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Preface

As sequencing technology improves and costs decrease, more and more laboratories are
performing RNA-Seq to explore the molecular mechanisms of various biological pheno-
types. Due to the increased sequencing depth available, the purposes of transcriptome
studies have also been expanded extensively. In addition to the conventional uses for gene
annotation, profiling, and expression comparison, transcriptome studies have been applied
tor multiple other purposes, including but not limited to gene structure analysis, identifica-
tion of new genes or regulatory RNAs, RNA editing analysis, co-expression or regulatory
network analysis, biomarker discovery, development-associated imprinting studies, single-
cell RNA sequencing studies, and pathogen—host dual RNA sequencing studies.

The aim of this book is to give comprehensive practical guidance on transcriptome data
analysis with different scientific purposes. It is organized in three parts. In Part I, Chapters 1
and 2 introduce step-by-step protocols for RNA-Seq and microarray data analysis, respec-
tively. Chapter 3 focuses on downstream pathway and network analysis on the differentially
expressed genes identified from expression profiling data. Unlike most of the other proto-
cols, which were command line-based, Chapter 4 describes a visualizing method for tran-
scriptome data analysis. Chapters 5-11 in Part II give practical protocols for gene
characterization analysis with RNA-Seq data, including alternative spliced isoform analysis
(Chapter 5), transcript structure analysis (Chapter 6), RNA editing (Chapter 7), and
identification and downstream data analysis of microRNA (Chapters 8 and 9), lincRNA
(Chapter 10), and transposable elements (Chapter 11). In Part II1, protocols on several new
applications of transcriptome studies are described: RNA—protein interactions (Chapter 12),
expression noise analysis (Chapter 13), epigenetic imprinting (Chapter 14), single-cell RNA
sequencing applications (Chapter 15), and deconvolution of heterogeneous cells
(Chapter 16). Some chapters cover more than one application. For example, Chapter 5
also presents the analysis of single molecule sequencing data in addition to alternative
splicing analysis; Chapter 12 also gives solutions for the analysis of small RNAs in bacteria.
Some topics were not included in this volume due to various factors, e.g., analysis on circular
RNAs, metatranscriptomics, biomarker identification, and dual RNA-Seq. For circular
RNAEs, there are numerous published papers or books with protocols that can be followed.
Metatranscriptomics is a new technique and data-oriented methods for analysis are still
lacking. For most other applications, the core protocols for data processing and analysis are
the same as presented in the chapters of this volume.

Shenzhen, China Yejun Wanyg
Blacksburg, VA, USA Ming-an Sun
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Comparison of Gene Expression Profiles in Nonmodel
Eukaryotic Organisms with RNA-Seq

Han Cheng, Yejun Wang, and Ming-an Sun

Abstract

With recent advances of next-generation sequencing technology, RNA-Sequencing (RNA-Seq) has
emerged as a powerful approach for the transcriptomic profiling. RNA-Seq has been used in almost every
field of biological studies, and has greatly extended our view of transcriptomic complexity in different
species. In particular, for nonmodel organisms which are usually without high-quality reference genomes,
the de novo transcriptome assembly from RNA-Seq data provides a solution for their comparative tran-
scriptomic study. In this chapter, we focus on the comparative transcriptomic analysis of nonmodel
organisms. Two analysis strategies (without or with reference genome) are described step-by-step, with
the differentially expressed genes explored.

Key words Nonmodel organism, RNA-Seq, Next-generation sequencing, Differential expression,
Transcriptome, de novo transcriptome assembly

1 Introduction

Recent advantages in next-generation sequencing have enabled the
development of RNA-Seq—a powerful approach allowing the
investigation of transcriptome at unsurpassed resolution [1].
RNA-Seq has the potential to reveal unprecedented complexity of
the transcriptomes, to provide quick insights into the gene struc-
ture without the requirement of reference genome, to expand the
identification for the genes of interest, to develop functional molec-
ular markers, to quantify gene expression, and to compare gene
expression profiles [2]. These advantages have made RNA-Seq the
most popular method for transcriptome analysis [3]. In particular,
unlike microarray which is another popular method for transcrip-
tome profiling but needs to be designed according to presequenced
reference genome, RNA-Seq could be applied for the transcrip-
tomic study in nonmodel organisms [4 ]. Next-generation sequenc-
ing becomes more affordable in recent years, making RNA-Seq
more and more popular in ordinary molecular biology laboratory.

Yejun Wang and Ming-an Sun (eds.), Transcriptome Data Analysis: Methods and Protocols, Methods in Molecular Biology,
vol. 1751, https://doi.org/10.1007/978-1-4939-7710-9_1, © Springer Science+Business Media, LLC 2018
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RNA-Seq has already been used in almost every field of biological
studies, and has greatly extended our view of transcriptomic com-
plexity in different species. However, the huge amounts of reads
generated by RNA-Seq pose great challenges to the assembly and
analysis of complete transcriptomes. Fortunately, recent progresses
in bioinformatics provided powerful tools for RNA-Seq analysis of
species lacking high-quality reference genome.

In nonmodel organisms, de novo transcriptome assembly is the
first step for constructing a reference when the complete genome
sequences are absent. In recent years, several tools have been devel-
oped for de novo transcriptome assembly, such as Trinity,
SOAPdenovo-Trans, and ABYSS [4-6]. These tools each have
their own merits for dealing with different types of genomes. The
short reads are then mapped to the reference transcriptome, and
the read counts of each transcript are normalized and compared
between each sample. In this step, we usually use RSEM for quan-
tifying transcript abundances [7]. The final step is to annotate each
transcript and to visualize the expression results.

The tools mentioned above greatly facilitate transcriptome
assembly and promote RNA-Seq studies in the nonmodel organ-
isms. In recent years, a great number of studies appeared to identify
differentially expressed (DE) genes between specific treatments or
tissues [8—13]. In this chapter, we give a step-by-step protocol to
assemble a reference transcriptome and to explore DE genes from
RNA-Seq data.

2 Materials

2.1 Software
Packages

2.1.1  SRA Toolkit

All the software packages need to be installed in your workstation in
advance. Because most bioinformatics tools are designed for Linux
operating systems, here we demonstrate each step according to 64-bit
Ubuntu OS. For the convenience of running the commands in
your working directory, add the folders containing your executes
into your PATH environment variable so that the executes could be
used directly when you type their names. To be noted, some software
used in this protocol may be not the latest version. In such case, it is
highly encouraged to download the latest version for use.

Download the SRA toolkit [14 ], unpack the tarball to your desti-
nation directory (e.g., /home/your_home/soft/), and add the
executables path to your PATH, type:

wget http: //ftp-trace.ncbi.nlm.nih.gov/sra/sdk /current /sratool
kit.current-centos_linux64.tar.gz.



http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/current/sratoolkit.current-centos_linux64.tar.gz
http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/current/sratoolkit.current-centos_linux64.tar.gz

2.1.2 FastQC

2.1.3 Trinity

2.1.4 RSEM

215 R
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tar xzf —C /home /your_home /soft/ sratoolkit.current- centos_
linux64.tar.gz

export PATH=/home/your_home /soft/sratoolkit.2.7.0-

ubuntu64 /bin:$PATH

Download the FastQC package [15], unpack and add the directory
to your PATH.

wget http://www.bioinformatics.bbsrc.ac.uk /projects /fastqc/
fastqc_v0.10.1.zip

unzip fastqc_v0.10.1.zip —.d /home/your_home /soft/

export PATH=/home /your_home /soft /FastQC:$PATH

Download the Trinity package [4], unpack, and add the directory
to your PATH.

wget  https: //github.com/trinityrnaseq/trinityrnaseq/archive /
v2.2.0.tar.gz.

tar xzf —C /home/your_home/soft/ trinityrnaseq-2.2.0.tar.gz

export PATH=/home /your_home /soft/trinityrnaseq-2.2.0:
$PATH

export PATH=/home/your_home /soft/trinityrnaseq-2.2.0 /
util:$SPATH

Download the RSEM package [7], unpack, and add the RSEM
directory to your PATH.

wget https: //github.com /deweylab /RSEM /archive /v1.2.8.tar.gz

tar xzf -C /home /your_home/soft/ RSEM-1.2.8.tar.gz

export PATH=/home /your_home/soft/rsem-1.2.8:$PATH

Download R [16], unpack and then install.

wget https: //cran.r-project.org/src/base /R-3 /R-3.2.2 .tar.gz

tar zxf —C /home/your_home /soft/ R-3.2.2.tar.gz

cd /home/your_home /soft/R-3.2.2

./configure ./configure --prefix=/home/your_home /bin



http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/fastqc_v0.10.1.zip
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/fastqc_v0.10.1.zip
https://github.com/trinityrnaseq/trinityrnaseq/archive/v2.2.0.tar.gz
https://github.com/trinityrnaseq/trinityrnaseq/archive/v2.2.0.tar.gz
https://github.com/deweylab/RSEM/archive/v1.2.8.tar.gz
https://cran.r-project.org/src/base/R-3/R-3.2.2.tar.gz
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2.1.6 Bowtie2

2.1.7 Tophat
(See Note 1)

2.1.8  Cufflinks

make

make check

make install

Download Bowtie2 package [17], unpack, and then add Bowtie2
directory to your PATH.

wget  http://jaist.dl.sourceforge.net/project/bowtie-bio /bow
tie2/2.2.6 /bowtie2-2.2.6-linux-x86_64.zip

unzip bowtie2-2.2.6-linux-x86_64.zip -d /home/your_home/
soft/

export  PATH=/home/your_home/soft/  bowtie2-2.2.6:
$PATH

Download Tophat [18], unpack and install, and then add the
directory to your PATH.

weget http://ccb.jhu.edu/software /tophat/downloads /tophat-
2.0.9.Linux_x86_64.tar.gz

tar zxf tophat-2.0.9.Linux_x86_64.tar.gz

cd tophat-2.0.9.linux_x86_64

./ configure --prefix=/home/your_home /soft/tophat2

make

make install

export PATH=/home/your_home /soft/tophat2:$PATH

Download Cufflinks [19], unpack and then add the directory to
your PATH.

wget http: //cole-trapnell-lab.github.io /cufflinks /assets /down
loads/cufflinks-2.2.1.Linux_x86_64.tar.gz

tar xzf —C /home/your_home/soft/ cufflinks-2.2.1.Linux_x86_
64 .tar.gz
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export PATH= /home /your_home/soft/cufflinks-2.2.1.Linux_
x86_64:$PATH

EBSeq [20] is an R Bioconductor package for gene and isoform
differential expression analysis of RNA-Seq data. For installation,
just start R and enter:

source( "https://bioconductor.org/biocLite.R")

biocLite("EBSeq")

DESeq [21] is an R Bioconductor package for differential expres-
sion analysis with reads count data. To install it, start R and enter:

source("https: //bioconductor.org/biocLite.R")

biocLite("DESeq")

Most public RNA-Seq data could be downloaded from NCBI SRA
database (https://www.ncbi.nlm.nih.gov/sra) (se¢ Note 2). In this
protocol, we use RNA-Seq data set from the rubber tree. This data set
includes six samples from control and cold stressed conditions with
three biological replicates, which are denoted as “control” and “cold.”

3 Methods

3.1 RNA-Seq Data
Quality Control

Download the RNA-Seq data from NCBI SRA database and place
the files in your working directory (e.g., /home/your_name/
NGS/SRA). Run the commands as demonstrated in this protocol
in your working directory (see Notes 3 and 4).

1. Generate FASTQ files from SRA files. To extract FASTQ files
from downloaded sra files, and put them in a new folder “fq”,
go to your NGS data directory and type (see Note 5):

fastq-dump -O ./fq --split-files . /SRA /SRR *.sra
2. Quality controlling by fastQC (se¢ Note 6).

fastqc -o ./qc -f fastq ./fq/Sample* fastq

3. Remove reads of low quality (optional). In most cases, the low
quality reads have been removed when the sequences were
transferred from the service supplier. In this example, the
FASTQ file has been filtered when submitted to the NCBI
SRA database (see Note 7).

fastq_quality_filter -Q33 -v -q 30 -p 90 -i fq/Sample*.fastq
-o fq/Sample* .fastq
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3.2 Gene Expression
Analysis Without
Reference Genome

In most cases, nonmodel organisms do not have reference genome.
We therefore use no reference genome analysis strategy to compare
gene expression profiles and to find DE genes. This strategy first
assembles a reference transcriptome from the RNA-Seq data, and
then maps the reads to the reference transcriptome and calculates
gene expression. In this protocol, we use Trinity to assemble transcrip-
tome, and then use RSEM to calculate reads counts, finally utilize two
popular packages, EBSeq and DESeq, to find DE genes respectively.

1. Reference transcriptome assembly. The Trinity program [4]
can assemble the reads in all the sample files into one reference
transcriptome. Then the reference transcriptome can be used
for gene expression analysis. For paired-end RNA-Seq with
readl (*_l.fastq) and read2 (*_2.fastq), the reference tran-
scriptome could be assembled by typing:

Trinity.pl --JM 500G --seqType fq --left fq/Sample*_1.fastq
--right fq/Sample*_2.fastq --output trinity_out --min_
kmer_cov 5 --CPU 32

(see Note 8)

Trouble shooting: In some cases, the Trinity program will
stop due to short of memory when executing the “butterfly_
commands”. You may go to the results directory trinity_out/
chrysalis/ and check if the “butterfly_commands” file exists.
Then use the following commands to continue the assembly.

cmd_process_forker.pl -c trinity_out/chrysalis /butterfly_
commands --CPU 10 --shuffle;

find trinity_out/chrysalis -name " *allProbPaths.fasta" -exec
cat {}\; > trinity_out/Trinity.fasta;

You will find a “Trinity.fasta” file in the output directory, which
is the assembled reference transcriptome of all the reads. You
can also check the reference transcriptome statistics by running
the TrinityStats.pl script provided by Trinity package:

TrinityStats.pl trinity_out/Trinity.fasta

2. Gene expression quantification with RSEM. RSEM is an accu-
rate and user-friendly tool for quantifying transcript abun-
dances from RNA-Seq data and it does not rely on the
existence of a reference genome [7]. Therefore, it is particularly
useful for expression quantification with de novo transcriptome
assemblies. The RSEM program includes just two scripts (7sem-
prepare-reference and rsem-calculate-expression), which invokes
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Bowtie [22] for read alignment. The first step is to extract and
preprocess the reference sequences and then builds Bowtie
indices.

mkdir rsem

cd rsem

mkdir tmp

extract-transcript-to-gene-map-from-trinity .. /trinity_out/
Trinity.fasta tmp /unigenes.togenes

rsem-prepare-reference  --transcript-to-gene-map  tmp/
unigenes.togene ../trinity_out/Trinity.fasta tmp /unigenes

Then the RNA-Seq reads in each sample are aligned to the
Bowtie indices and their relative abundances are calculated. The
tasks are handled by the rsem-calculate-expression script. By default,
RSEM uses the Bowtie alignment program to align reads, with
parameters specifically chosen for RNA-Seq quantification. The
rsem-calculate-expression script processes the reads in each sample.
A short Bash script will be much easier to handle large amount of
samples in one analysis.

export k

for ((k=1;k&lt;6;k+=1));do

rsem-calculate-expression -p 24 --bowtie-chunkmbs 512
--paired-end --no-bam-output --forward-prob 0.0 fq/Sample
${k}_1.tq fq/Sample${k}_2.fq tmp/unigenes rsem/Sample${k};

done

The rsem-calculate-expression script produces two files with «.
results” suffix, in which the “.gene.results” file calculate TPM and
FPKM for each gene, whereas the “.transcripts.results” listed the
TPM and FPKM for each transcript. The file structures are as follow:

The “Sample.genes.results” file:

gene_id transcript_id(s) length effective_length expected_count TPM FPKM

c0.graph_c0

c0.graph_c0_seql 745.00 690.31 14.00 243 179

cl.graph_c0

cl.graph_c0_seql 262.00 20746 1.00 0.58 043
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The “Sample.transcripts.results” file:

transcript_id gene_id length effective_length expected_count TPM FPKM IsoPct

c0.graph_c0_seql cO.graph cO 745 690.31 14.00 2.43 1.79 100.00

cl.graph_c0_seql cl.graph_cO0 262 207.46 1.00 0.58 0.43 100.00

3. Differentially expressed gene identification with EBSeq. EBSeq
is an R package for exploring DE genes and isoforms from
RNA-Seq data, which is based on empirical Bayesian method
and aims to identify DE isoforms between two or more
biological samples [20]. EBSeq processes counts matrix files
generated by RSEM, and calculates the expression of each gene
in each sample.

RSEM provides several wrappers which could invoke EBSeq to
identify differentially expressed genes. This is the easier way to use
EBSeq. Merge each single counts file to generate a matrix file with
the following commands:

rsem-generate-ngvector .. /trinity_out/Trinity.fasta cov5_trinity

rsem-generate-data-matrix Sample*.genes.results >
genes.counts.matrix

Then use the following commands to obtain DE genes:

rsem-run-ebseq --ngvector cov5_trinity.ngvec genes.
counts.matrix 3,3 GeneMat.results

rsem-control-fdr GeneMat.results 0.05 GeneMat.de.txt

(see Note 9)

Alternatively, you can also use EBSeq in a native way for DE
gene identification. In R console, type:

library(“EBSeq”)

setwd(" /path/to/your/directory/rsem/")

GeneMat <- data.matrix(read.table(file="genes.counts.
matrix"))

NgVec <- scan(file="cov5_trinity.ngvec", what=0, sep="\n")
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Condition = factor(c("Control"," Control"," Control","Cold",
n Cold " . " Cold n ))

GeneSizes = MedianNorm(GeneMat)

GeneEBOut = EBTest (Data=GeneMat, Conditions=Condi-
tion,sizeFactors=GeneSizes, maxround=10)

GeneEBDERes=GetDEResults(GeneEBOut, FDR=0.05)

(see Note 9)

For more detailed function introduction, please refer EBSeq
vignette [20].

4. Differentially expressed gene identification with DESeq. Alter-
natively, you can use DESeq for DE gene identification. DESeq
is a R package to analyze sequence counts data from RNA-Seq
and test for differential expression [21]. DESeq accepts RSEM
output files for analysis. The first step is to merge each FPKM
count files generated by rsem-calculate-expression script in
RSEM package. The merging step can be performed with
merge_ RSEM_frag_counts_single_table.pl scripts from Trinity
package:

TRINITY_HOME /util/RSEM_util/merge RSEM_frag
counts_single_table.pl Samplel.genes.results Sample2.genes.results
Sample3.genes.results Sample4.genes.results Sample5.genes.results
>all.genes.counts

Then in R console, type:

library(“DESeq”)

countTable<-read.table("all.genes.counts" header=T,sep=
"\t",row.names=1)

countTable = round(countTable)

(see Note 10)

conditions<-factor(c(" Control","Control"," Control",

n COld”,”COld”,”COld” ))

cds<-newCountDataSet(countTable,conditions)

cds<-estimateSizeFactors(cds)

cds<-estimateDispersions(cds)
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3.3 Gene Expression
Analysis

with Reference
Genome

res <-nbinomTest(cds," Control"," Cold") #call differential
expression

write.table(res, >compare.csv’,sep="\t’,quote=F,row.names=F)

head(res)

plotMA(res)

res_sig<-subset(res, padj<0.05);
(see Note 11)

dim(res_sig)

res_sig_order<-res_sig[order(res_sig$padj), ]

write.table(res_sig_order, ’difference.txt’ ,sep="\t’,quote=F,
row.names=F)

(see Note 12)
For detailed introduction, please refer to DESeq vignette [23].

Benefiting from genome sequencing projects, many reference gen-
omes have been published in nonmodel organisms recently. In
these organisms, the analysis strategy with reference genome can
be adopted. Typically, we first prepare the reference genome files,
then map each reads file to the reference genome, and finally call the
DE genes.

1. Prepare reference genome file. Download the genome files
(sequence fasta file and gff annotation file) from GenBank
database, and then build the bowtie2 index with “bowtie2-
build” command in Bowtie2 package:

bowtie2-build /path/to/genome/HbGenome.fas bowtie-
ret/Hbgenome

(see Note 13)

2. Map reads to reference genome. Map each reads file to the
genome index with tophat2 program, and then assemble tran-
scripts from the reads file with cufflinks program:

tophat2 -o 1th -p 32 -G /path/to/gtf/HbGenome.gff3
bowtie-ref/HbGenome /path/to/samplel /Samplel_1.fq/
path/to/sample /Samplel_2.fq
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cufflinks -p 32 -o lcl 1th/accepted_hits.bam

You may use a short Bash script to analyze several samples in
one command:

export k;

for ((k=1;k&lt;6;k+=1));do

tophat2 -o ${kjth -p 32 -G /path/to/gft/HbGenome.gft3
bowtie-ret/HbGenome /path/to/samplel /Sample${k}_1.tq/
path/to/sample /Sample${k}_2.fq;

cufflinks -p 32 -o ${k}cl ${k}th/accepted_hits.bam;

done

Then merge all the assembled transcripts files:

Is *cl /transcripts.gtf >assemblies.txt

cuffmerge -p 32 -g /path/to/gft/HbGenome.gft3 -s /
path/to/genome /HbGenome.fas assemblies.txt

(see Note 14)

3. Call differential expression genes with Cuftdiff. Cufflinks
includes a program, “Cuftdiff”, which can be used to find
significant changes in transcript expression, splicing, and pro-
moter use. Cuffdiff requires two types of files: sam (or bam) file
from Tophat program and transcript annotation gtf file from
cufflinks:

cuftdiff -o diff out/ -b /path/to/genome/Hbgenome.fa
-L Control,Cold -u merged_asm/merged.gtt -p 8 1th/accep-

ted_hits.bam,2th /accepted_hits.bam,3th /accepted_hits.bam

4th /accepted_hits.bam,5th /accepted_hits.bam,6th /accepted_

hits.bam

(see Note 15)

The comparison results will be wrote to “diff_out” directory.
Several comparison results will be found, including cds, isoform,
gene, tss, splicing, and promoter. In most cases, you may be inter-
ested in “gene_exp.diff” file. Then you can extract DE genes from
this file based on your criteria and the adjusted “q_value”. The
content of the diff file:
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test_id gene_id gene locus sample_1 sample_2 status value_1 value_2
log2(fold_change) test_stat p_value q_value significant

XLOC_000001 XLOC_000001 - scaftold0001:445549-451760 Control Cold
OK4.17386 2.62692 -0.668007 -0.799812 0.1381 0.404678 no

4 Notes

. The Tophat2 was superseded by HISAT2. In this protocol, we

still use old version Tophat for analysis.

. To simplify the analysis procedure, we use nonmodel Hevea

brasiliensis (rubber tree) RNA-Seq data as the example.
This dataset include two samples (Leaf under control condition,
and cold treated for 24 h), each with three biological replicates.

. This protocol only shows how to run each analysis steps, and

also gives frequently used options for each command or scripts.
You may also go to check each option of the command and
optimize your own analysis parameters.

. Please note that the directory structural differences between

this protocol and your own workstation. You should change
the file paths and names according to your own directory.

. The fastq-dump tool extract reads from SRA package. The

parameter “-O” defines the output directory. “--split-files”
option will enable dumping each read into separate file. Files
will receive suffix corresponding to read number.

. The results are in the subdirectory under the name of fastq

filename with a “_fastqc” suffix. You may examine the detail
quality check results in “astqc_report.html” file.

. Add the “-Q33” parameter when meet “fastq_quality_filter:

Invalid quality score value” error.

. “--JM” option defines how much Giga memory allocated for

the jellyfish to calculate k-mer. --left and --right define the left
and right fastq files for the pair-end seuqencing results. --
min_kmer_cov defines the minimal kmer when calculate the
k-mer number in Inchworm, a high --min_kmer_cov value will
reduce the noise in the assembly and to identify only transcripts
that were relatively highly expressed, but also lose some lowly
expressed transcripts. Define --CPU number for the inchworm
when your server has multiple CPU.

. This analysis found DE genes at the target FDR of 0.05.
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Expected_counts from RSEM are float numbers because the
reads mapped to multiple locations are assigned to each loca-
tion according to the fractional weighted estimation using an
EM algorithm. However, the DESeq only accepts integer
counts. We therefore use round function to get integer counts.

Get DE genes by adjusted p-value less than 0.05.

The scripts find DE genes by adjusted p-value less than 0.05,
then export DE gene list to the “difference.txt” file.

The bowtie2-build command builds an “Hbgenome” genome
index from genome file “HbGenome.fas”.

The program will generate a “merged.gtf” file in “merge-
d_asm” directory.

Supply replicate SAMs as comma separated lists for each condi-
tion:  Samplel_repl.sam,samplel_rep2.sam,...samplel_repM.
sam. Separate each condition with space. -L./——labels, comma-
separated list of condition labels. Each lable indict one treatment

(condition); The label numbers should equal to conditions.
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Microarray Data Analysis for Transcriptome Profiling

Ming-an Sun, Xiaojian Shao, and Yejun Wang

Abstract

Microarray data have vastly accumulated in the past two decades. Due to the high-throughput characteristic
of microarray techniques, it has transformed biological studies from specific genes to transcriptome level,
and deeply boosted many fields of biological studies. While microarray offers great advantages for expres-
sion profiling, on the other hand it faces a lot challenges for computati