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Preface

As sequencing technology improves and costs decrease, more and more laboratories are
performing RNA-Seq to explore the molecular mechanisms of various biological pheno-
types. Due to the increased sequencing depth available, the purposes of transcriptome
studies have also been expanded extensively. In addition to the conventional uses for gene
annotation, profiling, and expression comparison, transcriptome studies have been applied
for multiple other purposes, including but not limited to gene structure analysis, identifica-
tion of new genes or regulatory RNAs, RNA editing analysis, co-expression or regulatory
network analysis, biomarker discovery, development-associated imprinting studies, single-
cell RNA sequencing studies, and pathogen–host dual RNA sequencing studies.

The aim of this book is to give comprehensive practical guidance on transcriptome data
analysis with different scientific purposes. It is organized in three parts. In Part I, Chapters 1
and 2 introduce step-by-step protocols for RNA-Seq and microarray data analysis, respec-
tively. Chapter 3 focuses on downstream pathway and network analysis on the differentially
expressed genes identified from expression profiling data. Unlike most of the other proto-
cols, which were command line-based, Chapter 4 describes a visualizing method for tran-
scriptome data analysis. Chapters 5–11 in Part II give practical protocols for gene
characterization analysis with RNA-Seq data, including alternative spliced isoform analysis
(Chapter 5), transcript structure analysis (Chapter 6), RNA editing (Chapter 7), and
identification and downstream data analysis of microRNA (Chapters 8 and 9), lincRNA
(Chapter 10), and transposable elements (Chapter 11). In Part III, protocols on several new
applications of transcriptome studies are described: RNA–protein interactions (Chapter 12),
expression noise analysis (Chapter 13), epigenetic imprinting (Chapter 14), single-cell RNA
sequencing applications (Chapter 15), and deconvolution of heterogeneous cells
(Chapter 16). Some chapters cover more than one application. For example, Chapter 5
also presents the analysis of single molecule sequencing data in addition to alternative
splicing analysis; Chapter 12 also gives solutions for the analysis of small RNAs in bacteria.
Some topics were not included in this volume due to various factors, e.g., analysis on circular
RNAs, metatranscriptomics, biomarker identification, and dual RNA-Seq. For circular
RNAs, there are numerous published papers or books with protocols that can be followed.
Metatranscriptomics is a new technique and data-oriented methods for analysis are still
lacking. For most other applications, the core protocols for data processing and analysis are
the same as presented in the chapters of this volume.

Shenzhen, China Yejun Wang
Blacksburg, VA, USA Ming-an Sun
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Chapter 1

Comparison of Gene Expression Profiles in Nonmodel
Eukaryotic Organisms with RNA-Seq

Han Cheng, Yejun Wang, and Ming-an Sun

Abstract

With recent advances of next-generation sequencing technology, RNA-Sequencing (RNA-Seq) has
emerged as a powerful approach for the transcriptomic profiling. RNA-Seq has been used in almost every
field of biological studies, and has greatly extended our view of transcriptomic complexity in different
species. In particular, for nonmodel organisms which are usually without high-quality reference genomes,
the de novo transcriptome assembly from RNA-Seq data provides a solution for their comparative tran-
scriptomic study. In this chapter, we focus on the comparative transcriptomic analysis of nonmodel
organisms. Two analysis strategies (without or with reference genome) are described step-by-step, with
the differentially expressed genes explored.

Key words Nonmodel organism, RNA-Seq, Next-generation sequencing, Differential expression,
Transcriptome, de novo transcriptome assembly

1 Introduction

Recent advantages in next-generation sequencing have enabled the
development of RNA-Seq—a powerful approach allowing the
investigation of transcriptome at unsurpassed resolution [1].
RNA-Seq has the potential to reveal unprecedented complexity of
the transcriptomes, to provide quick insights into the gene struc-
ture without the requirement of reference genome, to expand the
identification for the genes of interest, to develop functional molec-
ular markers, to quantify gene expression, and to compare gene
expression profiles [2]. These advantages have made RNA-Seq the
most popular method for transcriptome analysis [3]. In particular,
unlike microarray which is another popular method for transcrip-
tome profiling but needs to be designed according to presequenced
reference genome, RNA-Seq could be applied for the transcrip-
tomic study in nonmodel organisms [4]. Next-generation sequenc-
ing becomes more affordable in recent years, making RNA-Seq
more and more popular in ordinary molecular biology laboratory.

Yejun Wang and Ming-an Sun (eds.), Transcriptome Data Analysis: Methods and Protocols, Methods in Molecular Biology,
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RNA-Seq has already been used in almost every field of biological
studies, and has greatly extended our view of transcriptomic com-
plexity in different species. However, the huge amounts of reads
generated by RNA-Seq pose great challenges to the assembly and
analysis of complete transcriptomes. Fortunately, recent progresses
in bioinformatics provided powerful tools for RNA-Seq analysis of
species lacking high-quality reference genome.

In nonmodel organisms, de novo transcriptome assembly is the
first step for constructing a reference when the complete genome
sequences are absent. In recent years, several tools have been devel-
oped for de novo transcriptome assembly, such as Trinity,
SOAPdenovo-Trans, and ABYSS [4–6]. These tools each have
their own merits for dealing with different types of genomes. The
short reads are then mapped to the reference transcriptome, and
the read counts of each transcript are normalized and compared
between each sample. In this step, we usually use RSEM for quan-
tifying transcript abundances [7]. The final step is to annotate each
transcript and to visualize the expression results.

The tools mentioned above greatly facilitate transcriptome
assembly and promote RNA-Seq studies in the nonmodel organ-
isms. In recent years, a great number of studies appeared to identify
differentially expressed (DE) genes between specific treatments or
tissues [8–13]. In this chapter, we give a step-by-step protocol to
assemble a reference transcriptome and to explore DE genes from
RNA-Seq data.

2 Materials

2.1 Software

Packages

All the software packages need to be installed in your workstation in
advance. Because most bioinformatics tools are designed for Linux
operating systems, herewedemonstrate each step according to 64-bit
Ubuntu OS. For the convenience of running the commands in
your working directory, add the folders containing your executes
into your PATH environment variable so that the executes could be
used directly when you type their names. To be noted, some software
used in this protocol may be not the latest version. In such case, it is
highly encouraged to download the latest version for use.

2.1.1 SRA Toolkit Download the SRA toolkit [14], unpack the tarball to your desti-
nation directory (e.g., /home/your_home/soft/), and add the
executables path to your PATH, type:

wget http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/current/sratool
kit.current-centos_linux64.tar.gz.
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tar xzf –C /home/your_home/soft/ sratoolkit.current- centos_
linux64.tar.gz

export PATH¼/home/your_home/soft/sratoolkit.2.7.0-
ubuntu64/bin:$PATH

2.1.2 FastQC Download the FastQC package [15], unpack and add the directory
to your PATH.

wget http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
fastqc_v0.10.1.zip

unzip fastqc_v0.10.1.zip –d /home/your_home/soft/

export PATH¼/home/your_home/soft/FastQC:$PATH

2.1.3 Trinity Download the Trinity package [4], unpack, and add the directory
to your PATH.

wget https://github.com/trinityrnaseq/trinityrnaseq/archive/
v2.2.0.tar.gz.

tar xzf –C /home/your_home/soft/ trinityrnaseq-2.2.0.tar.gz

export PATH¼/home/your_home/soft/trinityrnaseq-2.2.0:
$PATH

export PATH¼/home/your_home/soft/trinityrnaseq-2.2.0/
util:$PATH

2.1.4 RSEM Download the RSEM package [7], unpack, and add the RSEM
directory to your PATH.

wget https://github.com/deweylab/RSEM/archive/v1.2.8.tar.gz

tar xzf –C /home/your_home/soft/ RSEM-1.2.8.tar.gz

export PATH¼/home/your_home/soft/rsem-1.2.8:$PATH

2.1.5 R Download R [16], unpack and then install.

wget https://cran.r-project.org/src/base/R-3/R-3.2.2.tar.gz

tar zxf –C /home/your_home/soft/ R-3.2.2.tar.gz

cd /home/your_home/soft/R-3.2.2

./configure ./configure --prefix¼/home/your_home/bin
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make

make check

make install

2.1.6 Bowtie2 Download Bowtie2 package [17], unpack, and then add Bowtie2
directory to your PATH.

wget http://jaist.dl.sourceforge.net/project/bowtie-bio/bow
tie2/2.2.6/bowtie2-2.2.6-linux-x86_64.zip

unzip bowtie2-2.2.6-linux-x86_64.zip -d /home/your_home/
soft/

export PATH¼/home/your_home/soft/ bowtie2-2.2.6:
$PATH

2.1.7 Tophat

(See Note 1)

Download Tophat [18], unpack and install, and then add the
directory to your PATH.

wget http://ccb.jhu.edu/software/tophat/downloads/tophat-
2.0.9.Linux_x86_64.tar.gz

tar zxf tophat-2.0.9.Linux_x86_64.tar.gz

cd tophat-2.0.9.linux_x86_64

./configure --prefix¼/home/your_home/soft/tophat2

make

make install

export PATH¼/home/your_home/soft/tophat2:$PATH

2.1.8 Cufflinks Download Cufflinks [19], unpack and then add the directory to
your PATH.

wget http://cole-trapnell-lab.github.io/cufflinks/assets/down
loads/cufflinks-2.2.1.Linux_x86_64.tar.gz

tar xzf –C /home/your_home/soft/ cufflinks-2.2.1.Linux_x86_
64.tar.gz
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export PATH¼/home/your_home/soft/cufflinks-2.2.1.Linux_
x86_64:$PATH

2.1.9 EBSeq EBSeq [20] is an R Bioconductor package for gene and isoform
differential expression analysis of RNA-Seq data. For installation,
just start R and enter:

source("https://bioconductor.org/biocLite.R")

biocLite("EBSeq")

2.1.10 DESeq DESeq [21] is an R Bioconductor package for differential expres-
sion analysis with reads count data. To install it, start R and enter:

source("https://bioconductor.org/biocLite.R")

biocLite("DESeq")

2.2 Data Samples Most public RNA-Seq data could be downloaded from NCBI SRA
database (https://www.ncbi.nlm.nih.gov/sra) (see Note 2). In this
protocol, we useRNA-Seqdata set from the rubber tree. This data set
includes six samples from control and cold stressed conditions with
threebiological replicates,whicharedenotedas“control” and“cold.”

3 Methods

Download the RNA-Seq data from NCBI SRA database and place
the files in your working directory (e.g., /home/your_name/
NGS/SRA). Run the commands as demonstrated in this protocol
in your working directory (see Notes 3 and 4).

3.1 RNA-Seq Data

Quality Control

1. Generate FASTQ files from SRA files. To extract FASTQ files
from downloaded sra files, and put them in a new folder “fq”,
go to your NGS data directory and type (see Note 5):

fastq-dump -O ./fq --split-files ./SRA/SRR*.sra

2. Quality controlling by fastQC (see Note 6).

fastqc -o ./qc -f fastq ./fq/Sample*.fastq

3. Remove reads of low quality (optional). In most cases, the low
quality reads have been removed when the sequences were
transferred from the service supplier. In this example, the
FASTQ file has been filtered when submitted to the NCBI
SRA database (see Note 7).

fastq_quality_filter -Q33 -v -q 30 -p 90 -i fq/Sample*.fastq
-o fq/Sample*.fastq

Non-Model Organisms Transcriptome Analysis 7
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3.2 Gene Expression

Analysis Without

Reference Genome

In most cases, nonmodel organisms do not have reference genome.
We therefore use no reference genome analysis strategy to compare
gene expression profiles and to find DE genes. This strategy first
assembles a reference transcriptome from the RNA-Seq data, and
then maps the reads to the reference transcriptome and calculates
gene expression. In this protocol, we use Trinity to assemble transcrip-
tome, and then use RSEM to calculate reads counts, finally utilize two
popular packages, EBSeq and DESeq, to find DE genes respectively.

1. Reference transcriptome assembly. The Trinity program [4]
can assemble the reads in all the sample files into one reference
transcriptome. Then the reference transcriptome can be used
for gene expression analysis. For paired-end RNA-Seq with
read1 (*_1.fastq) and read2 (*_2.fastq), the reference tran-
scriptome could be assembled by typing:

Trinity.pl --JM 500G --seqType fq --left fq/Sample*_1.fastq
--right fq/Sample*_2.fastq --output trinity_out --min_
kmer_cov 5 --CPU 32

(see Note 8)
Trouble shooting: In some cases, the Trinity program will

stop due to short of memory when executing the “butterfly_
commands”. You may go to the results directory trinity_out/
chrysalis/ and check if the “butterfly_commands” file exists.
Then use the following commands to continue the assembly.

cmd_process_forker.pl -c trinity_out/chrysalis/butterfly_
commands --CPU 10 --shuffle;

find trinity_out/chrysalis -name "*allProbPaths.fasta" -exec
cat {} \; > trinity_out/Trinity.fasta;

You will find a “Trinity.fasta” file in the output directory, which
is the assembled reference transcriptome of all the reads. You
can also check the reference transcriptome statistics by running
the TrinityStats.pl script provided by Trinity package:

TrinityStats.pl trinity_out/Trinity.fasta

2. Gene expression quantification with RSEM. RSEM is an accu-
rate and user-friendly tool for quantifying transcript abun-
dances from RNA-Seq data and it does not rely on the
existence of a reference genome [7]. Therefore, it is particularly
useful for expression quantification with de novo transcriptome
assemblies. The RSEM program includes just two scripts (rsem-
prepare-reference and rsem-calculate-expression), which invokes

8 Han Cheng et al.



Bowtie [22] for read alignment. The first step is to extract and
preprocess the reference sequences and then builds Bowtie
indices.

mkdir rsem

cd rsem

mkdir tmp

extract-transcript-to-gene-map-from-trinity ../trinity_out/
Trinity.fasta tmp/unigenes.togenes

rsem-prepare-reference --transcript-to-gene-map tmp/
unigenes.togene ../trinity_out/Trinity.fasta tmp/unigenes

Then the RNA-Seq reads in each sample are aligned to the
Bowtie indices and their relative abundances are calculated. The
tasks are handled by the rsem-calculate-expression script. By default,
RSEM uses the Bowtie alignment program to align reads, with
parameters specifically chosen for RNA-Seq quantification. The
rsem-calculate-expression script processes the reads in each sample.
A short Bash script will be much easier to handle large amount of
samples in one analysis.

export k

for ((k¼1;k&lt;6;kþ¼1));do

rsem-calculate-expression -p 24 --bowtie-chunkmbs 512
--paired-end --no-bam-output --forward-prob 0.0 fq/Sample
${k}_1.fq fq/Sample${k}_2.fq tmp/unigenes rsem/Sample${k};

done

The rsem-calculate-expression script produces two files with “.
results” suffix, in which the “.gene.results” file calculate TPM and
FPKM for each gene, whereas the “.transcripts.results” listed the
TPMand FPKM for each transcript. The file structures are as follow:

The “Sample.genes.results” file:

gene_id transcript_id(s) length effective_length expected_count TPM FPKM

c0.graph_c0 c0.graph_c0_seq1 745.00 690.31 14.00 2.43 1.79

c1.graph_c0 c1.graph_c0_seq1 262.00 207.46 1.00 0.58 0.43
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The “Sample.transcripts.results” file:

transcript_id gene_id length effective_length expected_count TPM FPKM IsoPct

c0.graph_c0_seq1 c0.graph_c0 745 690.31 14.00 2.43 1.79 100.00

c1.graph_c0_seq1 c1.graph_c0 262 207.46 1.00 0.58 0.43 100.00

3. Differentially expressed gene identification with EBSeq. EBSeq
is an R package for exploring DE genes and isoforms from
RNA-Seq data, which is based on empirical Bayesian method
and aims to identify DE isoforms between two or more
biological samples [20]. EBSeq processes counts matrix files
generated by RSEM, and calculates the expression of each gene
in each sample.

RSEM provides several wrappers which could invoke EBSeq to
identify differentially expressed genes. This is the easier way to use
EBSeq. Merge each single counts file to generate a matrix file with
the following commands:

rsem-generate-ngvector ../trinity_out/Trinity.fasta cov5_trinity

rsem-generate-data-matrix Sample*.genes.results >
genes.counts.matrix

Then use the following commands to obtain DE genes:

rsem-run-ebseq --ngvector cov5_trinity.ngvec genes.
counts.matrix 3,3 GeneMat.results

rsem-control-fdr GeneMat.results 0.05 GeneMat.de.txt

(see Note 9)

Alternatively, you can also use EBSeq in a native way for DE
gene identification. In R console, type:

library(“EBSeq”)

setwd("/path/to/your/directory/rsem/")

GeneMat <- data.matrix(read.table(file¼"genes.counts.
matrix"))

NgVec <- scan(file¼"cov5_trinity.ngvec", what¼0, sep¼"\n")
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Condition¼ factor(c("Control","Control","Control","Cold",
"Cold","Cold"))

GeneSizes ¼ MedianNorm(GeneMat)

GeneEBOut ¼ EBTest (Data¼GeneMat, Conditions¼Condi-
tion,sizeFactors¼GeneSizes, maxround¼10)

GeneEBDERes¼GetDEResults(GeneEBOut, FDR¼0.05)

(see Note 9)

For more detailed function introduction, please refer EBSeq
vignette [20].

4. Differentially expressed gene identification with DESeq. Alter-
natively, you can use DESeq for DE gene identification. DESeq
is a R package to analyze sequence counts data from RNA-Seq
and test for differential expression [21]. DESeq accepts RSEM
output files for analysis. The first step is to merge each FPKM
count files generated by rsem-calculate-expression script in
RSEM package. The merging step can be performed with
merge_RSEM_frag_counts_single_table.pl scripts from Trinity
package:

TRINITY_HOME/util/RSEM_util/merge_RSEM_frag_
counts_single_table.pl Sample1.genes.results Sample2.genes.results
Sample3.genes.results Sample4.genes.results Sample5.genes.results
>all.genes.counts

Then in R console, type:

library(“DESeq”)

countTable<-read.table("all.genes.counts",header¼T,sep¼
"\t",row.names¼1)

countTable ¼ round(countTable)

(see Note 10)

conditions<-factor(c("Control","Control","Control",
"Cold","Cold","Cold"))

cds<-newCountDataSet(countTable,conditions)

cds<-estimateSizeFactors(cds)

cds<-estimateDispersions(cds)
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res <-nbinomTest(cds,"Control","Cold") #call differential
expression

write.table(res, ’compare.csv’,sep¼’\t’,quote¼F,row.names¼F)

head(res)

plotMA(res)

res_sig<-subset(res, padj<0.05);

(see Note 11)

dim(res_sig)

res_sig_order<-res_sig[order(res_sig$padj),]

write.table(res_sig_order, ’difference.txt’,sep¼’\t’,quote¼F,
row.names¼F)

(see Note 12)
For detailed introduction, please refer to DESeq vignette [23].

3.3 Gene Expression

Analysis

with Reference

Genome

Benefiting from genome sequencing projects, many reference gen-
omes have been published in nonmodel organisms recently. In
these organisms, the analysis strategy with reference genome can
be adopted. Typically, we first prepare the reference genome files,
then map each reads file to the reference genome, and finally call the
DE genes.

1. Prepare reference genome file. Download the genome files
(sequence fasta file and gff annotation file) from GenBank
database, and then build the bowtie2 index with “bowtie2-
build” command in Bowtie2 package:

bowtie2-build /path/to/genome/HbGenome.fas bowtie-
ref/Hbgenome

(see Note 13)
2. Map reads to reference genome. Map each reads file to the

genome index with tophat2 program, and then assemble tran-
scripts from the reads file with cufflinks program:

tophat2 -o 1th -p 32 -G /path/to/gff/HbGenome.gff3
bowtie-ref/HbGenome /path/to/sample1/Sample1_1.fq/
path/to/sample/Sample1_2.fq
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cufflinks -p 32 -o 1cl 1th/accepted_hits.bam

You may use a short Bash script to analyze several samples in
one command:

export k;

for ((k¼1;k&lt;6;kþ¼1));do

tophat2 -o ${k}th -p 32 -G /path/to/gff/HbGenome.gff3
bowtie-ref/HbGenome /path/to/sample1/Sample${k}_1.fq/
path/to/sample/Sample${k}_2.fq;

cufflinks -p 32 -o ${k}cl ${k}th/accepted_hits.bam;

done

Then merge all the assembled transcripts files:

ls *cl/transcripts.gtf >assemblies.txt

cuffmerge -p 32 -g /path/to/gff/HbGenome.gff3 -s /
path/to/genome /HbGenome.fas assemblies.txt

(see Note 14)

3. Call differential expression genes with Cuffdiff. Cufflinks
includes a program, “Cuffdiff”, which can be used to find
significant changes in transcript expression, splicing, and pro-
moter use. Cuffdiff requires two types of files: sam (or bam) file
from Tophat program and transcript annotation gtf file from
cufflinks:

cuffdiff -o diff_out/ -b /path/to/genome/Hbgenome.fa
-L Control,Cold -u merged_asm/merged.gtf -p 8 1th/accep-
ted_hits.bam,2th/accepted_hits.bam,3th/accepted_hits.bam
4th/accepted_hits.bam,5th/accepted_hits.bam,6th/accepted_
hits.bam

(see Note 15)
The comparison results will be wrote to “diff_out” directory.

Several comparison results will be found, including cds, isoform,
gene, tss, splicing, and promoter. In most cases, you may be inter-
ested in “gene_exp.diff” file. Then you can extract DE genes from
this file based on your criteria and the adjusted “q_value”. The
content of the diff file:
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test_id gene_id gene locus sample_1 sample_2 status value_1 value_2
log2(fold_change) test_stat p_value q_value significant

XLOC_000001 XLOC_000001 - scaffold0001:445549-451760 Control Cold
OK 4.17386 2.62692 -0.668007 -0.799812 0.1381 0.404678 no

4 Notes

1. The Tophat2 was superseded by HISAT2. In this protocol, we
still use old version Tophat for analysis.

2. To simplify the analysis procedure, we use nonmodel Hevea
brasiliensis (rubber tree) RNA-Seq data as the example.
This dataset include two samples (Leaf under control condition,
and cold treated for 24 h), each with three biological replicates.

3. This protocol only shows how to run each analysis steps, and
also gives frequently used options for each command or scripts.
You may also go to check each option of the command and
optimize your own analysis parameters.

4. Please note that the directory structural differences between
this protocol and your own workstation. You should change
the file paths and names according to your own directory.

5. The fastq-dump tool extract reads from SRA package. The
parameter “-O” defines the output directory. “--split-files”
option will enable dumping each read into separate file. Files
will receive suffix corresponding to read number.

6. The results are in the subdirectory under the name of fastq
filename with a “_fastqc” suffix. You may examine the detail
quality check results in “astqc_report.html” file.

7. Add the “-Q33” parameter when meet “fastq_quality_filter:
Invalid quality score value” error.

8. “--JM” option defines how much Giga memory allocated for
the jellyfish to calculate k-mer. --left and --right define the left
and right fastq files for the pair-end seuqencing results. --
min_kmer_cov defines the minimal kmer when calculate the
k-mer number in Inchworm, a high --min_kmer_cov value will
reduce the noise in the assembly and to identify only transcripts
that were relatively highly expressed, but also lose some lowly
expressed transcripts. Define --CPU number for the inchworm
when your server has multiple CPU.

9. This analysis found DE genes at the target FDR of 0.05.
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10. Expected_counts from RSEM are float numbers because the
reads mapped to multiple locations are assigned to each loca-
tion according to the fractional weighted estimation using an
EM algorithm. However, the DESeq only accepts integer
counts. We therefore use round function to get integer counts.

11. Get DE genes by adjusted p-value less than 0.05.

12. The scripts find DE genes by adjusted p-value less than 0.05,
then export DE gene list to the “difference.txt” file.

13. The bowtie2-build command builds an “Hbgenome” genome
index from genome file “HbGenome.fas”.

14. The program will generate a “merged.gtf” file in “merge-
d_asm” directory.

15. Supply replicate SAMs as comma separated lists for each condi-
tion: Sample1_rep1.sam,sample1_rep2.sam,...sample1_repM.
sam. Separate each condition with space. -L/��labels, comma-
separated list of condition labels. Each lable indict one treatment
(condition); The label numbers should equal to conditions.
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Chapter 2

Microarray Data Analysis for Transcriptome Profiling

Ming-an Sun, Xiaojian Shao, and Yejun Wang

Abstract

Microarray data have vastly accumulated in the past two decades. Due to the high-throughput characteristic
of microarray techniques, it has transformed biological studies from specific genes to transcriptome level,
and deeply boosted many fields of biological studies. While microarray offers great advantages for expres-
sion profiling, on the other hand it faces a lot challenges for computational analysis. In this chapter, we
demonstrate how to perform standard analysis including data preprocessing, quality assessment, differential
expression analysis, and general downstream analyses.

Key words Microarray, Normalization, Clustering, Differential expression, Bioconductor, Limma,
GeneFilter

1 Introduction

The successful application of microarray for expression analysis
could be traced back to two decades ago [1]. Since then, the
microarray technique has been widely used for expression profiling
in almost every field of biological research [2]. Beyond transcrip-
tion analysis, alternative microarray based techniques have also
been designed for other purposes such as genotyping, DNA
mapping, protein binding, and epigenetic studies [3]. Due to the
high-throughput characteristics of microarray techniques, it has
transformed biological studies from specific genes to transcriptome
level, and deeply boosted many fields of biological studies. Previous
studies showed that microarray is robust for measuring transcrip-
tome [4]. Even though RNA-Seq has emerged in recent years,
microarrays remain popular for measuring gene expression
[5, 6]. In particular, since microarray is cheaper than RNA-Seq, it
has advantages for clinical studies, which may involve a huge
amount of samples. For example, microarray is frequently used in
several comprehensive projects for cancers, including The Cancer
Genome Atlas project [7].
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While microarray offers great advantages for expression
profiling, on the other hand it faces a lot challenges for analysis
[2]. In particular, technical noise could be introduced in microarray
data. Additionally, the challenges of analysis also come from the
tremendous number of probes in microarray, and the few number
of replicates used for most microarray studies. Currently, a large
number of methods have been proposed to deal with problems for
each analysis step, including quality control [8–10], normalization
[11], and differential expression analysis [12–14].

Bioconductor is an open-source, open-development software
project for the analysis and comprehension of high-throughput
data arising from genomics and molecular biology [15]. So far
more than 1000 packages have been released in the Bioconductor.
Importantly, every step for microarray data analysis could find a
solution using packages hosted in Bioconductor project (see Note
1). In this chapter, we show how to implement each step of micro-
array analysis, including quality control, normalization, differential
expression analysis and some general downstream analyses, using
packages mainly from Bioconductor project. In this protocol, data
generated from Affymetrix Mouse Gene 2.0 ST Array (MoGene-
2.0-ST) platform was used for demonstration. However, the analy-
sis procedure described in this protocol could be adjusted for the
analysis of data from other microarray platforms easily.

2 Materials

2.1 Microarray Data This protocol starts with Affymetrix microarray data of CEL format
(see Note 2). The CEL files store the results of the calculated
intensity. In addition to newly generated CEL files in the lab, a
huge amount of published CEL files could be retrieved from several
public resources, in particular ArrayExpress (https://www.ebi.ac.
uk/arrayexpress/) and NCBI Gene Expression Ominibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/). To be noted, ArrayExpress
is specific for microarray data, while GEO also contains other types
of OMICs data.

In this protocol, we use public datasets (GEO accession:
GSE67964) for Affymetrix Mouse Gene 2.0 ST Array (MoGene-
2.0-ST) for demonstration.

2.2 R Packages This protocol involves a number of R packages, thus basic knowl-
edge about R and Bioconductor is essential. The basics of R could
be found from resources such as http://tryr.codeschool.com/. R
and Bioconductor could be installed by following instructions from
http://www.bioconductor.org/install/. Below we briefly summar-
ized the ways for R and Bioconductor packages installation and
loading (see Note 3). For the installation of each package used in
this protocol, it will be described in the corresponding section.
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R packages could be installed using the install.packages() func-
tion easily. Take ggplot2 package as example, you just need to start
the R console and type:

install.packages("ggplot2")

To install core packages from Bioconductor, type:

source("https://bioconductor.org/biocLite.R")

Then, specific Bioconductor packages could be installed. For
example, to install the oligo package, type:

biocLite("oligo")

After installation, both R or Bioconductor packages could be
loaded by the library() function. Take the oligo package as exam-
ple, to load it, type:

library(oligo)

2.3 Annotation Files Two types of annotation files are required: (1) the probe set anno-
tation, which summarizes the location of all probes on the array, as
well as the probes for each probe set; (2) gene annotation, which
maps the probesets to their corresponding genes.

For most microarray platforms, R Bioconductor packages
providing the annotation information are ready for use (see Note 1).
For example, the two annotation packages forMoGene2.0-STmicro-
array are pd.mogene.2.0.st [16] and mogene20sttranscriptcluster.db
[17], respectively. Since this protocol involves a lot of R Bioconductor
packages, these annotation packages could be incorporated into the
pipeline seamlessly.

3 Methods

3.1 Data

Preprocessing

3.1.1 Prepare Data

We download CEL files from GEO (https://www.ncbi.nlm.nih.
gov/geo/) by searching GEO accession (e.g., GSE67964). This
dataset contains data for wild-type and ROR_alpha_gamma_dKO,
each with four replicates.

3.1.2 Set Work Directory To set the work directory, type:

setwd(“directory_with_CEL_files”)

3.1.3 Read Data into

Memory

The Bioconductor package “oligo” offers a number of tools for
preprocessing of Affymetrix CEL files, including data import, back-
ground correction, normalization, data summarization and visuali-
zation [18]. In addition, you might need to install and load the
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probe set annotation package (e.g., pd.mogene.2.0.st for
MoGene2.0-ST platform), if it is failed to be installed automatically
together with “oligo”.

1. To install and load the oligo package, type:

biocLite("oligo")

library(oligo)

2. To get the list of all the CEL files in the directory, type:

cel.files <- list.celfiles()

Or if you only want to read specific CEL files (e.g., celfile1
and celfile2), type:

cel.files <- c(celfile1, celfile2)

3. By default, CEL file names will be specified as sample names.
However, we usually want to respecify sample names, in partic-
ular when the CEL file names are lengthy. The sample names
should be of the same number and order of CEL file names. To
specify sample names manually, type:

sample.names = c("WT1", "WT2", "WT3", "WT4","KO1", "KO2",

"KO3", "KO4")

4. To read CEL files into memory, type:

affy.raw <- read.celfiles(cel.files, sampleNames = sample.

names)

3.1.4 Get Normalized

Gene Expression

To summarize gene level expression, the probeset annotation for
specific array is required. Take microarray data from mogene.2.0.st
platform as example, the Bioconductor package pd.mogene.2.0.st
[16] is needed.

1. To install and load the annotation library pd.mogene.2.0.st,
type:

biocLite("pd.mogene.2.0.st")

library(pd.mogene.2.0.st)

2. To make reasonable comparison between different samples,
normalization must be performed. Robust Multi-Array Aver-
age (RMA) is the most widely used normalization algorithm.
Meanwhile, there are several other normalization algorithms,
including GCRMA, Mas5, dChip, and so on (seeNote 4). The
differences of these methods have been discussed in previous
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studies []. The GCRMA package takes GC content into
account when doing RMA normalization. However, one
study argued that a crucial step in GCRMA responsible for
introducing severe artifacts in the data leading to a systematic
overestimate of pairwise correlation []. Here we show the use
of RMA, but you could apply other your preferred algorithms.
To normalize gene expression using RMA algorithm, and cre-
ate an ExpressionSet object (see Note 5), type:

eset <- rma(affy.raw)

3. To save the expression data in a local file that may be used later
(to be noted, the expression values in the output are normal-
ized and log2 transformed), type:

write.exprs(eset,file="rma_norm_expr.txt")

3.1.5 Gene Annotation Gene annotation is need for further interpretation of the results.
Two Bioconductor packages are required, including Biobase [15]
and mogene20sttranscriptcluster.db [17].

1. To install and load these two packages, type:

biocLite("Biobase")

biocLite("mogene20sttranscriptcluster.db")

library(Biobase)

library(mogene20sttranscriptcluster.db)

2. The mogene20sttranscriptcluster.db package provides a variety
of detailed information for Mogene2.0ST platform, including
ACCNUM, ENSEMBL, ENTREZID, ENZYME, GENE-
NAME, GO, PATH, PFAM, PROSIT, REFSEQ, SYMBOL,
UNIGENE, andUNIPROT. To get a list of available objects in
the package, type:

keytypes(mogene20sttranscriptcluster.db)

3. To retrieve data for selected objects (e.g., ENTREZID and
SYMBOL as showed below) as a data frame, type:

gns <- select(mogene20sttranscriptcluster.db, keys(mogen-

e20sttranscriptcluster.db), c("ENTREZID", "SYMBOL"))

4. For certain types of annotations (such as gene symbol), there
could be multiple matches for the same gene. In such case, if
you only want to keep one match per gene, the most naive way
is to keep the first one. However, just skip this step if you want
to use full annotation information. To keep only the first
annotation for each gene, type:

gns <- gns[!duplicated(gns[,1]),]
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5. To convert the gene annotation matrix by setting row names to
probe ID (so it will be more convenient for further use), type:

gns = gns[,-1]

row.names(gns) = keys(mogene20sttranscriptcluster.db)

6. To retrieve gene expression matrix from eset as a data frame,
type:

expr <- data.frame(exprs(eset))

7. To merge gene expression data and annotation data together
according to row names, which are probe IDs in this case, type:

expr.anno <- merge(gns, expr, by.x=0, by.y=0, all=TRUE)

8. To save the annotated gene expression matrix to local file for
further use, type:

write.table(expr.anno, file = "rma_norm_expr.anno.txt",

sep = "\t", row.names = FALSE, col.names = TRUE, quote =

FALSE)

3.2 Quality

Assessment

The assessment of data quality is an essential step for microarray
analysis. There are different tools and packages developed for
microarray quality assessment [9, 10]. Among them, arrayQuality-
Metrics [8] is a Bioconductor package that provides quality metrics
to assess reproducibility, identify apparent outlier arrays, and com-
pute measures of signal-to-noise ratio.

The arrayQualityMetrics package produces a comprehensive
report of quality metrics about a microarray dataset. The quality
metrics are mainly on per array level, but meanwhile, some of the
metrics can also be used to diagnose batch effects. When the
function arrayQualityMetrics is finished, a report is produced in
the directory specified by the function’s outdir argument.

1. To install and load arrayQualityMetrics package, type:

biocLite("arrayQualityMetrics")

library(arrayQualityMetrics")

2. The AffyBatch object affy.raw as generated in step 4 of Sub-
heading 3.1.3 could be used as input. To get the quality
assessment results, type:

arrayQualityMetrics(expressionset = affy.raw, outdir =

"QC_report_for_raw", force = TRUE, do.logtransform = TRUE)

3. Alternatively, we can also use the preprocessed dataset (e.g., the
normalized data eset we obtained previously) for quality assess-
ment. To be noted, if the data have already been log2-scaled
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after normalization (such as RMA), it is not needed to set the
do.logtransform parameter now. To run arrayQualityMetrics
using the processed data, type:

arrayQualityMetrics(expressionset = eset, outdir = "QC_re-

port_for_rma", force = TRUE)

arrayQualityMetrics will produce a folder containing all results.
By opening the index.html file, you could find the results organized
as “between array comparison”, “array intensity distributions”,
“variance mean dependence” and “individual array quality”.

3.3 Gene Filtering Microarray could typically monitor the expression of tens of
thousands of genes. Accordingly, a huge number of hypothesis
tests are performed to detect differentially expressed genes, and
many true-null hypotheses will produce small p-values by chance.
As a consequence, it is necessary to further apply multiple testing
adjustment to control such false positive measures, e.g., the family-
wise error rate (FWER) or the false discovery rate (FDR). Never-
theless, multiple testing adjustment also reduces the power to
detect true positives.

Due to the inherited noise from microarray technique, and the
fact that only a small number of replicates are used in most studies,
it is common that for many studies no differentially expressed genes
could be detected after multiple testing adjustment. Previous stud-
ies showed that independent filtering steps could remarkably
increase the power for differential gene detection from high-
throughput experiments [20, 21].

Here we show how to remove probe sets with low expression
and low variance across all arrays using the R package genefilter
[22]. Just skip the following steps if you don’t want to perform
gene filtering.

1. To install and load genefilter package, type:

install.packages(“genefilter”)

library(genefilter)

2. To remove probe sets with low variance across all arrays (those
with variance below the 0.25 quantile), and show the number
after filtering, type:

eset.filt = varFilter(eset.filt, var.func=IQR, var.cutoff

= 0.25, filterByQuantile = TRUE)

nrow(eset.filt)

3. To remove probe sets without gene annotation information,
and show the number after filtering, type:
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eset.filt = eset.filt[featureNames(eset.filt) %in%

row.names(gns)[!is.na(gns$SYMBOL)], ]

nrow(eset.filt)

4. To remove probe sets with multiple gene symbols, and show
the number after filtering, type:

eset.filt = eset.filt[featureNames(eset.filt) %in%

row.names(gns)[!duplicated(gns$SYMBOL)],]

nrow(eset.filt)

3.4 Differential

Expression Analysis

One of the major purposes of using microarray is to detect differ-
entially expressed genes between different conditions (e.g., normal
vs. tumor, treatment vs. untreatment) or during time series process.
The Bioconductor package limma [14] provides integrated meth-
ods for gene expression analysis, and could handle complex experi-
mental designs. In this protocol, we show how to perform
differential expression using limma. To be noted, alternative meth-
ods such as SAM [12] and RankProduct [13] are also widely used
for differential analysis (see Note 6).

To install and load limma, type:

biocLite(“limma”)

library(limma)

3.4.1 Create Design

Matrix

The first step is to create design matrix to describe the features
(such as treated or untreated) for each sample. Suppose you want to
compare the gene expression between wild-type (WT) and mutant
(KO) samples, each with three replicates. To manually create the
design matrix, type:

sample.groups <- factor(c("WT", "WT", "WT", "KO", "KO", "KO"),

levels = c("WT", "KO"))

design.mat &lt;- model.matrix(~0 + ~sample.groups)

colnames(design.mat1)  c(“WT”, “KO”)

Similarly, if you want to make a design matrix for three-group
comparison (e.g., C, T1, T2 for control, treatment1, treatment2
with two replicates), type:

sample.groups <- factor(c(“C”, “C”, “T1”, “T1”, “T2”, “T2”),

levels = c(“C”, “T1”, “T2”))

design.mat &lt;- model.matrix(~0 + sample.groups)

colnames(design.mat2) <- c(“C”, “T1”, “T2”)

3.4.2 Create Contrast

Matrix

For simple experiment designs, design matrix is the only thing
needs to be created. However, for those with complex experiment
design which could have many ways of comparison, the contrast
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matrix should also be generated to specify the comparisons need to
be performed.

Take the aforementioned three-group experimental design (C,
T1, T2 for control, treatment1, treatment2) as example, the con-
trast matrix which specifies pairwise comparison between each
group could be created by typing:

contrast.matrix <- makeContrasts(T1-C, T2-C, T2-T1, levels=de-

sign.mat)

Similarly, if you are only interested in the differences between
the treated groups and control, the contrast matrix could be created
by:

contrast.matrix <- makeContrasts(T1-C, T2-C, levels=design.

mat)

3.4.3 Differential

Expression Analysis Using

a Linear Model

Once the design matrix (and contrast matrix if necessary) is ready,
we can move on to the empirical Bayes analysis which could give
more precise estimates of differential genes than traditional
approaches like t-test. The analysis is carried out by using the
command lmFit() followed by eBayes(). Take the aforementioned
three-group experimental design as example, type:

fit <- lmFit(eset.filt, contrast.mat)

fit <- eBayes(fit)

3.4.4 Report Results 1. Before report the list of differentially expressed genes, it is
necessary to map the gene annotation information to “genes”
list. To do it, type:

fit$genes <- gns [row.names(gns) %in% row.names(fit$t),]

2. With the topTable() function, the differential analysis results
could be extracted. By specifying the argument coef, you could
determine which comparison results will be reported. Take the
three-group experimental design with contrast matrix specify-
ing pair-wise comparison (T1-C, T2-C, T2-T1) as example,
you should set coef¼1 to get differentially expressed genes
between T1 and C groups. Accordingly, coef¼2 is for differen-
tially expressed genes between T2 and C groups. To get the top
list of differentially expressed genes that pass the specified
threshold for log2(fold) (such as 1 as below) by setting “lfc”
and p-value (such as BH-adjusted p-value of 0.05 as below) by
setting “p.value” between T1 and C groups, type:

topTable(fit, coef=1, adjust.method = "BH", sort.by="P",

lfc = 1, p.value = 0.05, number=10)
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3. To get the list of differential genes, and save them to a local file,
type:

de.gene = topTable(fit, coef=1, adjust.method = "BH", sort.

by="P", lfc = 1, p.value = 0.05, number=nrow(eset.filt))

write.table(de.gene, file="de_gene.txt", sep="\t", quote=-

FALSE, row.names=FALSE, col.names=TRUE)

4. Similarly, to save significantly upregulated and downregulated
genes separately, type:

up.gene = de.gene[which(de.gene$logFC > 0), ]

down.gene = de.gene[which(de.gene$logFC < 0), ]

write.table(up.gene, file="up_gene.txt", sep="\t", quote=-

FALSE, row.names=FALSE, col.names=TRUE)

write.table(down.gene, file="down_gene.txt", sep="\t", quo-

te=FALSE, row.names=FALSE, col.names=TRUE)

3.4.5 Visualize

Differentially Expressed

Genes

The differentially expressed genes could be plotted in MA plot or
Volcano plot, both could be generated using functions provided in
limma.

1. To visualize gene expression and highly significantly differen-
tially expressed genes in a MA plot (Fig. 1), and save the figure
to a file named “MA_plot.png”, type:

Fig. 1 MA-plot with differentially expressed genes highlighted. The x-axis shows
the average expression, while y-axis shows the log2(fold). The significantly
differentially expressed genes are highlighted in red
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png(file="MA_plot.png", width=4000, height=3000, res=600)

plotMA(fit,coef=2)

abline(0,0, col="blue")

points(de.gene$AveExpr, de.gene$logFC, col=2, cex=.5,

pch=19)

dev.off()

2. Similarly, to visualize differential genes in a Volcano plot using
the volcanoplot() function (Fig. 2), and save the figure to a file
named “volcano_plot.png”, type:

png(file = “volcano_plot.png”, width = 4000, height = 3000,

res = 600)

volcanoplot(fit, coef = 2)

points(de.gene$logFC, de.gene$B, cex=.5, col=2, pch=19)

dev.off()

3.5 Downstream

Analysis

3.5.1 Clustering

and Classification

Gene expression clustering allows an open-ended exploration of the
data, without getting lost among the thousands of individual genes
[23]. Thus it is one of the standard steps for gene expression analysis.

The R package pheatmap [24] could be used for clustering and
heatmap plotting. To be noted, there are multiple ways of distance
measurements for clustering, among them Euclidean distance is the
most commonly used [25] (see Note 7).

Fig. 2 Volcano plot with differentially expressed genes highlighted. The x-axis
shows the log2(fold), while y-axis shows the –log10(p-values). The significantly
differentially expressed genes are highlighted in red
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1. To install and load pheatmap package, type:

install.package(“pheatmap”)

library(pheatmap)

2. To get the matrix with expression values for all differential
genes, type:

de.gene.expr = merge(de.gene, expr[row.names(expr) %in%

row.names(de.gene),], by.x=0, by.y=0, all=TRUE)

3. To perform clustering and create a heatmap which shows the
expression of differential genes in each sample (Fig. 3), type:

png(file = "Fig.de_gene.heatmap.png", width = 3000, height

= 4000, res = 600)

pheatmap(as.matrix(de.gene.expr[,10:17]), scale="row”,

labels_row = de.gene.expr$SYMBOL)

dev.off()

3.5.2 Gene Ontology

Enrichment Analysis

After obtaining the list of differential genes, one analysis is to
examine the functional relevance of these genes, by ways like GO
enrichment or pathway analysis. The Bioconductor package
GOstats [26] could be used for gene set enrichment analysis. To
be noted, other resources like DAVID [27] and GSEA [28] are also
widely used.

1. To install and load GOstat package, type:

biocLite(“GOstats”)

library(GOstats)

2. EntrezIDs are needed by GOstat (see Note 8). The conversion
of probe IDs to Entrez IDs could be carried out easily follow-
ing steps similar to Subheading 3.1.5. If gene annotation of
Entrez IDs has already been performed in previous steps, we
could extract Entrez IDs directly by typing:

all.ids <- eset.filt$ENTREZID

3. To get Entrez IDs of upregulated and downregulated
expressed genes, type:

up.ids <- up.gene$ENTREZID

down.ids <- down.gene$ENTREZID

4. There are three major categories of gene ontology, including
“biological process” (BP), “molecular function” (MF), and
“cellular component” (CC), each need to be tested separately.
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To get significantly enriched BP terms for upregulated and
down-regulated genes respectively, type:

up.bp.params <- new(

"GOHyperGParams", geneIds = up.ids, universeGeneIds = all.

ids, annotation = "mogene20sttranscriptcluster.db",

ontology = "BP", pvalueCutoff = 0.05, conditional = FALSE,

Fig. 3 Heatmap for differentially expressed genes. The expression values are scaled by row. Row z-score is
indicated with colors
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testDirection = "over")

up.bp.over <- hyperGTest(up.bp.params)

up.bp.over.df = summary(up.bp.over)

down.bp.params <- new(

"GOHyperGParams", geneIds = down.ids, universeGeneIds =

all.ids, annotation = "mogene20sttranscriptcluster.db",

ontology = "BP", pvalueCutoff = 0.05, conditional = FALSE,

testDirection = "over")

down.bp.over <- hyperGTest(down.bp.params)

down.bp.over.df = summary(down.bp.over)

5. Similarly, to get significantly enriched MF terms, type:

up.mf.params <- new(

"GOHyperGParams", geneIds = up.ids, universeGeneIds = all.

ids, annotation = "mogene20sttranscriptcluster.db",

ontology = "MF", pvalueCutoff = 0.05, conditional = FALSE,

testDirection = "over")

up.mf.over <- hyperGTest(up.mf.params)

up.mf.over.df = summary(up.mf.over)

down.mf.params <- new(

"GOHyperGParams", geneIds = down.ids, universeGeneIds =

all.ids, annotation = "mogene20sttranscriptcluster.db",

ontology = "MF", pvalueCutoff = 0.05, conditional = FALSE,

testDirection = "over")

down.mf.over <- hyperGTest(down.mf.params)

down.mf.over.df = summary(down.mf.over)

Similarly, to get significantly enriched CC terms, type:

up.cc.params <- new(

"GOHyperGParams", geneIds = up.ids, universeGeneIds = all.

ids, annotation = "mogene20sttranscriptcluster.db",

ontology = "CC", pvalueCutoff = 0.05, conditional = FALSE,

testDirection = "over")

up.cc.over <- hyperGTest(up.cc.params)

up.cc.over.df = summary(up.cc.over)

down.cc.params <- new(

"GOHyperGParams", geneIds = down.ids, universeGeneIds =

all.ids, annotation = "mogene20sttranscriptcluster.db",

ontology = "CC", pvalueCutoff = 0.05, conditional = FALSE,

testDirection = "over")

down.cc.over <- hyperGTest(down.cc.params)

down.cc.over.df = summary(down.cc.over)

6. Finally, to save significantly enriched GO terms as local files,
type:

write.table(up.bp.over.df, file="up_gene.GOstats.enri-

ched_BP_term.txt",

row.names = FALSE, sep="\t", quote = FALSE)

write.table(down.bp.over.df, file="down_gene.GOstats.en-

30 Ming-an Sun et al.



riched_BP_term.txt",

row.names = FALSE, sep="\t", quote = FALSE)

write.table(up.bp.over.df, file="up_gene.GOstats.enri-

ched_BP_term.txt",

row.names = FALSE, sep="\t", quote = FALSE)

write.table(down.bp.over.df, file="down_gene.GOstats.en-

riched_BP_term.txt",

row.names = FALSE, sep="\t", quote = FALSE)

write.table(up.bp.over.df, file="up_gene.GOstats.enri-

ched_BP_term.txt",

row.names = FALSE, sep="\t", quote = FALSE)

write.table(down.bp.over.df, file="down_gene.GOstats.en-

riched_BP_term.txt",

row.names = FALSE, sep="\t", quote = FALSE)

4 Notes

1. For researchers prefer to use Affymetrix Power Tools (APT)
which is a collection of command line programs for analyzing
and working with Affymetrix microarray data, the
corresponding annotation files could be downloaded from
Affymetrix website freely (http://www.affymetrix.com/sup
port/technical/annotationfilesmain.affx).

2. The CEL file is the raw data file for the Affymetrix microarray.
It stores the results of the intensity information for each feature
on the microarray, such as the intensity value and the standard
deviation of the intensity.

3. The installation of some packages may depend on other
packages, which usually will be installed automatically. How-
ever, we noticed that some dependent packages, such as
“XML” and “openssl” cannot be installed in R successfully.
Such problem could usually be solved by install the
corresponding package to the computer in advance. For exam-
ple, in Ubuntu OS, openssl could be installed by the command
“apt-get install openssl-dev”. After that, openssl could be
installed in R successfully.

4. There are a variety of algorithms for microarray data normali-
zation. For their differences, please refer to [11].

5. ExpressionSet is the object defined in the Bioconductor Bio-
base package for loading and manipulating microarray data in
R. It combines several different sources of information, includ-
ing expression data from microarray experiments, “meta-data”
describing samples, annotations about the features on the chip
or technology used for the experiment, information related to
the protocol used for processing each sample, and a flexible
structure to describe the experiment.
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6. SAM and RankProduct are specifically designed for the com-
parison between two groups, while limma provides more flexi-
ble choices for experiments with complex design.

7. There are a variety of distance measurements that could be used
for clustering. For their differences, please refer to [25].

8. Unique IDs, such as ENTREZID, is good for downstream
analysis. Gene symbol is not unique.
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Chapter 3

Pathway and Network Analysis of Differentially Expressed
Genes in Transcriptomes

Qianli Huang, Ming-an Sun, and Ping Yan

Abstract

In recent years, transcriptome sequencing has become very popular, encompassing a wide variety of
applications from simple mRNA profiling to discovery and analysis of the entire transcriptome. One of
the most common aims of transcriptome sequencing is to identify genes that are differentially expressed
(DE) between two or more biological conditions, and to infer associated pathways and gene networks from
expression profiles. It can provide avenues for further systematic investigation into potential biologic
mechanisms. Gene Set (GS) enrichment analysis is a popular approach to identify pathways or sets of
genes that are significantly enriched in the context of differentially expressed genes. However, the approach
considers a pathway as a simple gene collection disregarding knowledge of gene or protein interactions. In
contrast, topology-based methods integrate the topological structure of a pathway and gene network into
the analysis. To provide a panoramic view of such approaches, this chapter demonstrates several recent
computational workflows, including gene set enrichment and topology-based methods, for analysis of the
DE pathways and gene networks from transcriptome-wide sequencing data.

Key words Transcriptome, RNA-Seq, Microarray, Pathway, Network, Topology, Enrichment analysis

1 Introduction

Transcriptome data are increasing in both volume and variety,
which facilitates data mining in system level greatly [1]. A large
number of approaches/tools have been developed to detect path-
ways that are significantly altered between different experimental
conditions [2, 3]. These methods can mainly be divided into two
categories according to the way by which a pathway is handled in
enrichment analysis. The traditional approaches consider pathways
as unstructured gene sets and omit known knowledge of the gene
and protein interactions. Methods commonly called gene set
(GS) analysis are classified as this type. In contrast, in pathway
topology-based approaches, the topological structure of a pathway
is represented as a graph with nodes (genes or proteins) and edges
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(interactions between genes/proteins), and the pathways’ graphi-
cal/topological features are integrated into analysis.

Among the methods not using pathway structure, Gene Set
Enrichment Analysis (GSEA) proposed by Subramanian et al. is
most popular [4]. It determines whether a functionally related set
of genes express differentially (enrichment or deletion) under dif-
ferent experimental conditions. As a standard method in the last
decade, GSEA has inspired the development of various statistical
tests for identifying differentially expressed (DE) gene sets [5]. Sev-
eral statistical tests are usually employed, such as Fisher’s exact,
Kolmogorov-Smirnov (KS), Wilcoxon signed rank and Bootstrap-
ping tests. For instance, the DAVID tool (Database for Annotation,
Visualization and Integrated Discovery) is based on Fisher’s exact
test [6]. Although various statistical tests were also implemented in
other tools (such as GOStat and SAFE) for significance analysis of
functional categories [7, 8], here, we mainly focus on the packages
involved in detection of the affected pathways from differentially
expressed GS. To demonstrate the GS based analysis approaches,
we chose several packages using the statistical programming lan-
guage R [9], including: GSEA which is based on KS test [10],
PATHChange package combining three different tests including
Bootstrapping, Fisher’s exact and Wilcoxon signed rank tests
[11]. For all three statistical tests, the null hypothesis is the same
“not differentially expressed pathway” with the alternative hypoth-
esis of “differentially expressed pathway”.

For the pathway topology-based (PT-based) methods, SPIA
(Signaling Pathway Impact Analysis) proposed by Draghici et al.
is one of the earliest tools [12]. Since then, this type of approaches
has become popular and several similar methods were developed in
recent years [13]. For example, iPathwayGuide is a web-based tool
adopting impact analysis to identify the impacted pathways
[14]. The PWEA (Pathway Enrichment Analysis) and PRS (Path-
way Regulation Score) are standalone applications implemented in
programming language Cþþ and MATLAB, respectively
[15, 16]. Packages are also developed with other programming
languages, e.g., R, such as TopologyGSA, clipper, DEGraph,
SPIA and pathDESeq [12, 17–20]. Simultaneous application of
different methods and comparison of the results often appears
time-consuming, cumbersome and prone to clerical errors due to
the need for repeated data conversion and transfer. Fortunately, the
R/Bioconductor package Graphite provides a common interface to
four topology-based pathway analysis methods (TopologyGSA,
clipper, DEGraph and SPIA), which allows the user to perform
these analyses directly over the provided networks [21]. In this
chapter, for demonstration of the PT-based methods, we mainly
focus on the application of Graphite and pathDESeq packages.
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2 Materials

2.1 Installation of R

Packages

To perform pathway analysis of gene expression data from micro-
array and RNA-Seq technologies, all the methods applied in this
chapter are implemented in R language. The package could be
installed from CRAN (https://cran.r-project.org/), Bioconductor
(https://www.bioconductor.org/) or GitHub (https://github.
com/). The package “devtools” enables installing packages from
GitHub and should be installed in the first place (see Note 1).
Install a package (e.g., "GEOquery") from Github with the follow-
ing commands:

> install.packages("devtools")

> library("devtools")

> install_github(’GEOquery’,’seandavi’)

2.2 Expression Data Gene expression datasets curated in Gene Expression Omnibus
(GEO) database [22] are downloaded for analysis as specified in
context of Methods. GEOquery provided an easy way to access
GEO data [23]. Here, an example was shown to download a data
matrix (e.g., “GDS3837”) fromGEOwithGEOquery (seeNote 2).

1. Install “GEOquery” and download a GEO dataset:

> source("http://bioconductor.org/biocLite.R")

> biocLite("GEOquery")

> library(GEOquery)

> gds <- getGEO( "GDS3837", AnnotGPL = TRUE, destdir=".")

2. Get the GPL annotation and inspect the table of GPL annota-
tion object:

> gpl <- getGEO(Meta(gds)$platform)

> Meta(gpl)$title

> colnames(Table(gpl))

3. Convert a GDS data structure to BioConductor data structure
and get expression data:

> eset <- GDS2eSet(gds)

> expSet <- exprs(eset)

2.3 Pathway/Gene

Set Data

There are a large number of metabolic and signaling pathway
databases, such as KEGG, PathwayCommons and Reactome
[24–26]. Tools such as Graphite and PaxtoolsR have also been
developed to download the pathway bundle [21, 27]. Molecular
Signatures Database (MSigDB) is one of the most widely used
databases of gene sets, which included more than 10,000 gene
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sets [28]. In the chapter, to reduce the computational complexity
of the analysis, only part of pathways is selected. An example using
the R package MSigDB to download pathway data is shown below.

1. Install the package MSigDB directly from github:

> library(devtools)

> devtools::install_github(’oganm/MSigDB’)

> library(MSigDB)

2. Navigate the pathway information:

> names(MSigDB)

> head(names(MSigDB$C2_CURATED))

> getMSigInfo("KEGG_GALACTOSE_METABOLISM")

3. Save the pathway information to the local directory:

> sink("C2_CURATED.tab")

> writeLines(unlist(sapply(rbind(names(MSigDB$C2_CURATED),

MSigDB$C2_CURATED), paste, collapse="\t")))

> sink ()

3 Methods

3.1 Gene Set

Enrichment Based

Pathway and Gene

Network Analysis

3.1.1 GSEA

Overview of GSEA

Using pre-defined gene sets that are grouped together according to
biological pathways or chromosomal proximity, GSEA evaluates
whether gene sets present statistically significant, concordant dif-
ferences between two biological states [4]. A collection of these
priori gene sets can be found in theMSigDB, which are divided into
eight major collections, such as curated gene sets from online
pathway databases and motif gene sets based on conserved
cis-regulatory motifs [29]. GSEA analyzes whether genes in a
collection belong to the extreme of the background gene list
(a long gene list or genome). If a gene set is at the top (over-
expression) or bottom (under-expression), the genes are consid-
ered to be associated with biological phenotypic differences. The
core of GSEA mainly involves three steps, including calculation of
enrichment score (ES), estimation of ES significance, and multi-
testing correction.

A number of software tools implement the complicated statis-
tical computation required for GSEA, which have been listed in the
Broad Institute website: http://software.broadinstitute.org/gsea/
downloads.jsp. However, a new R package implementing GSEA
with regular updates was introduced here.

Dependencies

and Preparations

1. Software installation
The GSEA package can be downloaded from website https://
github.com/rskanchi/gsea. To set the file path to your working
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directory (assuming the working directory is “D:/Pathway/
GSEA”) and load GSEA in R, open the R console and type:

> setwd("D:/Pathway/GSEA")

> source("D:/Pathway/GSEA/gsea.R")

2. Input files

(a) Expression data: The dataset GDS3837 is used as example
(https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?
acc¼GDS3837). The data were generated to mine poten-
tial prognostic biomarkers and therapeutic targets for non-
smoking female non-small cell lung carcinoma (NSCLC)
through collecting 120 paired tumor and adjacent normal
lung tissue specimens [30]. A subset of GDS3837 (named
“NSCLC.tab”) is a data frame with expression data of
20 samples (10 normal vs. 10 tumor). The first column
contains gene names while the rest contain gene expression
values in samples (see Note 3).

(b) Pathway/gene set data: A subset (named “pathways.tab”)
retrieved from MSigDB is applied. The complete curated
gene sets can be downloaded from Broad Institute (http://
software.broadinstitute.org/gsea/downloads.jsp). The file
“pathways.tab” is tab delimited, with pathway/gene sets
represented in rows (see Note 3).

3. Preprocessing of the gene expression and pathway/gene set data
It is necessary to read the aforementioned input files into R and
convert them to variables as the input arguments for the
subsequent functions.

(a) Preprocessing of the gene expression data
The function “get.ExpressionData” in gsea.R extracts the
gene expression and phenotype labels from the expression
data and reorganizes them into a list file with three objects,
including a numeric N � k matrix of expression data, a
vector of phenotypic labels, and a vector of gene labels
(which is the same as the row names of N � k matrix
output). The function “str()” can be used to compactly
display the internal structure of list file.

> data <- read.delim("NSCLC.tab", header=FALSE, row.names=1,

stringsAsFactors = FALSE)

> tempData <- get.ExpressionData(data)

> str(tempData)

> exprData <- tempData$exprData;

> phenLabels <- tempData$phenLabels

(b) Preprocessing of the pathway/gene set data
According to the primary pathway/gene set data, a matrix of
pathway/gene should be constructed. In the matrix, the row
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names are set as pathway/gene set names, and each row carries
names of genes in the corresponding pathway. The column
names are laid with the index of specific gene in the line.

> nCol <- max (count.fields("pathways.tab", sep = "\t"), na.rm

= TRUE)

> pathways <- read.delim ("pathways.tab", header = FALSE, fill

= TRUE, col.names = 1:nCol)

> rownames(pathways) <- pathways [,1]

> pathways <- pathways [, -(1:2)]

Identification of Pathways/

Gene Sets with Significant

Expression Difference

Based on the reorganized datasets (exprData, phenLabels and path-
ways), the function “compute.NES” can identify pathways/gene
sets with significant expression difference.

> myRes <- compute.NES (exprData, phenLabels, pathways, min-

Genes = 15, rankMetric = "t-statistic", p = 1, nperm = 1000, pi

= NULL, computeMinpathways = TRUE)

Specifically, the argument minGenes designates the minimum
number of genes harbored by specific pathway for further analysis,
and the nperm defines the number of permutations to build the null
distributions for assessing the statistical significance of the enrich-
ment score (default 1000). These parameters can be adjusted to
meet specific requirements (see Note 4).

After this step, the results (myRes, an object of list) will be
generated and saved as two files (“pathwayScored.tab” and “gen-
eRanked.tab”) in the working directory. The file “pathwayScored.
tab” is a dataframe describing the statistical outputs (such as enrich-
ment score (ES), normalized enrichment score (NES), Perm-pval,
FWER p value, and FDR q value) of each pathway/gene set. The
file “geneRanked.tab” contains the genes and corresponding values
in decreasing order measuring the association of each gene with the
phenotype.

> str(myRes)

> write.table(myRes$NES,quote = FALSE,sep="\t", "pathwayS-

cored.tab")

> write.table(myRes$rankedL,quote = FALSE,sep="\t", "geneR-

anked.tab")

3.1.2 PATHChange

Overview of PATHChange

PATHChange is an R package that detects differentially expressed
pathways in transcriptomic data [9, 11]. To facilitate the evaluation
of significant alterations of pathways and to reduce possible false
discoveries, PATHChange combines three different statistical tests,
including Bootstrapping, Fisher’s exact and Wilcoxon signed rank
tests [11]. The standard analysis process of the PATHChange
includes four steps: (a) expression data preprocessing and
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expression variation evaluation [31]; (b) pathway data preproces-
sing; (c) pathway activity analysis; (d) comparison of the results
from these three methods with Venn diagrams, and this final step
is optional. For the example illustrated in this section, each file
produced by PATHChange package is saved in the temporary
folder.

Dependencies

and Preparations

1. Software installation
The package can be installed and loaded as followed.

> install.packages("PATHChange")

> library("PATHChange")

2. Input files
Here, the gene data file (named “genes.txt”), the pathway data
file (named “pathways.txt”) and the expression data file (named
“eDat.csv”) are all retrieved from example data in the package
PATHChange (https://github.com/cran/PATHChange).
Their formats are briefly described as follows.

(a) Pathway data: This is a text formatted file with two col-
umns: ‘Pathway’ and ‘ApprovedSymbol’. Each row of the
file starts with the pathway/gene set name followed by a
space, and then a gene name in that pathway/gene set.
There are a large number of databases curating metabolic
and signaling pathways, such as KEGG, PathwayCommons
and Reactome [24–26], which may be considered for
checking alterations.

(b) Gene data: This is a text formatted file organized in a single
column named “ApprovedSymbol”, which contains all
gene members in all tested pathways.

(c) Expression data: This file comprises of an expression matrix
and has been saved as a comma-separated values format (*.
csv; the function in the PATHChange uses "/" as mark of
separation). The first row of this file contains the labels for
each column, including probes, genes and the expression
level of the gene in different conditions/samples. In other
words, the gene expression matrix (N probes/genes � k
conditions/samples) is available from the second row
onwards with the probe and gene name in the first and
second column followed by k expression values for the
conditions/samples (see Note 5).

Preprocessing Expression

Data with PATHChangeDat

Function

Firstly, PATHChangeDat detects the experimental conditions
provided in expression files which can be retrieved from GEO,
and confirms the sample/control combinations for further com-
parative analyses based on users’ choice. Then, it calculates the
mean expression value of each gene in sample combinations.
Because the repeated genes may affect the probability of choosing
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each gene in Bootstrap algorithm, the average expression level will
also be used as a substitute for these genes. Here, we use the dataset
GSE35972 from GEO as example.

> PATHChangeDat(eDat = eDat, DataSet = "GSE35972", NumbSample

= 6, Genes = Genes, HistComp = FALSE, hc = c("untreated",

"treated with"), writeRDS = FALSE)

For the parameters/arguments, NumbSample represents the
number of samples in dataset. If the users already know which
sample types are used for comparison, they can select Hist-
Comp¼FALSE and set the sample types in the argument hc. For
instance, hc¼c("untreated", "treated with") indicates that compari-
son will be performed between "untreated" and "treated with"
sample combinations. The result of PATHChangeDat is a list file
(named “MeanData.rds”) demonstrating the mean expression
value of each gene.

> require(rlist)

> MeanData <- list.load(file.path(tempdir(), "MeanData.rds"))

> write.table (MeanData, quote = FALSE, sep = "\t", "D:/

Pathway/PATHChange/MeanData.tab")

Preprocessing Pathways

with PATHChangeList

Function

Based on the pathway data provided, this function organizes the
different pathways and carried genes separately to a list file (named
“path.rds”).

> PATHChangeList(filePathway = filePathway, writeRDS = FALSE)

> path <- list.load(file.path(tempdir(), "path.rds"))

> head(path)

Detection of Differentially

Expressed Pathways

with PATHChange Function

Based on the primary data processed in foregoing steps, this func-
tion detects differentially expressed pathways with Bootstrapping,
Fisher’s exact and Wilcoxon signed-rank tests. The results are dis-
played in a file (.csv) with five columns, including “Pathway” repre-
senting the considered pathway name, “Activity” denoting the
calculated pathway activity and the p-values resulting from three
statistical tests. The altered pathways can be used for further com-
parative analyses and visualization.

> PATHChange(path = path, MeanData = MeanData, writeCSV =

TRUE, writeRDS = FALSE, destDIR = " D:/Pathway/PATHChange/")

Specifically, the parameter/argument path is the list of path-
ways previously generated by the function PATHChangeList. The
MeanData indicates the mean expression value of each gene calcu-
lated with the function PATHChangeDat.
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3.2 Topology Based

Pathway and Gene

Network Analysis

3.2.1 pathDESeq

Overview of pathDESeq

pathDESeq is a pathway-based approach of DE analysis for
RNA-Seq gene expression data [17]. To improve sensitivity and
specificity for detecting differentially expressed genes, pathDESeq
integrates known biological pathways and interaction information
to the Markov Random Field (MRF) method. Compared to other
popular R packages for RNA-Seq data analysis, e.g., DESeq,
EBSeq, edgeR, NOISeq, etc [32–35], pathDESeq adopts network
information and increases the sensitivity. The package can be
retrieved from GitHub (https://github.com/MalathiSIDona/
pathDESeq).

Dependencies

and Preparations

1. Software installation

> library("devtools")

> install_github("MalathiSIDona/pathDESeq", build_vignettes=-

TRUE)

> library("pathDESeq")

2. Input files
(a) RNA-Seq data: Normalized count data (FPKM/RPKM

format [17]) is required as pathDESeq input. A subset of
data (“CRC.tab”) derived from GSE50760 dataset is used
as example [36]. The file “CRC.tab” is a data frame with
normalized (FPKM) expression data of 18 samples (9 nor-
mal colons vs. 9 primary colorectal cancers). The first col-
umn contains gene names while the rest contain gene
expression values for each sample.

(b) Reactome pathway data: The gene information in human
reactome pathways is retrieved from Reactome pathway
database [26]. The unique gene names are deposited in
the file named “pathway.tab”. Note that only the genes
that can be mapped to at least one pathway in the Reac-
tome pathway database are used for further analysis [17]. If
needed, other databases that contain biological pathway
information can also be combined to filter the genes.

(c) Gene-gene interaction data: The curated gene-gene inter-
actions for human are downloaded from BioGRID data-
base [37] and saved in the file “Biogrid.tab”. It is a data
frame with each row representing a gene-gene interaction
pair and two columns carrying the Gene.1 and Gene.2 of
the interaction pair respectively. In the analysis, the gene-
gene interaction data are applied to form the neighborhood
structure. If needed, other databases that harbor gene net-
work/interaction information can also be combined.

Data Preprocessing Only the genes mapped to at least one pathway are used for further
pathway analysis in the package pathDESeq. Moreover, the expres-
sion data file may contain duplicate gene names, and the expression
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values could be missing for some genes. So, the data should be
preprocessed.

First, read the required data to R environment:

> Exp_dataset <- read.table("CRC.tab", header = TRUE, string-

sAsFactors = FALSE, sep=’\t’)

> Path_Rectome <- read.table("pathway.tab", stringsAsFactors

= FALSE, sep = ’\t’)

> biogrid <- read.table("Biogrid.tab", header = TRUE, string-

sAsFactors = FALSE, sep = ’\t’)

Keep the genes (in expression data) that are recalled from
Reactome pathway data:

> Exp_dataset1 <- data.frame (subset(Exp_dataset, Exp_dataset

$genes %in% Path_Rectome$V1))

Remove rows with duplicate gene names:

> Exp_dataset2 <- Exp_dataset1[!duplicated(Exp_dataset1

$genes), ]

It is needed to remove the rows (genes) with missing or zero
expression values:

> Exp_dataset3 <- Exp_dataset2[rowSums(is.na(Exp_dataset2))

== 0,]

> Exp_dataset4 <- Exp_dataset3[rowSums(Exp_dataset3[,-1]) >

0,]

Estimation of Differential

Expressed Genes

with PGBMRF Model

This function is a wrapper function, which consists of ttest, neib-
Mat, pgbEst and estDE sub-functions with Iterative Conditional
Mode (ICM) algorithm to perform the PGBMRF analysis. The
function performs two independent sample t tests to obtain initial
DE states for given genes and create the neighborhood matrix
based on available gene interaction information, followed by esti-
mation of the parameters for PGBMRFmodel and the DE states for
given genes using ICM algorithm with three iterative steps until the
estimated DE states converge.

> pgbmrfICM(data = Exp_dataset4, interactions = biogrid, m =

9, n = 9, sig = 0.05, k = 40, pgb.start = c(log(10), log(0.2),

log(2), log(3)), iterations = 12)

For the arguments, data and interactions originate from above
input files. m and n specify the number of replicates for the control
and treatment group, respectively. sig, k, pgb.start and iterations
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denote the level of significance, the number of Gaussian quadrature
points, a vector of initial parameters for the Poisson-Gamma-Beta
model and the maximum number of ICM iterations, respectively.
Note that all the parameters are assigned with default values and
they can be altered according to users’ preference. Afterwards, the
following result files will be generated as expected in the working
directory (see Note 6).

Detection of Enriched

Pathways for Differentially

Expressed Genes

With MRF method that utilizes prior knowledge of biological
pathways and interaction, differentially expressed (DE) genes can
be identified with improved sensitivity and specificity from
RNA-Seq data. Subsequently, DAVID or other tools can be used
to find the enriched pathways [6, 17]. Here, an alternative method
named FunEnrich (https://github.com/galanisl/FunEnrich) is
adopted to execute the pathway enrichment analyses.

> library("devtools")

> source("https://bioconductor.org/biocLite.R")

> biocLite("reactome.db")

> install_github("galanisl/FunEnrich")

> library("FunEnrich")

The FunEnrich requires two gene lists (gene list of “interest”
and “background”) as inputs. Here, the up- (UR) and down-
regulated (DR) genes identified with PGBMRF are combined as
the gene list of interest. All genes in Human Reactome pathways are
used as background:

> DR_gene <- read.table("PGBMRF identified DR genes.txt",

header = FALSE, stringsAsFactors = FALSE, sep = ’\t’)

> UR_gene <- read.table("PGBMRF identified UR genes.txt",

header = FALSE, stringsAsFactors = FALSE, sep = ’\t’)

> DE_total <- rbind(DR_gene, UR_gene)

> Path_Rectome <- read.table("pathway.tab", stringsAsFactors

= FALSE, sep = ’\t’)

Subsequently, enrichment analysis is conducted with the func-
tion fun_enrich.Note that the gene.list should be a perfect subset of
the background and id.type should be one of ENTREZID (default),
SYMBOL (GENE SYMBOLs) and UNIPROT accessions.

> enriched <- fun_enrich(gene.list = DE_total[-1,], back-

ground = Path_Rectome[-1,], id.type = "SYMBOL", benjamini =

FALSE)

> str(enriched)

> write.table(enriched$bp, quote = FALSE, sep = "\t", "en-

riched_bp.tab")

Pathway and Network Analysis 45

https://github.com/galanisl/FunEnrich


> write.table(enriched$cc, quote = FALSE, sep = "\t", "en-

riched_cc.tab")

> write.table(enriched$mf, quote = FALSE, sep = "\t", "en-

riched_mf.tab")

> write.table(enriched$reactome, quote = FALSE, sep = "\t",

"enriched_reactome.tab")

> plot_fun_enrich(enr = enriched, aspect = "ALL", benjamini

= F, top = 5, char_per_line = 80)

The result (enriched, an object of list) will be generated. It can
be divided into four files (named “enriched_bp.tab”, “enriched_cc.
tab”, “enriched_mf.tab” and “enriched_reactome.tab”), represent-
ing enriched biological process, cellular component, molecular
functions and REACTOME pathways, respectively. The function
plot_fun_enrich generates a bar plot that focuses on the top
enriched terms (such as top ¼ 5) of one or all categories.

3.2.2 Graphite

Overview of Graphite

Graphite (GRAPH Interaction from pathway Topological Environ-
ment) is an R package performing topology-based gene set analyses
through conversion of pathway topology to a gene/protein net-
work [21, 38]. It reconstructs the gene-gene networks by integrat-
ing six pathway databases and taking into account the protein
complexes, gene families and compound-mediated interactions.
Interactions are included not only involving genes or their product
but also other chemical compounds (e.g., calcium ions). The pack-
age provides options to: (1) construct networks based on six data-
bases, including KEGG, Biocarta (http://www.biocarta.com),
Reactome, NCI/Nature Pathway Interaction Database, Human-
Cyc, and Panther [25, 26, 39–41]; (2) discriminate among differ-
ent types of gene groups from 14 species since the version 1.14;
(3) propagate pathway signal through the compound-mediated
interactions; (4) allow the selection of edge attributes and the
mapping of node identifiers to EntrezGene IDs and HUGO Sym-
bols [42, 43]; (4) the last but most important point, run SPIA,
DEGraph, CliPPER and topologyGSA analyses directly on net-
works constructed by Graphite [12, 19, 20, 38]. The Graphite
package is available in Bioconductor: http://bioconductor.org/
packages/devel/bioc/html/graphite.html.

Dependencies

and Preparations

1. Software installation

Install and load the latest version of the package by entering in
R console:

> source("https://bioconductor.org/biocLite.R")

> biocLite("graphite")

> library(graph)

> library(graphite)
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Four packages (SPIA, DEGraph, topologyGSA and clipper),
which are involved in identification of the most affected pathways
under the study based on pathways topology analysis, should also
be installed:

> biocLite(c("SPIA", "DEGraph", "topologyGSA", "clipper"))

2. Input files
(a) Pathway data:

The package can integrate the pathways from six public
databases (KEGG, Reactome, BioCarta, NCI, Panther
and HumanCyc) and convert them to gene network. The
data can be called using function pathways(). The names of
interested species and the pathway database are required
(KEGG as an example):

> humanKEGG <- pathways("hsapiens", "kegg")

> names(humanKEGG)[1:10]

> p <- humanKEGG[["Adherens junction"]]

> p

All the six databases are available for human in the package. For
other organisms, the pathway data are not always distributed. The
list of available pathway databases can be retrieved through
“pathwayDatabases()”, which returns a data frame with two col-
umns: species and database.

> pathwayDatabases()

(b) Expression data:
Because four types of methods (SPIA, DEGraph, topologyGSA
and clipper) are integrated in Graphite package, different types
of input files are needed. For instance, expression profiles are
used for the multivariable methods, such as topologyGSA.
Some other methods use the gene-level statistics like log fold-
change. The specific requirements for file formats are described
in corresponding sections.

Different Topology-Based

Pathway Analysis

Approaches

1. SPIA

The SPIA is one of the most well-known topology-based path-
way analysis methods [12]. It evaluates two probabilities. The first
probability (differentially expressed genes belonging to a pathway)
is calculated through a regular overrepresentation analysis, and the
second one assumes that the genes located in different positions of
a pathway have different perturbation factors. Then, global p-value,
which is used to rank the pathways, is obtained by combining the
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two probabilities. Three arguments are needed as its inputs: a
named vector (with Entrez Gene IDs) containing log2 fold-
changes of the differentially expressed genes, a vector with the
Entrez IDs in the reference set (for a microarray experiment, the
set will contain all genes present on the specific array used for the
experiment), and a list of pathways as mentioned. For instance:

Load the package and example dataset:

> library(SPIA)

> data(colorectalcancer)

Install and load Affymetrix Human Genome U133 Plus 2.0
Array annotation data (chip hgu133plus2):

> biocLite("hgu133plus2.db")

> library(hgu133plus2.db)

Using the example data, obtain the named vector containing
log2 fold-changes of the differentially expressed genes and a vector
with the Entrez IDs matched to the expression dataset:

> x <- hgu133plus2ENTREZID

> top$ENTREZ <- unlist(as.list(x[top$ID]))

> top <- top[!is.na(top$ENTREZ), ]

> top <- top[!duplicated(top$ENTREZ), ]

> tg1 <- top[top$adj.P.Val < 0.05, ]

> DE_Colorectal = tg1$logFC

> names(DE_Colorectal) <- as.vector(tg1$ENTREZ)

> ALL_Colorectal <- top$ENTREZ

Using the database Reactome as an example, get a list of path-
ways. Note that the function prepareSPIA converts the networks to
the SPIA-recognized format and should be executed before run-
ning SPIA.

> b <- pathways("hsapiens", "Reactome")

> prepareSPIA(b[1:20], "path_rect")

Run a topology-based analysis on an expression dataset using
SPIA:

> res_SPIA <- runSPIA(de=DE_Colorectal, all=ALL_Colorectal,

"path_rect")

> write.table(res_SPIA,quote = FALSE,sep="\t", "result_SPIA.

tab")
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The ranked pathways and various statistical results are depos-
ited in the result file (“result_SPIA.tab”). In particular, pSize is the
number of genes in the pathway; NDE is the number of DE genes
per pathway; tA is the observed total alteration accumulation in the
pathway; pNDE is the probability to observe at least NDE genes on
the pathway using a hypergeometric model; pPERT is the proba-
bility to observe a total accumulation more extreme than tA only by
chance; pG is the p-value obtained by combining pNDE and
pPERT; pGFdr and pGFWER are the False Discovery Rate and
Bonferroni adjusted global p-values, respectively. The Status pro-
vides how the pathway is perturbed (activated or inhibited).

2. TopologyGSA

TopologyGSA represents a multivariable method in which the
expression of genes is modeled with Gausian Graphical Models
with covariance matrix reflecting the pathway topology [20]. It
uses the Iterative Proportional Scaling algorithm to estimate the
covariance matrices. The testing procedure is a two-step process.
First, the equality of covariance matrices is tested via a likelihood
ratio test. When the null hypothesis of equality of covariance matri-
ces is not rejected, the differential expression is tested via multivari-
ate analysis of variance. When the covariance matrices are not equal,
Behrens-Fisher method is employed, which tests the equality of
means in a two-sample problem with unequal covariance matrices.
Five arguments are needed as its inputs, including: PathwayList,
which specifies a list of Pathways or a single Pathway object; test,
which determines the type of test used by topologyGSA; exp1,
which contains the Experiment matrix (of the first group) with
each gene in one column; exp2, which contains the Experiment
matrix (of the second group) with each gene in one column; alpha,
which represents the significance level of the test. For instance,

> library(topologyGSA)

> data(examples)

> k <- pathways("hsapiens", "kegg")

> p <- convertIdentifiers(k[["Fc epsilon RI signaling path-

way"]], "symbol")

The pathway list can be a list of pathways or a single pathway.
"symbol" is a string describing the type of the identifier. The values
can be "entrez", "symbol" or one of the columns provided by an
annotation package (for example, "UNIPROT").

> runTopologyGSA(p, "var", y1, y2, 0.05)

The results are demonstrated in a list with the pathway analyses
and the list of generated errors. Note that the process returns a
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warning or NULL when the number of genes in common is less
than 3 between the expression matrices and the pathway.

3. DEGraph

This method directly assesses whether a particular gene net-
work is differentially expressed between two conditions by assum-
ing the same direction in the differential expression of genes
belonging to a pathway [18]. Three arguments are needed as its
inputs: PathwayList, specifies a list of pathways or a single pathway
object, expr is an expression matrix with genes in rows and
N samples in columns, and Classes is a vector (length:N) indicating
the group assignment of the N samples.

> library(DEGraph)

> data("Loi2008_DEGraphVignette")

> b <- pathways("hsapiens", "biocarta")

> p <- convertIdentifiers(b[["actions of nitric oxide in the

heart"]], "entrez")

> runDEGraph(p, exprLoi2008, classLoi2008 )

4. Clipper

This method is similar to the topologyGSA as it uses the same
two-step approach. However, the Iterative Proportional Scaling
algorithm was substituted with a shrinkage James-Stein-type pro-
cedure allowing proper estimates when the number of samples is
smaller than that of genes in a pathway [19]. Then, it “clips” the
whole pathway for identifying the most affected path in the graph.
Four arguments are needed as its inputs: PathwayList, expr and
Classes are same as for DEGraph; method shows the kind of test to
be performed on the cliques and could be either “mean” or “vari-
ance”. Below, an example is given to explain how to apply the
package (with “ALL” dataset from Bioconductor).

> source("https://bioconductor.org/biocLite.R")

> biocLite("a4Preproc")

> library(a4Preproc)

> biocLite("hgu95av2.db")

> library(hgu95av2.db)

> library(ALL)

> library(clipper)

> data(ALL)

Prepare the required the pathway list from KEGG:

> k <- as.list(pathways("hsapiens", "kegg"))

> selected <- k[c("Bladder cancer", "Cytosolic DNA-sensing

pathway")]
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Preprocess data from the ALL and prepare the required expres-
sion and group/class files:

> pheno <- as(phenoData(ALL), "data.frame")

> samples <- unlist(lapply(c("NEG", "BCR/ABL"), function

(t) {which(grepl("^B\\d*", pheno$BT) & (pheno$mol.biol == t))

[1:10] }))

> classes <- c(rep(1,10), rep(2,10))

> expr <- exprs(ALL)[,samples]

> rownames(expr) <- featureData(addGeneInfo(ALL))$ENTREZID

Run a topology based analysis on an expression dataset using
runClipper:

> clipped <- runClipper(selected, expr, classes, "mean",

pathThr = 0.1)

> str(clipped$results)

The result provides a list with the results of the pathway ana-
lyses and generated errors.

4 Notes

1. When you install R packages, please note that there is differ-
ence between “install.packages()” and “install_github()” in the
required argument. The “install.packages()” takes package
names, while “install_github()” needs not only package
names but also repository names. It means that when a package
on GitHub is to be installed, its repository name should be
provided correctly. As shown in the example, “GEOquery” is a
well-known package on GitHub and the repository name is
“seandavi”. If you think it is trouble to use the repository name
of package on GitHub, the package “githubinstall” provides an
alternative solution to install packages on GitHub just like
“install.packages()” use the following code:

> install.packages("githubinstall")

> library(githubinstall)

> githubinstall("GEOquery")

2. When using the function “getGEO()” to download GEO data,
please note that the default destination directory for any down-
loads is “tempdir()”. It means that the retrieved file (e.g.,
“GDS3837.soft.gz”) is stored at “tempdir()”. You can type
“tempdir()” in R Console to get the path of directory. If you
would like to save the file for later use, it is necessary to specify a
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different directory. Since some GEO files are big, it is a good
idea to set a directory especially when your internet connection
is slow. Moreover, the GEO data can be converted to BioCon-
ductor ExpressionSets and limma MALists (https://github.
com/seandavi/GEOquery).

3. For the expression data, the gene expression matrix comprises
of expression values of N genes in k samples (N genes �
k samples). The first row of the data file contains the experi-
mental labels of the two phenotypic states for k samples. The
expression data of N genes are available from the second row
onwards with the gene name in the first column followed by
k expression values in the column of corresponding samples.
Notably, if the gene expression data are retrieved from GEO,
the expression data for all the probes should match with a gene
symbol/ENTREZ ID or other annotated information. For the
pathway data file, each row contains three tab-separated cells of
the pathway/gene set name, description of the pathway/gene
set, and all the gene names in that pathway/gene set. Note that
if you would like to get the pathways from Molecular Signa-
tures Database, registration is required.

4. The default permutation times are set as 1000. It is quite time-
consuming so that it is advised to evaluate whether the analysis
will complete successfully. It is better to start with a small
permutation number such as 10. Once the workflow is running
smoothly, the number of permutations can be set according to
necessity. Bear in mind that a very large number of permuta-
tions are computationally expensive and often infeasible; some-
times, more accurate p-values can be obtained with fewer
permutations [44].

5. These input files need to be read into R and converted to a
more general form to be passed on as input arguments to
different functions in this package. Here, the corresponding
commands to read files have been implanted into the functions
involved in the package PATHChange, for instance:

> GenesSet <- read.table(Genes, header=TRUE)

> Pathway <- read.table(filePathway, header=TRUE)

> eDat <- read.table(eDat, header = TRUE, sep = "/")

So, we need to assign the information of input files to
corresponding variables as following (assuming that the file
path is “D:/Pathway/PATHChange”).

> Genes <- "D:/Pathway/PATHChange/genes.txt"

> filePathway <- "D:/Pathway/PATHChange/Pathways.txt"

> eDat <- "D:/Pathway/PATHChange/eDat.csv"
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6. The pgbmrfICM function produces six result files. The files are
described briefly as below.

(a) “selected dataset.txt”: the gene expression dataset used
for the PGBMRF analysis;

(b) “neib_matrix.txt”: the neighbourhood matrix which
demonstrates the gene-gene interactions;

(c) “PGBMRF identified UR genes.txt”: up-regulated genes
identified by PGBMRF model;

(d) “PGBMRF identified DR genes.txt”: down-regulated
genes identified by PGBMRF model;

(e) “PGBMRF states.txt”: the final estimated DE states. For
convenience, the three expression states are labeled
numerically as 0, 1 and –1 for equally expressed EE, UR
and DR genes, respectively.

(f) “PGBMRF results.txt”: a summary table for the
PGBMRF analysis.
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Ghandi M, Mesirov JP, Tamayo P (2015) The
Molecular Signatures Database (MSigDB) hall-
mark gene set collection. Cell Syst 1
(6):417–425. https://doi.org/10.1016/j.
cels.2015.12.004

29. Liberzon A, Subramanian A, Pinchback R,
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Chapter 4

QuickRNASeq: Guide for Pipeline Implementation
and for Interactive Results Visualization

Wen He, Shanrong Zhao, Chi Zhang, Michael S. Vincent,
and Baohong Zhang

Abstract

Sequencing of transcribed RNAmolecules (RNA-Seq) has been used wildly for studying cell transcriptomes
in bulk or at the single-cell level (Wang et al., Nat Rev Genet, 10:57–63, 2009; Ozsolak andMilos, Nat Rev
Genet, 12:87–98, 2011; Sandberg, Nat Methods, 11:22–24, 2014) and is becoming the de facto technol-
ogy for investigating gene expression level changes in various biological conditions, on the time course, and
under drug treatments. Furthermore, RNA-Seq data helped identify fusion genes that are related to certain
cancers (Maher et al., Nature, 458:97–101, 2009). Differential gene expression before and after drug
treatments provides insights to mechanism of action, pharmacodynamics of the drugs, and safety concerns
(Dixit et al., Genomics, 107:178–188, 2016). Because each RNA-Seq run generates tens to hundreds of
millions of short reads with size ranging from 50 to 200 bp, a tool that deciphers these short reads to an
integrated and digestible analysis report is in high demand. QuickRNASeq (Zhao et al., BMC Genomics,
17:39–53, 2016) is an application for large-scale RNA-Seq data analysis and real-time interactive visualiza-
tion of complex data sets. This application automates the use of several of the best open-source tools to
efficiently generate user friendly, easy to share, and ready to publish report. Figures in this protocol illustrate
some of the interactive plots produced by QuickRNASeq. The visualization features of the application have
been further improved since its first publication in early 2016. The original QuickRNASeq publication
(Zhao et al., BMC Genomics, 17:39–53, 2016) provided details of background, software selection, and
implementation. Here, we outline the steps required to implement QuickRNASeq in user’s own environ-
ment, as well as demonstrate some basic yet powerful utilities of the advanced interactive visualization
modules in the report.

Key words RNA-Seq, RNASeq, QuickRNASeq, RNA-Seq Pipeline, Transcriptome, Visualization,
NGS data analysis

1 Introduction

Since its publication in early 2016, the QuickRNASeq pipeline has
been adopted by many bioinformatics scientists and experimental
researchers to do RNA-Seq data analysis, for its expedient

Yejun Wang and Ming-an Sun (eds.), Transcriptome Data Analysis: Methods and Protocols, Methods in Molecular Biology,
vol. 1751, https://doi.org/10.1007/978-1-4939-7710-9_4, © Springer Science+Business Media, LLC 2018

Wen He and Shanrong Zhao contributed equally to the manuscript.

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-7710-9_4&domain=pdf


automation of the analysis pipeline and its convenient visualization.
This detailed protocol provides instructions on installing every
component of the pipeline, preparing sample data, running the
pipeline for individual sequencing runs, merging results from dif-
ferent runs, interpreting the outcome and making figures for visu-
alization. The goal of this protocol is to show you how to get the
QucikRNASeq report from fastq files, as well as how to use the
visualization features of the report. The structure of this protocol is
outlined as follows. Subheading 2 is on Materials, and it describes
the required hardware, software, and reference genome. Subhead-
ing 3 is on Methods. Subheading 3.1 describes the input files.
Subheading 3.2 describes the command line call for individual
runs. Subheading 3.3 is for combining the results from Subheading
3.2 to summary files and generating the report. Subheading 3.4
describes how to explore the report and make various plots from
the interactive visualization tools. And finally, Subheading 4
includes notes for more productive use of QuickRNASeq.

2 Materials

2.1 Hardware The QuickRNASeq package is fully tested on an HPC cluster using
the IBM Platform LSF (Load Sharing Facility) or on a standalone
workstation running Linux. Since the mapping step of millions of
reads is a memory-demanding procedure, it is recommended to
have 64GB per running instance. Other required hardware includes
storage arrays with a high I/O throughput such as EMC Isilon if
hundreds of samples are processed at the same time in parallel.

2.2 Software

Prerequisites

Many open-source tools developed for RNA-Seq data analyses were
tested before QuickRNASeq settled on the following five applica-
tions. STAR [7] was chosen for read alignment, or mapping, to
reference genome and transcriptome assembly. FeatureCounts [8]
from Subread package was adopted for counting reads to genomic
features such as genes, exons, promoters, and genomic bins. VarS-
can [9] was used for variant calling. RSeQC [10] was chosen for
RNA-Seq quality control. Samtools [11] provides various utilities
for manipulating alignments in the SAM format. These open source
tools should be installed as instructed below. Names of directories
are for demonstration only, which should be replaced by your own
names.

2.2.1 STAR Download STAR from https://github.com/alexdobin/STAR/
releases.

Install STAR to /opt/ngsapp/STAR_2.4.0 k/bin/
Linux_x86_64.

2.2.2 Subread Download Subread packages from http://subread.sourceforge.net/.
Install Subread to /opt/ngsapp/subread-1.4.6/bin.
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2.2.3 VarScan Download JAR file from http://varscan.sourceforge.net/.
Install VarScan to /opt/ngsapp/bin/VarScan.v2.4.0.jar.

2.2.4 RSeQC Download and install RSeQC from http://rseqc.sourceforge.net/.
Install RSeQC to /opt/ngsapp/anaconda/bin.

2.2.5 Samtools Download Samtools from http://sourceforge.net/projects/
samtools/files/.

Install Samtools to /opt/ngsapp/bin.

2.3 Download

QuickRNASeq Package

QuickRNASeq [6] is available from sourceforge. Follow this link to
download the source code: https://sourceforge.net/projects/
quickrnaseq. The protocol is based on version 1.2.

We have QuickRNASeq installed at directory /opt/ngsapp/
QuickRNASeq.

2.4 Preparation

of Genome Fasta File,

Annotation, and Index

Here we show how to create the index for RNA-Seq analysis using
Gencode release 23 of human genome GRCh38 as an example. For
details of STAR related command line parameters, please refer to
recent publication from Dobin and Gingeras on optimizing
RNA-Seq mapping with STAR [12].

1. Download genome fasta file
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/
release_23/GRCh38.primary_assembly.genome.fa.gz.

2. Download gene annotation in GTF format
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/
release_23/gencode.v23.annotation.gtf.gz.

3. Unzip and rename genome and GTF file
Unzip and rename genome fasta file and GTF file as GRCh38.
primary.genome.fa, GRCh38.gencode.v23.gtf respectively. Save
these two files in the corresponding project data folder. In this
example, genome fasta file is saved to directory /opt/fasta; GTF
annotation file to directory /opt/gencode

4. Prepare annotation and BED files using utility functions in
QuickRNASeq
Make sure you are in directory /opt/gencode, and call QuickR-
NASeq utility functions as shown below:

/opt/ngsapp/QuickRNASeq/gtf2bed.pl GRCh38.gencode.v23.gtf >

GRCh38.gencode.v23.bed

/opt/ngsapp/QuickRNASeq/gtf2annot.pl GRCh38.gencode.v23.gtf >

GRCh38.gencode.v23.annot

/opt/ngsapp/bin/samtools faidx GRCh38.primary.genome.fa

5. Create genome index file
In this example, we are creating a genome index for read length
up to 100 bp. Under directory /opt/STAR/, create a directory
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called GRCh38_gencode23_100. Move to this GRCh38_gen-
code23_100 directory, and create genome index as shown
below. The option sjdbOverhang is set at 99. In general, sjdbO-
verhang is set as “read length - 1”. An example command is
listed below:

/opt/ngsapp/STAR_2.4.0k/bin/Linux_x86_64/STAR --runThreadN

32 --runMode

genomeGenerate --genomeDir

/opt/STAR/GRCh38_gencode23_100 –genomeFastaFiles /opt/fasta/

GRCh38.primary.genome.fa –sjdbGTFfile

/opt/gencode/GRCh38.gencode.v23.gtf --sjdbOverhang 99

6. Find the chromosome where MHC genes are located
MHC genes are highly polymorphic, which makes this region
ideal for checking sample SNP concordance. In the human
genome, the MHC region occurs on chromosome 6. Get the
corresponding coordinate for chromosome 6 from chrName-
Length.txt file in the STAR index result folder. In this case, the
coordinate is 1–170805979.

After the above steps are completed, you are ready to set the
reference genome related parameters in the configuration file. Refer
to Subheading 3.1.3, step 6 for instructions.

3 Methods

The QuickRNASeq pipeline can be divided into the following three
main steps:

1. Prepare RNA-Seq input data, including a sample
configuration file.

2. Process individual samples, including mapping, counting,
and QC.

3. Merge results from individual sample and generate an integrated
report.

The first step is specific to individual runs and samples within
those runs. This step needs to be tailored for each RNA-Seq run.
The last step is more or less fixed. A master-cmd.sh file included in
the package contains the common commands to be called for step
2 and step 3. Nevertheless, all environmental variables need to be
set correctly to ensure the scripts in master-cmd.sh will work well.
All these steps should be performed under a project folder for all
samples belonging to a specific project.

After downloading QucikRNASeq1.2, you will see a directory
named “test_run”. This is an example project directory. We are
using the same 48 GTEx samples from 5 donors as in the original

60 Wen He et al.



QuickRNASeq publication [6]. This test_run project directory
contains key files for running QuickRNASeq. The following dis-
cussions describe the contents of these files, and step-by-step
instructions to guide you through the process.

3.1 Prepare RNA-Seq

Input Data

3.1.1 Prepare a Sample

Annotation File

and a Sample ID File

1. Annotation file
To run QuickRNASeq, a user needs to provide meaningful
annotations for all samples. A proper annotation file should be
in tab delimited text see Note 1. The first and second columns
correspond to sample and subject identifiers, respectively.
Although not required, it is highly recommended to use “sam-
ple_id” and “subject_id” for the first two columns while the rest
of the columns are flexible, based on project design. The sample.
annotation.txt file in test_run directory has columns as “Run”,
“subject_id”, “histological_type”, and “sex”.

2. Sample ID file
Sample ID file contains one unique sample ID per line. There is
no column header. The allIDs.txt file in test_run directory lists
all 48 samples in this demo project. For example, the first sample
ID is “SRR607214”.

3.1.2 Prepare Fastq Files

for each Individual Sample

For paired end sequencing, prepare two fastq files, one for each
read. Format will be sample_id_1.fastq.gz and sample_id_2.fastq.
gz. For example, sample SRR607214 will have two files:
SRR607214_1.fastq.gz, and SRR607214_2.fastq.gz.

Some new Illumina sequencing platforms, such as Next-
Seq500, generate eight files as output for each sample in paired
end sequencing. In this case, we need to concatenate these fastq
files into two files, one for each read of paired end sequencing.
Make sure the concatenation order is the same for both files.

There will be only one fastq file per sample if the sequence run
is single end.

At the end of this step, we will have “N” numbers of fastq files if
the run contains “N” single read samples. Or we have “2�N” of
fastq files if the sequencing is paired end run. We save these files in a
directory called fastq.

3.1.3 Set Up Run

Configuration File

File run.config is a project-specific configuration file that contains
all sequencing, genome, and software related information for
QuickRNASeq analysis. Genome and software portions only need
to be changed if there are updates on tools or alterations on
genome, index and/or annotation. The sequencing run-specific
portion is what we need to modify for each analysis. Please refer
to $QuickRNASeq/star-fc-qc.config.template for more details.
You can copy star-fc-qc.config.template in QuickRNASeq package
to your project folder and then customize it to your environment.
Please see directory test_run for an example of run.config file.
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1. Set FASTQ_DIR:
FASTQ_DIR is the directory where the fastq files are located.
You can set a fastq directory within the project folder to store all
fastq files, or you can store your fastq file in another location.

2. Set the suffix for fastq file:
QuickRNASeq will automatically add “_1. FASTQ_SUFFIX”
and “_2. FASTQ_SUFFIX” to each sample ID in the allID.txt
file, and look for these files in the FASTQ_DIR. The name of the
fastq file should match the name in the allID.txt file. For exam-
ple, for sample SRR607214, if you set FASTQ_SUFFIX¼ fastq.
gz, the program will go to directory FASTQ_DIR and look files
SRR607214_1.fastq.gz and SRR607214_2.fastq.gz. Some-
times, the fastq files end as fq.gz, sometimes, it ends as fastq.
gz. In our example run.config file, it was set as FASTQ_SUF-
FIX ¼ fastq.gz.

3. Set strand information:
STRAND¼0 for nonstranded RNA-Seq.
STRAND¼1 for first read forward strand.
STRAND¼2 for first read reverse strand, for instance Illumina’s
sequencing kit

4. Set sequencing depth:
There are two choices for sequencing depth option. Set it to
“regular” if the sequencing run generates 40–80 million reads;
or set it to “deep” if the run generates 100 million reads or
more. For example: SEQUENCE_DEPTH ¼ regular.

5. Set sequence type:
This is to state whether your read is paired or single (e.g.,
SEQUENCE_TYPE ¼ pair).

6. Set species-specific genome index and GTF file:
These options will not change unless the genome reference
changes. Please refer to Subheading 2.4 for instruction on how
to generate these species-specific files.

GENOME_FASTA=/opt/fasta/GRCh38.primary.genome.fa

GENOME_INDEX=/opt/STAR/GRCh38_gencode23_100

GENOME_ANNOTATION=/opt/gencode/GRCh38.gencode.v23.annot

GTF_FILE=/opt/gencode/GRCh38.gencode.v23.gtf

BEDFILE=/opt/gencode/GRCh38.gencode.v23.bed

CHR_REGION=chr6:1-170805979

7. Set the environmental variables for tools installed at Subheading
2.2:

Software locations will remain the same unless there is a major
update.

STAR_RNA=/opt/ngsapp/STAR_2.4.0k/bin/Linux_x86_64

FEATURECOUNTS=/opt/ngsapp/subread-1.4.6/bin

RSeQC=/opt/ngsapp/anaconda/bin
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VARSCAN_JAR=/opt/ngsapp/bin/VarScan.v2.4.0.jar

SAMTOOLS=/opt/ngsapp/bin

3.2 Run

the QuickRNASeq

Script to Process

Individual Samples

QuickRNASeq calls R and Rscript. Please make sure R version 3.1
or above and these R packages, ggplot2, edgeR, scales, and
reshape2 are installed on your machine.

Under your project folder, invoke mapping, counting, QC, and
SNP call for each sample by calling star-fc-qc.sh. Make sure that the
$PATH environmental variable includes the path to QuickRNA-
Seq_1.2 location. Because this step is computationally intensive, it
is advised to run this command on HPC clusters using LSF as a job
scheduler. A separate result folder will be created for each sample
under the project folder. In addition to LSF, there is a list of notable
job scheduling software available to choose from. For a cluster
using a job scheduler other than LSF, star-fc-qc.sh needs to be
twisted or modified. For people who have no access to a HPC
cluster, we offer star-fc-qc.ws.sh, a customized script working in a
standard Linux workstation. Of course, analyzing a large RNA-Seq
dataset in a single workstation is not typical. Below is the command
call example.

# ENVIRONMENT

export QuickRNASeq={QuickRNASeq_installation_Directory}

# e.g. export QuickRNASeq=/opt/ngsapp/QuickRNASeq_1.2

export PATH=$QuickRNASeq:$PATH

star-fc-qc.sh allIDs.txt run.config

#run the following command if you run the analysis on a

standalone workstation

#star-fc-qc.ws.sh allIDs.txt run.config

3.3 Merge Results

from Individual

Samples and Generate

an Integrated Report

As in the previous steps, this step also runs under the project
directory. We run the merging and summarization step when all
jobs are finished for each sample. The sample.annotation.txt should
include all samples to be merged. Each sample has to be processed
as listed in Subheading 3.2. Below are commands to run in order to
generate the report. “GENE_ANNOTATION” points to a file
containing gene descriptions that can be obtained by running
“Rscript $QuickRNASeq /QuickRNASeq_html/getEnsem-
blAnno.R”.

#Summarization, only run it when all jobs are finished in the

first step

export GENOME_ANNOTATION=/opt/gencode/hg19.gencode.v19.annot

export GENE_ANNOTATION=/opt/gencode/Ensembl_v75_hg19_Gen-

code.v19_human.txt.gz

nohup star-fc-qc.summary.sh sample.annotation.txt &> Re-
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sults.log

#run the command line below if you run the analysis in a

workstation

#star-fc.summary.sh sample.annotation.txt

3.3.1 QuickRNASeq

Test Run

We made a test run available for you to test the QuickRNASeq
software before applying this tool to your data. Adjust QuickRNA-
Seq to point to your QuickRNASeq installation folder. Please refer
to $QuickRNASeq/test_run folder for:

l allIDs.txt: sample identifiers.

l sample.annotation.txt: annotation file.

l run.config: sample configuration file.

l master-cmd.sh: command lines for test runs. Please run step #2
after step #1 finishes.

3.3.2 Description

of Output Files

The output of the merge command is a directory called Results.
Seven html files (gex.html, index.html*, longitudinal.html, qc_fc-
counting-summary.html, qc_expr_count_RPKM.html, qc_over-
view.html, qc_star-mapping-summary.html) and three directories
(package, QC, summary) will be generated within the Results
directory.

This Results directory can be copied to your laptop or desktop.
Open index.html within Results directory to access the interactive
report in html format. Alternatively, this Results directory can be
hosted on a web server to share with other group members, which
also makes this QuickRNASeq report available at all times. Sum-
mary directory contains all summary files which are displayed on
the html report under the “Raw Data Files” section.

3.4 Explore

Integrated

and Interactive Report

Open the index.html file under Results directory and you will have
access to all data and figures. You will be able to drill down
RNA-Seq analysis results in an interactive way. We implemented
the interactive data visualization in QuickRNASeq using these
JavaScript-based open-source libraries including JQuery [13], D3
(Data-Driven Documents) [14], canvasXpress [15], SlickGrid
[16], and Nozzle [17]. The figures and tables in QC Metrics and
QC Plot portion of the QuickRNASeq web report have been
introduced and described in the original publication [6]. Some of
these figures are showcased in Fig. 1. Below, we focus on the
interactive plotting features that can be accessed by clicking the
pointing hand next to “RPKMValues on Genes” under the Expres-
sion Table section.

3.4.1 Meaning of Mouse

Icons

Pointing hand, click to get interactive plot. Left click;
Right click; Double left click; Scroll middle wheel.
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3.4.2 Create a Boxplot

for One Gene

1. Figure 2 combines six charts to demonstrate how to create a
boxplot for gene expression of a single gene. From the main
QuickRNASeq report HTML page, click on the “pointing
hand” icon in the Expression Table section to get to gene
expression Table. A new HTML page will show up, see Fig. 2a.

Fig. 1 Interactive plots from QuickRNASeq report. Figures (a, b, c) can be retrieved by clicking on the pointing
hands as shown in Fig. 1d. On any of these interactive plots, mouse over each sample displays associated
sample QC metrics. (a) Read mapping summary in the expanded display mode. (b) SNP concordance matrix of
48 samples from 5 donors. Samples from the same donor should be highly concordant. (c) Gene expression
chart, which shows the number of genes past various expression thresholds. (d) Center portion of the
QuickRNASeq report. (e) Parallel plot linking multiple QC measures for the same samples plus table of
multidimensional QC measures
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This webpage is from file gex.html, which was generated as a
result of running star-fc-qc.summary.sh.

2. Search by keyword and then left click on any column except the
first two on a gene (Fig. 2a). As demonstrated in Fig. 2a, we
searched by “kinase”, then selected gene “CAMKK1”.

3. A new window pops up which displays a dot plot of gene
expression level in RPKM value for kinase CAMKK1 (Fig. 2b).
Please note that the X-axis is smaple ID.

4. Right click on any plot area to bring up the drop down menu for
sample grouping, data transformation and chart customization.
As shown in Fig. 2c, samples were grouped by following menu
“Group Samples” and then “histological_type” for box plot.
Please note that in Fig. 2c, X-axis is histological_type. Click on
any plot area to hide the menu and you should see the boxplot
(not shown here). The sample features are gathered from the
“sample.annotation.txt” file.

5. Data can be transformed to various scales by right clicking on
the plot to bring up the menu and then following “Data” -
>“Transform” ->“Log Base 2” for log2 transformation
(Fig. 2d).

6. User can also adjust the font of the sample label, add Y-axis,
change window and canvas size, color data points, and explore
many other visualization features, see Note 2.

7. Data points can be connected as shown in Fig. 2e by subject_id.

Fig. 2 Boxplot of a gene. (a) From gene expression table, search genes by keyword “kinase,” and select gene
CAMKK1. (b) Dot plot of CAMKK1 gene expression across all samples. (c) Group sample by histological type.
(d) Log2 transformation of expression level. (e) Connect data point by subject identifier. (f) Take the screenshot
of the boxplot as a png image
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8. When you are satisfied with the settings, move mouse up to the
top of the canvas to activate the top menu, where you will see a
“Camera” icon. Click on the “Camera” icon to get a screenshot
in png format for publication (Fig. 2f).

3.4.3 Create a Heatmap

for Multiple Genes

1. Figure 3 consists of several charts which illustrate the steps
involved for drawing a gene expression heatmap. As shown in
Fig. 3a, in the large text box below the table of expression, there
are ten genes, which are “TNFRSF1B CDA FAM131C BAI2
C1orf170 LRRC38 FCN3 C4BPA NPPB PLA2G5”. These
genes can be typed in the text box, or select one by one from
the expression table above the text box. You can also copy and
paste the gene list separated by space or comma. Copying and
pasting the gene list from an Excel file also works. It is suggested
to enter the official HUGO gene symbol for each gene. After
you have the gene list, click on “Plot Heatmap” button, a
heatmap shows up, as in Fig. 3b.

2. Expression level from different genes could vary widely. It is a
good idea to have the heatmap displays gene expression level in
log2 format. Right click on any plot area to bring up the drop
down menu for data transformation. The example in Fig. 3c is
transforming data into Log Base 2.

Fig. 3 Generation of heatmap for a list of genes. (a) Select from the above table or enter a list of genes into the
text box. (b) Initial heatmap. (c) Log2 transformation of expression level. (d) Cluster samples and variables. (e)
A final heatmap ready to be saved in png format. (f) Gene expression correlation plot
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3. Cluster samples by following menu “Cluster” ->“Cluster Sam-
ples”. Cluster variables by followingmenu “Cluster” ->“Cluster
Variables”. See Fig. 3d for a demonstration.

4. Move mouse up to the top of the canvas to activate the top
menu, where you will see the “Camera” icon again, and then
click on the “Camera” icon to get a png image ready for publi-
cation (Fig. 3e).

5. Figure 3f is for expression correlation among the genes in the
gene list. Click “Plot Correlation” to get the correlation picture
shown in Fig. 3f. Double clicking on any square will show the
correlation value between two genes. The example in Fig. 3f
shows the expression correlation across samples between gene
LRRC38 and gene C1ORF170 is 0.863.

3.5 Make the Report

Publicly Available at

github.com

3.5.1 Create a Repository

by Login github.com

You will need a GitHub account to perform this step. If you don’t
have a GitHub account, create one first by going to https://github.
com. To create a GitHub repository, please follow these two steps.

1. Click on the “New repository” icon as shown in Fig. 4a after
GitHub account login.

2. Type in project name and description and then click “Create
repository” icon as illustrated in Fig. 4b. Please use your own
project name instead of “RNASeq_1” that is for illustration
purpose only.

3.5.2 Commands

to Publish the Report Files

to GitHub Repository

Change texts in red to your own settings.

git clone https://github.com/username/RNASeq_1.git

cd RNASeq_1

git checkout --orphan gh-pages

cp -R path2result/Results/* .

git add .

git commit -a -m "Adding RNASeq_1 results from QuickRNASeq"

git push origin gh-pages

Now, the report should be available at http://username.
github.io/RNASeq_1

The demo page for the example data set is at http://baohongz.
github.io/QuickRNASeq

4 Notes

1. Wired Characters in Input Files

68 Wen He et al.

http://github.com
http://github.com
https://github.com
https://github.com
http://username.github.io/RNASeq_1
http://username.github.io/RNASeq_1
http://baohongz.github.io/QuickRNASeq
http://baohongz.github.io/QuickRNASeq


Although we have taken multiple measures to either remove or
replace R unfriendly characters and unnecessary blank spaces in
user input files such as sample.annotation.txt, it is recommended
to use only alphanumeric and tab characters in these files. If
Microsoft Excel is used to create the sample.annotation.txt,
please make sure that you save it in tab-delimited format

2. Further customization of plots
(a) The font of sample labels will be enlarged by following

“Customize” ->“Sample Labels” ->“Font” ->“Bigger”.
The more you click on the “Bigger” button, the larger the
font becomes.

(b) Add y-axis title by following “Customize” ->“Axes Titles”
->“Text”. Type in title in the input box and then click the
nearby cycling button.

(c) The size of Pop-up Window and Canvas can be altered by
click-and-drag the left bottom corner as indicated by the
black arrow that will appear while the mouse moves over.

(d) Follow “Data Points Attributes” ->“Color by” to color
data points based on certain feature.
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Chapter 5

Tracking Alternatively Spliced Isoforms from Long Reads
by SpliceHunter

Zheng Kuang and Stefan Canzar

Abstract

Alternative splicing increases the functional complexity of a genome by generating multiple isoforms and
potentially proteins from the same gene. Vast amounts of alternative splicing events are routinely detected
by short read deep sequencing technologies but their functional interpretation is hampered by an uncertain
transcript context. Emerging long-read sequencing technologies provide a more complete picture of full-
length transcript sequences. We introduce SpliceHunter, a tool for the computational interpretation of long
reads generated by for example Pacific Biosciences instruments. SpliceHunter defines and tracks isoforms
and novel transcription units across time points, compares their splicing pattern to a reference annotation,
and translates them into potential protein sequences.

Key words Alternative splicing, PacBio sequencing, RNA sequencing, Transcript isoform, Long-read
sequencing, SpliceHunter, Time course analysis

1 Introduction

Alternative splicing (AS) is an important mechanism of gene
expression regulation that allows to generate multiple transcript
variants (isoforms) from the same gene, through selective usage of
exons and their splice sites [1]. AS is prevalent across different cell
types and different conditions. For example, AS occurs in >90% of
multiexon genes in major human tissues [2, 3]. However, the
extent and the biological meaning are still not well understood. A
major limitation of second generation sequencing technology is the
local information content of short read sequences that allow to
detect individual AS events but fail to provide the global picture
of full-length transcript sequences, which impedes the understand-
ing of the functional consequences of AS. Third generation
sequencing by for example Pacific Biosciences (PacBio) SMRT
technology [4], generates multikilobases long reads and thus valu-
able data for the detection of full-length transcripts. We have
developed the computational tool SpliceHunter to interpret these
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long-read data and characterize the structure and dynamic abun-
dance of isoforms. SpliceHunter has previously been used to char-
acterize the diversity and the dynamics of isoforms expressed during
the meiosis of fission yeast [5]. It tracks and compares isoforms
across time points (e.g., in meiosis), cell types, or conditions.

In contrast to widely used short read analysis methods like
MISO [6], MATS [7], JuncBase [8], and JUM [9] that statistically
compare the usage of (individual) splice junctions, we have devel-
oped SpliceHunter to support the explorative analysis of long
sequencing reads produced by third generation technology like
PacBio and Oxford nanopore [10]. SpliceHunter defines and tracks
full length isoforms across time points (or conditions in general)
and annotates their molecularly phased AS by comparing them to
an existing annotation. It applies precisely defined criteria to
uniquely label AS events as exon skipping, intron retention, their
counterparts exon inclusions and introns in exons, respectively,
alternative acceptors and donors, and novel exons.

It further provides dimer or hexamer sequences and the length
distribution of novel, annotated or retained introns for downstream
analysis of splicing preferences. More importantly, the interpreta-
tion of long reads is not affected by the uncertainty that lies in the
isoform assemblies computed by methods like Cufflinks [11] and
CIDANE [12] from short reads, but SpliceHunter simply clusters
compatible long reads to isoforms. This facilitates the study of
molecular coassociation of splicing events as well as functional
consequences of AS. For the former, SpliceHunter counts reads
that support pairs of AS events and the constituent singletons. For
the latter, SpliceHunter translates RNA sequences of isoforms into
protein sequences that can be used to investigate the conservation
across species or to study the impact of AS on the protein’s (pre-
dicted [13]) secondary or tertiary structure.

We provide tailored R code [14] to transform SpliceHunter’s
text-based output into statistics and visual illustrations of the AS
landscape, the exon–intron structure of inferred isoforms, the
dynamic changes of isoform abundances, as well as a statistical
evaluation of coassociation of AS events.

Long-read sequencing technology combined with tailored
methods like SpliceHunter will open a big window to isoform-
level RNA biology.

2 Materials

2.1 Hardware SpliceHunter has been developed and tested on a 64-bit Linux
(x86_64) and Mac OS X system.

The amount of main memory (RAM) it requires depends on
the size of the genome and the complexity of the transcriptome.
While it uses only around 100 MB of RAM to analyse the
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transcriptome of the unicellular model organism Schizosacccharo-
myces pombe, we recommend at least 4 GB of RAM for more
complex organisms.

The FASTA/FASTQ files containing the reference genome
sequence and the raw reads as well as read alignments in SAM/-
BAM format typically require moderate to large disc space
(>10GB), depending on the experiment.

2.2 Software SpliceHunter is free open-source software released under the GNU
GPL license and is available at https://bitbucket.org/canzar/
splicehunter. SpliceHunter can be built from source code with the
CMake build system, for which we provide a step-by-step guide on
the bitbucket website. Alternatively, precompiled executables for
Linux and Mac OS X are available in the Downloads section of the
website. SpliceHunter depends on libraries SeqAn, Boost, and zlib,
and has been bundled with BamTools to simplify the installation
process. Instructions on where to obtain these libraries can be
found on the website. Before running SpliceHunter, raw reads
need to be classified as (non) full-length and clustered using the
Iso-Seq protocol [15] and mapped to the reference genome using
GMAP [16]:

The isoform sequencing (Iso-Seq) pipeline can be run in a
browser through the SMRT Portal. A more detailed instruction
can be found in the RNA sequencing subsection of the SMRT
Portal http://www.pacb.com/products-and-services/analytical-
software/smrt-analysis/.

The genomic origin of mRNA reads is determined by aligning
them to the reference sequence across introns using GMAP. The
latest release of GMAP as well as a manual on its use is available at
http://research-pub.gene.com/gmap/. Alternatively, GMAP can
be run directly through the SMRT Portal.

The output of SpliceHunter is further processed, analyzed, and
visually summarized in R. We provide the necessary R code as well
as a shell script to produce .bam files for the visualization of isoform
dynamics in IGV [17] (see Subheading 3.4, step 7) in subdirectory
scripts/.

2.3 Input Files The reference transcriptome to which inferred isoforms are struc-
turally compared is read from an annotation file in GFF/GTF
format. The reference genome sequence must be provided in
FASTA format. Raw reads are expected in FASTQ or FASTA
format.

Example data used in this tutorial, including reference
sequence, transcriptome, and PacBio reads, are available for down-
load at LRZ SyncþShare [18].

We use the first replicate of the time-course PacBio sequencing
data from our previous study [5] to illustrate how to detect, anno-
tate, and track isoforms with SpliceHunter and how to process and
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interpret its results. The data were sampled every 2 h from 0 to 10 h
during the meiosis of S. pombe.

3 Methods

The complete workflow from data preprocessing to the tracking of
isoforms with SpliceHunter and the final visualization in R is shown
in Fig. 1.

3.1 Preprocessing The Iso-Seq pipeline is composed of two major modules: The
classify module identifies full-length and non-full-length transcript
reads based on the presence of 50 and 30 cDNA primer sequences

PacBio reads

Full-Length reads Non-Full-Length reads

Consensus/Iso-Seq reads

Iso-Seq

GMAP

Mapped reads

SpliceHunter

Genome annotation
GTF le

Genomic sequence
FASTA le

Isoform structure
and dynamics

Protein sequences

RNA sequences

Dimers and hexamers

Retained intron lengths

Pairwise AS event counts

R: ASlandscape

AS landscape

R: Isoview

Isoform structure

R: Isodynamics

Isoform dynamics

R: ASassociation

Assocation score
and P values

-p

-r -A

-x -i

-n

-j-I

Fig. 1 The workflow of isoform analysis. It consists of four major steps: orange: Iso-Seq preprocessing of
reads into consensus isoforms (“Iso-Seq reads”), yellow: mapping Iso-Seq reads to the reference sequence
with GMAP, green: isoform detection with SpliceHunter, and blue: downstream analysis and visualization in R
and IGV. Arrow labels indicate SpliceHunter options that control the corresponding output
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and the polyA/polyT sequence. The cluster module generates
preliminary consensus isoforms using full-length reads and uses
non-full-length reads to polish the consensus sequences. The
SMRT Portal integrates the two modules in one step and allows
to run the Iso-Seq protocol as follows:

1. Create a new job and select the Iso-Seq protocol named
“RS_IsoSeq.1”.

2. Use default values for Minimum Full Passes (0) and Minimum
Predicted Accuracy (75) at the filtering step or adjust if
necessary.

3. Use default value of 300 for Minimum Sequence Length at the
Isoseq_classify step or adjust accordingly. Make sure to unselect
the “Full-length Reads Do Not Require PolyA Tails.”

4. Select “Predict Consensus Isoforms Using The ICE Algorithm”
and “Call Quiver To Polish Concensus Isoforms” at the Iso-
seq_cluster step. Select the correct cDNA Size setting based on
the library size.

5. After the analysis has completed, download the cluster fasta file.
FASTA files containing the predicted consensus isoforms are
recommended for downstream analysis. For high quality pur-
poses, Quiver Polished High QV consensus isoform FASTA files
can be used.

3.2 Mapping We use GMAP to map the consensus sequences (henceforth
referred to as Iso-Seq reads) to the reference genome. Although
GMAP is available through the SMRT Portal, we recommend
downloading and running the latest version manually. To align
the reads in our sample data using 4 threads, run:

gmap -d pombe -D pombe_1225/pombe -t 4 -n 0 -f samse

ZK1_all_isoforms.fasta > b1_151204_1.sam

This returns the alignments in SAM format (�f samse). The
SAM alignemnt file can be converted to a more compact BAM file
required by SpliceHunter:

samtools view -bS b1_151204_1.sam > b1_151204_1.bam

For visualization of the alignments in IGV, the BAM file needs
to be sorted and indexed:

samtools sort b1_151204_1.bam b1_151204_1.sort.bam

samtools index b1_151204_1.sort.bam

3.3 SpliceHunter SpliceHunter infers complex splicing patterns along novel isoforms
in three main steps. After assigning reads to known genes or novel
transcription units, reads are clustered to isoforms based on a
consistent splicing pattern. Each isoform is then compared one-
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by-one to the reference transcripts of the assigned gene to annotate
its sequence of alternative splicing events. Finally, SpliceHunter
writes the full RNA sequence of isoforms and novel TUs as well
as their putative protein sequences to FASTA files, which can be
used (by, e.g., BLAST [19]) to study conservation across related
species on the protein level. SpliceHunter’s behavior in each step
can be controlled by different options (see arrow labels in Fig. 1)
and is explained in more detail below.

SpliceHunter can be run from the command line as follows:

SpliceHunter [options]* --gtf <reference_annotation.gtf> -f

<genome_sequence.fa> -m <bam_directory>

SpliceHunter writes all detected and annotated isoforms as well
as TUs to the console (“standard out”) by default. Ambiguous
reads, among which potentially inter-strand fused RNA molecules
lie, are reported in ambiguous.txt.

3.3.1 Main Arguments -g/--gtf <reference_annotation.gtf>

SpliceHunter compares all isoforms detected from the read
data to annotated gene structures provided by this reference anno-
tation in GTF format.

-f/--ref <genome_sequence.fa>

SpliceHunter looks up sequence information in the supplied
FASTA file.

-m/--dir

SpliceHunter will jointly analyze all read alignment files (.bam)
it finds in the specified directory. It will interpret file names as
<replicate>_*_<condition>.bam, where samples are collected
across different conditions or time points and grouped as replicates.

-I/--iso <isoform_file.txt>

SpliceHunter writes all detected and annotated isoforms to file
<isoform_file.txt>. By default, SpliceHunter prints isoforms
to the “standard out” file handle, that is, to the console.

3.3.2 Data Preprocessing To increase confidence that a read alignment represents the true
origin of the read and that the read is correctly split across introns,
SpliceHunter applies additional quality requirements that can be
adjusted as follows:
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-a/--maplength <float>

SpliceHunter ignores read mappings with less than a fraction of
<float> of its bases aligned (‘M’ in CIGAR string). Default: 0.67.

-q/--mapqual <float>

SpliceHunter ignores read mappings with less than a fraction of
<float> of its aligned bases (‘M’ in CIGAR string) being identical
to the reference base. Default: 0.75.

-e/--ewin <int>

SpliceHunter discards reads which align with a mismatch or
indel within <int> bases of at least one of its implied novel splice
sites, unless it can rescue the novel splice site (--swin). Default:
10 bp.

-w/--swin <int>

SpliceHunter discards reads which align with a mismatch or
indel close to (--ewin) one of its splice sites, unless it can shift the
formerly novel splice site to an annotated splice site located within
<int> bases. Default: 10 bp.

SpliceHunter keeps track of the number of CCS reads support-
ing all Iso-Seq reads contained in an isoform cluster. It counts both
full length (FL) CCS reads and non-FL CCS reads associated with
an Iso-Seq read, whose number it derives from the read’s identifier
(i.e., QNAME in .bam file). In particular, Iso-Seq assigns reads ids
following the format */f<x>p<y>/*, where <x> denotes the
number of full length CCS reads, and <y> the number of non-FL
CCS reads. Optionally, SpliceHunter can rely on FL CCS reads
only:

-l/--fl

SpliceHunter counts only full length (FL) CCS reads support-
ing an Iso-Seq read and ignores all other reads (non-FL CCS) in the
analysis.

3.3.3 Gene Assignment SpliceHunter first tries to assign a spliced read alignment to an
annotated gene on either strand by an exact match of any of its
introns. If the read’s introns match at least one intron of one
annotated gene only, the read is assigned to that gene. If the
read’s introns match introns of multiple annotated genes on the
same strand, SpliceHunter outputs the read as a read-through
transcripts, and as an interstrand fused RNA molecule if these
genes are located on different strands. If none of the read’s introns
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matches any annotated intron, SpliceHunter examines individual
splice sites for an exact match in the annotation. More precisely,
every “left” (i.e., smaller coordinate) splice site of a read intron is
searched for a matching annotated donor site on the forward strand
or annotated acceptor site on the reverse strand. Similarly, every
“right” (i.e., larger coordinate) splice site of a read intron is
searched for a matching annotated acceptor site on the forward
strand or annotated donor site on the reverse strand. If the read’s
splice sites match at least one splice site of one gene only, the read is
assigned to that gene. If they match the splice sites of multiple
genes, the read is output as ambiguous and ignored in further
analysis. If no matching splice site was found either, SpliceHunter
attempts to assign the read to an annotated gene by exonic overlap.
If the exons of a read overlap with the exons of one annotated gene
only, the read is assigned to that gene. If the read’s exons overlap
exons of multiple annotated genes on the same strand, SpliceHun-
ter tries to resolve ambiguity by picking the gene with largest
overlap:

-u/--uniq <float>

If a read’s exons overlap exons of multiple annotated genes on
the same strand, SpliceHunter tries to resolve ambiguity by picking
the gene with largest overlap, provided its overlap is at least
<float> times larger than the second largest overlap with another
gene. Default: 1.5.

If the read overlaps multiple annotated genes on different
strands, SpliceHunter first tries to resolve ambiguity for each strand
independently following the above strategy. If SpliceHunter suc-
cessfully resolved ambiguity on both strands, it picks one strand
based on thresholds adjusted by the following options:

-o/--ovsam <float>

If the overlap with the resolved gene gþ on the sense strand is
at least <float> times larger than the largest overlap with a gene
on the antisense strand, the read is assigned to gene gþ. Default:
0.9.

-d/--ovdiff <float>

If a read could not be assigned to a gene on the sense strand,
SpliceHunter assigns the read to the resolved gene on the antisense
strand with largest overlap, provided this overlap is at least
<float> times larger than the largest overlap with a gene on the
sense strand. Default: 2.0.

If SpliceHunter managed to resolve gene ambiguity on the
sense or antisense strand only, the overlap with the gene on that
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strand must again be larger than the largest overlap with a gene on
the other strand by a factor determined by options --ovsam or --
ovdiff, respectively. If a read does not overlap any annotated gene
on either strand it will be used to infer novel transcription units.

3.3.4 Clustering Reads

to Isoforms

After reads have been assigned to annotated genes or novel TUs,
SpliceHunter clusters (transitively) compatible reads and merges
them to putative isoforms. Two reads are compatible if they have
been assigned to the same gene, if they align across or retain the
exact same (potentially empty) set of introns, and if their start and
end sites lie in a window of adjustable size. All compatible reads in
the same cluster then form an isoform with start and end site
corresponding to the most 50 start and most 30 end site among all
reads in that cluster, respectively.

-t/-twin <int>

Snap start and end sites of a read to most 50 start site or most 30

end site within window of size <int> bases, respectively. Value �1
sets window size to infinity. Default: 50.

Reads with start or end site close to the annotated TSS or TES
of the corresponding gene, respectively, form their own clusters:

-s/--snap <int>

Snap start and end sites of a read assigned to a gene g to the
annotated TSS and TES of gene g if they lie within distance <int>
bases. Set to �1 to turn off. Default: 50.

Similarly, novel TUs are inferred from clusters of reads that do
not overlap any annotated gene and that all agree in their introns
and have start and end sites close to each other (option --twin).
Single exon reads form novel TUs by nonzero overlap alone. On
request, SpliceHunter provides certificates for each predicted
isoform:

-c/--cert

SpliceHunter provides certificates for each predicted isoform in
file certificates.txt. A certificate lists, separately for each time
point, all Iso-Seq read names (QNAME) from the input .bam files
that are contained in the isoform’s read cluster.

We provide a script for the visualization of certificates, see
Subheading 3.4, step 7.

3.3.5 AS Events

in Isoforms

Finally, the intron chain of each isoform is compared to the anno-
tated exon–intron structure of the gene it has been assigned to
detect alternative splicing events of the following type. Exon skip-
pings and intron retentions refer to introns and exons in the novel
isoform that fully contain at least one complete exon or intron of
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the reference transcript, respectively. Exon inclusions and introns in
exons are the reverse events with the roles of the novel isoform and
the reference transcript swapped. Alternative acceptors and donors
appear exclusively in the novel isoform as the 30 and 50 ends of an
intron, respectively. Novel exons do not overlap any exon of the
reference transcript but are not spanned by any of its introns (see
exon inclusions). Formal definitions of all AS events can be found in
Kuang 2017 GR [5]. SpliceHunter writes novel TUs and all
inferred isoforms along with their sequence of AS events to the
console (“standard out”). Furthermore, SpliceHunter can provide
read counts used in the analysis of pairwise dependencies of AS
events as well as donor and acceptor sequences and the length of
introns:

-j/--pwcount <pw_counts.txt>

SpliceHunter writes the four types of read counts for pairs of
alternative splicing events into file <pw_counts.txt>. Default:
off

-x/--hexamer <hexamer.txt>

SpliceHunter writes donor and acceptor hexamer sequences of
all introns in detected isoforms into file <hexamers.txt>.
Default: off

-i/--dimer <dimers.txt>

SpliceHunter writes donor and acceptor dimer sequences of all
introns in detected isoforms into file <dimers.txt>. Default: off

-n/--retlength <retint_length.txt>

SpliceHunter writes the lengths of all retained introns into file
<retint_length.txt>. Default: off

-z/--annoint <anno_introns.txt>

SpliceHunter outputs donor and acceptor hexamer sequences
as well as the length of all annotated introns into file
<anno_introns.txt>. Default: off

3.3.6 Isoform Sequences For conservation analysis, SpliceHunter outputs the full RNA
sequence of isoforms and TUs as well as their putative protein
sequences to FASTA files:

-p/--protfile <protein_seq.fa>
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SpliceHunter translates inferred isoforms of known genes and
novel TUs and writes their sequences and longest ORFs, respec-
tively, into FASTA file <protein_seq.fa>. Default: protseq.fa

-r/--rnafile <novel_rna_seq.fa>

SpliceHunter writes the RNA sequence of novel TUs into
FASTA file <novel_rna_seq.fa>. Default: novel_rna.fa

-A/--asfile <as_rna_seq.fa>

SpliceHunter writes the RNA sequence of novel isoforms of
known genes into FASTA file <as_rna_seq.fa>. Default: as_rna.
fa

-y/--ncprotseq <reference_annotation.gtf>

SpliceHunter translates all genes in
<reference_annotation.gtf> and writes their longest ORFs
into FASTA file nc_protseq.fa. This option can be used to study
hypothetical protein sequences of special transcript categories, like
noncoding RNAs. Default: off

To run SpliceHunter on our sample data, extract archive
spombe_meiosis_rep1.tgz, change to directory spombe_-
data, and run SpliceHunter on the data from replicate 1:

tar -zxvf spombe_meiosis_rep1.tgz

cd spombe_data

SpliceHunter -g Spombe.ASM294v2.29.gtf -f allChr.fa -m ./rep1

-I isoforms.txt -c certificates.txt

This should create files isoforms.txt, certificates.txt,
protseq.fa, as_rna.fa, novel_rna.fa, and ambiguous.
txt, in the current directory.

3.4 Output Analysis In this section, we describe several useful types of isoform analyses
based on the output files of SpliceHunter. SpliceHunter writes
results into tab-delimited files, which can be further processed
and analyzed by various programming tools. Here, we provide an
R script for users without extensive programming skills to facilitate
the downstream analysis of inferred isoforms.

1. Setting up R: Open R and change the working directory to the
folder which includes SpliceHunter’s output files, the GTF
annotation files, and the R source code.

2. Load functions: All functions are implemented in the FUNC-
TIONS section at the end of the script starting at line 78. Select
all code defining the functions and execute it. Available
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functions include ASlandscape, ASperisoform, Isoview,
Isodynamics, and ASassociation, which we describe in
more detail below.

3. Load and preprocess data: Replace the paths of example files
with the paths to your SpliceHunter output files on line 2 and
13. Specify the number of time points (line 8) and replicates
(line 9) accordingly and adjust the minimum required read
count of an isoform to be considered in line 10. Execute the
code from line 1 to line 52.

4. AS landscape: Execute line 55: isoformlandsca-
pe<�ASlandscape(isonew,mincount¼1). Function
ASlandscape takes two arguments, isonew and mincount.
Data frame isonew is generated during the data preprocessing
step and contains all isoforms and their splicing annotation
required by ASlandscape. The mincount value can be speci-
fied by the user in line 10. Its default value is 1, that is, isoforms
supported by at least 1 read are considered when determining
the alternative splicing landscape. The function outputs a list
object with two elements. The first element lists all detected AS
events and the second element quantifies the occurrences of AS
events by the number of supporting reads. Both elements are
tables with rows representing different types of AS, and with
one column for each time point. The last columns sum the
number of AS events and their supporting reads over all time
points, respectively. The AS landscape can be illustrated by a pie
chart, which can be generated by executing line 58 (Fig. 2).

Furthermore, we provide function ASperisoform to cal-
culate the number of AS events per isoform. Execute line 61 to
obtain the function’s result as a table.

5. Isoform structure and dynamics: A common task in the
analysis of alternative splicing is to explore the splicing pattern
and the dynamics of a particular isoform or of a set of isoforms
expressed by a gene of interest. We provide function Isoview

exon skipping
intron in exon

intron retention

no stop codon or empty protein
novel donor

novel donor/acceptor
novel exon

novel TES

Fig. 2 AS landscape of example data generated by ASlandscape
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to facilitate the visualization of one or multiple isoforms that
belong to the same gene. Function Isoview expects an id
assigned to an isoform by SpliceHunter, a vector of isoform
ids, or a gene name as input and plots exon–intron structures of
the isoforms given by their ids or all expressed isoforms of the
given gene, respectively. Exons are denoted by rectangles that
are connected by lines representing the introns. Arrows mark
the direction of transcription. Annotated structures are colored
in black and isoforms inferred by SpliceHunter are colored in
blue. The associated id of each isoform is shown on the right
side. Lines 64–66 in our R script provide examples for the
different modes of usage of function Isoview. The execution
of line 66 produces Fig. 3.

Function Isodynamics can be used to visualize the tempo-
ral patterns of isoforms across different time points or condi-
tions. It takes as its first argument the IDs of one or multiple
isoforms. The second argument annot specifies whether
(TRUE) or not (FALSE) to plot the temporal pattern of the
corresponding annotated isoform. By default annot¼FALSE,
i.e., the plot omits the annotated isoform. The execution of line
69 in our R script gives Fig. 4.

6. Association analysis: From long reads produced by PacBio
sequencing, SpliceHunter infers isoforms long enough to
span multiple AS events, allowing the study of their intramo-
lecular association. We provide function ASassociation to

4582500 4583000 4583500 4584000 4584500

SPAC12B10.05

Coordinates (bp)

Annot

Iso_2389

Iso_2390

Iso_2391

Iso_2392

Iso_2393

Iso_2394

Iso_2395

Iso_2396

Iso_2397

Iso_2398

Iso_2399

Iso_2400

Iso_2401

Fig. 3 Isoform structures of gene SPAC12B10.05 as generated by Isoview
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quantify the association between pairs of AS events. For pairs of
AS events that are each supported by 5–95% of all spanning
reads, SpliceHunter outputs (option --pwcount) a vector of
four elements, counting the numbers of reads supporting their
coexistence, their coabsence, and their mutual exclusion,
respectively. Function ASassociation returns a three-
column table with rows corresponding to the tested AS pairs.
The first column contains the P value from Fisher’s exact test of
independence of the two AS events. The second column gives
the P values adjusted for the number of tested pairs via FDR.
The third column quantifies the association by a score that is
defined as the ratio of the number of reads supporting coexis-
tence or coabsence to the total number of reads spanning both
AS event. A high score close to 1 suggests coassociation of the
events while a low score close to 0 indicates that they are
mutually exclusive. In our example, we identified 153 pairs of
coassociated introns with FDR < 0.05.

7. Certificates: SpliceHunter is able to provide certificates
(option --cert) for its core functionality that can be used to
visualize the dynamics of novel isoforms, in comparison to
annotated gene structures, across time points or conditions. A
certificate lists all Iso-Seq read names that are contained in the
isoform’s read cluster, split by time point or condition. Given
the id of a novel TU or a novel isoform, script certifiate2-
bam.sh uses the certificate to extract the corresponding align-
ments from the .bam file. It creates a separate .bam file for each
time point or condition, sorts and indexes it, and prepares their
color-coding in IGV.
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Fig. 4 The dynamics of the annotated isoform of gene SPAC1296.03c and
isoform Iso_336 detected by SpliceHunter from the example data
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(a) Set variable DIR in file certifiate2bam.sh to the
directory containing the input .bam files (used as argu-
ment --dir).

(b) Set variable SAMPLE to the list of samples and needs to
match precisely the 8th column in the header of file
<isoform_file.txt> if option --iso is used or “stan-
dard out” otherwise.

(c) Run certifiate2bam.sh and feed it with the certificate
of the isoform of interest:

grep -Ew ’^Iso_335’ certificates.txt | sh create_-
cert.sh. In this example, the certificate for isoform Iso_335
is used to create 6 sorted .bam files iso_[0--5].sorted.
bam and corresponding indexes.

(d) Load all .bam files into IGV to visualize the dynamics of the
isoform of interest. Figure 5 shows an IGV screenshot for
Iso_335 in our sample data.
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Chapter 6

RNA-Seq-Based Transcript Structure Analysis with
TrBorderExt

Yejun Wang, Ming-an Sun, and Aaron P. White

Abstract

RNA-Seq has become a routine strategy for genome-wide gene expression comparisons in bacteria. Despite
lower resolution in transcript border parsing compared with dRNA-Seq, TSS-EMOTE, Cappable-seq,
Term-seq, and others, directional RNA-Seq still illustrates its advantages: low cost, quantification and
transcript border analysis with a medium resolution (�10–20 nt). To facilitate mining of directional
RNA-Seq datasets especially with respect to transcript structure analysis, we developed a tool, TrBorderExt,
which can parse transcript start sites and termination sites accurately in bacteria. A detailed protocol is
described in this chapter for how to use the software package step by step to identify bacterial transcript
borders from raw RNA-Seq data. The package was developed with Perl and R programming languages, and
is accessible freely through the website: http://www.szu-bioinf.org/TrBorderExt.

Key words Directional RNA-Seq, Transcript unit, Operon, Transcript border, Transcript start site,
Transcript termination site

1 Introduction

Dramatic advances in the resolving power of DNA sequencing
technology and decreasing costs have revolutionized bacterial tran-
scriptome studies. RNA-Seq can generate large-scale gene expres-
sion data at single-nucleotide resolution that allow both
quantitative expression comparisons and qualitative analysis on
biological features in a strand specific manner such as transcript
border definition and sRNA identification [1, 2]. At present, how-
ever, RNA-Seq experiments with bacteria are mostly used for a
quantitative objective in a majority of laboratories [3–5].

Genes are condensed in bacterial genomes, and the structure of
transcripts is not as complex as in eukaryotic organisms. Conse-
quently, once a bacterial genome is sequenced, gene models can be
computationally annotated with high accuracy. However, similar to
humans or other eukaryotes, bacterial transcriptomes have been
observed to have high dynamics, not merely in expression level
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but also in the structure of transcripts [6–8]. Overlaps between
nontranslated regions and coding fragments of adjacent genes are
frequently observed in bacteria, causing gene frame-based expres-
sion quantification and comparisons to be inaccurate [9]. There-
fore, transcript border identification and transcription unit-based
quantification appeared more appropriate. Bacterial genomes are
organized in operons, so the core of transcriptional structure anal-
ysis is to annotate the operon architecture. In practice, an operon is
defined by the transcript start site (TSS) and the transcript termina-
tion site (TTS), and therefore identification of the TSSs and TTSs
becomes the focus of RNA-Seq-based operon architecture analysis.

Predominant RNA-Seq experiments have many advantages in
quantitative studies, but meanwhile have inherent drawbacks for
transcript border analysis [10]. New technologies, e.g., differential
RNA-Seq (dRNA-Seq), TSS-EMOTE, Cappable-seq and Term-
seq, have facilitated more accurate location of the TSSs and TTSs
[11–14]. The ideal design for bacterial transcriptome research
would include both dRNA-Seq/TSS-EMOTE/Cappable-seq,
Term-seq and typical directional RNA-Seq experiments, following
the analytic pipeline shown in Fig. 1. In an absolute majority of
laboratories, however, only directional (i.e., strand-specific) RNA--
Seq experiments are performed. Therefore, a tool is desired to
perform both qualitative annotation and quantitative analysis of
bacterial transcriptomes based only on directional RNA-Seq data.
Previously, we developed a software package, TrBorderExt, which
was designed specifically for transcript border identification based
on directional RNA-Seq data [10]. TrBorderExt could not locate
the TSSs as accurately as dRNA-Seq-based analysis because of the
inherent limits of RNA-Seq, and yet the structure for most operons
could be resolved within ~10–20 nucleotides [10]. We have illu-
strated a typical design for bacterial transcriptome studies and listed
some analytic methods (Fig. 1; [15–18]). For these methods, read-
ers are referred to the references listed and to other chapters in the
book that address specific objectives of bacterial transcriptome
analysis. Due to the length limit of this chapter, below we have
illustrated how to use TrBorderExt exclusively to analyze transcript
borders.

2 Materials

2.1 RNA-Seq

Data Sets

The RNA-Seq data from a Salmonella transcriptome study
(no. SRP056892) were used for testing the protocol (https://
www.ncbi.nlm.nih.gov/sra). The study contained eight datasets
SRX976427, SRX976344, SRX976343, SRX976341,
SRX976337, SRX976336, SRX976335, and SRX974437, each
representing different time point or biological phenotypes. The
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reads were directional and paired-end, generated from an Illumina
HiSeq 2000 platform.

2.2 Reference

Genome and

Annotation

The genome sequence of Salmonella typhimurium strain 14028S
and the annotation file were downloaded from NCBI GenBank
database (Accession: NC_016856.1).

2.3 Software Tools Geneious was installed for implementing read-genome mapping
and preparation of preprocessed files (http://www.geneious.com/).
TrBorderExt package (for Windows or Linux/Mac) could be
downloaded from the website: http://www.szu-bioinf.org/
TrBorderExt. Decompress the package directly. Installation of Perl
5.0 or a later version is a prerequisite for running TrBorderExt
(https://www.perl.org/). R is an optional prerequisite if the user
wishes to determine the statistically reliable transcript units. Down-
load R from http://www.r-project.org and install it according to the
documents.

dRNA-seq

TSS-EMOTE

Cappable-seq

Total RNA

Term-seq

RNA-seq

TTS Iden�fica�on

TTS Iden�fica�on

Quan�fica�on

TSS iden�fica�on TTS iden�fica�on

RNA seq

TSS iden�fica�on TTS iden�fica�on

TrBorderExt [10] 

TSSer [15], TSSAR [16], RNAseg [17]  

ToNER [18]

Fig. 1 Design and analysis of bacterial transcriptome. An ideal design was shown in grey box, with dRNA-Seq/
TSS-EMOTE/Cappable-seq and Term-seq in the first place for TSS and TTS identification respectively,
followed by directional RNA-Seq and transcript unit quantification. The TSSer, TSSAR, RNAseg, and ToNER
are software tools that automatically analyze TSSs from the TSS-enriched RNA-Seq data [15–18]. There are
no tools currently available for automatically analyzing Term-seq data. In most typical RNA-Seq experiments,
only directional RNA-Seq data are available (blue box), and TrBorderExt can be used to extract TSSs and TTSs
(in red). The transcript borders identified with TrBorderExt could be used to update the transcript structure and
make more accurate quantification of the genes
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3 Methods

As shown in Fig. 2, analysis of bacterial transcript borders from
directional RNA-Seq data with TrBorderExt is quite
straightforward.

3.1 Preprocessing of

RNA-Seq Data

1. Open Geneious, an interfaced sequence analysis software tool.
Copy the directional RNA-Seq data and reference bacterial
genome GenBank file into Geneious (see Note 1).

2. Select an RNA-Seq data file to be analyzed. In the main interface
of Geneious, select “Tools” ! “Align/Assemble” ! “Map to
reference . . .”, and then indicate the reference file. Set the para-
meters and then run read-genome mapping (see Note 2).

3. After mapping is finished, a file automatically named Contig will
be generated. Select Contig, and then select “File” in the main
interface of Geneious ! “Export” ! “Select

Raw RNA-seq
library 2

Raw RNA-seq
library 1

Raw RNA-seq
library n........

Reference genome
Mapping

BWA/Bow�e

Aligned SAM files

Read_depth_per_site files

SAM_Read2Genome_Pos_Ext
Site_Read_Depth

TrBorderExt

TSSs and TTSs

Stat

Most reliable TSSs and TTSs

Transcript unit / Operon
analysis

Quan�fica�on

sRNA / New gene
analysis

Fig. 2 Pipeline of transcript border analysis with TrBorderExt. RNA-Seq libraries need to be mapped to
reference genomes with alignment tools such as BWA, Bowtie or DNA analysis software programs like
Geneious (Biomatters Inc.), as described here. The aligned files in SAM format are further analyzed with
SAM_Read2Genome_Pos_Ext and Site_Read_Depth scripts in the TrBorderExt package to parse the read
depth per site. The read depth (per site) files can be used for transcript border parsing with TrBorderExt or for
analysis of sRNAs or new genes (shown in grey type). The TSSs and TTSs identified with TrBorderExt can be
used directly for transcript unit or operon analysis and subsequent transcript unit quantification. To extract the
more statistically reliable TSSs and TTSs from TrBorderExt results, Stat can be further applied. The tools or
modules available in TrBorderExt are highlighted in red
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Documents. . .” ! “SAM sequence alignment/map files
(*.sam)”. Designate the file to be generated and indicate the
directory where the file will be stored.

4. Repeat steps 2 and 3 for each RNA-Seq data file to be analyzed.

3.2 Analysis of Read

Depth per Site

1. Download the TrBorderExt software package. When fully
decompressed, this package contains the following subdirec-
tories—“bin”, “stat”, “Accessory_scripts”, and “Example”,
and the files—‘DOCUMENT.txt’, “TrBorderExt.pl”, and
“stat.pl”.

2. Create a new folder (for example, in Linux, “/home/rnaseq/”).
Transfer the SAM files generated in Subheading 3.1 into the
folder, along with the scripts “SAM_Read2Genome_Pos_Ext_P.
pl”, “SAM_Read2Genome_Pos_Ext_S.pl”, and “Site_Read_-
Depth.pl” found in subdirectory “Accessory_scripts” of the
TrBorderExt package. Copy the decompressed directory
“TrBorderExt_linux” (or “TrBorderExt_win”) completely into
the working folder.

3. Run “SAM_Read2Genome_Pos_Ext” to parse the genomic coor-
dinates of RNA-Seq reads. For Linux and Illumina paired-end
reads, running the following commands:

$ cd /home/rnseq/

$ perl SAM_Read2Genome_Pos_Ext_P.pl <MAPPING_SAM_FILE>

>READ_COORD_FILE

TheMAPPING_SAM_FILEs were the aligned files generated in
Subheading 3.1. For single-end reads, use “SAM_Read2Gen-
ome_Pos_Ext_S.pl” to replace the script “SAM_Read2Genome_-
Pos_Ext_P.pl”. Similar scripts and procedure were used in the
DOS interface of Windows operation system.

4. Run “Site_Read_Depth.pl” to calculate the depth of each geno-
mic position covered by RNA-Seq reads.

$ perl Site_Read_Depth.pl < READ_COORD_FILE> REF_SIZE

>SITE_READ_DEPTH_FILE

READ_COORD_FILE was generated in Subheading 3.2, step
2, and REF_SIZE is the length of reference genome with the
resolution of 1 nucleotide. The generated SITE_READ_-
DEPTH_FILE will be used for further transcript border analy-
sis. The file format is shown in Fig. 3.

5. Move SITE_READ_DEPTH_FILE into the TrBorderExt pack-
age folder (e.g.,“/home/rnaseq/TrBorderExt_linux/”).

6. Repeat steps 2–4 for each RNA-Seq library.

3.3 Parsing the

Borders of Transcript

Units

1. Prepare gene tab file for which the format is shown in Fig. 3. The
script ‘GB.parse.pl’ in the subdirectory “Accessory_scripts” of
the TrBorderExt package could help prepare the gene tab file
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(seeNote 3). Move theGENE_TAB_FILE into the TrBorderExt
package folder (e.g., “/home/rnaseq/TrBorderExt_linux/”).

2. One-step transcript border parsing for each library.

$ cd /home/rnseq/TrBorderExt_linux/

$ perl TrBorderExt.pl <SITE_READ_DEPTH_FILE>

<GENE_TAB_FILE> REF_SIZE

CUSTOMIZED_LIBRARY_NAME

CUSTOMIZED_LIBRARY_NAME is a simple identifier indi-
cated for each library. Two files will be generated eventually, with
“CUSTOMIZED_LIBRARY_NAME.all.TSS.txt” representing
all the transcript start sites and “CUSTOMIZED_LIBRARY_-
NAME.all.TSS.txt” representing all the transcript termination
sites. The format of generated files is shown in Fig. 4. Six
different types of TSS or TTS were identified and described
previously [10], based on the TSS/TTS read coverage and the
relative read abundance (signal-to-noise ratio) between
TSS/TTS and adjacent genomic sites. A diagram was also pre-
sented to explain the TSS/TTS types (Fig. 5).

Coordinate   Forward_Coverage 
1 10
2 12
3 11
... ...

GENOME_SIZE XXX

0
0
0
...

XXX

thrL 
thrA 
thrB 
thrC 
yaaA 
yaaJ 
talB 
mogA
yaaH 
htgA 
yaaI
STM14_0012
... 

190-255
337-2799
2801-3730
3734-5020
5114-5887
5966-7396
7665-8618
8729-9319
9376-9942
10092-10805
10841-11245
11257-11424
... 

+
+
+
+
-
-
+
+
-
-
-
+
...

Format of SITE_READ_DEPTH_FILE 

Format of GENE_TAB_FILE 

 Reverse_Coverage 

Fig. 3 The format of “site_read_depth” and “gene_tab” files used as part of the
TrBorderExt pipeline. SITE_READ_DEPTH_FILE contains three columns: the
genome coordinate (1); Forward_coverage (2) and Reverse_coverage (3) refer
to the read depth in the sense or antisense genomic strands, respectively, at
each corresponding genomic position. GENE_TAB_FILE also contains three
columns: (1) gene name; (2) the start and ending positions of the gene CDS;
and (3) the genomic strand where the gene is located (sense (+), antisense (�))
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thrL
talB
fkpB
dapB
carA
cra
mraZ
ampD
pdhR
aceE
Ipd
...

+
+
+
+
+
+
+
+
+
+
+
...

1
1
2
2
2
1
1
2
1
1
2
...

148
8191
25756
28290
29550
87969
89597
118701
122034
122969
127616
...

0
0
0
0
0
0
0
0
0
0
0
...

4
8
1
1
1
8
2
1
6
25
1
...

190
8238
25826
28374
29651
88028
89634
118733
122092
123017
127912
...

Intergenic
Intergenic
Intergenic
Intergenic
Intergenic
Intergenic
Intergenic
Intergenic
Intergenic
Intergenic
Intergenic
...

Gene Str  Type  TSS/TTS B_Cov Cov CDS_st Location

Fig. 4 The format of TSS or TTS identification files. Str, Strand; Type, TSS/TTS category (1–6) based on the site
coverage and signal-to-noise ratio between coverage of TSS/TTS and adjacent sites; TSS/TTS, the
corresponding genomic coordinates; B_Cov and Cov, border coverage and TSS/TTS coverage respectively;
CDS_st, the start site of corresponding gene CDS; Location, relative location of the TSS/TTS to corresponding
gene (Intergenic or Ingenic)

Gene 1 Gene 2

Gene 1 Gene 2

Gene 1 Gene 2

Gene 1 Gene 2

Gene 1 Gene 2

Gene 1 Gene 2

Gene 1 Gene 2 Gene 1 Gene 2

(A)

(B)

TTS TSS

Clear border

Clear border

Signal : noise  3:1

Signal : noise  3:1

Signal : noise  3:1 

Signal : noise  2:1

Intergenic Ingenic

Fig. 5 The types of TSSs or TTSs. Six types of TSSs based on the coverage of TSS, the coverage of the border
and the ratio were shown in (a). For each type, the first number listed refers to the number of reads covering
the genomic position 1-nt before the TSS of Gene 2 (border) and the second number refers to the number of
reads mapped to the TSS of Gene 2 transcript. The signal-to-noise ratio refers to the second number divided
by the first number. For TTSs, there were the same six types. (b) The TSSs/TTSs were also classified as
Intergenic or Ingenic, depending on the TSS/TTS location (between two known gene frames, or within a known
gene frame)
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In the one-step protocol, all the parameters were set as
default, e.g., no less than 75% length of a transcript being
covered by at least 1 read. However, Some researchers may
wish to examine flexible parameters. Therefore, an alternative
protocol was also provided to perform stepwise transcript border
analysis, and the users can modify the parameters in command
lines.

3. Stepwise transcript border parsing for each library (Alternative,
see Note 4).

$ cd /home/rnseq/TrBorderExt_linux/

$perl ./bin/geneUTR_tab.pl <GENE_TAB_FILE> REF_SIZE >utr.txt

$ perl ./bin/UTRlength.filter.pl utr.txt 5 >utr_5.txt

$ perl ./bin/UTRlength.filter.pl utr.txt 500 >utr_all.txt

$ perl ./bin/geneCoverageStat.pl <SITE_READ_DEPTH_FILE>

<GENE_TAB_FILE> >sample.gene.coverage.txt

$ perl ./bin/geneCoverageFilter.pl sample.gene.coverage.txt 3

0.75 >sample.3_75.filter.tab.txt

$perl ./bin/geneUTR_Cover.JointFilter.pl sample.3_75.filter.

tab.txt

utr_5.txt >sample.3_75_L5.tab.txt

$perl ./bin/geneUTR_Cover.JointFilter.pl sample.3_75.filter.

tab.txt

utr_all.txt >sample.3_75_L_All.tab.txt

$ perl ./bin/geneStructureRetrieve.pl <SITE_READ_DEPTH_FILE>

sample.3_75_L5.tab.txt

sample.3_75_L5

$ perl ./bin/geneStructureRetrieve2.pl <SITE_READ_DEPTH_FILE>

sample.3_75_L_All.tab.txt

100 sample.3_75_L-100

$ perl ./bin/mergeTranscriptStructure.pl sample.3_75_L5.TSS.

txt sample.3_75_L-100.TSS.txt

utr.txt >sample.all.TSS.txt

$ perl ./bin/mergeTranscriptStructure.pl sample.3_75_L5.TTS.

txt sample.3_75_L-100.TTS.txt

utr.txt >sample.all.TTS.txt

$ rm utr*

$ rm sample.3_75*

$ rm sample.gene.coverage.txt

$ mv sample.all.TSS.txt CUSTOMIZED_LIBRARY_NAME.all.TSS.txt

$ mv sample.all.TTS.txt CUSTOMIZED_LIBRARY_NAME.all.TTS.txt
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3.4 Statistical

Analysis of the

Accuracy of Transcript

Borders Identified

Using TrBorderExt

This step is optional (see Note 5), but recommended to determine
the degree of confidence for specific TSS or TTS. In our opinion, if
a researcher has sequencedmultiple libraries, then statistical analysis
should be performed. It should be noted, however, that although
this will increase the precision, it does result in a small loss of
sensitivity.

1. Put all the transcript border files (“CUSTOMIZED_SAM-
PLE_NAME.all.TSS.txt” and “CUSTOMIZED_SAMPLE_-
NAME.all.TTS.txt”) in current directory.

2. Use “stat.pl” to do the statistical analysis. Two options are
provided for statistical testing, “Read” or “Sample” (or both).
It is suggested to perform “Read”-based statistical test.

$ cd /home/rnseq/TrBorderExt_linux/

$ perl stat.pl TEST_TYPE

TEST_TYPE should be “Read”, “Sample”, or “Both”, for read-
based, sample-based, or both types of statistical test. At least four
files will be generated: (1) “All_sample.combined_TSS.txt”,
(2) “All_sample.combined_TTS.txt”, (3) “TSS.read_test.txt”
(or “TSS.sample_test.txt”), and (4) “TTS.read_test.txt”
(or “TTS.sample_test.txt”).

4 Notes

1. In this protocol, BWA integrated in Geneious was used for
RNA-Seq mapping. In practice, however, researchers can
directly use free, publically available short-read mapping tools
such as BWA or Bowtie.

2. The mapping parameters can be adjusted based on the quality of
the raw reads, the read length, the overall sequencing depth and
the genome complexity. In the protocol outlined, full length
reads were rejected if there were >5% mismatches or if repeats
were present, i.e., one read mapped to two genome regions
meanwhile.

3. The Gene_tab file should be parsed in advance, with a format
indicated in Fig. 3. A script “GB.parse.pl” was also developed
and stored in the subdirectory “Accessory_scripts” of the TrBor-
derExt package, which could help prepare the gene tab file.
Please note that the script only parses protein-encoding genes
and ncRNAs. Before using “GB.parse.pl”, the GenBank file
(GB_FILE) of corresponding reference genome should be
downloaded from NCBI Genome database or elsewhere and
stored in current directory. The usage was shown below:

USAGE: perl GB.parse.pl <GB_FILE>

Example: $ perl GB.parse.pl NC_000913.gb >K-12.gene.tab.txt
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4. The transcript borders could be parsed with TrBorderExt by one
step. However, TrBorderExt is a pipeline with sequential sub-
steps, for each of which the script was stored in the subdirectory
“bin”. The purpose for each substep was shown in the annota-
tion lines of the corresponding scripts. Users could also modify
the parameters in individual scripts for specific bacterial species
or research objectives.

5. Binomial tests were used for reliability evaluation of the TSSs
and TTSs. However, as described in reference [10] and else-
where, the inherent deficiencies of directional RNA-Seq techni-
ques, particularly without 50/30-end protection or enrichment,
determined that the resolution of TSS/TTS identification can
only be within ~10–20 nucleotides. Statistical tests will not
improve the resolution; however, they will reduce the uncer-
tainty caused by random sampling bias.
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Chapter 7

Analysis of RNA Editing Sites from RNA-Seq Data
Using GIREMI

Qing Zhang

Abstract

RNA editing is a posttranscriptional modification process that alters the sequence of RNA molecules. RNA
editing is related to many human diseases. However, the identification of RNA editing sites typically
requires matched genomic sequence or multiple related expression data sets. Here we describe the GIREMI
tool (genome-independent identification of RNA editing by mutual information; https://github.com/
zhqingit/giremi) that is designed to accurately and sensitively predict adenosine-to-inosine editing from a
single RNA-Seq data set.

Key words RNA editing, RNA-Seq, Posttranscriptional modification

1 Introduction

RNA editing is a posttranscriptional modification process that alters
the sequence of RNAmolecules. When it occurs in the untranslated
regions (UTRs) or exons, RNA editing modulates the RNA stabil-
ity and the translation process [1]. The mice with the knockout of
two RNA-editing enzyme-encoding genes, Adar1 and Adar2, are
embryonically and postnatally lethal, respectively [2, 3]. The
RNA-editing deficiencies have been observed in epilepsy, amyo-
trophic lateral sclerosis (ALS), Aicardi–Goutieres syndrome
(AGS), schizophrenia, suicidal depression, and other neurodegen-
erative diseases [4–6]. In addition, recent studies indicate that RNA
editing process or site-specific editing is related to various cancers
[7–10] and associated with patient survival [9].

Computational tools have been developed recently to detect
RNA editing sites [11]. However, all of them require the matched
genome sequence data in order to discriminate RNA editing sites
(RNAE) from genomic single nucleotide polymorphisms (SNPs)
[11]. Because of the nonuniformity in sequencing coverage or
other issues, some SNPs still fail to be identified. In view of the
different conservation levels of the RNA editing sites and SNPs, a
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newmethod was proposed to use multiple RNA-Seq data sets alone
to find the RNA editing sites; however, it still precludes analysis of
single data sets and may miss unique changes [12]. We devised a
tool GIREMI (genome-independent identification of RNA editing
by mutual information) that can separate the RNA editing sites
from genomic variations (e.g., SNPs) based on single RNA-Seq
datasets [13].

In this chapter, I provide a step-by-step protocol on how to use
GIREMI to identify RNA editing sites from RNA-Seq data.

2 Materials

2.1 RNA-Seq

Datasets and

Reference Genome

Sequences

The testing RNA-Seq dataset used for this protocol was accessible
through the link: https://github.com/zhqingit/giremi. Down-
load the compressed file (“test.fastq.gz”).

The human reference genome sequences (GRCh37/hg19)
were downloaded from UCSC: http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/.

2.2 Tools 1. Read mapping tool, BWA: http://bio-bwa.sourceforge.net/.
Install and configure the tool according to the documents.

2. SAMtools: http://samtools.sourceforge.net/. Install and con-
figure the tools according to the documents.

3. GIREMI could be downloaded through the link: https://
github.com/zhqingit/giremi. The package is developed
with R, Perl, Python, and C programming languages. There is
a manual in the website that could be followed to install and
configure GIREMI correctly.

2.3 System

Requirements

BWA, SAMtools, and GIREMI all support Linux (Ubuntu, Red
Hat, SUSE, and others) system. At least 8 GB of memory is
required for GIREMI to process typical human datasets.

3 Methods

GERIME combines a mutual information (MI) based inference
method with a generalized linear model (GLM) to predict the
RNA editing sites. Taking the advantage of the high throughput
sequencing technology, we can collect a set of SNV pairs located on
the same reads (> ¼ 5 reads). The pairs with different composition
show variable behaviors. As shown in Fig. 1a, SNP/SNP pairs can
pass the haplotype information on the reads. From the statistic
viewpoint, the two sites are dependent. In contrast, RNA editing
occurs post-transcriptionally and the mRNAs are randomly chosen
to be edited, so the SNP/RNAE or RNAE/RNAE sites are
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independent (Fig. 1a). The mutual information (MI) is a popular
method to measure the dependence between two variables. TheMI
of different SNV pairs inferred by the RNA-Seq reads (Fig. 1b)
shows totally different distributions. Based on the above evidences,
we devise a method to identify the RNA editing sites using the
RNA-Seq data alone (Fig. 2).

We firstly extract the known SNPs from the single nucleotide
variants (SNVs) inferred from the RNA-Seq data based on the
public databases. Then we build the MI distribution of these
known SNP pairs. Any SNV whose MI value is out of this distribu-
tion is considered as RNAE. For some SNV sites, we cannot calcu-
late their MI values because they are not covered by enough reads
holding other SNV sites. So we apply a generalized linear models
(GLM) trained by the known SNPs and MI-inferred RNAE to
extend the predictive power of GIREMI (Fig. 2). Because the
sequencing or PCR errors occur randomly on the reads, their MI
values will be similar to that of the RNAE. Therefore, it is very
important to remove the sequencing or PCR errors before using
GIREMI.

3.1 Mapping of

RNA-Seq Reads

RNA-Seq reads are mapped to human genome sequences or tran-
scriptome using bowtie [14], bwa [15], blat [16], or other align-
ment tools.

CMD: bwa aln hg19.fa test.fastq.gz > test.sai

bwa samse hg19.fa test.sai test.fq > test.sam

Parameters can be specified based on the pair-end or single-end
sequencing and the length of the reads. The mapping results are
exported into a file with SAM format.
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Fig. 1 The GIREMI method. (a) The allelic combinations of two SNPs in the same RNA-Seq reads are the same
as their DNA haplotypes, whereas a SNP and an RNA editing site (or a pair of RNA editing sites) exhibit variable
allelic linkage. (b) Distributions of mutual information associated with SNPs and RNA editing sites, estimated
using GM12878 RNA-Seq data (ENCODE, cytosolic, poly(A) +) and its associated genome sequencing data.
(Adapted from Figure 1 in Zhang et al. [13])
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3.2 Preprocessing to

Identify and Filter

Mismatches in

RNA-Seq Reads

1. Remove the duplicates

The step can be done with GATK [17–19], SAMtools [20], or
any other tool with similar applications. Here, SAMtools is used
and shown as an example. First, the mapping result file (SAM
format) generated from the Subheading 3.1 is transformed to
BAM format and sorted, followed by removing the duplicates
with the “rmdup” module of SAMtools.

CMD: samtools view -Sb test.sam > test.bam

samtools sort test.bam > test_sorted.bam

samtools rmdup -S test_sorted.bam > test_dup.bam

2. Call SNVs

The SNVs are called from the duplicate-free BAM file obtained
from last step. Sequencing and other errors are removed. GATK
[17–19], SAMtools [20], or other tools can be applied. Here, we
also use SAMtools as an example. Users can refer to the documents
along with these tools to set the parameters.

CMD: samtools mpileup -uf hg19.fa test_dup.bam | bcftools

call -c -v | bcftools filter -i’DP>=5’ > test.vcf

Mutual information
-based prediction

of RNA editing

RNA-Seq: expressed
single nucleotide variants (SNVs)

C

dbSNPs:
Mutual information

of SNPs

Unknown
SNVs

Generalized linear
model

Predicted
RNA

editing
sites

G
A A

G
A

Fig. 2 Flowchart of GIREMI. GIREMI is designed to identify the RNA editing sites
based on prealigned file and the known SNPs list. There are many methods to
generate the alignment result (bam/sam file) from the raw RNA-Seq reads.
These methods are very straightforward, and the user only needs run the
commands. Below a test sample was used to illustrate the whole pipeline
(Materials). (Adapted from Figure S1b in Zhang et al. [13])
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The SNVs are recorded in the resulting VCF file, which will be
further parsed for the RNA editing sites with GIREMI.

3.3 Run GIREMI 1. Generate the list of SNVs with marked known SNPs

Download the human gene information (“ref_gene.txt”) from
UCSC table browser:

https://genome.ucsc.edu/cgi-bin/hgTables
Choose “Genes and Gene Predictions” for group and “all fields

from selected tables” for output format.
Variations are annotated with snpEff, which can be down-

loaded from: http://snpeff.sourceforge.net/download.html.
Make sure that snpEff use the same gene name as that in the
ref_gene.txt. Use a custom script “mark_snp.py” downloaded
from github website of GIREMI to generate the input file of
GIREMEI curating the list of SNVs with marked known SNPs.

CMD: java -Xmx4g -jar snpEff.jar hg19 test.vcf> test_ano.vcf

mark_snp.py -s test.vcf -i test_ano.vcf -g ref_gene.txt >

test.txt

2. Generate the RNA editing list

CMD: giremi -f hg19.fa -l test.txt -o RNAE.lst test_dup.bam

The RNA editing sites are output into the list file “RNAE.lst”.

3. Description of the GIREMI results

The output file of GIREMI includes a rich list of information
about the SNVs. The columns are briefly explained as below:

(a) chr: Chromosome or scaffold identification.

(b) coordinate: Position of the SNVs in the chromosome or
scaffold (1-based).

(c) strand: Strand information.

(d) ifSNP: 1, If the SNV is included in dbSNP; 0: otherwise.

(e) gene: Name of the gene harboring this SNV.

(f) reference_base: The nucleotide of this SNV in the reference
chromosome (+ strand).

(g) upstream_1base: The upstream neighboring nucleotide of
this SNV in the reference chromosome (+ strand).

(h) downstream_1base: The downstream neighboring nucleotide
of this SNV in the reference chromosome (+ strand).

(i) major_base: The major nucleotide of the SNV in the
RNA-seq data.

(j) major_count: Number of reads with the major nucleotide.

(k) tot_count: Total number of reads covering this SNV in the
RNA-Seq data.
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(l) major_ratio: The ratio of major nucleotide (major_count/
tot_count).

(m) MI: The mutual information of this SNV if a value exists.

(n) pvalue_mi: P-value from the MI test if applicable.

(o) estimated_allelic_ratio: Estimated allelic ratio of the gene
harboring this SNV.

(p) ifNEG: 1: this SNV was a negative control in the
training data.

(q) RNAE_t: Type of RNA editing or RNA-DNA mismatches
(A-to-G etc.).

(r) A, C, G, T: Numbers of reads with specific nucleotides at
this site.

(s) ifRNAE: 1: the SNV is predicted as an RNA editing site based
onMI analysis; 2: the SNV is predicted as an RNA editing site
based on GLM 0: the SNV is not predicted as an RNA
editing site.

4 Notes

1. GIREMI starts to predict the RNA-editing sites from a list of
credible SNVs with known SNPs and the corresponding bam
file. The users must do the alignment and call SNVs using the
external tools. As we have discussed, GIREMI is sensitive to the
errors from sequencing, PCR or other sources. So the stringent
rules are required to remove these errors as much as possible.
Previously, we used a “double filters” scheme to maximize
mapping rate while maintaining high mapping accuracy
[13]. This scheme, called “obviously best” filtering scheme
now, has been adopted by RASER [21], an alignment software
superbly efficient in unbiased mapping of the alternative alleles
of SNPs and in identification of RNA editing sites. Other filters
could also be further applied to remove potential artifacts
resulted from sequencing or mapping bias.

2. GIREMI also accepts the bam file and SNVs list from other
alignment and SNV calling tools. The user should make sure
the bam file is the exact one fromwhich the SNVs are called since
some software tools may generate many intermediate bam files.
GIREMI uses the pileup way to collect all kinds of information
of each SNV same to samtools, so the variant frequency might be
slightly different from that generated by GATK in some cases.

3. As introduced in Subheading 3, GIREMI firstly uses the distri-
bution of MI of the known SNP pairs to judge whether a SNV
with MI value is a RNA editing site. The user should only mark
the high confidential SNPs, otherwise the error-marked SNPs
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might shift the distribution to smaller value and increase the
false positive. GIREMI prints the mean and variance of the MI
distribution on the screen. In theory, the mean should be 0.69.
However, because of the sequencing depth and reads length, we
cannot build the ideal distribution all the time. So the mean
value usually is around 0.6. If the mean of MI is smaller than 0.5,
there may be too many sequencing errors or RNA editing sites
incorrectly marked as known SNPs.

4. Our experimental results showed that the false discovery rate
(FDR) of GIREMI was only 7.6% even if the 90% unknown
SNVs were SNPs. So the users need not worry about the com-
position of the unknown SNVs. In addition, GIREMI is not
sensitive to the single-end or pair-end reads. The low sequencing
depth can decrease the total detectable SNVs, but does not
affect the FDR of GIREMI.

5. All the SNVs are reported in the final result file, and only those
with nonzero “ifRNAE” sites are predicted as RNA editing sites.
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Chapter 8

Bioinformatic Analysis of MicroRNA Sequencing Data

Xiaonan Fu and Daoyuan Dong

Abstract

The vital role of microRNAs (miRNAs) involved in gene expression regulation has been confirmed in many
biological processes. With the growing power and reducing cost of next-generation sequencing, more and
more researchers turn to apply this high-throughput method to solve their biological problems. For
miRNAs with known sequences, their expression profiles can be generated from the sequencing data. It
also allows us to identify some novel miRNAs and explore the sequence variations under different condi-
tions. Currently, there are a handful of tools available to analyze the miRNA sequencing data with separated
or combined features, such as reads preprocessing, mapping and differential expression analysis. However,
to our knowledge, a hands-on guideline for miRNA sequencing data analysis covering all steps is not
available. Here we will utilize a set of published tools to perform the miRNA analysis with detailed
explanation. Particularly, the miRNA target prediction and annotation may provide useful information
for further experimental verification.

Key words MicroRNAs, miRNAs, Bioinformatic, R, mirPRo, Small RNA sequencing

1 Introduction

MicroRNAs (miRNAs) are small noncoding RNAs with size
around 22 nt [1]. The biogenesis of miRNAs is mainly associated
with two RNase III proteins—Drosha and Dicer [2]. Guided by
mature miRNA, the Argonaute (Ago) protein forms a complex
with miRNA to regulate the targeting gene expression [3]. With
these features, miRNA libraries are generally prepared from total
RNAs by size selection or associated protein immunoprecipitation
(IP) such as Ago-IP. Commercialized kits designed for small RNA
libraries generated in different scenarios are available to adapt to
various platforms [4]. To produce a reliable dataset, the experimen-
tal strategy should be carefully chosen since bias could be intro-
duced in multiple steps during library construction such as adapter
ligation [5]. The high quality profile of miRNAs is a good start of
the project.

Typically, the bioinformatic analysis of miRNA sequencing data
consists of five parts: (1) Data preprocessing, including reads
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quality filtering and 30-adapter trimming; (2) Reads mapping and
annotation; (3) Sequence feature analysis, including novel miRNA
prediction and the analysis of sequence variation of mature miRNAs
isoforms; (4) Differential expression analysis, regarding both
known and novel miRNAs; (5) Functional analysis, based on
miRNA target prediction. Currently, there are a number of tools
providing one or more modules for analyzing the miRNA sequenc-
ing data. Hereinbefore, several tools have been developed integrat-
ing multiple programs into a single pipeline such as mirTools [6, 7],
mirPRo [8], CAP-miRSeq [9], miARma-Seq [10], and Chimira
[11]. Except for the web-based Chimira, the others are stand-alone
tool suites, which can be downloaded, and run locally. Here, we
have chosen mirPRo combining with fastx toolkit, flexbar [12],
TargetScan [13, 14], and miRBase [15–18] to describe their use
in miRNA sequencing analysis. Particularly, the selection of mir-
PRo is because it incorporates almost all the modules for analyzing
miRNA sequencing data. In addition, the integrated tools in mir-
PRo, including mirDeep [19] and RNAfold [20], have been widely
used in many miRNAs studies. In this protocol, we will use the
sample dataset from a MCF7 cell line study to demonstrate the
bioinformatic analysis of miRNA sequencing data [21].

2 Materials

1. Hardware: Linux or Mac OS system is required to install the
software. Computer requirement depends on the size of the
dataset. Generally, a regular PC is enough for the analysis. For
this tutorial, the analysis was run on a 64-bit computer with
32 GB of RAM and 16 CPUs installed with Linux system
Ubuntu 15.10.

2. All the commands in this protocol have been tested in the Linux
system. If rerun the same analysis, make sure that all the required
files are in the working directory. Commands executed under
the Linux terminal are prefixed with a “$” character. Commands
executed in the R console are prefixed with a “>” character. All
the outputs are prefixed with a “##” character.

3. miRNA sequencing datasets (accession GSE47602 at Gene
Expression Omnibus of NCBI): Datasets downloaded from
NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/) with accession GSE47602 were downloaded for
demonstration. To download the dataset, go to the website
and search by the accession number (Con1: SRR873382;
Con2: SRR873383; Exp1: SRR873384; Exp2: SRR873385).
Alternatively, open the terminal and download through the wget
command (e.g., wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByExp/sra/SRX/SRX290/SRX290631/
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SRR873382/SRR873382.sra). The datasets should be down-
loaded one by one and then renamed for each experiment.

4. Database files: Several reference and annotation files (known
miRNA sequence, GTF file for gene annotation, genome
sequence) are required in this protocol. The sequence files
(mature.fa.gz, hairpin.fa.gz) for known miRNAs can be down-
loaded from the miRBase ftp site (ftp://mirbase.org/pub/
mirbase/CURRENT/). The reference genome and gene anno-
tation files (Homo_sapiens.GRCh38.dna.primary_assembly.fa.
gz, Homo_sapiens.GRCh38.81.gtf.gz) can be downloaded
from the Ensembl database (ftp://ftp.ensembl.org/pub/
release-81/fasta/homo_sapiens/, ftp://ftp.ensembl.org/pub/
release-81/gtf/homo_sapiens/).

5. Software installation: The software used in this protocol can be
downloaded from their websites as below:

sra-toolkits (https://github.com/ncbi/sra-tools); fastx_toolkit
(http://hannonlab.cshl.edu/fastx_toolkit); Flexbar (https://
github.com/seqan/flexbar); RNAfold (http://www.tbi.univie.
ac.at/RNA); randfold (http://bioinformatics.psb.ugent.be/sup
plementary_data/erbon/nov2003/); Novoalign (http://www.
novocraft.com/support/download/); HTSeq (http://www-
huber.embl.de/users/anders/HTSeq/); mirPRo (https://
sourceforge.net/p/mirpro); rstudio (https://www.rstudio.
com/products/rstudio/download/). Download the tools
from the corresponding website to your software directory. All
the tools provide installation guide. Once finishing setting up,
you should run the command (export PATH¼$PATH:your-
directory/your-tools/) in order to access the tools directly
from the terminal.

6. Install the R package for the later analysis.
Open the Rstudio and run the following scripts to install the
required packages.

>source("https://bioconductor.org/biocLite.R")

>biocLite("DESeq2")

>install.packages(“pheatmap”)

3 Methods

3.1 Environment

Setup

1. Open the terminal and create a working directory.

$mkdir working-directory

2. Move the sequencing files and database files into the working
directory and check their status
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$ls

##SRR873382.sra

##SRR873383.sra

##SRR873384.sra

##SRR873385.sra

##mature.fa.gz

##hairpin.fa.gz

##Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz

##Homo_sapiens.GRCh38.81.gtf.gz

3. Convert the .sra files into .fastq files and decompress the .gz files.

$fastq-dump *.sra

$gunzip *.gz

4. Rename the fastq files.

$mv SRR873382.fastq Con1.fastq

$mv SRR873383.fastq Con2.fastq

$mv SRR873384.fastq Exp1.fastq

$mv SRR873385.fastq Exp2.fastq

3.2 Preprocessing A fastq sequencing files should consist of four lines per read. The
first line starts with “@” followed by the sequence identifier. The
second line is the raw sequence letters, with undetermined nucleo-
tide appearing as “N.” The third line has “þ” as the first character
optionally had the same header information as the first line. The
fourth line is the base quality value for the raw sequence. The raw
sequence files need to be preprocessed to filter out the reads of bad
quality. As for miRNA sequencing data, the 30-adapter trimming
has to be performed due to the short length of miRNAs.

1. Remove the reads of bad quality using fastq_quality_filter from
fastx-toolkit. Option “q” is the minimum quality score to keep.
Option “p” is minimum percent of bases for each read with
sequencing score higher than “q.”

$fastq_quality_filter -q 20 -p 95 -i Con1.fastq -o Con1_qf.

fastq

$fastq_quality_filter -q 20 -p 95 -i Con2.fastq -o Con2_qf.

fastq

$fastq_quality_filter -q 20 -p 95 -i Exp1.fastq -o Exp1_qf.

fastq

$fastq_quality_filter -q 20 -p 95 -i Exp2.fastq -o Exp2_qf.

fastq
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2. Trim the 30-adapter with flexbar. Set the minimum overlap
between read sequence and adapter sequence as 4 nt with option
“ao.” Only keep the reads with no less than 16 nt with option
“m.” The number of threads used for parallel computation was
enabled with option “n.”

$flexbar -t Con1_trimed -r Con1_qf.fastq -as ATCTCG-

TATGCCGTCTTCTGCTT -ao 4 -m 16 -n 6

$flexbar -t Con2_trimed -r Con2_qf.fastq -as ATCTCG-

TATGCCGTCTTCTGCTT -ao 4 -m 16 -n 6

$flexbar -t Exp1_trimed -r Exp1_qf.fastq -as ATCTCG-

TATGCCGTCTTCTGCTT -ao 4 -m 16 -n 6

$flexbar -t Exp2_trimed -r Exp2_qf.fastq -as ATCTCG-

TATGCCGTCTTCTGCTT -ao 4 -m 16 -n 6

3. Get the length distribution of total reads to have an overview of
the datasets.

$cat Con1_trimed.fastq | awk ’{if(NR%4==2) print length

($1)}’ | sort -n | uniq -c >Con1_readLength.txt

$cat Con2_trimed.fastq | awk ’{if(NR%4==2) print length

($1)}’ | sort -n | uniq -c >Con2_readLength.txt

$cat Exp1_trimed.fastq | awk ’{if(NR%4==2) print length

($1)}’ | sort -n | uniq -c >Exp1_readLength.txt

$cat Exp2_trimed.fastq | awk ’{if(NR%4==2) print length

($1)}’ | sort -n | uniq -c >Exp2_readLength.txt

4. Open the Rstudio. The R command should be run in the left
panel (Fig. 1a). The figures will be produced in the right panel
(Fig. 1b).

5. Setup the working directory and load the data from step
3. Using the head() function to check the loaded datasets,
there are two columns for each dataset: the first column is
frequency and the second column is read length.

>setwd(“~/your-working-directory”)

>Con1_lengthDis = read.table("Con1_readLength.txt")

>Con2_lengthDis = read.table("Con2_readLength.txt")

>Exp1_lengthDis = read.table("Exp1_readLength.txt")

>Exp2_lengthDis = read.table("Exp2_readLength.txt")

>head(Con1_lengthDis)## V1 V2

##1 232515 16

##2 325012 17

##3 308513 18

##4 294719 19

##5 485567 20

##6 1803169 21
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6. Produce the figures of reads length distribution. The read length
might vary in different datasets. We choose to focus on 16–30 nt
which corresponds to row 1–15 of the dataset. Control group
(Fig. 2a) and experimental group (Fig. 2b) were plotted sepa-
rately with different color schemes. The most abundant peak is
23 nt for both groups. Similar distribution was observed
between the two groups with most reads ranged from 21 to
24 nt. These patterns suggest the enriched miRNAs from
sequencing data.

>ConColor = c("gray20","gray70")

>ExpColor = c("pink","red")

>barplot(rbind(Con1_lengthDis[1:15,1],Con2_lengthDis

[1:15,1])/1000000,names.arg = 16:30,beside = T,col=ConCo-

lor,ylab="Total read counts (M)",xlab="Adapter trimed reads

length",main = "Length Distribution")

>legend("topleft",c("Con1","Con2"),bty="n",fill = ConCo-

lor)

>barplot(rbind(Exp1_lengthDis[1:15,1],Exp2_lengthDis

[1:15,1])/1000000,names.arg = 16:30, beside= T,col=ExpCo-

lor,ylab="Total read counts(M)",xlab="Adapter trimed reads

Fig. 1 The Rstudio interface. Rstudio is an R language IDE for statistical analysis and graphics
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length",main = "Length Distribution")

>legend("topleft",c("Exp1","Exp2"),bty="n",fill = ExpCo-

lor)

3.3 mirPRo Pipeline The mirPRo stand-alone pipeline is capable of genome mapping,
known miRNAs annotation, novel miRNAs identification, and arm
switching detection. These results can be produced from one com-
mand line.

1. Create the genome index file using novoindex from preinstalled
novoalign.

$novoindex hg38.idx Homo_sapiens.GRCh38.dna.primary_assem-

bly.fa

##novoindex (3.7) - Universal k-mer index constructor.

##(C) 2008 - 2011 NovoCraft Technologies SdnBhd

##novoindex hg39.idx Homo_sapiens.GRCh38.dna.primary_assem-

bly.fa

##Creating 24 indexing threads.

##Building with 14-mer and step of 2 bp.

2. Run the pipeline using preprocessed data. The options for qual-
ity filtering and adapter trimming is disabled by “-a 0” and “-q
0” since the input is clean reads. The option “-s hsa” is specified
for human species. If the dataset is from other species, the three-
letter code of the corresponding species can be obtained from
miRBase. The human GTF file is provided to annotate other
RNA classes. Novel miRNA identification is enabled with “--
novel 1”. The option “-other” is set as “mmu” for identification
of conserved seed between different species (human and mouse

Fig. 2 The length distribution of total sequenced reads. The length of clean raw reads for control group (a) and
experimental group (b) is plotted against their frequency

MicroRNA Data Analysis 115



in this case). The pipeline is run in parallel model with “-t 4”. It
takes about two hours for the sample data.

$mirpro -i Con1_trimed.fastq -i Con2_trimed.fastq -i Ex-

p1_trimed.fastq -i Exp2_trimed.fastq -m mature.fa -p hair-

pin.fa -d ./miRNA -s hsa -a 0 -q 0 -t 4 --gtf Homo_sapiens.

GRCh38.81.gtf --novel 1 --other mmu -g Homo_sapiens.GRCh38.

dna.primary_assembly.fa --index hg38.idx

#start:

#checking prerequisite programs ...

#checking parameters ...

#processing known mature miRNA and precursor miRNA data...

3. Interpret the output of mirPRo. The clean reads are first mapped
tomiRNAs. The detailed mapping information is stored under /
miRNA/result/sample/*_mature_miRNA_mapping.csv. The
structure of this file is organized in multiple sequence alignment
format (Fig. 3). The remaining sequencing reads are then
mapped to the genome. The mapping results are outputted as
/miRNA/run/sample/*_vs_genome_t_60_count.sam. The
final results for the whole analysis can be found in the directory
of /miRNA/result/. The count number of known and novel
miRNAs is in the file “result_mature.csv” and “result_novel_-
mature.csv”. Other processed files are also included. The file

Fig. 3 Mapping of sequencing reads back to miRNA precursor for mir-188. (a) Name of miRNA precursor. (b)
Hairpin sequence of miRNA precursor. (c) Mature miRNA sequence. (d) ID of collapsed sequencing reads. (e)
Count number of the sequencing read
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“3_other_form.csv” consists of statistics for the mature miRNA
30-end variation. The mapping statistics and RNA catalog infor-
mation are contained in “read_cataloging.csv”. The predicted
novel miRNA sequences are stored in “novel_mature.fa” and
“novel_precursor.fa”.

4. Summarize the read mapping information. This result will be
loaded into R for exploration.
(a) Load the file into Rstudio. Exclude the first two empty lines

by ‘skip ¼2’.

>annotation = as.matrix(read.csv("final/result/read_-

cataloging.csv",header=T,row.names = 1,skip=2))

(b) Change the name of columns to the sample names and
remove the lines start with “__”. These four lines are overall
mapping summary, which do not belong to any RNA
category.

>colnames(annotation) = c("Con1","Con2","Exp1","Exp2")

>remove = c("__alignment_not_unique", "__ambi-

guous","__no_feature","__not_aligned")

>annotation = annotation[!(rownames(annotation) %in%

remove),]

(c) Remove the lines with empty read mapping, and check the
final results of read mapping.

>annotation = annotation[rowMax(annotation)>0,]

>annotation

# Con1 Con2 Exp1 Exp2

#Mt_rRNA 3140 2772 3252 3016

#Mt_tRNA 7719 5997 9223 8665

#antisense 2232 1765 876 1419

#lincRNA 1155 1231 954 1126

#miRNA 4077316 3834806 3445130 3783094

#misc_RNA 1203 1423 452 516

#processed_pseudogene 420 336 371 399

#processed_transcript 34342 26672 11114 43866

#protein_coding 58624 50793 37678 48743

#sense_intronic 262 388 122 146

#snRNA 984 981 407 659

#snoRNA 20812 1 5821 9162 27440

3.4 Novel miRNA

Prediction

The novel miRNA prediction is performed by mirDeep2. This tool
is integrated into the mirPRo pipeline. For the sample dataset,
there are 509 novel miRNAs. The miRNA hairpin structure can
be checked with RNAfold as follows.
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1. Extract the novel miRNA precursor sequences from the file
“novel_precursor.fa”. For example, hsa-novel-mir-353:

$cat novel_precursor.fa | awk ’$1==">hsa-mir-353"{print;

getline;print}’ >novelmir353.fa

2. Run RNAfold with the novel-mir-353 precursor sequence. The
output in the terminal is a RNA secondary structure of mini-
mum free energy in dot-bracket interaction pattern. The dot
represents unpaired nucleotide whereas the parentheses are
paired positions. There is also a figure of secondary structure
generated under the working directory (Fig. 4).

$RNAfold <novelmir353.fa

##>hsa-novel-mir-353 3:-:33925657:33925764

##GGAUUGUGGAAGGCAGCCAGCCUUGGUAUUCCAGGGGGUGUGCUUUGAAGCUG-

CAAAUUAUUUGCUCUUUGUGAAUACUUAGAGCUACUGGCCUUCCCUAUGUGCUCC

# # ( . ( ( . . . ( ( ( ( ( ( ( . . . . ( ( ( ( ( . ( ( ( ( ( (( ( ( ( ( ( ( ( ( ( ( ( .

((((......)))).)))..)))))))).))))))).)).)))....)))))))...-

.)).)... (-37.00)

3.5 Differentially

Expressed miRNAs

The identification of differentially expressed miRNAs is performed
by R package DESeq2 [22]. The raw read count number of known
and novel miRNAs will be combined as a single input for DESeq2.
With the default setting, normalized read counts will be used for
comparison. The adjusted p-value < 0.1 based on negative bino-
mial distribution is considered statistically significant.

1. Open the Rstudio and install the Bioconductor package
DESeq2 and its dependences by running the following scripts.
Install the R package pheatmap for the later analysis.

Fig. 4 RNA secondary structure of novel-mir-353 from RNAfold
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>source("https://bioconductor.org/biocLite.R")

>biocLite("DESeq2")

>install.packages(“pheatmap”)

>library(“DESeq2”)

>library(“pheatmap”)

2. Load the miRNA quantification file into Rstudio. Exclude the
first two empty lines by ‘skip ¼2’.

>known=as.matrix(read.csv("final/result/result_mature.

csv",row.names="id",skip=2))

>novel=as.matrix(read.csv("final/result/result_novel_ma-

ture.csv",row.names="id",skip=2))

3. Organize the count matrix. The known and novel miRNAs are
combined into one matrix.

>miRNA = rbind(known,novel) #combine the known and novel

miRNAs

>colnames(miRNA) = c("Con1","Con2","Exp1","Exp2")

4. Create the experimental setting table. The samples “Con1” and
“Con2” are in the group of “Con” and the samples “Exp1” and
“Exp2” are in the group of “Exp”.

>expsetting<- data.frame(condition=factor(rep(c("Con","-

Exp"),each=2)))

>rownames(expsetting) <- colnames(miRNA)

>expsetting

## condition

##Con1 Con

##Con2 Con

##Exp1 Exp

##Exp2 Exp

5. Load the data into DESeq2. Prefilter the data to remove miR-
NAs that have only 0 or 1 read. Run the differential expression
analysis with default setting.

>mirnaDeseq=DESeqDataSetFromMatrix(countData = miRNA,col-

Data = expsetting,design = ~ condition)

>mirnaDeseq =mirnaDeseq [rowSums(counts(mirnaDeseq)) > 1,]

>mirnaDeseq = DESeq(mirnaDeseq)

6. Check the results from DESeq2 and the explanations for six
columns are as follows.
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>result<- results(mirnaDeseq)

>result

##log2 fold change (MAP): condition Expvs Con

##Wald test p-value: condition Expvs Con

##DataFrame with 1865 rows and 6 columns

##baseMean log2FoldChange lfcSE stat pvaluepadj

##<numeric><numeric><numeric><numeric><numeric><numeri-

c>

##hsa-let-7a-3p 6.569788e+02 -0.4453378 0.3430238

-1.2982708 0.1941943 0.999521

##hsa-let-7a-5p 1.517097e+06 0.3565467 0.3549906 1.0043834

0.3151938 0.999521

##hsa-let-7b-3p 8.425011e+01 -0.6053872 0.4041295

-1.4980029 0.1341325 0.999521

##hsa-let-7b-5p 4.699590e+05 -0.2545546 0.3644794

-0.6984058 0.4849234 0.999521

##hsa-let-7c-3p 2.442498e+01 -0.3501618 0.4584878

-0.7637320 0.4450269 0.999521

>mcols(result)$description

##[1] "mean of normalized counts for all samples"

##[2] "log2 fold change (MAP): condition Exp vs Con"

##[3] "standard error: condition Exp vs Con"

##[4] "Wald statistic: condition Exp vs Con"

##[5] "Wald test p-value: condition Exp vs Con"

##[6] "BH adjusted p-values"

7. Explore the differentially expressed miRNAs in the result.
Through the “summary” function, we know there are 1865
miRNAs with nonzero total count. Four upregulated miRNAs
and five downregulated miRNAs are identified.

>summary(result)

##out of 1865 with nonzero total read count

##adjusted p-value < 0.1

##LFC > 0 (up) : 4, 0.21%

##LFC < 0 (down) : 5, 0.27%

##outliers [1] : 0, 0%

##low counts [2] : 0, 0%

##(mean count < 0)

8. Present the result of differentially expressed (DE) miRNAs by
MA plot (Fig. 5a) and heatmap (Fig. 5b). Output the DE
miRNAs list into a file using “write.table” (see Note 1).

>plotMA(result, main="Differentially Expression miRNAs",

ylim=c(-2,2))

>mirnaresult = as.data.frame(result)

>diff = mirnaresult[mirnaresult$padj<0.1,]

120 Xiaonan Fu and Daoyuan Dong



>pheatmap(log2(miRNA_normalization[rownames(diff),]+1),

clustering_method = "single")

>write.table(diff,”DE_miRNA.txt”)

3.6 miRNA 30-End
Variation

The strong homogeneity of miRNAs 50end resulting from highly
accurate cleavage by Drosha/Dicer has been confirmed in many
species [23]. In this analysis, we will only focus on 30-end nontem-
plate variation. This result is stored in the file “3_other_form.csv”.

1. Load 30-end nontemplate variation data into Rstudio. Exclude
the first two empty lines by ‘skip ¼2’.

>variation3 = as.matrix(read.csv("final/result/3_other_-

form.csv",header=T,row.names = 1,skip=2))

2. Show the top ten 30-end nontemplate variations. The most
frequent 30-end variation is “A” addition.

>select = order(rowMeans(variation3),decreasing=TRUE)

[1:10]

>variation3[select,]

## Con1_trimed Con2_trimed Exp1_trimed Exp2_trimed

##A 211169 241810 256976 143374

##U 152834 173216 209556 139348

##AA 11536 16673 12818 7195

##G 11373 11076 8140 11198

hsa-miR-145-3p

hsa-miR-4455

hsa-miR-222-5p

hsa-miR-4521

hsa-miR-210-5p

hsa-miR-503-3p

hsa-miR-210-3p

hsa-novel-miR-353-5p

hsa-novel-miR-229
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Fig. 5 Differentially expressed miRNAs. (a) The MA plot of all the expressed miRNAs. Differentially expressed
(DE) miRNAs are in red. (b) The heatmap of DE miRNAs. Normalized counts were log2(countþ1) transformed
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##UU 6466 6975 7715 5412

##AU 6163 8783 5271 5526

##AG 4284 4434 2635 4491

##C 3191 3637 2919 2849

##UA 2718 3012 3388 2081

##AAA 2045 2569 1375 1006

3.7 miRNAs Target

Prediction

miRNAs regulate the gene expression through interacting with
targeting mRNAs. Defining the targets of miRNAs is a key step
to understand the functional role of miRNAs. Nine miRNAs are
detected abnormally expressed in this analysis. We will use TargetS-
can to predict their targets (see Note 2).

1. Choose the species of the sample origin from the drop-down
menu (Fig. 6a). “human” is chosen in this analysis.

2. Input the name of the miRNA of your interest and submit.
Hsa-miR-210-3p is upregulated, thus was shown here as an
example in Table 1.

Fig. 6 TargetScan for miRNAs target prediction (http://www.targetscan.org/vert_71/)
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Table 1
List of predicted targets for hsa-miR-210-3p

Target gene Representative transcript Conserved sites

FGFRL1 ENST00000264748.6 7

ISCU ENST00000338291.4 1

SCARA3 ENST00000301904.3 2

DIMT1 ENST00000199320.4 1

ST3GAL3 ENST00000372377.4 1

FAM89B ENST00000449319.2 1

ELFN2 ENST00000402918.2 1

B4GALT5 ENST00000371711.4 1

DENND6A ENST00000311128.5 1

FAM73B ENST00000358369.4 1

AC137932.1 ENST00000602042.1 1

MEX3B ENST00000558133.1 1

NDUFA4 ENST00000339600.5 1

EFNA3 ENST00000368408.3 1

SYNGAP1 ENST00000418600.2 1

CYGB ENST00000293230.5 1

KMT2D ENST00000301067.7 1

USP6NL ENST00000609104.1 1

BDNF ENST00000439476.2 1

E2F3 ENST00000346618.3 1

GPD1L ENST00000282541.5 1

ZNF462 ENST00000277225.5 1

PPTC7 ENST00000354300.3 1

MID1IP1 ENST00000336949.6 1

BAZ2B ENST00000392782.1 1

SEPT8 ENST00000378706.1 1

RAP2B ENST00000323534.2 1

CDIP1 ENST00000564828.1 1

AC010327.2 ENST00000598855.1 1

DTX1 ENST00000257600.3 1

CPEB2 ENST00000538197.1 1

(continued)
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3. A list of genes is output as potential targets of selected miRNA.
Further experimental and functional studies are expected to
validate the interaction of the miRNA–mRNA pair.

4 Notes

1. The normalized reads are log-transformed to generate the heat-
map. To avoid zero logarithms, a pseudo value of 1 will be added
before the calculation.

2. TargetScan includes miRNAs targets prediction from a lot of
model animals. If you can not find your interesting species, you
may find them in the miRanda [24] (http://www.microrna.
org/microrna/home.do). Or you can run the miRNA target
prediction following the guide of RNAhybrid [25] (https://
bibiserv2.cebitec.uni-bielefeld.de/rnahybrid).
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Chapter 9

Microarray-Based MicroRNA Expression Data Analysis
with Bioconductor

Emilio Mastriani, Rihong Zhai, and Songling Zhu

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that are able to regulate the expression of targeted
mRNAs. Thousands of miRNAs have been identified; however, only a few of them have been functionally
annotated. Microarray-based expression analysis represents a cost-effective way to identify candidate
miRNAs that correlate with specific biological pathways, and to detect disease-associated molecular signa-
tures. Generally, microarray-based miRNA data analysis contains four major steps: (1) quality control and
normalization, (2) differential expression analysis, (3) target gene prediction, and (4) functional annota-
tion. For each step, a large couple of software tools or packages have been developed. In this chapter, we
present a standard analysis pipeline for miRNA microarray data, assembled by packages mainly developed
with R and hosted in Bioconductor project.

Key words MicroRNA (miRNA), Bioconcductor, R Package, Gene expression analysis, Microarray
data analysis

1 Introduction

MicroRNAs (miRNAs) are small, noncoding and conserved RNA
molecules that can inhibit protein expression by post-
transcriptional regulation or translational repression. More than
20,000 different miRNAs have been disclosed among hundreds
of species [1]. Although miRNAs play important roles in various
biological processes, the function has only been well clarified for a
small subset.

The expression profile of miRNAs often shows developmental
stage or tissue specific patterns, suggesting that they may partici-
pate in the specific regulatory processes [2, 3]. Microarray is attrac-
tive to profile the miRNA expression under different conditions
because it can detect thousands of miRNAs simultaneously
[4]. Compared with other high-throughput technique, such as
RNA-Seq, the cost of microarray-based studies appears much
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lower and hundreds or thousands of biological samples can be
studied in one experiment with a cost-effective way.

There is some difference between the analytic pipelines of
miRNA and other microarray-based expression data. Besides the
routine preprocessing, expression comparison and functional anno-
tation, miRNA data also involve additional target prediction and
target gene annotation steps. For each step, a large number of
bioinformatic tools have been developed. Experimental researchers
will struggle to find, assemble and test the tools for the task of each
step. In this chapter, we are going to present a pipeline specific for
microarray-based miRNA expression data analysis. The pipeline is
assembled by packages mostly hosted in Bioconductor project, and
therefore all the analysis can be completed in R environment con-
veniently (R: http://www.r-project.org; Bioconductor: http://
www.bioconductor.org).

2 Materials

2.1 Software Tools

2.1.1 R/Bioconductor

The most recent version of R was downloaded and installed. For
this chapter, Linux platform is used. For R installation and admin-
istration, the FAQs and documents can be referred: https://www.r-
project.org/. Bioconductor can be installed by entering the follow-
ing commands after starting R:

> source("https://bioconductor.org/biocLite.R")

> biocLite()

2.1.2 Installation

of R/Bioconductor

Packages

Install the R/Bioconductor packages for miRNA microarray data
analysis with biocLite(). The packages are summarized in
Table 1 [5–16].

> biocLite(c("Biobase", "GEOquery", "limma", "mclust",

"devtools",

+ "GOstats","gplots","networkD3","miRNAtap","miRNAtap.db",

+ "visNetwork","SpidermiR"))

2.2 Datasets A public available dataset, GSE54578, is used as an example for
demonstration (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc¼GSE54578). The study profiles genome-wide miRNA
expression in blood from 15 early-onset schizophrenia cases and
15 healthy controls, detecting a total of 1070 miRNAs by the
microarrays [17]. A GPL16016 platform (Exiqon miRCURY
LNA microRNA array) was used [17]. The dataset can be down-
loaded through the link directly; alternatively, it can be accessed
with “getGEO” function of the “GEOquery” package.

> library("GEOquery")

> gset <- getGEO("GSE54578",GSEMatrix=TRUE,AnnotGPL=FALSE)
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> if(length(gset)>1) idx <- grep("GPL16016",attr(gset,"-

names")) else idx <- 1

> gset <- gset[[idx]]

The GSE54578 dataset is now stored in gset, which will be
used for further processing and analysis.

3 Methods

3.1 Preprocessing

and Normalization

3.1.1 Preprocessing

The original miRNA expression data could contain some “NA”
values and the columns are named with GSM accessions in default.
The data structure and content can be shown with “head(exprs
(gset))” command (Fig. 1a). In the preprocessing step, we may
wish to remove all the “NA” records and rename the columns with
user-readable format (Fig. 1b).

> head(exprs(gset))

> rmv <- which(apply(exprs(gset),1,function(x) any (is.na

(x))))

Table 1
R packages used in the chapter for miRNA data analysis

Package name Short description

Biobase [5] Functions that are needed by many other packages or which replace R functions

devtools [6] Collection of package development tools

GOstats [7] Tools for manipulating GO and microarrays

GEOquery [8] GEOquery is the bridge between GEO and BioConductor

gplots [9] Various R programming tools for plotting data

limma [10] Data analysis, linear models and differential expression for microarray data

mclust [11] Gaussian finite mixture models fitted via EM algorithm for model-based clustering,
classification, and density estimation

miRNAtap
[12]

microRNA targets aggregated predictions

miRNAtap.db
[13]

Holding the database for miRNAtap

networkD3
[14]

Creates ‘D3’ ‘JavaScript’ network, tree, dendrogram, and Sankey graphs from ‘R’

SpidermiR [15] The package provides multiple methods for query, prepare and download network
data, and the integration with validated and predicted miRNA data and the use of
standard analysis and visualization methods

visNetwork
[16]

Provides an R interface to the ‘vis.js’ JavaScript charting library
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> gset <- gset[-rmv,]

> sampleNames(gset) <- c("CTRL1", . . .,"CTRL15","SCHIZO1",. . .,"SCHIZO15")

> gsms <-"000000000000000111111111111111" #Grouping names

> sml <- c()

> for(i in 1:nchar(gsms)) {sml[i] <- substr(gsms,i,i)}

> head(exprs(gset))

Note that the “CTRL2”~“CTRL14” and “SCHI-
ZO1”~“SCHIZO15” were omitted in the demonstrated
command line.

Before normalization, the probe intensities should be checked
to find out the apparent outliers caused by nonsystem errors. These
outliers must be excluded for further analysis. Typically, a “box-
plot” can be generated and show the uniformity of the signal
intensity.

> ex <- exprs(gset)

> boxplot(ex, which=‘pm’, ylab="Intensities", xlab="Array names")

Fig. 1 Preprocessing of miRNA microarray data. (a) Raw expression data containing “NA” values. (b) “NA”
filtered expression data. (c) Variance among samples before normalization. (d) Variance among samples after
normalization
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After recalling and filtering the arrays with apparent experimen-
tal biases, the general signal intensity distribution should follow the
distribution patterns as in Fig. 1c, with small variance among arrays.

3.1.2 Normalization After preprocessing, the microarray data must be normalized to get
rid of variations with nonbiological sources. A large number of
methods have been proposed to normalize microarray-based tran-
scriptome data. The methods are suited for different platforms and
integrated in packages for corresponding data analysis, e.g., “Nor-
miR” function in the “ExiMiR” package for two-color microarray
experiments using a common reference or similar methods in the
“affy” package for single-channel Affymetrix arrays, “normal-
izeBetweenArrays” function in the “limma” package, etc. In
the example, “normalizeBetweenArrays” is applied, with a
quantile normalization procedure.

> library("limma")

> ex_norm <- normalizeBetweenArrays(ex)

> qu <- as.numeric(quantile(ex,c(0.,0.25,0.5,0.75,0.99,1.0),

na.rm=T))

> filt <- ( qu[5]>100 || (qu[6]-qu[1]>50 && qu[2]>0) || (qu[2]>

0 && qu[2]<1 && qu[4]>1

&& qu[4]<2))

> if(filt){ex_norm[which(ex<=0)] <- NaN; exprs(gset) <- log2

(ex_norm)}

A log2 transformation is done to the normalized expression
values to make the data follow Gaussian distribution more approxi-
mately. A boxplot generated with the normalized data shows more
even distribution of the expression levels among different arrays
(Fig. 1d).

3.2 Expression

Difference

and Clustering

Analysis

The normalized expression data can be compared directly between
groups. T Test is the most straightforward statistic comparison
method between two groups, which will measure the significance
of difference with probability of no difference ( p values: the lower,
the more significant). For microarray data, tens of thousands of
genes are compared between groups simultaneously and it is a
massive multiple testing problem. It is more complicated that the
measured expression levels do not always follow normal distribu-
tions and have nonidentical and dependent distributions between
genes. To solve this problem and identify the differentially
expressed genes more precisely, Smyth proposed an empirical
Bayes moderated t test, which has been incorporated into the
“limma” package [10]. An example is shown as following, and
more details about the usage of “eBayes” can refer to the docu-
ment: http://web.mit.edu/~r/current/arch/i386_linux26/lib/
R/library/limma/html/ebayes.html.

MicroRNA Analysis Pipeline 131

http://web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/limma/html/ebayes.html
http://web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/limma/html/ebayes.html


> sml <- paste("G",sml,sep="")

> fl <- as.factor(sml)

> gset$description <- fl

&gt; design &lt;- model.matrix(~ description + 0, gset)

> colnames(design) <- levels(fl)

> fit <- lmFit(gset,design)

> cont.matrix <- makeContrasts(G1-G0,levels=design)

> fit2 <- contrasts.fit(fit,cont.matrix)

> fit2 <- eBayes(fit2,0.01)

> tT <- topTable(fit2,adjust="fdr",sort.by="B",number=1000)

The comparison results are stored in objects fit2 and tT, which
will be used for further analysis.

Besides the significance measured by the statistic p values, the
fold change amplitude of miRNA gene expression levels also
appears important to biologists. A volcano plot can show the
statistic significance and change amplitude in a two-dimensional
plane simultaneously, which plots the fold change and p values
(log-transformed results) on x- and y-axis respectively (Fig. 2a).
The “volcanoplot” function in the “limma” package can be
applied conveniently. Note that the ‘highlight’ argument indicates
the top probe sets are highlighted. Other packages such as
“ggplot2” also have functions to draw volcano plots.

> volcanoplot(fit2,coef=1,highlight=10)

Alternatively, basic R plot function can also generate the vol-
cano plot.
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Fig. 2 Volcano plot and heat map of miRNA expression data. (a) Volcano plot showing the differentially
expressed miRNAs between disease and control samples. (b) Clustering the samples and genes with
expression patterns of significantly differential miRNAs

132 Emilio Mastriani et al.



> lod <- -log10(tT$adj.P.Val)

> plot(tT$logFC,lod,xlab="log-ratio",ylab=expression(-log[10]~p))

> abline(h=1.5,col="red")

As in other transcriptome data analysis, besides gene expression
difference analysis, clustering analysis can also be performed for
miRNA microarray data. For example, a simple heatmap plot can
be generated for a subset of the miRNAs with significant expression
difference between disease and control (Fig. 2b; FDR adjusted p-
value < 0.05).

> selected <- which(p.adjust(fit2$p.value[,1]<0.05) == 1)

> esetSel <- ex_norm[selected,]

> heatmap(esetSel)

For more in-depth clustering analysis, readers can refer to
Chapter 2 of the book, since the procedure and tools are general
rather than specific for miRNA datasets.

3.3 miRNA Target

Analysis

3.3.1 Target

Identification

The difference between miRNA and general transcriptome data
analysis is mainly represented by the specific target gene analysis
of the former. The major activity of miRNAs is to regulate the
expression of target genes posttranscriptionally or translationally,
and therefore annotation of the target genes of interesting miRNAs
appears important.

There are multiple options to identify target genes of miRNAs.
For example, Brock et al proposed a pipeline for miRNA target
analysis with R packages “targetscan.Mm.eg.db”, “micro-
RNA” and “org.Mm.eg.db”. In the example shown below, an
integrated package “SpidermiR” is adopted, which provides
both validated and predicted target genes from multiple databases
or software tools including mirWalk [18], miR2Disease [19], miR-
Tar [20], miRTarBase [21], miRandola [22], Pharmaco-miR [23],
DIANA [24], Miranda [25], PicTar [26], and TargetScan [27]. It
can also retrieve and visualize the gene networks. The following
commands give an example of target gene determination for some
interesting miRNAs, e.g., the top significant five miRNAs with
expression difference between groups (see Note 1). The potential
targets of these miRNAs will be predicted with SpidermiRdown-
load_miRNAprediction and exported to mirnaTar.

> tT[selected,]$Name[1:5]

> mirna <-

c(’hsa-miR-4429’,’hsa-miR-1827’,’hsa-miR-5002-5p’,’hsa-miR-

5187-3p’,’hsa-miR-4455’)

> mirnaTar <- SpidermiRdownload_miRNAprediction(mirna_list=-

mirna)

MicroRNA Analysis Pipeline 133



The data frame of mirnaTar can be checked with head(mir-
naTar), and there are two columns, V1 showing miRNA names
and V2 listing the target genes.

Note that SpidermiRdownload_miRNAprediction gave
the prediction targets of four tools: DIANA, Miranda, PicTar,
and TargetScan. The validated targets could be downloaded from
miRTAR and miRwalk with SpidermiRdownload_miRNAvali-
date function.

3.3.2 Network and Gene

Set Enrichment Analysis

Network analysis and visualization can show not only the shared
targets of multiple miRNAs, but also the interactions and pathways
among the target genes. There are many tools developed for net-
work building and visualization, e.g., user-friendly interfaced tool
Cytoscape [28], R package SpidermiR [15]. Here, we use Cytos-
cape to construct the regulatory network between the miRNAs
(top significant 5) and their predicted targets (50 for each
miRNA), since Cytoscape is quite straightforward and particularly
useful for network construction with user-customized interactions
(Fig. 3a) (see Note 2). GeneMANIA curates validated and pre-
dicted networks between genes from a variety of species [29]. The
network types include coexpression, colocalization, genetic inter-
actions, pathway, physical interactions, shared protein domains, and
predicted interactions. GeneMANIA also provides a webserver to
implement the network construction. SpidermiR can download the
interaction data from GeneMANIA and visualize the networks
among the user-customized genes, and the functions are still
being debugged and updated. Here, we directly use the GeneMA-
NIA prediction server (http://genemania.org/) to construct the
pathway network of miRNA target genes (Fig. 3b) (see Note 3).

Besides the network analysis, statistics-based gene set enrich-
ment analysis (GSEA) should be done for the miRNAs and miRNA
targets, so as to find biological meanings and help increase the
statistical power through aggregating the signal across groups of
related genes. GOstats and a number of other R/Bioconductor
packages (e.g., GeneAnswers [30]) can make the enrichment
analysis with hypergeomtric tests (hyperGTest function for
GOstats). As an example, we use GOstats to make GO enrich-
ment analysis (Biological Process) to the predicted target genes of
the top 5 miRNAs (see Note 4).

> library("org.Hs.eg.db")

> library("GSEABase")

> library("GOstats")

> mirTarget <- mirnaTar$V2

> goAnn <- get("org.Hs.egGO")

> universe <- Lkeys(goAnn)

> entrezIDs<- mget(mirTarget, org.Hs.egSYMBOL2EG, ifnotfound=NA)

> entrezIDs <- as.character(entrezIDs)
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> params <- new("GOHyperGParams",

+ geneIds=entrezIDs,

+ universeGeneIds=universe,

+ annotation="org.Hs.eg.db",

+ ontology="BP",

+ pvalueCutoff=0.01,

+ conditional=FALSE,

+ testDirection="over")

> goET <- hyperGTest(params)

> library(Category)

> genelist <- geneIdsByCategory(goET)

> genelist <- sapply(genelist, function(.ids) {

+ .sym &lt;- mget(.ids, envir=org.Hs.egSYMBOL, ifnotfound=NA)

+ .sym[is.na(.sym)] &lt;- .ids[is.na(.sym)]

+ paste(.sym, collapse=";")

+ })

> GObp <- summary(goET)

> GObp$Symbols <- genelist[as.character(GObp$GOBPID)]

> head(GObp)

KEGG enrichment can also be performed:

> keggAnn <- get("org.Hs.egPATH")

> universe <- Lkeys(keggAnn)

> params <- new("KEGGHyperGParams",

+ geneIds=entrezIDs,

Fig. 3 Interaction networks among miRNAs and their targets. (a) Regulatory network between miRNAs and
target genes. (b) Pathway sub-network among the miRNA target genes
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+ universeGeneIds=universe,

+ annotation="org.Hs.eg.db",

+ categoryName="KEGG",

+ pvalueCutoff=0.01,

+ testDirection="over")

> keggET <- hyperGTest(params)

> kegg <- summary(keggET)

> library(Category)

> genelist <- geneIdsByCategory(keggET)

> genelist <- sapply(genelist, function(.ids) {

+ .sym &lt;- mget(.ids, envir=org.Hs.egSYMBOL, ifnotfound=NA)

+ .sym[is.na(.sym)] &lt;- .ids[is.na(.sym)]

+ paste(.sym, collapse=";")

+ })

> kegg$Symbols <- genelist[as.character(kegg$KEGGID)]

> head(kegg)

4 Notes

1. For illustration convenience, the top five miRNAs are selected
for target analysis. In practice, all the meaningful miRNAs
should be analyzed for targets. For target prediction, multiple
prediction tools should be combined and the intersected set will
be selected for further analysis if the number of prediction
results is large.

2. Cytoscape can be downloaded from http://www.cytoscape.org.
There is a detailed manual demonstrating how to install and use
the tool. To visualize the interaction network of miRNAs and
their target genes, a two-column table is prepared in which the
first column records miRNAs and the second records the
corresponding targets. Directly import the interaction table to
Cytoscape, indicate the interaction sources and targets, and then
draw the network with directions.

3. GeneMANIA curates several categories of gene interaction data-
bases, and the database(s) can be selected in the server for
network prediction. In the GeneMANIA prediction webserver
(http://genemania.org), simply copy the gene symbols (one per
line) into the input area, select the desired database(s) and run
prediction.

4. Besides GOstats, there are also other R packages making Gene
Set Enrichment Analysis (GSEA). Chapter 3 in this book can be
referred to, which gives a comprehensive introduction on the
methods and related packages. The website of Gene Ontology
Consortium (http://geneontology.org) also presents an online
GO enrichment analysis tool, and it would be an easy choice.
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Chapter 10

Identification and Expression Analysis of Long Intergenic
Noncoding RNAs

Ming-an Sun, Rihong Zhai, Qing Zhang, and Yejun Wang

Abstract

Long intergenic noncoding RNAs (lincRNAs) have caught increasing attention in recent years. The
advance of RNA-Seq has greatly facilitated the discovery of novel lincRNAs. However, the computational
analysis of lincRNAs is still challenging. In this protocol, we presented a step-by-step protocol for compu-
tational analyses of lincRNAs, including read processing and alignment, transcript assembly, lincRNA
identification and annotation, and differential expression analysis.

Key words Noncoding RNA, lncRNA, lincRNA, RNA-Seq, Differential expression, STAR, Cufflinks,
CPAT

1 Introduction

The sequencing of human genome [1] identified approximately
20,000–25,000 protein coding genes, which represent less than
2% of the whole genome. Later studies suggested that transcription
is not limited to protein-coding regions, and more than 90% of the
human genome is likely to be transcribed [2], which produces a
variety of noncoding RNAs [3–5], including microRNAs, piwi-
interacting RNAs, circular RNAs, and long noncoding RNAs.

GENCODE v7 [6] divided long noncoding RNAs (lncRNAs)
into 12 biotypes based on their genetic markup and potential
function. Among them, long intergenic noncoding RNAs (linc-
RNAs), which are noncoding RNAs longer than 200 bp transcribed
from the intergenic regions of protein coding genes, have caught
increasing attentions in recent years [3]. While the function of most
lincRNAs remains to be explored, many of them seem to be func-
tionally important given that they typically show distinct tissue and
cell-type specific expression [7, 8], and are associated with different
tumors and diseases [9, 10]. Recent work suggested that lincRNAs
are involved in various layers of regulation, including chromatin
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programming, cis regulation at enhancers, and posttranscriptional
regulation of mRNA processing [11, 12].

The emergence of high-throughput RNA-Seq has greatly facili-
tated the systematic identification of lincRNAs [7, 13]. Recently,
single-cell RNA-Seq has also been adopted to investigate the cell-
specific expression of lincRNA and other noncoding RNAs
[14]. The most recent release of NONCODE database has col-
lected >30,000 human lincRNAs [15]. Meanwhile, lincRNAs are
also increasingly studied in other model and non-model species.
Comparison among different species indicated that lincRNAs are
less conserved than protein-coding genes [6].

In this protocol, we presented a step-by-step protocol for
computational analyses of lincRNAs, including RNA-Seq read pro-
cessing and alignment, transcript assembly, lincRNA identification
and annotation, and differential expression analysis.

2 Materials

2.1 Hardware

and Software

Requirement

Most of the tools used in this protocol are developed for Linux
Operating System (e.g., Ubuntu, RedHat, CentoOS, and Federa),
thus a computer with Linux environment is required. All the steps
described in this protocol have been tested on a high-performance
computer (56 CPU, 252 Gbmemory) with 64-bit CentOS (release
6.8) installed. All tools involved are summarized in Table 1. To be

Table 1
Bioinformatic tools used in this protocol

Software Function URL

Sratoolkit
(v2.8.1)

Extract FastQ files from SRA database https://www.ncbi.nlm.nih.gov/sra/
docs/toolkitsoft

FastQC
(v0.11.5)

Quality control for high-throughput
sequencing data

https://www.bioinformatics.babraham.
ac.uk/projects/fastqc

Trim Galore
(v0.4.2)

Read processing, including adaptor removal
and bad quality base trimming

https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore

Cutadapt
(v1.12)

Invoked by Trim Galore for read processing http://cutadapt.readthedocs.io/en/
stable/index.html

STAR
(v.2.5.3)

Read alignment https://github.com/alexdobin/STAR

Samtools
(v1.4)

BAM/SAM/CRAM file reading, writing,
editing, indexing, and viewing

https://github.com/samtools/
samtools

Cufflinks
(v2.2.1)

Transcript assembly, quantification, and
differential analysis

https://github.com/cole-trapnell-lab/
cufflinks

CPAT
(v1.2.2)

Coding potential assessment http://rna-cpat.sourceforge.net
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noted, even though most of the tools can be used under modern
PC, large amount of memory (around 30 Gb for mammalian
genome) is necessary to run STAR [16] (see Note 1).

2.2 RNA-Seq Data This protocol starts with FastQ files for RNA-Seq datasets. Most
publicly available RNA-Seq datasets could be obtained from NCBI
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/). For demonstration, here we used two RNA-Seq data-
sets from ENCODE project—for mouse embryonic day 14.5
(E.14.5) brain (GEO accession: GSE90197) and liver (GEO acces-
sion: GSE90196), respectively. Both are paired-end data with two
biological replicates, sequenced from stranded rRNA-depleted
Poly-Aþ RNA-Seq libraries of longer than 200 nucleotides in size.

2.3 Annotation Files In this protocol, two types of annotation files are required: (1) refer-
ence genome sequences of FASTA format; (2) gene annotation file
of GTF format, which includes both protein coding and noncoding
genes. These files can usually be obtained from databases like UCSC
Genome Browser, Ensembl or GENCODE. Here, we downloaded
mouse reference genome and gene annotation file of Release M14
(GRCm38.p5) from GENCODE [6]: https://www.gencodegenes.
org/mouse_releases/current.html. These files can be downloaded
with Linux command wget and uncompressed for use:

# download

wget ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_mouse/relea-

se_M14/GRCm38.p5.genome.fa.gz

wget ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_mouse/relea-

se_M14/gencode.vM14.annotation.gtf.gz

# uncompress the downloaded files

gunzip GRCm38.p5.genome.fa.gz

gunzip gencode.vM14.annotation.gtf.gz

3 Methods

3.1 Data Preparation 1. Sratoolkit installation. The precompiled executes of sratoolkits
[17] for different platforms can be downloaded for use. To get
its 64-bit version for CentOS, type:

# download

wget

http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/current/

sratoolkit.current-centos_linux64.tar.gz

# uncompress

tar xvf sratoolkit.current-centos_linux64.tar.gz

# add execute directory to PATH

export PATH=$PATH:/path/to/sratoolkit.2.8.2-1-centos_

linux64/bin
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2. We obtained the RNA-Seq data from GEO (https://www.ncbi.
nlm.nih.gov/geo/) by searching GEO accession. Follow the
links to specific samples and then SRA database, you can find
detailed information including the SRA accession number. For
example, the SRA accession for the brain sample replicate 1 is
SRR5048019. The FastQ files of this dataset can be generated
by using the fastq-dump command from sra-toolkits (see
Note 2). In the terminal, type:

fastq-dump --split-3 SRR5048019

3. After the command is finished, FastQ files for read 1 and 2 (e.g.,
SRR5048019_1.fastq and SRR5048019_2.fastq for this case)
respectively will be generated in the working directory. To sim-
plify following analysis, the FastQ files are renamed to easier
names (i.e., brain_rep1_1.fastq, brain_rep1_2.fastq, etc.),
using the mv command:

mv SRR5048019_1.fastq brain_rep1_1.fastq

mv SRR5048019_2.fastq brain_rep1_2.fastq

3.2 Quality Control 1. FastQC installation. For quality assessment of the data, we used
FastQC [18] which is a convenient tool for quality controlling
on high throughput sequencing data. It can be downloaded
from https://www.bioinformatics.babraham.ac.uk/projects/fas
tqc/. It can be used on a computer with JRE installed.

2. To get quality assessment of a FastQ file (e.g., brain_rep1_1.
fastq), simply type (see Note 3):

fastqc brain_rep1_1.fastq

The quality assessment results will be saved as html files (e.g.,
brain_rep1_1.html) which show a variety of statistics for sequenc-
ing quality, adaptor occurrence, etc. (Figure 1).

3.3 Adaptor Removal

and Read Trimming

1. Trim Galore installation. Trim Galore [19] is a tool to automate
quality and adapter trimming. It can be downloaded from
https://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/. It invokes Cutadapt [20] for adapter removal and bad
quality bases trimming, thus Cutadapt needs to be installed in
advance. Compared with Cutadapt, Trim Galore provides addi-
tional user-friendly functions (such as automatic determination
of the overrepresented adaptors).

# download

wget https://github.com/FelixKrueger/TrimGalore/archive/

0.4.2.tar.gz

# uncompress, which will generate a folder named TrimGalore-

0.4.2 in this case

tar xvzf 0.4.2.tar.gz

# export execute folder to PATH

export PATH=$PATH:/path/to/TrimGalore-0.4.2
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2. To preprocess a pair of FastQ files (e.g., brain_rep1_1.fastq and
brain_rep1_2.fastq), type:

trim_galore --phred33 --illumina --paired --length

20 brain_rep1_1.fastq brain_rep1_2.fastq

Trimmed FastQ files with names like brain_rep1_1_val_1.fastq
and brain_rep1_2_val_2.fastq will be generated for read 1 and
read 2, respectively.

3. Rerun FastQC after read trimming. As shown in Fig. 1c, d, bad
quality bases and sequencing adaptors are removed after
this step.

3.4 Read Alignment

to Reference Genome

1. STAR installation. In this protocol, we used STAR [16] to align
reads to the reference genome. The source codes can be down-
loaded from its web site, and then uncompressed and compiled
by typing:

# download source code

wget https://github.com/alexdobin/STAR/archive/2.5.3a.tar.gz

# uncompress the tar ball, and go to the source directory

tar -xzvf 2.5.3a.tar.gz

Fig. 1 Quality control report generated by FastQC before and after trimming. (a, b) Per-base sequence quality
and adapter content before trimming. (c, d) Per-base sequence quality and adapter content after trimming by
Trim Galore. The data for SRR5048019_1.fastq is used for demonstration
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cd STAR-2.5.3a

# build STAR, and export the execute directory to PATH

make STAR

export PATH=/directory/to/STAR-2.5.3a:$PATH

2. Generating genome index files. Genome index files need to be
generated for read alignment. The folder with writing permis-
sions has to be created in advance to store these index files.
The reference genome sequences (FASTA file) and gene annota-
tions (GTF file) are needed. In this step, around 30 Gb of mem-
ory is required for a typical mammalian genome (see Note 1).
Take the aforementioned reference genome sequences (i.e.,
GRCm38.p5.genome.fa) and gene annotation files (i.e., gen-
code.vM14.annotation.gtf) for mouse as example, the index files
can be generated to a specified folder (i.e., mm10StarIndex) by
typing:

# create a folder named mm10StarIndex

mkdir mm10StarIndex

# Generate STAR index files to the folder mm10StarIndex.

Parameter –runThreadN specifies the number of CPU to use.

STAR --runMode genomeGenerate --genomeDir mm10StarIndex

--genomeFastaFiles GRCm38.p5.genome.fa --sjdbGTFfile

gencode.vM14.annotation.gtf --runThreadN 8

3. Mapping reads to reference genome. STAR maps the reads to
the genome, and writes several output files, such as alignments
(SAM/BAM), mapping summary statistics, splice junctions,
unmapped reads, signal (wiggle) tracks etc. To map paired-end
reads of brain samples (i.e., brain_rep1_1_val_1.fastq brain_
rep1_2_val_2.fastq) to mouse genome, type:

STAR --runThreadN 12 --genomeDir mm10StarIndex --genomeLoad

LoadAndRemove --readFilesIn brain_rep1_1_val_1.fastq

brain_rep1_2_val_2.fastq --outSAMtype BAM Unsorted –outStd

SAM --outSAMattributes Standard --outSAMunmapped None --

outFilterType BySJout --outFilterMismatchNmax 10

--outFileNamePrefix brain_rep1.

After mapping, BAM files with suffix “.Aligned.out.bam”, along
with several log files with basic statistics will be generated.

4. Samtools installation. The generated BAM files should be sorted
by position or read names for following analysis. Samtools [21]
provide a collection of tools for handling BAM/SAM/CRAM
files, including sorting. Take the version 1.4 for example, it can
be installed by:

# download source code

wget
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https://github.com/samtools/samtools/releases/download/

1.4/samtools-1.4.tar.bz2

# uncompress the tar ball, and go to the folder

tar xvf samtools-1.4.tar.gz2

cd samtools-1.4

# configure and install

./configure --prefix=/path/to/install

make

make install

# export the execute directory to PATH

export PATH=$PATH:/path/to/install/bin

5. Sorting BAM files. The sort function from samtools can be used
to sort BAM files, either by position or read name. Take brain_
rep1.Aligned.out.bam as example, to sort it by position and save
as brain_rep1.srt.bam, type:

samtools sort -o brain_rep1.srt.bam brain_rep1.Aligned.out.bam

The parameters -o sets the name of the sorted BAM file to be
generated. Alternatively, if the BAM file needs to be sorted by
read name, the -n parameter needs to be specified. Type:

samtools sort -n -o brain_rep1.srt.bam brain_rep1.Aligned.out.

bam

3.5 Transcriptome

Assembly

The Cufflinks package [22] provides a collection of programs for
transcripts assembly, quantification and differential expression
analysis.

1. Cufflinks installation. The precompiled binary release of cuf-
flinks for several platforms can be downloaded for use after
uncompression. Take v2.2.1 for 64-bit Linux as example, it
can be obtained by:

# download the tar ball

wget

http://cole-trapnell-lab.github.io/cufflinks/assets/

downloads/cufflinks-2.2.1.Linux_x86_64.tar.gz

# uncompress, and export execute directory to PATH

tar -xzvf cufflinks-2.2.1.Linux_x86_64.tar.gz

export PATH=$PATH:/path/to/cufflinks-2.2.1.Linux_x86_64/

2. Transcript assembly. Transcript assembly can be conducted by
the cufflinks function from Cufflinks package. If the users focus
only on known transcripts in the provided GTF file, supply the
GTF file (i.e., gencode.vM14.annotation.gtf) by parameter –G
(see Note 4):

cufflinks -o brain_rep1.clgout -p 12 -G ./gencode.vM14.annota-

tion.gtf --library-type fr-firststrand brain_rep1.srt.bam
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The parameters -o specifies output folder, -p specifies number of
CPU for use, --library-type specifies library type for the
RNA-Seq (see Note 5). In the output folder, information for
all assembled transcripts is saved as transcripts.gtf.

3. Assembly merging. The assembly produced for each sample can
be merged with the cuffmerge function from Cufflinks package.
By supplying GTF file for known gene transcripts, novel tran-
scripts identified from each sample together with known ones
will be merged into a single GTF file. Take the GTF files from
the four samples as example, first make a file with the path for all
transcripts.gtf files:

ls */transcripts.gtf >assemblies.txt

Then run cuffmerge, with the result outputted to the folder
cuffmerge_out:

cuffmerge –o cuffmerge_out –p 12 assemblies.txt

The file merged.gtf in the output folder contains the informa-
tion for all assembled transcripts.

3.6 Identification

of lincRNAs

The assembled transcripts include not only noncoding but also
protein-coding genes. Thus it needs to be further screened for
lincRNAs based on several criteria, including their length, genomic
distribution and coding potential. Below we show how to screen
for potential lincRNAs by several steps.

1. Installation of CPAT. CPAT [23] is a popular tool to evaluate
coding potential (see Note 6). Both the standalone and online
version of CPAT are available from: http://lilab.research.bcm.
edu/cpat/. To download and install the standalone version (see
Note 7), type:

# download source code and uncompress

wget https://sourceforge.net/projects/rna-cpat/files/

v1.2.2/CPAT-1.2.2.tar.gz

tar xzvf CPAT-1.2.2.tar.gz

# change working directory

cd CPAT-1.2.2

# build, install and export execute directory to PATH

python setup.py build

python setup.py install

export PATH=$PATH:/path/to/CPAT-1.2.2/bin

2. Transcript sequence extraction. Using the gtfread script from
Cufflinks, the transcript sequences can be extracted based on the
GTF file and reference genome sequences. The parameter -g
specifies the FASTA file for reference genome, and -w for the
FASTA file for the transcripts sequences to be generated.
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gffread cuffmerge_out/merged.gtf -g ./GRCm38.p5.genome.fa -

w merged.fa

3. Evaluation of coding potential. Themain script for CPAT is cpat.
py, which can be used to evaluate the coding potential. Several
parameters need to be specified, including -g for gene file (either
in BED format or mRNA sequences), -o for output file, -x for
prebuilt hexamer frequency table, -d for prebuilt training mode,
and several other parameters. The prebuilt model files for several
model organisms including human, mouse etc can be found in
the dat subfolder of the installation directory. Otherwise, these
files can be generated by usingmake_hexamer_tab.py andmake_-
logitModel.py, respectively. To apply CPAT to the file merged.fa
generated last step, type:

cpat.py -g merged.fa -x ./ CPAT-1.2.2/dat/Mouse_Hexamer.tsv

-d ./CPAT-1.2.2/dat/Mouse_logitModel.RData -o merged.cpat.txt

The output file merged.cpat.txt is a tab separated file with each
column as geneID,mRNAsize,ORF size, Fickett Score,Hexamer
Score, and Coding Probability (Table 2). By further applying a
cutoff to the predicted coding probability, each transcript can be
classified as protein coding or noncoding. The optimal cut-off for
several model organisms can be found in the dat subfolder of the
installation directory. For mouse, the cutoff is 0.44 as shown in
Mouse_cutoff.txt. For species without pre-determined cut-off,
the optimal cut-off can be estimated with known protein-coding
and non-coding transcripts by cross-valication.

Table 2
Example lines of coding potential result predicted by CPAT

Sequence name RNA size ORF size Ficket score Hexamer score Coding probability

CUFF.102562.1 648 69 0.5311 �0.83254 0.000763704

CUFF.102563.1 348 84 1.0898 �0.26818 0.023778568

CUFF.102565.1 942 72 0.9085 �1.07551 0.000579187

CUFF.102564.1 566 27 0.5386 �0.33633 0.004342168

CUFF.102566.1 559 237 0.495 0.184973 0.133638259

CUFF.102561.1 5953 612 1.2804 0.555167 0.975519766

CUFF.102561.2 6179 600 1.233 0.528778 0.967616482

CUFF.102567.1 572 288 0.8412 �0.56707 0.019221271

CUFF.102534.1 3619 174 0.5527 �0.49295 0.006307512

CUFF.102562.1 648 69 0.5311 �0.83254 0.000763704

CUFF.102563.1 348 84 1.0898 �0.26818 0.023778568
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4. Screen against known protein domains. To remove transcripts
that have similarity to known protein domains, first translate the
nucleotide sequences for transcripts in all three sense frames use
online tools or custom scripts, and then searched against Pfam
database [24] at http://pfam.xfam.org. Alternatively, the users
can search the nucleotide sequence against Pfam using the
hmmscan function of HMMER. Any transcripts with significant
similarity to Pfam protein domains are considered as protein-
coding and discarded.

5. Filtering by length and genomic distribution. The putative non-
coding RNAs obtained in last step are further screened for length.
Those longer than 200 bp are considered as long noncoding
RNAs (lncRNAs). To be noted, many studies also exclude
mono-exonic transcripts to reduce the possibility of false positive
discovery. By crossing against known genes, lncRNAs without any
overlap with other protein coding genes are classified as lincRNAs.

3.7 Differential

Expression Analysis

One of the major purposes of transcriptome analysis is to detect
differentially expressed genes between different conditions (e.g.,
normal vs. tumor, treatment vs. untreatment). Differential expres-
sion analysis can be performed using the cuffdiff function from
Cufflinks package (see Note 8). Cuffdiff takes the GTF file gener-
ated by cuffmerge and the sorted BAM files as input. Additional
parameters also need to be specified, such as -L for condition labels,
-p for numbers of CPU for use, --library-type for library type and -o
for output dir. For example, to identify differential genes between
brain and liver, type:

cuffdiff merged.gtf brain_rep1.srt.bam,brain_rep2.srt.bam

liver_rep1.srt.bam,liver_rep2.srt.bam -L brain,liver -p

8 --library-type fr-firststrand -o cuffdiff_out

In the cuffdiff_out folder, gene_exp.diff is the result for gene-
level differential expression, and isoform_exp.diff is the result for
transcript-level differential expression. These files include informa-
tion such as gene/transcript information, expression in each sam-
ple, log2(fold_change), p-value, and q-value. The users can further
filter the differential analysis results based on the lincRNA list
obtained in last step for further analysis.

4 Notes

1. STAR outperforms most other aligners by a factor of >50 in
mapping speed [16], however it requires large amount ofmemory.
If no high-performance computer is available, the researchers can
consider to use alternative mapping tools such as Tophat [25],
which is more memory efficient and can run in most modern PC.

148 Ming-an Sun et al.

http://pfam.xfam.org


2. By providing the SRA accession number to fastq-dump, it can
download sra files automatically and then generate FastQ files.
Alternatively, the users can first download sra files from SRA
database, then provide the sra file name to fastq-dump to gener-
ate FastQ files. The parameter --split-3 enables the splitting for
mate-pairs, with read1 and read2 from paired-end sequencing
placed in files *_1.fastq and *_2.fastq. For single-ended
sequencing data, all reads will be placed in the file *.fastq.

3. To run FastQC, Java Run Environment is required. It can be
downloaded from http://www.oracle.com/technetwork/java/
javase/downloads/index.html. FastQC also provides a nice
GUI interface which is user friendly for researchers unfamiliar
with Linux terminal.

4. Alternatively, by specifying -g parameter, the users can apply a
reference annotation based transcript (RABT) assembly method
[26] to identify novel transcripts from RNA-Seq data.

5. Cufflinks support different types of RNA-Seq libraries, includ-
ing ff-firststrand, ff-secondstrand, ff-unstranded, fr-firststrand,
fr-secondstrand, fr-unstranded, and transfrags. The users need
to make sure that the correct one is selected.

6. There are several alternative approaches for assessing transcript
coding potential, such as CPC [27]. Multiple approaches can be
used in combination to increase the realiability of the prediction.

7. R statistical language is required for CPAT to run properly. The
users can download and install R based on instructions from:
https://www.r-project.org/.

8. If the users are only interested in the differential expression at
gene level, the users can choose to use count-based tools like
DESeq2 [28] or edgeR [29] to identify differentially expressed
genes.
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Chapter 11

Analysis of RNA-Seq Data Using TEtranscripts

Ying Jin and Molly Hammell

Abstract

Transposable elements (TE) are mobile genetic elements that can readily change their genomic position.
When not properly silenced, TEs can contribute a substantial portion to the cell’s transcriptome, but are
typically ignored in most RNA-seq data analyses. One reason for leaving TE-derived reads out of RNA-seq
analyses is the complexities involved in properly aligning short sequencing reads to these highly repetitive
regions. Here we describe a method for including TE-derived reads in RNA-seq differential expression
analysis using an open source software package called TEtranscripts. TEtranscripts is designed to assign
both uniquely and ambiguously mapped reads to all possible gene and TE-derived transcripts in order to
statistically infer the correct gene/TE abundances. Here, we provide a detailed tutorial of TEtranscripts
using a published qPCR validated dataset.

Key words RNA-seq, Transposable elements, TEtranscripts, Differential expression analysis, STAR,
DESeq

1 Introduction

1.1 Transposable

Elements

Barbara McClintock laid the foundation for TE research with her
discoveries in maize of mobile genetic elements capable of inserting
into novel locations in the genome, altering the expression of
nearby genes [1]. Since then, our appreciation of the contribution
of repetitive TE-derived sequences to eukaryotic genomes has
vastly increased. With the publication of the first human genome
draft by the Human Genome Project, it was determined that nearly
half of the human genome is derived from TE sequences [2, 3],
with varying levels of repetitive DNA present in most plant and
animal species. More recent studies looking at distantly related
TE-like sequences have estimated that up to two thirds of the
human genome might be repeat-derived [4], with the vast majority
of these sequences attributed to retrotransposons that require tran-
scription as part of the mobilization process, as discussed below.

Transposable elements are short DNA sequences (typically less
than 10 kb) that can move from one genomic location to another.
There are two main classes of TEs based on their “jumping”
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mechanism. Class-I elements, also named retroelements or retro-
transposons, use a reverse transcriptase enzyme to copy an RNA
transcript into the host DNA. Class-II elements, or DNA transpo-
sons, mainly move through a “cut and paste” mechanism involving
the excision and reinsertion of the DNA sequence [5, 6]. Both
classes are further subdivided to form a hierarchical classification
system on the basis of the transposition mechanism, sequence
similarities, and/or structural relationships [7]. It includes the
levels of class, subclass, order, superfamily, family, subfamily, and
insertion. Class, subclass, and order are defined according to the
replication strategies. Superfamilies are distinguished by structures
of protein or noncoding domains, such as the L1 and L2 subfami-
lies of LINE retrotransposons. Family/subfamily is defined on
DNA sequence conservation. TEs in the same families share high
levels of sequence similarity and are relatively distinct from other
TE families. “Insertion” represents each genomic copy of a partic-
ular TE subfamily. For example, Repbase [8] and RepeatMasker [9]
report 16,293 insertions for the L1Md_A subfamily in the mouse
reference genome (mm9), all of which are more similar to each
other than they are to other subfamilies of the L1 family (such as
L1Md T).

Transposable elements propagate by multiplying within the
genomes of host cells, and can be passed from generation to gener-
ation if a particular new insertion occurs in the germ line cell
lineage. While the vast majority of TE copies are nonfunctional
for mobilization; a very small subset has retained the ability to
mobilize and occur as polymorphic insertions within the human
population [10–16]. In addition, many nonmobile elements still
contain functional regulatory information that can direct their
transcription. While only retrotransposons require an RNA inter-
mediate to transpose, both DNA and RNA transposons can be
transcribed from the genome, and these TE-derived transcripts
have been shown to accumulate in various conditions such as cancer
[17–23] and neurodegenerative diseases [24–26]. Abundant TE
transcripts have also been detected during certain stages of normal
embryogenesis [27–29], neural development [30–35], and aging
[24, 36, 37].

1.2 TEtranscripts With the recent advances in next-generation sequencing technolo-
gies (NGS), it becomes possible to interrogate previously intracta-
ble questions, such as the genome-wide expression of these selfish
genetic elements using RNA-seq assays. Many tools have been
developed to analyze RNA-seq data. However, TE-associated
reads are often discarded in sequencing data analyses because of
the uncertainty in attributing ambiguously mapped reads to these
regions, despite some previous attempts to integrate them in down-
stream analyses [38–43].
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TEtranscripts [44] allows users to analyze both gene- and
TE-associated reads concurrently in one simplified workflow. TEt-
ranscripts estimates both gene and TE transcript abundances and
conducts differential expression analysis on the resultant gene/TE
abundance count table.

TEtranscripts is a reference-genome-based RNA-seq analysis
tool. There are three main steps in standard RNA-seq analysis:
mapping reads to a reference genome or transcriptome, estimating
relative transcript abundance, and performing statistical differential
expression analysis. TEtranscripts focuses on the last two steps
(abundance estimation and differential expression). However, we
provide extensive guidance on choosing appropriate alignment
software that shows the least bias against detection of TE-derived
reads.

2 Materials

TEtranscripts runs on the Linux command line. In the following
description, commands are shown with a “$” prefix.

For the system requirements of running the software, please
refer to analysis of running time and memory usage of TEtran-
scripts on simulated data shown in Table 1. A variety of library sizes
ranging from 20 million to 80 million reads were generated based
on the mouse genome (mm9), with each sample having 10% of the
reads coming from TEs. While TEtranscripts takes additional time
and memory to distribute reads between the millions of TE
instances in the genome as compared to standard gene expression
analysis packages, it is still relatively efficient, with a typical memory
requirement of 8GB and run times on the order of 1–2.5 h for
datasets with 20–100 million reads per sample. These calculations
were all performed on a server with 128 GB memory and Xeon
E5-2665 processors running at 2.40 GHz (16 cores). In general,
we recommend using a 64-bit version of operating system.

2.1 Installation

of the Software

and Dependencies

TEtranscripts requires python 2.6.x or python 2.7.x, pysam
0.8.2.1, R 2.15 or greater, samtools 0.1.19 [45], and DESeq 1.5.
x or greater. To map RNA-seq reads to a reference genome or
transcriptome, we recommend to use STAR 2.5.2b or higher [46].

Table 1
Running time and memory usage

Sample size (million reads) Time (h) Memory (GB)

20 0.3030 7.819

40 0.7197 9.580

80 2.1320 11.463

We tested TEtranscripts on a set of simulated RNA-seq data with variousmean sample sizes
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In this demonstration, we have created several folders under
the user’s home directory ($HOME) to save source codes of tools,
dependencies, and test data. All the software and libraries have been
installed under $HOME, and we have added $HOME/bin and
$HOME/lib/python2.7/site-packages to PATH and PYTHON-
PATH environment variables respectively.

Download pysam from https://github.com/pysam-
developers/pysam/archive/0.8.1.tar.gz, put it into a folder labeled
Tools. Unpack it and then install it into the user’s home directory.

$mkdir ~/Tools

$cd Tools

$tar xvfz 0.8.1.tar.gz

$cd pysam-0.8.1

$ python setup.py install --prefix=$HOME

SAMtools (Sequence Alignment Map Tools) [45] version
0.1.19 can be downloaded from https://sourceforge.net/pro
jects/samtools/files/samtools/0.1.19/. Download the tar ball to
Tools and decompress it and install it to user’s home directory.

$cd Tools

$tar xvfj samtools-0.1.19.tar.bz2

$cd samtools-0.1.19

$make

Copy samtools and/or other binaries into the bin folder under
user’s home directory.

$cp samtools $HOME/bin

TEtranscripts can be downloaded from http://hammelllab.
labsites.cshl.edu/software.

Download the tar ball, decompress it and install it to user’s
home directory.

$cd Tools

$tar xvfz TEToolkit_1.5.1.tar.gz

$cd TEToolkit_1.5.1

$python setup.py install --prefix=$HOME

If all dependencies and tools have been installed correctly, the
following command shows the help menu of TEtranscripts.

$TEtranscripts -h

STAR [46] source code and binaries can be downloaded from
https://github.com/alexdobin/STAR/releases. The precompiled
STAR executables are located in the bin subdirectory. From the
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unpacked STAR folder, copy the binaries to the bin folder under
the user’s home directory.

$cd Tools

$ tar xvfz 2.5.2b.tar.gz

$ cd STAR-2.5.2b

$cp bin/Linux_x86_64/STAR $HOME/bin

2.2 Example Dataset For the purpose of this demonstration, we have chosen a published
study involving the regulation of transposons in the Drosophila
melanogaster genome. Ohtani and colleagues observed the dere-
pression of transposable elements upon alteration of DmGTSF1,
which works with the Piwi-associated silencing complex (piRISC)
to silence TEs in the Drosophila ovary [47]. We have obtained the
raw FASTQ reads from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (accession
no. GSE47006, https://www.ncbi.nlm.nih.gov). We have selected
Piwi knockdown and control samples (GSM1142845 and
GSM1142844). A folder called Test_data has been used to hold
all test data and results.

$mkdir ~/Test_data

$mv piwi_KD.fastq.gz control_KD.fastq.gz ~/Test_data

Here, piwi_KD.fastq.gz and control_KD.fastq.gz represent the
raw sequencing file names of Piwi knockdown and control samples.

2.3 Reference

Genome

and Annotation Files

The input data for TEtranscripts consists of alignment files in either
the SAM or BAM format, and two annotation files in the General
Transfer Format (GTF) ((http://mblab.wustl.edu/GTF22.html)
for genes and TEs, respectively. For the purposes of this demon-
stration, we will use the terms “unique-reads” and “multi-reads” to
designate the reads that have a unique alignment in the genome or
map to multiple loci with equal quality, respectively. The utilization
of multi-reads for TE quantification is critical, as a read originating
from a TE could align to multiple instances (insertions) of that
element in the genome. STAR supports multi-reads alignments,
and provides limits for the maximum number of multiple align-
ments to report per read. In order to map RNA-seq reads, STAR
needs an index file of the reference genome and transcriptome. We
have downloaded the reference sequences and the gene annotation
file of Drosophila melanogaster (dm3) from the UCSC genome
database [48]. We have saved the index files in a folder named
Index.
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$mkdir ~/Index

$cp gene_ann.gtf ~/Index

$cp dm3.fa ~/Index

Here, gene_ann.gtf and dm3.fa represent the gene annotation
file and the reference genome sequence file respectively. Both of
them have been saved in a folder called Index.

The GTF file of transposable element annotation has been
generated from the RepeatMasker table obtained from the UCSC
genome database [48] and saved to the folder Index. The transpo-
son annotation tables have been parsed to filter out low complexity
and simple repeats, as well as non-TE structural and other small
RNAs (rRNA, scRNA, snRNA, srpRNA, and tRNA). Each TE
insertion in the table has been given a unique identifier. The geno-
mic location, element name, as well as family and class information
has been also extracted from the table and included in the GTF file
(seeNote 1). TEtranscripts can also utilize custom TE annotations,
such as those generated from de novo TE insertion calls, as long as
they conform to the format described above and are consistent with
the genome sequencing files used for the alignment.

$cp TE_ann.gtf ~/Index

Once each of the annotation files is in place, one can use STAR
to generate a genome index file to be used when aligning reads in
the next step:

$ STAR --sjdbOverhang 100 --sjdbGTFfile ~/Index/gene_ann.gtf

--runMode genomeGenerate --genomeDir ~/Index --genomeFasta-

Files ~/dm3.fa --runThreadN 4

The option –runThreadN defines the number of threads run-
ning in parallel, and should be set according to the number of
available cores on the server or desktop being used.

3 Methods

3.1 Running STAR

to Map Raw RNA-Seq

Reads

In order to recover reads originated from TEs, we have run our
alignment software with the parameters set to report the best
alignments for each read. For uniquely mappable reads, this will
output 1 alignment per read. For ambiguously mapped reads, this
will output all “equally likely” alignments, which in practice means
all alignments with the same quality score for mappability. STAR
has two parameters that play the most important role in the report-
ing of multi-mappers:

--winAnchorMultimapNmax
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and

--outFilterMultimapNmax

(see Note 2).
Type the following commands to map the raw RNA-seq fastq

files located in Test_data to the reference genome.

$cd ~/Test_data

$STAR --runThreadN 12 --genomeDir ~/Index/ --sjdbGTFfile ~/In-

dex/gene_ann.gtf --sjdbOverhang 100 --readFilesIn piwi_KD.

fastq.gz --readFilesCommand zcat --outSAMtype BAM Unsorted --

winAnchorMultimapNmax 200 --outFilterMultimapNmax 100 --out-

FileNamePrefix ~/Test_data/piwiKD_

$ STAR --runThreadN 12 --genomeDir ~/Index/ --sjdbGTFfile

~/Index/gene_ann.gtf --sjdbOverhang 100 --readFilesIn control_KD.

fastq.gz--readFilesCommandzcat--outSAMtypeBAMUnsorted--winAn-

chorMultimapNmax 200 --outFilterMultimapNmax 100 --outFileName-

Prefix ~/Test_data/control_

If the input FASTQ files have been previously uncompressed,
remove the “--readFilesCommand zcat” option. The previous
commands allows STAR to output reads with at most 100 multiple
alignments, defined by --outFilterMultimapNmax 100. To be able
to find all of those alignments, STAR is set to use as many as
200 loci anchors. We have found that reporting a maximum of
100 alignments per read provides an optimal compromise between
the size of the alignment file and the recovery of multi-mappers in
this example dataset. However, we highly suggest that users opti-
mize this parameter for their particular genomic TE content, as this
could significantly improve the quality of transposable element
quantification. To optimally set this parameter, we recommend a
saturation analysis on the multi-read alignments (see Note 3).

The successful run will create a set of output files for both Piwi
knockdown and control samples in the same folder Test_data, but
with different prefix, piwiKD_ and control_ respectively. Files with
a suffix of Aligned.out.bam are the main output files containing
compressed alignment results from STAR.

3.2 Running

TEtranscripts

Using the alignment files obtained from the previous step, now we
can run TEtranscripts to estimate gene/TE abundances and con-
duct differential expression analysis.

$cd ~/Test_data

$ TEtranscripts --format BAM --stranded reverse -t piwiKD_

Aligned.out.bam -c control_Aligned.out.bam --GTF ~/Index/gen-

e_ann.gtf --TE ~/Index/TE_ann.gtf --mode multi --project pi-

wiKD_vs_control --minread 1 -i 10 --padj 0.05
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TEtranscripts accepts alignment files in either SAM or BAM
format. When there are multiple samples, for example biological
replicates in one or both conditions, users can input all of them into
one TEtranscripts run. Replicate samples of the same condition
should be input together as a group and separated by a space. For
example, a command with biological replicates included would
look like:

$ TEtranscripts --format BAM --stranded reverse -t piwiKD_1_

Aligned.out.bam piwiKD_2_Aligned.out.bam -c control_1_

Aligned.out.bam control_2_Aligned.out.bam --GTF ~/Index/gene_

ann.gtf --TE ~/Index/TE_ann.gtf --mode multi --project

piwiKD_vs_control --minread 1 -i 10 --padj 0.05

TEtranscripts always performs pairwise comparisons, repre-
sented by the options -t (treatment) and -c (control). Additional
comparisons should be performed as separate runs of
TEtranscripts.

By default, TEtranscripts assumes that alignments are sorted by
read names and not by coordinates, the default output for STAR. In
other words, all alignments coming from one read should appear as
consecutive rows in the file. However, if the alignment files were
sorted by coordinates, the user can set the option –sortByPos (see
Note 4), to direct TEtranscripts to resort the data files.

TEtranscripts provides two running modes: uniq and multi.
Using uniq mode, only unique reads will be counted (including
only uniquely mappable TE content), while multi-mode will take
into account both unique reads and ambiguously mapped reads.
We strongly recommend multi-mode for TE analysis.

TEtranscripts also supports strand-specific read counting, and
applies it to both genes and TEs, with the option --stranded.

For single-end RNA-seq data, users can provide the average
fragment length used for sequencing with the option -L. In the case
of paired-end data, TEtranscripts will estimate this length from the
input alignment file. This parameter is optional and not required.

Users can choose three different normalization approaches for
differential analysis using the option —norm. Total annotated read
counts (TC) will output RPM-like abundance estimates normalized
to all mapped and annotated reads. Quantile normalization (quant)
will normalize all samples to the quantiles of the average of all
samples. Default DESeq [49] normalization (DESeq_default) will
normalize each sample by the geometric mean of the annotated
reads across all samples. Published comparisons of RNA-seq analy-
sis protocols have favored DESeq-like normalization strategies, but
we leave this option up to the user [50].

TEtranscripts uses an expectation-maximization (EM) algorithm
to determine the maximum-likelihood estimates of multi-reads
assignments to all TE transcripts. Briefly, we assume that truly
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transcribed TEs will contain reads across the entire length of the TE
locus, while nontranscribed TEs will only contain reads at regions of
high sequence similarity to other family members. Therefore, we
redistribute reads upon each iteration of the EM loop towards highly
expressed TEs with extensive read pileup along the locus. In practice,
this EM loop usually converges within ten iterations (the default).
Users can optionally specify the maximum number of iterations of
the EM procedure, using the option -i.

Following gene and TE abundance estimation, TEtranscripts
next calculates differential expression estimates for the two condi-
tions being compared using the DESeq software package. The
option --minread defines the minimum read count cutoff used to
filter data for statistical analysis with DESeq.This is often useful in
preventing nontranscribed TEs and genes from inflating the type I
error correction calculations (also referred to as FDR, or false
discovery rates). TEtranscripts returns two output tables from
DESeq: the standard output table of fold change and p-value
statistics for all genes and TEs, as well as a second table of only
those genes and TEs calculated to be statistically significant in their
differential expression between conditions. The option “--padj" is
used to determine the minimum adjusted p-value considered as
“significant,” with a default value of p < 0.05.

3.3 Results A successful TEtranscripts run will generate the following output
files:

piwiKD_vs_control.cntTable, piwiKD_vs_control_DESeq.R,

piwiKD_vs_control_gene_TE_analysis.txt

piwiKD_vs_control_sigdiff_gene_TE.txt.

piwiKD_vs_control.cntTable contains the estimated raw abun-
dance counts for all genes and TEs as a tab-delimited table. Each
row represents a gene or TE, each column is a sample, and each
value is a raw count.

piwiKD_vs_control_DESeq.R is an R script used by TEtran-
scripts for differential expression analysis. Users can use optionally
use this script to rerun just the differential analysis portion of
TEtranscripts with different settings. For example, the user may
wish to alter the false discovery rate cutoff or to choose a different
normalization approach. Rerunning just the differential expression
portion of the analysis is much more efficient than rerunning the
entire TEtranscripts software package.

piwiKD_vs_control_gene_TE_analysis.txt contains the differ-
ential expression results from DESeq for all genes and TEs.

piwiKD_vs_control_sigdiff_gene_TE.txt contains a subset of
the differential expression analysis table for only those genes and
TEs that passed the P-value significance criteria.

Here we present several plots of the analysis results using the
included test data. For all of these figures, the data was taken from a
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published study [47], but reanalyzed with the TEtranscripts soft-
ware package.

Figure 1 shows the proportion of transcripts originating from
transposable elements in the test datasets used for this protocol.
Piwi knockdown samples (column 1) show a significant increase as
compared to control samples with nontargeting dsRNA. Since Piwi
is known to contribute to general TE regulation, many TEs are
expected to show some increase in the Piwi knockdown samples,
and this is reflected by an increase in the overall TE content of the
expression library.

Figure 2 displays a scatter plot of the expression profiles of all
genes and TEs for the Piwi knockdown and control samples for the
same dataset described above. Here, we see that few protein-coding
genes show substantial change in the Piwi knockdown samples
(black dots), while most TEs show some degree of upregulation
(red dots). This pattern is in line with the expected role of Piwi
proteins as a general TE regulatory factor.

Figure 3 shows the estimated fold changes in TE levels as
calculated by TEtranscripts as compared to q-PCR validation mea-
surements of a selection of TEs from the dataset used in this
protocol. The log2 fold change (log2FC) calculated by
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example datasets used in this protocol. The data presented was collected
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ing construct [47], while gene and TE expression analysis was performed with
TEtranscripts
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TEtranscripts (green bars) closely resembles the measured q-PCR
results (red bars) for most of the TEs interrogated. In addition,
TEtranscripts correctly identifies TEs not expressed in these
samples.

4 Notes

1. Creating a TE GTF file.
We have created TE GTF files for several model organisms, such
as human, mouse, maize, Drosophila, and Arabidopsis. They are
freely available from http://hammelllab.labsites.cshl.edu/soft
ware. Users can create their own TE GTF files for input to
TEtranscripts, as long as the last field of the GTF file contains
the following information about the TE instance: class, family,
element, and unique instance id. As an example, for one inser-
tion instance of the TE NINJA_I, we require the following
annotation information:

gene_id "NINJA_I";

transcript_id "NINJA_I_dup1"; family_id "Pao";

class_id "LTR"
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Fig. 2 Gene expression profiles of genes (black) and TEs (red) comparing Piwi
knockdown and control samples. Nearly all TEs show upregulation in the Piwi
knockdown samples as compared to controls. Data from [47] as previously
described
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All other information in the TE annotation file follows the
standard GTF file format.

2. Multi-reads output.
Many RNA-seq alignment packages support multi-reads align-
ments, and provide options to control for the maximum number
of multiple alignments allowable per read. STAR has two para-
meters that play the most important role in the report of multi-
mappers,

--winAnchorMultimapNmax and

--outFilterMultimapNmax.

The author of STAR recommends setting.

winAnchorMultimapNmax =2 * outFilterMultimapNmax

(with a minimum value of 50). However, increasing winAnchor-
MultimapNmax allows STAR to use shorter seeds as anchors,
which increases sensitivity for problematic alignments (with
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many/mismatches indels). Therefore, users may need to test
different combinations of these two parameters and to find the
one that reports at least one alignment for most reads while
maintaining high alignment qualities.

3. Multi-reads saturation analysis.
Here we show two examples for carrying out a saturation analy-
sis to determine the optimal maximum number of allowable
alignments per read. While we found that allowing 100 align-
ments was sufficient to detect most TE-derived reads in fly and
mammalian genomes, other genomes may differ in: total geno-
mic TE content, total number of insertions per TE, or relative
sequence similarity between TE sub-families. Figure 4 shows an
example of saturation analysis performed using a published
mouse RNA-seq dataset (GSE27394) to identify transcriptional
targets of the RNA-binding protein TDP-43 [51]. Using differ-
ent cut-offs for the maximum alignments per read, from 10 to
200, we were able to show that the proportion of TE-derived
reads detected increased dramatically when altering the maximal

Fig. 4 Saturation analysis of multi-mapped reads. Once raising the limit on the number of reported alignments
per read no longer substantially increases the overall mapping rates, we consider that most of the mappable
reads have been recovered and the mappability rate has been “saturated.” This rate varies depending upon
the TE content of a given genome and the particular set of expressed TEs. The data presented here used a
published mouse RNA-seq dataset examining the effects of TDP-43 loss [51]
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allowed alignments from 10 to 100, with 90% of all multi-reads
having fewer than 100 potential alignments. However, increas-
ing this setting from 100 to 200 maximal alignments shows
diminishing returns, with only 1% of the remaining reads recov-
ered by further increasing this parameter. Based on this analysis,
we recommend using a cut-off of 100 maximum alignments for
most mammalian datasets.

4. Sorting alignments by coordinates.
When the alignment files are sorted by coordinates, users need
to set the parameter –sortByPos. TEtranscripts will then resort
the alignment files by read names using SAMtools. This is com-
putationally time-consuming; we recommend using unsorted
files, if available, since most alignment packages will output
unsorted files by default. In addition, TEtranscripts may not
work with the more recent versions of SAMtools, because of
changes to the sort function. Therefore, we strongly recom-
mend the use of alignment files sorted by read names prior to
using TEtranscripts, and/or to use SAM tools version 0.1.19
with the TEtranscripts package.
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Chapter 12

Computational Analysis of RNA–Protein Interactions
via Deep Sequencing

Lei Li, Konrad U. Förstner, and Yanjie Chao

Abstract

RNA-binding proteins (RBPs) function in all aspects of RNA processes including stability, structure,
export, localization and translation, and control gene expression at the posttranscriptional level. To
investigate the roles of RBPs and their direct RNA ligands in vivo, recent global approaches combining
RNA immunoprecipitation and deep sequencing (RIP-seq) as well as UV-cross-linking (CLIP-seq) have
become instrumental in dissecting RNA–protein interactions. However, the computational analysis of these
high-throughput sequencing data is still challenging. Here, we provide a computational pipeline to analyze
CLIP-seq and RIP-seq datasets. This generic analytic procedure may help accelerate the identification of
direct RNA–protein interactions from high-throughput RBP profiling experiments in a variety of bacterial
species.

Key words RNA-seq, RIP-seq, CLIP-seq, Bioinformatics, Hfq, CsrA, ProQ, ncRNA, sRNA

1 Introduction

RNA-binding proteins (RBPs) are an important class of post-
transcriptional regulators of gene expression. RBPs either directly
bind to messenger RNAs (mRNAs) or act through numerous
regulatory noncoding RNAs (ncRNAs), dictating the fate of the
bound transcripts. In all three kingdoms of life, increasing numbers
of RBPs have been identified, including many well-studied model
organisms such as pathogenic bacteria [1], baker’s yeast [2], and
human [3]. Taking bacteria for example, a new global RBP called
ProQ was recently found as a major RNA chaperone in two dis-
tantly related bacterial pathogens Salmonella enterica serovar
Typhimurium [1] and Legionella pneumophila [4], constituting
the third global RBP in bacteria besides the well-known Hfq and
CsrA proteins [5, 6].

Functional understanding of RBPs requires the full account of
their RNA binding partners and the exact binding sites. To identify
RNAs that are bound by an RBP of interest, a classic approach is to
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immunoprecipitate the RBP using a specific antibody followed
by analysis of the copurified transcripts using RNA gels or DNA
arrays (RIP-chip). Thanks to the advance of high-throughput
sequencing technologies, unbiased deep sequencing of the
co-immunoprecipitated RNAs (RIP-seq) can now identify
hundreds or even thousands of transcripts in a bacterium [7, 8]. -
RIP-seq is relatively simple and experimentally straightforward,
which have sparked its wide-application in the study of RNA–pro-
tein interactions in various biological systems [9] (Table 1). While
RIP-seq usually identifies the full-length transcripts bound to an
RBP, RIP-seq combined with UV cross-linking (CLIP-seq) can
further identify the exact protein binding sites in a transcript. This
approach was also referred to as HITS-CLIP, for high-throughput
sequencing of RNA isolated by cross-linking immunoprecipitation
[19]. The key of CLIP-seq is the in vivo cross-linking under ultra-
violet (UV) light that introduces a covalent bond between RBP and
the bound RNA. This covalent linkage enables the cross-linked
RNA–protein complexes to survive stringent purification steps
(often under denaturing conditions) and partial nuclease digestion
to remove the unbound sequences. Deep sequencing of UV-cross-
linked RNA fragments (CLIP-seq) informatively provides the loca-
tions of the protein-binding sites in a large number of transcripts
[20]. The unique UV-cross-linking step makes CLIP-seq a power-
ful method to identify direct RNA–protein interactions. CLIP-seq
has superior sensitivity in capturing weak or transient interactions

Table 1
Recent RNAseq-based studies of RNA–protein interactions in bacteria

Technique Organism RNA-binding protein Year PMID

RIP-seq Salmonella enterica serovar Typhimurium Hfq 2008 [7]

RIP-seq Salmonella enterica serovar Typhimurium Hfq 2012 [8]

RIP-seq Bacillus subtilis Hfq 2013 [10]

RIP-seq Sinorhizobium meliloti Hfq 2014 [11]

CLIP-seq Escherichia coli Hfq 2014 [12]

RIP-seq Escherichia coli Hfq 2014 [13]

RIP-seq Brucella suis Hfq 2015 [14]

RIP-seq Campylobacter jejuni CsrA 2016 [15]

CLIP-seq Salmonella enterica serovar Typhimurium Hfq, CsrA 2016 [16]

RIP-seq Salmonella enterica serovar Typhimurium ProQ 2016 [1]

RIP-seq Legionella pneumophila CsrA 2017 [17]

CLIP-seq Salmonella enterica serovar Typhimurium RNase E 2017 [18]

172 Lei Li et al.



in vivo [21]. In addition, the cross-linked peptide on RNA often
results in mutations in cDNAs during reverse transcription. These
mutations help pinpoint the exact protein-binding sites at the
single nucleotide resolution [22].

This chapter mainly focuses on the CLIP-seq data analysis in
bacteria, owing to its higher data complexity and its recent success-
ful applications in Escherichia coli [12] and S. Typhimurium [16]
(Table 1). In these studies, CLIP-seq has demonstrated its power in
identifying the direct RNA ligands and exact sequences bound by
Hfq and CsrA, respectively. While CLIP-seq is becoming instru-
mental in studying bacterial RNA–protein interactions, the analysis
of CLIP-seq data is highly demanding. A suite of bioinformatics
tools and analytic procedures are required to fully reveal the infor-
mation capsulated in the sequencing data, and to identify the true
RNA–protein interactions. To help other bioinformaticians and
RNA enthusiasts perform such sequencing data analysis, here we
have outlined a computational pipeline (Fig. 1) that has been
recently devised to analyze CLIP-seq data for Hfq and CsrA
[23]. Because these analytical procedures are generic, the presented
pipeline can be readily used for the analysis of CLIP-seq with any
given RBP, as well as the analysis of RIP-seq data.

2 Materials

We use our recently published CLIP-seq dataset [24] as an exam-
ple, which is hosted in NCBI GEO database (GSE74425). The S.
Typhimurium SL1344 reference genome and annotation informa-
tion can be downloaded from NCBI FTP site (ftp://ftp.ncbi.nlm.
nih.gov/genomes/archive/old_refseq/Bacteria/Salmonella_
enterica_serovar_Typhimurium_SL1344_uid86645/).

3 Methods

3.1 Quality Trimming Upon completing the Illumina sequencing, the received raw
sequencing reads require initial processing. A sequencing read
must contain parts of the adapter sequences, which need be identi-
fied and trimmed before aligning to the reference genomes. Among
many suitable tools, Cutadapt is a user-friendly command line
interface. It can search and trim adapter sequences in an error-
tolerant manner, and it is compatible with a large variety of input
file formats generated by high-throughput sequencers [23] (see
Note 1). The latest version can be downloaded from http://
cutadapt.readthedocs.io/en/stable/index.html.

To perform adaptor trimming for paired-end reads, a typical
command line employing Cutadapt looks like this:
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cutadapt -q 20 -a “AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC” -A

“GATCGTCGGACTGTAGAACTCTGAACGTGTAGATCTCGGTGGTCGCCGTATCATT”

--pair-filter=both -o [file1].out.fq -p [file2].out.fq

[file1].fq [file2].fq

Quality Trimming

Cutadapt

Fastuniq

Raw sequencing reads

Reads Mapping

READemption

Peak Calling

PEAKachu

Crosslinking Mutations

PIPE-CLIP

Motif Discovery

MEME

Meta-gene Analysis

Metaseq

deeptools

Functional Enrichment

FUNdue

Segemehl

Fig. 1 Workflow for bacterial RBP profiling data analysis. Raw sequencing reads
from CLIP-seq or RIP-seq are subjected to the analysis pipeline. Quality and
user-defined sequence trimming removes adapter sequences, low-quality reads,
and PCR duplicates using Cutadapt and Fastuniq tools. Reads are then mapped
to the reference genome using READemption and segemehl. RBP-binding sites
in RNA are identified using peak-calling algorithm PEAKachu, as well as the
mutation analysis package PIPE-seq. The putative motifs sequences and
structural properties are identified using MEME and CMfinder. Further, meta-
gene analysis is performed using Metaseq and deeptools to search the global
distribution of binding profiles. FUNdue finally reports a functional annotation
including gene ontology and pathway analysis
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The low-quality sequences from the end of short reads were
firstly trimmed with a cutoff of 20 for the Phred quality score
(Q < 20), then the two adapter sequences shown above were
removed. This option (--pair-filter¼both) removes the entire
(pair-end sequenced) read pairs if at least one of the two sequences
became shorter than a certain length threshold.

CLIP-seq experiments often generate numerous PCR dupli-
cates after cDNA amplification. These duplicate reads need to be
identified and removed using Fastuniq [24], a tool for de novo
removal of duplicates in paired short reads and freely available at
https://sourceforge.net/projects/fastuniq/.

3.2 Reads Mapping The filtered and trimmed reads are then aligned against the refer-
ence genome using READemption [25]. READemption is a
pipeline for the computational analysis of RNA-Seq data. It was
developed initially for bacterial transcriptomic data, but now also
extended to analyze eukaryotic transcriptomes as well as a mixture
of both, i.e., dual RNA-Seq data [26]. The latest version can be
downloaded from https://pythonhosted.org/READemption/. It
requires segemehl [27] as the short read aligner, which can be
download separately from http://www.bioinf.uni-leipzig.de/Soft
ware/segemehl/. Segemehl effectively handles both mismatches
and short insertions and deletions. It is an ideal aligner for CLIP-
seq reads, which often contain the characteristic mutations intro-
duced by cross-linking procedures.

READemption covers most of the important mapping proce-
dures and is organized in a command-line interface with several
subcommands. These subcommands include read processing and
aligning, coverage calculation, gene expression quantification, dif-
ferential gene expression analysis as well as generating coverage files
for visualization.

The “create” subcommand in READemption can generate the
necessary folder structure. As required, transcriptome reads in
FASTA format need be stored in the folder input/reads, and the
genomes used as the reference should be in the folder input/refer-
ence_sequences. Also, the bacterial annotation files have to be placed
into input/annotations.

After the initial folder setup, the subcommand for running the
read alignment is

reademption align --realign, --processes 20 --segemehl_accuracy

95 --min_read_length 12 --progress [project_path]

Where [project_path] should be substituted by the path that
was used with the create subsommand. Of note, reads shorter than
12 nucleotides will be removed, as well as the reads that are mapped
to multiple locations. The remaining reads will then be aligned
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against the reference genome with a mapping accuracy of 95% using
segemehl. The reads mapping statistics, including the summary of
uniquely aligned reads and mapped reads, will be documented in
the file read_alignment_stats.csv. The read alignment and index files
will be generated in BAM and BAI format, respectively.

Reads coverage information representing the numbers of
mapped reads per nucleotide can be generated using the “cover-
age” subcommand. The command line is

reademption coverage --unique_only [project_path]

The uniquely aligned reads will be used to generate the cover-
age file and saved in wiggle format. READemption also provides
other useful options such as --coverage_style first_base_only, which
converts only the first base into coverage files. This option is
particularly useful to identify the transcript ends, which has served
the analysis of global RNase E processing sites in our recent TIER-
seq data [18]. The coverage plot can be visualized in a genome
browser, e.g., the Integrated Genome Browser [28].

3.3 Peak Calling RBP-binding sites in a transcript often accumulate many sequencing
reads, which form sharp peaks spanning a narrow region. Therefore,
peak calling serves to identify the precise RBP-binding sites, one of
the most critical steps in the CLIP-seq data analysis. A few issues may
influence the binding site detection. Firstly, most of the standard
CLIP-seq protocols do not include a negative background control,
which makes it hard to estimate the background noise and eliminate
false peaks. This is because reads falling into a given transcript can be
explained by two factors: transcript abundance and RBP preference,
thus a negative control is highly recommended. Secondly, reads may
align to incorrect transcripts due to sequencing errors and their
subsequent mapping. A robust peak-calling algorithm is crucial to
distinguish the specific RBP binding from nonspecific bindings
and/or background noise. Although a few computational
approaches have been developed, few are optimal because of prob-
lematic null hypotheses, e.g., Piranha [29], which considers sites
with small number of reads as noise without including a negative
control. A new peak-calling algorithm [16] has been developed to
address these issues. This approach first divides the consecutively
mapped reads into a few genomics blocks, and the blocks, which
fulfill overlapping requirements including the read coverage of each
block and the distance of the blocks, are iteratively assembled into
the candidate peak regions using blockbuster [30]. Importantly,
each candidate peak is tested for significant enrichment in the
cross-linked samples versus the non-cross-linked control samples
using DESeq2 [31]. This algorithm will be integrated in a peak-
calling tool PEAKachu, which is still under development, https://
github.com/tbischler/PEAKachu (T. Bischler, personal
communication).
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3.4 Cross-Linking-

Induced Mutations

Another important step is the identification of cross-linking
induced mutations, which can be used to pinpoint the direct
RNA–protein interaction sites at the single-nucleotide level. How-
ever, most of the available computational tools either ignore or
inadequately address this issue, because the mutations may be
confounded by single nucleotide polymorphisms (SNPs) and
sequencing errors. One exception is PIPE-CLIP [32]. This tool
can statistically identify the outstanding cross-linked mutations
across a background distribution. Briefly, each mutation site is
described by two parameters (ki, mi), where ki is the number of
mapped reads covering the considered location, and mi is the
number of specific mutations at location i. Then the mutation
rate is modeled in each position by the binomial distribution with
size ki and background rate, which is calculated by read coverage
with a summarization of matched length of all reads divided by
genome size (seeNote 2). The mutations will be considered signifi-
cant only if the calculated adjusted p-value is lower than a specified
threshold (e.g., adjusted p < 0.05). The source code of PIPE-
CLIP is freely available from https://github.com/QBRC/PIPE-
CLIP.

The command line for identifying cross-linking mutations is:

python pipeclip.py -i [inputfile] -o [output_prefix] -c 0 -l

12 -M 0.05 -C 0.05 -s [species]

The -c option is to specify the CLIP-seq type, -l option is to
specify minimummatch length, -M option is false discovery rate for
significant cross-linking mutation, -C option defines the false dis-
covery rate for the peak clusters.

For the paired-end reads, PIPE-CLIP cannot be directly used
for mutation calling. However, there are a few solutions. First, the
Python script ‘FindMutation.py’ can be used to identify substitu-
tions, deletions and insertions separately from the mapping BAM
files while allowing the user to choose the specific CLIP-seq type
(HITS-CLIP, PAR-CLIP). Second, to lower the bias caused by
background noise, the first read of the paired-reads can be extracted
using samtools [33] and the characteristic mutation sites need to
be present in both paired reads. Thirdly, the script ‘MutationFilter.
py’ can determine the significantly enriched mutations in each
library by using the extracted first paired mapping reads in BAM
format and consensus mutation sites in BED format as input.

3.5 Motif Discovery To investigate whether any sequence preference is present near the
protein binding regions, MEME [34], a de novo sequence motif
detection tool, can be used to discover consensus sequences among
peak sequences or the surrounding regions of enriched cross-
linking mutations. MEME can be accessed via a Web interface
(http://meme-suite.org/tools/meme).
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In addition to sequence-specific binding, some RBPs recognize
RNA partners by structural properties rather than the sequence per
se. CMfinder [35] is a tool that performed well to search for the
presence of structural motifs based on unaligned sequences with
long extraneous flanking regions. It relies on an expectation maxi-
mization algorithm using covariance models for motif description,
and a Bayesian framework for structure prediction combining fold-
ing energy and sequence covariation. CMfinder can be accessed
using webserver (http://wingless.cs.washington.edu/htbin-post/
unrestricted/CMfinderWeb/CMfinderInput.pl). It is also available
as a stand-alone perl script, which can be downloaded from http://
bio.cs.washington.edu/CMfinderWeb/CMfinderInput.pl.

The command to run CMfinder is

perl cmfinder.pl [infile]

The output motif files are named by using the input file name as
prefix (e.g., with the input file name input_file, the file input_file.
motif.* will be generated). These motif files are stored in Stock-
holm format, where the suffix indicates the number of stem-loops
in a motif. The motif file needs be reformatted to the unblocked
Stockholm format. This is done with the HMMER package
(http://hmmer.org/).

sreformat --pfam stockholm [alignfile] > [infile]

The formatted Stockholm file can be visualized using R2R
[36], a software that generates representations of structure-
informed RNA secondary alignments. The latest version is available
at http://breaker.research.yale.edu/R2R.

3.6 Meta Gene

Analysis

Meta gene analysis aims to analyze the global peak distribution with
respect to a specific location across all annotated genes. The peak
density can be calculated by counting the number of peaks along
the specified annotation features like start codons, stop codons,
sRNAs, and Rho-independent terminators. For example, a meta
gene analysis of Hfq peaks found that most peaks are located at 30 of
seed sequences in sRNAs, whereas in mRNAs they are found at the
50 of sRNA base-pairing regions [37].

A few computational tools are available for meta gene analysis.
Metaseq [38] enables integrating multiple genomic data formats
and allows for customized visualization. It is freely available at
https://github.com/daler/metaseq. Another tool is deepTools2
[39], which can jointly analyze multiple signals (bigWig) and
region files (BED), and visualize data in a composite image. It is
freely available at https://github.com/fidelram/deepTools and can
also be used with a galaxy-based platform (http://deeptools.ie-
freiburg.mpg.de/).
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3.7 Functional

Annotation

and Enrichment

Analysis

After the identification of RBP-binding sites, it is of interest to
understandwhether there is any enrichment of functions or pathways
among the RBP-bound genes. To carry out this analysis in bacteria,
we have developed a computational tool named FUNdue (L.L.,
unpublished). This tool is still under development (see Note 3) and
is available at https://github.com/LeiLiSysBio/FUNdue.

FUNdue covers multiple submodules for functional ontolo-
gies and pathways analysis including gene ontology and pathway
retrieval, functional assignment, statistics enrichment and visualiza-
tion. Briefly, the gene ontology and pathway information is auto-
matically retrieved from UniProt and KEGG databases. The
ontology of each gene is classified into three categories, the molec-
ular function, biological process and cellular component. Enrich-
ment analysis is performed to evaluate the significant terms
compared to the background using Fisher exact test and gene set
enrichment analysis [40]. The calculated p-values are subjected to
multiple-testing analysis using the Benjamini–Hochberg method.
The significant gene ontology terms will be visualized as bar plots.
Furthermore, the output files can be visualized by other tools such
as REVIGO [37], which offers an easy and interactive illustration
via web interface.

The following part demonstrates the steps for a pathway
enrichment analysis using FUNdue. To initial a project and gener-
ate the required folder structure, we use the “create” submodule.
The call to create the folder is:

traplfun create [project_path]

Where the [project_path] is the analysis folder specified by the
user. This will result in a folder structure with all the required
subfolders. FUNdue can automatically access and retrieve the path-
ways stored in the KEGG database [41], if the organism code is
given. The three-letter organism code for a species of choice can be
found on the KEGG website http://www.genome.jp/kegg/cata
log/org_list.html. For example, if you want to download all the
KEGG pathway information for S. Typhimurium SL1344 (organ-
ism code sey), the command is:

traplfun retrieve_pa -c sey [project_path]

After a list of interesting genes is created and stored in the
input/target_ids, we can use the subcommand ‘pathway_stat’ to
perform enrichment analysis with default fisher exact test. The
command is:

traplfun pathway_stat [project_path]

The significantly overrepresented pathways, per default with a
p-value lower than 0.05, are stored in the pathway folder output/
pathway/pathwy_enrichment in plain text format.
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These pathways can then be visualized using the subcommand
‘path_viz’. The command is:

traplfun path_viz -c [KEGG_organism_code] [project_path]

It creates histograms and a bar plot for the enriched pathway
summary. Besides the fisher exact test, the user can choose another
gene set enrichment analysis [42], which maps and renders the
changes in the relevant pathway graphs.

4 Notes

1. READemption can perform basic quality trimming and adapter
clipping; however cutadapt has many advanced functions such
as processing of paired-end sequencing reads, which is more
suitable for CLIP-seq because the size of RBP interaction
regions are comparable to whole cDNA fragments, and thus
more accurately defines the binding regions.

2. Installation of FUNdue requires a few python and R dependent
packages. This included Scipy, and also a few R packages includ-
ing KEGGREST, getopt, piano, optparse, gsge, and pathview.

3. PIPE-CLIP can identify all simple types of mutations including
substitutions, deletions and insertions. To avoid sequencing or
alignment errors, each different type of mutation needs to be
analyzed separately. UV-cross-linking mutations such as T to C
mutations should be enriched at specific sites and show high
frequency compared to other mutations. In addition, integrat-
ing the enrichedmutations with peaks information could further
pinpoint the cross-linking induced mutations.
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Chapter 13

Predicting Gene Expression Noise from Gene Expression
Variations

Xiaojian Shao and Ming-an Sun

Abstract

The level of gene expression is known to vary from cell to cell and even in the same cell over time. This
variability provides cells with the ability to mitigate environmental stresses and genetic perturbations, and
facilitates gene expression evolution. Recently, many valuable gene expression noise data measured at the
single-cell level and gene expression variation measured for cell populations have become available. In this
chapter, we show how to perform integrative analysis using these data. Specifically, we introduce how to
apply a machine learning technique (support vector regression) to explore the relationship between gene
expression variations and stochastic noise.

Key words Gene expression variation, Intrinsic noise, Single-cell, Machine learning, Feature selec-
tion, Support vector regression

1 Introduction

The phenomenon of stochastic fluctuation in protein abundance
for a gene among single cells (gene expression noise) had been
observed back to 1957 and it is thought to be inevitable. It is
demonstrated that expression noise can contribute to drastically
diverse phenotypes, even within isogenic (i.e., genetically identical)
cell populations and under identical experimental conditions
[1–3]. The gene expression noise could help cells to adapt to the
environmental perturbation or external stresses [4–9]. Moreover, it
is also evidenced that expression noise facilitates the evolution of
gene regulation [4, 10–13]. Practically, expression noise can be
divided into intrinsic and extrinsic categories. The intrinsic noise
refers to the variation of expression level in identically regulated
genes within a single cell, which could be generated from the
inherent stochasticity of biochemical processes such as transcription
and translation [1]. The extrinsic noise refers to variation of expres-
sion level in identically regulated genes from different cells or in a
single cell over time [4, 14]. These expression noises can be
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quantified by attaching a fluorescently tagged reporter to a gene of
interest, and measuring the distribution of fluorescence intensities
over a population of clonal cells [14–18]. This allows us to distin-
guish intrinsic noise from extrinsic noise by using cell gating or
orthogonal reporters.

Over the last few years, the origin and behaviour of such
stochastic fluctuations of gene expression have been extensively
characterized [1], yet still remain incompletely understood. Efforts
using biochemistry experimental approaches, thermodynamic
model and information theory have been made to better under-
stand the molecular mechanism underlying noise in gene expres-
sion [19]. For example, gene regulatory networks are reported to
contribute to expression noise which had also been simulated with
thermodynamic models where a set of differential equations are
used to describe the stochastic regulatory dynamics among genes
[4, 20–24]. Other statistical models such as the Ω-expansion tech-
niques are also used to investigate the translation bursting hypoth-
esis, and pattern of stochastic fluctuations in a single-gene network
with negative feedback regulation [25, 26]. For more details about
these models, please refer to recent review [25].

However, all these theoretical models usually simulate the sto-
chastic behavior of a single gene or a single-gene network but fail to
model large systems consisting of multiple genes [4]. Recently, with
the rapid development of single-cell and single-molecule based
high-throughput techniques, large amount of gene expression var-
iation data from single-cell (organism) have become available
[27–33]. It provides us the opportunity to systematically investi-
gate the relationship between expression noise and expression vari-
ation, which can improve our understanding of the variability and
evolvability of gene expression. In this protocol, we will first delin-
eate the relationship between gene expression noise and variation
using correlation analysis, and then apply a machine-learning tech-
nique, the support vector regression (SVR) [34–37], to fit the
relationship between them.We will show gene expression variations
are predictive for noise level, which imply common mechanisms
underlying both gene expression noise and variations. Particularly,
we will focus on data from a single-cell organism—budding yeast
(S. cerevisiae) as an example to demonstrate this protocol.

2 Materials

2.1 Gene Expression

Noise Data

Large-scale expression noise data of single cells were obtained from
the study by Newman et al. [17]. This data measures the protein
abundances of 4159 genes on a collection of budding yeast
(S. cerevisiae) strains in rich media (YEPD) using high-throughput
flow cytometry. The coefficient of variation (CV, i.e., standard
deviation/mean) was used to measure the differences of protein
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abundances from cell to cell. In order to control the confounding
influences from protein abundance, or from the instrument
response or the intracellular differences in cells, the distance of
each CV to a median of CV values (i.e., named as DM value)
were calculated. Both CV profiles and DM profiles could be
extracted from the Supplementary Table 1 of [17].

2.2 Gene Expression

Variation Data

Gene expression variation is defined as the variance of given genes’
expressions across different conditions. These gene expressions
could be measured using any transcriptome profiling approaches
such as microarray or RNA-Seq. Here the gene expression variation
data mainly contain five different types: (1) expression variation
under different environmental conditions; (2) expression variation
under genetic perturbations of trans-acting factors; (3) expression
variations among individuals, and among isolates yielded by muta-
tional accumulation; (4) expression divergence of orthologous
genes between related strains; or (5) related species. All these data
could be downloaded from respective studies.

We further compiled 633microarray datasets fromGene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) with
accessions: GSE18, GSE20, GSE21, GSE22, GSE23, GSE24,
GSE25, GSE26, GSE28, GSE29, GSE2239, GSE2953, GSE2977,
GSE3182, GSE3358, GSE3456, GSE3812, GSE4398. Users can
refer to the chapter “Microarray data analysis for transcriptome
profiling” to get these data from GEO.

2.3 MATLAB Toolbox MATLAB is a multiparadigm programming language which is
intended primarily for numerical computing (https://www.
mathworks.com/). It is a proprietary product of The MathWorks
Inc., so users need to buy the license to use it. MATLAB has a vast
library of prebuilt toolboxes that are designed for machine learning,
signal processing, image processing, etc. Each toolbox could be
purchased and loaded separately. In this protocol, we need the base
of MATLAB, the LIBSVM library, and the mRMR library. The
details of installing LIBSVM and mRMR will be introduced in
their corresponding sections.

3 Methods

3.1 Data Processing

and Loading

The downloaded gene expression noise data and all the expression
data were compiled together as a single ASCII text file according to
their gene names using custom Perl script. After that, the merged
file could be loaded to MATLAB through different functions such
as “importdata()” and “textscan()”. It could also be loaded to
MATLAB through GUI “Import Data” icon. Here, we show an
example of using the function “importdata()”:

GeneExpNoiseVar = importdata(‘GeneExpNoise.Var.txt’);
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where “GeneExpNoise.Var.txt” is the compiled ASCII text file and
the returned variable “GeneExpNoiseVar” is a structure array. It
includes two elements: “textdata” contains gene names and header,
and “data” contains numerical array of gene expression noise and all
the other gene expression profiles. For example, assume the first
column of the “data” matrix is gene expression noise and the rest
are the gene expression profile at different conditions, then we
could get:

geneexpnoise = GeneExpNoiseVar.data(:,1);

geneexpvariations = GeneExpNoiseVar.data(:,2:end);

3.2 Examine

Descriptive Statistics

1. To investigate the relationship between gene expression varia-
tion and noise, the natural choice is to first examine their corre-
lation, which could be calculated using the MATLAB function
corr(). In MATLAB console, type:

ρ = corr(geneexpnoise, geneexpvariations, ’type’, ’Pearson’, ’rows’, ’pairwise’);

where “geneexpvariations” could be any types of gene expression
variations mentioned above.

2. After obtaining the correlations (here assume “CoRRArray”
save the correlation results), users could visualize them by dis-
playing the correlations into a figure (Fig. 1) using the following
commands:

CoRRArrayLabels = {

’Response to various conditions’;

’Stress response’;

’Transcription plasticity’;

’Mutation/knockout of chromatin regulators’;

’Knockout of transcription factors’;

’Variability among mutation accumulation lines’;

’Variability among strain RM11-1a’;

’Variability among strain BY4716’;

’Variability between RM11-1a and BY4716’;

’Variability between S288c and YKM789’;

’Variability among 4 yeast species’;

’Variability between 2 yeast species’

};

% Change the Y axis tick labels to use the CoRRArrayLabels

figure

barh(CoRRArray)

xlabel(’Pearson correlation’);

set(gca, ’YTick’, 1:12);

set(gca, ’YTickLabel’, CoRRArrayLabels);
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3. Furthermore, it is also a good choice to visualize the correlation
between noise level and expression variations, which could be
performed using the function “scatter” in MATLAB. For exam-
ple, type

scatter(geneexpnoise, geneexpvariations, 20,’b’,’filled’)

xlabel(’Measured DM’)

ylabel(’Response to various conditions’)

It will show scatterplot between gene expression noise (“DM
value”) and gene expression variations under “response to various
conditions” (a case in Fig. 1, Pearson correlation coefficient ¼
0.475) in filled dots with blue color (Fig. 2). Users could apply
the same command to visualize the correlation for other
conditions.

3.3 Support Vector

Regression

Support vector regression (SVR) is a machine-learning algorithm to
fit the regression problem. It is an extension of Support vector
machine (SVM) which was initially introduced for solving classifi-
cation problem in the early 1990s [35, 37, 38] (see Note 1). By
implementing the maximum-margin principle, an ε-insensitive loss
function is introduced to SVR where at most ε deviation is allowed
from the actually obtained targets and at the same time requiring
the regression function as flat as possible. When dealing with non-
linear regression, the feature vectors are first projected into a high

Fig. 1 Correlations between gene expression noise level and gene expression variations under different
conditions. Each bar represents the Pearson correlation coefficient between noise level and expression
variation obtained from respective conditions
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dimensional feature space with a kernel function, such as a Gaussian
kernel: K(xi, xj) ¼ exp {� k xi � xjk2/2σ2}, and then the linear
SVR procedure is applied in the high dimensional feature space.
Please check details from [34, 39].

3.3.1 LIBSVM Installation LIBSVM is a popular library which implements various types of
SVM and SVRmodels. It is originally written in Cþþ, but also with
the interface to other programming languages and environments
(e.g., R, MATLAB and Java) be provided.

In this protocol, we use the MATLAB interface of LIBSVM,
which could be downloaded from LIBSVM website http://www.
csie.ntu.edu.tw/~cjlin/libsvm/ (see Note 2). After downloading
and uncompressing the package, theMATLAB implement could be
found in the matlab subfolder. Change the working directory to
that folder (e.g., /dir/for/libsvm), and then use the “make” com-
mand to compile it (see Notes 3 and 4):

cd /dir/for/libsvm

make

Fig. 2 Scatterplot between gene expression noise (DM value) and normalized
gene expression variation under “response to various conditions”. x-Axis repre-
sents the measured gene expression noise DM value while y-axis represents the
normalized gene expression variation under “response to various conditions”.
This scatterplot was made based on 2050 genes that have both DM value and
gene expression variation values
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3.3.2 Data Scaling We define gene expression variation data as input matrix (noted as
“geneexpvariations”) and gene expression noise data as real-valued
training label data (noted as “geneexpnoise”). It is recommended to
scale all the real-valued data into [0,1] or [�1,1]. Here we scale
both data into [�1,1] by using the following command:

geneexpvar_data = geneexpvariations;

geneexpvar_data_scale = 2*( geneexpvar_data - repmat(min(geneexpvar_data,[],1),

size(geneexpvar_data,1),1)) * spdiags(1./(max(geneexpvar_data,[],1) -

min(geneexpvar_data,[],1))’, 0, size(geneexpvar_data,2), size(geneexpvar_data,2)) -

ones(size(geneexpvar_data,1), size(geneexpvar_data,2));

geneexpnoise_scale = 2*(geneexpnoise - min(geneexpnoise)) / (max(geneexpnoise) -

min(geneexpnoise)) -1;

3.3.3 SVR Model Training Once the MATLAB implement of LIBSVM is installed, we can
build the SVR model and use the model to predict testing data.
To train a SVR model, type:

SVRmodel = svmtrain(geneexpnoise_scale, geneexpvar_data_scale, ‘libsvm_options’);

where “libsvm_options” is the option setting for SVM models. In
this protocol, we introduced the ε-SVRmodel with Gaussian kernel
which corresponds to set “-s 3 -t 2”. For the Gaussian kernel based
ε-SVR model, there are hyperparameters such as regularization
parameter “C”, “σ” in the kernel function, and “ε”. We will intro-
duce how to select them in the following section.

3.3.4 SVR Model

Prediction

After building the optimal SVRmodel (“SVRmodel”), we could use
it to predict new testing data (“geneexpvar_data_scale_tst”) with
associated “geneexpnoise_scale_tst”, type:

geneexpnoise_scale_tst_predict = svmpredict(geneexpnoise_scale_tst

geneexpvar_data_scale_tst, SVRmodel);

where “geneexpnoise_scale_tst” could be known value if running
cross-validation (will mention it in Subheading 3.3.6), or could
be any value if for predicting unknown testing data.

3.3.5 Performance

Measurement

We used Pearson’s correlation coefficient as the measurement to
assess the performance of the regression model (see Note 5).
Assume “geneexpnoise_scale_tst” is the real-value label vector after
scaling, and “geneexpnoise_scale_tst_predict” is the predicted value
from the SVR model, the correlation “ρ” could be calculated in
MATLAB by typing:

ρ=corr(geneexpnoise_scale_tst,geneexpnoise_scale_tst_predict,’type’,’Pearson’,’rows’,

’pairwise’);
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Whenever a classification needs to be assessed, the area under
ROC (receiver operating characteristic) curve (AUC) was adopted.
Many packages provide the ROC analysis in MATLAB. Here we
introduce the function “perfcurve” embedded in MATLAB. We
separate gene set into two classes: “noisy” (DM value �1) and
“quiet” (DM value <1). We use the predicted value from the
SVR model (“geneexpnoise_scale_tst_predict”) as the score and
compared with the given true class labels (“noise_labels” compiled
with “noisy” and “quiet” array). In MATLAB, type:

[FPR, TPR, Thres, SVRAUC] = perfcurve(noise_labels, geneexpnoise_scale_tst_predict,

’noisy’)

The returned variable “SVRAUC” gives the AUC score for the
SVR score performance. We can also use “plot(FPR, TPR)” to
generate the ROC curve.

3.3.6 Cross-Validation

and Model Selection

Up to now, we introduced how to train a SVR model and make
prediction using the model. The ultimate goal is to train a model
that has robust performance on unknown testing data. If we use the
whole available dataset to train a model, it may lead to overfitting
[40, 41] which usually show worse performance on unknown
testing data. One strategy is to simulate the procedure of predicting
unknown data from a train model by using the so-called K-fold
cross-validation strategy. That is, we randomly divided the whole
gene sets intoK disjoint sets of equal size. For each run,K� 1 folds
of them are used as training dataset and the remaining one as the
testing dataset. This process is then repeated K times with each of
the K sets used exactly once as the validation data (see Note 6).
Based on the K-fold cross-validation strategy, we then could use a
grid search approach to select the optimal parameters. In this
protocol we chose K ¼ 10. In MATLAB, the tenfold cross-
validation of input matrix and label data could be implemented by
randomly generating indices of tenfold of the whole data set using
the function “crossvalind”. The process of tenfold cross-validation
then could be coded as following:

function RHO = crossvalindperformance (geneexpnoise_scale, geneexpvar_data_scale,

K, ‘libsvm_options’)

indices = crossvalind( ’Kfold’, [ geneexpnoise_scale geneexpvar_data_scale] , K);

% Based on the splitted 10-fold sets, we could perform the cross-validation process.

for i=1:K

Indextst = (indices ==i);

Indextrn = ~Indextst;

geneexpvar_data_scale_tst = geneexpvar_data_scale (Indextst,:);

geneexpnoise_scale_tst = geneexpnoise_scale (Indextst,:);

geneexpvar_data_scale_trn = geneexpvar_data_scale (Indextrn,:);

geneexpnoise_scale_trn = geneexpnoise_scale (Indextrn,:);
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SVRmodel = svmtrain(geneexpnoise_scale_trn, geneexpvar_data_scale_trn,

‘libsvm_options’);

%train a SVR model

[geneexpnoise_scale_tst_predict] = svmpredict(geneexpnoise_scale_tst,

geneexpvar_data_scale_tst,

SVRmodel);

% predict the output of geneexpvar_data_scale_tst using SVRmodel

geneexpnoise_scale_predict(Indextst) = geneexpnoise_scale_tst_predict;

end

RHO = corr(geneexpnoise_scale, geneexpnoise_scale_predict, ’type’, ’Pearson’);

% return the correlation between true real-value ‘geneexpnoise_scale’ and the

predicted

% ‘geneexpnoise_scale_predict’.

end

Once we have the above “crossvalindperformance”, we could
use the grid search strategy to get the optimal hyper-parameters.

function [BestRHO,Ypredict, bestc, bestg, bestp ] = SVRtrain_grid(geneexpnoise_scale,

geneexpvar_data_scale, K, Cbegin, Cend, Cstep, Gbegin, Gend, Gstep, Pbegin, Pend,

Pstep)

BestRHO=0;

i = 1;

for Cloop = Cbegin : Cstep : Cend

c = 2^Cloop;

for Gloop = Gbegin : Gstep : Gend

g = 2^Gloop;

for Ploop = Pbegin : Pstep : Pend

p = 2^Ploop;

C(i,1) = c;

G(i,1) = g;

P(i,1) = p;

i = i + 1;

end

end

end

n=length(C);

N=randperm(n)’; % randomly train SVR using different parameters.

for j=1:n

libsvm_options=[ ’ -s 3 -t 2 -c ’, num2str(C(N(j))),’ -g ’, num2str(G(N

(j))), ’ -p ’,

num2str(P(N(j)))];

% disp(sprintf(’[Local] c=%f, g=%f, p =%f: ’, C(N(j)), G(N(j)), P(N(j))));

RHO = crossvalindperformance (geneexpnoise_scale, geneexpvar_data_scale, K,

’libsvm_options’)

if (BestRHO<= RHO),

BestRHO = RHO; bestc = C(N(j)); bestg = G(N(j)); bestp = P(N(j));

end

end
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We have now obtained the optimal parameters for the SVR
model (see Note 7).

3.4 Feature Selection One of the important processes in machine learning is to find the
most useful or most relevant features for prediction. This is a
process called feature selection which generally could give a better
predictive model or provide a better understanding of which fea-
tures contribute to the predictive model. The feature selection
algorithms are mainly separated into three categories [42]: (1) filter
strategy—extracting features regardless of the model; (2) wrapper
strategy—extracting a combination of informative features with a
learning algorithm; (3) embedded strategy—performing feature
selection and classification simultaneously. Filter strategies are
widely used as it is computationally efficient. However, most of
them do not consider the dependency between features and tend to
select redundant features. Here we introduce a Mutual information
based minimum redundancy–maximum relevance (mRMR) feature
selection method [42–45] which selects features that have the
highest relevance with the target classes and are also minimally
redundant, i.e., features that are maximally dissimilar to each
other. Briefly, given I( fi, y) represents the mutation information
between the feature i and the class label y, the maximum-relevance
method selects the top m features in the descent order of I( fi, y),
i.e., the best m individual features correlated to the target class:

maxsD ¼ 1
Sj j

P

f i∈S

I f i; y
� �

, where S denotes the subset of the features

we are seeking. The minimum-redundancy method in another
hand removes the redundance among features using:

minsR ¼ 1
Sj j2

P

f i, f j∈S

I f i; f j

� �

. The minimum redundancy–maxi-

mum relevance (mRMR) feature selection selects the m-th feature
from the set {F � Sm�1} by maximizing maxf i∈F�Sm�1 D �R½ �,
where F represents the set of features and Sm�1 represents the
already selected m � 1 features. This method has been successfully
used for gene subset selection frommicroarray gene expression data
[43]. For more details, please refer to the paper [45].

Although mRMR could handle both categorical and continu-
ous variables, empirically the categorical one leads to better results
than continuous one. Therefore, we simply binarize the real-value
noise level into two classes (“noisy” and “quiet”) based on whether
DM � 1 or not.

1. mRMR installation. The mRMR software is available from the
website (http://home.penglab.com/proj/mRMR/) where
both online version and offline version with different program-
ming languages are available. In this protocol, we introduce the
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MATLAB version of mRMR. From the website, clicking the
MATLAB version of mRMR will link to MATLAB “File
Exchange.” To download the files from “File Exchange” of
MATLAB, users first need to create an account from MATLAB
and then login. To install MATLAB version of mRMR, users
need to

(a) Install Mutual Information Computation toolbox provided
by the same author, which could also be found at the
website http://home.penglab.com/proj/mRMR/.

(b) From MATLAB, go to the working path, run list ¼ dir(’*.
cpp’); to get the list of files.

(c) For all the files in list, change log(2) to log(2.0) if exists.

(d) Run “makeosmex.m” to compile the Cþþ source codes
(see Note 4).

(e) Select the working folder, right click and select “Add to
Path” to add the working path to MATLAB path.

2. Once the MATLAB packages are downloaded and installed cor-
rectly, we can perform the mRMR feature selection. It requires
the class label variable, the data matrix of input features and the
number of features to be selected. In MATLAB, type:

features = mrmr_miq_d(data, y, m)

where data is the input feature matrix, y is the class label, andm is
the number of features need to be selected.

3. Given any of the selected features, the previous process of train-
ing SVR models is repeated and the cross-validation perfor-
mance is reported. In this way, we could investigate which
features have the highest predictive power and how many fea-
tures may be sufficient to obtain decent predictive power. Par-
ticularly, using all 633 gene expression variation features as input
for the SVR model and by separating genes into “noisy” and
“quiet” sets (based on whether or not DM� 1), the ROC curve
under tenfold cross-validation is shown in Fig. 3.

4. After applying the mRMR approach, we could calculate the
performance of SVR using incremental top features (assume
the results is saved in MATLAB as variable “SVRperf_topfea-
tures”). It could be visualized in Fig. 4 (up to m ¼ 40 top
features) using the following command:

plot(SVRperf_topfeatures,’LineWidth’,6)

xlabel(’Number of the top features’);

ylabel(’AUC scores’);
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Fig. 3 ROC curve generated using tenfold cross-validation. ROC curve is
generated from the modeled noise values by SVR and the corresponded AUC
score is 0.72. The diagonal dash line represents the ROC curve from randomly
guessing

Fig. 4 Performance of the SVR model with incremental top m features. The
selected top 20 features by mRMR method contribute mainly to the discrimina-
tion ability
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From Fig. 4, it indicated that not all features are equally impor-
tant and the discrimination performance of the SVR model
saturated after top 20 features were used (the AUC score ¼ 0.71).

3.5 Downstream

Analysis

In term of ascertaining the predictive power of a valid regression
model, appropriate validations are recommended. In this protocol,
we introduce the validations of the predictive model by calculating
the enrichment of noisy genes (or quiet genes) on different types of
biological aspects such as dosage sensitivity and essentiality, hub
genes in protein-protein interaction, as well as nucleosome posi-
tioning in promoter regions. In addition, we also validate the
model by performing the prediction in other single-cell organisms
(see Note 8).

In the dataset we used, 3909 of the genes do not have the
measured noise level. We thus used the SVR model to obtain
predicted noise level for these genes. As the true gene expression
noise levels for these genes are not available, we cannot validate the
SVR prediction directly. Therefore, we sought to use other features
to validate it in an indirect way. We first divided these 3909 genes
into two groups: “noisy” genes (1844 genes with DM � 1) and
“quiet” genes (2065 genes with DM < 1). Then, we investigate
whether or not the predicted noisy genes show enrichment on
haploinsufficient genes or essential genes. We observed a higher
number of haploinsufficient genes and essential genes in quiet
genes than noisy genes (Wilcoxon rank sum test, P ¼ 1.2e�5 and
P ¼ 4.1e�3 for haploinsufficient genes and essential genes, respec-
tively). We also observed that hub proteins in protein-protein
interaction networks are highly enriched in “quiet” genes (Wil-
coxon rank sum test, P ¼ 4.2e�4), which is consistent with the
fact that “quiet” genes are more conserved than “noisy” genes at
the sequence level [12, 46, 47]. Recent measured nucleosome
positioning data [48] also provide us another view to validate the
predicted noisy gene set. Specifically, it is documented that variably
expressed genes tend to possess nucleosome in the promoter
regions [49]. We thus used the available nucleosome positioning
data to calculate the mean occupancy for different genes, and found
that the measured and predicted noisier genes (genes with top 5%
of predicted and measured DM values) had significantly higher
nucleosome occupancy than other genes, i.e., their promoters are
in a more “closed state” (Wilcoxon rank sum test, P ¼ 2.3e�5 for
measured noisier genes, and P¼ 3.8e�4 for modeled noisier genes,
respectively) [39].

4 Notes

1. Support vector machines or support vector regressions belong
to a class of machine learning algorithms, which could avoid
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“curse of dimensionality” (overfitting) even when the sample
size is small. In other words, it is suitable for dataset with the
so-called “large p, small m” problem (where p is the number of
features and m is the number of samples), which are the cases in
many bioinformatics problems such as gene expression data,
SNP array data, etc.

2. MATLAB provides “Support VectorMachine Regression”mod-
ule in the Statistics and Machine Learning Toolbox™, which is
different from the MATLAB version of LIBSVM. Please check
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for details.

3. If make.m does not work on MATLAB, then you need to type
“mex -setup” to rebuild the package where a suitable compiler
needs to be provided for mex. After that, you may rerun “make”
again.

4. MATLAB provides the interface to call functions and subrou-
tines written in the programming languages C/Cþþ, Fortran,
Python, etc. The wrapped functions are compiled and termed as
“MEX-files”. When installing (via “mex” function) “LIBSVM”
or “Mutual Information Computation toolbox,” users need to
ensure there is a proper complier for Cþþ in their system
environments.

5. A common way to measure the error for a regression model is to
calculate the mean squared error (MSE) or the root mean
squared error (RMSE). But for some specific purpose, the Pear-
son correlation or the Spearman correlation measurement are
also used for assessing the performance.

6. In terms of cross-validation, to date, another popular way is to
pick a small proportion of the whole dataset as an independent
testing data, and then perform the cross-validation testing on
the remaining ones.

7. Usually, less complex model would give more generalized ability.
If achieving similar accuracy between two models when
performing cross-validation, the model with smaller number of
support vectors is preferred. For more detailed information
about SVM, SVR and their extensions using LIBSVM, please
refer to [36] and http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

8. We demonstrated the relationship between gene expression var-
iations and noise in single-cell organisms. It would be possible to
extend it to multicellular organisms attribute to the rapidly
developed single-cell sequencing techniques.
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Chapter 14

A Protocol for Epigenetic Imprinting Analysis
with RNA-Seq Data

Jinfeng Zou, Daoquan Xiang, Raju Datla, and Edwin Wang

Abstract

Genomic imprinting is an epigenetic regulatory mechanism that operates through expression of certain
genes frommaternal or paternal in a parent-of-origin-specific manner. Imprinted genes have been identified
in diverse biological systems that are implicated in some human diseases and in embryonic and seed
developmental programs in plants. The molecular underpinning programs and mechanisms involved in
imprinting are yet to be explored in depth in plants. The recent advances in RNA-Seq-based methods and
technologies offer an opportunity to systematically analyze epigenetic imprinting that operates at the whole
genome level in the model and crop plants. We are interested using Arabidopsis model system, to investigate
gene expression patterns associated with parent of origin and their implications to imprinting during
embryo and seed development. Toward this, we have generated early embryo development RNA-Seq-
based transcriptome datasets in F1s from a genetic cross between two diverse Arabidopsis thaliana ecotypes
Col-0 and Tsu-1. With the data, we developed a protocol for evaluating the maternal and paternal
contributions of genes during the early stages of embryo development after fertilization. This protocol is
also designed to consider the contamination from other potential seed tissues, sequencing quality, proper
processing of sequenced reads and variant calling, and appropriate inference of the parental contributions
based on the parent-of-origin-specific single-nucleotide polymorphisms within the expressed genes. The
approach, methods and the protocol developed in this study can be used for evaluating the effects of
epigenetic imprinting in plants.

Key words Genomic imprinting, RNA-Seq, Maternal and paternal contributions, Arabidopsis
thaliana

1 Introduction

Genomic imprinting is a type of regulation by epigenetic inheri-
tance. The allele inherited from the mother or the father could be
imprinted which involve silencing of that allele with potential
effects on the offspring. The well-known example for imprinting
is the findings from the cross between donkey and horse: a hinny is
produced by a male horse and a female donkey whereas a mule by a
female horse and a male donkey [1]. Studies also showed that the
imprinting plays important roles in diseases like obesity and
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psychiatric disorders [2]. In the model plant Arabidopsis, a pheno-
type of low seed weight is shown by inheriting extramaternal gen-
omes while the reciprocal phenotype of high seed weight with
extrapaternal genomes [3].

In sexually reproducing organisms, fertilization of an egg and a
sperm produces zygote. In most mammals, the zygote genome is
transcriptionally quiescent after fertilization but is activated after
several rounds of cell divisions and also the early embryogenesis
depends on the maternally inherited transcripts from the egg cell
[4, 5]. It has been shown that after the activation of the zygote
genome, with the progressive degradation of the maternal tran-
scripts, the expression program gradually switches to biparental
transcripts ensuing the control of the subsequent development
[4, 5]. The duration of maternal control before the activation of
zygotic genome varies in different species from 1 to 15 cell cycles
[4]. In flowering plants, the length of this duration and how the
parental contribution is regulated and specified are not very clear.
In the model plant Arabidopsis, only few studies have focused on
this but targeted only few genes [6, 7]. Recently, the RNA-Seq-
based transcriptome studies were conducted on this issue in Arabi-
dopsis [4, 8, 9]. However, the findings are not consistent and
inconclusive. Nodine et al. reported equal contributions of mater-
nal and paternal genomes [9], while Autran et al. showed maternal
dominance [4]. Recently, Del Toro-De Leó et al. reconciled the
contradiction by reporting the nonequivalent contributions of
parental genomes with significant number of maternally expressed
genes essential for embryo development [8].

The inconsistency among independent studies could be attrib-
uted to preparation of pure samples caused by the contamination
with other tissues, low-quality sequencing of transcripts, and
improper process of sequenced reads, incorrect variant calling and
inappropriate analyses. A major bottleneck to investigate molecular
aspects of early embryogenesis in plants is the access to early
embryo stages. We developed methods for isolating single-cell
zygotes in Arabidopsis, as well as other representative stages of
early embryo development including zygote, octant, globular
along with later stages of heart, torpedo, bent and mature embryos
in the model plant Arabidopsis [10]. To avoid and prevent mRNA
contamination from the surrounding ovule tissues and endosperm,
the isolated embryos were washed and the representative embryo
stages were confirmed by observation under microscope. Here, we
have elaborated the protocol that was developed based on the
zygote stage RNA-Seq data. Next, the evaluation of maternal and
paternal contributions for the early embryogenesis was performed
firstly by preprocessing the raw RNA-Seq data, secondly by evalu-
ating the contamination of other tissues, thirdly by identifying the
maternal-/paternal-specific SNPs in the expressed genes. In order
to assuring the reliability of the selected SNPs, those assigned with
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at least ten reads were considered for the analysis to assign expres-
sion from (a) maternal or (b) paternal or (c) both. Note that this
enrichment and stringent process might reduce the coverage and
capture of the true parent-of-origin-specific SNPs in the case of low
read depth. Finally, the parental contributions were evaluated based
on the ratio of the read counts for the maternal and paternal alleles.

2 Materials

2.1 Data Arabidopsis thaliana ecotypes Col-0, Tsu-1 and their cross
Col-0 � Tsu-1 (two biological replicates for each) were sequenced
on Illumina HiSeq (pair-end). The unfertilized Col-0 ovule was
also sequenced to evaluate the contamination of other tissues.

Arabidopsis reference genome and gene annotation files were
downloaded from (http://plants.ensembl.org/Arabidopsis_
thaliana/Info/Index).

2.2 Tools A list of software tools are used for the imprinting analysis and
shown below. They should be installed and configured according to
the manuals or documents listed in corresponding websites.

1. Sickle (https://github.com/najoshi/sickle).

2. Bowtie 2 (https://sourceforge.net/projects/bowtie-bio/files/
bowtie2/, version 2.2.3).

3. Htseq (https://github.com/simon-anders/htseq).

4. SAMtools (http://samtools.sourceforge.net, version 1.3.1).

5. Bamtools (https://sourceforge.net/projects/bamtools/, ver-
sion 2.3.0).

6. Picard-tools (https://sourceforge.net/projects/picard/, ver-
sion 1.103).

7. GenomeAnalysisTK (https://software.broadinstitute.org/
gatk/download/, version 3.4-0).

8. R (https://www.r-project.org/, version 3.1.1).

9. edgeR (https://bioconductor.org/packages/release/bioc/
html/edgeR.html).

3 Methods

3.1 Overall Pipeline

of the Analysis

The pipeline can be divided into the following four major steps:

3.1.1 Alignment of Reads

to the Reference Genome

The sequenced reads are required to be aligned to the reference
genome. Before performing this step, the quality control for the
raw reads has to be done. Because the sequenced reads usually have
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deteriorating quality toward the 30-end and some toward the 50-end
as well, including these will negatively impact subsequent analyses.
Therefore, Sickle was used to trim the 30-end and/or 50-end of
reads or the whole reads according to the quality [11, 12]. Then,
Bowtie 2 [13] was used to align the reads to the reference genome.
This offers an ultrafast and memory-efficient tool for alignment,
particularly good at aligning reads of about 50 up to 100s or 1000s
of characters. Furthermore, Bowtie 2 supports gapped, local, and
paired-end alignment modes.

3.1.2 Contamination

Evaluation

Besides controlling the contamination of the surrounding tissues
during the preparation of early stage embryo samples, an evaluation
was also performed on the ovule tissue RNA-Seq data. This
approach and comparative analysis was used to investigate differen-
tially expressed genes between the unfertilized Col-0 ovule and the
Col-0 � Tsu-1 zygote data. We believe that the more differentially
expressed genes that are specific to embryo are selected and used,
there will be less contamination and contribution of false positives
for assigning maternally enriched transcripts.

3.1.3 SNP Calling RNA sequencing technology measures the levels of mRNA tran-
scripts. As many transcripts expected to derive from the alternative
splicing mechanism, the reads may include parts of introns. This
could especially influence the variant calling. To address this con-
cern, the GATK tool of SplitNCigarReads was used, which is
specifically designed to split the reads into exon segments (getting
rid of Ns but maintaining grouping information) and hard-clip any
sequences overhanging into the intronic regions. Then, the variant
was called based on the processed reads.

3.1.4 Analysis

of Maternal and Paternal

Contributions

First, the maternal- and paternal-specific SNPs were selected by
comparing the SNPs in the expressed genes of a cross while consid-
ering its parent separately. Then, the read counts of the parent-of-
origin-specific SNPs and of the reference gene were summarized on
gene level with the average values, in order to reduce the effect of
sequencing issues (e.g., biases produced by the amplification proce-
dure and low-mapping quality). The average read counts of the
maternal- and paternal-specific SNPs are denoted as AvgSNPm and
AvgSNPp, while the corresponding denotations for the reference
gene are AvgREFm and AvgREFp. Second, for genes annotated with
both maternal- and paternal-specific SNPs, the average read counts
of the corresponding SNPs were used to calculate the parent-of-
origin contributions as AvgSNPm/(AvgSNPm þ AvgSNPp) for
maternal contribution and AvgSNPp/(AvgSNPm þ AvgSNPp) for
paternal contribution. Third, for genes assigned with maternal- or
paternal-specific SNPs, the average read counts of the reference
genome could be derived from maternal and/or paternal
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contributions. We assumed that the contribution from the parent-
of-origin with SNPs is equal to the average counts of the parent-
of-origin-specific SNPs, or zero. Then, the average read counts
from the reference gene were evaluated as
AvgREFm ¼ nAvgSNPm þ AvgREFp for maternal-specific gene
or AvgREFp ¼ nAvgSNPp þ AvgREFm for paternal-specific gene,
n ¼ 0 or 1. Then, the maternal and paternal contributions were
estimated as AvgSNPm/(AvgSNPm þ AvgREFp) and AvgREFp/
(AvgSNPm þ AvgREFp).

3.2 Align RNA-Seq

Reads to the Reference

Genome and Quantify

the Corresponding

Genes’ Expression

In this protocol, TAIR 10 is used (http://www.arabidopsis.org).

1. Control the quality of pair-end reads.

$ sickle pe -t Illumina -f crossSeq_R1.fastq -r crossSeq_R2.

fastq –o

crossSeq_R1_trimmed.fastq -p crossSeq_R2_trimmed.fastq -s

crossSeq_singles_trimmed.fastq

2. Map the reads to the reference genome.

$ bowtie2 -p 16 -X 1500 -x refGenome.fa -1 crossSeq_R1_trimmed.

fastq -2 crossSeq _R2_trimmed.fastq -S crossSeq_trimmed.sam

--no-unal

3. Convert the sam file to bam file and sort the reads in the file.

$ samtools view -@ 8 -Sb crossSeq_trimmed.sam -o crossSeq_

trimmed.bam

$ samtools sort -@ 8 crossSeq_trimmed.bam crossSeq_trimmed_

sorted

$ samtools index crossSeq_sorted.bam

4. Count reads for genes.

$ htseq-count -m intersection-strict -s no -i gene_id --quiet

crossSeq_trimmed.sam geneAnnotation.gtf > crossSeq_counts.txt

3.3 Evaluate

Contamination

1. Filter noise for read count.
In R environment, run the following commands:

> raw <- read.csv(’crossSeq_counts.txt’, header=T, sep=’\t’)

> count.cross <- raw[, -1]

> row.names(count.cross) <- as.character(raw[,1])

> count.cross [count.cross <5] <- 0

The count profile for Col-0 ovule (count.parent) was also
generated with the above script.
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2. Identify differentially expressed genes
R package ‘edgeR’ was used for gene expression
comparison.

> library(edgeR)

> strain <- as.factor(c(’cross’, ’parent’))

> y <- DGEList(counts=cbind(count.cross, count.parent),

group= strain)

> y <- calcNormFactors(y)

> y <- estimateCommonDisp(y)

> y <- estimateTagwiseDisp(y)

> et <- exactTest(y, pair=unique(strain))

> et.g <- topTags(et, n=G)[[1]]

> deg <- et.g $FDR< 0.001 & abs(et.g $logFC)>=log2(2)

3.4 Call SNPs SNPs were called with a combination of SAMtools, Bamtools,
Picard-tools, and GenomeAnalysisTK.

1. Verify mate-pair information with picard-tools.

$ mkdir crossSeq_tmp

$ java -Djava.io.tmpdir=crossSeq_tmp -jar FixMateInformation.

jar

I=crossSeq_sorted.bam O=crossSeq_fxmt.bam SO=coordinate CRE-

ATE_INDEX=true

VALIDATION_STRINGENCY=SILENT

2. Filter out reads mapped improperly.

$ bamtools filter -isMapped true -isPaired true -isProperPair

true -in crossSeq_fxmt.bam -out crossSeq_fxmt_flt.bam

$ samtools index crossSeq_fxmt_flt.bam

3. Mark duplicate reads which are not counted for SNPs with
Picard-tools.

$ java -jar MarkDuplicates.jar I=crossSeq_fxmt_flt.bam

O=crossSeq_fxmt_flt_dedupped.bam CREATE_INDEX=true

VALIDATION_STRINGENCY=SILENT M=output.metrics

4. Replace all read groups with a single new read group with
Picard-tools.

$ java -jar AddOrReplaceReadGroups.jar I=crossSeq_fxmt_flt_

dedupped.bam

O=crossSeq_fxmt_flt_dedupped_added.bam SO=coordinate RGID=id

RGLB=library RGPL=platform RGPU=machine RGSM=sample
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5. Remove reads with low mapping-quality.

$ bamtools filter -mapQuality ">=40" -in crossSeq_fxmt_flt_

dedupped_added.bam -out crossSeq_fxmt_flt_dedupped_

added_rmlq.bam

$ samtools index crossSeq_fxmt_flt_dedupped_added_rmlq.bam

6. Split reads into exon segments and hard-clip any sequences
overhanging into the intronic regions

$ java -jar /home/ccb6/jinfeng/worknrc/tool/GenomeAnalysis

TK-3.4-0/GenomeAnalysisTK.jar -T SplitNCigarReads -R refGenome.

fa -I crossSeq_fxmt_flt_dedupped_added_rmlq.bam -o crossSeq_

split.bam -U ALLOW_N_CIGAR_READS

7. Recalibrate the quality score for every read with
GenomeAnalysisTK.

$ java -Djava.io.tmpdir=crossSeq_tmp -jar GenomeAnalysisTK.jar

-T BaseRecalibrator -I crossSeq_split.bam -R refGenome.fa -o

crossSeq_recal_data.grp

$ java -Djava.io.tmpdir=crossSeq_tmp -jar GenomeAnalysisTK.jar

-T PrintReads -I crossSeq_split.bam -R refGenome.fa -o cross-

Seq_realigned_recal.bam -BQSR crossSeq-1_recal_data.grp

8. Call variants.

$ samtools mpileup -uf refGenome.fa crossSeq_split.bam |

bcftools view -vcg - > crossSeq.raw.0.bcf

$ bcftools view crossSeq.raw.0.bcf | vcfutils.pl varFilter

-D100 > crossSeq.raw.vcf

3.5 Select Parent-of-

Origin-Specific SNPs

The maternal and paternal SNPs are produced with the above SNP
calling procedure.

1. Filter SNPs with reads less than 10.

$ awk -F’DP4=’ ’{print $2}’ maternal.raw.vcf | awk -F’,’

’{nSNP=$3+$4; if(nSNP>=10){print NR;}}’ > maternal.nRow

$ awk ’NR==FNR{ pat [$0]; next} FNR in pat {print $0}’

maternal.nRow maternal.raw.vcf > maternal.flt.vcf

$ awk -F’DP4=’ ’{print $2}’ paternal.raw.vcf | awk -F’,’

’{nSNP=$3+$4; if(nSNP>=10){print NR;}}’ > paternal.nRow

$ awk ’NR==FNR{ pat [$0]; next} FNR in pat {print $0}’

paternal.nRow paternal.raw.vcf > paternal.flt.vcf

$ awk -F’DP4=’ ’{print $2}’ crossSeq.raw.vcf | awk -F’,’

’{nSNP=$3+$4; if(nSNP>=10){print NR;}}’ > crossSeq.nRow

$ awk ’NR==FNR{pat[$0]; next} FNR in pat {print $0}’ crossSeq.

nRow crossSeq.raw.vcf > crossSeq.flt.vcf
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2. Extract parent-of-origin-specific SNPs.

$ awk ’{print $1"\t"$2"\t"$3"\t"$4"\t"$5}’ maternal.flt.vcf |

sort > maternal.flt.1.vcf

$ awk ’{print $1"\t"$2"\t"$3"\t"$4"\t"$5}’ paternal.flt.vcf |

sort > paternal.flt.1.vcf

$ comm -3 maternal.flt.1.vcf paternal.flt.1.vcf > maternal.sp.

vcf

$ comm -3 paternal.flt.1.vcf maternal.flt.1.vcf > paternal.sp.

vcf

3. Select parent-of-origin SNPs in cross.

$ awk ’{print $1"\t"$2"\t"$3"\t"$4"\t"$5}’ crossSeq.flt.vcf >

crossSeq.flt.1.vcf

$ awk ’NR==FNR{pat[$0]; next} $0 in pat {print FNR}’ maternal.

sp.vcf crossSeq.flt.1.vcf > crossSeq.maternal.sp.nRow

$ awk ’NR==FNR{pat[$0]; next} FNR in pat {print $0}’ crossSeq.

maternal.sp.nRow crossSeq.flt.vcf > crossSeq.maternal.sp.vcf

$ awk ’NR==FNR{pat[$0]; next} $0 in pat {print FNR}’ paternal.

sp.vcf crossSeq.flt.1.vcf > crossSeq.paternal.sp.nRow

$ awk ’NR==FNR{pat[$0]; next} FNR in pat {print $0}’ crossSeq.

paternal.sp.nRow crossSeq.flt.vcf > crossSeq.paternal.sp.vcf

3.6 Output Parent-

of-Origin-Specific

Read Numbers in Gene

Level

1. Extract the number of reads aligned to reference genome or
with SNPs for parent-of-origin-specific SNPs

$ awk ’{print $1}’ crossSeq.maternal.sp.vcf > crossSeq.

maternal.sp.SNPgene

$ awk -F’DP4=’ ’{print $2}’ crossSeq.maternal.sp.vcf | awk

-F’,’ ’{nRef=$1+$2; nSNP=$3+$4; print nRef"\t"nSNP;}’ >

crossSeq.maternal.sp.readCount

$ paste crossSeq.maternal.sp.SNPgene crossSeq.maternal.sp.

readCount > crossSeq.maternal.sp.SNP.ReadCount

$ awk ’{print $1}’ crossSeq.parental.sp.vcf > crossSeq.

parental.sp.SNPgene

$ awk -F’DP4=’ ’{print $2}’ crossSeq.parental.sp.vcf | awk

-F’,’ ’{nRef=$1+$2; nSNP=$3+$4; print $1"\t"nRef"\t"nSNP;}’ >

crossSeq.parental.sp.readCount

$ paste crossSeq. parental.sp.SNPgene crossSeq.parental.sp.

readCount > crossSeq.parental.sp.SNP. ReadCount

2. Summarize the number of reads for parent-of-origin-specific
SNPs in gene level with the average value

$ awk ’{print $1}’ crossSeq.maternal.sp.vcf | sort | uniq >

crossSeq.maternal.sp.gene

$ awk ’NR==FNR{sumRef[$0]=0; nRef[$0]=0; sumSNP[$0]=0; nSNP

[$0]=0; gene[FNR]=$0; next} $1 in sumRef {sumRef[$1]=sumRef
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[$1]+$2; nRef[$1]=nRef[$1]+1; sumSNP[$1]=sumSNP[$1]+$3; nSNP

[$1]=nSNP[$1]+1;} END{for(i=1;i&lt;=(NR-FNR);i++){if(nRef

[gene[i]]==0){avgRef=0;}else{avgRef=sumRef[gene[i]]/nRef[gene

[i]]}; if(nSNP[gene[i]]==0){avgSNP=0;}else{avgSNP=sumSNP[gene

[i]]/nSNP[gene[i]]}; print avgRef"\t"avgSNP;}}’ crossSeq.

maternal.sp.gene crossSeq.maternal.sp.SNP.ReadCount > cross-

Seq.maternal.sp.gene.ReadCount.0

$ paste crossSeq.maternal.sp.gene crossSeq.maternal.sp.gene.

ReadCount.0 > crossSeq.maternal.sp.gene.ReadCount

$ awk ’{print $1}’ crossSeq.paternal.sp.vcf | sort | uniq >

crossSeq. paternal.sp.gene

$ awk ’NR==FNR{sumRef[$0]=0; nRef[$0]=0; sumSNP[$0]=0; nSNP

[$0]=0; gene[FNR]=$0; next} $1 in sumRef {sumRef[$1]=sumRef

[$1]+$2; nRef[$1]=nRef[$1]+1; sumSNP[$1]=sumSNP[$1]+$3; nSNP

[$1]=nSNP[$1]+1;} END{for(i=1;i&lt;=(NR-FNR);i++){ if(nRef

[gene[i]]==0){avgRef=0;}else{avgRef=sumRef[gene[i]]/nRef[gene

[i]]}; if(nSNP[gene[i]]==0){avgSNP=0;}else{avgSNP=sumSNP[gene

[i]]/nSNP[gene[i]]}; print avgRef"\t"avgSNP;}}’ crossSeq.

paternal.sp.gene crossSeq. paternal.sp.SNP.ReadCount >

crossSeq. paternal.sp.gene.ReadCount.0

$ paste crossSeq. paternal.sp.gene crossSeq. paternal.sp.gene.

ReadCount.0 > crossSeq. paternal.sp.gene.ReadCount

3.7 Calculate

the Maternal

and Paternal

Contributions

for Genes

1. Calculate the contributions for genes with both maternal- and
paternal-specific SNPs

$ comm -12 crossSeq.maternal.sp.gene crossSeq. paternal.sp.

gene > crossSeq.parentShare.gene

$ awk ’NR==FNR{pat[$1]=$0; next} $1 in pat{print pat[$1]}’

crossSeq.maternal.sp.gene.ReadCount crossSeq.parentShare.gene

> crossSeq.parentShare.maternal.sp.gene.ReadCount

$ awk ’NR==FNR{pat[$1]=$0; next} $1 in pat{print pat[$1]}’

crossSeq.paternal.sp.gene.ReadCount crossSeq.parentShare.gene

> crossSeq.parentShare.paternal.sp.gene.ReadCount

$ awk ’NR==FNR{pat[$1]=$3; next} $1 in pat{maternalContr=pat

[$1]/($3+pat[$1]); print $1"\t"maternalContr"\t"1-maternal-

Contr}’ crossSeq.parentShare.maternal.sp.gene.ReadCount

crossSeq.parentShare.paternal.sp.gene.ReadCount > crossSeq.

parentShare.contribution

2. Calculate the contributions for genes with maternal- or paternal-
specific SNPs

comm -23 crossSeq.maternal.sp.gene crossSeq. paternal.sp.gene

> crossSeq.maternal.gene

$ awk ’NR==FNR{pat[$1]; next} $1 in pat{if($2>$3){avgREFp=

$2-$3;}else{avgREFp=$2}; maternalContr=$3/($3+avgREFp); print

$0"\t"maternalContr"\t"1-maternalContr;} ’ crossSeq.maternal.
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gene crossSeq.maternal.sp.gene.ReadCount > crossSeq.maternal.

contribution

comm -13 crossSeq.maternal.sp.gene crossSeq. paternal.sp.gene

> crossSeq.paternal.gene

$ awk ’NR==FNR{pat[$1]; next} $1 in pat{if($2>$3){avgREFm=

$2-$3;}else{avgREFm=$2}; paternalContr=$3/($3+avgREFm);print

$0"\t"1-paternalContr"\t"paternalContr;} ’ crossSeq.paternal.

gene crossSeq.paternal.sp.gene.ReadCount > crossSeq.paternal.

contribution
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Chapter 15

Single-Cell Transcriptome Analysis Using SINCERA Pipeline

Minzhe Guo and Yan Xu

Abstract

Genome-scale single-cell biology has recently emerged as a powerful technology with important implica-
tions for both basic and medical research. There are urgent needs for the development of computational
methods or analytic pipelines to facilitate large amounts of single-cell RNA-Seq data analysis. Here, we
present a detailed protocol for SINCERA (SINgle CEll RNA-Seq profiling Analysis), a generally applicable
analytic pipeline for processing single-cell data from a whole organ or sorted cells. The pipeline supports the
analysis for the identification of major cell types, cell type-specific gene signatures, and driving forces of
given cell types. In this chapter, we provide step-by-step instructions for the functions and features of
SINCERA together with application examples to provide a practical guide for the research community.
SINCERA is implemented in R, licensed under the GNU General Public License v3, and freely available
from CCHMC PBGE website, https://research.cchmc.org/pbge/sincera.html.

Key words Single-cell, RNA-Seq, Pipeline, Cell type, Signature gene, Driving force

1 Introduction

Single cells are the fundamental units of life. Recent advances in
high-throughput cell isolation and sequencing at the single-cell
level enable studying individual transcriptomes of large numbers of
cells in parallel, providing new insights into the diversity of cell types,
rare cells and cell lineage relationships that has been difficult to
resolve in genomic data from bulk tissue samples [1–8]. While the
single cell research field is still in its early stages, it has already made a
strong impact on many fields in biology and led to great improve-
ments in our fundamental understanding of human diseases
[9–17]. We believe that the demand of single cell analytic tools will
continue to grow in the future as broad applications of single cell
transcriptomics in biological and medical researches.

While the future of single-cell next-generation sequencing
based genomic/transcriptomic studies is promising, it comes with
new and specific analytical challenges including the identification
and characterization of unknown cell types, handling the con-
founding factors such as batch and cell cycle effects, and addressing
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the cellular heterogeneity in complex biological systems, just to
name a few [18–22]. Recently, a number of methods specifically
designed for single-cell RNA-Seq (scRNA-Seq) analysis have been
introduced including BackSPIN [15], SNN-Cliq [23], and RaceID
[24] for cell cluster identification; scLVM [22] for confounding
factor handling; Seurat [25] for spatial reconstruction of scRNA-
Seq data, cell cluster identification, and expression pattern visuali-
zation; SAMstrt [26] and SCDE [20] for single-cell differential
expression analysis; and Monocle [21], Wanderlust [27], SCUBA
[28], Waterfall [29], StemID [16], and SLICE [30] for extracting
lineage relationships from scRNA-Seq and modeling the dynamic
changes associated with cellular biological processes. Here, we
present SINCERA [31], a top-to-bottom single cell analytic tool
set designed for the practical usages of the research community.
Specifically, the pipeline enables investigators to analyze scRNA-
Seq data using standard desktop/laptop computers to conduct data
filtering, normalization, clustering, cell type identification, gene
signature prediction, transcriptional regulatory network construc-
tion, and identification of driving forces (key nodes) for each cell
type. We have successfully applied SINCERA to multiple scRNA-
Seq datasets from normal developmental lung and various patho-
logical states from both mouse and human, demonstrating SIN-
CERA’s general utility and accuracy [31–33].

2 Materials

The entire SINCERA pipeline was implemented in R. The execu-
tion requires the following hardware and software.

1. A standard desktop or laptop computer with Windows, Mac
OS X, or Linux operating system.

2. R statistical computing environment (version 3.2.0 or later)
from The Comprehensive R Archive Network (https://cran.r-
project.org/).

3. Install R and Bioconductor packages into the R environment,
including Biobase [34], ROCR [35], RobustRankAggreg
[36], G1DBN [37], igraph [38], ggplot2 [39], ggdendro
(https://cran.r-project.org/web/packages/ggdendro), plyr
[40], and zoo [41].

4. Download SINCERA scripts from https://research.cchmc.
org/pbge/sincera.html.

3 Methods

SINCERA consists of four major analytic components: preproces-
sing, cell type identification, gene signature prediction, and driving
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force analysis (Fig 1). The pipeline takes RNA-Seq expression
values (e.g., FPKM [42] or TPM [43]) from heterogeneous single
cell populations as inputs, and it outputs a clustering scheme of
cells, differentially expressed genes for each cell cluster, enriched
cell type annotations for each cluster, refined cell type-specific gene
signature, and cell type-specific rankings of transcription factors.
SINCERA is a comprehensive toolset with a variety of options for
key analytic steps, many of which can be run independently of one
another. To facilitate ease of reference for beginner users, we have
marked essential steps with *. In the rest of this chapter, we dissect
the functional features of SINCERA into the four components and
describe the usages of each component step by step. R functions in
SINCERA are depicted in italic font.

Fig. 1 Schematic flow of the SINCERA protocol (Adapted from Fig. 1 in Guo et al.
[31])
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3.1 Preprocessing The preprocessing steps include data transformation and normali-
zation, prefiltering cells with low quality, and prefiltering genes
with low expression abundancy and selectivity as described below.

1. *The analysis starts with running the construct function to
create an R S4 object, which will hold all the data and analysis
results. The function takes two parameters as inputs: “exprfile”
and “samplefile”. The “exprfile” specifies the full path to a gene
expression profile matrix where rows are genes and columns are
individual cells (see Note 1). The “samplefile” parameter spe-
cifies the full path to a table that contains a single column
describing the sample information (e.g., biological replicates
or batch difference) of individual cells. Figure 2 shows the
required formats of the two input files.

2. The CCHMC single cell core inspects each individual cell
under microscope after capture and prior to lysis. This quality
control (QC) step is important in filtering out libraries made
from empty wells or wells with excess debris. In addition, we
run the filterLowQualityCells function of SINCERA to further
identify and remove low quality cells. The key parameters of
running this function include: “min.expression”, which speci-
fies the minimum expression value for a gene to be considered
an expressed gene, and “min.genes”, which specifies the lower
bound of the number of expressed genes in a cell. This function
identifies and removes cells with few expressed genes. The
default value for the “min.expression” parameter is 1 FPKM/
TPM and for the “min.genes” parameter is 500.

3. Use filterContaminatedCells function to remove potential con-
taminated cells based on the coexpression of known marker
genes of two distinct cell types, such as the coexpression of
mouse lung epithelial marker Epcam and mouse lung endothe-
lial cell marker Pecam1. Users can specify the marker genes of
the first cell type and of the second cell type in the “markers.1”
and “markers.2” parameter, respectively. This step can repeat
multiple times. For each cell type, we suggest using only highly
specific markers for contamination detection.

Fig. 2 Formats of the input files to the SINCERA pipeline. (a) Format of expression profile table. (b) Format of
sample description table. The number of rows in the sample description table is the same as the number of
cells in the expression profile table. Both files are tab delimited text files
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4. *Use prefilterGenes function to filter out non- or low-expressed
genes, as well as genes that are expressed in less than a certain
number of cells per sample preparation. By default, genes
expressed (>5 FPKM/TPM) in less than two cells will be
filtered out by this function.

5. *Use expr.minimum function to set a minimum expression
value. As part of the preprocessing step, we transformed
FPKM/TPM values less than or equal to 0.01–0.01 in order
to eliminate “zero”s from the follow up data transformation
and analysis. The default minimum value is 0.01 FPKM/TPM.

6. Run batch.analysis function to identify batch differences. This
function plots the quantiles of gene expression in individual
cells from different batches, and compares the distribution of
gene expression among batches using MA plot, Q–Q plot, and
cell correlation and distance measure [31].

7. *Normalization methods are applied to reduce batch effect and
enable expression level comparisons within or across sample
preparations. SINCERA provides both gene level and cell
level normalizations. For gene level normalization, normaliza-
tion.zscore function is applied to each gene expression profile
for per-sample z-score transformation (see Note 2). For cell
level normalizations, we use the trimmed mean. If starting with
normalized expression data (e.g., FPKM or TPM), cell level
normalization is not always necessary.

8. *Run cluster.geneSelection function to select genes with a cer-
tain level of expression specificity for cell type identification.
This specificity filter [31] removes genes unselectively
expressed across all cell types (e.g., housekeeping genes) and
keeps genes with a certain degree of cell type selective expres-
sion. The default specificity threshold is set as 0.7. The main
purpose of this step is to select expression profiles that are
potentially informative about cell types/states and remove
genes that may increase noise in the cell type identification
step (see Note 3).

3.2 Cell Type

Identification

Cell clustering and cell type identification is a key step in the
pipeline and directly influences all downstream analysis. SINCERA
starts with an unsupervised hierarchical clustering of the cells using
the selected expression profiles. Use of an unsupervised hierarchical
clustering approach does not impose prerequisite external
biological knowledge, nor does it require preset knowledge of the
number of clusters; therefore, it is capable of discovering novel cell
types. Multiple iterations using more than one clustering methods
are usually required for cell cluster refinement (see Note 4).

1. *Run cluster.assignment function to assign cells to initial clus-
ters. The default algorithm uses hierarchical clustering with
average linkage, Pearson’s correlation based distance
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measurement, and z-score transformed expression values of the
selected genes.

2. *Run plotMarkers function to check the quality of the obtained
clustering scheme and inspect the expression patterns of a
number of known markers across cell clusters. A scattered
and/or overlapping expression pattern of cell type marker
genes across different cell clusters may suggest a low quality
clustering scheme. In this case, we recommend using cluster.
assignment function with a different parameter setting to rede-
fine cell clusters. This process may need to be iterated several
times to achieve better separation.

3. Run the cluster.permutation.analysis function to perform a
cluster membership permutation analysis [31] to determine
cluster significance. SINCERA implements several quality con-
trol or internal validation steps; this is one of them, used to
check quality of clustering schemes.

4. *Once cell clusters have been defined, use cluster.diffgenes
function to identify differentially expressed genes in each clus-
ter. For each cell cluster, this function uses one-tailed Welch’s
t test or Wilcoxon test to compare the gene expression in a
given cell cluster to the corresponding gene expression in all
other cells, and genes with p-value less than a threshold are
identified as differentially expressed genes for the cluster. One
can also choose binomial or negative-binomial probability test
in this step. The default threshold is 0.05.

5. Next, run celltype.enrichment function to predict cell type for
each cluster (see Note 5). SINCERA has built a precompiled
cell type and gene association table using experimental expres-
sion data obtained from EBI expression atlas (https://www.
ebi.ac.uk/gxa). Cell type prediction is based on the enrichment
of cell type annotations significantly associated with differen-
tially expressed genes of the given cluster using a one-tailed
Fisher’s exact test.

6. Once cell clusters have been defined, use plotMarkers function
to visualize the expression patterns of known cell type markers
in order to cross validate the predicted cell type, i.e., to check
whether they are selectively expressed in their defined cell
clusters.

7. Run celltype.validation function to perform a rank-
aggregation-based quantitative assessment of the consistency
between mapped cell type and the expression pattern of known
cell type marker genes. Figure 3 demonstrates the application
of SINCERA to identify major cell types at E16.5 mouse lung
and to validate the cell type assignment using known markers.
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3.3 Cell Type-

Specific Signature

Gene Analysis

We define cell type-specific gene signature as a group of genes
uniquely or selectively expressed in a given cell type. Once cell
types have been defined, the analysis proceeds with the identifica-
tion of cell type-specific gene signatures using the following
functions.

1. Collect positive and negative marker genes for each mapped
cell type. Use setCellTypeMarkers function to add the collected
markers into SINCERA.

2. *Run the signature.prediction function to predict cell type
signature genes. The basic level of prediction defines

Fig. 3 Identification and validation of major lung cell types at E16.5 mouse lung (Adapted from Figs. 2 and 3 in
Guo et al. [31]). (a) Cells (n ¼ 148) from two sample preparations from fetal mouse lung at E16.5 [31] were
assigned into nine clusters via hierarchical clustering using average linkage and centered Pearson’s correla-
tion. Each color represents a distinct cell cluster, labeled as C1–C9. The rectangles represent single lung cells
from the first preparation and the ellipses consist of single cells from a second independent preparation.
Connection lines indicate the z-score correlation between the two cells �0.05. The blue lines connect cells
within the same preparation, while the red lines connect cells across preparations. (b) Expression patterns of
representative known cell type markers were used to validate the correct assignment of major lung cell types
at E16.5. Expression levels were normalized by per-sample z-score transformation. (c) Receiver Operating
Characteristic curves of the rank-aggregation-based validation showed a high consistency between the cell
type assignments and the expression patterns of known cell type-specific markers
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differentially expressed genes of the given cell type as the
signature genes. For more advanced prediction, the signature.
prediction function uses four features [31] to define cell type-
specific signature genes, including common gene metric (genes
shared by the cluster cells), unique gene metric (genes selec-
tively expressed in the cluster cells), test statistic metric (group
mean comparison between cluster cells and all the other cells),
and synthetic profile similarity (genes correlating with the
model profile of the given cluster). When the marker genes of
a cell type are available, the signature.prediction function uses a
logistic regression model to integrate the four metrics for
ranking prediction of cell-specific signatures [31].Nevertheless,
marker genes may not be always available, especially for novel
cell types. In such cases, the signature.prediction function pre-
dicts signature by using additional filters to refine differentially
expressed genes, including a frequency filter and a fold change
filter. The frequency filter selects genes expressed in at least a
certain percentage of the cells within the defined cluster. The
fold change filter selects genes with a certain degree of average
expression enrichment in the given cluster compared to the
cluster with its second highest average expression. The default
frequency and fold change threshold is 30% and 1.5,
respectively.

3. Use plotHeatmap function to visualize the expression of the
predicted signature genes across cell types (clusters). This
allows a visual inspection of the selective expression of the
predicted signature genes in the defined cell types.

4. Run signature.validation function to validate the signature
prediction using a repeated random subsampling approach
[31]. Essentially, this approach validates the predicted signa-
ture by assessing its classification accuracy in distinguishing the
cells of the given cell type from cells of other types.

3.4 Cell Type-

Specific Key Regulator

Prediction

Identification of the key regulators controlling cell fate is essential
for understanding complex biological systems. SINCERA utilizes a
transcriptional regulatory network (TRN) approach to establish the
relationships between transcription factors (TFs) and target genes
(TGs) based on their expression-based regulatory potential and
identify the key TFs for a given cell type by measuring the impor-
tance of each node in the constructed TRN.

1. Run drivingfoce.selectTFs function to select candidate transcrip-
tion factors for the prediction. The function selects the union
of cell type-specific differentially expressed TFs (e.g., p-value of
one-tailed Welch’s t test <0.05) and commonly expressed TFs
(e.g., expressed in at least 80% of the cell type) as candidates.
Note that here we do not require a key regulator for a given cell
type to be differentially expressed in the cell type.
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2. Use drivingforce.selectTGs function to select cell type-specific
differentially expressed genes or signature genes as candidate
target genes (TGs).

3. Use drivingforce.inferTRN function to infer a TRN using the
cell type-specific expression patterns of the selected candidate
TFs and TGs. The “edge.threshold” parameter is used to select
significant TF-TF or TF-TG interactions (see Note 6) for
building the network. The default threshold is set to 0.05 (see
Note 7).

4. Use drivingforce.rankTFs function to rank TFs based on their
importance to the inferred TRN (see Note 8). Top ranked TFs
are predicted as key regulators (driving force) for the given cell
type. Figure 4 demonstrates of using SINCERA to predict key
TFs in E16.5 mouse lung epithelial cells.

Fig. 4 Prediction of E16.5 mouse lung epithelial specific driving force (Adapted from Fig. 6 and Table 1 in Guo
et al. [31]). (a) Rank importance of transcription factors (TFs) in the largest connected component (LCC) of
epithelial specific transcriptional regulatory network (TRN). The sizes of the TF nodes are proportional to their
average-ranked node importance. The LCC of epithelial TRN is comprised of 348 nodes and 432 edges. The
nodes in red are TFs and the nodes in grey are differentially expressed genes in epithelial cells and are not TFs.
The edges were established using the first-order conditional dependence approach described in the Guo et al.
[31] with a cutoff at 0.05. (b) Top 20 predicted key TFs for lung epithelial cells at E16.5 based on the integration
of six TF importance metrics. DC ranking based on degree centrality, CC ranking based on closeness centrality,
BC ranking based on betweenness centrality, DFC ranking based on disruptive fragmentation centrality, DCC
ranking based on disruptive connection centrality, DDC ranking based on disruptive distance centrality. All
ranks are in decreasing order of the TF importance values. TFs in bold font are associated with lung-related
mouse phenotypes. TRN is plotted using cytoscape 2.8 (http://www.cytoscape.org/)
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4 Notes

1. The pipeline takes aligned and quantified RNA-Seq expression
values (e.g., FPKM or TPM) as inputs. Functions related to
sequencing data mapping, alignment, quantification, and
annotation are not part of the pipeline, and they can be pro-
cessed using widely available software such as Tophat [44, 45],
BWA [46], Cufflinks [42], and RSEM [43].

2. We noticed that, typically, in a scRNA-Seq dataset, individual
genes can have different levels of baseline expression, which
means that a cell type selective marker may have nonzero
expression in cells other than its defined cell type, but its
expression amplitude is usually much higher in the selective
cell type than in other cell types. The normalization.zscore
function scales the expression of individual genes using a z-
score transformation in order to better reveal their major
expression patterns and suppress the unnecessary variations
associated with the scRNA-Seq data. Performing within-
sample z-score transformation is based on the assumption
that cell type distribution is roughly the same among replicates.
If this assumption cannot be guaranteed (e.g., there is a large
batch difference among different replicates), a global z-score
transformation should be used. Of note, the z-score trans-
formed expression values are mainly used in the cell type iden-
tification step and the visualization of gene expression patterns,
but not in differential expression analysis.

3. The cluster.geneSelection function also provides other criteria
for informative gene selection, including coefficient of variance
and average expression across all cells, which have been utilized
in existing scRNA-Seq analyses [12, 22]. The specificity.thresh-
oldSelection function in SINCERA can be used to determine
the specificity threshold. This function measures the
per-sample specificity of a set of ribosomal genes based on
Ribosome pathway annotation (KEGG PATHWAY:
hsa03010), and then chooses a criterion that can filter out at
least 95% of the ribosomal genes.

4. We compared multiple clustering algorithms using a variety of
independent scRNA-Seq datasets [31] and showed that hierar-
chical clustering, while may not always be the best way, is
generally applicable and easy to use. Therefore, hierarchical
clustering is suitable for biologists to use as one of the tools
for initial cell clustering identification [31]. In addition to the
default clustering method, we also include hierarchical cluster-
ing with ward linkage [47], consensus clustering [48, 49], and
tight clustering [50] as optional cluster determination methods
in the pipeline. Users can choose different clustering methods
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for cell cluster identification by setting the “clustering.
method” parameter in the cluster.assignment function. For
advanced users, comparing different methods and adjusting
parameters to achieve optimized results are encouraged.

5. The cell cluster identification and cell type assignment are the
bottlenecks in current scRNA-Seq analysis. It requires us to
extract cell type relevant information from multiple sources,
including the expression patterns of known marker genes and
functional annotations enriched by the cluster specific differen-
tially expressed genes. Knowledge integration by an expert is
usually required to determine the cell type of a given cell cluster
at the end. To our knowledge, there are multiple tools for gene
sets enrichment analysis, e.g., DAVID [51] and ToppGene
[52], but lack of tools for cell type enrichment analysis. To
facilitate the general usage of the pipeline, we implemented
celltype.enrichment function in SINCERA as an attempt to
automate the cell type prediction. The current version of cell
type annotations is based on the open source gene expression
data from EBI Expression Atlas (https://www.ebi.ac.uk/gxa);
bias and incompleteness from the collection of individual
experimental sources are inevitable. We recommend the use
of it for initial cell type screening, together with functional
enrichment analysis using cluster specific differentially
expressed genes, and curation and knowledge integration by
experts to refine the cell type mapping. We foresee that single
cell transcriptome analyses will largely improve cell type predic-
tion by providing a high resolution and unbiased cell type
separation and associated signature identification for lung and
other organs.

6. For the transcriptional regulatory network (TRN) construc-
tion, we focus on identifying the relationships between TF-TF
(transcription factor and its partners/cofactors) and TF-TG
(transcription factor and its target genes). The possible feed-
back regulations from target genes to TFs and TF autoregula-
tions are not considered in the present implementation of
SINCERA. Regulatory relationships are established based on
first-order conditional dependence of gene expression [31],
adapted from the inference of first-order conditional depen-
dence Directed Acyclic Graph (DAG) in [37].

7. The inferred TRN may consist of multiple connected compo-
nents. The largest connected component (LCC) is the one that
has the largest number of nodes among all connected compo-
nents. If the LCC of the inferred TRN is not large enough,
which means that the number of nodes in LCC is less than a
certain percentage (e.g., 80%) of the total number of selected
TFs and TGs for TRN inference, this indicates that the number
of interactions is insufficient to build the TRN. The
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drivingforce.inferTRN function needs to be reexecuted with a
higher threshold to build the TRN using more interactions.
The drivingforce.getLCC function can be used to assess
whether a large enough LCC exists in the inferred TRN.

8. To identify cell type-specific driving force, we measure and rank
the importance of TFs in the cell type-specific TRN based on
the integration of six TF importance metrics, including degree
centrality, closeness centrality, betweenness centrality, disrup-
tive fragmentation centrality, disruptive connection centrality,
and disruptive distance centrality. Details about the six metrics
can be found in Guo et al. [31]. Individual metrics provide
local views of the importance of a node to the network, and
their integration can provide a better global view of the node
importance in the network. In the current setting, only the TFs
in the LCC of the inferred TRN are included in the TF ranking,
and only the LCC is used to calculate the values of the six
metrics for each TF.
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Chapter 16

Mathematical Modeling and Deconvolution of Molecular
Heterogeneity Identifies Novel Subpopulations
in Complex Tissues

Niya Wang, Lulu Chen, and Yue Wang

Abstract

Tissue heterogeneity is both a major confounding factor and an underexploited information source. While a
handful of reports have demonstrated the potential of supervised methods to deconvolve tissue heteroge-
neity, these approaches require a priori information on the marker genes or composition of known
subpopulations. To address the critical problem of the absence of validated marker genes for many
(including novel) subpopulations, we develop a novel unsupervised deconvolution method, Convex
Analysis of Mixtures (CAM), within a well-grounded mathematical framework, to dissect mixed gene
expressions in heterogeneous tissue samples. To facilitate the utility of this method, we implement an
R-Java CAM package that provides comprehensive analytic functions and graphic user interface (GUI).

Key words Convex analysis of mixture, Data deconvolution, Tissue heterogeneity, Marker genes,
Blind source separation

1 Introduction

Tissue heterogeneity, arising from multiple subpopulations within a
sample, is both a major confounding factor in studying individual
subpopulations and an underexploited information source for char-
acterizing complex tissues [1, 2]. Because the interactions among
subpopulations are fundamental to both normal development and
disease progression, molecular analysis of subpopulations in their
native microenvironment provides the most biologically relevant
picture of the in vivo state [3, 4]. Complex tissues can be character-
ized by the identity, composition, and expression profile of possibly
unknown subpopulations [5], where subpopulations are often
defined by marker genes (genes whose expressions are exclusively
enriched in a particular subpopulation [6, 7], Fig. 1a). Current
global profiling methods can neither identify differentially expressed
genes among different subpopulations, nor distinguish among the
contributions of different subpopulations to a globally measured
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gene expression profile [1, 5]. Thus, it is generally impossible to tell
whether expression change reflects a change in subpopulation com-
position, a change in subpopulation-specific expression, or both.

An experimental solution to mitigate tissue heterogeneity is to
isolate subpopulations before molecular profiling by supervised cell
sorting or tissue microdissection [1, 8]. However, these methods
are biased, costly, inapplicable to previously assayed samples, and
may alter the expression values [5, 6]. While some reports have
demonstrated the potential of computational methods to resolve
tissue heterogeneity, a priori information on the composition [2, 5,
9] or signatures [6, 10–12] of the subpopulations believed to be
present is almost exclusively required. Acquiring these prior infor-
mation relies on experimental solutions and key limitations remain
unsolved. Such supervised methods consequently have difficulty
detecting subpopulations that are subtle, condition-specific
(molecular signatures and cell function are changed but not cell
appearance), or previously unknown [3, 13].

To address the critical problem of the absence of validated
marker genes for many (including novel) subpopulations, we devel-
oped a fully unsupervised computational method (convex analysis
of mixtures—CAM) that can identify subpopulation-specific
marker genes directly from the original mixed expressions—a non-
trivial task. CAM requires no prior information on the number,
identity, or composition of the subpopulations present in mixed
samples [12], and does not require the presence of pure subpopula-
tions in sample space [14, 15]. Fundamental to the success of our

Fig. 1 CAM principles for unsupervised identification of novel subpopulation-specific marker genes

224 Niya Wang et al.



approach is the newly proven mathematical theorems, showing that
the scatter simplex of mixed expressions is a rotated and com-
pressed version of the scatter simplex of pure expressions, where
the marker genes are located at each vertex (Fig. 1b). CAM works
by geometrically identifying the vertices (and their resident genes)
of the scatter simplex of globally measured expressions (Note 1).

Tissue samples to be analyzed by CAM contain unknown num-
bers and varying proportions of molecularly distinct subpopula-
tions. Expression of a given gene in a specific subpopulation is
modeled as being linearly proportional to the abundance of that
subpopulation [5, 6] (without log transformation [16], Fig. 1c).
Because many genes can be coexpressed across different subpopu-
lations, CAM instead identifies the subpopulation-specific marker
genes by detecting the simplex vertices of mixed expression data
(Note 2). The minimum description length (MDL) criterion deter-
mines the number of subpopulations present [17] (Note 3).

2 Materials

To facilitate various applications of CAMmethod, we developed an
R-Java CAM package that provides comprehensive analytic func-
tions and graphic user interface (GUI) to help users readily apply
CAM method to their own datasets. The core functions of CAM
are implemented in R, while the GUI is in Java, so some prerequi-
sites need to be fulfilled before running the software package.

1. CAM has been tested under Windows, Mac OS X, and Linux
operating system, so any of the operating systems is applicable.

2. The latest version of CAM is implemented in Java SE 6 Update
31 and R 2.15.3. The compatible versions of Java and R
environments need to be installed.

3. “Runiversal” and “R.matlab” packages need to be installed in
the R environment. Runiversal package is used for the commu-
nication between R and Java, and R.matlab package is used to
read MAT files.

4. Download CAM software from http://mloss.org/software/
view/437. Users can simply use GUI to run the software, or
run the core R module alone under R environment.

3 Methods

The steps of applying CAM to data analysis are illustrated in the
following flowchart (Fig. 2). Users who are interested in the details
about the algorithm can find all information in Note 4.

3.1 Software CAM package consists of R and Java modules. The R module is a
collection of main and helper functions, each represented by an R
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function object and achieving an independent and specific task
(Fig. 3). The R module mainly performs various analytic tasks
required by CAM: figure plotting, update, or error message gener-
ation. The Java module is developed to provide a GUI (Fig. 4).

The R module performs the CAM algorithm and facilitates
subsequent analyses including compartment modeling
(CM) [18, 19], nonnegative independent component analysis

Fig. 2 Flowchart of CAM method
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(nICA) [20], and nonnegative well-grounded component analysis
(nWCA) [21, 22]. These tasks are performed by the three main
functions: CAM-CM.R, CAM-nICA.R, and CAM-nWCA.R,
which can be activated by the three R scripts, namely, Java-run-
CAM-CM.R, Java-runCAM-ICA.R, and Java-runCAM-nWCA.R.

After launching the jar file “CAM-Java.jar” by double-clicking
it or running the command line “java -jar CAM-Java.jar” in the
terminal, a dialogue window will pop up allowing the user to enter
the file path of the binary executable file “Rscript.exe”, which can
be easily found in the installation folder of R. After entering the
correct file path, we can see the main frame of the software as Fig. 4.

Here we use a sample dataset—the real DCE-MRI dataset in
the software package to show how to use the software to analyze
heterogeneous data (Note 4–6).

(a) Select “Load Data File” on the main frame and click “. . .”
button.

(b) In the file selection dialog, first select “R /Matlab Data (*.rda,
*.mat)” in “Files of Type:”, then select one dataset from the
following file path “data / data_DCE_MRI/ typical_case.
rda”. Click “Open” and then click “Load”.

Fig. 3 Schematic and illustrative flowchart of R-Java CAM package

Fig. 4 Interactive Java GUI supported by a multithread design strategy
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(c) On the main frame of the software, Select “CAM-CM”, set
“number of organs” to 3 and time interval to 0.5 min, check
the boxes “Use multivariate clustering to denoise”, “Do visu-
alization of the convexity”, and “Show concentration” results
in a figure, and then click “Run”.

After about 2–3 min, the results will be shown in the table areas
(Fig. 4), together with two figures (Fig. 5b, c) displayed in sepa-
rated windows.

In this case, the number of compartments 3 is decided by
minimum descriptive length principle. Calculated by using MDL.
R function, MDL value achieves minimum when the number of
compartments is 3.

3.2 Datasets The software tool can be readily applied to various heterogeneous
datasets. In the sample datasets, we provide three groups of data,
including gene expression data, DCE-MRI image data and aerial
image data to help users explore the potential use of the software
tool. In the gene expression dataset, the raw measured gene expres-
sion data were generated by our collaborators at Georgetown Uni-
versity Medical School, where the mRNA was derived from MCF7
(cancer) and HS27 (stroma) cell lines, and then biologically mixed
to obtain mixed mRNA expression profiles [23]. mRNA samples
from two breast cancer cell lines were extracted and mixed at
proportions designed to mimic actual biological tumor samples.
Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) provides a noninvasive in vivo method to evaluate
tumor vasculature architectures based on contrast accumulation
and washout [24]. In this dataset, the snapshots of DCE-MRI
sequence are taken from the same tumor at 26 time points
(Fig. 5a) [25]. The third dataset consists of mixtures of three
natural images, each of which contains 103 � 103 pixels.

The processing steps in the Data preprocessing section need to
be followed if readers are working on gene expression datasets.

Fig. 5 Application of R-Java CAM to deconvolving dynamic medical image sequence
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3.3 Anticipated

Results

Here we discuss the anticipated results that can be achieved by
executing this method to analyze gene expression data. This data-
set, containing gene expression profiles from mixed rat liver, brain,
and lung biospecimens, can be downloaded from GEO website
through the access code GSE19830.

Unsupervised identification of marker genes from mixed
expression data allows us to acquire the relative expression levels
of those genes (Fig. 1a). The average of sum-normalized marker
gene expressions produces subpopulation proportions (Note 4 and
Fig. 1b). Using predesigned RNA mixing experimental data
acquired from biological mixtures of pure gene expressions
(brain, liver, lung) [5, 6], we showed that CAM identified the
marker genes that define each of the multiple subpopulations
(Fig. 6a, b) and estimated the proportions of these subpopulations
in the mixed samples (Fig. 6c) and their respective expression
profiles (Fig. 6d).

Since the presence of marker genes is both a sufficient and
necessary condition for deconvolution (Note 4), these results (vali-
dated by the ground truth) confirm the existence of marker genes
and CAM’s ability to detect these genes blindly and correctly
(Fig. 6b). Moreover, CAM enabled detection of condition-specific
marker genes across sample groups (for example, disease versus
control). Thus, novel marker genes for a subpopulation in a given
context can be determined, despite an expected change in that
subpopulation’s relative abundance and/or state.

Fig. 6 Validation of CAM for blindly identifying subpopulation-specific marker genes (distinct subpopulations
include liver, lung, and brain)
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4 Notes

1. Algorithms involved in each step.

(a) Data preprocessing.
First, we eliminate genes whose signal intensity (vec-

tor norm) is lower than 5% (noise) or higher than 95%
(outlier) of the mean value over all genes. The signals from
these genes are unreliable and could have a negative
impact on the subsequent analyses. Second, when
J � K, dimension reduction is performed on the raw
measurements using principal component analysis, sample
clustering or nonnegative matrix factorization techniques,
to improve the efficiency of subsequent analyses [13, 26].

(b) Gene expression clustering.
To further improve the efficiency of CAM algorithm,

we aggregate gene vectors into representative clusters
using affinity propagation clustering (APC) [18, 19, 26,
30]. As an initialization-free and near-global-optimum
clustering method, APC simultaneously considers all
gene vectors as potential exemplars and recursively
exchanges real-valued ‘messages’ between gene vectors
until a high-quality set of exemplars and corresponding
clusters gradually emerge. The APC algorithm is data-
driven, so the message-passing procedure may be termi-
nated after a fixed number of iterations or after the
updates stay constant for some number of iterations. In
all of our experiments, we adopted a default damping
factor of 0.5. The update rules are repeated iteratively
and terminated when no further change occurs for
about 10 iterations [19, 26]. Our experience indicates
that these default algorithmic parameter settings are
quite suitable for obtaining good results.

(c) Convex analysis of mixtures (CAM) algorithm.

l Latent variable model on mixed gene expressions in
heterogeneous samples.

Consider gene expression measured from a sample
composed of K subpopulations. We assume that the
measured expression level x is the weighted sum of each
subpopulation’s expression, where the contribution
from a single subpopulation is proportional to the
abundance and specific expression of that subpopula-
tion [2, 5, 6, 10, 16]. The measured expression level
thus is (Fig. 1c).
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xj ið Þ ¼
XK
k¼1

ajksk ið Þ, ð1Þ

where sk(i) is the expression level of gene i in subpopu-
lation k, xj(i) is the expression level of gene i in hetero-
geneous sample j, and ajk is the proportion of
subpopulation k in heterogeneous sample j. We further
assume that gene expression values are nonnegative
(before log-transformation [13, 16]) and adopt the
definition of subpopulation-specific marker genes as
those genes whose expression values are exclusively
enriched in a particular subpopulation [6, 10, 11]
(Fig. 1a). Thus, the specific expression of a marker
gene (MG) in subpopulation k* is

sk∗ iMG�kð Þ ¼ sk∗ iMG�kð Þ > 0, k ¼ k∗;
0, k 6¼ k∗:

�
ð2Þ

When marker genes are known for each subpopu-
lation, we can use the expression values of marker genes
to deconvolve mixed expression profiles [6, 10,
11]. When no such prior knowledge is available (i.e.,
none of K, ajk and sk(iMG) is known a priori), solving
latent variable model (Eq. 1) is essentially a blind
source separation problem [21, 22], where accurate
identification of subpopulation-specific marker genes
is a critical but nontrivial task [6, 10, 27].

Our formulation dissects complex transcriptional
heterogeneity into combinations of distinct subpopu-
lations, leveraging the advantages of both tissue-wide
and single-cell approaches [14, 28]. Specifically, dis-
cerning differences among single cells can gain valuable
information about intercellular heterogeneity but
allow only a few markers per cell and is prone to cell-
cycle confounders; while tissue-wide measures provide
a detailed picture of averaged population state but at
the cost of losing information about intersubpopula-
tion heterogeneity.

l Parallelism between latent variable model and the the-
ory of convex sets.

Consider a set of J (� K) heterogeneous samples
of varying composition of unknown subpopulations.
Applying a sum-based standardization to gene expres-
sion values xj (i) across samples and using vector-
matrix notation, we can reexpress Eq. 1 as
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x ið Þ ¼
XK
k¼1

sk ið Þak ð3Þ

where x(i) and ak are the vector notations (over sam-
ples) of mixed expression values and subpopulation
proportions, respectively. Since sk(i) is nonnegative
and standardized, as a nonnegative linear combination
of {ak}, the set of gene expression vectors x(i) forms a
subset of the convex set uniquely defined by the set of
{ak} [18, 21, 29] (Fig. 1b)

X ¼
XK
k¼1

sk ið Þak; sk ið Þ � 0;
XK
k¼1

sk ið Þ ¼ 1; i ¼ 1; . . . ;N

( )
ð4Þ

where N is the number of genes.

l Mathematical foundation for unsupervised identifica-
tion of novel marker genes.

We propose the convex analysis of mixtures (CAM)
framework to exploit the strong parallelism between a
linear latent variable model (Eq. 3) and the theory of
convex sets. The novel insight is that subpopulation-
specific marker genes that define pure subpopulations
reside at the extremities of the scatter simplex formed
by all genes, while the interior of the simplex is occu-
pied by coexpressed genes (whose values are linear
nonnegative combinations of pure subpopulation
expression values) (Fig. 1b). We can then identify
novel marker genes by geometrically locating the verti-
ces of the multifaceted simplex that most tightly
encloses the gene expression profiles and has the same
number of subpopulations as vertices. CAM is sup-
ported theoretically by a well-grounded mathematical
framework as summarized in the following newly
proven theorems.

Lemma 1 (Scatter Compression and Rotation): Suppose
that pure subpopulation expressions are nonnegative, and
x(i) ¼ a1s1(i) þ. . .þ aksk(i) þ. . .þ aKsK(i) where ak’s are
linearly independent and nonnegative, then, the scatter
simplex of pure subpopulation expressions is compressed
and rotated to form the scatter simplex of mixed expres-
sions whose vertices coincide with ak’s.

Theorem 1 (Unsupervised Identifiability): Suppose that
pure subpopulation expressions are nonnegative and sub-
population-specific marker genes exist for each constitut-
ing subpopulation, and x(i) ¼ a1s1(i) þ. . .þ aksk(i)
þ. . .þ aKsK(i) where ak’s are linearly independent, then,
the vertices of the scatter simplex of mixed expressions
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host subpopulation-specific marker genes and coincide
with ak’s that can be readily estimated from marker gene
expression values with appropriate rescaling.

From Lemma 1 and Theorem 1, there is a feasible
mathematical solution to identify subpopulation-
specific marker genes directly from the measured gene
expression mixtures: in principle, under a noise-free
scenario, we can blindly identify novel marker gene
indices by locating the vertices of the mixed expression
scatter simplex [19, 22, 26]. We emphasize that CAM
can distinguish between phenotypically similar subpo-
pulations, by working in scatter space in which the
power of detecting simplex vertices depends solely on
the mixture diversity (a basic requirement for any
inverse problem) rather than phenotypic diversity [14].

To identify the vertices of clustered scatter simplex
of mixed expression profilesX, on theM cluster centers
{gm}, we assumed K true vertices and conducted an
exhaustive combinatorial search (with total CM

K com-
binations), based on a convex-hull-to-data fitting cri-
terion, to identify the most probable K vertices. We
used the margin-of-error

δm, 1;...Kf g∈C M
K
¼ min

α1, ...αK
gm �

XK

k¼1
αkgk

��� ���
2
,

αk � 0,
XK

k¼1
αk ¼ 1,

ð5Þ

to quantify the ‘mismatch’ between gm and convex setX
defined by {gk ¼ 1, . . ., K}, where we have
δm, 1;...Kf g∈C M

K
¼ 0 if gm is inside X. We then selected

the most probable K vertices when the corresponding
sum of the margin-of-error between the convex hull and
the remaining “exterior” cluster centers reaches its min-
imum [18, 22, 26]:

gk¼1∗, ...,K∗

� � ¼ argmin
1;...Kf g∈C M

K

XM

m¼1
δm, 1;...Kf g∈C M

K
ð6Þ

Subsequently, we identified the indices of
subpopulation-specific marker genes based on the
memberships associated with {gk ¼ 1∗ , . . ., K∗}, where
{1∗, . . ., K∗} denote the cluster indices of the true
simplex vertices, and the genes assigned to gene cluster
at a vertex {i|i ∈ gk

∗} are declared to be marker genes,
i.e., MGk ¼ {i|i ∈ gk

∗}.
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2. Estimation of the proportions and specific expression profiles
of subpopulations.

On the basis of the expression levels of subpopulation-
specific marker genes detected by CAM, the relative propor-
tions of constituent subpopulations are estimated using
standardized averaging,

bak ¼ 1

nMG�k

X
i∈MG�k

x ið Þ
x ið Þk k , k ¼ 1, . . .K , ð7Þ

whereMG-k is the index set of marker genes for subpopulation
k; nMG-k is the number of marker genes for subpopulation k;
and ||.|| denotes the vector norm (L1 or L2). The resulting bakf g
are then used to deconvolve the mixed expressions into
subpopulation-specific profiles by nonnegative least-square
regression techniques [6, 10, 11, 18, 26].

3. Model selection procedure.
One important discovery step for CAM (as a fully unsuper-

vised method) is to automatically detect the number K of cell
subpopulations in the heterogeneous samples. We used MDL,
a widely adopted and consistent information theoretic criterion
[17], to guide model selection [18]. We performed CAM on
several competing candidates, and selected the optimal model
that assigns high probabilities to the observed data with para-
meters that are not too complex to encode [17]. Specifically, a
model is selected with K subpopulations by minimizing the
total description code length defined by [18]

MDL Kð Þ ¼ �log L XM jθ Kð Þð Þð Þ þ K � 1ð ÞJ
2

log Mð Þ

þKM

2
log Jð Þ, ð8Þ

where L(�) denotes the joint likelihood function of the clus-
tered latent variable model, XM denotes the set of M gene
vector cluster centers, and θ(K) denotes the set of freely
adjustable parameters in the clustered latent variable model
[18, 19, 26].

4. When you double-click CAM-Java.jar and there is no dialog
showing up, please make sure you followed all the steps in
Subheading 2. The R and Java environments have to be cor-
rectly installed beforehand. If you use Ubuntu operating sys-
tem, you may not open the software by double-clicking
without modifying the system properties. Instead you can
open it by typing “java -jar CAM-Java.jar” in the terminal
under the path of the software.

5. After successfully loading the data, there might be some error
information dialog popping up when clicking the ‘run’ button.
The most possible reason is that Runiversal or R.matlab
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packages are not installed correctly. You need to install these
two packages manually beforehand. Another possible reason is
that when you use the test dataset, you did not select the right
corresponding algorithm for the data. For example, you should
apply CAM-ICA to datasets in data_correlation folder,
CAM-CM to data_DCE_MRI, and CAM-nWCA to data_
image. If the above scenarios do not apply to your case, please
check the Application status bar carefully and follow the
instructions.

In general, the detailed information in Application status
bar will tell you how to resolve the problem. Most errors are
due to missing necessary packages or loading the wrong
dataset.

6. The time required to run this software tool is mainly related to
the size of the dataset and CPU power. The complete proce-
dure usually takes less than 10 min for each of the three sample
datasets.
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