of NHST will not diminish soon, some authors have
proposed an integration of classical statistics with Bayesian concepts of hy-
pothesis evaluation [14]. Clearly, the time is ripe for dissemination of the basic
tenets of the Bayesian heritage. Less clear is how the dissemination will be
most fruitful: by adapting and reforming the NHST from within, by piecemeal
engineering, or by preparing an encompassing paradigm shift. The latter issue
is not only a matter of statistics and logic but also a tactical question. It is
not for us to provide an answer; it is up to the Bayesians.
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15.1 Introduction

Theory testing lies at the heart of the scientific process. This is especially true
in psychology, where, typically, multiple theories are advanced to explain a
given psychological phenomenon, such as a mental disorder or a perceptual
process. It is therefore important to have a rigorous methodology available
for the psychologist to evaluate the validity and viability of such theories, or
models for that matter. However, it may be argued that the current practice
of theory testing is not entirely satisfactory. Most often, data modeling and
analysis are carried out with methods of null hypothesis significance testing
(NHST). Problems with and deficiencies of NHST as a theory testing method-
ology have been well documented and widely discussed in the field, especially
in the past few years (e.g., [42]). The reader is directed to Chapter 9 of this
book for illuminating discussions of the issues. Below we highlight some of the
main problems of NHST.

First of all, NHST does not allow one to address directly the questions
she/he wants to answer: How does information in the data modify her or
his initial beliefs about the underlying processes? How likely is it that a given
theory or hypothesis provides an explanation for the data? – that is, one would
like to compute Prob(hypothesis|data). Instead, the decision as to whether
one should retain or reject a hypothesis is based on the probability of observing
the current data given the assumption that the hypothesis is correct (i.e.,
Prob(data|hypothesis)). These two probabilities are generally not equal to
each other and may even differ from each other by large amounts. Second,
NHST is often conducted in a manner that it is the null hypothesis that is
put to the test, not the hypothesis the researcher would like to test. The latter
hypothesis called the alternative hypothesis does not get attended to unless
the null hypothesis has been examined and rejected subsequently. In other
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words, there is an imbalance in weighing the null and alternative hypotheses
against each other as an explanation of the data. Third, many NHST tests are
loaded with simplifying assumptions, such as normality, linearity, and equality
of variances, that are often violated by real-world data. Finally, the p-value,
the yardstick of NHST, is prone to misuse and misinterpretation, and this
occurs more often than one might suspect and is, in fact, commonplace (see,
e.g., Chapter 9). For example, a p-value is often misinterpreted as an evidence
measure of the probability that the null hypothesis is true.

These methodological problems go beyond just NHST and are intrinsic
to any frequentist methodology. Consequently, they represent limitations and
challenges for the frequentist approach to statistical inference. Are there any
alternatives to NHST? Fortunately, there is one, namely the Bayesian ap-
proach to statistical inference, which is free of the problems we discussed
earlier. Unlike NHST, in Bayesian inference, (1) one directly computes the
probability of the hypothesis given the data, (2) two or more hypotheses are
evaluated by weighing them equally, (3) any realistic set of assumptions about
the underlying processes can easily be incorporated into a Bayesian model,
and (4) interpretations of Bayesian results are intuitive and straightforward.
What is apparent from the other chapters of the current book (see the eval-
uation given in Chapter 5) is the fact that it is much more straightforward
to pose and test order restricted hypotheses with order constrains within the
Bayesian framework, compared to the frequentist NHST approach to testing
such hypotheses. By definition, an order restricted hypothesis is a hypothe-
sis where a set of parameters are consistent with a particular order relation,
and will be called an “informative hypothesis” in this chapter, so as to be
consistent with the terminology used in the other chapters.

A purpose of this chapter is to present a review of recent efforts to develop
Bayesian tools for evaluating order-constrained hypotheses for psychological
data. In so doing, we provide our own critiques on some of the chapters in this
book, discussing their strengths and weaknesses. Another purpose of writing
this chapter is to present an example application of hierarchical Bayesian
modeling for analyzing data with a structure that is ideal for an analysis of
variance (ANOVA) and to compare performance of several Bayesian model
comparison criteria proposed and discussed throughout the current book. We
begin by reviewing the literature on Bayesian order restricted inference.

15.2 Bayesian Order Restricted Inference

Order restricted models (i.e., models with parameters subject to a set of order
constraints) have long been considered in frequentist statistics (cf. [17, 18]).
Isotonic regression exemplifies this approach, the theoretical foundations of
which are summarized in [2, 35, 40]. It seems appropriate, then, to include
a brief description of the frequentist approach to order restricted inference
before discussing a Bayesian alternative.
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For the purposes of testing order restricted hypotheses, the isotonic re-
gression model leads to a special kind of likelihood-ratio test. Specifically,
the test statistic in isotonic regression is the log-likelihood ratio of the max-
imum likelihood estimate of a reduced model with equal means to that of a
full model with certain order constraints imposed on its means. Note that
the former model is nested within the latter one. The sampling distribution
of the test statistic is then sought under the null hypothesis that all means
are equal against the alternative hypothesis that the means satisfy the order
constraints. This turns out, however, to be a major hurdle to the method’s
widespread application in practice; there is no easy-to-compute, general solu-
tion for finding the sampling distribution for given forms of order constraints,
unless the constraints belong to one of a few simplified forms.4 Even if one is
able to derive the desired sampling distribution, given the fact that isotonic
regression is a NHST, the problems associated with the use of NHST and p-
value for model evaluation are still at issue, as discussed at length in Chapter
9 and as critiqued by Kato and Hoijtink [23], who commented “Even though a
great deal of frequentist literature exists on order restricted parameter prob-
lems, most of the attention is focused on estimation and hypothesis testing
[as opposed to model evaluation and comparison]” (p. 1).

As an alternative to the frequentist framework, a Bayesian approach to
order restricted inference was considered in the past (e.g., [39]). However,
its application was limited due to the intractability of evaluating the pos-
terior integral. This long-standing difficulty in Bayesian computation has
been overcome in the 1990s with the introduction of general-purpose sam-
pling algorithms collectively known as Markov chain Monte Carlo (MCMC
cf. [9, 13, 34]). With MCMC, theoretical Bayes has become practical Bayes.
In particular, Gelfand, Smith, and Lee [10] developed easily implementable
MCMC methods for sampling from posterior distributions of model parame-
ters under order constraints. Since then, a group of quantitative psychologists
have demonstrated the application of the Bayesian framework on a wide range
of order restricted inference problems in psychology, education and economics
[16, 19, 20, 21, 24, 30]. This success prompted Hoijtink and his colleagues to
organize the Utrecht Workshop in the summer of 2007, which subsequently
led to the publication of the current book.

4 As an alternative to the isotonic regression likelihood-ratio test, Geyer [12]
proposed bootstrap tests in which one computes approximate p-values for the
likelihood-ratio test by simulating the sampling distribution by an iterated para-
metric bootstrap procedure. One problem with the bootstrap, which may be easy
to compute, is that it does not have finite sampling properties and, therefore,
can give biased estimates of sampling distributions for finite samples [7]. Further,
the bootstrap is a frequentist approach that is subject to the problems discussed
earlier.
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15.2.1 Why Bayesian?

Bayesian inference, at its core, is the process of updating one’s initial belief
(prior) about the state of a world in light of observations (evidence) with the
use of Bayes’ theorem, thereby forming a new belief (posterior). This way of
making inferences is fundamentally different from that of frequentist inference.
Among many differences between the two schools of statistics, Bayesian and
frequentist, the most notable include the former’s interpretation of probability
as an individual’s degree of belief as opposed to the long-run frequency ratio
in the latter and also the Bayesian view of model parameters as random
variables as opposed to fixed but unknown constants in frequentist statistics.
For up-to-date and comprehensive treatments of Bayesian methods, the reader
is directed to [11, 33].

Besides such theoretical and philosophical, differences between the two in-
ference schemes, Bayesian inference offers many pragmatic advantages over
its frequentist counterpart – in particular, in the context of evaluating infor-
mative hypotheses with parametric order constraints. The advantages may be
termed directness of inference, automaticity, power of priors, and, finally, ease
of computation. First, by directness of inference, we mean that the Bayesian
inference process directly addresses the question the researcher wishes to an-
swer – that is, how data modifies his or her belief about initial hypotheses.
In contrast, frequentist inferences are based on the probability (i.e., p-value)
of obtaining current data or more extreme data under the assumption that
the researcher’s initial hypothesis is correct, which seems awkward and even
confusing. Second, Bayesian inference is automatic as there is just one road
to data analysis: Each and every inference problem boils down to finding the
posterior from the likelihood function and the prior by applying Bayes’ theo-
rem. Third, Bayesian statistics allows one to easily incorporate any available
relevant information, other than observed data, into the inference process
through priors. Being able to incorporate prior information into data model-
ing, which undoubtedly improves the quality of inferences, is indeed a power-
ful and uniquely Bayesian idea, with no counterpart in frequentist statistics.
This is also one of the reasons Bayesian statistics has gained such popular-
ity in fields dealing with practical problems of real-world significance such
as biomedical sciences and engineering disciplines – one cannot afford to dis-
regard potentially useful information that might help save lives or generate
millions of dollars! Finally, as mentioned earlier, the recent breakthrough in
Bayesian computation makes it routinely possible to make inferences about
any given informative hypothesis. The necessary computations for any arbi-
trary form of order constraints can be performed via MCMC as easily as one
is running simple simulations on computer.

In what follows, we provide a broad-brush overview of the Bayesian order
restricted inference framework that is described and illustrated in greater
detail by various authors of this book, with special attention given to the
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comparative review on the pros and cons of the Bayesian methods discussed
in the various chapters.

15.2.2 The Specifics of the Bayesian Approach

The key idea of the Bayesian approach for testing and evaluating an infor-
mative hypothesis is to incorporate the order constraints specified by the hy-
pothesis into the prior distribution. For example, for an informative hypoth-
esis H : µ1 < µ2 < µ3 expressed in terms of means µ, the order constraint is
represented by the following prior for the parameter vector θ = (µ1, µ2, µ3):

p(θ) =
{
g(θ) if µ1 < µ2 < µ3

0 otherwise (15.1)

for some probability measure function that integrates to 1. Given observed
data y = (y1, ..., yn) and the likelihood f(y|θ), the posterior is obtained from
Bayes’ rule as

p(θ|y) =
f(y|θ)p(θ)∫
f(y|θ)p(θ) dθ

. (15.2)

For a concrete example of the likelihood f(y|θ) and prior distribution p(θ)
the interested reader is referred to Section 15.3.2.

The posterior distribution in (15.2) represents a complete summary of
information about the parameter θ and is used to draw specific inferences
about it. For instance, we may be interested in finding the posterior mean
and Bayesian credible intervals. Each of these measures can be expressed as
a posterior expectation. The trouble is that since the normalizing constant∫
f(y|θ)p(θ) dθ in the denominator is commonly intractable for all but the

simplest models, the posterior distribution is only known up to a proportional-
ity constant. Even if the posterior is known in analytic form, finding its mean
and credible intervals can be challenging. The next best thing, then, beyond
knowing the exact expression of the posterior, is to generate a large number
of samples that approximate the distribution and to use the samples to nu-
merically estimate the expectation of interest. This is where MCMC comes in
handy, as the technique allows us to draw samples from almost any form of
posterior distribution without having to know its normalizing constant (i.e.,
the denominator in (15.2)).

When one entertains multiple hypotheses and wishes to compare them,
this can be achieved using the Bayes factor (BF ), which, for two hypotheses
Hi and Hj , is defined as the ratio of their marginal likelihoods:

BFij =
m(y|Hi)
m(y|Hj)

=
∫
f(y|θ,Hi)p(θ|Hi) dθ∫
f(y|θ,Hj)p(θ|Hj) dθ

, (15.3)

where m(y|Hi) denotes the marginal likelihood under hypothesis Hi. The
Bayes factor has several attractive features as a model selection measure. First,



314 Myung, Karabatsos, Iverson

the Bayes factor is related to the posterior hypothesis probability: the proba-
bility of a hypothesis being true given observed data; that is, from a set of BF s
computed for each pair of competing hypotheses, the posterior probability of
hypothesis p(Hi|y), i = 1, ..., q, is given as p(Hi|y) = BFik/

∑q
j=1BFjk, i =

1, ..., q, for any choice of k = 1, ..., q, under the assumption of equal prior prob-
abilities p(Hi) = 1/q for all i’s. Further, Bayes factor-based model selection
automatically adjusts for model complexity and avoids overfitting, thereby
representing a formal implementation of Occam’s razor. What this means is
that BF selects the one, among a set of competing hypotheses, that provides
the simplest explanation of the data.

Another attractive feature of the Bayes factor, which is particularly fit-
ting for evaluating order constrained hypotheses, is that the model selec-
tion measure is applicable for choosing between hypotheses that vary in the
number of parameters but also, importantly, for comparing multiple infor-
mative hypotheses that posit different order constraints but share a com-
mon set of parameters. For example, consider the following three hypotheses:
H1 : µ1, µ2, µ3; H2 : µ1, {µ2 < µ3}; and H3 : µ1 < µ2 < µ3 . It is worth noting
here that commonly used selection criteria like the Akaike information crite-
rion (AIC [1]) and the Bayesian information criterion (BIC [38]), which only
consider the number of parameters in their complexity penalty term, are in-
appropriate in this case. This is because the two criteria treat the above three
hypotheses equally complex (or flexible), which is obviously not the case.

Accompanying these desirable properties of the Bayes factor are some
important caveats. First of all, the Bayes factor can be ill-defined and cannot
be used under certain improper priors. An improper prior, by definition, does
not integrate finitely so we will have

∫
p(θ)improper dθ = ∞. For example, the

prior p(θ) ∝ 1/θ is improper over the parameter range 0 < θ < ∞ and so is
the uniform prior p(θ) = c for an unspecified constant c over the same range
of the parameter θ. To illustrate, suppose that each element of the data vector
y = (y1, ..., yN ) is an independent sample from a normal distribution N (µ, σ2)
with unknown mean µ but known variance σ2. In this case, the sample mean
y is a sufficient statistic for parameter µ. The likelihood is then given by

f(y|µ) =
1√

2π (σ/
√
N)

exp
(
− 1

2σ2/N
(y − µ)2

)
(15.4)

as a function of parameter µ. If we were to use the improper uniform
prior p(µ) = c for −∞ < µ < ∞, the marginal likelihood m(y) =∫ +∞
−∞ f(y|µ)p(µ) dµ would contain the “unspecified constant” c, and as such,

the Bayes factor value in (15.3) would be undetermined.5 Interestingly how-
ever, for the present example, it is easy to see that the posterior distribution
5 An exception to this “undetermined” Bayes factor case is when the marginal

likelihood of the other hypothesis being compared against the current one also
contains the same constant c so both “unspecified constants” do cancel each other
out in the calculation of the ratio of the two marginal likelihoods.
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p(µ|y) is proper with its finite normalizing constant. This is because the un-
specified constant c “conveniently” cancels out in the application of Bayes’
rule to find the posterior

p(µ|y) =
f(y|µ)p(µ)∫
f(y|µ)p(µ) dµ

=
f(y|µ)∫
f(y|µ) dµ

, (15.5)

which integrates to one for −∞ < µ <∞. An important implication is that in
a case like this, posterior-based inferences such as Bayesian confidence interval
estimation and deviance information criterion (DIC)-based model selection
[41] are welldefined and applicable, whereas the Bayes factor is not. We will
come back to this later in this chapter.

Second, another caveat is about using the Bayes factor for the comparison
of two nested models. It is well known that the Bayes factor can be highly
sensitive to the choice of priors, especially under diffuse priors with relatively
large variances. In other words, the Bayes factor value can fluctuate widely and
nonsensically to incidental minor variations of the priors. This is connected to
the Lindley’s paradox (e.g., [31]). Therefore, for nested models, Bayes factors
under diffuse priors must be interpreted with great care.

The last, and by no means least, challenge for the Bayes factor as a model
selection measure is a heavy computational burden. The Bayes factor is non-
trivial to compute. To date, there exists no general-purpose numerical method
for routinely computing the required marginal likelihood, especially for non-
linear models with many parameters and nonconjugate priors.

Addressing these issues and challenges in Bayes factor calculations, Klugk-
ist, Hoijtink, and their colleagues (see Chapter 4 and [24, 25]), have developed
an elegant technique for estimating the Bayes factor from prior and posterior
samples for order restricted hypotheses, without having to directly compute
their marginal likelihoods. In following section, we provide a critical review
of the essentials of the method, which may be called the encompassing prior
Bayes factor approach, or the encompassing Bayes approach.

15.2.3 Encompassing Prior Bayes Factors

The encompassing Bayes approach has been developed specifically for model
selection with informative hypotheses. Specifically, the approach requires the
setting of two nested hypotheses, H1 and H2, that share the same set of
parameters but differ from each other in the form of parametric constraints
(e.g., H1 : µ1, µ2, µ3 and H2 : µ1, {µ2 < µ3}). For simplicity, in this section we
assume that hypothesis H2 is nested within hypothesis H1. Another condition
required for the application of the encompassing Bayes approach is that the
prior distribution of the smaller hypothesis H2 is obtained from the prior
distribution of the larger hypothesis H1 simply by restricting the parameter
space ofH1 in accordance with the order constraints imposed byH2. Formally,
this condition can be stated as
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p(θ|H2) ∝
{
p(θ|H1) if θ is in agreement with H2

0 otherwise. (15.6)

With these two conditions met, it has been shown that the Bayes factor
can be approximated as a ratio of two proportions (see [25] and Chapter 4):

BF21 ≈
rpost21

rpre21
. (15.7)

In the equation, rpost21 denotes the proportion of samples from the posterior
distribution of hypothesis H1, p(θ|y,H1), that satisfy the order constraints of
hypothesis H2. Similarly, rpre21 denotes the proportion of samples from the
prior distribution p(θ|H1) that also satisfy the order constraints of hypothesis
H2. The beauty of the encompassing Bayes lies in that its implementation
requires only the ability to sample from the prior and the posterior of the larger
of the two hypotheses, without having to deal with their marginal likelihoods,
which can be quite difficult to compute, as mentioned earlier.

The Bayes factor calculated using the computational “trick” in (15.7) may
have large variances especially when the smaller hypothesis is too highly con-
strained to yield stable estimates of the proportions rpost and rpre. In such
cases, one may resort to the following more efficient estimation method. We
first note that the Bayes factor for two nested hypotheses Hq and H1, where
Hq ⊂ H1, can be rewritten in terms of a series of (artificial) Bayes factors cor-
responding to pairs of nested hypotheses created by recursively constraining
the parameter space of H1 as

BFq1 = BFq(q−1) ·BF(q−1)(q−2) · · ·BF21 (15.8)

for Hq ⊂ Hq−1 ⊂ · · · ⊂ H2 ⊂ H1. Using this equality, one can then compute
the desired BFq1 as a product of BFij ’s, each of which is, in turn, estimated
from an equation analogous to (15.7) using any standard MCMC algorithms
or the ones that are specifically tailored to order constrained hypotheses (e.g.,
[10]). Equations similar to (15.8) are presented in Chapters 4 and 12.

The encompassing Bayes approach is quite an ingenious idea that allows
one to routinely compute Bayes factors simply by sampling from prior and
posterior distributions, thereby bypassing the potentially steep hurdle of com-
puting the marginal likelihood. As demonstrated in various chapters of this
book, the approach has been successfully applied to comparing order con-
strained hypotheses that arise in a wide range of data analysis problems,
including analysis of variance, analysis of covariance, multilevel analysis, and
analysis of contingency tables.

There is, however, one assumption of the encompassing Bayes approach
that may limit its general application. This is the requirement that all hy-
potheses, constrained or unconstrained, be of the same dimension. To illus-
trate, consider the following two hypotheses:

H1 : µ1, µ2, µ3, (15.9)
H2 : µ1 = µ2 < µ3.
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Note that H1 has three free parameters, whereas H2 has two. In this case, the
Bayes factor in (15.7) is undefined, as both prior and posterior proportions
is effectively equal to zero. Klugkist, in Chapter 4, outlined a heuristic pro-
cedure that may be employed to approximate the Bayes factor for equality
constrained hypotheses. Briefly, according to the procedure, we first construct
a series of “near equality” hypotheses of varying degrees,

H2(δi) : |µ1 − µ2| < δi, {µ1 < µ3}, {µ2 < µ3} (i = 1, 2, ..., q) (15.10)

for δ1 > δ2 > · · · > δq > 0. We then estimate the Bayes factor using the
formulation in (15.8) by letting δq → 0, provided that the estimate converges
to a constant. This is quite an elegant trick, although a problem may arise if
the estimate does not converge, meaning that the final estimate is highly de-
pendent upon the particular choice of limiting sequences {δ1, δ2, ..., δq} and/or
upon the choice of priors. Further theoretical work showing that this is not
generally the case is clearly needed.

Continuing the discussion on the model selection problem with informative
hypotheses involving equality constrained hypotheses, one can think of at
least two alternative methods, other than the procedure of Klugkist described
above.

The first is the completing and splitting method that is introduced in
Chapter 7. To illustrate, consider again the two hypotheses H1 : µ1, µ2, µ3

and H2 : µ1 = µ2 < µ3. The basic idea of the completing and splitting
method is to add a third “surrogate” hypothesis H3 to the original two. The
new hypothesis is constructed by removing the order constraint from H2 but
keeping the equality constraint (i.e., H3 : {µ1 = µ2}, µ3). Note that H3 is of
the same dimension (i.e., 2) as H2 so one can apply the encompassing Bayes
approach to obtain the Bayes factor for these two hypotheses. Now, the de-
sired Bayes factor BF21 we wanted to compute is then expressed in terms of
the “surrogate” hypothesis H3 as BF21 = BF23 ·BF31. In this expression, the
first factor BF23 on the right-hand side is calculated using the encompassing
Bayes approach in (15.7). As for the second factor BF31 for two unconstrained
hypotheses that differ in dimensions, this quantity may be computed by us-
ing an appropriate prior distribution with the usual Bayesian computational
methods or, alternatively, with data-based prior methods such as the intrinsic
Bayes factor [3] and the fractional Bayes factor [32]. Incidentally, it would
be of interest to examine whether Klugkist’s procedure would yield the same
Bayes factor value as the completing and splitting method.

The second approach for dealing with equality hypotheses represents a
departure from Bayes factor-based model selection. Model selection criteria
proposed under this approach may be termed collectively posterior predictive
selection methods and are discussed in great detail in Chapter 8. In the follow-
ing section, we provide a critical review of these methods and their relations
to Bayes factors.
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15.2.4 Posterior Predictive Selection Criteria

The posterior predictive model selection criteria discussed in Chapter 8 are the
L measure [4, 14], the DIC [11, 41], and the logarithm of the pseudomarginal
likelihood (LPML [8, 15]). All three measures are defined with respect to the
posterior predictive distribution (ppd) of future, yet-to-be-observed data z:

fppd(z|yobs) =
∫
f(z|θ)p(θ|yobs) dθ, (15.11)

where yobs = (y1,obs, ..., yN,obs) is the currently observed data. Samples from
this predictive distribution represent predictions for future observations from
the same process that has generated the observed data.

A posterior predictive criterion is designed to assess a model’s or hypoth-
esis’s predictive accuracy for future samples. The above three criteria differ
from one another in the form of the predictive accuracy measure employed

L measure = E(z − yobs)2,
DIC = E

[
−2 ln f

(
z|θ(yobs)

)]
, (15.12)

LPML =
N∑

i=1

ln fppd

(
yi,obs|y(−i)

obs

)
,

where θ denotes the posterior mean, y
(−i)
obs denotes yobs with the i-th ob-

servation deleted, and, finally, all expectations E(·) are taken with respect to
the posterior predictive distribution fppd(z|yobs). Under suitable assumptions,
each of the above “theoretical” measures is approximately estimated by the
following “computable” expression

L measure =
N∑

i=1

(
Eθ|yobs

[
Ezi|θ(z2

i |θ)
]
− µ2

i

)
+ ν

N∑
i=1

(µi − yi,obs)
2
,

DIC = D(θ) + 2pD, (15.13)

LPML =
N∑

i=1

lnE
θ|y(−i)

obs

[f (yi,obs|θ)] .

In the first equation defining the L measure criterion, zi is a future response
with the sampling distribution f(zi|θ), ν is a tuning parameter to be fixed
between 0 and 1, and µi = Eθ|yobs

[
Ezi|θ(zi|θ)

]
, with the first expectation

defined with respect to the posterior distribution p(θ|yobs) and the second
expectation defined with respect to the sampling distribution f(zi|θ). In the
second expression defining DIC, D(θ) is the deviance function given data
vector yobs defined as D(θ) = −2 ln f(yobs|θ) (cf. [29]), θ denotes the mean
of θ with respect to the posterior distribution p(θ|yobs), and, finally, pD is
the effective number of model parameters, or a model complexity (flexibility)
measure, defined as pD = D(θ) − D(θ). In the third expression regarding
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LPML, the expectation is with regard to the posterior distribution p(θ|y(−i)
obs ).

For L measure and DIC, the smaller their value, the better the model. The
opposite is true for LPML.

The three model selection criteria in (15.13) differ in at least two important
ways from the Bayes factor. First, they are predictive measures, the goal of
which is to pick a model or hypothesis that achieves best predictions for
future data. In contrast, the goal of Bayes factor model selection is to find the
model with the highest posterior model probability. Second, all three criteria
are defined based on samples from the posterior distribution p(θ|yobs). As
such, it is straightforward to compute the criteria with any standard MCMC
methods for order constrained hypotheses and even for equality constrained
hypotheses, which can be particularly thorny for Bayes factor computation.

Notwithstanding these attractive features of the predictive model selection
criteria, one may object to them on the grounds that they may be intuitive
but are based on arbitrary measures of predictive accuracy; that is, one may
ask questions such as: Why the squared error loss function in L measure, or for
that matter, the deviance function in DIC? Which of the three is the “best”?
What should we do if their model choices disagree with one another? Further,
regarding DIC, it is known to violate the reparameterization invariance rule
[41]. Reparameterization invariance means that a model’s data fitting capa-
bility does not change, as it should, when the model’s equation is rewritten
under a reparameterization. For instance, the model equation y = exp(−θx)
can be re-expressed as y = η−x through the reparameterization η = exp(θ).
DIC is generally not reparameterization-invariant, as the posterior mean θ
in the DIC equation (15.13) does change its value under reparameterization.
In short, the reader should be aware of these issues and interpret the results
from the application of the posterior predictive criteria with a grain of salt.

15.3 Hierarchical Bayes Order Constrained Analysis of
Variance

In this section, we present and discuss an exemplary application of the
Bayesian approach for analyzing ANOVA-like data. In particular, we imple-
ment and demonstrate a hierarchical Bayes framework. Also discussed in the
example application is a comparison between the results from Bayes factor
model selection and those from posterior predictive model selection using DIC.

15.3.1 Blood Pressure Data and Informative Hypotheses

We consider blood pressure data that are discussed in Maxwell and Delaney’s
book [28] on experimental designs. These are hypothetical data created to
illustrate certain statistical ideas in their book. The data are imagined to be
from an experiment in which a researcher wants to study the effectiveness of
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diet, drugs, and biofeeback for treating hypertension. The researcher designs
a 2 × 3 × 2 between-subjects factorial experiment in which the diet factor
varies over two levels (absent and present), the drug factor over three levels
(drug X, Y , and Z), and the biofeedback factor over two levels (absent and
present). Blood pressure is measured for 6 individuals in each of 12 cells.

The full data are reported and summarized in Tables 8.12 and 8.13 of
Maxwell and DeLaney [28]. Some general trends can be noticed from these
tables. Both diet and biofeedback seem to be effective in lowering blood pres-
sure. Also, among the three drugs, it appears that drug X is the most effective
and that drug Z seems better than drug Y , although the latter differences may
be due to sampling error. Results from an ANOVA applied to these data and
reported in Table 8.14 of the book indicate that all three main effects are sta-
tistically significant, with each p-value being less than .001, and that one of the
two-way interactions and the three-way interaction are marginally significant
(i.e., p = .06 and p = .04, respectively).

Based on these ANOVA results, to illustrate a hierarchical Bayes order
restricted inference framework, we consider five hypotheses. They include the
null hypothesis, H0, with no order constraints, and four informative hypothe-
ses, H1−H4, with varying degrees of order constraints on the population cell
means:

H0 : Unconstrained µijk
′s for all i, j, k,

H1 : µDB• < {µDB•, µDB•}; {µDB•, µDB•} < µDB•,

H2 : µDB• < µDB• < µDB• < µDB•, (15.14)

H3 : µDBk < {µDBk, µDBk}; {µDBk, µDBk} < µDBk for all k,

µijX < µijZ < µijY for all i, j,

H4 : µDBk < µDBk < µDBk < µDBk for all k,

µijX < µijZ < µijY for all i, j.

In the above equation the subscript i denotes the level of the diet factor (D:
present; D: absent), the subscript j denotes the level of the biofeedback factor
(B: present; B: absent), and, finally, the subscript k denotes the drug type
(X, Y , or Z). The subscript • indicates that the result is averaged across all
levels of the corresponding factor.

Shown in Figure 15.1 are the four informative hypotheses in graphical
form. The data are found to violate none of the order constraints specified
by hypothesis H1 or by hypothesis H2. In contrast, as marked by the asterisk
symbol (∗) in the figure, three violations of the order constraints under H3

and four violations of the order constraints under H4 are observed in the data.
A question one might ask, then, would be: Are these violations “real” or just
sampling errors? In the following section, we present a hierarchical Bayesian
analysis that attempts to answer questions such as this.
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Fig. 15.1. The four informative hypotheses defined in (15.14). In each connected
graph, for two treatment conditions that are connected to each other, the one that
is positioned above the other has a higher population mean value and as such is less
effective in treating high blood pressure than the other condition. The asterisk (∗)
indicates a violation of the corresponding ordinal prediction in the data

15.3.2 Hierarchical Bayesian Analysis

Given the five hypotheses in (15.14), the model selection problem is to iden-
tify the hypothesis that best describes the blood pressure data. To this end,
we present a hierarchical Bayesian framework and discuss results from its
application to the data.

A defining feature of hierarchial Bayesian modeling is the setup of mul-
tilevel dependency relationships between model parameters such that lower-
level parameters are specified probabilistically in terms of higher-level param-
eters, known as hyperparameters, which themselves may, in turn, be given
another probabilistic specification in terms of even higher-level parameters,
and so on [11]. The hierarchical modeling generally improves the robustness
of the resulting Bayesian inferences with respect to prior specification [33].
Importantly, the hierarchical setup of parameters is particularly suitable for
modeling various kinds of dependence structures that the data might exhibit,
such as individual differences in response variables and trial-by-trial depen-
dency of reaction times. Recently, the hierarchical Bayesian modeling has
become increasingly popular in cognitive modeling, and its utility and success
have been well demonstrated (cf. [26, 27, 36, 37]).

Using standard distributional notation, we now specify the hierarchical
Bayesian framework for modeling the blood pressure data as
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Likelihood : yijkl ∼ N (µijk, σ
2),

(15.15)

Priors :

µijk|η, τ2 ∼ N (η, τ2),
η|ψ2 ∼ N (0, ψ2),
τ2|a, b ∼ IG(a, b),
σ2|c, d ∼ IG(c, d),

where i = 1, ..., I, j = 1, ..., J , k = 1, ...,K, and l = 1, ..., N , N (·) denotes
a normal distribution, IG(·) denotes an inverse Gamma distribution,6 and
ψ2, a, b, c, and d are fixed constants. Note in the above equation that η and τ2

represent two hyperparameters assumed in the model. For the blood pressure
data, there were 6 persons in each of the 12 cells created by the 2 × 2 × 3
factorial design, and, as such, we have I = 2, J = 2, K = 3, and N = 6.

Let us define the data vector as y = (y1111, ..., yIJKn) and the parameter
vector as θ = (µ, η, τ2, σ2), where µ = (µ111, ..., µIJK). The posterior density
under the unconstrained hypothesis H0 in (15.14) is then given by

p(θ|y) ∝ f(y|µ, σ2) p(µ|η, τ2) p(η|ψ2) p(τ2|a, b) p(σ2|c, d), (15.16)

with the likelihood function of the following form:

f(y|µ, σ2) =
I∏

i=1

J∏
j=1

K∏
k=1

N∏
l=1

1√
2π σ

exp
(
− 1

2σ2
(yijkl − µijk)2

)
. (15.17)

From these expressions, one can easily derive the full conditional posterior
distributions of various parameters as

p(µijk|y,µ(−ijk), η, τ2, σ2) ∼ N

 σ2

N
η + τ2

∑N
l=1 yijkl

N

σ2

N
+ τ2

,
σ2

N
τ2

σ2

N
+ τ2

 ,

p(η|y,µ, τ2, σ2) ∼ N

(
ψ2

IJKψ2 + τ2

I∑
i=1

J∑
j=1

K∑
k=1

µijk,
ψ2τ2

IJKσ2 + τ2

)
, (15.18)

p(τ2|y,µ, η, σ2) ∼ IG(

a+
IJK

2
,

[
1

b
+

1

2

I∑
i=1

J∑
j=1

K∑
k=1

(µijk − η)2
]−1

 ,

p(σ2|y,µ, η, τ2) ∼ IG(

c+
IJKN

2
,

[
1

d
+

1

2

I∑
i=1

J∑
j=1

K∑
k=1

N∑
l=1

(yijkl − µijk)2
]−1

 .

From these full conditionals for the unconstrained hypothesis, a Gibbs
sampler can be devised to draw posterior samples from an informative hy-
pothesis with order constraints of the form α ≤ θi ≤ β, specifically, the
6 The probability density function of the gamma and inverse-gamma distributions

are defined as G(a, b) : f(x|a, b) = 1
Γ (a)ba x

a−1e−x/b(a, b > 0; 0 < x < ∞) and

IG(a, b) : f(x|a, b) = 1
Γ (a)ba x

−a−1e−1/bx(a, b > 0; 0 < x <∞), respectively. Note

that X ∼ G(a, b) ⇐⇒ 1/X ∼ IG(a, b).
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following inverse probability sampling procedure [10]:

θi = F−1
i [Fi(α) + U · (Fi(β)− Fi(α))] , (15.19)

where Fi is the cumulative full conditional distribution for θi of the uncon-
strained hypothesis, F−1

i is its inverse, and U is a uniform random number
on [0, 1]. It should be noted that special care needs to be taken in applying
this procedure for hierarchical models with constrained parameters. This is
because the normalizing constants for lower-level parameters generally depend
upon the values of higher-level parameters so the constants do not cancel one
another out, thereby making the implementation of Gibbs sampling difficult,
if not impossible. Chen and Shao [5] developed efficient Monte Carlo methods
that address the problem. We implemented their methods in our application
of the inverse probability sampling procedure.

From posterior samples, one can then compute the DIC criterion in (15.13)
with the deviance function D(θ) for the data model in (15.15) expressed as

D(θ) = −2 ln f(y|µ, σ2)

=
I∑

i=1

J∑
j=1

K∑
k=1

(µijk − yijk)2

σ2/N
+ IJK · ln

(
2πσ2

N

)
, (15.20)

where yijk represents the sample mean for cell ijk. The Bayes factors and the
posterior model probabilities for the five hypotheses in (15.14) are estimated
using the encompassing Bayes approach discussed earlier.

The model comparison results are presented in Table 15.1. The DIC re-
sults are based on the following parameter values for the hyperpriors: a = 10,
b = 0.01, c = 10, d = 0.01, and ψ = 4000. For each hypothesis, the mean DIC
value and the 95% confidence interval based on 10 independent runs of the
inverse probability sampling procedure are shown. The encompassing prior
Bayes factors are based on 30 million samples drawn from each of the prior
and posterior distributions under the unconstrained hypothesis H0. Shown
in the second column of the table are the pD values, which measure the ef-
fective number of parameters. All five hypotheses assume the same number
of parameters (i.e., 15), including the two hyperparameters of η and τ2, and
yet, obviously they differ in model complexity (flexibility), as each imposes
different degrees of order constraints upon the parameters. Note that the
unconstrained hypothesis H0 has the largest pD value of 9.61 and then the
complexity value decreases from top to bottom of the column. This pattern
of result agrees with the intuitive notion that the more order constraints an
informative hypothesis assumes, the less complexity the hypothesis presents.
The DIC results shown on the third column indicate that among the five in-
formative hypotheses, the simplest one, H4, is the best predicting model from
the posterior predictive standpoint.

The remaining columns of the table present the encompassing Bayes re-
sults. First of all, recall that the rpreq0 and rpostq0 values estimate the pro-
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Table 15.1. Model comparison results for the five hypotheses in (15.14) and the
blood pressure data in Maxwell and Delaney [28]

Hypothesis pD DIC rpreq0 rpostq0 BFq0 p(Hq|y)

H0 9.61 37.06± 0.11 1.000 1.000 1.00 .0004

H1 7.50 34.10± 0.52 .080 .570 7.15 .003

H2 7.03 33.52± 1.42 .041 .49 12.0 .005

H3 5.70 32.14± 1.57 5.0e-06 .0038 711 .31

H4 5.03 30.96± 1.09 7.7e-07 .0012 1533 .67

portions of prior and posterior samples, respectively, drawn from the uncon-
strained hypothesis H0 that satisfy the order constraints of an informative
hypothesis. We note that both of these proportion values exhibit the same
decreasing trend as the pD values, although it is a much steeper for the rpreq0

and rpostq0 values. Next, the Bayes factor results, shown in the sixth column,
clearly point to H3 and H4 as two “winners” in the model selection compe-
tition. Between these two, H4 has a Bayes factor that is about double the
corresponding factor for H3. This result, taking into account the other Bayes
factor values in the same column, translates into the posterior hypothesis prob-
abilities of .67 and .31 for H4 and H3, respectively. So if we were to choose
between these two informative hypotheses, it would then be H4 as the one
that is most likely to have generated the data. An implication of this conclu-
sion is that the four violations in the data of the order constraints specified by
H4 (see Figure 15.1) are judged to be no more than sampling variations, and
not due to systematic deviations of the underlying data-generating process
from the said hypothesis.

To summarize, both DIC and Bayes factor-based selection criteria pick
the hypothesis H4 as the best model among the five competing hypotheses.
Therefore, as far as the present data are concerned, the best predicting model
turns out to be also the most likely model, which we find is often the case in
practice.

15.4 Concluding Remarks

In this chapter we provided an overview of the recent developments in Bayesian
order restricted inference that are well suited to theory testing in the psy-
chological sciences. We also discussed an application of the Bayesian frame-
work for hierarchical modeling. Fueled by a series of the computational break-
throughs in the early 1990s, Bayesian statistics has become increasingly pop-
ular in various scientific disciplines – in particular, in the biomedical and en-
gineering sciences. We believe that it is the time for psychological researchers
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to take notice and reap the benefits of applying these powerful and versatile
inference tools to advance our understanding of the mental and behavioral
phenomena we are studying. We hope this chapter will serve as another ex-
ample that demonstrates the power of the Bayesian approach.

We conclude the chapter by reiterating what we said earlier: The Bayesian
methods developed over the past decade for testing informative hypotheses
are quite impressive in their applicability and success across a wide array
of data modeling problems, as illustrated in Chapters 2–5 and 10–13 of this
book. The work is likely to be recognized in the years to come as a major
contribution to the field of quantitative data modeling.
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16.1 Bayesian Model Selection

This chapter provides an answer to the question: What it is, philosophically
speaking, to choose a model in a statistical procedure, and what does this
amounts to in the context of a Bayesian inference? Special attention is given
to Bayesian model selection, specifically the choice between inequality con-
strained and unconstrained models based on their Bayes factors and posterior
model probabilities.

Many of the foregoing chapters have provided examples of model selection
by means of Bayes factors, and Chapter 4 has provided a thorough introduc-
tion to the subject. For the sake of completeness and in order to introduce
some terminology that will be used in this chapter, we will briefly rehearse
Bayesian model selection here. Say that we have some data E and that we
think these data are sampled from a distribution pµpµs

(E), characterized by
two parameters µp ∈ [0, 1] and µs ∈ [0, 1]. We say that each pair of values
for µp and µs presents a specific hypothesis Hµpµs concerning the data. By
contrast, a statistical model consists of a set of hypotheses. One possible sta-
tistical model for the data allows for all possible values of both parameters;
that is, 〈µp, µs〉 ∈ [0, 1]2. Call this model M0; it consists of the entire range of
hypotheses Hµpµs

. Another possible model, M1, imposes the restriction that
µp > µs; this model is restricted by an inequality constraint. Note that both
models consist of a particular set of statistical hypothesesHµpµs , each of which
fixes a fully specified distribution for the data, p(E|Hµpµs) = pµpµs(E). Their
difference is that the latter restrict the possible values for the parameters µp

and µs. How can we compare these two models?
The Bayesian model selection procedure, as discussed in this book, presents

an answer to the latter question. This answer employs the so-called marginal
likelihoods of the models:
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p(E|Mj) =
∫ 1

0

∫ 1

0

p(E|Hµpµs
)pj(Hµpµs

) dµp dµs

=
∫ 1

0

∫ 1

0

pµpµs
(E)pj(Hµpµs

) dµp dµs, (16.1)

where j = 0, 1 indexes the models. Notice that for both models, the inte-
gration runs over the whole domain [0, 1]2. However, the prior for the two
models is different: p0(Hµpµs

)dµpµs = 1 and p1(Hµpµs
)dµpµs = 2 if µp > µs

and p1(Hµpµs
)dµpµs = 0 otherwise. Both these priors integrate to one, but

the prior for M1 is such that only the distributions for which µp > µs are
included in the computation of the marginal likelihood. Finally, it must be
emphasized that the marginal likelihood for a model is different from the or-
dinary likelihood of a hypothesis, although both are probabilities of the data
E. The likelihood of a hypothesis is the well-known expression p(E|Hµpµs

).
The marginal likelihood of a model is essentially a mixture of the likelihoods
of hypotheses that are included in the model, weighted with the probability
of the hypotheses.

We may now use these expressions of the marginal likelihood to compute
the Bayes factor for the models, M0 and M1:

BF01 =
p(E|M0)
p(E|M1)

. (16.2)

It may then turn out that BF01 � 1, in which case the unrestricted model
M0 seems strongly favored over the restricted model M1. But here we may
wonder: What support exactly is provided by the high value of the Bayes
factor? It must be emphasized that the comparison of two models (e.g., M0

versusM1), is not the same as a comparison between two rival hypotheses, for
example H1/21/2 versus H1/32/3, because models are not themselves hypotheses,
rather they are sets of hypotheses. In the case of hypotheses, a comparison by
means of a Bayes factor makes perfect sense. But a Bayes factor may not be
suitable for the comparison between models. This point is particularly press-
ing for comparisons of inequality constrained models, because they contain
partially overlapping sets of hypotheses.

In this chapter we set out to investigate this latter question from a founda-
tional perspective. We discuss what statistics was supposed to deliver in the
first place and in what way Bayesian statistics delivers this. After we are clear
on Bayesian statistics in its ordinary application, we can discuss the applica-
tion of Bayesian statistics in the context of model selection, and in particular
in the context of comparing models with different inequality constraints. It
will be seen that this leads to a challenging question on the exact use, or
function, of Bayes factors for models.

The chapter is set up as follows. In Section 16.2 we spell out the philo-
sophical setting for statistical inference, dealing with the problem of induction
and with the answers to this problem provided by Popper and Carnap. Sec-
tion 16.3 presents a parallel between statistical inference and another system
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of reasoning: deductive logic. In Section 16.4, based on this parallel, we will
describe the role of a statistical model in a Bayesian statistical inference as
a specific type of premise in an inductive. We can thereby identify elements
of the views of both Popper and Carnap in Bayesian statistical inference and
extend Bayesian inference to model selection, in particular, the selection by
means of Bayes factors. This leads to a discussion of some problematic as-
pects of Bayesian model selection procedures in Section 16.5. We will address
two specific worries. First, a comparison of models in terms of their posterior
model probabilities does not seem to make sense if the models overlap. We
will remedy this by organizing the space on which the models are defined a
bit differently. Second, and in view of this reorganization, we ask how we can
interpret the probability assignments to hypotheses.

16.2 Statistics and the Problem of Induction

This section deals with statistics, its relation to the problem of induction, and
the solutions that Popper and Carnap provided for this problem, drawing on
standard textbooks in the philosophy of science such as Bird [2] and Curd and
Cover [6]. We will see that these solutions, in this context termed inductivism
and rationalism, are endpoints in a spectrum of positions and that, as such,
they both miss out on an important aspect of statistical reasoning.

16.2.1 The Problem of Induction

Induction is a mode of inference that allows us to move from observed data
to as yet unknown data elements and empirical generalizations. A typical
example of an inductive inference is presented in Statements 1 and 2:

1. The sun has risen every morning up until now.
2. So, the sun will also rise tomorrow.
3. Even stronger, it will rise on all future days.
4. Alternatively, it will probably rise on all future days.
5. Or at least it will probably rise tomorrow.

Here the observed data is expressed in Statement 1, namely that the sun has
always risen up until now. This observed data may be viewed as the sole
premise of the inference. On the basis of it we may want to affirm several
other statements, labeled 2 to 5, all of which can be viewed as conclusions of
an inductive inference.

Premises and conclusions are statements, and as such they may be true or
false. Of an inference, however, we cannot say that it is true or false. Rather
we say that it is valid or invalid, where validity means that the inference
provides a certain kind of guarantee: If the premisses are true and the inference
from these premisses to a conclusion is valid, then we have the guarantee
that the conclusion is true. When applied to the inductive inferences above,
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validity means the following: If the sun has indeed always risen up until now,
and if the inductive inference is valid, then we can rely on the truth of the
conclusion, namely that the sun will also rise tomorrow. The trouble with
inductive inference, as presented above, is that its validity is very hard to
establish. Nobody will seriously doubt the truth of the statement that the
sun will rise tomorrow. But when asked whether on the basis of all its past
risings we can validly infer, and hence whether we are justified to believe, that
the sun will rise tomorrow, we are met with embarrassing difficulties.

Let us examine these difficulties in some more detail. David Hume asked
himself the question of how we can derive new observations from observations
that we have done in the past. He argued in An Enquiry Concerning Human
Understanding [15]: “But why this experience should be extended to future
times, and to other objects, which for aught we know, may be only in appear-
ance similar; this is the main question on which I would insist” (pp. 33–34).
In other words, inductive inferences seem to presuppose that a sequence of
observations in the future will occur as it always has in the past. However,
even very long series of the same observation are perfectly consistent with the
next observation being quite different. The problem of induction is that no
further basis can be found in the observations themselves for this presupposed
constancy of the observations. To illustrate again with the example, we might
conclude from the observations that the sun has risen every morning up until
now that the next morning the sun will also rise. But what justification can
there be for presupposing this constancy? In the next subsection we will try
to provide some possible answers to this question, and we will show how these
answers fail.

16.2.2 Uniformity Assumptions

A first possible answer is to justify the presupposition of constancy, and hence
inductive inference, by using induction itself; that is, we could say that an
inductive inference will work in the future because it has worked in the past.
For example, we made many inductive inferences about many different topics
(e.g.,that the sun has always risen), and until now all these inferences led to
true conclusions. Or closer to scientific practice, we have often used a T-test
successfully in the past, and so we may conclude that it will be a valuable
method in the future as well. However, if we justify induction on the grounds
that it has worked in the past, then we enter a vicious circle. The argument
fails to prove anything, because it takes for granted what it is supposed to
prove. We can therefore run the exact same criticism of induction again, this
time on the level of the inferences. There is, again, no logical necessity that
the previous success of the inferences guarantees future successes.

A second possible answer is to justify the constancy of observations by
assuming an overall uniformity of nature. For example, we might say that
the sun has always risen in the past and that since nature is uniform, this
pattern will continue into the future. Note, however, that this is quite a strong
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assumption. It is not just questionable whether nature really is uniform, it is
also dubitable whether we can apply this assumption to the natural and the
human sciences alike. Uniformity could hold for the natural sciences, like the
sunrise example, but whether it is also applicable to human science remains
discussable. Is it, for example, true that the positive correlation between social
isolation and aggression, as it might be established in psychology, continues
to hold after the introduction of the Internet? To infer by induction, we have
to assume a rather strong uniformity in nature.

Moreover, even while the assumption of uniformity must be very strong,
one might argue that it is still not strong enough. Just stating that nature
is uniform does not yet determine the exact patterns that will continue in
future times. This problem is nicely brought out by Goodman’s [11] so-called
new riddle of induction, which we will present briefly. Say that the predicate
Green belongs to emeralds, which appear to have the color green at any time.
Suppose that up until the year 2008 we have observed many emeralds to be
Green. We thus have evidence statements that emerald 1 is Green, emerald
2 is Green, etc. The standard inductive inference then is that all emeralds
examined before the year 2008 were Green, so emeralds after that year will be
Green as well. In this case we call the predicate Green projectable: Findings
of the past can be projected unto the future. But now consider a somewhat
different predicate: An object is Grue if either it has been observed before
2008 and it appeared green, or it has been observed after 2008 and appeared
blue. Similarly, something is Bleen if observed before 2008 appearing blue, or
after 2008 appearing green. We may redescribe what we observed until now
as emerald 1 is Grue, emerald 2 is Grue, etc. So with the very same inductive
inference just used on Green, but now taking Grue to be the projectable
predicate, we might conclude that emeralds observed after 2010 will be Grue,
so that we predict emeralds observed after 2010 will appear blue to us! It thus
seems that simply assuming the uniformity of nature is not specific enough.
If we are to apply the uniformity assumption, we must stipulate the exact
predicates with respect to which nature is uniform.

In reaction to Goodman’s riddle, we might argue that we can make a prin-
cipled distinction between candidate predicates on grounds of their simplicity,
defending induction by saying nature is uniform and simple. It seems that a
model where emeralds are Green before time 2010 and are also Green after
2010 is simpler. However, we might also describe this model in a complicated
way, saying that emeralds are Grue before time 2010 and are Bleen after 2010:
In both cases, the result is that emeralds appear green throughout. Goodman
points out [11, pp. 74–75] that predicates such as Grue and Bleen only appear
to be more complex than the predicate Green or Blue. This is because we
have defined Grue in terms of blue and green, whereas the predicate Green is
only defined in term of the color green. In other words, the model we favor de-
pends on which predicates are established in our language, leaving inductive
inference relative to the language in which they are formulated. The ulti-
mate question is therefore what predicates are considered the natural ones.
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Hence, we cannot salvage inductive inference by imposing further simplicity
constraints. We need a decision on the projectability of certain patterns or
predicates.

This last remark concludes our discussion on the philosophical problem of
induction. The fact that in inductive inference we must always make a choice
for a specific projectable predicate will reappear in later sections.

16.2.3 Induction in Science

We will now explain the problem of induction and its relevance to scientific
practice, by identifying inductive inference within a more scientific example.
The first thing to note here is that, especially in social sciences, scientists
make probabilistic inferences. In terms of the example of Section 16.2.1, from
the data expressed in Statement 1, they generally derive statements like 4 and
5. This is because in social sciences, the data often show patterns that are not
completely stable. However, we can still say that such probabilistic inferences
are inductive.

To illustrate induction, we will use a rather simplified version of the ex-
ample provided in Chapter 2 about amnesia in Dissociative Identity Disorder
(DID). The study of Huntjens et al. [16] focuses on the question of whether
DID-patients suffer from true amnesia or not. The design allowed the authors
to compare the overall memory performance, called the Recognition Scores,
between true DID-patients, controls, DID-simulators, and true amnesiacs. Let
us say we are now only interested in the question of whether the memory per-
formance of DID-patients differs from the performance of DID-simulators. If
the performance of DID-patients is better than that of DID-simulators, we
conclude that DID is not an iatrogenic disorder. To investigate this differ-
ence, the researchers selected a sample from a population of people diagnosed
with DID and a sample of “normal” people who were asked to simulate DID.
The memory performance of the two groups was observed in a number of
trials and, based on the difference in the memory performance, a generalized
statement was made about amnesia in DID.

With this scientific example of DID in place, we can restate the problem
of induction. Suppose that the observations until now show that the entire
group of DID-patients is better in memory performance than the group DID-
simulators. By induction we might then infer that all DID-patients are better
in memory performance than DID-simulators and, hence, that amnesia in
DID is true amnesia rather than feigned. Or, alternatively, suppose that on
average the DID-patients are better in memory performance than the DID-
simulators. In that case we might infer, again by induction, that this average
difference holds for the entire populations of DID-patients and DID-simulators
and, hence, that a randomly chosen DID-patient can be expected to have
better memory performance than a randomly chosen DID-simulator. This
expectation is typically spelled out in terms of a probability assignment; in
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social sciences, such probabilistic conclusions are much more common than
strict universal generalizations.

Because such general or predictive conclusions concerning DID-patients
and DID-simulators are arrived at by induction, they are subject to the prob-
lem, sketched in the foregoing, that they are very hard to justify. More specifi-
cally, as the discussion of Goodman’s riddle suggested, justifying such conclu-
sions involves the explicit choice for predicates that are projectable. We will
argue in the next two sections that the statistical justification of conclusions
in the DID example requires such a choice. The predicates at issue are the test
scores of the DID-patients and DID-simulators, respectively: If we want these
test scores to be indicative of what is going on in the populations at large,
we must somehow assume that they are based on, or refer to, some stable
properties of the individuals in that population. As already announced, we
return to this in later sections. In order to properly discuss the assumption,
we first turn to two well-known responses to the problem of induction, from
Carnap and Popper, respectively.

16.2.4 Carnap on the Problem of Induction

The philosophical discussion on the justification of induction is rich and mul-
tifaceted. In the following we will not provide an overview of this discussion,
but rather we will present a specific take on it in order to portray statistics as
a particular solution. For this we will first visit two important figures in the
debate on induction: Karl Popper and Rudolf Carnap.

Carnap was one of the central figures of logical empiricism, a philosoph-
ical movement that dominated the philosophy of science in the first half of
the twentieth century. In this movement, two discussions took center stage:
One concerned the nature of science and its demarcation from pseudo-science
and the other concerned the justification of science, which was intimately
connected to the justification of conclusions arrived at by inductive inference.
For the logical empiricists, as the name suggests, the main features of science
were its firm foundation in primitive empirical fact and the further feature
that more general scientific claims can be derived from these empirical facts
by logical means. Hence, the logical empiricists faced a double challenge: To
establish the firm foundations of science in primitive empirical fact and to pro-
vide a logical system that would allow us to derive more advanced scientific
claims from these primitives.

Carnap’s contribution to the second part of the logical empiricist program
is also the salient part of the program for present purposes [4, 5]. Carnap tried
to find the degree of confirmation that a given set of empirical evidence gives
to some scientific hypothesis. To this aim he used both logic and probability
theory. Both evidence and hypotheses were expressed in terms of a formal
logical language, and the degree of confirmation was subsequently expressed
in terms of a probability function over this language, the so-called confirmation
function c(H,E). The function c(H,E) is the degree to which hypothesis H is
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supported by evidence E; in other words, c is the degree to which someone is
rationally entitled to believe in the hypothesis H on the basis of full belief in
the evidence E. The crucial ingredient in the determination of this function
is Carnap’s notion of logical probability: The probability assignment over the
language in which H and E are sentences is fully determined by the structure
of the language itself and symmetry requirements on the probability function
with respect to the language. The confirmation function c(H,E) can therefore
be determined by a priori arguments from the language.

The main achievement of Carnap was that he managed to derive a general
inductive rule on the basis of his concept of logical probability. This inductive
rule allowed him to make justified predictions of future observations on the
basis of a record of past observations. Say, for example, that we are given
a record of the memory performance of n individuals, either DID-simulators
or DID-patients, in which a number of n0 people scored below guessing level
and n1 people scored above guessing level. We may denote each individual
test result by Qq

i , where q ∈ {0, 1} and 0 means scoring below, and 1 means
scoring above guessing level. The record of all n results is En =

⋂n
i=1Qi.

Carnap’s c-function then gives the degree of confirmation for the next person
passing the test, the event denoted by Q1

n+1:

c(Q1
n+1, En) =

n1 + γλ

n0 + n1 + λ
, (16.3)

where γ is the initial probability for passing the test and λ is the firmness of
that initial estimate. This degree of confirmation for Q1

n+1 is the best guess
we can make for the performance of the next individual; depending on the
data, we may thus be able to conclude that the predictions for DID-patients
and DID-simulators differ. Carnap maintained that in this way he solved the
problem of induction. By casting the problem in a formal framework, defining
a function that made explicit the degree to which we are rationally entitled
to believe hypotheses on the basis of evidence, and by grounding this degree
in the structure of the logical framework, he provided a logical system that
allows us to derive predictions, albeit probabilistic ones, from the primitive
empirical facts.

One of the weaknesses of Carnap’s system is that it is fairly abstract and
that it does not readily connect to the methods and statistical techniques used
by scientists. For the purpose of this chapter, however, we would like to point
to another set of related worries to do with language as a determining factor in
the Carnapian system. Recall that the justification of the Carnapian inductive
inferences rests on applying symmetry principles, as determined by the notion
of logical probability, to some language. Moreover, following Goodman, we
are stuck with an assumption on which predicates are projectable once the
language is chosen. If the language adopts Grue and Bleen, then those are
the predicates that will accumulate inductive confirmation or disconfirmation.
The obvious question is: How do we determine the exact set of predicates to
which the notion of logical probability can be applied? First of all, language in
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the Carnapian system is idealized and highly artificial, whereas most scientific
theories are expressed in vague language, usually English. It is unclear how to
isolate the salient predicates from the fluid scientific discourse. Related to this,
to apply a Carnapian system we must hold this artificial language constant,
and refuse new predicates to be introduced; otherwise we must accept that
the degree of confirmation of scientific hypotheses will change whenever new
predicates are introduced. But both options sit poorly with scientific method
as we know it.

Finally, even if we accept the artificiality and the fixity of the language,
we encounter a problem with its poverty, because the notion of a statistical or
general hypothesis is virtually absent from it. The way Carnap has set up his
inductive logic and the confirmation function c(H,E) in it, both the evidence
E and the hypothesis H must be finite expressions in a language that only has
observations as primitive terms. Typically, the evidence and hypotheses are
past and future observations, respectively, as in the example provided above.
Now it must be admitted that this is largely due to a philosophical predis-
position among the logical empiricists, namely to restrict scientific inference
to the empirical realm. In principle, the formalism allows for extensions to
general hypotheses, as attested by the inductive logical systems of Hintikka
[12]. However, the inclusion of general hypotheses in Carnapian inductive logic
remains very limited, and attempts to remedy that shortcoming have not ex-
actly appealed to the general philosophical public.

We conclude that within Carnapian systems, we cannot formulate hy-
potheses on possible patterns in the data, let alone change or introduce them.
In the following sections it will be seen that Bayesian statistics, as well as
classical statistics, does better than the Carnapian inductive system on the
count of both fixity and poverty.

16.2.5 Popper on the Problem of Induction

Before turning to statistics, we deal with another important contributor to the
debate on inductive inference, Karl Popper [17] . Popper’s views on induction
can be explained most easily in conjunction with his position in the debate
on the demarcation of science from pseudo-science. Popper rejected the view
of the logical empiricists, who argued that science is defined by its roots in
empirical fact and their logical implications, stating instead that falsifiability
is the distinguishing feature of science. According to Popper, the hallmark of
good science is that it puts itself at risk of being proven wrong. It generates
distinct predictions that can be checked against the empirical facts and can
subsequently be proven false. So, for example, the claim that the sun will rise
tomorrow is scientific, because tomorrow we may find out that the sun has
not risen, thus proving it wrong. The claim, on the other hand, that the sun
will never rise anymore is not scientific, because at any point in time we must
leave open the possibility of a future rising.
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Popper’s views on inductive inference can be seen as the continuation of
this line of thought. From the view that claims are only scientific in virtue
of their possible falsification, it is a small step to the view that the only
claims that can be considered genuine scientific knowledge are those that result
from falsification. So according to Popper, we cannot base any knowledge on
inductive inference. In the example, we cannot conclude anything about future
occasions of a rising sun from the fact that up until now the sun has always
risen. As Popper would say, the theory that the sun will always rise is not yet
disproved. But, at best, this motivates us to go on checking the claim that the
sun will always rise. If, on the other hand, the sun does not rise tomorrow,
science has truly advanced, because at that point we can be certain that the
claim that the sun will always rise is false and, hence, that the claim that on
some day the sun will not rise is true. In short, Popper argues that inductive
inferences toward general claims cannot provide us with scientific knowledge
but that deductive inferences toward the denial of general claims do provide
knowledge. Deductive inference is valid, but inductive inference is not.

In our DID example, the question is how can we generalize toward a con-
clusion on the existence of DID, on the basis of observations of the memory
performance of DID-patients and DID-simulators. Now, does Popper allow
us to conclude that DID-patients are universally better in memory perfor-
mance than DID-simulators and, therefore, that DID is a genuine disorder?
Bypassing the further difficulty that in the DID example, the theory is cast in
terms of probabilities and that probabilistic statements can strictly speaking
never be proven false, Popper would argue there is never any positive evidence
for such a general statement, let alone for concluding that amnesia in DID-
patients is real rather than feigned amnesia. We can only conclude, by means
of a single counterexample, that such a general statement is not true. So after
our observation of a difference between DID-patients and DID-simulators, the
theory that amnesia in DID is real is not disproved by the data and, therefore,
the theory, for the time being, is not rejected. But it is not proven by the data
either.

Admittedly, this is a rather critical view of inductive inference. Popper’s
position has aptly been named critical rationalism. But as the term ratio-
nalism suggests, the views of Popper also have a more positive part that is
of interest to the present discussion. Whereas Carnap put the starting point
of scientific knowledge in primitive empirical facts, as captured in a formal
language, Popper put forward the view that science always starts with a hy-
pothesis, some bold claim or general statement, that we may subsequently
attempt to falsify. He referred to this as the searchlight theory of knowledge:
The realm of empirical fact can provide some kind of knowledge, but the re-
searcher has to provide a searchlight, more specifically a guiding hypothesis
via which this realm can make itself known. Put differently, it is not the obser-
vations that come to us with their own message, rather we take the initiative
to seek out the observations to meet our own interest. In comparison with the
empiricist and inductivist views of Carnap, Popper’s views show a marked
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rationalist tendency, in the fact that the mind rather than the world is the
first cause in the production of knowledge.

Summing up, we have dealt with two very different views on the problem
of induction in the foregoing. In the next two sections, we will argue that
statistical inference occupies a middling position between the two views and
that both Popper and Carnap fail to capture an important aspect of the
solution inherent to statistical inference. On the one hand, statistical inference
is inductivist, because it allows us to learn from the data. On the other hand,
it is rationalist, because what is learned from the data is entirely determined
by the statistical model that we choose.

16.3 Bayesian Inference as Deduction

The discussion on Carnap and Popper makes clear that the opinions on how
to justify inductive inference diverge widely. Because Bayesian statistical in-
ference is a way of dealing with inductive inference as well, the question of
how it might be positioned relative to these diverging opinions arises. In the
next two sections we will argue that Bayesian statistical inference contains
both falsificationist and inductivist elements. More in detail, in this section
we show that the methodology of Bayesian statistical inference can be spelled
out by framing these inferences in a probabilistic logic, following ideas of
Howson [13, 14] and Romeijn [18, 19]. It will become apparent that Bayesian
inference is similar to deductive inferences. This will lead to a discussion of
model selection procedures in the next section, which will reveal the position
of Bayesian statistical inference in the spectrum between Carnap and Popper.

16.3.1 Deductive and Inductive Inference

Let us briefly compare deductive and inductive logic. Recall that in deductive
logic, an argument is valid if the truth of its premises guarantees the truth of
the conclusion. So a perfectly valid argument might lead to a false conclusion,
on the grounds that one of its premises is false. Take, for example, the premises
that all apples are fruit and that all fruit grows on bulldozers. By deductive
inference, we therefore validly conclude that all apples grow on bulldozers,
even though this is most certainly not true. Deduction serves to explain and
rearrange our knowledge without adding to its content. Inductive inference, by
contrast, seems to add to the content of our knowledge. We obtain observations
and then amplify and generalize them to arrive at general conclusions. So
an important difference between deduction and induction seems to be that
whereas deduction is conceptually closed and only brings out the conclusions
already present in the premises, induction adds to the content of the premises.
As a result of this, conclusions obtained with inductive inferences do not
necessarily have the same degree of certainty as the initial premises.
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Nevertheless, in this section we will investigate the parallel between deduc-
tive and inductive inference. To do so, we will first study a specific deductive
argument, and after that we will introduce an argument in Bayesian logic
that can be seen as the inductive counterpart to the deductive argument. The
example of deductive inference that we will study is the so-called proof by
contraposition:

If H, then E (premise 1).
E is false (premise 2).
Therefore, H is false (conclusion).

To examine this inference in more detail, we will make use of the DID example
we discussed earlier. The analogy between deductive and Bayesian inference
suggests that, just like the deductive inference, Bayesian inference is valid.

16.3.2 Deduction in the DID Example

The full design of the study of Huntjes et al. [16] allowed the authors to
compare estimations of memory performance of DID-simulators (µsim), DID-
patients (µpat), true amnesiacs (µamn), and controls (µcon). We can formulate
many different general models concerning the memory performance of these
groups:

M0 : µsim < µpat = µamn < µcon

M1 : µsim = µpat < µamn < µcon

M2 : µpat = µcon = µsim = µamn

M3 : µpat > µcon > µsim < µamn

. . .

Note that this is a list of models, not of general hypotheses. The statement
that µsim < µpat = µamn < µcon, for example, is consistent with a large num-
ber of different valuations of these parameters, and each of these valuations
presents a separate hypothesis. So the statement concerns a set of hypotheses,
or a model for short.

For convenience we will make the example of the present section a bit
easier. First of all, we will abstract away from the parameters µamn concerning
amnesiacs and µcon concerning people from the control group. Second, in
this section we will not deal with models but with specific hypotheses (e.g.,
specific valuations for the parameters µpat and µsim). Third, we are restricting
attention to two hypotheses in particular, H0 and H1. For H0 we choose
particular values of the parameters such that µpat > µsim and for H1 we
choose them such that µpat = µsim. Moreover, we assume for the time being
that one of these two hypotheses is true and thus that all the other hypotheses
are false, or in logical terms, H0 ∨ H1, where the symbol ∨ can be read as
“or.” This expression is the first major premise in the deductive argument
below. Note also that from their definitions, the hypotheses H0 and H1 are
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Fig. 16.1. These three squares summarize the premises of the logical argument. The
leftmost square indicates that H0 ∨H1 and, thus, that all other hypotheses Hi for
i > 1 are deemed false. The middle square indicates that ¬(H0 ∧H1), by setting the
quadrants in which H0 and H1 overlap to 0. Finally, the rightmost square indicates
that H0 → E, which is equivalent to ¬(H0 ∧¬E). The three quadrants labeled 1 in
the rightmost square are the only logical possibilities consistent with the premises

mutually exclusive, so that ¬(H0 ∧H1), where ¬ means “not” and ∧ can be
read as “and.” This will turn out to be convenient in the representation of
the hypotheses below, but we will not use this premise in the argument.

So the inference concerns the two rival hypotheses H0 and H1. The em-
pirical evidence, as, for instance, provided in the study of Huntjes et al. [16],
is now used to adjudicate between these two hypotheses. First, we concen-
trate on a specific empirical difference between these two hypotheses, namely
that according to H0, DID-simulators have a worse memory performance than
DID-patients, and according to H1 the DID-simulators and true DID-patients
have equal performance. Accordingly, the relevant observations are the scores
of members of the two groups, patients and simulators, on some memory test.
We might, for example, find that the difference of the scores of the two groups
exceeds a certain threshhold, denoted E, or otherwise we might find that it
does not exceed the threshhold, denoted ¬E. For the purpose of this example,
we suppose that the test scores can tell the hypotheses apart unequivocally:
If H0 is true, then we are certain that the difference in scores on the memory
test exceeds a certain threshhold, or in logical parlance, H0 → E.

We can specify so-called truth values for each combination of hypotheses
and evidence, based on the premises of the above. It will be convenient and
insightful to represent these premises as truth valuations over all the logical
expressions that we can conceive; see the squares of Figure 16.1. As further
explained in the caption, the truth values in the quadrants indicate whether
the corresponding logical possibilities, or cells in the grid, are consistent with
the premises. More specifically, given some truth valuation over the logical
possibilities, we say that a proposition is true if and only if it is true in each of
the cells that is assigned a 1. The premises H0∨H1 and ¬(H0∧H1) are worked
out in the first two squares of Figure 16.1. They are, in a sense, implicit to the
presentation of the truth valuations in the rightmost square of Figure 16.1,
in which H0 and H1 are put side by side as mutually exclusive and jointly
exhaustive possibilities.

H0 ∨ H1

1 0

0 1

H0 H1

H0

H1

1

1

H0

H1

1 0

H2 ∨ H3...

0

1

E ¬ E
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1 1

0 1

0 1

1×0=
0

0×1=
0

1×0=
0

1×1=
1

E ¬ E

H0

H1

E ¬ E

Fig. 16.2. This calculation with squares summarizes the logical argument that
runs from the premises given previously, and the additional premise that ¬E, to
the conclusion of H1. The leftmost square is equivalent to the rightmost square
of Figure 16.1. The middle square expresses the premise ¬E. The truth values in
the rightmost square are obtained from the values in the other two squares by
multiplying the values in each of the quadrants

The latter square also expresses how the hypotheses H0 and H1 relate to
the data E. According to deductive logic, all the entailment H0 → E says
is that we cannot have the combination of H0 being true yet E being false,
so H0 → E is equivalent to ¬(H0 ∧ ¬E). In sum, the three quadrants of the
rightmost square that contain a 1 are the only logical possibilities consistent
with the premises.

With this graphical representation of the premises in place, we can bring
in the further premise presented by the observations. Say that we observed
that the scores of the two groups on the memory test are slightly different,
but that the difference does not exceed the given threshhold, so ¬E receives
a truth value of 1. In Figure 16.2, the corresponding truth values can be seen
in the middle square. The observation itself does not involve the hypotheses
and, therefore, H0 ∧ ¬E and H1 ∧ ¬E receive the truth value 1 and H0 ∧ E
and H1 ∧ E receive the truth value 0. So the square on the left and in the
middle of Figure 16.2 express the two main premises: One concerning the
hypotheses, stemming from Figure 16.1, and one concerning the observations.
The beauty of the graphical representation is that combining these premises
is a straightforward operation on the truth valuations: We simply multiply
the truth values of the two input premises, as expressed in the square on the
right of Figure 16.2.

After combining the premises, we see that only H1 ∧ ¬E receives a truth
value of 1. All the other cells have a truth value 0. We can therefore conclude
all propositions that include the specific cell H1 ∧ ¬E. Of course, we may
conclude ¬E, but this is hardly surprising, because it was also one of the
premises. However, we may also conclude H1. Via ¬E and H0 → E we learn
that H0 cannot be true, so ¬E falsifies H0, and by H0∨H1 we can derive that
H1 must be true. We can conclude that the DID-simulators and DID-patients
have equal capacities on memory performance.
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16.3.3 Choosing a Model

In the previous subsection we used deductive inference to derive a conclusion
from the premise concerning a finite set of hypotheses, the premise on how
the hypotheses relate to evidence of the observed memory performance and,
finally, a premise expressing what evidence we received. In this subsection and
the next, we will use essentially the same premises, with a minor revision, as
will be explained later, to derive a conclusion by means of Bayesian inference.
The conversion has two aspects, namely the use of probabilistic valuations
and of Bayes’ theorem. In this subsection we will deal with the former.

Apart from providing us with a convenient way of representing the opera-
tion of combining premises, the graphical representation of Figures 16.1 and
16.2 can be used to illustrate the parallel between deductive and Bayesian
logic, which we consider very telling. First, consider the graphical representa-
tion itself. As in the case of deductive inference, we take the logical possibilities
provided by the hypotheses and the evidence as a starting point. We distin-
guish between E and ¬E, and, similarly, we consider hypotheses Hj with
j = 0, 1, 2, . . .. Now we want to connect these logical possibilities to proba-
bility theory, which is, according to the standard axiomatization, a function
over sets, and, hence, we are taking the logical possibilities as sets as well.
The logical possibility H0 is the set of all those imaginable or possible worlds
in which the hypothesis H0 is true, and, similarly, E is the set of all those
possible worlds in which the observation E occurred. Accordingly, instead of
H0 ∧ E, we will write H0 ∩ E; that is, instead of working with the logical
operation ∧, from now on we use the set-theoretical operation of intersection.
Similarly, we will write ¬E as Ē, the set-theoretical complement of E.

Next consider the inference concerning the logical possibilities. Recall that
the idea of deductive inference was to find a truth valuation of certain propo-
sition, based on the truth valuations of a combination of premises. Again,
Bayesian inference does roughly the same. The key difference between deduc-
tive and Bayesian logic is that Bayesian logic does not use truth values of 0
and 1, as does deductive logic. Rather it uses probabilistic valuations p, that
is, valuations of logical possibilities within the interval [0, 1] and satisfying the
axioms of probability theory. So the cell H0 ∩E in the space of logical possi-
bility receives some probability, p(H0 ∩E) = 2/5 for instance. The probability
values of all the cells must sum to 1. But apart from that difference in valua-
tion function, the workings of Bayesian logic will turn out to be very similar to
the workings of deductive logic. Just like deductive logic, Bayesian logic com-
putes probabilistic conclusions on the basis of probability assignments over
logical possibilities.

Let us have a look at the above deductive inference to make the above
claims precise. The first premise in the foregoing is that we restrict ourselves
to two hypotheses, H0 and H1. We assigned a truth value of 1 to H0 ∨H1, so
that we ruled out all theHj for j > 1. In Bayesian logic, we can do the same by
assigning all probability to the hypotheses H0 and H1, p(H0∩H1) = 1; that is,
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Fig. 16.3. The square on the left represents the probability assignment over the
logical possibilities in terms of probability mass. The square on the right provides
the same information in terms of odds

only these two hypotheses receive a probability and the remaining hypotheses
H2,H3, . . . receive a probability of 0. But note that this probability assignment
is not yet specific enough: We still have many ways of allocating the probability
among the two hypotheses H0 and H1. On the basis of a symmetry argument,
we might distribute the total probability evenly: p(H0) = p(H1) = 1/2.

We have now chosen the hypotheses, but we have not determined the
probability assignment on the level of logical possibilities. Both the hypotheses
H0 and H1 might allow for the occurrence of the observations E and ¬E, and
we need to specify the probability valuations of these cells. Recall that in the
deductive case we said that H0 ∧ ¬E was impossible. This was admittedly a
rather strong assumption: Normally, test results cannot outright falsify any
hypothesis, rather they make hypotheses more or less likely. By using the
probability valuations, we can make such weak relations between observations
and hypotheses precise. If H0 is true, we think it is far more probable than not
that the difference between the DID groups on memory performance exceeds
the threshold, but this need not be strictly implied. So we might specify
that conditional on H0 being true, E is 4 times more likely than Ē, so that
p(E|H0) = 4/5 and p(Ē|H0) = 1/5. Similarly, if H1 is true, we might consider it
somewhat less probable than not that the difference between the DID groups
on memory performance exceeds the threshold, so we might specify p(E|H1) =
2/5 and p(Ē|H1) = 3/5.

Together with the probability assignment overH0 andH1, we have thereby
fixed the probability assignment for all the logical possibilities. We can com-
pute p(Hj ∩ E) = p(Hj)p(E|Hj) and, similarly, p(Hj ∩ Ē) = p(Hj)p(Ē|Hj).
This leads to the probability assignment over the logical possibility presented
in the left square of Figure 16.3. The square on the right side of this figure ef-
fectively depicts the same probability assignment, but written down in terms
of odds. The difference is that the odds do not have to add up to 1. Only their
ratios matter. In the following we will only make use of the odds.

Finally, we want to point to the relation of the above with Bayesian statis-
tics as we know it. In the foregoing we chose two hypotheses, defined the
probabilities of the observations conditional on them, and chose the proba-
bilities of the hypotheses themselves. In Bayesian statistics, this comes down
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to the choice of a model, or a set of possible statistical hypotheses, then the
definition of a likelihood function for each of the hypotheses in the model,
and the determination of so-called prior probabilities. Of course, statistical
models are normally much more complicated and elaborate, but the general
idea remains the same.

16.3.4 Bayesian Inference

As indicated, we are drawing an analogy between deductive inference and
Bayesian inference. It will be clear that the determination of probabilities,
or odds, over the logical possibilities in Figure 16.3 runs parallel to the first
of the two main premises in the logical argument, as summarized in Figure
16.1. Now the second premise of the Bayesian inference is almost the same as
the one we used for deductive inference. We observe Ē, and in the deductive
example, ¬E therefore receives a truth valuation of 1. In Bayesian inference,
as will be seen, we will say that the adapted probability for Ē must be 1.
The question is how the addition of this premise reflects on the probability
assignment over the logical possibilities, as given in Figure 16.3. In particular,
how is the adapted probability distributed between the hypotheses H0 and
H1?

Note first that the new premise is, strictly speaking, in contradiction with
the probability assignment already given. We have p(Ē) = p(H0∩Ē)+p(H1∩
Ē) and hence p(Ē) = 2/5. To express the probabilities after we observed Ē,
we must therefore make use of a so-called posterior probability assignment,
which we will denote with pĒ . This is a new probability assignment, which
is consistent with assigning Ē unit probability. To obtain the posterior prob-
ability assignment from the prior one, we can use the combination of Bayes’
rule and Bayes’ theorem:

pĒ(·) = p(·|Ē) = p(·)p(Ē|·)
p(Ē)

. (16.4)

Bayes’ theorem is given by the second equality. It is a theorem of probability
theory, and as such it is very hard to argue with. The interesting and con-
tentious equality is the first one, which we might call Bayes’ rule. Note that
it is not a theorem of probability theory. Rather it relates two different prob-
ability functions, the prior distribution p and the posterior distribution pĒ ,
and thus expresses how we must adapt the probabilities if we add the further
premise Ē. In other words, Bayes’ rule expresses how we can construct a new
probability assignment pĒ that incorporates the fact that we assign a prob-
ability 1 to the data Ē, based on the old probability assignment p, in which
the data Ē had a probability smaller than 1.

Now let us compute some posterior probabilities, based on the fact that
we have pĒ(Ē) = 1. By Bayes’ rule, we can compute the posterior probability
for the hypotheses H0 and H1 on the basis of the prior probability and the
likelihoods. For H1 we find
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Fig. 16.4. This calculation with squares summarizes the Bayesian statistical infer-
ence. The leftmost square is equivalent to the square on the right-hand side of Figure
16.3. The middle square expresses the premise ¬E. The odds in the rightmost square
are obtained from the values in the other two squares by multiplying the values in
each of the quadrants

pĒ(H1) = p(H1|Ē) = p(H1)
p(Ē|H1)
p(Ē)

=
1
2
×

3/5
2/5

=
3
4
; (16.5)

in words, the observation that Ē leads to a posterior probability for H1 that
is higher than the prior probability. In this sense at least, Bayesian inference
mimics the deductive inference, where Ē also favored H1. But why are we to
believe the posterior probabilities arrived at by means of Bayesian inference?

We will now argue that there is a much more genuine sense in which
the Bayesian inference resembles the deductive inference. This resemblance
provides us with a reason to believe that the posterior probabilities are in a
sense the correct probabilities for the hypotheses after the observation of Ē.
As Figure 16.4 illustrates, if we represent the probability valuations as odds,
we can combine the two main premises of the Bayesian inference in exactly
the same way as in deductive inference.

It is not a coincidence that the results of this operation are the odds that
correspond to the posterior probabilities arrived at by Bayesian inference.
Changing the probability assignment in accordance with the observation Ē, as
laid down in Equation (16.4), is nothing but the rescaling of the probabilities
to the proportions of the probabilities within Ē. This is exactly what the
formula does. Bayes’ rule allows us to “zoom in” on the probability assignment
over the hypotheses within Ē.

Thus, Bayesian inference is like deductive inference in two important re-
spects. First, they both make use of a valuation function over a set of elemen-
tary logical possibilities, although there are also differences here. As for these
possibilities, in the case of deductive inference they are maximally specific
propositions, and in the case of Bayesian inference they are sets of possi-
ble worlds. As for the valuations, in the case of deductive inference they are
truth valuations, and in the case of Bayesian inference they are probabilities.
Second, and most notably, the operation for combining a valuation with a
further premise, in particular with an observation such as Ē, is exactly the
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same. Rather suggestively, we might say that Bayesian inference is therefore
valid in exactly the same way as that deductive inference is.

Although it has been noticed before, we want to emphasize again that
the above example is nothing like a serious Bayesian statistical inference:
Usually the model contains many more statistical hypotheses, and there are
normally many more possible observations, or elements, in the sample space.
However, the inferential steps are exactly the same. In Bayesian statistics
we choose a model, fix the likelihoods of the hypotheses in the model, and,
finally, determine a prior. Then we collect data and incorporate these data
in the so-called posterior probability assignment over the model by means of
a Bayesian update. We therefore maintain that the above example tells us
something about Bayesian statistical inference in general.

16.3.5 Summing up

We have discussed how to derive a conclusion based on a set of premises,
first by using deductive inference and then by using Bayesian inference. We
have shown that Bayesian inference follows roughly the same procedure as
deductive inference. This suggests that Bayesian inference, like deductive in-
ference, is valid; that is, if the premises are true, then so is the conclusion.
In the following we will elaborate how these ideas may be used to position
Bayesian statistics in the philosophical debate over statistics and, in partic-
ular, how they can be applied to the Bayesian model selection described in
Section 16.1.

16.4 Model Selection

We have seen that Bayesian statistics can be provided with a philosophical
underpinning by portraying it as a logic. Against this backdrop we will now
explain how statistics, and Bayesian statistics in particular, unites the views
of Carnap and Popper on induction. This may well raise some eyebrows: In
what sense do we do justice to Popper’s views when we redistribute probability
over a number of hypotheses in the light of data? Recall that an important
aspect of Popper’s view is falsificationism, which states that we can only learn
from data if the data rule out some hypothesis. Bayesian statistical inference
goes much further than that, because it allows us to learn positive facts from
the data. Nevertheless, in the following we will argue that, in some important
respect, Bayesian statistical inference retains the rationalist spirit.

16.4.1 Models as Uniformity Assumptions

The foregoing already indicated that in a Bayesian inference, the choice for
a model can be understood as the choice of a certain kind of premise. We
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drew a parallel between, on the one hand, the choice for a prior restricted to
p(H0) = p(H1) = 1/2 together with the likelihood functions of both hypotheses
and, on the other hand, the choice for H0 ∨ H1 together with H0 → E. In
this subsection we will investigate this parallel further. In particular, we will
relate the choice of a certain model, as elaborated in Section 16.3, with the
choice of a certain set of projectable predicates, as discussed in Section 16.2.

Let us return to the nature of inductive inference as it was illustrated
in the example of Section 16.2.1. It can be noted that the inference from
Statement 1 to Statement 2, by itself, seems to miss a component. It is more
or less implicit in the inference that what has happened in the past can be
expected to happen in the future. As we discussed, one possible take on the
problem of induction is that this component must be added to the inductive
inference as an explicit premise. At first glance this premise might simply be
that the world is a boring place and that the same events will keep repeating
themselves. But it was easily seen that simply adding this premise cannot
solve the problem: We ran into predicates like Grue. As exhibited clearly in
the inductive logical systems devised by Carnap, if we want to infer anything
inductively, we must choose the exact set of predicates with respect to which
the world is boring, that is, the predicates that are supposed to stay constant.
In philosophical parlance, we must select the projectable predicates.

There is a rather nice formal relation between the Carnapian systems
and Bayesian statistical inference, which has an immediate bearing on this
point. Note first that the c-function of Equation (16.3) only depends on the
number of earlier results, n0 and n1, and not on the exact order in which
these results were observed. Inductive logical systems with this property are
called exchangeable. Famously, De Finetti [8] proved that any exchangeable
inductive logical system can be represented as a Bayesian inference over a
particular model, namely the model of binomial hypotheses, and furthermore
that every prior over this model singles out a unique exchangeable system. As
in the foregoing, we write Q1

n+1 for the result of person n + 1 scoring above
chance level in a memory test, meaning that this person scored better than
the expected score of filling in the test randomly. We denote the binomial
hypotheses with Hθ. These hypotheses have the following likelihoods:

p(Q1
n+1|En ∩Hθ) = θ. (16.6)

This means that all test results are independent and identically distributed.
The model of binomial hypotheses, which features in De Finetti’s representa-
tion theorem, includes all these hypotheses: {Hθ : θ ∈ [0, 1]}. It can be proved
that prior probability functions of the form p(Hθ) ∼ θγλ−1(1−θ)(1−γ)λ−1 lead
to the Carnapian inductive systems of Equation (16.3); that is,

c(Q1
n+1, En) =

∫ 1

0

p(Q1
n+1|Hθ ∩ En)p(Hθ|En) dθ, (16.7)

in which c(Q1
n+1, En) is the expected value of the response of subject n + 1

given earlier responses En, p(Q1
n+1|Hθ∩En) is the likelihood of the hypothesis
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Hθ for the event of this subject scoring above chance level, and p(Hθ|En) is
the posterior probability over all hypotheses Hθ in the model of binomial
hypotheses, given the earlier responses En. The interested reader may consult
Festa [9] for further details on this. For present purposes it is only important
to remember that Carnapian inductive systems can be replicated in a Bayesian
inference.

This mathematical fact provides us with crucial insight into the nature
of choosing a model. Recall that in the Carnapian system, the choice of the
predicates, in this case scoring above, on, or below chance level in the mem-
ory test, effectively determined the projectable or stable pattern in the data:
The observed relative frequencies of scoring were supposed to be indicative of
the scoring of future subjects. But we can identify exactly these projectable
patterns in the statistical model that, according to the representation theo-
rem, underpins the Carnapian system. For each of the binomial hypotheses,
the probability of scoring above chance level is stable and constant over time.
The choice for this specific set of hypotheses, or this statistical model for
short, is effectively the choice for a set of projectable predicates, namely the
chance for scoring over a certain level is stable and constant over time. In our
view this is exactly the function of choosing a model as part of a Bayesian sta-
tistical inference: to fix the starting point, namely the set of hypotheses and
the associated probabilistic patterns, so that the data are allowed to select
the most fitting one.

The choice for a specific model, or for specific hypotheses to be part of
the model, reflects the interest and often the background knowledge of the
researcher. But this also means that a researcher can help herself to more
informative conclusions by choosing her hypotheses well and, similarly, that
she can ruin it by choosing her model poorly. For instance, she might choose
for the gruesome variants of the binomial hypotheses introduced in the above:

p(Q1
n+1 = 1|En ∩GNθ) =

{
θ if n < N

(1− θ) if n ≥ N ;
(16.8)

in words, the hypotheses GNθ dictate that up until the Nth observation Qq
n

for n < N the probability for q = 1 is θ, but that for n ≥ N the probability
for q = 1 is (1 − θ). We might take the model {GNθ : θ ∈ [0, 1]} for some
large N , choose a uniform prior p(GNθ)dθ = 1, and then start updating with
observations of subjects doing the memory test. For values of n+ 1 < N the
choice of this model leads straightforwardly to the Carnapian prediction rule of
Equation (16.3), with γ = 1/2 and λ = 2. Now say that, by far, most subjects
i < N pass the test, so that n1 >> n0. Using the Carnapian system and
assuming that n < N , we have p(Q1

n+1|En) � p(Q0
n+1|En). But what can we

predict for the subject indexed i with i > N on the basis of En? Because of the
sudden reversal in the likelihood functions of the hypotheses, we effectively
swap the places of scoring on or above chance level in the prediction, so
on the basis of a large majority of people exceeding chance level in En, we
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predict that subjects i > N will most likely fail! Or in mathematical words,
p(Q1

i |En) � p(Q0
i |En) for i ≥ N .

We saw in the example on gruesome predicates of Section 16.2.2 that the
wrong predicate choice may lead to useless predictions, and we have here seen
that the same holds for the choice of models, thus indicating how the choice of
a certain model resembles the choice of a projectable predicate. Bayesian sta-
tistical inference therefore has, at least, this one distinct Carnapian streak: It
allows for inductive inference on the basis of a specific uniformity assumption.

16.4.2 Models as Searchlight

In the foregoing we claimed that Bayesian statistical inference occupies a
middle position between Carnap and Popper. Partly the link with Carnap has
now been made clear, and so we turn to the relation with Popper, in particular
with his searchlight theory of knowledge alluded to in Section 16.2.5.

We first identify this searchlight theory in Bayesian statistical inference,
which will point us to an important difference between Carnapian inductive
systems and Bayesian statistical inference. We have already seen how both
make use of specific uniformity assumptions. However, in the case of Car-
napian systems, there seems to be very little by way of actively choosing, let
alone comparing the assumptions. In the views of Carnap, the choice for a lan-
guage, and thus the uniformity assumptions inherent to it, is a precondition
for dealing with the problem of induction in terms of a logic. In fact, accord-
ing to Carnap [3], it is a precondition for dealing with philosophical problems
in general. So it seems that for Carnapian systems, the choice for a specific
uniformity assumption is beyond the reach of logical analysis. By contrast,
in Bayesian statistical inference the choice for a uniformity assumption, by
choosing a model, is an explicit part of the logical account. As also argued
in the foregoing, the choice of a model determines the type of probabilistic
pattern that we can identify in the data. In other words, it provides us with
a searchlight looking at the data. The explicit choice for a model signals a
rationalist tendency in Bayesian statistical inference. The origin of empirical
knowledge is not naked observation, but observation within the context of a
theoretical starting point, namely a model.

We may wonder whether we can extend the parallel between the Poppe-
rian view on induction and Bayesian statistics, in particular whether Bayesian
statistics presents us with a notion of falsification. To answer this, consider
the probabilistic inference in the example of Section 16.3.4. We might argue
that this Bayesian inference already exhibits a weak form of falsification: The
hypothesis H0 is proved unlikely by the data, and so we may decide to dis-
card that hypothesis, or at least not use it in predictions or decision making.
However, apart from the fact that low probability is not the same as logical
impossibility, the use of the specific model {H0,H1} determines that either
one of them will accumulate most probability in the light of the data. So by
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discarding H0 we can infer H1. Therefore, discarding H0 is not a falsification
of the starting point of the inference, namely the model {H0,H1}.

In the DID example, it may happen that we find further data E′ for which
p(E′|H1) is very small, so that H1 fits poorly with the data as well. In such a
case the whole model fits poorly with the data. Similarly, in the example con-
cerning the hypotheses GNθ of the preceding section, we may observe further
subjects i ≥ N doing the memory test. On the basis of our model choice and
the fact that subjects i < N performed very well, we expect these new sub-
jects to perform very poorly. But it may certainly happen that the subjects
i ≥ N perform very well. We then want to conclude that something was amiss
with the model choice, (e.g., that the true hypothesis is not to be found among
the hypotheses in the model). Note also that such cases do not allow us to
draw any positive conclusions: We just conclude that none of the hypotheses
in the model is any good and that some unspecified other hypothesis would
have been better. Such cases of poor model fit come a bit closer to the idea of
falsification in Popper. Now we want to emphasize immediately that finding a
poor model fit is not the same as definitively falsifying the model, in the same
way as that finding a low probability for H0 is nothing like logically deriving
the falsehood of H0. Low probability, or even zero probability for that matter,
is entailed by but does not entail logical impossibility. Still, the closest we can
get within Bayesian statistical inference to the idea of falsification is the idea
of poor model fit.

However, the falsification of a model is not an integral part of the Bayesian
inference machinery. The model can be chosen explicitly in the Bayesian infer-
ence, by distributing prior probability over a restricted set of hypotheses. But
the tools of Bayesian inference do not allow for changes to that initial choice
for a model. In the words of Dawid [7], the Bayesian is “well-calibrated”: In-
herent to the choice of set of hypotheses (i.e., a model), is the assumption that
the true hypothesis is among them. It is impossible to change this assumption
without after the fact changing the prior probability, which is a non-Bayesian
move. Of course we can change a statistical model in a controlled and rational
way, by turning to model selection techniques [1]. There are various criteria
for model fit and various ways of off-setting model fit against the complex-
ity of models. But with the exception of the Bayesian information criterion,
the standard model selection techniques do not take the explicit form of a
Bayesian inference. Even the Bayesian information criterion only employs an
approximation of posterior model probabilities.

16.4.3 Bayesian Model Selection

We are now ready to present Bayesian model selection, as it was presented
in Section 16.1, against the philosophical background of Bayesian statistics.
Concerning this philosophical background, we argued that it combines the
inductivist view of Carnap with the falsificationist view of Popper. As in the
work of Carnap, Bayesian statistics allows us to reason inductively from the
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data by assuming that certain data patterns, summarized in a model, are
invariant. But this is only possible once we have made a specific selection of
hypotheses to begin with, and in this sense, Bayesian statistics also have a
marked Popperian component. In the same line, the assessment of a model
against the data runs parallel to falsification in the view of Popper.

How does Bayesian model selection fit into this background? It is impor-
tant to keep clear on the roles of models and hypotheses here. Bayesian model
selection deals with the assessment of model fit (i.e., with the fit of a collection
of statistical hypotheses). It therefore extends the reach of standard Bayesian
statistical inference, which concerns the fit of specific statistical hypotheses
once the model is given. On the other hand, in Bayesian model selection the
rival models are understood as statistical hypotheses themselves, that is, they
are somehow understood as claims about patterns in the data, as expressed in
a likelihood function. These likelihood functions are not straightforwardly de-
fined, as they are in the case of a normal Bayesian statistical inference. They
are so-called marginal likelihoods, because they involve the likelihoods of the
hypotheses inside the rival models. Bayesian model selection is thus similar
to standard Bayesian statistical inference, in the sense that rival models are
treated as if they were normal statistical hypotheses. This makes Bayesian
model selection very attractive: It benefits from all the arguments standardly
given to support Bayesian statistical inference. However, the key difference
also leads to some problematic aspects, to which we will now turn.

16.5 A Challenge for Bayesian Model Selection

This section discusses some problematic aspects of applying Bayesian inference
to models. These aspects relate directly to the philosophical background for
Bayesian statistical inference, as provided in the preceding sections. First,
we take a closer look at the fact that in Bayesian model selection, models are
conceived as hypotheses. Second, we discuss how to understand the probability
assignments over models. First, we provide a tentative solution, but it will be
seen that this solution puts more weight on the second problem. The section
ends with a challenge to the proponents of Bayesian model selection.

16.5.1 Models as Hypotheses?

To illustrate the first of our two concerns, it is useful to recollect a well-known
finding from the psychology of reasoning, concerning the so-called conjunction
fallacy. In an experiment done by Tversky and Kahneman [20], subjects were
presented with the following story:

Linda is 31 years old, single, outspoken, and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations. Which is more likely?
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1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.

Rather surprisingly, a majority of normal subjects think the second fact to
be the more likely one. This is odd, because the axioms of probability do
not allow a conjunction to be more probable than either of its conjuncts: It
is a theorem that p(E ∧ E′) ≤ p(E) for any pair of events or facts E and
E′. Clearly, people do not follow the axioms of probability in their intuitive
judgments of likeliness.

Next, consider the example of Bayesian model selection in Section 16.1,
and in particular the two models that are being compared: M0 and M1.
Recall that both models consisted of the same hypotheses Hµpatµsim , that M0

contained all these hypotheses, and that the model M1 was subject to the
further constraints that µpat < µsim. At first sight, this situation is completely
identical to the situation with Linda the bank teller. We may write the model
M1 as a conjunction of facts, namely the model M0 and the further fact that
µpat < µsim. This fits well with the fact that the set of hypotheses associated
with M1 is strictly included in the set of hypotheses associated with M0. It
is, under closer scrutiny, truly remarkable that a set that is strictly included
in another set can nevertheless have a larger probability. Is Bayesian model
selection implicitly violating the axioms of probability?

The reader will be relieved to find that the answer to this question is
negative. To explain this, we simply need to cast the comparison of both
models and hypotheses in a different set-theoretical framework, as illustrated
in Figure 16.5. As we have conceptualized the two models M0 and M1 in
the above, they are overlapping sets. Even stronger, all elements Hµpatµsim

in M1 are also a member of M0. However, nothing prevents us from us-
ing two distinct sets of hypotheses, labeled H0µpatµsim and H1µpatµsim , which
are different from a set-theoretical point of view by virtue of being labeled
differently, even while they have exactly the same likelihood functions over
the data. The model M0 consists of the hypotheses H0µpatµsim

, whereas the
model M1 consists of the different hypotheses H1µpatµsim

. The model M1 is
further restricted by the fact that p(H1µpatµsim

) = 0 if µpat ≥ µsim. In this

Fig. 16.5. The leftmost square shows the two models as nested sets of statisti-
cal hypotheses. On the right side, the two models are disjunct sets of statistical
hypotheses, but these hypotheses have identical likelihood functions
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framework, Bayesian model selection is not presenting a blatant violation of
the axioms of probability. However, we may now argue that something else is
wrong.

The empirical content of ordinary statistical hypotheses is in their likeli-
hood function, that is, statistical hypotheses can in a sense be told apart by
the data, even though they are distinguishable only in the limit. Consider,
for example, the hypotheses of Section 16.4.1, as defined in Equation (16.6).
It is logically possible that the hypothesis Hθ with θ = 1/2 is true and that
nevertheless the limiting relative frequency of passings in an infinitely long
sequence of test results is equal to some other fraction, such as 3/4; the inter-
ested reader may consult Gaifman and Snir [10]. But the probability of this
happening is 0. In close connection to this, there are the so-called convergence
theorems of Bayesian statistical inference, which show, in general, that if the
hypothesis Hθ is true, the posterior probability p(Hθ|En) will tend to 1 in the
limit of larger and larger datasets En. In this particular sense we can say that
ordinary statistical hypotheses can be told apart by the data.

With this notion of empirical content in place, consider the two statistical
models M0 and M1 of the DID example, which consist in part of statistical
hypotheses that have identical likelihood functions. Can they be told apart
by the data in the limit? Of course, if the true hypothesis does not satisfy the
restriction imposed by the model M1, namely that µsim < µpat, then given
sufficient data, the posterior probability of model M0 will tend to 1. However,
if the true hypothesis does satisfy the restriction imposed by the model M1,
then there is no such limiting behavior. In that case there are two hypotheses
with correct values for µpat and µsim, namely H0µpatµsim and H1µpatµsim .
These two hypotheses have exactly the same likelihood function, hence there
can never be any piece of data that tells against the one and in favor of
the other. Admittedly, within the two models M0 and M1 separately, the
convergence theorems alluded to in the foregoing take care that the hypotheses
H0µpatµsim

and H1µpatµsim
will both attract all the probability. But exactly

because H0µpatµsim and H1µpatµsim will in the limit attract all probability
within their respective models, the initial probability ratio between the two
hypotheses H0µpatµsim

and H1µpatµsim
will be retained. To be precise, we have

p(H0µpatµsim
)dµpatµsim = 1/2 and p(H1µpatµsim

)dµpatµsim = 1, because the
prior over models is p(M0) = p(M1) = 1/2 , where within the two models the
prior is uniform, and thus p(M0|En) = 1/3 and p(M1|En) = 2/3 for n → ∞.
For a more detailed discussion of this effect in the DID example, we refer to
Chapter 4.

Summing up, it seems that we can avoid a violation of the axioms of
probability in Bayesian model selection. We can do so by reconceptualizing
the models involved in the selection. However, understanding models in this
way may leave us with an identifiability problem: If the true parameter values
satisfy the restriction at issue, the data do not single out a unique statistical
hypothesis, or a single model for that matter. Instead we retain the difference
between the hypotheses and models that we have ourselves imposed at the
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onset. We may argue that this is not a big deal. After all, once we have
gained access to true parameter values, the distinction betweenH0µpatµsim and
H1µpatµsim , or between M0 and M1, may be inessential. This reaction leads
us to consider the following question: How can we interpret the intermittent
probability assignments over the two models, as long as we do not have the true
parameter values? What, if we are eventually interested in the true parameter
values, are these probability assignments about?

16.5.2 The Probability of a Model

Unfortunately, these questions are not a cliffhanger, or some other rhetorical
device. By way of an answer we only have some suggestions to offer. However,
we do feel that these suggestions invite further research, and we are confident
that such research will not be in vain.

One rather natural answer to the above questions is that the probabil-
ity of the model presents us with a specific trade-off between two different
aspects of model selection. On the one hand, the probability of the models
measures model fit: The better the hypotheses within a model fit the data,
the higher the marginal likelihood of the model, and hence the higher the
posterior model probability. On the other hand, the probability of the model
reflects the simplicity of the model. The number of inequality restrictions in
a model is directly related to the value of the probability density function
within the model. For example, as indicated in the foregoing, the hypotheses
in M1 have a probability that is twice as large as that of their empirically
equivalent counterparts in M0, because in an intuitive sense the space oc-
cupied by M1 is half of that occupied by M0. The probability density over
the restricted model is therefore twice as large as the probability density over
the unrestricted model. Hypotheses in a restricted and hence simpler model
are thus given a head start via the prior. This is reminiscent of the standard
situation in model selection, in which typically the more complex model has
more parameters and hence occupies a larger space as well.

This view on Bayesian model selection invites a host of further questions.
One question is whether we have any reason for choosing this specific trade-
off between simplicity and model fit. It is as yet unclear whether the bonus
for simplicity that is implicit in Bayesian model selection always latches onto
our intuitive or independently motivated criteria for the model selection at
hand. If this is not the case, we may tweak the priors over the models, as
they can be used as an independent component in Bayesian model selection.
Another question is how the trade-off between simplicity and fit fares in cases
in which the two models are of different dimensionality, for example if we
compare the model M0 to a third model, M2, which has the restriction that
µpat = µsim. In such cases of differing dimensionality, we may also ask how
Bayesian model selection relates to other ways of trading off simplicity and
fit (e.g., Aikaike’s criterion), which concerns differing dimensionality as well.
These are all legitimate research questions. We expect that a study into the
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relation between Bayesian model selection and complexity will therefore be
very fruitful.

Apart from weighing simplicity and fit against each other, we can conceive
of another function for comparing models in a Bayesian model selection proce-
dure. It may be that eventually the interest of a Bayesian statistical inference
lies in determining the values of the parameters in a statistical model. The
employment of several models in a Bayesian model selection procedure may
be a way of finding the best estimate for some parameter efficiently. This view
on the use of several models leads us to consider an interpretation of the pos-
terior model probabilities of an entirely different nature, namely as a clever
means to enhance the convergence properties of the Bayesian inference. But
before we wholeheartedly adopt this view, it will be wise to investigate the
convergence properties of Bayesian statistical inference using multiple models
in more detail.

Whatever the exact results of either of the two research lines suggested in
the foregoing, we feel that we have already taken one step forward. By de-
scribing Bayesian model selection as the continuation of Bayesian statistical
inference and by describing the latter as the continuation of deductive infer-
ence, we have provided a context for understanding Bayesian model selection
in a philosophical way. We hope that the groundwork is laid and that any
further investigations into understanding posterior model probabilities and
Bayes’ factors do not have to start at square one.
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