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Preface

Google queries for systems biology and pathway analysis fetch over 9 million and 14 million
entries, respectively. These numbers speak volumes about the utility and popularity of
systems data analysis in modern bioscience. These days, any gene expression or SNP-
analyzing manuscript would feature a chapter on pathways, ontology enrichment, and/or
biological networks. The application of systems biology approaches now spreads widely
from basic research and preclinical drug discovery to translational research and personalized
healthcare.

Systems biology “focuses on the systematic study of complex interactions in biological
systems, thus using a new perspective (integration instead of reduction) to study them”
(Wikipedia). From a practical standpoint, it translates as an integration of accumulated
biological knowledge in a computer-readable format, followed by a creation of tools for
the analysis of biological and chemical experimental data. Starting in the 1970s, biochemis-
try was the first field codified into databases such as BRENDA, EMP/MPW, and, later,
KEGG. Over the years, a regulation and signaling components were added to biochemistry
in the form of protein interaction databases such as HPRD and BIND. On top of that,
comprehensive ontologies of cellular processes and protein functions were developed and
integrated, the best known of which is Gene Ontology (GO).

Functional analysis is inseparable from high-throughput, or “omics”-driven experimen-
tal biology, which has been rapidly evolving since the late 1990s. At that time, the “genome-
wide,” noisy assays with thousands of data points were nearly illegible for a majority of wet
lab researchers, in part, due to the “diaper stage” of development for the statistical tools
which only helped to reduce data complexity, but largely failed to aid in understanding of the
underlying biology. Gradually, bioinformaticians and wet lab biologists found efficient ways
of communicating. As a result, wet lab biologists acquired the skill of using existing
databases of pathways and processes for mapping and prioritization of experimental data
(enrichment analysis). Later, biological networks were added to analysis toolboxes, borrow-
ing from years of research in graph theory and physics.

Recent technological advances and scalability in next-generation sequencing (NGS) and
other genomics technologies enable production of biological “big data” at unprecedented
tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of
biomedical research critically depends on an integration of the clinical and omics informa-
tion, sophisticated analytical tools, and taking into account prior knowledge about
genotype-phenotype relationships and protein functionality. Experimental “omics” data
has been accumulated in publicly available and private databases for over 20 years.

Analytical tools are described in hundreds of computational biology and bioinformatics
publications and scattered across code repositories and commercial bioinformatics suites.
Information about protein functionality is structured and accumulated in computer-
readable format in several curated databases on protein-protein interactions, pathways,
and network modules. Such curated content is then used for analysis of “omics” datasets,
by means of ontology enrichment, interactome density analysis, pathways activation analysis,
network modeling, and other approaches. In this book, we collected cutting-edge material
on the latest methods and studies on “data-driven” and “knowledge-based” analysis from
the internationally recognized leaders in this field.
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This book represents a compilation of methods of functional analysis and their applica-
tions, written by experts from academy, governmental research organizations, pharmaceuti-
cal industry, and bioinformatics laboratories. It begins with the modeling of protein-protein
interactions (PPIs) and protein-nucleic acids interactions as these are the building blocks of
protein functionality and the most essential tools for functional analysis of large experimen-
tal datasets. There are several ways to extract protein interactions. Information on many of
them is scattered in hundreds of thousands of experimental articles and can be extracted in
both human- and machine-readable form. We have two chapters devoted to extracting PPIs
from literature and an experimental one, using a modified yeast two-hybrid assays. In the
former approach, a team from GeneGo (now acquired by Thomson Reuters) developed a
sophisticated approach of structured manual annotations to assemble a comprehensive
database of over 1 million experimentally proven interactions of different types.

In the second chapter, the authors present high-throughput, quantitative, yeast two-
hybrid screening approach coupled with the NGS approach. This strategy allows identifica-
tion of interacting proteins that are preferentially associated with a bait of interest and helps
eliminate nonspecific interacting proteins.

As an example of the large-scaledata-driven network approach, we included a chapter on
co-expression modules in cancer datasets. The analysis of differentially expressed gene sets
(in a form of functionally related genes or pathways) in a form of either RNA-Seq or
microarray experiments has been a method of choice for extracting the strongest signals
from “omics” data. The authors combined an experimental approach of extracting co-
expression modules from cancer expression datasets via meta-analysis with calculation of
promoter motifs. Analysis of gene co-expression networks is a powerful “data-driven” tool,
invaluable for understanding cancer biology and mechanisms of tumor development.

The most common and intuitive approach to functional analysis of “omics” datasets is
ontology enrichment. Essentially, it consists of labeling each gene, protein, and RNA species
on the experimental list with a certain functional category (cellular process, pathway,
network module etc.), followed by grouping them according to the “collective” labels.
The motivation behind using gene sets instead of individual genes is twofold. First, this
approach incorporates pre-existing biological knowledge into the analysis and facilitates the
interpretation of experimental results. Second, it employs a statistical hypotheses testing
framework.

In this book, we include a comprehensive review of the Gene Set Analysis (GSA)
approaches for testing differential expression of gene sets and several GSA approaches for
testing statistical hypotheses beyond differential expression that allow to extract additional
biological information from the data. Gene sets frequently can be analyzed as pathways.
A novel algorithmOncoFinder evaluates the activation of molecular pathways on the basis of
gene/protein expression data in the objects of interest. OncoFinder enables performing
both quantitative and qualitative analysis of the intracellular molecular pathways. Another
approach enables causal analysis of multidimensional “omics” dataset using an “upstream
analysis” strategy which combines TRANSFAC database with analysis of the upstream signal
transduction pathways that control the activity of these TFs. This analysis highlighted a
substantial heterogeneity of specific TF-DNA binding sites in terms of their observed
relative binding avidity and correlations between avidity for specific TF-DNA binding sites
with the levels of mRNA transcription at the proximal gene target. Combined gene expres-
sion/promoter sequence analysis has been applied to extract novel insight from cancer
biology.
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Another novel method, weighted SNP correlation network analysis (WSCNA), can be
used to identify SNP networks from GWAS data, create network-specific polygenic scores,
examine network topology to identify hub SNPs, and gain biological insights into complex
traits. An automatic annotation system (Association Rule Mining Annotator for Pathways)
utilizes rule mining techniques to predict metabolic pathways across a wide range of
prokaryotes. This system can be used to enhance the quality of automatically generated
annotations as well as annotating proteins with unknown function.

The increasing amount and variety of data in biosciences call for innovative methods of
visualization, scientific verification, and pathway analysis. sbv IMPROVER is a platform that
uses crowdsourcing and verification to create biological networks with easy public access.
Currently, it contains 120 networks built in Biological Expression Language to interpret
data from PubMed articles with high-quality verification available for free on the CBN
database. Another solution is an integrated computational platform Lynx—aweb-based
database and knowledge extraction engine, which provides its users with advanced search
capabilities and an access to a variety of algorithms for enrichment analysis and network-
based gene prioritization. User-friendly web services and interfaces connect its users both to
the Lynx integrated knowledge base (LynxKB) and integrated analytical tools.

MetaCore and Key Pathway Advisor constitute an integrated platform for functional
data analysis. This platform enables analysis of sequencing data, annotation of gene variants,
gene expression, proteomics, and other high-throughput (OMICs) data, which is routinely
challenging because of its biological complexity and high level of technical and biological
noise. We present techniques and concepts used to represent complex biomedical networks.
The BioXM Knowledge Management Environment (BioMax AG, Germany) is an example
of how a domain such as oncology is represented and how this representation is utilized for
research. We also discuss the ArrayTrack (National Center for Toxicology Research, FDA)
that is also used in the routine review of genomic data submitted to the FDA. ArrayTrack
stores a full range of information related to DNA microarrays and clinical and nonclinical
studies as well as the digested data derived from proteomics and metabolomics experiments.

Recent advances in genome sequencing and “omics” technologies are opening new
opportunities for improving diagnosis and treatment of human diseases. The precision
medicine initiative in particular aims at developing individualized treatment options that
take into account individual variability in genes and environment of each person. Systems
biology approaches that group genes, transcripts, and proteins into functionally meaningful
networks will play a crucial role in the future of personalized medicine. By that, systems
biology enables comparisons of healthy and disease-affected tissues and organs from the
same individual, as well as these between healthy and disease-afflicted individuals. However,
the field faces a multitude of challenges ranging from data integration to statistical and
combinatorial issues in data analyses. Here, we collected computational approaches devel-
oped to tackle challenges in network analyses. Successful application of systems biology
approach to psychiatric diseases opens the application part of our book. Another chapter is
using an example of Alzheimer’s disease to identify and analyze the candidate gene lists, and
divide them up into different tiers of evidence consistency established by enrichment analysis
across sub-datasets collected within the same experiment and across different experiments
and platforms. Ingenuity Pathway Assistant tool was used to expand these gene lists and
interpret the outputs.

One chapter is devoted to a different kind of networks, the connectome of brain cells
affected in mental diseases. It has been long recognized that schizophrenia, unlike certain
other mental disorders, appears to be delocalized, i.e., difficult to attribute to a dysfunction
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of a few specific brain areas, and may be better understood as a disruption of brain’s
emergent network properties. The authors focused on topological properties of functional
brain networks obtained from fMRI data, in order to demonstrate that some of those
properties can be used as discriminative features of schizophrenia in multivariate predictive
setting.

We have also included a chapter on in-depth clinical analysis of a particular pathway, with
pleiotropic effects on key cellular functions. Wnt (Wingless-related integration site) is one of
the key signaling pathways in eukaryotes, which orchestrates self-renewal programs in
normal somatic stem cells as well as in cancer stem cells. Aberrant Wnt signaling is associated
with a wide variety of malignancies and diseases. Although our understanding has increased
tremendously over the past decade, therapeutic targeting of the dysregulated Wnt pathway
remains a challenge and the effect of Wnt-targeted compounds poorly predictable. The
chapter revised recent preclinical and clinical therapeutic approaches to target the Wnt
pathway.

Functional data analysis is evolving quickly as a discipline. Novel network algorithms and
software tools are published almost weekly, and the scope of applications expands with every
new DNA, RNA, or protein assay hitting the market. Therefore, we could not and had no
intention to pack as many tools as possible into this volume. Instead, we tried to focus on the
established methods and software packages we see in the marketplace every day and provide
readers with a broad understanding of issues and applications of this fascinating new field.

Los Angeles, CA, USA Tatiana V. Tatarinova
Solana Beach, CA, USA Yuri Nikolsky
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Chapter 1

A Practical Guide to Quantitative Interactor Screening
with Next-Generation Sequencing (QIS-Seq)

Yunchen Gong, Darrell Desveaux, David S. Guttman,
and Jennifer D. Lewis

Abstract

Yeast two-hybrid screens are a powerful approach to identify protein-protein interactions; however, they are
typically limited in the number of interactions identified, and lack quantitative values to ascribe confidence
scores to the interactions that are obtained. We have developed a high-throughput, quantitative, yeast two-
hybrid screening approach coupled with next-generation sequencing. This strategy allows the identification
of interacting proteins that are preferentially associated with a bait of interest, and helps eliminate nonspe-
cific interacting proteins. The method is high-throughput, allowing many more baits to be tested and many
more candidate interacting proteins to be identified. Quantitative data allows the interactors to be ascribed
confidence scores based on their enrichment with particular baits, and can identify both common and rare
interacting proteins.

Key words Yeast two-hybrid screen, Next-generation sequencing, High-throughput screening,
Quantitative

1 Introduction

Protein-protein interactions are an essential aspect of cellular
function and signaling. First developed in 1989 by Fields and
Song [1], yeast two-hybrid screening has become a key tool in the
identification of protein-protein interactions. In the yeast two-
hybrid system, the bait protein is fused to the DNA-binding
domain while the prey protein is fused to the transcriptional activa-
tion domain (or vice versa). When the bait and prey proteins
interact, the DNA-binding domain and activation domain are
brought into close proximity, which allows activation of reporter
genes. The original nuclear-based eukaryotic yeast two-hybrid sys-
tem of Fields and Song uses the galactose (Gal4) transcriptional
activation and DNA-binding domains from yeast [1]. A slightly
modified version, the LexA system, employs prokaryotic-binding
partners, the B42 acid blob activation domain, and LexA
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DNA-binding domain from E. coli, and is also nuclear-based [2].
The split-ubiquitin yeast two-hybrid system is a membrane-based
screen, and uses the two halves of ubiquitin and the VP16 activa-
tion domain from herpesvirus [3]. Reporter genes can include
genes for amino acid biosynthesis to enable rescue of auxotrophic
yeast strains, colorimetric reporters like beta-galactosidase, or anti-
biotic resistance to aureobasidin A.

These different yeast two-hybrid systems have been used to
query the interaction of a bait with a specific prey protein or set of
proteins (binary screens), or with proteins encoded by a cDNA
library prepared from a particular tissue or treatment (library
screens). cDNA libraries can be prepared by random hexamer
priming that does not yield full-length clones, poly T priming
that may lack 50 end of the gene, or by selecting mRNAs with 50

caps and priming with poly T oligos for full-length cDNAs. See [4]
for a detailed review on cDNA libraries. cDNA libraries can be
normalized to remove highly abundant clones; however, normal-
ized libraries tend to bemuchmore expensive than non-normalized
libraries. Screens can occur by mating, where haploid bait-
containing or prey-containing yeast strains are mated to form a
diploid strain, or by transformation where yeast is transformed
with the plasmid DNA encoding the bait and prey constructs. In
either case, interacting proteins are identified through the activa-
tion of reporter genes. The flexibility of yeast two-hybrid screens is
one of its strengths, allowing researchers to investigate specific
interactions between known proteins, and to identify unknown
binding partners with a protein of interest. Library screens are of
particular interest to many researchers, as they allow an unbiased
assessment of potential binding partners. However, nonspecific
interactions may arise from highly abundant cDNAs in non-
normalized cDNA libraries, and “sticky” interactions of intrinsically
promiscuous proteins may obscure true binding partners. A major
bottleneck in yeast two-hybrid screening involves identifying the
prey vector cDNAs from yeast colonies that express the reporter
genes for interaction. This is typically done by extracting the plas-
mids from each yeast colony, followed by Sanger sequencing of the
cDNA to identify the gene. As this is a laborious process, the most
common interacting proteins are typically identified while more
rare interactors may be missed, and the data is not quantitative.

We developed a high-throughput yeast two-hybrid screen that
employs next-generation sequencing (QIS-Seq) to overcome some
of these obstacles [5]. QIS-Seq allows quantitative identification of
interacting proteins, and high-throughput screening of experimen-
tal versus control bait proteins (i.e., luciferase). Screening of colo-
nies carrying putative interactors is carried out in a typical
yeast two-hybrid fashion by selection for prototrophy and/or
expression of marker genes. Colonies carrying putative interactors
are harvested en masse and the plasmids are extracted. We use
next-generation sequencing to identify cDNAs cloned into the
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prey plasmid for each screen with a bait of interest or negative
control, and clones present in the original cDNA library. Sequenc-
ing reads can then be normalized and compared among the bait,
negative control, and cDNA library at each locus. This quantitative
method allows the calculation of an enrichment score for each
interacting prey to identify cDNAs that are specifically enriched
for a bait of interest compared to the negative control. It also allows
nonspecific and likely false positives to be excluded by identifying
interacting proteins found in all or many baits or the negative
control, as well as cDNAs that are equivalently abundant in both
the library and the experimental sample. Since sequencing of clones
is not limiting, QIS-Seq identifies both rare and common interact-
ing proteins, and may reduce the need for normalized libraries. We
provide protocols for a split-ubiquitin membrane-based yeast two-
hybrid screen by transformation of competent yeast cells [5]. Nev-
ertheless, this approach may be applied to any type of yeast two-
hybrid screen, or used in a mating approach. QIS-Seq is most
effectively used for organisms where genome information is avail-
able as the reads are mapped to specific loci; however, in organisms
with incomplete genomes, the sequences could be analyzed to
identify particular domains that interact with the bait.

2 Materials

2.1 Yeast Media 1. YPAD (yeast extract-peptone-adenine-dextrose) Medium: 1%
Yeast extract, 2% Bacto peptone, 2% D-þ-glucose >99.5%, 2%
Bactoagar, 0.004% Adenine sulfate. See Table 1 for details
(see Note 1).

2. SC (synthetic complete) Medium: 0.062% drop-out (DO)
supplement –His/�Leu/�Trp, 2% D-þ-glucose >99.5%,
0.17% yeast nitrogen base without amino acids or ammonium
sulfate, 0.5% ammonium sulfate, 2% Bactoagar (seeNote 2). See
Table 2 for specific media combinations required for a split-
ubiquitin yeast two-hybrid screen.

Table 1
YPAD medium

Ingredient Broth Plates

Yeast extract 6 g 6 g

Peptone 12 g 12 g

Glucose 12 g 12 g

Adenine sulfate 40 mg 40 mg

H2O to 600 mL to 600 mL

Bactoagar n/a 12 g

Quantitative Interactor Screening 3
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3. 10 mg/mL histidine: Prepared in ultrapure water, filter ster-
ilized, stored at 4 �C (see Note 3).

4. 10 mg/mL leucine: Prepared in ultrapure water, filter steri-
lized, stored at 4 �C (see Note 3).

5. 10 mg/mL tryptophan: Prepared in ultrapure water, filter
sterilized, stored at 4 �C (see Note 3).

6. 2 mg/mL uracil: Prepared in ultrapure water, filter sterilized,
stored at 4 �C (see Note 3).

7. 2 M 3-aminotriazole (3-AT): Prepared in ultrapure water, filter
sterilized, stored at 4 �C (see Note 4).

8. 90 mm and 150 mm sterile disposable petri dishes.

2.2 Yeast Competent

Cells

1. Saccharomyces cerevisiae strain AP-4.

2. 50% PEG 3350: Prepared in ultrapure water, filter sterilized,
and aliquoted (see Note 5).

3. 1 M Lithium acetate: Prepared in ultrapure water, autoclaved
and aliquoted (see Note 6).

4. Sterile 4.5 mm glass beads (Zymo Research).

5. 10 mg/mL sheared salmon sperm DNA.

6. Purified bait and prey plasmids.

7. Sterile toothpicks.

8. Sterile 250 mL and 2 L Erlenmeyer flasks.

9. Sterile glass or plastic pipets.

10. Sterile ultrapure H2O.

11. Sterile 2 mL Eppendorf tubes.

12. Sterile 250 mL centrifuge bottles.

2.3 Isolation

of Plasmids from Yeast

1. 0.1 M sodium phosphate buffer pH 7.4/1.2 M sorbitol:
Prepared with 100 mL of 0.1 M sodium phosphate buffer
pH 7.4 using 7.74 mL of 1 M NaH2PO4 and 2.26 mL of
1 M Na2HPO4. Add 1.2 M sorbitol. Bring up to 100 mL
volume with ultrapure H2O and filter sterilize.

2. 0.1 M sodium phosphate buffer pH 7.4: Prepared from
100 mL of 0.1 M sodium phosphate buffer pH 7.4 using
7.74 mL of 1 M NaH2PO4, 2.26 mL of 1 M Na2HPO4 and
sterile ultrapure H2O.

3. Lyticase (25KU): Dissolved in 50 μL of 0.1 M sodium phos-
phate buffer pH 7.4 þ 137.5 μL ultrapure H2O þ 312.5 μL
80% glycerol, freshly made and used immediately.

4. 10 mg/mL RNAseA.

5. Sterile 80% glycerol.

Quantitative Interactor Screening 5



6. Qiagen spin miniprep kit (see Note 7).

7. Sterile 1.5 mL Eppendorf tubes.

8. Cell spreader.

9. Sterile 50 mL centrifuge tubes rated for high speed.

2.4 cDNA

Amplification

1. Platinum Taq High Fidelity polymerase and buffer.

2. dNTPs.

3. Vector-specific forward and reverse primers.

4. Qiagen PCR purification kit.

2.5 Equipment 1. Stir plates and magnetic stir bars.

2. Biosafety cabinet (class II type A2) or laminar flow hood.

3. Ultra-low freezer.

4. 42 �C water bath.

5. Benchtop microcentrifuge.

6. 37 �C incubator.

7. 28 �C shaker-incubator.

8. 28 �C incubator.

9. Spectrophotometer.

10. High-speed refrigerated floor centrifuge (i.e., Beckman Coul-
ter) with a JA-20 rotor for 50 mL tubes, and a JA-14 rotor for
250 mL bottles.

11. Thermocycler.

12. Horizontal gel electrophoresis system, agarose gels and power
supply.

3 Methods

3.1 Comments on

Working with Yeast

Maintain sterile technique throughout. Perform manipulations in
sterile hood. Yeast are fragile, particularly after transformation, so
make sure you pipet gently. If Eppendorf tube lids are not suffi-
ciently opened, use a sterile pipet tip or toothpick to push the lid
further open, instead of nonsterile gloves.

3.2 Testing a New

Bait to Determine

Suitability for Yeast

Two-Hybrid Screening

1. Promoter strength and the protein of interest can impact a bait
protein’s suitability for a yeast two-hybrid screen. Our system
uses the CYC1 weak promoter or the TEF1 strong promoter.
We also advise constructing different versions of your bait
protein, based on the annotation of different domains in the
protein, as some baits can lead to autoactivation of the reporter
genes (see Note 8). For our split-ubiquitin yeast two-hybrid
screen, we test our bait constructs in pBT3-N-HA-K8-CAAX

6 Yunchen Gong et al.



(weak CYC1 promoter) or pTLB-1-HA-K8-CAAX (strong
TEF1 promoter). Both these vectors have been modified with
a polybasic region (K8) and a prenylation signal (CAAX) for
strong membrane association [5–7].

2. If using a histidine reporter for interactions, 3-AT is used to
titrate the sensitivity of the HIS3 reporter as it can be leaky. To
determine the optimal concentration of 3-AT, we co-transform
the bait of interest with pFur4-NubI, pFur4-NubG, or pPR3-
N/pPR3-C. Fur4 is a yeast transmembrane protein that is used
as a negative control [8]. NubI contains the N-terminus of
ubiquitin with a wild-type isoleucine at residue 13, and inter-
acts readily with the C-terminus of ubiquitin (Cub), regardless
of the bait or prey fusion. NubG has a glycine at residue 13
which prevents interaction with Cub, unless NubG and Cub
are brought into close proximity by the interaction between the
bait and prey [3]. Therefore, you can use pFur4-NubI as a
positive control for interaction and pFur4-NubG as a negative
control for interaction. The empty library vector (pPR3-N
where Cub is at the N-terminus of the fusion, or pPR3-C
where Cub is at the C-terminus of the fusion) is used as an
additional negative control. From one co-transformation, plate
100 μL of cells on SD–His/�Leu/�Trp þ 5, 10, 20, 30 mM
3-AT and 5 μL of cells on SD–Leu/�Trp to determine the
transformation efficiency. This range should work if the bait
construct is under the weak promoter (pBT3-N backbone).
If the bait construct is under the strong promoter (pTLB-1
backbone), try a higher range of 3-AT (up to 100 mM).
Each bait protein needs to be independently tested to
determine whether it autoactivates the reporter genes. Co-
transformations are always less efficient than single transforma-
tions. However, co-transformations will still produce enough
colonies to optimize the 3-AT concentration.

3. Once you have determined the general range of 3-AT that
appears effective, the concentration of 3-AT needs to be further
optimized using 2.5 mM intervals in the range of 3-AT con-
centration where there are lots of colonies with the bait and
pFur4-NubI and few or no colonies with the bait and pFur4-
NubG. For instance, if SD–His/�Leu/�Trp with 5 mM 3-AT
looked promising, test a new co-transformation with the same
constructs as in step 2 on SD–His/�Leu/�Trp containing
0.5 mM, 2.5 mM, 5 mM, and 7.5 mM 3-AT. If there are few
colonies from the co-transformations in step 2, you can try
0.5–2.5 mM 3-AT or alternatively test the bait under the
strong promoter (pTLB-1-HA-K8-CAAX).

4. You may want to include a bait protein with known interacting
proteins to use as a positive control for the screen. However, it
is more common to work with baits that have no known

Quantitative Interactor Screening 7



interacting proteins. In this case, it is critical to titrate the
system as described above to ensure that your bait protein
shows some level of specific interaction.

5. We advise including a bait protein to be used as a negative
control for interaction. We used luciferase for this purpose, as
it was not expected to interact with Arabidopsis proteins. The
negative control will identify proteins that are intrinsically
sticky, allowing the exclusion of these candidate interacting
proteins from the data set.

3.3 Preparing

and Transforming

Competent Cells

for a Bait Strain or Test

Library Screening

1. Streak AP-4 yeast strain from glycerol stocks onto YPAD plates.
Grow at 28 �C for 5 days. It is best to streak a new plate from
the glycerol stock each week.

2. Pick four to five colonies and resuspend in 0.5 mL YPAD in a
sterile 1.5 mL microfuge tube with a sterile toothpick. Yeast
cells are quite sticky, so make sure the colonies are thoroughly
resuspended.

3. Transfer to 250 mL flask with 50 mL YPAD (see Note 9).
Incubate at 250 rpm 28 �C overnight (16–20 h).

4. Measure the OD600 of a ½ or ¼ dilution of the overnight
culture. The OD600 of the undiluted culture must be >1, and
should be a minimum of 4.5. If the OD600 is too low, there is a
problem with the yeast and a new culture should be set up.

5. Subculture cells to obtain a culture that is actively growing. To
do this, inoculate 300 mL YPAD in a sterile 2 L flask with
sufficient overnight culture so that the OD600 is 0.1. Calculate
the amount to add based on the initial OD600 of the culture.
Incubate at 250 rpm 28 �C for 3–4 h (see Note 9).

6. Harvest the culture when the OD600 reaches 0.6. Use a
sterile long glass or plastic 1 mL pipette to take aliquots so
that the inside of the flask remains sterile, as a Pipettor will not
be sterile along its length.

7. Harvest the culture at 1000� g for 5 min at room temperature
in sterile 250 mL bottles.

8. Resuspend the pellet in 20mL sterile water. Use a new bottle of
sterile water to prevent contamination. Use a 10 mL sterile
glass pipet and pipet gently. Transfer to a sterile 50 mL centri-
fuge tube. Centrifuge again at 1000 � g for 5 min at room
temperature.

9. Resuspend the pellet in 1.5 mL sterile water. Use a 10 mL
sterile glass pipet and pipet gently.

10. Aliquot 100 μL of competent cells to microfuge tubes for the
controls, and 200 μL of competent cells to tubes for the library
transformation. Better transformation efficiencies are obtained
with multiple small-scale library transformations.

8 Yunchen Gong et al.



11. Mix in plasmids to aliquots of yeast.

(a) For the controls: use 500 ng of each plasmid. We would
test the bait with pPR3-N for the transformation effi-
ciency, with pFur4-NubI as a positive control, and with
pFur4-NubG as a negative control.

(b) For a test library transformation: use 1 μg of each plasmid.
When performing large-scale library transformations, it is
better to transform the library into a strain that already
carries the bait plasmid (see Subheading 3.4).

12. Flick tubes to make sure yeast have not settled. Add 300 μL of
PEG/LiAc to controls or 600 μL of PEG/LiAc to library
transformations. Mix into yeast while adding so that yeast do
not aggregate. To prepare 1X PEG/LiAc for one reaction, mix
240 μL 50% PEG, 36 μL 1 M LiAc, 10 μL 10 mg/mL boiled
and cooled salmon sperm DNA, and 14 μL water. Scale up as
needed (see Note 10).

13. Heat shock for 45 min at 42 �C. Flick tubes every 10 min.

14. Pulse spin, wash with 500 μL water. Twirl toothpick in Eppen-
dorf tube to resuspend yeast. Make sure to pipet gently!

15. Pulse spin, wash with 250 μL water if plating on 90 mm plates.
If you are optimizing the 3-AT concentration, wash with
500 μL water. Wash with 400–500 μL water if plating on
150 mm plates.

16. Library transformations should be plated on 150 mm
SD–His/�Leu/�Trp þ appropriate 3-AT.

(a) Controls (pPR3-N, pFur4-NubI, pFur4-NubG) should
be plated onto 90 mm SD–His/�Leu/�Trp þ appropri-
ate 3-AT.

(b) The transformation efficiency (pPR3-N) plates should
have 10 μL and 100 μL of bait þ empty prey vector on
SD–Leu/�Trp (see Note 11).

(c) The water control should be plated onto 90 mm
SD–Leu/�Trp.

(d) Use sterile glass beads for even plating.

17. Incubate at 28 �C for 1 week.

18. See Subheading 3.2 to evaluate your results.

3.4 Preparation and

Single Transformation

of Competent Cells

This should be used for higher efficiency transformations needed
for large-scale library screening (see Note 12).

1. Streak AP-4 carrying bait construct from glycerol stock onto
SD–Leu plates. Grow at 28 �C for 7 days. It is best to streak a
new plate from the glycerol stock each week.

Quantitative Interactor Screening 9



2. Pick four to five colonies and resuspend in 0.5 mL SD–Leu
with a toothpick. Yeast cells are sticky, so make sure the colonies
are thoroughly resuspended.

3. Transfer to 250 mL flask with 50 mL SD–Leu. Incubate at
250 rpm 28 �C for 24 h.

4. Take OD600 of the overnight culture (must be >1). Prepare at
least a ½ dilution to get an accurate reading.

5. Inoculate competent cell culture with a small aliquot of the
overnight culture, in 300 mL SD–Leu in a sterile 2 L flask. You
may want to start with 250 μL, but may have to optimize the
volume depending on how well your bait strain grows. Incu-
bate at 250 rpm 28 �C overnight (12–15 h). Determine the
OD600 early in the morning so that the culture does not grow
beyond OD600 ¼ 0.6 (see Note 9).

6. Harvest culture when the OD600 ¼ 0.6. Use a sterile long glass
1 mL pipette to take aliquots so that the inside of the flask
remains sterile as a Pipettor will not be sterile along its length.

7. Harvest culture 1000 � g 5 min RT in sterile 250 mL bottles.

8. Resuspend pellet in 20 mL sterile water. Use a 10 mL glass
pipet and pipet gently. Centrifuge at 1000 � g 5 min at room
temperature.

9. Resuspend pellet in 1.5 mL water. Use a 10 mL glass pipet and
pipet gently.

10. Aliquot 200 μL yeast to tubes for transformations. Better
efficiency is achieved with multiple tubes of 200 μL, rather
than with fewer large volume transformations.

11. Mix in plasmids to aliquots of yeast. For controls or library
transformation, use 500 ng of plasmid. For the controls, we
would test the bait with pPR3-N for the transformation effi-
ciency, with pFur4-NubI as a positive control, and with pFur4-
NubG as a negative control.

12. Flick tubes to make sure yeast have not settled. Add 600 μL of
PEG/LiAc to transformations. Mix into yeast while adding so
that yeast do not aggregate. Vortex 5 s, setting 6. To prepare 1X
PEG/LiAc for one reaction, mix 480 μL 50% PEG, 72 μL 1 M
LiAc, 20 μL 10mg/mL boiled and cooled salmon spermDNA,
and 28 μL water. Scale up volumes as needed (see Note 10).

13. Heat shock 45 min 42 �C. Flick tubes every 10 min.

14. Pulse spin, wash with 500 μL water. Twirl toothpick in tube to
resuspend yeast.

15. Pulse spin, wash with 250 μL water if plating on 90 mm plates.
Wash with 400–500 μL water if plating on 150 mm plates.

16. Library transformations should be plated on two 150 mm
plates of SD–His/�Leu/�Trp þ appropriate 3-AT.

10 Yunchen Gong et al.



(a) Controls (pPR3-N, pFur4-NubI, pFur4-NubG) should
be plated onto 90 mm SD–His/�Leu/�Trp þ appropri-
ate 3-AT.

(b) The transformation efficiency (pPR3-N) plates should be
plated with 5 μL and 50 μL of baitþ empty prey vector on
SD–Leu/�Trp (see Note 11).

(c) The water control should be plated onto 90 mm
SD–Leu/�Trp.

(d) Use sterile glass beads for even plating.

17. Incubate at 28 �C for 1 week.

18. Pick colonies and restreak on SD–His/�Leu/�Trp to create
master plates. If your colonies are a range of sizes, choose the
larger and medium size colonies (as compared to your pFur4-
NubG negative control).

3.5 Isolation of

Plasmids from Yeast

Plasmid DNA is extracted en masse to create a pool of prey inter-
actors for each bait screen (see Note 13).

1. Restreak colonies containing putative interacting proteins from
the SD–His/�Leu/�Trp master plate on SD–Trp to preferen-
tially retain prey plasmid. Grow at 28 �C for 3–4 days.

2. Repeat #1.

3. Streak onto SD–Trp 150mm plates. For each colony, make two
streaks with a sterile flat toothpick about 1 cm long. Grow at
28 �C for 3–4 days.

4. Harvest yeast off plates with a cell spreader into SD–Trp. For
a specific bait, pool all yeast together. Yeast cells lyse most
efficiently when fresh. The following volumes are for a pellet
of ~5 g.

5. Centrifuge at 1000 � g for 5 min at room temperature. Pipet
off supernatant.

6. Wash pellet in 0.1 M sodium phosphate buffer pH 7.4/1.2 M
sorbitol. Centrifuge at 1000 � g for 5 min at room
temperature.

7. Resuspend pellet in 7.12 mL 0.1 M sodium phosphate buffer
pH 7.4/1.2 M sorbitol þ500 μL lyticase þ50 μL 10 mg/mL
RNAseA.

8. Incubate at 37 �C overnight. Keep tube upright so that it does
not leak.

9. Transfer to a 50 mL centrifuge tube. Add 12.5 mL (use equiv-
alent volume to whatever volume your pellet is at after resus-
pending in step 7) of 0.2 NNaOHþ1% SDS (Qiagen miniprep
solution P2). Invert four to six times. Incubate at room
temperature for 15 min. You can also incubate at 65 �C for
15 min if the cells do not look lysed.
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10. Add 17.5 mL of chilled Qiagen miniprep buffer N3. If your
volume from step 9 is different, then use a similar proportion
of N3 to the volumes listed here. Invert four to six times. Place
on ice for 20 min.

11. Using a large centrifuge (i.e., Beckman Coulter floor centri-
fuge with a JA-20 rotor) and 50 mL polypropylene centrifuge
tubes rated for high speed, centrifuge your sample at
14,000 rpm (24,000 g) for 30 min at 4 �C. Pipet the superna-
tant into a new tube to help prevent the particulate from
clogging the spin columns in step 13.

12. Centrifuge the sample again at14,000 rpm(24,000g) for15min
at 4 �C. Pipet the supernatant into new tube to help prevent the
particulate from clogging the spin columns in step 13.

13. Use multiple Qiagen spin columns (8–10þ) to purify plasmid
DNA. Repeatedly load supernatant onto columns but stop
before columns clog. Continue loading supernatant onto new
columns if initial columns clog.

14. Add 0.5 mL Qiagen buffer PB, wait 5 min. Spin at
14,000 rpm (maximum speed) for 1 min in a microcentrifuge.

15. Add 0.75mLQiagen buffer PE. Spin at 14,000 rpm (maximum
speed) for 1 min in a microcentrifuge.

16. Spin at 14,000 rpm (maximum speed) for 1 min in a micro-
centrifuge to remove residual PE buffer.

17. Add 50 μLQiagen buffer EB to the center of the column. Let it
sit for 1min. Spin at 14,000 rpm (maximum speed) for 1min in
a microcentrifuge.

18. Add 35 μL buffer EB to the center of the column. Let it sit for
1 min. Spin at 14,000 rpm (maximum speed) for 1 min in a
microcentrifuge.

19. Combine all eluates for a single bait screen.

20. Run a 1% gel to check for the integrity of your plasmid.
Quantitate the concentration of plasmid DNA using a spectro-
photometer or Nanodrop. You should have ~100–150 ng/μL
of DNA in ~800 μL of TE. The plasmids may run with a bit of a
smear as the sizes may vary.

3.6 Amplify cDNAs

from Prey Plasmids

In this step, you will conduct low cycle amplification of the cDNAs
from your prey plasmids to generate sufficient DNA for an Illumina
run. Since the primers sit down in the prey vector close to the
cDNA, most of the sequence will correspond to the genome from
which your mRNA was extracted, rather than vector sequence.
Most bait proteins are likely to interact with a number of different
prey proteins, resulting in prey plasmids containing different
cDNAs of varied size. Low cycle amplification of the cDNAs from
the prey plasmids (recovered from yeast colonies on interaction
plates) should result in representation of all prey cDNAs that

12 Yunchen Gong et al.



encode proteins interacting with the bait of interest. We also carry
out low cycle amplification of the cDNAs present in the cDNA
library, to determine which genes from the genome are repre-
sented. Make a 100 ng/μL stock of DNA to use as the template
in PCR.

1. Use a high-fidelity proofreading polymerase (i.e., Fermentas
High-fidelity mix K0191 5 U/μL).

2. Do a test PCR to make sure that you are amplifying a range of
different sized cDNAs.

3. Set up multiple 25 μL reactions with 2.5 μL 10� bufferþ 2 μL
2.5 mM dNTPs þ 1 μL 10 μM of each forward and reverse
vector-specific primers þ 2 μL 100 ng/μL template þ 0.5 μL
enzyme mix þ water to 25 μL.

4. PCR conditions: preheat lid; 94 �C 3 min 1�; 94 �C 30 s,
57 �C 30 s, 72 �C 3 min 15�; 72 �C 5 min, 15 �C hold. The
annealing temperature may vary depending on your primers.
The extension time will depend on the average and maximum
size of the cDNAs in your library. It is preferable to do multiple
(10) separate reactions so that the amplified clones are inde-
pendent from one reaction to the next. Our vector-specific
primers (50pPR3Nbp438 and 30pPR3Nbp649) are shown
below.

50pPR3Nbp438 CGTTAAGTCGAAAATTCAAGACAAGGAAGGAAT

30pPR3Nbp649 GCGTGACATAACTAATTACATGACTCGAGGTCGA

5. Pool your reactions after PCR. Run 5 μL on gel. The amplified
products should run with a bit of a smear, but it is likely there
will be some distinct bands. If the average size of your cDNAs is
1 kb, the visible range of PCR products will be about
500–1500 bp.

6. Purify the amplified products on a Qiagen PCR purification
column. Expected yields are 200–500 ng/μL.

3.7 Library

Generation and Next-

Generation

Sequencing (NGS)

To identify the cDNAs in the prey plasmids from each screen with
your bait or luciferase, you must first construct an Illumina library
for each different screen. We also construct an Illumina library for
the cDNA library to identify all of the genes that are present in the
cDNA library. Reads from the bait screen (or luciferase screen) refer
to the prey cDNAs whose proteins interact with the bait of interest.

1. Commercial kits for Illumina library generation are readily
available (i.e., Bioo Scientific). Alternatively, many core facil-
ities provide library generation and quality control services
prior to an Illumina run.
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2. Next-generation sequencing services (i.e., Illumina) are avail-
able through the core facilities at many institutions.

3. Obtain your next-generation sequence reads from the core
facility in standard FASTQ format (see Note 14).

3.8 Align Reads

to Genome

The sequence reads from the bait screen, the luciferase screen, or
the cDNA library itself can be mapped to a genomic reference using
software that produces an output file in SAM/BAM formats, which
are standard in NGS (see Note 15). NGS mapping programs typi-
cally run on a command line in a UNIX environment, and employ
third-party software. This software is under constant revision, so
specific commands may change as the programs are revised. We
mapped Illumina reads to Arabidopsis gene models downloaded
from NCBI. The following steps describe the use of the popular
read alignment tool BWA version 0.7.12 (http://bio-bwa.
sourceforge.net/) for this purpose (see Note 16).

1. To make reference index, run this command line (seeNote 17):

bwa index -a bwtsw prey_seq.fasta

2. To align the reads (paired-end reads in this example) to
the reference sequences and output results in sai format:
(seeNote 18).

bwa aln prey_seq.fasta reads1.fastq > alignment1.sai

bwa aln prey_seq.fasta reads2.fastq > alignment2.sai

3. To generate a paired-end alignment in sam format:

bwa sampe prey_seq.fasta alignment1.sai alignment2.sai

reads1.fastq reads2.fastq > alignment.sam

4. To convert sam format to bam format and sort the bam format
file using samtools version 1.1 (http://samtools.sourceforge.
net/) (see Note 19):

samtools view -b -S alignment.sam > alignment.bam

samtools sort alignment.bam alignment_sort.bam

3.9 Count Reads

for Each Gene

Using the mapping data, you can determine the number of mapped
reads for each gene, and calculate the coverage of each gene for each
sample (i.e., reads from the bait screen) or all samples combined
(using the reads from the bait screen, the luciferase screen, and the
cDNA library) (see Note 20).

1. If you use the BWA read alignment tool and create bam files as
described in Subheading 3.8, you can use htseq-count (http://
www-huber.embl.de/users/anders/HTSeq/doc/count.html)
or bedtools version 2.15.0 (using multicov command) (http://
bedtools.readthedocs.org/en/latest/content/tools/multicov.
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html) to count the reads mapped to each gene. Below is the
example for bedtools (see Notes 21 and 22)

bedtools multicov -bams alignment_sort.bam -bed reference.

fasta.bed > alignment.coverage

sort alignment.coverage > alignment.coverage.sort

cut -f1,13 alignment.coverage.sort > alignment.coverage.

sort.cut

2. To determine the combined coverage for all samples, you must
combine the data for each sample. Each sample has one align-
ment.coverage.sort.cut file. To combine the coverage data into
one file, use the following command line (see Note 23).

join *.cut > combined_coverage.txt

3.10 Normalize

Reads for Each Gene

Each sample will contain a different number of reads, depending on
the input DNA and the number of reads that pass the quality filter.
The number of reads must be normalized for all samples. Read
numbers per gene are normalized as cpm (count per million) or
rpkm (reads per kilobase per million) within each sample for compar-
ison among the samples (seeNote 24). To calculate these values, the
R version 3.1.1 EdgeR package version 3.12.0 can be used (http://
bioconductor.org/packages/release/bioc/html/edgeR.html). To
use EdgeR one should execute the following commands in R
environment:

X <- read.delim("combined_coverage.txt",header¼FALSE,row.

names¼1,sep¼" ")

cpm_value <- cpm(X)

write.table(cpm_value,"combined.coverage.cpm")

genelength<-read.delim("prey_seq.fasta.length.sort",head-

er¼TRUE,row.names¼1)

rpkm_value <- rpkm(X, log¼FALSE,gene.length¼genelength

$Length)

write.table(rpkm_value,"combined.coverage.rpkm")

3.11 Determine

Enrichment of Putative

Interacting Proteins

with a Bait of Interest

The enrichment of a specific interactor with a bait of interest can
be determined by calculating the number of reads obtained from
the bait screen or luciferase screen (as a negative control)
and normalizing against the abundance of reads from the luciferase
screen, the bait screen, and the cDNA library as below. By
including the read counts for the genes present in the cDNA
library, this helps to account for highly abundant genes. This calcu-
lation uses the normalized reads (rpkm) from each sample (see
Subheading 3.10).

Percentage Enrichment¼ reads from bait screen� reads from luciferase screenð Þ½
= reads from bait screenþ reads from luciferase screenþcDNA library readsð Þ�∗100
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This calculation can be easily done in an Excel spread sheet.
To import the data into the spreadsheet to do the enrichment
calculation, open the combined.coverage.rpkm file with a text edi-
tor, copy the contents, open a spreadsheet file, and paste the con-
tents into it. Note the use of a space as the separator (seeNote 25).

3.12 Calculate

the Percentage

of the Mapped Length

This calculation enables you to determine the portion of the gene
that is represented in the cDNA library and your sample. The
percentage of the mapped length is calculated using the length of
mapped regions and the theoretical length of the gene model. The
mapped regions of all aligned reads are collected, assembled and the
overlapping regions are identified to produce a list of continuously
mapped region(s). The length of these regions is summed up and
divided by the length of the gene model, to provide the percentage
of the mapped length. The bedtools program with R commands
can be used to do this as shown below.

1. Determine depth for each gene and each location (seeNote 26):

bedtools genomecov -d -ibam alignment_sort.bam -g prey_-

seq.fasta > alignment_sort.bam.genomecov

2. The percentage of the mapped length is calculated in R:

data<-read.delim("alignment_sort.bam.genomecov",head-

er¼FALSE)

data_no_zero<-data[data$V3>0,]

table(data_no_zero$V1)/table(data$V1)

3.13 Select

Candidate Interacting

Proteins to Test in

Downstream Assays

Based on the enrichment of specific interacting proteins for your
bait and the coverage of these loci, you can generate a list of
putative interacting proteins to test in downstream assays (see
Note 27). This could include but is not limited to the following
assays:

1. Comparing a wild-type line to a knockout line of the putative
interacting protein for your phenotype of interest.

2. Analyzing the expression pattern or localization of the gene or
protein to determine if this is consistent with the putative role
of the interacting protein.

3. Testing for direct interactions between your bait and a specific
interacting protein candidate in vitro or in the organism of
interest.

4. Testing for expression changes of the mRNA for the interacting
protein under an appropriate stimulus.
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4 Notes

1. YPAD rich medium is used for routine growth of yeast strains.
Adenine sulfate is added to the media to reduce the reversion of
the ade2 mutation to ADE2. Liquid media can be prepared in
larger volumes, and aliquoted into 1 L Pyrex bottles or other
suitable autoclavable bottles. If YPADwill be aliquoted, put the
appropriate amount of agar for the volume of YPAD into a 1 L
bottle. As the glucose is autoclaved with the other components,
the autoclaving time should be kept short to prevent carame-
lization. For 1 L of media, autoclave for 20 min, and for each
additional L, add 5 min of autoclaving time. If you have more
than 3 L of media, autoclave it in separate batches. Determine
the volume of media by the total volume in the autoclave, not
by the volume in each bottle. It is also better to use shallow
trays (2.7500 high; i.e., Thermo Scientific Nalgene #6902-
3000) so that the heat from the autoclave adequately circulates
around the bottles. For media with agar, swirl bottles after
removing the media from the autoclave to disperse agar.
600 mL of media is sufficient to pour 1 sleeve of 20 plates.
Media should be used within 3 months of preparation.

2. Yeast strains used in genetic screens are commonly auxotrophic
for tryptophan (TRP1), histidine (HIS3), uracil (URA3), leu-
cine (LEU2), and/or adenine (ADE2). SC selective media is
used for the growth of specific yeast strains carrying plasmids
conferring prototrophy for these amino acids. It is prepared by
mixing yeast nitrogen base with amino acid mixtures that
exclude specific amino acids (drop-out [DO] supplement).
Depending on the drop-out media we are making, we use
DO supplement –His/�Leu/�Trp, DO supplement –Leu/
�Trp, or DO supplement –Trp. The DO supplement –His/�
Leu/�Trp can be used to make any combination of single,
double, or triple dropout for –His/�Leu/�Trp, with the
necessary amino acids added after autoclaving (see Note 3).
Alternatively, a DO supplement lacking only one amino acid
could be used and would not require supplementation with
additional amino acids. To achieve high-efficiency transforma-
tion, media should be prepared with a pH of 5.6 using 1 M
NaOH, before adding Bactoagar. Media should be used within
3 months of preparation.

3. For the uracil stock (and any other amino acids that are not
dissolving well), prepare by stirring on a stir plate while you add
1 M NaOH dropwise to help dissolve amino acids, to a maxi-
mum concentration of 0.1 M NaOH. Make sure to handle the
stocks in a sterile manner so that these stocks can be used for
each batch of media you have to make.
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4. Make sure to handle in a sterile manner so that these stocks can
be used for each batch of media you have to make. Handle
carefully using appropriate personal protective equipment and
environmental controls as 3-AT is toxic. Stock solutions should
be disposed in accordance with environmental regulations.

5. As PEG is highly insoluble, begin dissolving PEG in 40% of the
final volume of ultrapure H2O by placing the solution in a
50 �C water bath. Transfer the solution between the stir plate
and water bath as the PEG starts to dissolve. Once dissolved,
bring up to the final volume and filter sterilize. Make sure to
handle the PEG in a sterile manner so that these stocks can be
used for each batch of media you have to make. Aliquot into
smaller tubes for experiments so that sterility is maintained.
Make sure that caps fit tightly and wrap caps in parafilm, so that
PEG does not inadvertently become more concentrated due to
evaporation of the water.

6. Make sure to handle in a sterile manner so that these stocks can
be used for each batch of media you have to make. Aliquot into
smaller tubes for experiments so that sterility is maintained.

7. Qiagen spin mini kit includes buffers P2, N3, PB, PE, and EB.

8. Domain prediction can also be done using the Phyre2 protein
homology server (http://www.sbg.bio.ic.ac.uk/phyre2/
html/page.cgi?id¼index) [9].

9. It is important that the yeast are sufficiently aerated. Use a flask
that is five times larger than the liquid volume of media.

10. The salmon sperm DNA should be boiled in a heat block for
10 min, quick chilled, then added to 1� PEG/LiAc. Prepare
the amount of salmon sperm DNA you require for one experi-
ment. The PEG/LiAc mixture should be made right before
use.

11. To calculate the transformation efficiency, use the following
equation.

Transformation efficiency cfu=μgð Þ
¼ number of colonies� total suspension volumeð Þ
= volume of transformation plated μLð Þð
� amount of DNA used μgð ÞÞ

12. Transformation efficiencies will be significantly higher when
transforming one plasmid rather than two.

13. We usually streak many different colonies from the interaction
plates for a specific bait screen, and pool all of these colonies
together. Alternatively, you can pool colonies for one set of
transformations, and extract the plasmids from this smaller
pool. This would allow you to compare the interacting proteins
obtained from several independent sets of transformations.
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14. A FASTQ file is the sequence read file with quality information
for the error probability of each base pair in the sequence.

15. A Binary Alignment Map (BAM) file is a compressed Sequence
Alignment Map (SAM) file. SAM format specifications can be
found at this site: https://samtools.github.io/hts-specs/
SAMv1.pdf

16. The alignment is carried out separately for the prey cDNAs
identified after screening each different bait.

17. The dash followed by a letter (“–a” in our example) is a switch
that controls the program execution. –a bwtsw directs BWA to
use a specific algorithm, as implemented in BWT-SW, to con-
struct the BWT index, and works well for large genomes,
particularly if there are many prey sequences.

18. The “>” command directs the output of the program to a new
file.

19. –b directs the output to a BAM format. –S was required in
previous samtools versions, but newer versions of samtools will
automatically detect the correct format.

20. Different samples may have different representations of specific
cDNAs. By combining the reads for all of the prey cDNAs from
your screens and the library, you can determine the quality of
your library and how much coverage you have for each gene.

21. The multicov command uses the indexed and sorted BAM files
to determine the number of alignments for an interval, which is
a gene in our analysis. The -bams switch is followed by (multi-
ple) bam files; -bed is followed by a bed file that includes the
following columns: chrom (the name of the chromosome),
chromStart (the starting position on the chromosome), chro-
mEnd (the ending position on the chromosome), name (name
of the BED line), score, strand, thickStart, thickEnd, itemRgb,
blockCount, blockSizes, blockStarts. The first four columns
are necessary for this analysis. For more information about
bed format, see https://genome.ucsc.edu/FAQ/FAQformat.
html#format1.

22. The sort and cut programs are version 8.4.

23. The join program is version 8.4.

24. The cpm results are written in combined.coverage.cpm file and
rpkm results are written in combined.coverage.rpkm file.

25. We have found that our approach can identify loci that are rare
in the library (1.9 rpm) and enriched more than 500 times for a
specific bait (~1000 rpm) [5].

26. The genomecov command allows you to determine the cover-
age of sequences in the genome. –d determines the coverage
per base on each chromosome. –ibam indicates that a BAM file
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is used and that the coverage is grouped by chromosome. –g
indicates the genome reference sequence fasta file.

27. We exclude candidate interacting proteins whose cDNAs are
100 nt or less, as they are unlikely to form a large enough
protein domain for interaction.
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Chapter 2

sbv IMPROVER: Modern Approach to Systems Biology

Svetlana Guryanova and Anna Guryanova

Abstract

The increasing amount and variety of data in biosciences call for innovative methods of visualization,
scientific verification, and pathway analysis. Novel approaches to biological networks and research quality
control are important because of their role in development of new products, improvement, and acceleration
of existing health policies and research for novel ways of solving scientific challenges. One such approach is
sbv IMPROVER. It is a platform that uses crowdsourcing and verification to create biological networks
with easy public access. It contains 120 networks built in Biological Expression Language (BEL) to
interpret data from PubMed articles with high-quality verification available for free on the CBN database.
Computable, human-readable biological networks with a structured syntax are a powerful way of repre-
senting biological information generated from high-density data. This article presents sbv IMPROVER, a
crowd-verification approach for the visualization and expansion of biological networks.

Key words Systems Biology, Network Model, Signaling Pathway, Crowdsourcing, Crowd Verifica-
tion, sbv IMPROVER, Biological Expression Language (BEL)

1 Introduction

Over the last few decades, there was a surge in biomedical sciences
that has resulted in increasing amount of diversified data. For
instance, in 2014, MEDLINE counted over 21 million citations
from 5647 indexed journals [1]. That is more than a 5% increase in
the amount of citations from academic journals from the previous
year, and more than a 100% increase from 2000. This increasing
number of peer-reviewed publications in biomedical sciences cre-
ates several challenges.

First, visualization, which helps scientists in understanding
biological pathways and uncovering important properties of the
underlying processes. There are different pathway databases, the
most popular being: KEGG, Reactome, PID, BioCyc, Cyclone,
RegulonDB, WikiPathways, Pathway Commons, Pathway Assist,
and NetPath. The KEGG database, initiated in 1995 by Minoru
Kanehisa, is one of the first databases of biological signaling path-
ways freely available to the general scientific community [2].

Tatiana V. Tatarinova and Yuri Nikolsky (eds.), Biological Networks and Pathway Analysis, Methods in Molecular Biology,
vol. 1613, DOI 10.1007/978-1-4939-7027-8_2, © Springer Science+Business Media LLC 2017
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Next, verification, which aims to extract the maximum value
out of verified data, is another challenge. In the wake of high-profile
controversies, scientists are facing up problems with replication
[3, 4]. There is growing alarm about results that cannot be
reproduced. Strict guidelines to improve the reproducibility of
experiments are a welcome move [5]. Verification helps to avoid
inaccurate conclusions and determine the right algorithms and
models. Advancements in research process verification can contrib-
ute to challenges made to existing theories. More evidence can
either prove existing theories or reveal different interpretations
and flaws within it. The quality of scientific predictions has become
more dependent on the samples of systems that are modeled,
measured, and analyzed. When only a small minority of results is
tested, it raises concerns over the legitimacy of the results and the
entire set of predictions. Therefore, scientific developments and
diversification of data now require a community approach for its
scientific verification. Community feedback is the basis of crowd-
sourcing, which highlights a new trend in science and technology:
people working together to innovate and create extraordinary data
and to find new solutions for extant challenges. Community
approaches are seen as an attempt to reach consensus in the
sciences. Some see progress in science as a social process dominated
by the scientific community at a particular moment in time. There-
fore, it can be a reflection of the paradigm of “what is right,” as
adopted by scientific society.

Among the most exemplary projects that utilize crowdsourcing
as a data analysis tool in biosciences is the sbv IMPROVER Chal-
lenge, also known as the System Biology Verification project.
IMPROVER is an abbreviation for Industrial Methodology for
PROcess VErification in Research [6]. The sbv IMPROVER proj-
ect is a collaborative effort that includes scientists from IBM
Research (Yorktown Heights, NY) and Philip Morris International
(PMI), Research & Development (Neuchâtel, Switzerland). The
goal of the project is to develop a more transparent and robust
process for assessing complex scientific data in systems biology
(the study of biological organisms, viewed holistically as integrated
and interacting networks of genes, proteins, and biochemical
reactions). This approach has implications for a wide variety of
industries including pharmaceuticals, biotechnology, nutrition,
and environmental safety—essentially any area that requires a
more meaningful scientific analysis of Big Data [7]. Systems biology
verification and industrial methodology for process verification in
research are the basis of sbv IMPROVER. Researchers at IBM and
Philip Morris International R&D (PMI; Neuchâtel, Switzerland)
have been collaborating on a vision for quality assurance in systems
biology research. The goal of collaboration is to assure the validity
of complex scientific results in the area of systems biology, and
recognize the power of communities to assess methodological
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aspects of scientific research. Although industry shares many of the
same needs for validation as academia, a methodology for verifying
research is needed in the industrial setting that recognizes both
speed and protection of proprietary data constraints, as well as the
importance of market considerations and consumer protection. sbv
IMPROVER has further advanced crowdsourcing and implemen-
ted crowd-verification; a strategy scientists use to verify networks
[8]. It shows what is possible to create by combining science,
technology, and organized human and social capital. Researchers
who are participants in the challenge compete for grants and
opportunities to present their data at the sbv IMPROVER Sympo-
sium, an international symposium that features the work of scien-
tists from Belgium, France, Germany, India, Italy, Japan,
Luxemburg, Malaysia, Poland, Russia, Spain, Switzerland, UK,
and the US [9].

The collection of networks that resulted is freely available to the
scientific community in a centralized web-based repository: The
Causal Biological Network database. It is composed of over 120
manually controlled and well-annotated biological network mod-
els. It can be accessed at http://causalbionet.com. The website uses
a MongoDB tool that allows users to search for genes, proteins,
biological processes, small molecules, and keywords in the network
descriptions. This systematic approach allows users to retrieve
biological networks of interest. The content of networks can be
searched and visualized. Nodes and edges can be filtered with all
supporting evidence. The information on the resource is linked to
the original articles in PubMed. Moreover, networks can be down-
loaded for further visualization and evaluation [10].

2 Materials

Peer-reviewed scientific articles from PubMed constituted the
majority of the project’s resources. They were used to analyze
investigations on the topic, to combine the data, and to determine
the most effective methods for their visualization and verification.

3 Methods

There are different tools andmethods for pathway analysis that help
determine the pathways in comprehensive biological networks.
Among the most important tools for pathway analysis are
GEPAT, PAGE, CPath, and EASE, as well as Cytoscape, ONDEX
HTML, and Pathview. Some of these tools and methods also
require the use of the biological pathway exchange languages,
such as SBML, Kappa, BioPAX, and BEL.
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3.1 Network

Language

The networks at the sbv IMPROVER project were built using the
Biological Expression Language (BEL), which is an open-source
language (http://www.openbel.org/) that can represent scientific
findings from life sciences in a computable form. BEL was designed
to represent research by capturing causal and correlative relation-
ships in context, where the context can include information about
the biological and experimental system in which the relationships
were observed, as well as the supporting publication citations.
The structure of a BEL node, which includes the biological entity,
the namespace, or database to standardize the nomenclature of the
entity, and the function that describes the type of entity (protein,
chemical, biological process, family, complex, etc.), shows the defi-
nition of the prefixes for BEL namespaces and functions that appear
in the networks.

BEL statements contain three components: a subject, a predi-
cate, and an object, representing discrete scientific findings and
their relevant contextual information as qualitative causal relation-
ships. Subjects and objects are visualized as nodes in the biological
networks. Predicates are statements that connect two nodes (i.e.,
network edges), maintain the computability of networks, and are
supported by evidence from the scientific literature. All semantic
triples are in a defined ontology, for example, HGNC (www.gen
enames.org), SwissProt (www.uniprot.org), EntrezGene (www.
ncbi.nlm.nih.gov/gene), Rat Genome Database (www.rgd.mcw.
edu), or ChEBI (www.ebi.ac.uk/chebi). BEL provides the means
to describe biological interactions qualitatively, but not to quantify
the magnitude or rate of these interactions. This limitation is by
design, as quantitative information has significant variability and is
not consistently reported in the literature. BEL-based models not
only represent all molecular species but also preserve the direction-
ality of interactions [11].

3.2 IMPROVER

Methodology

sbv IMPROVER is an open database for the scientific community:
https://bionet.sbvimprover.com/

The crowd-verification of biological network models is per-
formed through the following steps [12]:

1. Develop a high-performance platform for the crowd-
verification of biological network models and import created
biological network models onto the platform.

2. Start the crowd-verification phase by making the platform
accessible to the research community, with associated incen-
tives to stimulate online verification of nodes and edges sup-
ported by scientific findings.

3. Interpret the results after a predetermined period to identify
questionable edges (e.g., edges that did not obtain a consensus
from the community).
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4. Organize a “jamboree” session where community members
that contributed significantly to the online verification can
meet recognized experts and analyze scientific evidence for
the questionable edges identified in the previous step. Publish
the verified and extended networks.

5. Assess the resulting networks and determine to what extent the
biological mechanisms were further expanded, revised, or inva-
lidated. Disseminate the networks for public use.

sbv IMPROVER is a robust methodology that verifies systems
biology approaches using double-blind performance assessments
and applies the wisdom of crowds to solve scientific challenges.
The sbv IMPROVER Network Verification Challenge (NVC) asks
participants to verify, modify, or create edges in selected biological
network models. Its aim is to build consensus around which parts
of the networks are accurate, incorrect, or incomplete.

IMPROVER building blocks need to accommodate a priori
unknown input–output functions. The development of appropriate
scoring metrics is a key element for the verification methodology
that helps identify the strength or weakness of a building block
when precise knowledge of an input–output relationship is not
possible. The verification can be done internally by members of a
research group, or externally by crowdsourcing to interested com-
munity members. IMPROVER is, therefore, a mix of internal/
non-public and external/public assessment tests or challenges.

Biological network models are a representation of known biol-
ogy within defined contextual boundaries (e.g., species, tissue, and
disease). Networks consist of nodes (e.g., DNA, RNA, proteins,
etc.) and edges, where edges are causal or correlative relationships
between the nodes. For instance, the protein MDM2 negatively
regulates the activity of the protein p53. MDM2 and p53 are the
nodes, and “negatively regulates” is the edge. NVC participants are
requested to verify this kind of relationship on the basis of peer-
reviewed scientific literature.

The NVC website visualizes available networks, enabling parti-
cipants to scrutinize relationships, and make submissions that will
either extend the network or verify existing parts of the network.

Each new edge that is created must respect the network’s
contextual boundary conditions and be submitted with a support-
ing peer-reviewed academic article. New nodes can only be created
as part of creating an edge. Participants can capture new edges
using the Biological Expression Language (BEL).

Verification of the network includes the following:

l Supplementation of existing evidence to provide further support
for an existing edge.

l Confirmation or rejection of evidence for edges, based on
whether the provided reference supports the edge and whether
an evidence form has been filled accurately.
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When submitting additional evidence or voting on edges,
participants ought to fill in the evidence and complete the vote
form as completely and accurately as possible. This helps others to
understand the rationale for submissions in the network and helps
in the creation of the consensus-building process.

The outcome of the online verification process is the combina-
tion of submissions by different participants. Based on this, each
edge can have four possible states by the end of the challenge:

l Verified: there is at least one verified piece of evidence associated
with the edge. A piece of evidence is verified if the overwhelming
majority of participants approved rather than rejected the
evidence.

l Ambiguous: participants are divided on whether a piece of evi-
dence supports the edge (less than 80% of participants approve
or reject the edge).

l Rejected: all evidence that has been suggested in favor of an edge
has been rejected by the overwhelming majority of participants
during the course of the challenge.

l Not verified: the evidence for an edge did not receive sufficient
submissions from participants to be considered verified.

Selection of edges that attracted a lot of attention and contro-
versy from challenge participants is reviewed and discussed at the
“jamboree.” This face-to-face meeting takes place after the online
verification process is completed.

4 Notes

Worldwide explosions of data generation in biomedical sciences
have confronted a scientific community with a necessity for creating
innovation in data visualization and high-throughput data
verification.

BEL was adopted as the structured language to represent the
network models in the sbv IMPROVER Network Verification
Challenge (NVC). It enables the visualization of causal and correl-
ative relationships between biological nodes and edges in comput-
able and human-readable statements.

Biological Network Models in the sbv IMPROVER Network
Verification Challenge (NVC) are verified by participants. The net-
works are split into five tracks: cell stress, cell fate, cell proliferation,
immune response, and tissue response. The evidence is primarily
based on human biology non-diseased respiratory tissue biology
augmented with chronic obstructive respiratory disease biology.

Structure of the network models in the Network Verification
Challenge includes nodes, edges, and context.
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Nodes that are a wide range of biological entities are repre-
sented as nodes in the network models. They include proteins,
DNA variants, noncoding RNA, phenotypic or clinical observa-
tions, chemicals, lipids, methylation states, and other modifications
(e.g., phosphorylation). Existing nodes were identified using
biological databases, such as SwissProt (www.uniprot.org), Entrez-
Gene (www.ncbi.nlm.nih.gov/gene), Rat Genome Database
(www.rgd.mcw.edu), and ChEBI (www.ebi.ac.uk/chebi).

Edge: the causal or correlative nature of relationships between
nodes is represented as an edge. This allows the biological intent of
the network model to be easily digested by a scientist. An example
of a relationship, or edge, is TGF Beta 1 increases SMAD1.

Context: each edge is constructed within precisely defined
contextual boundaries and based on a literature reference to justify
the edge’s existence. The context of an edge may include species,
tissue, cell, and disease.

The nodes and edges in a network model are captured in BEL, a
computable language designed for network biology.

The networks, as implemented on the NVC website, are
dynamic. They can be modified as new knowledge becomes avail-
able and current edges and pieces of evidence are verified by the
community.

The network models selected for the NVC were derived from
CausalBioNet network models and represent important biological
processes implicated in human lung physiology and specific pro-
cesses related to COPD.

Non-disease networks include the following: cell proliferation,
cellular stress, cell fate, pulmonary inflammation, tissue repair, and
angiogenesis.

Chronic obstructive pulmonary disease (COPD) networks are:
B-cell Activation and T-cell Recruitment and Activation sub-
networks to represent immune processes and their role in COPD,
Extracellular matrix (ECM) Degradation and Efferocytosis sub-
networks were constructed by heavily modifying healthy models
to specifically represent COPD-relevant mechanisms.

Networks are available for download upon registration on the
sbv IMPROVER website (https://bionet.sbvimprover.com/) and
are of great use to both academic and industry users in promoting
future research in this area of great therapeutic importance.

Therefore, crowdsourcing efforts that take advantage of new
trends in social networking have flourished. These initiatives
match discipline-specific problems with problem solvers who are
motivated by different incentives to compete and show that their
solution is the best.

Challenge-based approaches create metrics for the comparison
of possible solutions to those challenges designed to verify building
blocks. The effectiveness of one methodology can promote com-
munity acceptance of the best performing methodology and can
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then be used as a reference standard. sbv IMPROVER offers a
complement and enhancement to the peer-review process in
which the results of a submitted paper are measured against bench-
marks in a double-blind, challenge-assisted peer-review process.
The sbv IMPROVER approach can be applied to a variety of fields
where the output of research projects is fed as input into other
projects, as is the case in industrial research and development, and
where verification of the individual projects or building blocks is
elusive, as it is in the case of systems biology.

This approach allows for the application of network pharma-
cology and systems biology beyond toxicological assessment and
can be applied in areas such as drug development, consumer prod-
uct testing, and environmental impact analysis [13, 14].

The sbv IMPROVER approach differs from other scientific
crowdsourcing approaches in that it focuses on the verification of
processes in industrial contexts in addition to basic scientific
questions.

Web-based graphical interfaces allow for visualization of causal
and correlative biological relationships represented using сrowd-
sourcing principles. It enables participants to communally annotate
these relationships based on evidence. Gamification principles are
incorporated to further engage domain experts throughout the
biological sciences to gather robust peer-reviewed information
from which relationships can be identified and verified.

The resulting network models represent the current status of
biological knowledge within the defined boundaries, in this case,
for processes relating to human lung disease. These models are
amenable to computational analysis. For some period following
the conclusion of the challenge, the published models will remain
available for continuous use and expansion by the scientific
community.

Collaborative competition has the unique ability to facilitate
analysis of high-throughput data and to become an elevator to
solutions. Such approaches to research allow for the organization
and processing of information in a trustworthy and effective way.
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Chapter 3
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Abstract

Although modeling of activation kinetics for various cell signaling pathways has reached a high grade of
sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for
biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway
science for real needs of prescription of the most effective drugs for individual patients. The methods for
such prescription evaluate the degree of pathological changes in the signaling machinery based on two types
of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular
pathway graphs that reflect interactions between the pathway members. For example, our algorithm
OncoFinder evaluates the activation of molecular pathways on the basis of gene/protein expression data
in the objects of the interest.
Yet, the question of assessment of the relative importance for each gene product in a molecular pathway

remains unclear unless one call for the methods of parameter sensitivity/stiffness analysis in the interac-
tomic kinetic models of signaling pathway activation in terms of total concentrations of each gene product.
Here we show two principal points:

1. First, the importance coefficients for each gene in pathways that were obtained using the extremely time-
and labor-consuming stiffness analysis of full-scaled kinetic models generally differ from much easier-to-
calculate expression-based pathway activation score (PAS) not more than by 30%, so the concept of PAS
is kinetically justified.

2. Second, the use of pathway-based approach instead of distinct gene analysis, due to the law of large
numbers, allows restoring the correlation between the similar samples that were examined using
different transcriptome investigation techniques.

Key words Systems biology, Mitogenic cell signaling, Protein-protein interaction, Parameter
sensitivity/stiffness analysis, RNA microarray analysis
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1 Introduction

1.1 Methods

for the Analysis

of Intracellular

Pathway Activation

Numerous molecular pathways that determine the mitogenic fate
(proliferation with the risk of cancer development and progression,
differentiation, necrosis, apoptosis, etc.) of a cell have been in the
focus of research interest in a couple of previous decades [1–3].
These pathways that are mostly initiated by various receptor tyro-
sine kinases (RTK) involve a plethora of types of proteins, which, in
turn, possess multiple binding sites/domains. As a result, pure
experimental research methods may not always give an exhaustive
answer to the question of molecular etiology for a certain cancer
case, since it may require detailed measurements of interactions
between several dozens of proteins that transfer the mitogenic
signal. On the other hand, valuable information on the details of
protein-protein interaction may be obtained using in silico analysis
of chemical kinetics for signal transduction [4]. Such studies can be
useful to understand what protein activity should be either down-
regulated or enhanced for the prevention of carcinogenesis or
tumor suppression and destruction.

Complex kinetic models for activation of cell signaling path-
ways that integrate the systems of ordinary differential equations
(ODE) for the concentrations of multiple chemical species that
change their configurations during the process of signal propaga-
tion have been developed and thoroughly investigated at least
about last 15 years [5–11]. Considerable difficulties that had arisen
during such investigations were more or less successfully resolved.
First, there is essential combinatorial complexity for emerging
plethora of chemical species, which can be overcome using the
universal software packages for rule-based description of highly
branched signaling networks [12–18] and domain-oriented meth-
ods for combinatorial complexity reduction [19–22].

Even more terrifying problem is related to multiple unknown
parameters such as dissociation/Michaelis constants and total con-
centrations of certain signaling proteins in the ODE systems. The
general approach to fitting these parameters that may describe the
experimental (e.g., Western blotting) data in their best way was
formulated in the series of works [9–11]. This approach comprises
that the researcher constructs a kinetic model of protein-protein
interaction, performs the ODE integration for concentrations of
various chemical species (i.e., protein complexes in certain states),
adjusts the unknown kinetic constants to fit the experimental data
of activation kinetics, and, finally, makes predictions on the differ-
ent details and conditions of signal propagation. To learn the hints
and clues what parameters should be tuned for the most effective
parameter fitting, one may use the methods for parameter sensitiv-
ity [23] and/or sloppiness/stiffness analysis [24].
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1.2 Possible Use of

Kinetic (Interactomic)

Models for Gene

Expression-Based

Pathway Activation

Analysis

Despite the achievements specified above, these kinetics models of
highly branched networks remained almost totally in the domain of
“pure fundamental” science that do not deal with any practical
medical application. Nevertheless, since signal transduction at
every stage depends on the concentrations of the interacting gene
products, numerous approaches have been proposed for the con-
version of the information on abundances of mRNA/proteins for
all genes/gene products into the values that correspond to overall
activation/inhibition of intracellular pathways. The most advanced
methods take into account the pathway topology (e.g., TAPPA
[25], topology-based score [26], Pathway-Express [27], and
signaling pathway impact analysis, SPIA [28]).

Similarly, we have recently proposed OncoFinder [29–37],
a systems bioinformatics tool for the analysis of changes in
intracellular molecular pathways (e.g., signaling, metabolic, and
cytoskeleton pathways). As an input data set, OncoFinder
operates with the results of various “omics” profiles obtained for
the biosamples under investigation, e.g., taken from the patients
and from the healthy donors. These profiles may be transcriptomic
(e.g., obtained with ether microarray hybridization or next-
generation sequencing), proteomic, epigenomic, etc. The data of
full mRNA/protein abundancies are integrated by OncoFinder
into the assessment values for activation of different cellular path-
ways (signalome).

In all these methods, the relative expression levels for each gene
can be found, respectively, by comparison of expression levels in an
individual case sample and the average level for the corresponding
normal sample or set of samples. These data on gene/protein/
miRNA, etc., expression levels are accumulated by the software
into the signalome-based entities, and for each molecular pathway
the individual measure for pathological perturbations is evaluated.
One important issue, however, remained unresolved until recently:
how the assessment function for PAS сan take into account the
relative importance of different genes and gene products for
the whole process of the pathway activation/inhibition? Several
clues, however, were provided in our recent publication [30],
where we applied, for the assessment of the relative importance of
distinct gene products, the concepts of parameter sensitivity and
stiffness/sloppiness that may be analyzed using the interactomic
kinetic models for signaling pathway activation.

Here, we formulate and demonstrate on the example of the
ERK activation upon EGF stimulation, the general approach to
development, fitting according to the experimental data, as well as
gene product importance analysis for the robust kinetic models of
signaling pathways activation that involves the “low-level” (mass
action law) description of most protein-protein acts, yet is useful for
the practical problems like analysis of pathological perturbations in
signaling pathways for a given cancer patient. Moreover, we dem-
onstrate that the OncoFinder-based pathway approach restores
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correlations between the similar samples that were examined using
the different methods of mRNA investigation (e.g., microarray
hybridization versus next-generation sequencing), even when
these correlations were poor at the level of individual genes.

2 Materials and Methods

2.1 Western Blotting

Measurements

of the HEK293 Cells

As an experimental source for the development of the protein-
protein interaction kinetic model for the EGFR signaling pathway,
we have taken the results of Western blotting investigation of
activated protein abundances upon the EGF stimulation of the
HEK293 cells [10]. For these procedures, there were used the
antibodies for anti-phospho-EGFR (Y1173), anti-Src (GD11),
anti-phospho-Shc (Y317), anti-phospho-GAB1 (Y627), anti-phos-
pho-MEK (S217/S221), anti-phospho-ERK1/2 (T202/185 and
Y204/187), anti-phospho-AKT1 (S473), general anti-
phosphotyrosine (pY20), as well as anti-GRB2 (C-23), anti-
GAB1 (H-198), anti-PI3K-p85, anti-Ras, anti-glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (6C5), and anti-a-tubulin
(DM1A) as a housekeeping gene. Chemiluminescence signals
from immunoreactive bands were detected on a KODAK Image
Station 440CF.

2.2 Rule-Based

Modeling Software

Since our goal was to distinguish different scenarios of protein-
protein interaction using computational methods, we decided to
build as detailed model as possible. That is why the model was
developed using the software BioNetGen 2 [12], which, along
with StochSim [13, 14], Kappa [15, 16], Moleculizer [17], and
Lillte b [18], describes highly branched kinetic networks using the
rule-based approach. This approach means that all possible chemi-
cal complexes (species) that emerge during the signal propagation
are generated algorithmically according to the user-specified reac-
tions rules that describe certain events on certain sites on certain
protein molecules. Along with the entire graph of chemical trans-
formations of molecules and their complexes, the rule-based sys-
tems biology software builds the corresponding system of ordinary
differential equations (ODE) for concentration of each species.
Like most code packages for rule-based description of molecule
interactions, BioNetGen 2 allows ODE integration using both
deterministic Runge-Kutta and stochastic Monte Carlo [38]
method.

2.3 OncoFinder

Algorithm

for Processing

of Transcriptomic/

Proteomic Data

We processed the transcriptomic/proteomic data from the human
tissue samples under investigation to establish pathway activation
strength (PAS) profiles corresponding to intracellular signaling
pathways. The formula for PAS calculation accounts for gene
expression data and for information on the protein interactions in
a pathway, namely, individual protein activator or repressor roles in

34 Alexander M. Aliper et al.



a pathway [30]; for pathway p, PASp ¼
P

n
ARRnp � log CNRnð Þ.

The relative role of a gene product in signal transduction is reflected
by a discrete flag activator/repressor role (ARR), which equals 1 for
an activator gene product, �1 for a repressor, and shows interme-
diate values �0.5; 0.5 and 0 for the gene products that have
repressor, activator, or unknown roles, respectively. The CNRn

value (case-to-normal ratio) is the ratio of the expression level of a
gene n in the sample under investigation to the average expression
level in the reference sampling. The positive value of PAS indicates
activation of a signaling pathway, and the negative value stands for
its repression. The analysis included 271 intracellular signaling
pathways.

2.4 Datasets

for Studying the

Correlations Between

the Same Samples

Examined using

Different

Transcriptome

Investigation Methods

To study the effects, which are introduced by the examination of
the same samples at different transcriptome investigation platforms,
and to check if the signalome-based approach instead of the gene-
based approach can increase the correlations between these sam-
ples, we compared different gene expression datasets generated
using both next-generation sequencing (NGS) and microarray
hybridization.

Gene expression data were downloaded from the Gene Expres-
sion Omnibus (GEO) repository of transcriptomic information
[39]. The overview of materials, methods, and results of these
cross-investigation datasets is shown in Table 1.

Table 1
Transcriptomic data deposited in the GEO database that were used for the current study

Dataset ID Origin
Case samples versus
control samples Experimental platforms

# of
samples

GSE36244 HepG2 cells Treated vs. untreated
with benzopyrene

Transcriptome at Affymetrix
Human Genome U133 Plus
2.0 arrays and transcriptome
et Illumina Genome Analyzer
sequencer

4

GSE41588 HT-29 cells Treated vs. untreated
with 5-aza-deoxy-
cytidine

Transcriptome at Affymetrix
Human Genome U133 Plus
2.0 arrays and transcriptome
at Illumina Genome
Analyzer sequencer

6

GSE37765 Lung
adeno-carcinoma

Tumor samples vs.
matched samples
of normal tissue

Transcriptome at Agilent 1M
CNV arrays and
transcriptome Illumina
Genome Analyzer sequencer

6
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3 Results

3.1 Building Large-

Scale, Low-Level

Models of Mitogenic

Cell Signaling

Among signaling pathway kinetic models that take into account the
combinatorial complexity, there were descriptions of highly
branched networks that lead to the activation of one of the most
important mitogenic effectors, extracellular regulatory kinase
(ERK), as well as the serine/threonine kinase AKT that is particu-
larly important for anti-apoptotic response, upon the stimulation of
the HEK293 cells with epidermal growth factor (EGF) [9, 11] and
with insulin [10].

We have shown experimentally that in HEK293 cell line, insu-
lin does not significantly activate ERK, although it considerably
amplifies the ERK response upon EGF stimulation [9, 10]. Using
mathematical modeling, we hypothesized the essential role of the
adapter protein Grb2-associated binder 1 (GAB1) [10] that plays
the key role in signal propagation upstream of the small GTPase Ras
[9, 10], whereas the major mechanism of GAB1-dependent signal
amplification is recruitment of GAB1 (and other adapter proteins)
to the plasma membrane via phosphatidylinositol-3,4,5-triphos-
phate (PIP3) [9, 10]. This hypothesis was confirmed in a series of
experiments including Western blotting, chemical inhibition of key
components in signaling pathways, and short interfering RNA
(siRNA)-based depletion of important proteins in signal transduc-
tion [9, 10].

Nevertheless, some details of GAB1 interaction with its part-
ners remain unclear. This protein molecule is known to possess
multiple docking sites that specifically bind numerous partners
such as phosphatidylinositol-3 kinase (PI3K) [40], GTPase activa-
tion protein RasGAP [41], tyrosine phosphatase SHP2 [9], tyro-
sine kinases of the Src family [42], etc. Moreover, one of major
GAB1 partners, growth factor receptor binder 2 (Grb2), has been
reported to bind to GAB1 in many ways. First, the association of
Grb2 and GAB1 can be performed via phosphorylated tyrosine
residues of GAB1 and SH2 domain of Grb2 [43, 44]. Second,
the binding may be performed via the C-terminal Src homology 3
(SH3) domain of Grb2 and the proline-rich domain (PRD) of
GAB1 [45, 46]. Our previous in silico modeling studies have not
favored any of these possible scenarios due to the limited descrip-
tion of combinatorial complexity in these models [9, 10]. To obtain
several hints and insights on the details of protein-protein interac-
tion within the mitogenic signaling network, we concentrated on
building and investigating a full-scale combinatorial complex net-
work model.

3.2 Protein-Protein

Interactions in the

Current Model

We have developed a highly branched model for activation of
mitogenic (Ras/ERK) and survival (AKT) targets upon EGF stim-
ulation. Our model is a further step in computational research of
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mitogenic signaling pathways. Our previous results showed the
ability to explain most of measured data and to make experimentally
verifiable predictions on the details of cell signaling propagation [9,
10]. However, they both were “manually” developed: all species
and reactions in the network were specified by the model
developers.

Although the network structure of the current model differs
significantly from our previous models, most proteins and their
principal relationships are quite similar (Fig. 1) [9, 10]. Signal
propagation starts with the activation of the cell-surface receptor
[5]. Upon EGF binding, the receptor dimerizes and undergoes
transphosphorylation at tyrosine residues in the cytoplasmic tail
[5]. These residues can bind Shc, Grb2 (followed by binding of
the guanine exchange factor SOS), p85 subunit of PI3K and
GTPase RasGAP [5–7]. All the species that contain phosphorylated
EGFR may be endocytosed and degraded, releasing the binding
partners of EGFR. Primary activation of the tyrosine kinases of the
Src family (Src) is also implemented by EGFR [8]. The overall
picture of the first stages of the pathway activation is shown in
Fig. 2.

Fig. 1 Flow chart of signal propagation through the EGFR signaling network,
pretty similar to our previously published models [10]. Solid lines with arrows
show the activation or tyrosine phosphorylation of proteins and lipids. Dotted
lines represent direct protein-protein and protein-lipid interactions. Red lines
with blunt ends show inhibition
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The major role in the amplification of the Ras/MEK/ERK
signaling is played by the adapter protein GAB1. GAB1 is recruited
to the plasma membrane through PIP3 via the plekstrin homology
(PH) domain [47]. When bound to the membrane, either via PIP3

or via Grb2-(Shc)-EGFR, GAB1 may be phosphorylated by EGFR
or SFK, which is followed by binding Grb2 [43, 44], PI3K [40],
RasGAP [41]—for the sake of simplicity, we assume competitive
binding of these partners to GAB1) or SHP2 [40]. When bound to
GAB1, SHP2 exhibits phosphatase activity against the phosphory-
lation sites on GAB1, as well as on EGFR [40].

Likewise, Grb2 also possesses scaffolding properties. We took
into account in [9] that it has two SH3 domains (the N-terminal
domain specifically binds SOS, while the C-terminal one binds
GAB1) [45, 46]. In addition, the SH2 domain at Grb2 binds
phosphotyrosine residues, both on EGFR and GAB1 [43, 44].

EGFR

EGF

pY pY

Shc Grb2

PTB

PLCγ

TPR

Nsh3

PI3K

sh2

sh2

RasGAP

sh2

pY

pY

Src

sh2sh3

Csh3

pY

EGF

EGFR

Membrane

act

d d

L L

Fig. 2 Epidermal growth factor receptor (EGFR) and its partners in our kinetic model: the ligand (EGF), adapter
proteins Shc and Grb2, phospholipase Сγ (PLCγ), phosphatidylinositol 3-kinase (PI3K), GTPase RasGAP,
tyrosine kinase Src, and unspecified tyrosine phosphatase (TPR). Protein molecules are represented as
rectangles, their structural and functional subunits—as blue ovals, phosphorylated tyrosine residues that
bind specific partners—as pink ovals
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To make distinction between the two modes of GAB1-Grb2
binding, we created two variants of signaling models that are sym-
bolically called A and B (see Fig. 3). The only difference between
protein-protein interaction in models A and B is the sites/domains
for Grb2-GAB1 binding. Whereas the model A assumes that these
proteins bind each other via the proline-rich domain (PRD) of
GAB1 and C-terminal SH3 domain of Grb2, in the model B
these proteins associate via one of the numerous tyrosine residues
at GAB1 and SH2 domain at Grb2.

PIP3 (which is produced by the membrane-recruited PI3K)
recruits to the plasma membrane adapter protein GAB1 and a
serine/threonine kinase PDK1. Membrane-recruited PDK1 causes
Akt phosphorylation at Thr308 residue [48, 49].

Membrane-recruited SOS produces transformation of Ras-
GDP into Ras-GTP complex [9, 50]; the contrary process is cata-
lyzed by membrane-recruited RasGAP. Ras-GTP causes primary
activation of Raf protein [51], however, for full activation of Raf,
active Src is needed [52]—see Fig. 4. Active Raf causes MEK activa-
tion by dual phosphorylation of MEK activation loop [53]. Active
MEK causes ordered phosphorylation of ERK [7].

Grb2
Nsh3 sh2 Csh3

SOS Rd
pY

Shc GAB1

prdY~pY

GAB1
ph prd YRP~pY Y627~pY

PIP3

Src

Grb2
RasGAP

sh2

PI3K

SHP2

Grb2
Nsh3 sh2 Csh3

SOS
Rd

pY

Shc GAB1

YRP~pYY~pY

GAB1
ph prd YRP~pY Y627~pY

PIP3

Src

Grb2 RasGAP

Csh3 sh2

PI3K

SHP2

Fig. 3 Domain/site structure and binding partners of two major scaffold proteins, GAB1 and Grb2, according to
the variants A (upper row) and B (lower row) of the signaling network model. Rectangles represent protein or
lipid molecules, blue ovals—protein domains, orange ovals—tyrosine residues
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As a serine/threonine kinase, active ERK may impose negative
feedbacks via phosphorylation of serine/theronine inhibitory sites
at SOS and GAB1 [54–56].

3.3 Model Size

in Comparison

with Previous Results

Our first large-scale model of signaling networks [9] assumed
independent binding of multiple partners to the scaffolding pro-
teins such as GAB1 and Grb2. Since it was constructed manually,
we needed certain model reduction methods [19–22] that replaced
highly branched networks describing transitions between the states
of a scaffold protein with more compact pathways involving several
virtual (“macroscopic”) proteins that possess fewer sites than a real
scaffold. Contrary, for the sake of simplicity, our model of coupled

GTP
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GTP
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inh~no

SOS SOS

SOS

SOS

Ras

Ras

Ras

Ras Ras

Thr

pThr pSer

Ser

Raf

RasGAP

RasGAP
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Fig. 4 Activation on Ras and Raf oncogenes in our kinetic model
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insulin-EGF signaling [10] employs the assumption of competitive
binding of all partners to the scaffold proteins. This assumption
reduces the number of chemical species and reactions, however, it
makes impossible to do any predictions on the details of protein-
proteins interaction (identification of binding sites/domains etc.).

In contrast to our previous work, the current model exploits
the ability of BioNetGen 2 to generate all possible complexes and
reactions that may arise during the signal propagation according to
the user-specified reaction rules. In our example, BioNetGen 2 gen-
erated more than 2000 chemical species and 12,000 reactions for
the model A and more than 650 species and 5500 reactions for the
model B, which makes our model one of the biggest in current
systems biology of mitogenesis. Table 2 presents the comparison of
size and overall topology of signaling network models developed
during the past decade.

Despite rather large model size, total computation time
(including signaling network generation, equilibration of species
concentration prior to the stimulation followed by calculation of
signaling kinetics after adding EGF) was 15.8 min for the variant A
and only 1.43 min for the variant B at a personal computer with
CPU frequency of 1.82 GHz and RAM capacity of 1 Gb.

3.4 Fitting Kinetic

Parameters and Model

Predictions

Methods for network signaling model handling and verification
that we applied here were similar to previously used ones [9, 10].
During the “training”/“fitting” process, it is important not to
exceed the boundaries for kinetics parameters that are imposed by
experimental hints for the similar processes. In addition, any reac-
tion should not be faster than it is prohibited by the diffusion limit.

To make the model more “robust,” after the completion of
parameter fitting, the researcher can make experimentally verifiable
predictions, which include, for example, some model

Table 2
Overview of our signaling network models

Reference
(Kiyatkin et al. [9])

Reference
(Borisov et al. [10]) Current work

Initiating
ligands

EGF EGF þ insulin EGF

Number of
species

~200 78 2022 (model A)
665 (model B)

Number of
reactions

~500 111 12148 (model A)
5733 (model B)

Combinatorial
complexity

Independent binding
with “manual” model
construction

Competitive binding
with “manual” model
construction

Independent binding
with automated model
construction
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perturbations, such as inhibition of certain enzymes or increases/
decrease of certain protein abundances via protein overexpression
or, perhaps, siRNA-assisted depletion.

Figure 5 shows the results of our model “training” on the
example of ERK (left column) and Akt (right column) activation
patterns. Models A (upper row) and B (middle row) were “trained”
for three values of EGF dose (20, 1, and 0.2 nM), as well as for
action of PI3K inhibitor wortmannin (WT), according to the
experimental data (Western blotting) that were published previ-
ously for the HEK293 culture cells—lower row, taken from [10].
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Fig. 5 Model “training/fitting” according to the experimental data on ERK (left column) and Akt (right column)
activation. Upper row: results of model A fitting for different EGF doses and application of wortmannin (WT), a
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Although the activation curve shapes for models A and B were not
always strictly similar, it was impossible to make clear preferences
for the variant A or B at this “training”/“fitting” step. The same
conclusion can be made for the GAB1, Ras, and MEK activation
curves (data not shown).

Previously, we demonstrated the crucial role of GAB1 as an
enhancer of mitogenic signaling upon EGF simulation [9, 10].
When GAB1 is recruited to the plasma membrane via PIP3, it may
bind PI3K, which produces more PIP3, thus increasing the concen-
tration of the membrane-recruited GAB1 and closing the positive
feedback loop. The effects of feedback loop disruption by GAB1
depletion, which we computationally predicted in our earlier mod-
els, were experimentally verified using the siRNA method [9, 10].

Interestingly, our calculations (see Fig. 6) show that only model
B (middle panel) was capable of reproducing experimental results
(right panel) for the influence of GAB1 depletion on the ERK
response to EGF stimulation of HEK293 cells. Contrarily, the
model A (left panel) did not show the decrease of ERK signal
even for the total removal of GAB1 for the cell. This surprising
effect is caused by the specific “sequestration” of Grb2 by GAB1 in
the model A. If a large GAB1-containing complex binds Grb2-
EGFR or Grb2-Shc-EGFR complex via the C-terminal SH3
domain of Grb2, the resulting reaction product may exceed the
critical number of protein molecules in the complex (we assumed
that any complex cannot contain more than five molecules), thus
preventing SOS binding to Grb2 via the N-terminal SH3 domain.
However, in the model B, GAB1 and EGFR cannot bind to Grb2
simultaneously (see the lower right panel in Fig. 3), so that GAB1
cannot “sequester” the membrane-recruited (via EGFR) Grb2
from the pool of molecules that are capable of recruiting SOS to
the membrane.
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4 Discussion

4.1 Difficulties

with Experimental

Validation

of Computational

Findings

Although our results showed feasibility and traceability of large-
scale combinatorially complex signaling network models that are
automatically generated using the rule-based software for systems
biology, our finding that model B may be more adequate than
model A, needs further verification.

It should be notified that the experimental validation, which
may favor scenario A or B, may introduce several experimental
errors or uncertainties. Direct measurements may lead to triple
immunoblotting (detection of certain phosphotyrosine residue in
the simultaneous Grb2-GAB1 precipitate), which has very low
registration efficiency, and, consequently, large relative errors.

Experiments with mutant proteins (for example, substitution of
GAB1 tyrosine residue that binds SH2 domain for Grb2 with
phenylalanine) inevitably involve model laboratory animals, and
the use of animals may introduce extra uncertainties, e.g., due to
the human-murine differences in the genome and proteome.

4.2 Potential

Usefulness of Kinetic

Models for Signaling

Pathways

Although current versions of OncoFinder [30] software packages
are based on the assumption of equal relative importance of all gene
products, both signal activators and signal inhibitors, this hypothe-
sis may seem rather artificial. As far as we previously mentioned, at
least two ways for the determination of relative importance of
genes/proteins may be suggested. The former operates with the
concept of sensitivity of the ODE system on the free parameters
[23], which is generally applied to kinetic constants (such as the
dissociation constant, the Michaelis-Menten constants, etc.), but
also may be used (exactly as here) for the total concentrations of
certain proteins in the kinetic model of a pathway, as follows,

w
1ð Þ
j ¼ lim

t!1
1
T

RT

0

∂ ln EFF tð Þ½ �
∂ lnС tot

j

�
�
�

�
�
�dt . Here, [EFF(t)] is the time-dependent

concentration for the active form of definitive pathway effector, and
C tot

j is the total concentration for the protein j in the kinetic

pathway model.
The latter way to calculate the importance function for the

genes/proteins in a pathway is related to the stiffness/sloppiness
analysis [24] for the effector activation upon total protein concen-
trations. According to such an approach we interrogated the Hesse

matrix, Hij ¼ ∂2

∂C tot
i ∂C tot

j

P

k

EFF Ctot ; tkð Þ½ �ð -
EFF½ � exp

k
Þ2

σ2
k

, where Ctot is

the vector of total concentrations for every protein type in the
pathway model, [EFF(Ctot, tk)] is the concentration for the active
form of the definitive effector calculated at the time point tk,
EFF½ � expk is the experimentally measured (using, e.g., the Western

blotting technique) concentration at the same time, and σkis the
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experimental error for this measurement. The sloppiness/stiffness
analysis searches for the eigenvalues, λm, and eigenvectors, ξm, for
the Hesse matrix, Hξm ¼ λm � ξm. The higher is the absolute value
of λn, the “stiffer” is the direction within the n-dimensional space of
Ctot (where n is the number of protein types in the pathway model).
The eigenvector components along the stiffest direction, ξs, may be
used for the assessment of the relative importance of certain genes/
proteins in a pathway, as follows, w

2ð Þ
j ¼ ξsj

�
�

�
�.

Taking into account the considerations above, we arrive at
the following formula, PAS

1;2ð Þ
p ¼ P

n
ARRnp � BTIFn � w 1;2ð Þ

n �
log CNRnð Þ. Here, the Boolean flag of BTIF (beyond tolerance
interval flag) indicates that the expression level for the gene n for
the given sample is different enough from the respective expression
level for the reference sample or set of the reference samples. In our
studies we stipulated that to be significantly pathologic any gene for
a cancer patient must be at least by 50% higher or 50% lower
expressed compared to the average value for the reference set of
samples, and, at the same time, its expression level should differ
by more than two standard deviations from the average of the
reference set.

To check if the introduction of the weight (importance) coeffi-
cients, either sensitivity-based, w(1), or stiffness-based, w(2), makes
any significant difference, we have performed the verification on the
example of the EGFR pathway, we have performed the verification
on the example of the EGFR pathway. For these two sets of weight-
ing factors, as well as without them, we have performed a compu-
tational experiment with nine datasets on the results for microchip
investigation of nine samples taken from patients with a high-grade
glioblastoma [57]. Our findings suggest that the cloud of values for

the ratio of
PAS

1ð Þ
EGFR

PASEGFR
(where PASEGFRis the PAS value for the EGFR

pathway with all importance factors equal to 1) lies within the

interval of (0.7 � 0.3), whereas the ratios of
PAS

2ð Þ
EGFR

PASEGFR
are slightly

higher and may be assessed as (1.0 � 0.6).
Unfortunately, the overall number of signaling pathways,

which were characterized in terms of only activation/inhibition
relationships between the different proteins, is significantly higher
than the number of the pathways that have been quantitatively
described using the kinetic models. That is why for many pathways
in our database the evaluation of weighting factors w(1,2) was
impossible. However, we have performed some tests for the sto-
chastic robustness analysis of the proposed formula for PAS [30].
During this testing, we have introduced the extra randomly pertur-
bation factors,wn, which were used as multiplication coefficients for
each logarithm of relative gene expression. In our computational
experiment, the distribution for wn was logarithmically normal;
namely, they were calculated as follows, wn ¼ 2xn , where xn are
normally distributed random numbers with the expected value of
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M¼ 0 standard deviation σ ¼ 0.5. The random perturbation factors
wn were applied to one of samples of the glioblastoma gene expres-
sion dataset [57]. Importantly, although the perturbation was done
independently 98 times with independent weighting factors wn, for
each gene, the values of standard deviation for the set of alternate
PAS (APAS) were not big enough to bias the proportional trend
between the average perturbed and unperturbed PAS for each
signaling pathway [30].

4.3 The Transition

to Signalome-Based

Description Restores

Correlation Between

the Same Samples

Investigated by

Different Methods

(Cumulative Effect)

Previous studies, e.g., [58–60] revealed one important discoura-
ging feature of full-transcriptome investigations. If one applies
different experimental methods (e.g., microarray hybridization and
next-generation sequencing) for the same samples, little or no cor-
relation may be observed at the level of distinct genes.

We checked if transition from the gene-based to pathway-based
approach, e.g., our OncoFinder system, can restore the correlations
between the same biosamples. During this checking procedure, we
assigned the untreated cell culture samples for the datasets
GSE36244 [58] and GSE41588 [59], and healthy lung samples
for the dataset GSE37765 [60] as the “normal” or control states.
To decrease the batch effects, all the microarray results were quan-
tile normalized according to [61]. The NGS data were normalized
using the method DESeq [62]. To avoid the divergence when
calculating the log-fold-change values, we skipped all the genes
and gene products in RNA-seq and microarray datasets that
contained zero intensities.

For further normalization of the transcriptional data to the
control samples, we calculated the case-to-normal ratio (CNR).
When comparing the normalized expression logarithms between
the NGS and microarray expression data, we detected small or
moderate correlation for all the datasets under investigation
(Fig. 7, Table 3). These results suggest that there is a considerable
gap between the different experimental platform data.

In contrast, for the OncoFinder-processed data and pathway
activation strength (PAS), we detected clear-cut correlations
between the NGS and microarray gene expression datasets
(Fig. 7, Table 3). The correlation coefficients for PAS were greater
than for the CNR with only three outliers out of 16 samples. This
finding evidences that the PAS calculation algorithm produces far
more congruent results compared to the initial gene expression
signatures between the microarray and NGS datasets.

Importantly, both NGS and microarray hybridization strategies
may produce a large number of errors through the stages of RNA
purification, library preparation and amplification, hybridization
and sequencing, and finally mapping and annotation of the reads
and reading the array [63–65]. It is hard to identify the errors and
to find out what type of experimental assay provides more accurate
data for each individual gene. It is important to minimize the errors
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in the transcriptomic data and, theoretically, quantitative real-time
PCR might provide a solution as a reference gene expression
measure. However, the existing PCR platforms do not allow
making high-throughput, transcriptome-scale experiments. Our
approach makes it possible to surmount this obstacle as, unlike
the original data, the outgoing PAS values are highly congruent
among the NGS and microarray data. This effect of the

Fig. 7 Clouds of values obtained using the RNA next-generation sequencing vs. RNA microarray analysis
methods. Upper row (a, b): cell replica 1, 24 h after BaP treatment from the HepG2 cells, dataset GSE36244
[58]. Middle row (c, d): treatment with 5 μM of 5-Aza and cell replica 1 from the HT-29 cells, dataset
GSE41588 [59]. Lower row (e, f): sample P8 from the lung adenocarcinoma dataset GSE37765 [60]. Left
column (a, c, e): values of logarithmic CNR for each gene. Right column (b, d, f): values of PAS
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OncoFinder algorithm is most likely due to its cumulative nature.
The PAS value is formed by the addition of multiple individual
members, each representing a gene product involved in the path-
way. The concentration of each individual gene product can be
measured with a certain error, which is clearly seen when untreated
NGS vs. array data are compared, but a combination of a large
number of these concentration members into a signalome-ori-
ented network apparently diminishes an overall error, as reflected
by the better correlation records.

We conclude that this feature of PAS makes it possible to more
accurately measure the changes in the functional states of the
cellular/tissue transcriptome and interactome across the many
microarray and NGS platforms, which makes OncoFinder a
method of choice for many applications including genetics, physi-
ology, biomedicine, and molecular diagnostics.
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Chapter 4

Bioinformatics Meets Biomedicine: OncoFinder,
a Quantitative Approach for Interrogating
Molecular Pathways Using Gene Expression Data

Anton A. Buzdin, Vladimir Prassolov, Alex A. Zhavoronkov,
and Nikolay M. Borisov

Abstract

We propose a biomathematical approach termed OncoFinder (OF) that enables performing both quantita-
tive and qualitative analyses of the intracellular molecular pathway activation. OF utilizes an algorithm that
distinguishes the activator/repressor role of every gene product in a pathway. This method is applicable for
the analysis of any physiological, stress, malignancy, and other conditions at the molecular level. OF showed
a strong potential to neutralize background-caused differences between experimental gene expression data
obtained using NGS, microarray and modern proteomics techniques. Importantly, in most cases, pathway
activation signatures were better markers of cancer progression compared to the individual gene products.
OF also enables correlating pathway activation with the success of anticancer therapy for individual patients.
We further expanded this approach to analyze impact of micro RNAs (miRs) on the regulation of cellular
interactome. Many alternative sources provide information about miRs and their targets. However, instru-
ments elucidating higher level impact of the established total miR profiles are still largely missing. A variant
of OncoFinder termed MiRImpact enables linking miR expression data with its estimated outcome on the
regulation of molecular processes, such as signaling, metabolic, cytoskeleton, and DNA repair pathways.
MiRImpact was used to establish cancer-specific and cytomegaloviral infection-linked interactomic signa-
tures for hundreds of molecular pathways. Interestingly, the impact of miRs appeared orthogonal to
pathway regulation at the mRNA level, which stresses the importance of combining all available levels of
gene regulation to build a more objective molecular model of cell.

Key words Systems biology, Bioinformatics, Intracellular molecular pathways, Gene expression,
Transcriptomics, Proteomics, Epigenetics, micro RNA, Cancer biomarkers, Sensitivity to drug
treatment

1 Introduction

Intracellular molecular pathways (IMPs), including signaling, DNA
repair, metabolic and cytoskeleton reorganization pathways, regu-
late all major cellular events in health and disease [1–3]. Changes in
their activity may reflect various differential conditions such as
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differences in physiological state, aging, disease, treatment with
drugs, infections, media composition, additives and nutrients, hor-
mones, etc. Many bioinformatic tools have been developed recently
that analyze IMPs. Today, hundreds of IMPs and related gene
product interaction maps are cataloged that show sophisticated
relationships between the individual molecules in various databases
such as UniProt [4], HPRD [5], QIAGEN SABiosciences [6],
WikiPathways [7], Ariadne Pathway Studio [8], SPIKE [9], Reac-
tome [10], KEGG [11], HumanCyc [12], etc. The information
about activation of IMPs can be obtained from the massive proteo-
mic or transcriptomic data. Although the proteomic level may be
somewhat closer to the biological function of IMPs, the transcrip-
tomic level of studies today is far more feasible in terms of
performing experimental tests and analyzing the data. The tran-
scriptomic methods such as next-generation sequencing (NGS) or
microarray analysis of RNA can routinely determine expression
levels for all or virtually all human genes [13]. Transcriptome
profiling may be performed for the minute amount of the tissue
sample, not necessarily fresh, but also for the clinical formalin-fixed,
paraffin-embedded (FFPE) tissue blocks [14].

However, until recently, it remained challenging to efficiently
do the high-throughput quantification of pathway activation for
the individual biological samples. Several biomathematical
approaches were published to measure pathway activation based
on large-scale gene expression data, either transcriptomic or pro-
teomic. For example, Khatri et al. [15] classified those methods
into three major groups: Over-Representation Analysis (ORA),
Functional Class Scoring (FCS), and Pathway Topology (PT)-
based approaches. ORA-based methods calculate if the pathway is
significantly enriched with differentially expressed genes [16–18].
These methods have many limitations, as they ignore all non-
differentially expressed genes and do not take into account many
gene-specific characteristics. FCS-based approaches partially tackle
aforementioned limitations by calculating fold change-based scores
for each gene and then combining them into a single pathway
enrichment score [19–21]. PT-based analysis also takes into
account topological characteristics of each given pathway, assigning
additional weights to the genes (for a review, see [22]). Recently, to
account for gene expression variability within a pathway, another
set of differential variability methods has been developed [23].
Differential variability analysis determines a group of genes with a
significant change in variance of gene expression between case and
control groups [24]. This approach was further extended and
applied on the pathway level [23, 25, 26].

In 2014, we published a new biomathematical method for
pathway analysis, termed OncoFinder [27]. Based on kinetic mod-
els that use the “low-level” approach of mass action law, OncoFin-
der performs quantitative and qualitative enrichment analyses of
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the signaling pathways. For each sample investigated, it performs a
case-control pairwise comparison and calculates the Pathway Acti-
vation Strength (PAS), a value that serves as a qualitative measure of
pathway activation. Unlike most other methods, this approach
determines if the signaling pathway is significantly up- or down-
regulated compared to the reference. Negative and positive overall
PAS values correspond to an inhibited or activated state of signaling
pathway [27]. OncoFinder is also, to our knowledge, a unique
PAS-calculating method, which was reported to provide output
data with significantly reduced noise introduced by the experimen-
tal transcriptome profiling systems [28]. This approach was shown
to be efficient in finding new biomarkers for various human diseases
[29–33] and in modeling melanoma development [34], regression
of neuroblastoma [35], immunity and apoptosis [36], stimulation
by the nutrients [37], and acquiring resistance against drug treat-
ment in leukemia cells [38]. Furthermore, the same rationale was
employed for pathway activity calculations based on micro RNA
(miR) expression data. The related technique, termed MiRImpact,
enables linking miR with its estimated outcome on the regulation
of molecular pathways [39]. Finally, OncoFinder was used to link
molecular pathway activation features with the sensitivity of cancer
cells to drugs, at both cell culture and patient levels [40–42]. Here,
we review selected applications of this technology to human molec-
ular biomedicine.

2 The OncoFinder Algorithm

The OncoFinder algorithm operates with the calculation of the
Pathway Activation Strength (PAS), a value that serves as a qualita-
tive measure of a molecular pathway activation. The formula for the
PAS calculation accounts for gene expression data and for informa-
tion on the protein interactions in a pathway, namely, individual
protein activator or repressor roles in a pathway [27]. This is also
important to identify control sample or a group of control samples,
which will be used as the norms for PAS calculation. The gene
expression data under investigation are compared against con-
trol/normal gene expression profiles. For microarray gene expres-
sion data, previous data normalization may be required, such as
quantile normalization [43]. The positive value of PAS indicates
abnormal activation of a molecular pathway compared to norms,
and the negative value—its downregulation, whereas zero PAS
scores represent unaffected pathways acting similarly in case and
in normal samples. Briefly, the enclosing algorithm utilizes the
following formula to evaluate pathway activation, where summa-
tion is made for all the genes, whose products participate in a
pathway:
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PASp ¼
X
n

ARRnp � BTIFn � log CNRnð Þ:

Here, the case-to-normal ratio, CNRn, is the ratio of expression
levels for a gene n in the sample under investigation to the same
average value for the control group of samples. For each gene i,
case-to-normal ratio (CNRi) is calculated for the respective con-
centrations of mRNA or for protein concentrations, depending on
the origin of input data (shown for mRNA):

CNRi ¼ CasemRNASignali
NormmRNASignali

:

In most applications, for each CNR value, a Boolean flag of
BTIF (beyond tolerance interval flag) was applied, which equals 1
when the CNR value passed, and 0 when the CNR value did not
pass both or either one of the two criteria of significantly differential
expression: first, the expression level for the sample must fit outside
the tolerance interval for norms, with p < 0.05, and second, the
value of CNR must differ from 1 by at least 1.5-fold. The second
criterion is the discrete value of ARR (activator/repressor role) that
reflects the functional role of a gene product n in a pathway [27].
For each gene of a pathway p, its activator-repressor role (ARRi , p)
is defined, which depends on the functional role of this gene
product in a pathway:

ARRi,p ¼

�1,
�0:5,
0,
0:5,
1,

8>>><
>>>:

repressor
repressor > activator

neither
activator > repressor

activator

:

For the calculations, databases including up to ~270 signaling,
~360 metabolic, and ~300 other intracellular molecular pathways
were used in the published reports. As the knowledge bases for
building OncoFinder-compatible pathway datasets, the resources
such as QIAGEN SABiosciences, WikiPathways [7], Ariadne Path-
way Studio [8], Reactome [10], KEGG [11], HumanCyc [12], and
others may be used, depending on the user’s preferences.

3 Modification of OncoFinder Algorithm for micro RNA Expression Analysis
(MiRImpact Algorithm)

MiRImpact biomathematical algorithm was built to enable quanti-
zation of the effects, caused by the changes in overall miR concen-
trations, on the activity of intracellular molecular pathways [39].
The algorithm was created on the basis of a rationale previously
published for the OncoFinder method [27]. For each miR, a case-
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to-normal ratio is calculated for the respective miR concentrations
(miCNRj):

miCNRj ¼
Case microRNA Signalj
Norm microRNA Signalj

:

The miR beyond tolerance interval flag (miBTIFj) marker
determines if the difference between case and norm is significant:

miBTIF j ¼
0,miCNRj belongs to microRNA tolerance interval

1,miCNRj doesn
0
t belong to microRNA tolerance interval:

�

The unique coefficient termed miR involvement index (miII)
determines, if a given mRNA transcript of a gene i is a molecular
target of a miR j:

miII j , i ¼ 0, target
1, not target

�
:

The value of miR-defined activation strength of a pathway
p (miPASp) is calculated according to the following:

miPAS1p ¼ �
X
i

ARRip �DIF i � log miCNRið Þ
X
j

miII ij �

Similarly to OncoFider, a positive value of miPASp indicates
activation, whereas a negative one indicates repression of a pathway
p, calculated based on the available miR expression data.

In the initial application of this method, we took the previously
published Oncofinder signaling database featuring 2725 unique
genes and 271 signaling pathways [29, 38]. These data are needed
to identify genes involved in each pathway and their functional roles
expressed by ARR values. To find out mII indexes, a database
covering target gene product specificities of miRs is needed. We
used the most recent available updates of the two alternative knowl-
edge bases on miRs and their experimentally validated targets:
miRTarBase [44] and Diana TarBase [45]. Both databases include
information on more than 50 thousands of molecular interactions
of miRs with target mRNA molecules, in case of miRTarBase—for
18 species, in case of Diana-TarBase—for 24 species, including
human. The most commonly used experimental approaches for
validating molecular targets of miRs are luciferase reporter assay,
Western blots, and next-generation sequencing approaches. This
information is manually curated by the database developers based
on published literature on functional experimental studies of miRs
[44, 45]. The target specificities of miRs catalogued there cover,
respectively, 72 and 18% of the genes listed in the OncoFinder
database, which was taken in MiRImpact for the analysis of the
molecular pathways (Table 1).
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For the set of experimental human bladder cancer samples, we
observed a weak, but still statistically significant, correlation
between the miPAS data calculated for both databases (Fig. 1).
However, the high level of noise reflects a big difference between
their content and completeness. The results obtained suggest that
the method MiRImpact may be compatible with various databases
collecting data on miR specificities and on their particular activities
[39]. This means that the future developments based on the MiR-
Impact method may utilize any kind of new miR target databases,
either based on computational prediction, or on experimental
validation of miR interactions. Similarly, the enclosed OncoFinder
database of signaling pathways may be updated, extended, or
replaced by another database of molecular pathways, in a user-
definitive way. Furthermore, knowledge of the qualitative aspects
of molecular interactions between miRs and their targets, and
between the molecules participating in molecular pathways, may
be used to tune the databases to assign specific weighting coeffi-
cients to each miR and/or gene product. The mathematical algo-
rithm used here is rather universal and can be employed to trace
also metabolic, cytoskeleton rearrangement, DNA repair, and
other types of intracellular molecular pathways, in any organism
or species of the interest. The apparently seen correlation between
the data calculated using miRTarBase and Diana-TarBase suggests
that the algorithm works in the same manner for both miR target
databases. We compared the obtained results with the literature
data on the impact of particular miRs on the respective signaling
pathways. For the data calculated using the miRTarBase, we
observed a greater congruence between the experimental and the
literature data (in 47% of the cases), whereas for Diana-TarBase,
the data were compatible in only 23% of the cases. We suggest,
therefore, that the miRTarBase is currently a database of choice for
the estimation of molecular pathways regulation by miRs in
humans [39]. Finally, we propose that other types of noncoding

Table 1
Characteristics of validated miR target databases, based on the data
collected from miRTarBase, Diana TarBase, and OncoFinder pathway
databases

Data base miRTarBase
Diana
TarBase

Number of miRs targeting gene products
from OncoFinder database

596 183

Number of individual records 12103 3006

Number of target genes in OncoFinder database 1968 497
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RNAs than miRs can be also analyzed using the MiRImpact
method, when their regulatory roles and target\effector gene pro-
ducts are known.

4 Intracellular Pathways Activation Profiles Make Better Markers
than Expression of Individual Genes

Identification of reliable and accurate molecular markers of cancer
remains one of the major challenges of contemporary biomedicine.
Thousands of reports have been published communicating new
RNA, protein, and non-protein biochemical biomarkers sensitive
to cancer development [46]. Most of these markers represent pro-
ducts of individual gene expression at the RNA or protein levels.
Some of them are widely used in clinical practice, but there remains
an overall unsolved problem of finding new cancer biomarkers with
enhanced specificity and sensitivity scores compared to the existing
ones. Another aspect of the same problem deals with the shortage
of the cancer type-specific molecular markers, e.g., melanoma-spe-
cific, bladder or pancreatic cancer-specific, etc. Association of the
marker expression with the success of the medical treatment may
provide clues to a more efficient, patient-oriented cancer treatment
therapy [47].

Fig. 1 Comparison of microRNA Pathway Activation Strength (miPAS) values calculated using miRTarBase and
Diana TarBase databases of miR targets, for an averaged miR expression between all the bladder cancer
samples under investigation. The resulting virtual sample is the result of averaging of miR expression
measured by deep sequencing for eight bladder cancer samples. The results for each individual sample
showed correlation coefficients varying between 0.06 and 0.53 with the mean value of 0.26
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We applied OncoFinder to profile gene expression datasets for
the nine human cancer types including bladder cancer, basal cell
carcinoma, glioblastoma, hepatocellular carcinoma, lung adenocar-
cinoma, oral tongue squamous cell carcinoma, primary melanoma,
prostate cancer, and renal cancer, totally 292 cancer and 128
matching normal tissue samples taken from the Gene expression
omnibus (GEO) repository [48]. We profiled activation of 82
signaling pathways that involve ~2700 gene products. Based on
the comparison of the cancer vs normal tissue transcriptomic data,
we obtained the PAS profiles characteristic of the above cancer
types. We next calculated the area-under-curve (AUC) values [49]
for the PAS scores of each of the pathways under investigation. The
AUC value is the universal characteristics of biomarker robustness
and it is dependent on the sensitivity and specificity of a biomarker.
It correlates positively with the biomarker quality and may vary in
an interval from 0.5 till 1. The AUC threshold for discriminating
good and bad biomarkers is typically 0.7 or 0.75. The entries
having greater AUC score are considered good-quality biomarkers
and vice versa [50]. The AUC values were calculated when com-
paring each cancer type against the remaining eight cancer types.
Enhanced AUC values here meant that the corresponding signaling
pathway is a good biomarker distinguishing an individual cancer
type from the others (Table 2). This kind of AUC score will be
referred here as AUC1. In parallel, we also calculated the analogous
AUC scores for the individual gene products involved in the path-
ways (namely, for the values of lg CNR for them). For each of these
2726 human gene products, we next calculated the average AUC
scores characteristic of each signaling pathway/cancer type,
referred here as AUC2. AUC1 reflects the quality of PAS as the
biomarker for a given signaling pathway, and AUC2 is the integral
characteristics of the biomarker quality for the expression of the
genes that are involved in the same pathway. The outline of the data
analysis is shown in Fig. 2. The results showed that among the
good-quality biomarkers (AUC cut-off value 0.75) the values for
AUC1 were higher than for the AUC2 for all cancer types
(Table 2). For example, in all cancer types there were only 14
AUC2 (gene expression) markers, in contrast to 160 AUC1 (path-
way activation) markers (Table 2). Moreover, for 10 of these 14
AUC2 markers, the corresponding AUC1 values were greater
(Table 2), thus suggesting the stronger biomarker potential of the
AUC1 (pathway activation) markers. This was true for 9/9 of the
cancer types tested [48]. These results evidence that the PAS values
can be used as a new type of cancer biomarkers, superior to the
traditional gene expression biomarkers [48].

Importantly, these data also evidence that the pathway activa-
tion strength (PAS)- based biomarkers may serve efficiently to
distinguish the different cancer types. Among the 82 signaling
pathways profiled in this assay, 75 showed a potential to serve as
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the strong cancer type-specific biomarkers with the AUC greater
than 0.75 [48]. For each cancer type, the number of these PAS
biomarkers (AUC > 0.75) varied from 2 till 59 (Table 2). This
suggests that during cancer progression the signaling pathway reg-
ulation is a more uniform process rather than the activation of
certain individual genes. Indeed, an intracellular signaling pathway
is a complex regulatory network that may include hundreds of
different gene products [51]. Theoretically, expression of every
gene in this network may have an influence on the overall function-
ing of the signaling pathway. Alterations in the expression profiles
of many different genes can, therefore, lead to a similar result of a
pathway activation or suppression during cancer development [52].

Strong increase in Notch signaling (avg PAS ~ 9) denotes
glioma, mild upregulation of RNA polymerase II complex activity
(avg PAS ~ 1.4)—basal cell carcinoma, moderate decrease in IP3
signaling (avg PAS ~ �1.9)—lung adenocarcinoma, etc. [48]. It
may be seen that any investigated tissue type has its unique profile
of statistically significant pathway activation features, which pro-
vides a potent instrument for further analysis and specific targeting
of various cancer types in the future.

Table 2
Comparison of the AUC1 and AUC2 scores calculated for 81 intracellular signaling pathways for nine
human cancer types based on the transcriptomic data

Cancer type AUC1 > 0.75a AUC2 > 0.75b AUC1 > AUC2c AUC2 > AUC1d

Basal cell carcinoma 23 0 23 0

Bladder cancer 10 9 8 4

Glioblastoma 59 5 59 0

Hepatocellular 7 0 7 0

Lung adenocarcinoma 21 0 21 0

Oral tongue squamous cell
carcinoma

2 0 2 0

Primary melanoma 13 0 13 0

Prostate cancer 16 0 16 0

Renal cancer 10 0 10 0

Total 161 14 159 4

aNumber of signaling pathways where AUC1 > 0.75
bNumber of signaling pathways where AUC2 > 0.75
cNumber of signaling pathways where AUC1/2 > 0.75, and AUC1 > AUC2
dNumber of signaling pathways where AUC1/2 > 0.75, and AUC2 > AUC1
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5 Messenger RNA and micro RNA Pathway Activation Markers of Human
Bladder Cancer

Bladder cancer (BC) is the second most frequent urological cancer
and the ninth most common of all cancers. Approximately 356,000
new BC cases are reported annually worldwide [53], with the high-
est incidences in countries where the dominant population is Cau-
casoid [54]. BC accounts for 3.1 and 1.8% of the overall cancer
mortality in males and females, respectively.

Early diagnosis is a prerequisite for successful BC treatment.
Existing methods are, in general, not efficient for detecting BC in
its early stages; as a result, there is an urgent need and opportunity
to develop novel diagnostic tools that would efficiently detect early-
stage BC [29]. Moreover, associating marker expression with suc-
cessful medical treatment may provide clues to a more efficient,
patient-oriented cancer treatment therapy [55].

Fig. 2 Outline of the bioinformatics procedures used to calculate AUC1 and AUC2 values in various cancer-type
transcriptomes
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Using Illumina HT12v4 microarrays and NGS methods, we
profiled mRNA and micro RNA (miR) expression, respectively, in
17 experimental cancer and seven non-cancerous bladder tissue
samples [29, 39]. We analyzed activations of 271 intracellular
signaling pathways and found 44 signaling pathways that serve as
excellent new biomarkers of BC at the mRNA level, supported by
the high AUC values >0.75 [29]. Among these 44 PAS biomar-
kers, 10 (23%) were upregulated and 34 (77%) were downregulated
in BC. Eight differential PAS biomarkers (18%) represented inde-
pendent regulatory networks, whereas the rest, 36 (82%), were
terminal branches of larger molecular signaling pathways. The
up/downregulation of the 44 differential pathways seen in the
BC samples could lead to contradictory effects on the survival and
proliferation of cancer cells [29]. Information in the literature
indicates that seven (16%) of the changes in the affected pathways
promote cancer cell survival, while 12 (27%) of the changes exert
negative effects on cancer cells. The rest of the pathways play
contradictory roles in cancer cells, which prevents us from unam-
biguous labeling them as “positive” or “negative” regulators of BC
progression [29].

Interestingly, overall pathway activation profiles obtained using
OncoFinder for mRNA regulation level, and using MiRImpact for
miR regulation level, differed dramatically. This was reflected by the
apparent differences between the PAS and miPAS scores [39]. At
the level of miPAS scoring, the results depended greatly on the
database used to establish molecular targets of miRs (miRTarBase
or Diana-TarBase). Previously, we identified 44 molecular signaling
pathways that may serve as potent biomarkers of BC. For 21 of
them, we found literature data connecting miR expression and
pathway activation abnormalities in cancer [39]. Based on our
own experimental analysis, for miRTarBase we observed congru-
ence with finding of pathway up/downregulated state in 10/21
molecular pathways, and for Diana-Tarbase—in only 5/21 path-
ways [39]. The remaining pathways that did not coincide with both
miRTarBase- and Diana-Tarbase-based versions of MiRImpact
were either apparently inconclusively (bidirectionally) regulated in
BC, or were unchanged according to miPAS data [39].

We next compared pathway activation signatures for the 44
above characteristic BC-associated pathways at the mRNA and
miR levels. In the case of miRTarBase version, 20 pathways had
contrary trends, and only 10 had common trends at the miPAS and
PAS levels. For Diana-Tarbase version, nine pathways had contrary
trends, and ten pathways—common trends on mRNA and miR
regulation levels [39]. This suggests that the regulation of many
characteristic BC-linked pathways differs dramatically at the mRNA
and miR levels. For 11 and 6 characteristic pathways we observed,
respectively, common and contradictory trends in pathway regula-
tion using miRTarBase and Diana-Tarbase databases. Pathways
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commonly upregulated according to both databases were ILK
pathway_wound healing and mTOR_Pathway_VEGF_pathway
activation. Downregulated pathways were two branches of AHR
pathway: AHR_Pathway_C_Myc_Expression and AHR_Pathway_-
Cath_D_Repression, a terminal branch of CREB pathway
(CREB_Pathway_Gene_Expression), a branch of Glucocorticoid
receptor pathway (Glucocorticoid Receptor Pathway Cell cycle
arrest), two branches of ILK pathway: ILK_Pathway_Cell_motility
and ILK_Pathway_G2_phase_arrest regulation, a branch of JAK-
STAT pathway (JAK mStat Pathway JAK degradation), and an
RNA Polymerase II Complex Pathway. Five pathways were
unchanged at the level of miR regulation, according to both data-
bases [39].

A fraction of consensus data obtained using both databases
demonstrates that three molecular pathways, previously shown to
be aberrantly regulated at the mRNA level, are congruently regu-
lated at the miR level as well. These are the branches of the integrin-
linked kinase (ILK) signaling pathway, responsible for the cell
motility and wound healing, and a branch of the mTOR pathway,
responsible for the activation of VEGF signaling [39].

A similar figure was seen when comparing miPAS values for
both miRTarBase and Diana-Tarbase versions of MiRImpact, for all
available pathways. Comparison of pathway activation features at
the mRNA and miR levels also showed quite distinct peculiarities in
terms of variation between the individual samples. We observed
relatively uniform regulation of pathways at the mRNA level, with
relatively small number of pathways showing significant variations
between the individual samples [39]. In contrast, at the level of miR
regulation, the apparently observed differences between the sam-
ples were significantly stronger, as established for both miRTarBase
and Diana-Tarbase databases [39]. In the latter cases, the majority
of the pathways were also strongly differential between the normal
and cancer samples. These peculiarities of miPAS scores suggest
that they may be more sensitive compared to the PAS values to
discriminate between the individual cancer samples. This may be
highly beneficial for finding new diagnostic markers, e.g., linked
with the individual sensitivity of patient to treatment.

Finally, using both above-mentioned miR target databases, we
demonstrated that at least for the human BC tissues, the intracellu-
lar pathway regulation at the miR level differs greatly from that at
the mRNA level, thus showing orthogonal dependencies for the
extents of pathway activation (Fig. 3). This characteristic trend was
seen for all individual samples, and for the averaged samples shown
in Fig. 3, as well. Of note, many molecular pathways showing zero
PAS scores at the same time had quite distinct miPAS scores
(Fig. 3). This lack of correlation shown for both alternative
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databases clearly suggests that transcriptional profiling at the
mRNA level alone may be not sufficient to estimate the activation
of molecular pathways [39]. So far, we cannot quantitatively com-
pare the effects of PAS and miPAS scores on the pathway activation.
We presume that this will be done in the future by comparing high-
throughput miR, mRNA, and proteomic expression data, at the
level of molecular pathways. To this end, a combination of MiR-
Impact approach communicated here and of OncoFinder tech-
nique published previously may provide a feasible methodological
solution. The MiRImpact method would provide information on
the activation of molecular pathways at the miR level, whereas
OncoFinder—at the whole-transcriptome mRNA and proteomic
levels. In addition, ribosome profiling data may be processed with
these bioinformatic tools to uncover crosstalk between mRNA
concentration, quantitative measure of protein translation effi-
ciency, and final protein concentrations [39].

Fig. 3 Pathway Activation Strength (PAS) versus microRNA Pathway Activation Strength (miPAS) for an
averaged miR and mRNA expression between all the bladder cancer samples (BC) under investigation. The
resulting virtual sample is the result of averaging of miR expression measured by deep sequencing and mRNA
expression measured using microarrays. “AVG” samples were averaged at the level of individual mRNA/miR
expression across all tested BC samples, whereas “PAS AVG” was averaged at the level of PAS/miPAS values
across all BC samples
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6 Molecular Pathway Activation Features Linked with Transition from Normal
Skin to Primary and Metastatic Melanomas in Human

Melanoma is a type of skin cancer formed from melanocytes, skin
cells that produce the pigment melanin. Melanomas are very active
in forming metastases, and if not diagnosed at the early stage, the
survival prognosis is poor. Melanoma accounts for 75% of deaths
related to skin cancer [56]. Development of melanomas is com-
monly caused by mutations from UV-linked DNA damage [57]
and by inherited genetic factors like highly penetrant loss-of-func-
tion mutations in tumor suppressor genes [58]. About 40% of
human melanomas contain activating mutations of the B-Raf pro-
tein, resulting in constitutive signaling through the Raf to MAP
kinases growth signaling pathways [59]. The presence of multiple
melanocytic nevi, a genetic trait compounded by sun exposure, also
increases the risk of developing melanoma, although the transition
from benign nevi to melanoma does not usually occur and what
triggers this change is largely unknown.

To learn more about the mechanisms that induce melanoma
and cause it to progress, we performed high-throughput analysis of
melanoma-related intracellular molecular networks including 592
signaling and metabolic pathways. We profiled a total of 478 tran-
scriptomes consisting of 132 human primary melanoma, 222 met-
astatic melanoma, 103 normal skin, and 21 nevi samples [34]. The
normalized gene expression data were next processed using the
OncoFinder algorithm to establish pathway activation strength
(PAS) profiles. To assess the functional relations between the inves-
tigated groups of samples, we built hierarchical clustering heatmaps
with Ward method using Euclidean distance for all samples and all
investigated molecular pathways and observed rather uncertain
clustering features hardly distinguishing between the four sample
classes [34]. To increase the resolution of clustering methods and
to identify features that distinguish the above functional groups, we
applied a selection of machine learning classifier algorithms, includ-
ing Random Forest (RF) Support Vector Machines (SVM) with
Linear and Radial kernels, Partial Least Squares (PLS) and
Generalized linear regression with Glmnet regularization. Prior to
classification, we filtered for small deviation and collinearity to
prevent using two highly correlated variables when one would
suffice. Overall, the SVM family classifiers showed the best results
compared to other models. Such approaches allowed us to achieve
~0.94 average balanced accuracy of a 4-class problem (classification
into four groups: Skin, Nevi, Primary, and Metastatic melanoma)
using only metabolic pathways and ~0.94 average balanced accu-
racy using only signaling pathways [34]. In accordance with their
vague transitional state, the most difficult group for all the classifiers
used were nevi, for which the classifiers showed lowest
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combinations of sensitivity (0.4–0.8) and balanced accuracy
(0.7–0.9) [34]. Other groups formed significantly more clear-cut
clusters, which corresponded to their physiologically distinct states.

For each statistical model, we identified the top 30 metabolic
and top 30 signaling pathways, distinguishing the two classes,
which unifies different techniques of measuring importance
between different models. Next, the top pathways were inter-
sected and a list of consensus pathways was established (Tables 3
and 4). The consensus records included 25 metabolic and 19
signaling pathways for two different models of melanoma develop-
ment, the first occurring via transitional state of the nevus
(Skin ! Nevus ! Melanoma) and the second not involving
nevus (Skin ! Primary Melanoma ! Metastatic Melanoma). To
test the classification power of these top pathways, we built a new
hierarchical clustering heatmap with the Ward method, using
Euclidean distance for all samples and top investigated molecular
pathways with supporting Principal Components Analysis (PCA)
projections plots (Fig. 4). These top pathways enabled significantly
better discrimination between the groups, as evidenced by PCA
projections plots for all pathways (Fig. 4a) compared to plots for
the selected top pathways (Fig. 4b). Next, we used these top path-
ways in the same 4-type prediction model as before. Results for the
best model (SVM Linear model) confirmed adequacy of the classi-
fier pathway selection and showed an averaged balanced accuracy of
~0.93, very close to the model with full pathways [34].

On the heatmap and PCA projection plots, the samples
corresponding to nevi formed a cloudy group and clustered either
with each other or diffusely between primary melanoma and nor-
mal skin samples. In agreement with previous reports, this suggests
that nevi form a complicated group of highly variable samples,
which frequently correspond to the intermediate state between
normal skin and primary melanoma [60]. The top classifier ele-
ments included 25 metabolic and 19 signaling pathways. For all of
these signaling pathways, association with melanoma was reported
previously in the literature. However, for the metabolic pathways,
this was not the case, and previous reports on the association with
melanoma were not found for the following: Allopregnanolone
biosynthesis, L-carnitine biosynthesis, Zymosterol biosynthesis
(inhibited in melanoma), D-myo-inositol hexakisphosphate biosyn-
thesis (activated in primary, inhibited in metastatic melanoma),
Fructose 2,6-bisphosphate synthesis and dephosphorylation,
Resolvin D biosynthesis (activated in melanoma). Thus, we identi-
fied six novel associations between activation of metabolic molecu-
lar pathways and progression of melanoma [34].

We found 25 metabolic and 19 signaling pathways that were
good-quality characteristic discriminators between the classes of
normal skin, nevus, primary melanoma, and serotonin metastatic
melanoma (Tables 3 and 4). We considered two general models of
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Table 3
Top metabolic pathways implicated in progression of melanoma

Pathway
Nevus vs
skin

Pr. Mel
vs skin

Met. Mel
vs skin

Met.Mel vs
Pr.Mel

Primary vs
nevus

Allopregnanolone biosynthesis UP DOWN DOWN DOWN DOWN

Citrulline-nitric oxide cycle UP DOWN DOWN DOWN DOWN

dTMP ide novoi biosynthesis
mitochondrial

DOWN UP UP UP UP

L-carnitine biosynthesis UP DOWN DOWN DOWN DOWN

5-Aminoimidazole ribonucleotide
biosynthesis

DOWN UP UP UP UP

Eumelanin biosynthesis UP UP UP DOWN DOWN

Putrescine biosynthesis II DOWN DOWN UP UP UP

Pyrimidine deoxyribonucleosides salvage DOWN UP UP UP UP

Spermine and spermidine degradation I UP DOWN DOWN DOWN DOWN

Superpathway of tryptophan utilization UP DOWN DOWN UP DOWN

Tryptophan degradation X mammalian
via tryptamine

UP DOWN DOWN DOWN DOWN

1D-imyoi-inositol hexakisphosphate
biosynthesis V from Ins134P3

UP UP DOWN DOWN UP

D-mannose degradation UP UP UP UP DOWN

Fructose 26-bisphosphate synthesis,
dephosphorylation

UP UP UP DOWN DOWN

Histamine biosynthesis UP DOWN DOWN DOWN DOWN

Inosine-5-phosphate biosynthesis UP UP UP UP DOWN

Melatonin degradation II UP DOWN DOWN DOWN DOWN

Pyrimidine deoxyribonucleosides
degradation

UP UP UP DOWN UP

Resolvin D biosynthesis UP UP UP DOWN UP

Retinoate biosynthesis I DOWN DOWN DOWN UP UP

Superpathway of steroid hormone
biosynthesis

UP DOWN DOWN DOWN DOWN

tRNA charging UP UP UP UP UP

UDP-N-acetyl-D-galactosamine
biosynthesis II

UP UP UP UP DOWN

Valine degradation DOWN DOWN DOWN UP DOWN

Zymosterol biosynthesis UP DOWN DOWN DOWN DOWN

UP or DOWN indicates positive and negative difference between the state of interest (nevus, primary, and metastatic
melanoma) and skin in median PAS value, respectively
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melanoma formation and transformation including transitions (1)
Skin!Nevus! Primary melanoma!Metastatic melanoma) and
nevus-independentmodel, (2) Skin! PrimaryMelanoma!Meta-
static Melanoma (Fig. 5). In both transition axes, HIF1-alpha and
BRCA1 pathways were gradually increasing when moving from
normal state to metastatic melanoma [34].

Transition from normal skin to nevi compared to primary
melanoma was very peculiar because it included activation of hista-
mine, allopregnanolone, and citrulline—NO cycle biosynthesis

Table 4
Top signaling pathways implicated in progression of melanoma

Pathway
Nevus vs
skin

Pr. Mel vs
skin

Met. Mel vs
skin

Met.Mel vs
Pr.Mel

Pr. Mel. vs
nevus

Fas signaling pathway (negative) DOWN UP UP UP UP

cAMP pathway (glycolysis) UP DOWN DOWN UP DOWN

CD40 pathway (cell survival) UP UP UP UP UP

AKT pathway (protein synthesis) UP DOWN DOWN DOWN DOWN

ATM pathway (apoptosis,
senescense)

DOWN UP UP UP UP

BRCA1 main pathway UP UP UP UP UP

cAMP pathway (endothelial cell
regulation)

UP DOWN DOWN DOWN DOWN

cAMP pathway (myocardial
contraction)

DOWN DOWN DOWN DOWN DOWN

cAMP pathway (protein retention) DOWN UP UP UP UP

Caspase cascade (apoptosis) UP DOWN DOWN DOWN DOWN

CD40 pathway (IKBs degradation) UP UP UP UP UP

DDR pathway apoptosis DOWN UP UP UP UP

Glucocorticoid receptor pathway
(cell cycle arrest)

UP DOWN DOWN DOWN DOWN

HGF pathway (PKC pathway) UP UP UP UP DOWN

HIF1-alpha main pathway UP UP UP UP UP

JNK pathway (insulin signaling) UP DOWN DOWN DOWN DOWN

mTOR pathway (VEGF pathway) DOWN DOWN UP UP DOWN

PAK pathway (myosin activation) DOWN DOWN DOWN DOWN DOWN

Ubiquitin proteasome pathway
(degraded Protein)

DOWN UP UP UP UP

UP or DOWN indicates positive and negative difference between the states of interest (nevus, primary, and metastatic
melanoma) and skin in median PAS value, respectively
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pathways. Eumelanin biosynthesis and BRCA1, HIF1-alpha signal-
ing pathways were also activated. Several pathways were also sup-
pressed in nevi, in contrast to primary and metastatic melanomas;
these included putrescin biosynthesis, valine degradation, and the
senescence/apoptotic branch of the ATM pathway.

Transition from normal skin to primary melanoma was char-
acterized by upregulation of the eumelanin biosynthesis pathway,
BRCA1, HIF1-alpha pathways, senescence/apoptotic branch of
the ATM pathway, cell death-promoting Fas signaling pathways,
and the cell survival-promoting branch of the CD40 pathway. In
turn, pathways of putrescine, histamine, allopregnanolone, steroid
hormone, and citrulline–NO cycle biosynthesis and of valine deg-
radation were inhibited in primary melanoma compared to skin.

Transition from nevus to primary melanoma showed upregula-
tion of the BRCA1, HIF1-alpha pathways, senescence/apoptotic

Fig. 4 Scatterplots for principal component analysis of melanoma-related transcriptomes. (a) Results built for
all metabolic and signaling pathways. (b) Results built for top characteristic metabolic (right) and signaling
(left) pathways
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branch of the ATM pathway, and putrescine biosynthesis pathway.
Inhibited pathways were histamine, allopregnanolone, eumelanin
biosynthesis, and citrulline–NO cycle biosynthesis and of valine
degradation.

In turn, transition from primary to metastatic melanoma com-
prised upregulation of BRCA1, HIF1-alpha pathways, the senes-
cence/apoptotic branch of the ATM pathway, putrescine
biosynthesis, and valine degradation pathways. Inhibited pathways
were histamine, allopregnanolone, eumelanin biosynthesis, and
citrulline–NO cycle biosynthesis (Tables 3 and 4) [34].

Finally, we applied the Weighted Correlation Network Analysis
(WGCNA) method to identify similar regulation patterns between
the molecular pathways. We found that molecular pathways form
14 distinguishable clusters, each characterized by concordant acti-
vation signatures of the enclosing pathways. In some instances,
congruent activation for the pathways forming the same clusters
could be explained by the structural similarities between the
cluster-forming pathways [34]. However, for the majority (10 out
of 14) of clusters, pathways were combined not due to similar gene
content, but rather because of the true functional coordination
between the cluster members. This common regulation of various
molecular pathways was a novel finding andmerits to be analyzed in
detail in further studies [34].

7 Molecular Pathways as Predictors of Response to Anticancer Therapeutics

For over six decades, chemotherapy has been a key treatment for
many types of cancer, often with high rates of success. For example,
the use of cisplatin-containing regiments in the treatment of

Fig. 5 Schematic representation of two alternative models of melanoma progression built in this study. One
model comprises transition from skin to primary melanoma versus “nevus” stage (left panel), the second—
direct transition from skin to primary melanoma (right panel). Green arrows indicate activated molecular
pathways, red arrows—suppressed pathways
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testicular cancer turned ~100% mortality to ~90–95% disease-
specific survival observed nowadays [61]. However, many individ-
ual cases and types of cancer remain incurable or even unresponsive
using standard chemotherapy approaches. Moreover, chemother-
apy generally causes severe side effects, which significantly decrease
the quality of life of a patient [62]. The chemical compounds
included in standard chemotherapy cocktails have numerous
molecular targets in cancerous and normal cells, which makes it
difficult to simulate and predict the activity of drug to an individual
patient based on the molecular data, and in standard practice clin-
icians routinely use clinical or morphological predictive factors such
as stage, grade, proliferative activity, etc. [63]. These predictive
factors are typically very inaccurate and not applicable for tracing
the individual patient response to chemotherapy drugs and
regimens.

To address specific activities of certain functionally relevant
proteins and their aggregates frequently observed in cancer, a new
generation of anticancer drugs was generated that target one or a
few specific molecules in a cell [64]. This class of drugs consists
mostly of specific monoclonal antibodies (Mabs) and lowmolecular
weight kinase-inhibitor molecules (Nibs). The emergence of target
drugs was beneficial for the treatment of several cancer types. For
example, trastuzumab (anti-HER2 monoclonal antibody) and
several other new anti-HER2 medications at least doubled median
survival time in patients with metastatic HER2-positive breast
cancer and improved 5-year survival in early stage disease to
~90–95% [65]. Interestingly, before the introduction of trastuzu-
mab, HER2-positive cancers had the worst prognoses across all
breast cancer subtypes, whereas now the situation is reverted
[66]. Patients with melanoma (deadly skin cancer type) for decades
had no treatment opportunities except dacarbazine chemotherapy,
which resulted in<10% chance of very short-lasting (~5–6 months)
response and median survival less than a year. Now, in the case
of BRAF-mutated tumor, they can receive vemurafenib (anti-
BRAF target drug) and have ~50% chance of response [67], or,
irrespectively of BRAF mutation, ipilimumab (immune checkpoint
inhibitor) with ~20% chance of long-term (>5 years) disease
control [68].

Importantly, the results of clinical trials clearly suggest that for
many drugs considered inefficient for the treatment of a given
cancer type, a tiny fraction of the patients exists to whom these
drugs can be of a significant benefit. For example, no benefit was
seen in large randomized studies in a cohort of unselected patients
with non-small cell lung cancer after the introduction of anti-EGFR
drugs (gefitinib and erlotinib). But it was observed that ~10–15% of
the patients who participated in these studies survived unpredict-
ably long. Further investigation revealed that all these patients had
activating mutation of EGFR and that this mutation may predict
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response to the EGFR-targeting drugs. Indeed, contemporary
studies showed that patients with EGFR-mutated tumors have
the strongest advantage with these types of target therapy [69].
In the case of colorectal cancer, discovery of the role of KRAS
mutation in the resistance to the EGFR-targeting antibody (cetux-
imab or panitumumab) helped to identify a group of patients who
can benefit from this kind of treatment (patients with wild-type
KRAS). Moreover, further studies demonstrated that for KRAS-
mutated tumors (~40% of colorectal cancer), anti-EGFR antibodies
cause harm and decrease survival [70].

It is of great priority, therefore, to identify accurate predictive
markers of target drug efficacy. Several clinical tests have been used
to identify optimal personalized cancer treatments. However, most
of these predictor features profile only several biomarkers, cover
only a minor fraction of target drugs, and are limited to a particular
type of cancer. Somewhat more universal methods are required to
rank the maximum number of existing drugs [41].

7.1 Cell Culture-

Based Model

We compared molecular pathway activation features linked with the
sensitivity of human cell cultures to four target anticancer drugs
routinely used for treatment of renal carcinoma and other cancers:
Pazopanib, Sunitinib, Sorafenib, and Temsirolimus [40]. To this
end, we obtained pathway activation strength (PAS) signatures for
experimental group of samples including 11 human cell lines grown
and profiled in our laboratory, and for a database linked with
“Genomics of Drug Sensitivity in Cancer” [71] project and includ-
ing transcriptomes of 227 different human cell lines. In both pro-
jects, the half maximal inhibitory concentration (IC50) was
measured for the above four anticancer drugs, which is a measure
of the effectiveness of these drugs in inhibiting cell growth, prolif-
eration, and viability. The IC50 features were further compared
with the PAS signatures of both experimental and GDS cell lines,
and lists of molecular pathways showing significant (p < 0.05)
correlation between PAS profiles and IC50 were generated. We
next overlapped these lists of characteristic experimental and GDS
datasets, and identified a set of molecular pathways linked with
sensitivity to drugs and common to both datasets. These pathways
included both intracellular signaling and metabolic pathways, and
in general had multiple direct and indirect connections with the
molecular targets of the respective drugs, thus explaining their
association with the drug efficiency. Outline of the experimental
and bioinformatic procedures utilized in this study is shown in
Fig. 6.

Overall results of OncoFinder analysis depend significantly on
what sample or group of samples is taken as the control. To ensure
the suboptimal control will not bias the results, we applied multiple
simultaneous controls for calculating PAS scores in our experi-
ments, and took separately 11 control gene expression datasets
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corresponding to different normal human tissues profiled on the
same platform as the experimental sampling [40]. The results for
272 signaling and 321 metabolic pathways were obtained for each
sample, being normalized separately on each of the 11 control
datasets.

We next analyzed GDS project gene expression data deposited
at ArrayExpress database. This database accumulates data on gene
expression in 707 human cell lines along with the corresponding
IC50 values measured for 140 chemical components, including the
four drugs under investigation. We calculated PAS values for these
transcriptomes, for the same set of signaling and metabolic path-
ways. For the normalization of transcriptomes prior to processing
through the OncoFinder algorithm, we used three independent

Fig. 6 Outline of the procedures used to identify drug sensitivity-linked pathways in cell cultures

74 Anton A. Buzdin et al.



gene expression datasets taken from GEO database that were
obtained using the same experimental platform, corresponding to
three normal human tissues [40].

To find out dependences between PAS and IC50 signatures, we
calculated correlation coefficient values according to Pearson’s
product moment correlation coefficient, separately for the experi-
mental and the GDS datasets, for all the normalization methods
used. The statistical threshold p< 0.05 was used to filter significant
vs nonsignificant correlations. We identified a number of pathways
showing significant positive or negative correlation between PAS
and IC50 values for the above four drugs. A positive correlation
between PAS and IC50 values means that the greater is the pathway
activation score, the bigger is the half-inhibitory drug concentra-
tion, and the lower is the drug efficiency. Negative correlation, in
contrast, means increase of the drug efficiency with the increase of
PAS value. We next compared significantly correlated pathways
from both datasets and found 13, 1, 5, and 7 overlapping molecular
pathways for Pazopanib, Sunitinib, Sorafenib, and Temsirolimus,
respectively (Fig. 7) [40].

Fig. 7 Schematic representation of the respective drug targets in the overall architecture of molecular
interactions for the top pathways correlating with response to Pazopanib (a), Sorafenib (b), Sunitinib (c),
and Temsirolimus (d). Protein targets of the respective drugs are shown in orange, intermediate molecules
between pathway members and drug targets—in gray, and pathway members—in blue
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7.2 Target Drug

Mechanism-Based

Model

We developed a novel approach for choosing an optimal persona-
lized treatment for cancer patients based on high-throughput gene
expression profiling of tumor samples [41]. We introduced a Drug
Score (DS) index as a measure of effectiveness of a drug in a patient
based on the rationale that a drug needs to compensate for the
changes in pathway activation/deactivation associated with cancer
progression. Clinical trials data were used to validate this scoring
system.We compared the distribution of the predicted drug efficacy
scores for five drugs (Sorafenib, Bevacizumab, Cetuximab, Sorafe-
nib, Imatinib, Sunitinib) and seven cancer types (Clear Cell Renal
Cell Carcinoma, Colon cancer, Lung adenocarcinoma, non-
Hodgkin Lymphoma, Lung Adenocarcinoma, Thyroid cancer,
and Sarcoma) with the available clinical trials data for the respective
drugs and cancer types. The proportion of tumors for which high
drug scores were calculated with the proposed algorithm correlated
significantly with the percent of responders to a drug treatment
(Pearson’s correlation 0.77, p ¼ 0.023).

7.2.1 Drug Scoring

Algorithm

OncoFinder algorithm is based on the processing of Pathway Acti-
vation Strength (PAS) signatures of the cancer tissues under inves-
tigation. According to OncoFinder method, PAS is calculated using
expression values of individual genes to investigate activation/deac-
tivation of intracellular signaling pathways [27]. To construct a
scoring function for a drug in a patient, or DS, we defined the
following indicators:

-AMCF flag (activation-to-mitosis conversion factor) shows if
the pathway activation promotes or inhibits mitosis and cell
survival:

AMCFp ¼ 1, pathway p promotes mitosis
�1, pathway p inhibits mitosis

�

DTI (drug-target index):

DTIdt ¼ I drug d affects target protein tð Þ

¼ 0, drug d does NOT affect target t
1, drug d affect target t

�

NII (node involvement index):

NII tp ¼ I protein t is involved in pathwaypð Þ

¼ 0, protein t is NOT involved in pathway p
1, protein t is involved in pathway p

�

-DS, which estimates the ability of a drug d to turn cancer-
related pathological changes in the transcriptome of a tumor back
to normal state, is defined as follows:
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DSd ¼
X
t

DTIdt
X
p

NII tpAMCFp PASp:

In other words,

DSd ¼
X
t

I drug d affects protein tð Þ
X
p

I protein t is involved in the pathway pð ÞAMCFp PASp:

Briefly, DS can be understood as a sum of Pathway Activation
Scores (PAS) for the pathways in which the targets of a drug are
involved. The same PAS can be summed up several times if a drug
targets multiple proteins involved in the pathway.

The given formula for DS is, in principle, applicable for all
target drugs, including small molecule inhibitors (Nibs) and mono-
clonal antibodies (Mabs) [41].

7.2.2 Validation of the

Drug Scoring Algorithm

Based on Tumor

Expression Profiling and

Clinical Trials Data

We calculated DS for 113 anticancer target drugs for different
cohorts of patients with different cancer types [41]. We investi-
gated gene expression in a total of 371 samples of tumors and
control sets of corresponding normal tissues for seven cancer
types: Clear Cell Renal Cell Carcinoma, Colon cancer, Lung ade-
nocarcinoma, non-Hodgkin Lymphoma, Thyroid cancer, and Sar-
coma [41]. To investigate whether the DS successfully predicts
treatment efficacy, we analyzed publically available clinical trials
data from the ClinicalTrials database (clinicaltrials.gov) and differ-
ent human cancer transcriptomes extracted from the Gene Expres-
sion Omnibus (GEO) database [72]. We checked if the number of
patients responding and not responding to a treatment with a
particular drug in a particular cancer type could be explained by
the distribution of DS for that drug in patients with the particular
cancer type. We assumed that the higher number of drug respon-
ders among the clinically investigated group of particular cancer
patients should correspond to higher Drug Scores for the patients
with same cancer type. Using cut-off value DS ¼ 250, we next
calculated the percent of patients from a transcriptional profiling
study showing greater DS values. We observed that the fraction of
patients with high DS correlated significantly with response rates in
the respective clinical trials (Pearson’s correlation 0.77, p ¼ 0.023)
(Fig. 8).

Unlike other approaches to ranking drugs for personalized
cancer treatment, the algorithm suggested here does not require
preliminary data on somatic mutations in tumors, and thus sub-
stantially reduces the costs of analysis. While identifying the pres-
ence of mutations causing loss and gain of function of regulatory
proteins is frequently an important step in predicting clinical out-
come and treatment efficiency (e.g., BRAF V600E mutation), we
show here that a transcriptome-only approach also has the power to
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detect these changes at the gene expression level for downstream
targets of the mutated regulator [41]. Theoretically, the expression
data may provide even more biologically meaningful results, as
reliable methods for prediction of particular somatic mutations
(e.g., gain-of-function) do not exist to date, and many mutations
have limited or no phenotypic manifestations, depending heavily
on the enclosing genomic context [73].

To investigate the ability of our transcriptome-based drug-
scoring approach to distinguish between tumors harboring differ-
ent driver mutations, we explored gene expression in melanoma
patients. Vemurafenib is a target drug that is effective for melanoma
tumors with V600E gain-of-function mutation in BRAF gene. We
compared DS for patients with wild-type and V600E BRAF mela-
nomas [41]. We demonstrated that the percent of patients for
whom Vemurafenib was expected to be beneficial (those having a
positive DS for this drug) was significantly higher for the cohort of
BRAF V600E-mutated tumors (p(Fisher) ¼ 0.042, Fig. 9).

The reason why an expression-based approach works well in
this case is likely due to the ability to detect expression changes
introduced by transcriptional reprogramming driven by the molec-
ular consequences of V600E BRAF mutation.

Fig. 8 Scatter plot showing the percent of patients with a particular cancer type responding to a particular
treatment (x-axis) in a clinical trial versus the percent of patients with a particular cancer type having the Drug
Score for the particular drug above an arbitrary chosen cut-off value (250) (y-axis). ccRCC stands for Clear Cell
Renal Cell Carcinoma, nHLymphoma for non-Hodgkin Lymphoma, lung AC for lung adenocarcinoma
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8 Validation

Here, we present a biomathematical method OncoFinder that has a
potential to be universal tool for the analysis of intracellular molec-
ular pathways and for predicting drug efficacy via characterization
of specific patterns in intracellular signaling. It may have wide
applicability, not only across the range of cancer types, but also to
individual samples toward the goal of personalized cancer treat-
ment. Unlike most part of other approaches to drug scoring in
cancer, the current method does not require data on somatic muta-
tions in tumors, thus substantially reducing the costs of an assay.
Rather, it relies on advanced gene expression analysis. Although the
presence of mutations causing loss and gain of function of certain
regulator proteins is an important factor in the prediction of clinical
outcome and treatment efficacy, a transcriptome-only approach will
still potentially detect these changes as expression changes in down-
stream targets of the mutated regulator. Moreover, because reliable
methods for predicting the effects of many specific somatic muta-
tions (e.g., gain of function) do not yet exist, results based on
expression data may be more biologically meaningful. The

responders

non–responders

30
25

20
15

10
5

0

N
um

be
r 

of
 p

at
ie

nt
s

BRAF V600E BRAF wt

Fig. 9 Cohort of tumors with BRAF V600E mutation (left bar) had significantly
higher proportion of patients for whom Vemurafenib was predicted to be
beneficial compared to a cohort with wild-type BRAF (right bar). Red bars
show predicted nonresponders and green bars show predicted responders
(having nonzero DS for Vemurafenib)
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approach we report here is platform-independent, i.e., any kind of
high-throughput proteomic and transcriptomic data may be used
to estimate expression of gene products.
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Chapter 5

Strategic Integration of Multiple Bioinformatics Resources
for System Level Analysis of Biological Networks

Mark D’Souza, Dinanath Sulakhe, Sheng Wang, Bing Xie,
Somaye Hashemifar, Andrew Taylor, Inna Dubchak,
T. Conrad Gilliam, and Natalia Maltsev

Abstract

Recent technological advances in genomics allow the production of biological data at unprecedented tera-
and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research
critically depends on a seamless integration of the clinical, genomic, and experimental information with
prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly
available databases should be accessible to a variety of algorithms and analytical pipelines that drive
computational analysis and data mining.
We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:

D882–D887, 2016) (http://lynx.cri.uchicago.edu), a web-based database and knowledge extraction
engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and
network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB)
and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture
supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in
extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted
hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or condi-
tions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various
translational projects.

Key words High-throughput genomics, Systems biology, Bioinformatics, Data mining, Network
analysis

1 Introduction

Understanding the genetic architecture underlying complex
biological phenomena and heritable multigene disorders is one of
the major goals of human genetics in the next decade. Advances in
whole genome sequencing and the success of high-throughput
functional genomics help to supplement conventional reductionist
biology with systems-level approaches, thus allowing researchers to

Tatiana V. Tatarinova and Yuri Nikolsky (eds.), Biological Networks and Pathway Analysis, Methods in Molecular Biology,
vol. 1613, DOI 10.1007/978-1-4939-7027-8_5, © Springer Science+Business Media LLC 2017
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study biology and medicine as complex networks of interacting
genetic and epigenetic factors in relevant biological contexts. This
integrative approach holds the promise of unveiling hitherto unex-
plored levels of molecular organization and biological complexity.
It also holds the key to deciphering the multigene patterns of
inheritance that predispose individuals to a wide array of genetic
diseases. Numerous studies have identified genes associated with
many rare single gene (Mendelian) developmental disorders, but
only limited progress has been made in finding the underlying
causes for autism, schizophrenia, diabetes, predisposition to cancer,
and cardiovascular diseases. The reason is that these diseases display
complex patterns of inheritance and may result from many genetic
variations, each contributing only weak effects to the disease
phenotype. Identification of causative disease genes or genetic
variations within the myriad of susceptibility loci identified in link-
age and association studies is difficult because these loci may con-
tain hundreds of genes. Fortunately, recent advances in biological
science have provided new perspectives into the study of complex
heritable disorders. These advances include: (1) high-throughput
integrative genomics and informatics; (2) networks-based view of
human disorders; and (3) emergence of “phenomics,” and a notion
of interrelatedness of diseases and disease traits. These approaches
offer a strategy for system-level exploration of complex clinical
phenotypes in relevant biological contexts. They utilize expertise
from the fields of genomics, molecular biology, bioinformatics, and
clinical studies to develop integrative models of molecular events
driving the emergence of cellular and organismal phenotypes. At
the basic science level this research seeks to understand the nascent
properties of interacting molecular networks and how they relate to
biological complexity. At the application level, identifying combi-
nations of interacting genes that underlie complex genetic disorders
is the practical first step in moving from today’s genetic understand-
ing to the era of individualized medicine. Interpretation of the
genetic architecture of common diseases will afford pre-
symptomatic testing of individuals at risk for common disorders,
gradually shifting the practice of medicine from a “reactive” science
to a “predictive” science. It will also allow state-of-the-art technol-
ogies such as high-throughput genetic screening to advance drug
discovery and development.

However, the extraction of meaningful information from an
avalanche of available biomedical information requires seamless
integration of data and services across the analytical workflows.
These workflows start from the raw experimental data and include
multiple analytical steps leading to the generation of high-
confidence hypotheses regarding molecular mechanisms contribut-
ing to the phenotypes of interest. Each step of such a pipeline
generates additional annotations utilized by the subsequent steps
of analysis or displayed to the user to aid in manual investigation of
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the data. The nature of contemporary biology dictates the need for
the use of multiple data sources and distributed analytical services
developed by a number of scientific groups. This distributed
research paradigm calls for an integrated analytical platform to
address the end-to-end requirements of translational projects.
Such a platform requires advanced computational technologies
that will ensure fast and reliable movement of terabytes of data,
provide on-demand scalable computational resources and guaran-
tee security and provenance of every analytical step. The need for a
profound integration of data and services was expressed in many
publications [1–3]. A number of large-scale initiatives were
launched to bring together information resources and make them
available to the scientific community [4–6].

2 Methods

2.1 Analysis

of Biological Networks

Recent advances in functional genomics have allowed for the deci-
phering of millions of inter-relationships between gene products.
This data is used for the development of integrative network-based
models. The systems-level analysis offered by these models holds
the promise of uncovering biological mechanisms underlying
development and differentiation, and driving the emergence of
complex phenotypes, including human disease [7, 8]. There is an
urgent scientific need for support of contextual, comparative, and
evolutionary analyses for the studies of biological systems. The
comparative analysis of contextual networks will support a number
of scientific directions, such as the following:

2.2 Comparative

Analysis of Contextual

Models of Biological

Processes

The systems biology approach is contextual by definition. It studies
the emergent behavior of self-organizing biological systems in the
relevant spatial and temporal biological contexts. Indeed, the
insights offered by contextual analyses are essential to further prog-
ress in biology: (a) the comparative analysis of developmental net-
works will establish a foundation for the fields of embryology and
developmental biology and provide insights into the pathogenesis
of developmental disorders; (b) tissue-specific gene expression plays
a fundamental role in metazoan biology and is an important aspect
of many complex diseases. The comparative analysis of tissue-
specific networks is essential for the selection of potential drug
targets where it will allow a reduction in the number of side effects
for the developed drugs by selecting cellular components specific to
the targeted tissue [9–11].

2.2.1 Types

of Comparative Networks

Analysis

Conceptually, network comparison is the process of contrasting
two or more interaction networks, representing different species,
conditions, interaction types, or time points. It aims at providing
answers to a number of fundamental biological questions regarding
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the evolution and modular organization of biological systems, as
well as their development and functionality under a variety of
normal and pathophysiological conditions (see Table 1). It may
also be used for measuring and increasing data provenance.

Sharan and Ideker [12] have postulated three types, or modes,
of comparative methods:

(a) Network integration is the process of combining several net-
works, based on interactions of different types (e.g., protein-
protein interaction networks, biological pathways, and text-
mining information) over the same set of elements, to study
their interrelations. Network integration can be used for pre-
dicting protein interactions and discovering protein modules
supported by interactions of different types. The main con-
ceptual difference from network alignment is that the
integrated networks are defined on the same set of elements;

(b) Network alignment is the process of global comparison
between two networks of the same type, identifying
sub-networks and regions of similarity and dissimilarity.

Table 1
Modes and biological goals of network comparison

Mode and applications Biological goals
Current networks:
comparisons and limitations

Network integration:
Comparisons of the

networks based on the
different data types

Identification of functional modules
supported by several interaction data
types and data provenance estimates;

Studies of interrelations between data types;
Prediction of molecular interactions

No agreed-upon way to
combine scores over different
networks;

Not associated with the
knowledge bases and
networks-reconstruction
tools

Network Alignment:
Comparisons of the

networks based on the
same data types

Context-specific comparisons (e.g.,
different developmental stages, health
and disease, tissue-specific networks);

Identification of evolutionarily conserved
pathways and sub-networks across
multiple species;

Prediction of the molecular interactions and
gene functions based on the inter-species
comparisons;

Validation of the applicability of animal
models

Limited to few species;
Evolutionary and provenance

information is not factored in
the analysis;

Not associated with the
knowledge bases and
networks-reconstruction
tools

Network querying:
Identification of the sub-

network modules in a
network

Identification of redundant and conserved
functional modules within and between
species;

Meta-data-based queries and knowledge
transfer

No support for hierarchical
networks queries;

No evolutionary-based scoring
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Network alignment is commonly applied to detect sub-
networks that are conserved across species or vary from one
developmental stage to another; and

(c) Network querying, in which a given network is searched for
sub-networks that are similar to a sub-network query of inter-
est. This basic database search operation is aimed at transfer-
ring biological knowledge within and across species.

2.3 Evolutionary

Analysis of Contextual

Models

Unlike the evolutionary analysis of individual genes, the explora-
tion of the evolutionary modifications of molecular networks allows
us to understand the emergence of new phenotypes as concerted
changes in network topology, as well as the functionality of multiple
components of a biological system. Systems-level evolutionary anal-
ysis is especially important for biomedical studies, where the majority
of experiments are performed on model organisms. Comparative
and evolutionary network analysis can help us estimate the applica-
bility of animal models to human studies and validate the knowl-
edge transfer across species. Moreover, the comparative analysis of
molecular networks reconstructed from tissue- and cell-specific
gene expression experiments will provide the basis for the identifi-
cation of functional modules characteristic for various biological
contexts. This information will shed light onto mechanisms of
genetic epistasis, robustness, and adaptation of biological systems
in health and disease [13].

2.4 Comparative

Phenomics

In recent years, it has become increasingly evident that human
diseases are related to each other and share common phenotypic
features, molecular mechanisms, and common genetic determi-
nants. As demonstrated by multiple studies, the disease phenome
should be regarded as a network of interrelated diseases and disease
traits rather than a list of distinct disease entities [8, 14–16]. It is
now widely accepted by the scientific community that comparative
analysis of disease network models for different disorders will pro-
vide new insights into the etiology, pathogenesis, and classification
of the diseases, and will assist in the development of new therapeu-
tic strategies.

Undeniably, comparative and contextual network analysis
offers exciting new opportunities for biomedical research on a
new integrative systems level. The need for the comparative analysis
of contextual networks has been expressed in a growing number of
publications [12, 17]. As it was stated by Beltrao [18] “In the same
way that comparative genomics has resulted in an impressive leap
forward in our understanding of genome evolution, we argue that
combining and comparing different cellular interaction data are
crucial for our understanding of the evolutionary process.”
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2.5 Context-Specific

Networks

Understanding of cellular responses specific to cell or tissue type,
gender, developmental stage, or environmental conditions is of
paramount significance for the development of efficient diagnostic
and therapeutic strategies [19–22]. Context-specific studies per-
formed for cancer [23–25], cardiac disorders [26], and various
developmental processes [27–29] have underscored the impor-
tance of predictive models of focus disorders. For example, in
their study of the lung-specific pathways used by the influenza
virus Shaefer et al. [30] demonstrated that context consistency
correlates with the experimental reliability of PPIs, which allows
generating high-confidence tissue- and function-specific sub-
networks. Shao et al. [31] have emphasized the importance of
contextual analysis for drug design, stating that “Substantial effort
in recent years has been devoted to analyzing data-based large-scale
biological networks, which provide valuable insight into the topol-
ogies of complex biological networks but are rarely context specific
and cannot be used to predict the responses of cell signaling pro-
teins to specific ligands or compounds.”

3 Existing Tools

A number of excellent bioinformatics platforms and tools have been
developed to support various steps of analysis of high-throughput
data and prioritization of genomic variants [32–34]. These
include, but not limited to, GeneMANIA [35], STRING
[36, 37], ToppGene [38], ENDEAVOUR [39] widely used by
the scientific community. The eXtasy platform developed by Sifrim
et al. [40] prioritizes mutations for follow-up validation studies by
integrating variant-impact and haploinsufficiency predictions with
phenotype-specific information. Another scientific environment,
SPRING [41], has been designed to facilitate the prioritization of
pathogenic non-synonymous SNVs associated with disorders
whose genetic bases are either partly known or completely
unknown. It is achieved by integrating the results of analyses by
multiple publicly available and developed-in-house bioinformatics
tools. There are other analytical platforms, such as Jannovar [42],
KGGSeq [43], MToolBox [44], and FamAnn [45]. Moreover,
multiple resources support the analysis of noncoding regions and
their regulatory roles [46]. Most of these existing resources, under-
standably, address either the analysis of coding sequences or the
characterization of noncoding regions.

3.1 Overview

of the Resources

for Evolutionary

and Context-Specific

Networks Analysis

A number of groups have implemented cross-species and contex-
tual analysis of biological data. The first efforts to perform a large-
scale comparison of PPI networks of Saccharomyces cerevisiae
against other microbial species, such as Helicobacter pylori, to pre-
dict previously uncharacterized PPIs were performed by Matthews
et al. 2001 [47] and Yu et al. 2004 [48]. Quantitative analysis of
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genetic interactions was initially accomplished in budding yeast
[49]. Recently, Bandyopadhyay et al. [9] have developed differen-
tial epistasis mapping (dE-MAP) a strategy for the quantitative and
differential mapping of genetic networks. A similar approach has
been used to demonstrate changes in genetic interactions in a
lower-throughput format [50], and in Drosophila melanogaster to
map genetic interactions using RNAi in different genetic back-
grounds [51]. Troyanskaya et al. [10, 11] stressed the need for
contextual analysis of biological networks and developed a Bayesian
approach for context-sensitive integration and query-based recov-
ery of biological process-specific networks. This approach was
applied to Saccharomyces cerevisiae to demonstrate that leveraging
contextual information can significantly improve the precision of
network predictions, including assignment for uncharacterized
genes. Lage et al. [52] have studied the link between tissue-specific
gene expression and pathological manifestations in human diseases
and cancers. They created a disease-tissue covariation matrix of
high-confidence associations of >1000 diseases to 73 tissues.

3.2 Overview of the

currently Available

Integrated Global

Networks.

A number of resources taking a meta-analysis approach include
STRING v9.1 [36, 37], GeneMANIA [53], ConsensusPathDB
[54], I2D [55], VisANT [56], hPRINT [57], HitPredict [58],
IMID [59] and IMP [60]. A number of text-mining resources
and databases provide context to biological data, such as text-
mining engines EnvMine [61], BioContext [62], splice variants
databases (e.g., SpliceMiner[63] and ASD [64]), and the Primate
Embryo Gene Expression Resource in embryology PREGER [65].
These resources may provide a significant aid in the development of
context-specific network models.

4 Lynx—an Integrated Platform for Network-Based Analysis of Translational Data

Here, we present an example of a project-driven integrated compu-
tational platform Lynx. The goal of this scalable platform is to
support the end-to-end analytical requirements of individual trans-
lational projects. Working with multiple translational projects
allowed us to identify crosscutting shared computational and ana-
lytical requirements. These projects have converged toward well-
defined standard steps of analysis of translational data as repre-
sented in Fig. 1. Sections below will describe the steps involved in
translational data analysis in greater detail.

4.1 Lynx Annotation

and Knowledge

Extraction Engine

Lynx [66] (http://lynx.ci.uchicago.edu) is an integrated bioinfor-
matics platform for annotation and analysis of high-throughput
biomedical data. The platform supports both hypothesis-based
and discovery-based approaches to predict the genetic factors and
networks associated with phenotypes of interest. It provides a
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knowledge extraction engine and a supporting knowledge base
(LynxKB) that combines various classes of information from over
35 public databases and private collections.

Lynx receives user data as genomic variants whose coding and
noncoding signals have been previously characterized by some
external tool, for example RViewer [67]. Lynx knowledge retrieval
engine offers advanced search capabilities and a variety of algo-
rithms for gene enrichment analysis and network-based gene prior-
itization. Lynx’s XML schema-driven annotation service supports
extraction of annotations for an individual object (e.g., a gene) or
batch queries (e.g., list of genes) from LynxKB. Annotations
include among other things associated pathways, diseases, pheno-
types, molecular interactions, Gene Ontology categories, and tox-
icogenomic information displayed according to the user’s
preferences. All information related to the objects is easily accessible
via user interface and available for download in tab-delimited,
XML, or JSON formats (Web Services).

Lynx gene enrichment analysis supports Bayes factor and
p-value estimates for the identification of functional categories
over-represented in the query data sets (see B. Xie et al. [68] for

Fig. 1 Annotation and analysis steps in Lynx
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more details). Lynx enrichment analysis is based on a large variety
of features, such as Gene Ontology terms, toxicogenomic informa-
tion, and tissues. It also allows the exclusive analysis against the
symptoms-level phenotypes and associated non-coding signals
from VISTA [69] (e.g., enhancers and clusters of transcription
factors binding sites). Lynx also supports context-sensitive enrich-
ment analysis (e.g., against genes expressed on a particular devel-
opmental stage or in a particular tissue) that may substantially
increase the accuracy of the results.

Additionally, Lynx integrates five network propagation algo-
rithms (simple random walk, heat kernel diffusion, PageRank with
priors, HITS with priors, and K-step Markov) as initially developed
in the gene prioritization tool PINTA [70]. These algorithms were
modified for Lynx to replace continuous gene expression data with
binary data from seed genes. This modification accommodates
the use of a variety of weighted data types for gene prioritization
including ranked gene to phenotype associations, weighted
canonical pathways, gene expression, results of sequencing analyses,
and others. STRING v9.1 [36] is used as the underlying protein
interaction network. Networks-based gene prioritization facilitates
prioritization of promising candidate genes from large gene sets or
even from the entire genome to provide a preliminary step for
network reconstruction. Lynx Service Oriented Architecture
provides public access to LynxKB and its analytical tools via user-
friendly web services and interfaces.

Since the last release the Lynx workbench has been supplemen-
ted with a number of new tools. These include Cheetoh [71], a
unique feature-and-network-based gene- prioritization tool and
NetLynx (in press), a tool for the reconstruction of co-expression
networks.

The current release of LynxKB includes additional information
as described in Sulakhe et al. [66]. We have integrated these new
datasets within the results of existing analytical tools (e.g., enrich-
ment analysis tool) and the new tools (e.g., Cheetoh algorithm)
[71, 72]. Integration of this information also enhances data anno-
tation in Lynx.

Lynx’s usage has been increasing steadily with thousands of
users each month accessing the platform for annotation and analysis
of high-throughput biomedical data.

4.2 Lynx Design

and Components

Lynx provides a one-stop solution for generating weighted hypoth-
eses regarding the genes or molecular mechanisms contributing to
the phenotypes of interest (Fig. 1). It supports annotations and
analyses of the following data: (1) various types of experimental
results, such as gene expression, NGS, GWAS, CNV data, etc.; (2)
data extracted from LynxKB via search and annotation engines; and
(3) lists of genes provided by the user.
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Lynx contains the following major components: (1) Lynx
annotation engine consisting of Integrated Lynx Knowledge Base
(LynxKB) and Knowledge extraction services; (2) Lynx analytical
workbench that includes tools for features-based gene enrichment
analysis, feature-and-network-based gene prioritization, and recon-
struction of co-expression networks; and (3) user-friendly web
interface for accessing the annotations and analytical tools.

4.2.1 Updates to Lynx

Analytical Workbench

Updates to statistical enrichment analysis. Lynx enrichment analysis
allows identification of functional categories over-represented in
the query datasets, thus assisting users in formulating hypotheses
regarding the molecular mechanisms involved in the phenomena
under study. Two singular enrichment analysis algorithms, Bayes
factor and P-value estimates, are used in our pipeline for this
purpose (see Xie et al. [68]). Enrichment analysis in Lynx is based
on a large variety of features obtained frommultiple sources, as well
symptoms-level phenotypes and associated noncoding signals as
mentioned in our previous publication (1). Several new feature
categories, including inter alia Pubmed (UniProt and NCBI Gen-
eRifs), UniProt Keywords, and InterPro Domains, are introduced
in the current release to enable literature and protein function-
oriented discovery. The results of the Lynx enrichment analysis
can now be filtered and utilized by our new prioritization tool,
Cheetoh, to perform the feature and network-based gene
prioritization.

Updates to Lynx gene prioritization and prediction of molecular
mechanisms. Gene prioritization identifies promising candidate
genes and sets of genes relevant to molecular mechanisms contri-
buting to a phenotype or a condition of interest extracted from a
large set of genes or even from the entire genome. It can also serve
as a preliminary step for network reconstruction. In addition to the
previously described PINTA network-based gene prioritization
[70, 73, 74], Lynx now contains Cheetoh, a network-and-fea-
ture-based gene prioritization tool. These prioritization tools
perform distinct but complementary analyses suitable for the scien-
tific goals of an investigation, as outlined below.

Cheetoh. A list of genes submitted to the Cheetoh algorithm
first undergoes enrichment analysis to identify and score over-
represented functional categories. The results of the enrichment
analysis are passed to the Cheetoh algorithm as node features.
Cheetoh integrates these enrichment analysis results with the
underlying network structure as edge features through the Condi-
tional Random Field (CRF) model. It further ranks the genes in the
whole genome by global inference scores on the CRFmodel. Please
refer to Xie et al. [71, 72] for a detailed description of the Cheetoh
algorithm and its performance evaluation and validation proce-
dures. The output of the tool consists of 1000 top ranked genes
ordered by ascending Bonferroni (multiple testing correction)
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corrected P-values based on all user-selected categories as well as
rankings and corrected P-values from individual category. The
results are available both for viewing via the Lynx interactive inter-
face as well as for downloading. The resulting top-ranked genes can
be used in both hypothesis and discovery-based approaches to
identify a small set of high-confidence candidate genes relevant
to user’s interests or to explore larger sets of high-ranking genes
to identify molecular mechanisms associated with the conditions
under investigation. Moreover, the user can increase the resolution
of the analyses by choosing particular categories of interest from
among a collection of the enrichment analysis categories to enable
customized prioritization. For general-purpose gene prioritization,
the combination of Gene ontology (Molecular Function/
Biological Process/Cellular Component), phenotype, and pathway
categories are recommended. Users are advised to use Cheetoh in
cases when (1) pre-existing knowledge is available, such as a list of
validated genes or highly differentially expressed (DE) genes, asso-
ciated with phenotype or condition of interest and (2) the network
associated with the input list of genes is sparse or input genes are
poorly annotated.

PINTA. In contrast to Cheetoh, Pinta is an unsupervised gene
prioritization tool, which propagates the input information in the
form of genes and associated scores or gene expression values
through the gene–gene interaction networks. It accepts gene lists
annotated with experimental values (e.g., gene expression results,
differential expression values, scored sets of candidate genes, etc.)
that are factored into the analytical procedure.

Users are encouraged to use PINTA when the scoring for the
input genes is available, such as reliability scores, differential expres-
sion values, and the strength of association to the phenotypes. Since
this information propagated through the network can determine
whether a gene’s neighborhood is functionally related to the input
gene set, it could further identify promising candidate genes and
sub-networks, even if no knowledge is available about the disease or
phenotype under consideration. Please refer to [70, 73, 74] for a
detailed description of PINTA, its comparison with the other simi-
lar tools, and rigorous validation procedures.

NetLynx. Reconstruction of co-expression networks has
proved to be a promising approach to the investigation of system-
level properties. Lynx now contains NetLynx, a co-expression-
based network prediction tool to rank the interactions between
each pair of genes with respect to their gene expression profiles.
NetLynx uses a well-established method for modeling gene expres-
sion correlations as a multivariate Gaussian distribution with an L1
norm penalty. A comparison of NetLynx with the Pearson-correla-
tion-based and mutual-information-based methods demonstrated
its good performance (manuscript in press). NetLynx may be used
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for the reconstruction of co-expression networks utilizing a
user-input threshold to infer the final gene co-expression network.
The resulting co-expression networks can be annotated through
Lynx annotation resources and then further analyzed by Lynx
workbench tools for enrichment analysis and gene prioritization.

Lynx customized workflows. Lynx aims to support various scien-
tific scenarios by offering flexible analytical workflows containing
complementary tools. Lynx workflows allow users to explore
biological data, accessible via search engine as well as specialized
gene pages. Lynx user interface allows easy navigation between
Lynx tools as well as external tools, such as RaptorX [75] and
VISTA RViewer [67]. This flexibility enables the user to create
workflows suitable for his/her research goals. An iterative applica-
tion of Lynx analytical tools can also help users validate hypotheses
or discover new mechanisms hidden in the data.

Data and analytical web services. The integrated data and
annotations, as well as the various analytical tools, are presented
to users via the web interface. The service-oriented architecture
enables other users/groups to leverage our work and integrate it
within their own research tools and platforms. Other public systems
such as UCSC Genome Browser [76] and RViewer provide exter-
nal links to Lynx annotation pages. Databases such as DBDB [77]
use Lynx RESTful web service interface for annotation of genomic
data. End users can download the datasets of interest and results of
analysis from the web interface.

5 Conclusions

We present an updated Lynx integrated knowledge base and ana-
lytical workbench designed to support discovery and hypothesis-
based approaches for the analysis of high-throughput genomic
data. Lynx integrates the main downstream analyses, such as gene
annotation; gene set enrichment analysis, various algorithms for
gene prioritization and network reconstruction within one engine,
based on a large knowledge base. Two newly added tools, Cheetoh
and NetLynx, further expand our platform’s analytical repertoire.

Future developments planned for Lynx include (a) the support
of the isoforms-based reconstruction of contextual biological net-
works; (b) the expansion of the Lynx workbench to allow the
identification and characterization of networks modules and inte-
gration of additional data types (e.g., epigenetic data) in network-
based models of phenotypes of interest.
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Chapter 6

Functional Analysis of OMICs Data and Small Molecule
Compounds in an Integrated “Knowledge-Based” Platform

Alexey Dubovenko, Yuri Nikolsky, Eugene Rakhmatulin,
and Tatiana Nikolskaya

Abstract

Analysis of NGS and other sequencing data, gene variants, gene expression, proteomics, and other high-
throughput (OMICs) data is challenging because of its biological complexity and high level of technical and
biological noise. One way to deal with both problems is to perform analysis with a high fidelity annotated
knowledgebase of protein interactions, pathways, and functional ontologies. This knowledgebase has to be
structured in a computer-readable format and must include software tools for managing experimental data,
analysis, and reporting. Here, we present MetaCore™ and Key Pathway Advisor (KPA), an integrated
platform for functional data analysis. On the content side, MetaCore and KPA encompass a comprehensive
database of molecular interactions of different types, pathways, network models, and ten functional
ontologies covering human, mouse, and rat genes. The analytical toolkit includes tools for gene/protein
list enrichment analysis, statistical “interactome” tool for the identification of over- and under-connected
proteins in the dataset, and a biological network analysis module made up of network generation algorithms
and filters. The suite also features Advanced Search, an application for combinatorial search of the database
content, as well as a Java-based tool called Pathway Map Creator for drawing and editing custom pathway
maps. Applications of MetaCore and KPA include molecular mode of action of disease research, identifica-
tion of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects
for novel small molecule compounds and clinical applications (analysis of large cohorts of patients, and
translational and personalized medicine).

Key words Pathway analysis, Functional analysis, Systems biology, Signaling and metabolic networks,
Biological networks, “Knowledge-based” platform, Interactome, Causal reasoning

1 Introduction

Steady introduction of high-throughput methods in experimental
biology since the late 1990s created a need for novel techniques for
data analysis. First, the sheer volume of data points in a single
OMICs assay was non-comprehendible for the biologists. Indeed,
how could one connect thousands to tens of thousands of differen-
tially expressed genes at once in a biologically meaningful way?
A reductionist discipline, modern experimental biology, typically

Tatiana V. Tatarinova and Yuri Nikolsky (eds.), Biological Networks and Pathway Analysis, Methods in Molecular Biology,
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deals with much smaller systems of several proteins, probably linked
into a complex or a one—two pathways system. Second, OMICs
data is notoriously “noisy.” By different estimates, 50–70% of all
microarray expression or yeast-two-hybrid interactions are false-
positives and false-negatives [1]. One needs tools that adhere to
some sort of “gold standard” to access this noise. Third, different
types of OMICs data cannot be compared directly, as they have very
little overlap [2]. In order to address these issues, systems biology
must be further developed, evolving in parallel with OMICs tech-
nologies. A comprehensive analytical system should combine a
large knowledge base of experimental literature as well as a toolkit
for OMICs data management and analysis.

Recent advances in next-generation sequencing (NGS)
brought several new powerful and more precise methods to capture
full-scale genomic, transcriptomic, and epigenomic molecular
changes that are no more tied to microarray physical size and
capacity. DNA sequencing might give all possible gene variants
and identify germ line as well as somatic mutations on both gene-
coding regions (whole exome sequencing) as well as on gene regu-
latory regions in intergenic areas (whole genome sequencing).
RNA sequencing allows identifying specific alternative transcript
isoforms and gene fusions expression. Chromatin immuneprecipi-
tation (ChIP) sequencing allows identifying genome regions where
proteins like transcription factors bind with DNA. Bisulfite
sequencing shows DNA methylation events occurred on whole
genome.

Described technologies allow scientific groups to produce big
datasets in a rapid and relatively cheap way that might form a
multifactor disease profile for each patient. Oncology is the first
focus area for the new data generation paradigm. The Cancer
Genome Atlas (TCGA) was developed by NIH and designed as a
publically available collection of multi-OMICs datasets for 33
cancers with thousands patients in each cohort (https://tcga-data.
nci.nih.gov). For almost all patients, DNA-seq, RNA-seq, CNV,
microarray expression, DNA methylation, and clinical meta-data
are stored. TCGA research network published multiple studies of
this dataset, the most recent are [3–6], however number of studies
published by other scientific groups is much bigger (PubMed
search shows several hundreds).

The key assumption beyond knowledge-based data analysis is
that high-throughput data can only be de-convoluted within the
framework of an underlying biology, i.e., accumulated knowledge
of biologically relevant interactions between molecular entities
(genes, proteins, and compounds). In all living organisms, such
interactions are grouped into higher level structures such as
processes, pathways, mechanistic signaling, and metabolic
networks, as well as genetic “causative” networks interconnecting
disease biomarkers, relations within protein complexes, and groups
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of complexes. All this information has to be collected from the
original sources in computer-readable form and assembled into a
semantically consistent knowledge database. Due to the over-
whelming nature of complex biological systems and the fact that
peer-review articles are not standardized, it is generally accepted
that manual expert curation is necessary for the task. It requires a
large and well-trained annotation team working for several years
and an advanced annotation technology for collecting such a com-
prehensive knowledge base.

Over the last several years, many knowledge-based methods of
analysis of OMICs data were developed, which can be divided into
three main categories: pathway analysis [7, 8], biological interac-
tions networks [9–11], interactome analysis [12–17]. Classic
Enrichment analysis is a “low resolution” tool that consists of
dividing the gene/protein list of interest into “entities” of a func-
tional ontology such as cellular processes, disease, or toxicity cate-
gories and ranking these entities based on relative saturation with
the genes/proteins from the list. Enrichment analysis of pathways
might take into account network properties like protein and genetic
interactions between molecules and identify if experimentally
derived gene properties (like abundance of gene product) are con-
cordant with signal transduction effect, e.g., activation or inhibi-
tion interactions and properties of pathway itself [18]. Existing
knowledge about pathways and cellular processes is not universal,
so the number of proteins contained in pathway databases differ
and do not cover the whole genome, just overlaying DEGs on
pathways. Therefore, content from one database alone may not be
sufficient to ensure complete disease mechanism understanding (see
Table 1 for summary).

Table 1
Summary of pathway database gene and molecular interactions coverage

Database Genes Interactions

MetaCore™ 7317 30,186

KEGG 7086 N/A

Reactome 9622 9865

NCI PID 2626 14,000

WikiPathways 9584 9758

NetPath 1053 11,446

Both numbers show data available only through pathway maps analysis. MetaCore also

contains 1,700,000 interactions not visualized on pathway but accessible through net-

work analysis algorithms which extend our pathway knowledge and identify putative

signal transduction ways and cross-talks
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Large amount of published molecular interactions (including
protein, RNA, gene regulation by transcriptional factors, and
more) which extends our knowledge about possible molecular
processes in the cell and though allow going beyond pathway
diagram analysis. Such whole set of molecular interactions made
network biology analysis very popular field. Biological networks
link genes and proteins into interconnected structures of nodes
and edges (networks) of different topology, using the uploaded
genes/proteins as “seed” nodes and the interaction content from
the knowledge base as edges [19–21]. Networks can then be visua-
lized in different environments, such as the popular tool Cytoscape
[22]. Integrated platforms such as MetaCore and Key Pathway
Advisor have internal network generation and visualization tools.
Networks provide the highest resolution of analysis at the level of
individual proteins (isoforms in some cases) and individual protein
interactions. Modern network tools calculate and visualize the most
relevant sub-networks using different algorithms and filters. Finally,
network properties might be used for node prioritization proce-
dures that calculate the general interconnectivity within the
uploaded gene/protein list (Interactometopology), such as node
distribution, number of interactions per node (degree), the average
length of the path between the nodes, etc.

Advances in NGS and overwhelming data flow for molecular
alterations of different nature caused development of new
approaches that utilize or combine several discussed above and
applied to data integration paradigm. For such tasks when gene
variant, gene expression, and other alteration data need to be
analyzed simultaneously to identify the most promising driver
genes algorithmic rules should be modified to account biologically
diverse nature of data spots [23–25].

The methods of functional analysis are realized in several
dozen public domain and commercial programs. The vast majority
of these tools are specialized, designed for bioinformaticians and
require programming skills to be used effectively. Only a few sys-
tems managed to adapt knowledge-based functional analysis for a
broader audience of end users, biologists, and chemists.
These include the later versions of commercial integrated platforms
such as Pathway Studio (Elsevier B.V., https://www.elsevier.com/
solutions/pathway-studio-biological-research), Ingenuity Pathway
Analysis (Qiagen, www.ingenuity.com), and MetaCore, including
Key Pathway Advisor (Clarivate Analytics, http://clarivate.com/
life-sciences/discovery-and-preclinical-research/metacore/).
These commercial integrated suites feature intuitive GUI’s for non-
programmers, parsers for uploading OMICs data and gene lists,
large proprietary databases of interactions and other annotated
knowledge, advanced search, pathway editing, and reporting cap-
abilities. All three suites are well integrated with third-party tools
in bio- and chemoinformatics and evolve rapidly in a highly
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competitive environment. Here, we present our Systems Biology
suite of apps, focusing on non-interactions content and tools. The
protein interactions database MetaCore and Key Pathway Advisor
works on top of manually curated set of molecular interaction that
captures interactions effect, the biochemical mechanism (binding,
catalysis, transcriptional regulation and 20 more) from
corresponding research articles.

2 Materials

2.1 Overview MetaCore consists of the knowledge base, dubbed MetaBase, and
six analytical modules:

l MetaCore—a main platform for the analysis of OMICs and
other biological experimental data. MetaCore includes tools
for gene list enrichment analysis, multi-experiment comparison,
interactome analysis, and biological networks (algorithms and
filters).

l Genomic Analysis Toolkit (GAT)—a MetaCore module for the
analysis of Next Generation Sequencing data. GAT includes
tools for patient cohorts’ comparison, gene variant data anno-
tation, and filtering.

l Key Pathway Advisor (KPA)—a standalone comprehensive one-
clickworkflow that combines ease-of-use interface, modern
causal reasoning interactome analysis, and enrichment analysis
approaches and biomarker and drug target identification cap-
abilities. The application is designed specifically for molecular
biologists with enhanced visualization of network biology for
more intuitive analysis.

l MetaDrug—a “systems pharmacology” MetaCore module
designed for the analysis of medicinal chemistry data (structures
and assays). MetaDrug predicts biological effects of novel drug-
like compounds, including indications, side effects, and human
toxicity.

l Pathway Map Creator—a standalone Java-editing application
coupled with MetaBase and MetaCore. Pathway Map Creator
enables generation of custom pathway maps from scratch, edit-
ing of standard maps from the MetaCore collection, and con-
version of networks into pathway view.

l Advanced Search—a Java application for combinatorial Boolean
search of the MetaBase content. It is a companion app for the
MetaCore.

2.2 Content

(Knowledge Base)

Annotated content of MetaCore and KPA consists of two domains:
(1) binary molecular interactions and gene-disease associations and
(2) higher level, multi-protein structures such as pathways,
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pathways maps, and process networks. Both domains are inter-
linked into an Oracle database with 107 tables, with entities linked
by semantically consistent ontologies.

2.2.1 Protein Interactions

and Gene-Disease

Associations

The MetaCore knowledge base includes over 1,720,000 molecular
interactions and 200,000 gene-disease associations. The method is
described indetail in its chapter in the Interactions sectionof this book.

2.2.2 Pathways

and Functional Ontologies

MetaCore features 12 different functional ontologies used for gene
list enrichment analysis, by network algorithms and prioritization
of experimental data.

l Signaling pathways. These are linear multi-step chains of con-
secutive interactions, typically consisting of a ligand-receptor
interaction, an intra-cellular signal transduction cascade
between receptor (R) and transcription factor (TF), and, finally,
TF–target gene interaction. Signaling pathways are mainly used
by network generation algorithms and only visualized on
networks.

l Metabolic pathways. These are multi-step chains of metabolic
reactions, linked into functionally self-sufficient linear chains
and cycles. Fragments of metabolic pathways are shown as static
images reachable from the protein pages. Metabolic pathways
are also used for network generation and visualized on the
networks.

l Canonical pathways maps. Maps are the main level of pathway
visualization in MetaCore and KPA. Maps represent interactive
images drawn in Java-based Pathway Map Creator and typically
contain three to six pathways. There are over 1.600 maps in
MetaCore, comprehensively covering human signaling and
metabolism, certain diseases, and some drug targets mechan-
isms. Pathway maps are primarily used as an ontology for
enrichment analysis.

l Canonical pathway maps folders. All canonical maps are assem-
bled into a hierarchical tree folder structure. The folders struc-
ture can be visualized in a Browser mode and from enrichment
analysis distributions.

l Process network models. This ontology represents reconstruc-
tion of main signaling and metabolic processes in the cell, such
as a “cell cycle checkpoints” or “innate immune response.” The
manually built process networks typically have over 100 nodes
(proteins) belonging to certain normal cellular processes. The
edges are selected from MetaBase content.

l GO processes. These are a GUI-supported representation of
the Gene Ontology (GO) collection of cellular processes,
which comes with GO tree structure and access to proteins
and interactions within a process. This ontology is updated
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with GO standard updates. GO processes are mostly used in
enrichment analysis and for prioritization of genes on the built
networks.

l GO molecular functions. A GUI-supportedontology of stan-
dard protein functions from GO. It is mostly used in enrich-
ment analysis.

l Disease biomarkers. These are a collection of genes genetically
linked to over 500 diseases and conditions, supported by the
hierarchical disease tree and GUI for gene retrieval. Disease
biomarkers are mostly used in enrichment analysis.

l Disease network models. GeneGo reconstruction of disease
mechanisms in a form of manually built networks. These are
mechanistic networks linking the disease-associated genes via
physical and functional protein interactions.

l Toxicity networks. GeneGo reconstruction of toxicity mechan-
isms in a form of manually built networks. These are mechanis-
tic networks linking genes associated with a particular toxicity
endpoint via physical and functional protein interactions.

3 Methods

MetaCore is used in three main modes: Browser, Combinatorial
search, and for Analysis and Editing. KPA is designed for gene
expression data analysis.

3.1 Browser The content of functional ontologies, gene, protein, and com-
pounds annotations can be accessed from multiple pages in
MetaCore’s different applications. The main content browsing
tab menu includes Canonical Pathway Maps as a separate entry,
as well as Process Networks and Disease Networks. Process
Networks and Disease Networks can be opened up from enrich-
ment analysis distribution or called from the main menu. Anno-
tations for genes and proteins are available by either clicking on
an object on maps or networks, or found by search genes/
proteins. The gene/protein pages contain links to outside data-
bases such as Swissprot, EntezGene, etc., has information on
protein isoforms, gene variants, as well as information on SNPs
and mutations, etc. The Compound page is common for all
exobiotics and endogenous metabolites in the database, and
includes pharmacological information such as prime and second-
ary indication, toxicity, drug-drug interactions, drug-target
interactions, etc.
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3.2 Advanced Search This is a Java application for combinatorial (Boolean) search within
MetaCore platform. This advanced search allows for retrieval of
specific information from the knowledge database by generation of
complex queries via a simple, user-friendly interface. This is all done
without using the tools, rather it uses the embodied controlled
vocabulary of terms and ontology trees. The user can combine
attributes of the objects in the database such as “protein class,”
“molecular function,” “subcellular localization,” as well as func-
tional ontologies such as “GO process,” Canonical Pathway Map,”
“Disease Networks,” etc. into a query. A typical query results in a
list of genes, proteins, or compounds. The lists can be saved inter-
nally to the Data Manager for further research such as networks
analysis, or it can be exported as Excel file. Some examples of
queries in Advanced Search are listed below:

Find all drugs for kinases involved in apoptosis in breast cancer.

Find all kinases implicated in breast cancer.

Find all biomarkers which are kinases.

Find genes for colorectal cancer which are not involved in breast
cancer.

Find all ligandsorreceptors in inflammatory response.

Find genes for fatty acid metabolism which are nothuman.

3.3 Data Upload

and Analysis

MetaCore is designed for the analysis of a large variety of gene/
protein/compound lists, small molecules structures, and “high-
throughput” experimental data often collectively referred to as
“OMICs data.” The data types include microarray and SAGE
“genome-wide” gene expression, SNP arrays genotyping data,
DNA sequencing data (methylation, gene copy number, somatic
mutations, and SNPs), proteomics, and metabolomics (both
NMR and MS data). On the chemistry side, MetaCore handles
SMILES strings, Brutto formulas, molecular weights, and struc-
tures. Experimental datasets, as well as gene, protein, and com-
pound lists, are analyzed in a similar way, by matching gene/
protein/compound IDs from the datasets with the internal Meta-
Base IDs. These IDs are then used as seed nodes for network and
interactome analysis and as a gene/protein list for enrichment
analysis. Experimental numerical data such as level of gene expres-
sion on a microarray, protein abundance measured by NMR, or a
metabolite concentration in body liquids are visualized as histo-
grams or as a solid circle of gradient intensity on pathway maps
and networks accordingly (Fig. 1a, b). The list of objects with
matching numerical data can be exported from maps, networks,
and ontology entries (Fig. 1c).
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3.3.1 Data Parsers Most of experimental data, such as gene expression, are uploaded
by a universal parser that recognizes most common systems of
gene/protein/compound IDs. The majority of commercial micro-
arrays including Illumina, Affymetrix, ABI, and GE Healthcare for
human, mouse, rat, dog, bovine, and chimpanzee are recognized
directly. Gene variant parser allows uploading VCF files or gene
variant lists that have to contain chromosome position and refer-
ence/alternative alleles change for each gene variant (SNP, MVP,
deletion, insertion). The metabolic parser is designed for uploading
endogenous small molecule compounds and recognizes AC num-
bers, SMILES strings, molecular weights, and KEGG IDs. Xenobi-
otic compounds are uploaded with the help of the integrated
Accord module (Accelrys) in a form of SDF and MOL files. The
chemical structures can also be drawn using the ChemDraw plug-

Fig. 1 Mapping numerical data on pathway maps and networks. (a) Metabolic concentrations in blood of
atherosclerosis mice on a map. (b) Microarray gene expression data superimposed on the network nodes
(invasive breast cancer human data). (c) Data export file with expression data from the network
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in. Importantly, all compounds in MetaCore are included in ISIS
index, a system of choice for drug screening assays. The assays can
be parsed into MetaCore via ISIS identifiers.

3.3.2 Compare

Experiments Workflow

MetaCore is designed for the analysis of multiple experiments and
gene lists to accommodate such research tasks as timelines, multiple
drug concentrations, comparison between different samples in
patient cohort, etc. Analysis can also be run in a single experi-
ment/gene list mode. In general, the datasets are “activated” in
the Data Manager, and an automated “compare experiments”
workflow is chosen in the Tools menu. After choosing a desired
threshold for experimental values, the intersection between the
datasets is calculated based on matching internal IDs. The common
subset of IDs (intersection), unique subsets, and similar ID’s (i.e.,
present in all but one experiment) are displayed as a histogram, and
the three-step analysis (enrichment analysis–interactome–net-
works) is then run automatically. Alternatively, a manual “Advanced
biomarkers” feature could be applied for a large scope of logical
operations between the datasets (nonredundant union, “either or”
operation, subtraction of different types).

3.3.3 Standard Data

Analysis Overview

The uploaded experiments or gene/protein/compound lists are
subjected to several stages of systems biology analysis:

l The experimental set(s) are custom filtered according to the user’s
needs. Filters include gene expression in human tissues and
cellular organelles, matching with orthologs in ten organisms,
specific cellular processes, etc. In addition, the uploaded gene
lists can be normalized against microarray content or a custom
dataset.

l Enrichment analysis (EA) in multiple functional ontologies. EA
is a “classical” tool that shows relative prevalence of genes from
certain cellular processes, pathways, diseases, etc. in the
uploaded dataset(s).

l The interactomeanalysis feature calculates relative connectivity
(number of interactions) of individual proteins/genes within
the set compared to the whole database. Proteins are divided by
protein classes such as transcription factors, receptors, ligands
(secreted proteins), kinases, phosphatases, proteases, and
endogenous metabolic enzymes. Connectivity can be calculated
for individual datasets and between the datasets.

l Network analysis. Genes/proteins in the dataset(s) can be
connected to each other via protein interactions, forming sig-
naling and metabolic networks. The network topology and
composition vary depending on chosen algorithms, filters, and
purpose of analysis. Networks provide the highest resolution
among functional analysis tools.
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l Key Pathway Advisor (KPA) works with several levels at once
providing data filtering; interactome analysis by reverse causal
reasoning algorithm that reconstructs gene expression regu-
latory pathways on network and though identifies Key Hubs
(regulator molecules with predicted activation or inhibition
status); synergy enrichment analysis for experimental data and
found Key Hubs. For the list of experimental genes and Key
Hubs search for known biomarkers and drugs designed to treat
a disease that user selects.

l Genomic Analysis Toolkit (GAT) provides capabilities to identify
potential driver variants from the initial VCF files prior to
systems biology analysis. It provides wide capabilities to com-
pare data from different cohorts of patients, family trio analysis
and perform comprehensive annotation and filtering. Each
gene variant is mapped on the genome to identify its type,
class, gene region, previously reported biomarkers, external
gene variant data bases (dbSNP, 1000 genomes, ESP,
dbNSFP), disease, pathways, etc. More than 40 fields with
different information are associated with each gene variant
providing rich capabilities for filtering.

l The capabilities of the MetaDrug module also include QSAR
models that can be used for prediction of toxicity, activity and
physio-chemical properties of novel compounds, and prediction
of human metabolites for heterocyclic compounds of differing
structure. Now, we will consider in more detail the basic analysis
steps.

3.3.4 Dataset Filters The content of any uploaded dataset can be focused depending on
the purpose of the analysis and the experimental conditions. Data
filters in MetaCore include tissue specificity, presence in body
liquids, specific cellular processes, diseases, and pathways. The
data can be normalized against standard gene lists as well as the
content of the main types of microarrays used in gene expression
experiments. Gene variant filters provide following additional filters
functional class (missense, nonsense, UTRs, splice-sites, etc.),
Functional prediction scores for different algorithms (SIFT, Muta-
tion Tester, MutationAssessor, etc.), evolutionary conservation
scores (GERP, PhyloP, etc.), by presence in public gene variant
data bases and population frequencies (dbSNP, 1000 genomes,
ESP), presence in Thomson Reuters Gene Variant Data Base (a
rich collection of gene variant biomarkersassociated with diseases
and treatment responses).

3.3.5 Dataset/Gene List

Enrichment Analysis (EA)

InMetaCore, the EAmodule calculates the probability of a random
intersection between the uploaded dataset and an ontology’s sub-
folder (say Cell Cycle) based on a hypergeometric distribution. The
p-value essentially represents the probability of a particular mapping
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arising by chance, given the numbers of genes in the set of all genes
on maps/networks/processes, genes on a particular map/net-
work/process, and genes in your experiment. The negative natural
logarithm of the p-value is displayed so that a larger bar represents a
higher significance. The histogram is automatically sorted by select-
ing an option in the “Sorting method” drop-down menu. The
“Statistically significant” option sorts the histogram by the maxi-
mum �ln(p-value), the “Differentially affected” option sorts the
histogram by the standard deviation of the�ln(p-value) among the
experiments, and the “Similarity” option sorts the histogram by the
standard deviation of the �ln(p-value) divided by the mean of the
�log(p-value). The False Discovery Rate (FDR) correction proce-
dure is standard. FDR threshold can be custom changed or
switched off. There are two important issues in the EA calculation:

l Functional ontologies. EA analysis is only as informative as the
ontology behind it. Using only one ontology (for instance, GO
molecular functions) provides a rather insufficient overview of
large datasets. For instance, GO processes help little in the
evaluation of a toxicogenomics expression dataset, for which a
specialized ontology of toxic categories and pathological
processes is needed. In MetaCore, 12 different functional
ontologies (see Subheading 2) are used for the comprehensive
EA overview.

l Standard datasets and normalization. EA calculates relative
enrichment of a dataset on a background of a larger database
of IDs the set of interest is part of. For instance, a subset of
genes differentially expressed in breast cancer has to be “nor-
malized” to the gene ID content of the microarray it was
generated on. The subset of gene IDs is also part of a larger
database of IDs it has to be normalized against. In MetaCore,
normalization is calculated against three levels of the database
standard arrays and custom defined standard sets.

3.3.6 Interactome

Analysis Module

Interactome calculates relative connectivity between the proteins in
the uploaded dataset/list of interest (local interactome) compared
to general connectivity within the interactions database (global
interactome). The module’s procedures evaluate general topologi-
cal parameters of the local interactome and identify interactome
neighborhoods around individual proteins divided into protein
classes: transcription factors, receptors, ligands, kinases, phospha-
tases, proteases, and enzymes of endogenous metabolism.

Evaluation of Interactome

Topology

This procedure calculates the main properties of the local interac-
tome defined as the compilation of all interactions between the
genes/proteins within the uploaded list/experiment. The topolog-
ical parameters include

112 Alexey Dubovenko et al.



l Degree of nodes. The number of links (interactions) connected
to a node (protein) gives the node’s degree. Since our network
is directed, the nodes are characterized by in and out-degree,
giving the number of outgoing and incoming interactions.

l Average shortest path. The shortest distance between two nodes
is the number of links (interactions) along the shortest path(s).
The average shortest path is the average over the shortest paths
for all node pairs in the network. When we calculate the shortest
paths for a subset of nodes (the set of proteins for colon and
breast cancer) in the global network, we also consider paths
crossing through nodes that are not part of the subset.

l Average clusteringcoefficient. The clustering coefficient captures
to what degree node’s neighbors are connected. It is defined as

Ci ¼ 2ni

ki ki�1ð Þ, where ni is the number of links among the ki

neighbors of node i. As ki(ki�1)/2 is the maximum number
of such links, the clustering coefficient is a number between
0 and 1. The average clustering coefficient is obtained by aver-
aging over the clustering coefficient of individual nodes. A
network with a high clustering coefficient is characterized by
highly connected sub-graphs. Statistical significance of network
parameters can be evaluated by p-values (see Note 1).

Evaluation of Significantly

Over (Under)-Connected

Proteins in the Gene/

Protein List of Interest

It is widely accepted and shown in multiple studies that proteins
that are more critical in a given dataset (for instance, drug targets,
disease-related proteins, etc.) have more connections within the
dataset than expected on random. In MetaCore, we realized this
observation in a statistical tool that evaluates relative connectivity of
proteins of different types. The interactions between proteins
within a set of data are retrieved from the database and compared
with the number of connections in the global interactome. The
goal of this analysis is to identify proteins with statistically signifi-
cant large and small numbers of interactions within the dataset of
interest, between any two datasets and between the dataset and all
the proteins in the database (Fig. 2). Statistical significance is
assigned by using the cumulative hypergeometric distribution as

follows: p kð Þ ¼ PD
i¼k

P i;D;n;Nð Þ, where

P k;D;n;Nð Þ ¼
D
k

� �
N �D
n � k

� �

N
n

� �

N—the number of proteins (protein-based network objects)
in our

global interactome extracted from MetaCore.
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n—number of proteins derived from the sets of genes of interest.
D—the degree of a given protein in the global interactome

database.
k—the degree of a given protein within the set of interest.
The p-value calculated above gives the probability of observing

k or more interactions of a given protein (with degree D in global
network) by random chance within the set of interest (of size (n)).

The probability of observing under-connected proteins can be
calculated by 1�p(k).

The input lists of genes were converted to protein-based net-
work objects which have been used in our analysis. The resulting
network objects sets were divided into subsets based on their
molecular function (receptors, ligands, etc.).

3.3.7 Network Analysis

Tools

In MetaCore, networks are built using proteins, genes, and com-
pounds (network objects) from a user’s list as seed nodes and
MetaBase as the source of interactions as links between them. As
the seed lists are different, the networks are unique for the
uploaded datasets and chosen conditions. The same dataset can
be networked in different ways, depending on chosen network
parameters. The network toolbox features network algorithms
and filters enabling generation of networks specific for cellular
processes, species, orthologs, cellular processes, expression in
human tissues, mechanisms of interactions, and effects.

Fig. 2 Interactome analysis of OMICs datasets and gene lists. (a) The general schema of interactions inside the
set, between the sets, and between the set and “global interactome.” (b) The “over” and “uner”-connectivity
phenomenon. The hub (P21 protein from MetaCore database, marked pink) is expected to be linked with five
other proteins in the hypothetical dataset of 320 genes (purple circles), but in reality it can be linked with nine
genes (purple and green circles), or three genes (purple circles). In these cases, it will be considered “over”
connected or “under” connected
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Network Generation

Algorithms

Network algorithms use the uploaded network objects (converted
from gene and protein IDs) as seed nodes, link them together by
pulling interactions from the database, and display the built net-
works on the screen. There are seven basic algorithms and two
additional variants in MetaCore.

l Direct Interactions (DI) identifies the islands of nodes
corresponding to genes/proteins from the user’s list directly
connected to each other. Each connection represents a direct,
experimentally confirmed, physical interaction between the
objects.

l Shortest Paths (SP) algorithm connects the chosen objects by
the shortest network paths (smallest possible number of
directed one-step interactions) using standard Dijkstra’s short-
est paths algorithm. A user can constrain the paths’ length by
using the pull-down menu under Options.

l Analyze Network (AN) algorithm starts with building a super
network by applying a simplified version of the “Auto Expand”
algorithm to the initial list of objects. The network, which is never
visualized, connects all objects from the input list with all other
objects. In the next step, this large network is “divided” into
smaller fragments of chosen size, from 2 to 100 nodes. This is
done in a cyclical manner, i.e., fragments are created sequentially
one by one. Edges used in a fragment are never reused in
subsequent fragments. Nodes may be reused, but with different
edges leading to them in different fragments. The end result of the
AN algorithm is a list of overlapping multiple networks (usually
~30), which can be prioritized based on five parameters: the num-
ber of nodes from the input list among all nodes on the network,
the number of canonical pathways on the network, and three
statistical parameters: p-value, z-score, and g-score (seeNote 2).

l Analyze network (Transcription Factors—TFs) and Analyze
network (Receptors). Both algorithms start with creating two
lists of objects expanded from the initial list: the list of transcrip-
tion factors and the list of receptors. Next, the algorithm calcu-
lates the shortest paths from the receptors to TFs. Then, the
shortest paths are prioritized in a similar way. The first algo-
rithm, AN(TFs), connects every TF with the closest receptor by
all shortest paths and delivers one specific network per TF in the
list. Similarly, the second algorithm AN(R) delivers a network
consisting of all the shortest paths from a receptor in the list to
the closest TF; one network per receptor. Since all the edges,
and therefore, paths are directional, the resulted networks are
not reciprocal.

Every network built by the AN algorithm may be optionally
enriched with the receptor’s ligands and the TF’s targets. The
networks may be grouped, and merged within every group.
Namely, if we are building one network for every transcription
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factor, then all such networks with the same receptors are
grouped and merged within each group.

l Transcription regulation (TR). This algorithm starts with a
small sub-network that consists of the initial list of objects
plus all the “immediate transcription factors” for those initial
objects, i.e., the objects that are linked to at least one of the
initial objects by an edge of the “transcription regulation” type.
Then, a separate network is built around every such transcrip-
tion factor, using the Auto Expand algorithm with “upstream”
option and limiting to the objects from the initial list. Then the
transcription factor’s targets from the initial list are added to
network. The algorithm delivers a list of networks, one per
transcription factor.

l Auto-expand (AE). AE algorithm creates sub-networks around
every object from the uploaded list. The expansion halts when
the sub-networks intersect. The objects that do not contribute
to connecting sub-networks are automatically truncated.

l Expand byOne Interaction. This algorithm builds one-stepsub-
networks around any object from the list and finds “islands” of
nodes from the user’s list connected by no more than two
bridging objects.

Network Filters and

Options

These tools allow researchers to choose the input list of seed objects
and the interactions space for the edges in accordance with the
customer’s preference. The seed objects filters include tissue
expression, subcellular localizations (organelles), species (human,
mouse, and rat), orthologs (yeast, fly, worm, chicken, dog, bovine,
chimpanzee), protein types (29 types, such as receptors, kinases,
ion-gated channels, etc.). The “edges” options include interaction
mechanisms (19 types), confidence level (physical vs. indirect),
interaction weights (can be adjusted). Also, a user has a control
over every object in the seed list: he/she can remove or add objects
and specify the type of interactions coming in and out of the object.

Network Statistics The network statistics function calculates specific network features
(conversion and diversion hubs, general hubs, longest pathways on
the network, etc.) and exports the network content in Excel for-
mat (see Note 3).

3.4 MetaDrug Tools TheMetaDrugmodule of the platform is designed for prediction of
biological effects of small molecules (heterocyclic) compounds of
arbitrary structure. Essentially, it uses cheminformatics tools for the
conversion of a compound structure to a list of proteins—possible
targets and metabolizing enzymes that are then processed via func-
tional analysis as with any other gene/protein list. MetaDrug has
several chemistry tools not found elsewhere in the platform.
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3.4.1 Metabolites

Prediction Tool

The first step in the conversion of a chemical structure into a protein
list is to split the molecule into a series of predicted human metabo-
lites. It is well established that in many cases the active (and often
toxic) ingredients in many drug molecules are their metabolites that
human (mostly liver) enzymes break down the original molecules
onto. MetaDrug uses a set of 90 empirical rules based on manual
curation of xenobiotic metabolism literature and metabolism priori-
tization algorithms to deduce Phase I and Phase II metabolites.

3.4.2 QSAR Models In the next step, the compound structure and the predicted meta-
bolites are tested for bioactivity by calculation of quantitative
structure-activity relationship (QSAR) models. MetaDrug uses
the ChemTree modeling module developed by Golden Helix Inc.
(http://www.goldenhelix.com) for model generation. There are
over 100 models in MetaDrug for the evaluation of a compound’s
physio-chemical properties, reactivity, metabolic hepatotoxicity
(phase I and II drug metabolism), general toxicity (Herg, transpor-
ters, etc.), as well as activity on potential drug-able targets (Fig. 3).

Fig. 3 General schema of functional analysis of small molecules compounds in MetaDrug module. A compound of
arbitrary structure is divided onto human metabolites using empirical rules, and all structures are evaluated for
activity, toxicity, and physico-chemical parameters by >100 QSAR models. The original compound and
metabolites are then used as a query against 780,000 compounds with known activity. Similar compounds
retrieved from the database and their protein targets are then subjected to enrichment and network analysis
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Some models are built around specific proteins, Phase II drug
metabolism enzymes, transporters, membrane and nuclear
receptors, kinases, etc. These proteins can be selected by a user
for the follow-upfunctional analysis.

3.4.3 Chemical Similarity

Search and Assembly of

Protein Target List

The uploaded compounds and their metabolites are screened
against the chemistry content of MetaBase by chemical structure
resemblance and sub-structure search. A Tanimoto coefficient is
used as the similarity parameter for the sub-structure search. We
also use GVK MediChem database (see a chapter in this book for
details) as an annotated source of chemistry bioactivity data.
The Accord module from Accelrys is used for similarity
calculations.

3.5 Genomic

Analysis Tools (GAT)

Two main prefiltering analyses in GAT are Cohort Analysis (CA)
and Trio Analysis (TA). CA main purpose is to compare two sample
groups (e.g., disease-affected patients versus healthy patients) and
calculate statistical significance of the gene variants for case cohort
against the control cohort. At least ten samples (at least five samples
for each case and control cohorts) are required for CA input. It is
also possible to have only 5 samples in case group and select 1 of
1000 Genomes and Exome Sequencing Projects population data-
sets as control. CA calculates p-values of statistical significance
using Cochran-Armitage Trend Test [26]. Resulting p-values indi-
cate the usual probabilistic interpretation of each GV association
with case cohort. Variants with appropriate p-values (e.g., lower
than 0.01 threshold) could be filtered out using Genomic
Variant Filter.

TA main purpose is to compare the pattern of the gene variants
in the child sample compared to the parental samples (e.g., inher-
ited rare diseases) and calculate the inheritance pattern of these
variants. At least three samples are required for TA input. The
following gene variant types could be identified via TA: autosomal
dominant, autosomal recessive, sex-linked dominant, sex-linked
recessive, sex-influenced dominant, sex-influenced recessive,
Y-linked, compound heterozygous, sporadic mutation inherited
not via classical mechanisms.

3.6 Key Pathway

Advisor

Key Processes are defined as ontology terms/entities (i.e., pathway
maps) enriched with both input genes and corresponding topolog-
ically significant Key Hubs. They are identified by the following
workflow. (a) Enrichment analysis is performed for the list of
differentially expressed genes (DEGs) and gene variants if submit-
ted. Statistically significant ontology entities (enrichment
p-value < 0.001) for differentially expressed genes are identified.
Enrichment is calculated for several Thomson Reuters’ proprietary
functional ontologies. Key Hubs are calculated using a Causal
Reasoning approach (if DEGs associated with expression
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values seeNote 4) or Over-connectivity analysis (if DEGs uploaded
without expression values). For further analysis, statistically
significant hubs with p-value < 0.001 are identified. Statistically
significant Ontology Entities are identified for both the list of
differentially expressed genes and the list of corresponding Key
Hubs. The enrichment synergy method offered for comparing
datasets that are functionally relevant but poorly overlapping at
the gene level. If genes derived from different datasets may popu-
late the very same pathway or process, this suggests that they are
functionally complimentary. To determine whether two distinct
gene lists cooperatively alter a certain cellular pathway or process,
we calculate the synergy between them by ontology enrichment.
An ontology term (pathway or process) is considered synergistic if
the enrichment p-value for the nonredundant union of compared
gene lists is lower than p-values for individual lists. More signifi-
cant enrichment for the union is reflected in the functional con-
nectivity of two gene lists and their complementary effect on the
pathway. The final list of synergistic ontology entities includes all
ontology terms with synergistic expression pattern for the union of
DEGs and Key Hubs and p-value < 0.001. KPA workflow is
schematically shown in Fig. 4.

Fig. 4 Key Pathway Advisor provides a system that analyzes molecular activity of high-throughput gene
expression profiles. Working from published molecular biology studies that are manually curated by the
Clarivate Analytics editorial team, KPA creates a hypothesis about abnormal transcription factor activity and
upstream signaling cascades that are potentially causing the differential gene expression
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3.7 Pathway Map

Creator

Pathway Map Creator is a standalone Java application available
within MetaCore. It enables creation of custom pathway maps
using the MetaBase interactions content and 300 dpi imaging
capability. The tool is described in detail in the MetaMiner (Cystic
Fibrosis) chapter in the Applications section of this book.

4 Notes

1. Evaluation of significance (p-value) for topological proper-
ties for “local interactome”—over-connectivity analysis.
The protein-protein interactions for the gene/protein list of
interest are uploaded from MetaBase, followed by calculation
of topological properties (average degree, clustering coeffi-
cient, and shortest paths) for the list. The topological para-
meters are then compared with those for the entire collection
of interactions in the database (global interactome). Statistical
significance of the differences between local and global inter-
actomes can be evaluated by generation of lists of randomly
picked genes, the size of the list of interest and calculation of
the topological properties for random lists 1000–10,000 times.
For example, if one had a subset of ten genes we would calcu-
late the average degree of these ten genes and generate 10,000
sets of genes (of size ten) by randomly picking genes from the
experimentally analyzed set and count how many times our set
of interest gives larger degree than the randomly generated
sets. If our set of interest has a larger average degree than
9500 of the random sets (and respectively smaller average
degree than 500 of the random sets), one can assign a p-value
of 0.05 (i.e., 500/10,000), that is, our set has significantly
large average degree at p ¼ 0.05 significance level.

2. Prioritization of AN networks. Prioritization within the list
of AN networks can be based on different parameters, but
follows the same procedure that we will describe next. A data
set of interest (e.g., the list of all pre-filtered nodes) is divided
into two random subsets that overlap in this general case. The
size of the intersection between the two sets represents a ran-
dom variable within the hypergeometric distribution. We apply
this fact for numerical scoring and prioritization of the previ-
ously discussed node-centered small SP networks. Let us con-
sider a general set size of N with R marked objects/events
(e.g., the nodes with expression data). The probability of a
random subset of size of n which includes r marked events/
objects is described by the distribution.
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P r;n;R;Nð Þ ¼ C r
R � Cn�r

N�R

C n
N

¼ C r
n � CR�r

N�n

C R
N

¼ R! � N �Rð Þ!
N !

� n! � N � nð Þ!
r! � R � rð Þ!

� 1

n � rð Þ! � N �R � n þ rð Þ!
The mean of this distribution is equal to the following:

μ ¼
Xn
r¼0

r � P r;n;R;Nð Þ ¼ n �R
N

¼ n � q,

where q ¼ R/N defines the ratio of marked objects.

The dispersion of this distribution is described as follows:

σ2 ¼
Xn
r¼0

r2 � P r;n;R;Nð Þ � μ2 ¼ n �R � N � nð Þ � N �Rð Þ
N 2 � N � 1ð Þ

¼ n � q � 1� qð Þ � 1� n � 1

N � 1

� �

It is essential that these equations are invariant in terms of
exchange of n forR. This means that the subset and the marked
sets are equivalent and symmetrical. Importantly, in the cases of
r > n, r > R or r < R þ n � N, P(r, n, R, N) ¼ 0.

We will use the following z-scoring for comparison and
prioritization of node-specific SP sub-networks.

z � score ¼ r � n
R
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n R
N

� �
1� R

N

� �
1� n�1

N�1

� �q ¼ r � μ

σ

where,

N is the total number of nodes after filtration;
R is the number of nodes in the input list or the nodes

associated with experimental data;
n is the number of the nodes in the network;
r is the number of the network’s nodes associated with

experimental data or included in the input list;
μ and σ are, respectively, the mean and dispersion of the

hypergeometric distribution as described above.

3. P-value and evaluation of statistical significance of net-
works. For a network of a certain size, we can evaluate its
statistical significance based on the probability of its assembly
from a random set of nodes of identical or similar size to the
input list. We can also evaluate the relevance of the network
based on biological processes (defined as a subset of the net-
work nodes associated with the particular process) or any other
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subset of nodes. For example, let us consider a complete set of
nodes on the network, divided into two overlapping subsets.
These subsets represent the nodes linked to a certain prede-
fined node list, e.g., the list of nodes belonging to Gene Ontol-
ogy (GO) cellular processes, or a list of genes expressed in a
certain tissue. Generally, these subsets are different but over-
lapping. Assuming that the intersection between the two sub-
sets is large enough and nonrandom (we do not consider a
situation when the intersection is small but nonrandom), the
null-hypothesis states that the subsets are independent and,
therefore, the size of the intersection satisfies a hypergeometric
distribution. The alternative hypothesis states that there is
positive correlation between the subsets. Based on these
assumptions, we can calculate a p-value as the probability of
intersection of the given or a larger size network from two
random subsets from the same set.

p‐val r;n;R;Nð Þ ¼
Xmin n;Rð Þ

i¼max r;Rþn�Nð Þ
P i;n;R;Nð Þ

¼ R! � n! � N �Rð Þ! � N � nð Þ!
N !

�
Xmin n;Rð Þ

i¼max r;Rþn�Nð Þ

1

i! � R � ið Þ! � n � ið Þ! � N �R � n þ ið Þ!

4. Causal reasoninganalysis. Causal Reasoning is a shortest-
path-based method aimed at the identification of upstream
regulators that cause gene expression changes observed in
transcriptomics data [17, 27]. Causal Reasoning relies on a
directed network that is annotated with activation and inhibi-
tion edges as well as biological mechanisms (transcription reg-
ulation). Causal Reasoning identifies candidates (hypotheses)
in the network that can be reached via a predefined maximum
shortest path length from the differentially expressed genes.
Candidates are scored based on the number of differentially
expressed genes that can be reached via the shortest paths and
the correctness of the regulation. The correctness is assessed
based on the activation and inhibition edges along the paths
and the expected and observed direction of fold changes of the
differentially expressed genes.

The significance of the predictions made by a hypothesis is
assessed using a binomial test based on the following
information:

(a) k—the sum of correct predictions.

(b) n—the sum of correct and incorrect predictions.
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(c) The p-value is calculated as probability to get k successes in
n predictions using binomial trials with p ¼ 0.5.

p‐value ¼ n

k

� �
pk 1� pð Þn�k

(d) p-values are assigned in the score matrix and hypotheses
above the p-value threshold are filtered out of the score
matrix.
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12. Nitsch D, Gonçalves JP, Ojeda F, de Moor B,
Moreau Y (2010) Candidate gene prioritiza-
tion by network analysis of differential

expression using machine learning approaches.
BMC Bioinformatics 11:460

13. Hsu C-L, Huang Y-H, Hsu C-T, Yang U-C
(2011) Prioritizing disease candidate genes by
a gene interconnectedness-based approach.
BMC Genomics 12(Suppl 3):S25
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Chapter 7

Extracting the Strongest Signals from Omics Data:
Differentially Expressed Pathways and Beyond

Galina Glazko, Yasir Rahmatallah, Boris Zybailov,
and Frank Emmert-Streib

Abstract

The analysis of gene sets (in a form of functionally related genes or pathways) has become the method of
choice for extracting the strongest signals from omics data. The motivation behind using gene sets instead
of individual genes is two-fold. First, this approach incorporates pre-existing biological knowledge into the
analysis and facilitates the interpretation of experimental results. Second, it employs a statistical hypotheses
testing framework. Here, we briefly review main Gene Set Analysis (GSA) approaches for testing differential
expression of gene sets and several GSA approaches for testing statistical hypotheses beyond differential
expression that allow extracting additional biological information from the data. We distinguish three major
types of GSA approaches testing: (1) differential expression (DE), (2) differential variability (DV), and (3)
differential co-expression (DC) of gene sets between two phenotypes. We also present comparative power
analysis and Type I error rates for different approaches in each major type of GSA on simulated data. Our
evaluation presents a concise guideline for selecting GSA approaches best performing under particular
experimental settings. The value of the three major types of GSA approaches is illustrated with real data
example. While being applied to the same data set, major types of GSA approaches result in complementary
biological information.

Key words Omics data, Gene set analysis approaches, Hypotheses testing, Self-contained, Competi-
tive, Differential expression, Differential co-expression, Differential variability

1 Introduction

Biological systems are living proofs of Aristotle’s idea that the
whole is greater than the sum of its parts. For example, cell is a
product of synergistic actions of its constituents (genes, proteins,
metabolites, just to name a few). Together with cellular environ-
ment this synergy defines what we call the cell type (e.g., a stem cell
or dendritic cell). At the level of cell’s key molecules (nucleic acids
and proteins) the idea of synergy also holds true the following:
genes work together in biological pathways, proteins form protein
complexes, that is genes and proteins are organized in functional

Tatiana V. Tatarinova and Yuri Nikolsky (eds.), Biological Networks and Pathway Analysis, Methods in Molecular Biology,
vol. 1613, DOI 10.1007/978-1-4939-7027-8_7, © Springer Science+Business Media LLC 2017
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units acting overall differently than a single gene or a single protein
would. Thus, when an investigator studies omics data, the idea to
consider functional units instead of individual components comes
naturally to mind. In fact, this idea was first employed for the
analysis of gene expression data more than a decade ago [1].
Analyzing microarray data from diabetics vs. healthy controls
Mootha and colleagues [1] did not find a single gene to be differ-
entially expressed. However, when genes were analyzed at the
pathway level using Gene Set Enrichment Analysis (GSEA)
approach, it was found that genes involved in oxidative phosphory-
lation showed reduced expression in diabetics although the average
decrease per gene was only 20% [1]. There were two reasons behind
the success of the pathway analysis approach in this case. First, the
number of hypotheses to test by arranging genes into pathways is
dramatically reduced, which leads to the increase in power. Second,
in metabolic diseases such as diabetes changes in gene expression
are moderate and therefore can be overlooked by using methods
focusing on each gene individually. These two reasons explain why
pathway analysis has become the method of choice in analyzing
omics data in general and expression data in particular. Nowadays,
we also recognize yet another important reason to employ pathway
(gene set) analysis for omics data. Gene Set Analysis (GSA)
approaches provide flexibility to test different statistical hypotheses,
thus increasing the biological interpretability of experimental
results. Here, we briefly review main Gene Set Analysis (GSA)
approaches for testing differential expression of gene sets and sev-
eral GSA approaches for testing statistical hypotheses beyond dif-
ferential expression, which allow extracting additional biological
information from the data.

We distinguish the three major types of GSA approaches that
test statistically and biologically different hypotheses: (1) differen-
tial expression (DE), (2) differential variability (DV), and (3) dif-
ferential co-expression (DC) of gene sets between two phenotypes.
All major types of GSA approaches can be univariate (gene-level) or
multivariate (accounting for intergene correlations). The chapter is
organized as follows: In the first part of Subheading 2, we discuss
GSA approaches developed for identification of differentially
expressed pathways applicable for the analysis of microarrays and
RNA-seq data (GSA-DE). The traditional GSA-DE framework
aims to identify pathways with significant changes in mean gene
expressions and it is well understood. In the second part of Sub-
heading 2, DV analysis in application to gene sets (GSA-DV) is
considered. The analysis of differential variability (DV) is somewhat
appreciated with regards to individual genes, when the aim is to find
genes with significant changes in expression variance between two
phenotypes [2–6]. It was shown that many statistically significant
DV genes are relevant to disease development and that DV is an
indication of changes in gene regulation [2, 3]. Moreover, it was
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found that there are genes showing consistently higher across-
sample variability in tumors of different origin as compared to
normal samples [7]. These DV genes can serve as a robust molecu-
lar signature for multiple cancer types [7, 8]. Given the evidence
that DV genes may play an important role in observed phenotypes,
and given the popularity of GSA approaches one would expect
there are many approaches implementing GSA-DV test. Our
group was the first to suggest extending the DV analysis to a
multivariate GSA-DV case using multivariate statistical test [9,
10]. In the same publication we further demonstrated that for
three different cancer types GSA-DV approach was able to identify
cancer-specific pathways, while pathways identified using conven-
tional GSA-DE approaches were shared between the three cancer
types. Thus, GSA-DV approach provides additional biological
information beyond GSA-DE. It should be noted that there are
other approaches claiming to perform GSA-DV test, e.g., DIRAC
and EVA [11], but because they compare variability in gene ranks
within a pathway between two phenotypes rather than variance
estimates, these approaches are out of the scope of this chapter.
We discuss two principally different GSA-DV approaches: (1) non-
parametric multivariate GSA-DV approach, “radial” Kolmogorov-
Smirnov (RKS) [9] and (2) new gene-level GSA-DV test we sug-
gest here for the first time. This gene-level GSA-DV approach
applies Fisher Method (FM) [12] for combining P-values from
gene-level F-test for differential variability [3]. It should be noted
that currently GSA-DV approaches are applicable only to micro-
array data, because RNA-seq read counts are most frequently mod-
eled with Negative Binomial distribution that has complex
dependence between mean and variance. In the third part of Sub-
heading 2, GSA approaches estimating differential co-expression of
gene sets between two phenotypes (GSA-DC) are considered. In a
pathway, genes are working together, i.e., they form a co-
expression network. For finding DC pathways GSA-DC approaches
with or without network inference step can be employed. The most
general GSA-DC approach with a network inference step is based
on a Gaussian Graphical Model (GGM) [13]. In this approach, the
network structure of a pathway for each phenotype is estimated and
the null hypothesis to test is that the network structure across
phenotypes is the same [13]. The network inference step per se is
challenging because there are too many ways of estimating network
structure. For example, the implementation of network inference in
Bioconductor package nethet (that provides two-sample testing
in GGMs) includes several options, such as the Graphical Lasso
(GL) [14], the Meinshausen-Buhlmann approach [15], and the
approach proposed by Schafer and Strimmer based on shrinkage
estimation of the covariance matrix [16]. Needless to say, the
nethet results for networks comparison will vary significantly
depending on the algorithm selected for the network inference
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step. In addition, many approaches for network inference (e.g.,
GGM) require the assumption of normality that may or may not
be met in the real data. This is why we present in this review only
GSA-DC approaches that do not require a network inference step.
The simplest GSA-DC approach, the gene sets co-expression anal-
ysis (GSCA) [17] is purely univariate. GSCA calculates the Euclid-
ian distance between two correlation vectors (constructed from
diagonal matrices of pairwise correlations for different conditions)
and the significance of the difference is estimated using permuta-
tion test. The gene sets net correlations analysis (GSNCA) [18]
assesses multivariate changes in the gene co-expression network
between two conditions but does not require network inference
step. Net correlation changes are estimated by introducing for each
gene a weight factor that characterizes its cross-correlations in the
co-expression networks. Weight vectors in both conditions are
found as eigenvectors of correlation matrices with zero diagonal
elements. Gene sets net correlations analysis (GSNCA) tests the
hypothesis that for a gene set there is no difference in the gene
weight vectors between two conditions [18]. The Co-expression
Graph Analysis (CoGA) identifies co-expressed gene sets by statis-
tically testing the equality in the spectral distributions [19]. For
each phenotype CoGA constructs a full network from pairwise
correlations between gene expressions. Then the structural proper-
ties of the two networks are compared by applying Jensen-Shannon
divergence as a distance measure between the graph spectrum
distributions [19, 20]. All methods are supplied with the imple-
mentation reference if available.

In Subheading 3, we first present a comparative power analysis
and Type I error rates for different approaches in each major type of
GSA on simulated data. Second, the value of applying the three
major types of GSA approaches is illustrated with real data example,
where these approaches provide different biological information
obtained on the same data set.

2 Methods

2.1 Gene Set

Analysis Approaches

for Testing Differential

Expression (GSA-DE)

There are many GSA-DE approaches readily distinguished based on
the null hypothesis they test. According to Goeman and Buhlmann
[21] the formulation can be either self-contained or competitive.
Self-contained approaches compare whether a gene set is differen-
tially expressed between different conditions, while competitive
(e.g., GSEA) approaches compare a gene set against its comple-
ment that contains all genes except genes in the set [21, 22]. Self-
contained approaches can be (1) univariate, in a sense that they use
gene-level tests for GSA and combine univariate statistics for indi-
vidual genes into a single test score [10, 23, 24]; and (2) multivari-
ate, when a multivariate statistic is used to address the null
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hypothesis. In a real biological setting, moderate [25] and extensive
[26] correlations between genes in gene sets are well documented
[27] and that may result in a decrease of the power for gene-level
tests compared to multivariate tests [24, 27–29]. In turn, competi-
tive GSA approaches can be (1) “supervised,” when the class labels
are known; or (2) “unsupervised,” when the enrichment score is
computed for each gene set and individual sample [30]. For GSA-
DE the “supervised” term indicates that the samples classification is
known, while the “unsupervised” term indicates that the samples
classification is unknown [30]. A number of review articles
concerning the different aspects of GSA-DE approaches developed
for microarrays data analysis have been published [21, 23, 31–36].

To summarize, GSA-DE approaches that test intrinsically sta-
tistically different null hypotheses developed thus far are: self-
contained (univariate, multivariate) and competitive (supervised,
unsupervised). Figure 1 illustrates different null hypotheses tested
by various GSA-DE approaches together with R packages imple-
menting each test. For the sake of generality, all power and Type I
error rate estimates for GSA-DE approaches are presented for
simulated RNA-seq counts.

Null Hypotheses
Consider two different biological phenotypes, with n1 samples of
measurements for the first and n2 samples of the same measure-
ments for the second. Let the two random vectors of X ¼ (X1,. . .,
Xn1) and Y ¼ (Y1,. . ., Yn2) represent the measurements of p gene

GSA-DE approaches for microarrays and RNA-seq

Developed for microarrays Developed specifically for RNA-Seq

COMPETETIVE SELF-CONTAINED

Univariate tests Multivariate tests

H0: genes in a 
gene set are 
randomly 
associated with 
the phenotype

H0: two properties, being 
DE and belong to a 
particular pathway are 
independent

H0: gene-set 
score (p-value) 
does not differ 
between 
phenotypes

H0: the 
equality of 
mean vectors

H0: the equality 
of multivariate 
distributions

Approaches employing pre-selected gene lists Approaches without pre-selected gene lists

GOstats: Gene 
Ontology analysis

2. GSVA: gene 
set variation 
analysis

1. ROMER ( limma)

1.Multivariate KS
2.ROAST ( limma)

Supervised Unsupervised

2. SeqGSEA: Gene 
Set Enrichment 
analysis on RNA - Seq

3. edgeR 
4. DEseq 

1. SAM - GS
2. eBayes FM for 
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N- statistic1. ssGSEA: single 
sample extension 
of GSEA

H0: gene-set 
enrichment score 
does not differ 
between 
phenotypesGOseq: Gene Ontology 

analysis on RNA - seq

Fig. 1 Schematic overview illustrating the breakup of the GSA-DE methods into different categories based on
the null hypotheses they test
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expressions (constituting a pathway) in two phenotypes where Xi is
the ith p-dimensional sample in one phenotype and Yi is the ith
p-dimensional sample in the other phenotype. Let X, Y be inde-
pendent and identically distributed with the distribution functions
Fx, Fy, mean vectors μx and μy , and p � p positive-definite and
symmetric covariance matrices Σx and Σy.

H0 for self-contained tests. For multivariate self-contained
tests we consider the problem of testing the general hypothesis
H0: Fx ¼ Fy against an alternative Fx 6¼ Fy, or a restricted hypothesis
H0: μx ¼ μy against an alternative μx 6¼ μy depending on a test
statistic.

Gene-level GSA approaches test a null hypothesis that the gene
set-associated score does not differ between phenotypes. The score
can be calculated, for example, as an L2-norm of the moderated t-
statistics [37] or as combined P-values [24]. In all cases statistical
significance is evaluated by comparing the observed score with the
null distribution, obtained by permuting sample labels.

H0 for competitive tests. The Gene Set Enrichment Analysis
(GSEA) method [1, 38] is one of the most widely used competitive
approaches. As a local test statistic, it uses a signal-to-noise ratio and
a weighted Kolmogorov-Smirnov as a global test statistic (enrich-
ment score, normalized to factor out the gene set size dependence)
[34, 38]. Assuming a null distribution F0

perm induced by permut-
ing sample labels, GSEA evaluates significance of the global test
statistic ζk

GSEA by estimating nominal P-value from F0
perm [34, 38].

Thus, GSEA tests the null hypothesis that the genes in a gene set are
randomly associated with the phenotype.

Most competitive GSA approaches are supervised, in a sense
that sample labels are known (that is, there are at least two different
phenotypes). Recently, the concept of unsupervised GSEA where
an enrichment score is computed for each gene set and individual
sample was introduced [30]. Essentially, unsupervised GSEA trans-
forms a matrix of gene expressions across samples into a matrix of
gene sets enrichment scores across the same samples. It makes the
choice of null hypothesis flexible and context dependent. For
example, Barbie et al. [39] use unsupervised competitive GSEA to
test the null hypothesis that the Spearman correlation between
gene sets enrichment scores is zero, while Hazelmann et al. [30]
test the hypothesis that gene set enrichment score does not differ
between two phenotypes.

SELF-CONTAINED GENE-LEVEL TESTS FOR GSA

Gene-level tests for GSA can be easily designed in three steps:
(1) select a gene-level score based on a univariate test statistic
(e.g., a value of t-test), (2) transform a score (e.g., take an absolute
value of t-statistic, or consider its P-value), and (3) summarize
gene-level scores into a gene set statistic (e.g., take an average of
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transformed scores or use combining P-values approach) [10,
23, 24].

Gene-level GSA-DE tests that combine genes P-values. Gene-
level tests for GSA that combine P-values from individual tests
for microarray data were studied in [40]. As a gene-level test,
the authors used an F-statistic for the correlation between the
gene expression and phenotype (F ¼ (N � 2)[r2/(1 � r2)] (not
to confuse with F-test) and compared several approaches for com-
bining P-values: Fisher’s method (FM) [12], Stouffer’s method
(SM) [41], tail strength (TS) [42], and a modified tail strength
statistic (MTS) [40]. It was found that FM outperformed all the
other methods for combining P-values [40].

Gene-level tests for GSA that combine P-values from individual
tests for RNA-seq data were studied in [24]. In what follows, we
briefly reiterate the conclusions from comparative power and Type I
error rate analyses of different gene-level GSA tests [24]. There are
two popular univariate tests specifically developed for RNA-seq
data that rely on Negative Binomial model for read counts: edgeR
[43] and DESeq [44]. Empirical Bayes method eBayes [45] cor-
rectly identifies hypervariable genes and can be adapted for RNA-
seq data through VOOM normalization [46]. When applied cor-
rectly the gene-level test does not per se influence the performance
of a gene-level GSA approach as much as the procedure used to
combine univariate statistics into a single test score does [24].
Among many approaches available for combining P-values from
gene-level tests, we have shown that, similar to the results for
microarray data, the safest option is to use FM [24, 47]. Here, for
comparative power and Type I error rate estimates eBayes in com-
bination with FM is selected.

Gene-level GSA-DE test that combines statistics. In the analysis
of microarrays, shrinking the standard error of a test statistic (e.g., a
t-test) in testing DE of individual genes improves the power of the
test. Several shrinkage approaches at the level of individual genes
were suggested, including the Significance Analysis of Microarrays
(SAM) test [48], the regularized t-test [49], and the moderated t-
test [50]. In particular, an extension of SAM test to gene set analysis
(SAM-GS) has been demonstrated to outperform several conven-
tional self-contained tests and even the original competitive GSEA
approach for microarray data [10, 37, 51, 52].

SAM-GS can be applied to RNA-seq count data by using the
VOOM normalization [46] prior to the test to find the log-scale
counts per million (CPM) of the raw counts normalized for library
sizes. The test statistic is the L2-norm of the moderated t-statistics
for the gene expressions:

T SAM�GS ¼
Xp
i¼1

Xi � Y i

si þ s0

� �2
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where �Xi and �Y i are respectively the mean expression levels for
gene i under phenotypes X and Y, si is a pooled standard deviation
over the samples in the two phenotype, s0 is a small positive con-
stant to adjust for small variability, and p is the number of genes in
the gene set.

SELF-CONTAINED MULTIVARIATE TESTS FOR GSA

Based on their high power and popularity we consider two multi-
variate test statistics.

N-statistic. N-statistic [53, 54] tests the most general hypothesis
H: Fx ¼ Fy against a two-sided alternative Fx 6¼ Fy:

Nn1n2
¼ n1n2

n1þn2

1

n1n2

Xn1

i¼1

Xn2

j¼1

L Xi;Y j

� �� 1

2n2
1

Xn1

i¼1

Xn2

j¼1

L Xi;Xj

� �� 1

2n2
2

Xn1

i¼1

Xn2

j¼1

L Y i;Y j

� �" #1=2

Here, we consider only L(X, Y) ¼ X � Y, the Euclidian dis-
tance inRp. N-statistic was applied to microarray data and was shown
to outperform other univariate andmultivariate GSA-DE tests under
different parameter settings [10, 28]. After VOOM normalization
[46] N-statistic can also be applied to RNA-seq data and also was
shown to outperform other GSA-DE tests [24, 47].

ROAST. In the context of microarray data, a parametric multivari-
ate rotation gene set test (ROAST) has become popular for the self-
contained GSA approaches [55]. ROAST uses the framework of
linear models and tests whether for all genes in a set, a particular
contrast of the coefficients is nonzero [55]. It can account for
correlations between genes and has the flexibility of using different
alternative hypotheses, testing whether the direction of changes in
mean is up, down, or mixed (up or down) [55]. For microarrays it
was shown that when correlations are low ROAST performance is
similar to N-statistic [10]. Using ROAST with RNA-seq count data
requires proper normalization. The VOOM normalization [46]
was proposed specifically for this purpose where log counts per
million, normalized for library size are used. In addition to counts
normalization, VOOM calculates associated precision weights that
can be incorporated into the linear modeling process within
ROAST to eliminate the mean-variance trend in the normalized
counts [46].

SUPERVISED COMPETETIVE TESTS FOR GSA

ROMER. The first competitive GSA test for microarray data anal-
ysis GSEA [1] was developed a decade ago. The original GSEA was
sensitive to the gene set size and the influence of other gene sets
[56], so it was subsequently upgraded into GSEA-P that used a
correlation-weighted KS statistic, an improved enrichment normal-
ization, and an FDR-based estimate of significance [34, 38]. For
the sake of simplicity, we will only consider the GSEA version
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implemented in Bioconductor package limma function ROMER
(the rotation testing using mean ranks) [57]. ROMER is a para-
metric method developed originally for microarray data and uses
the framework of linear models [46] and rotations instead of per-
mutations (see ref. 55 for more detail). In contrast to ROAST, the
limma implementation of ROMER does not incorporate the
weights, estimated by VOOM into the linear modeling process to
account for the mean-variance trend in the data.

UNSUPERVISED COMPETETIVE TESTS FOR GSA

The goal of unsupervised competitive approaches is to characterize
the degree of expression enrichment of a gene set in each sample
within a given data set [39]. The term “competitive” is reminiscent
of the way the enrichment score is calculated: as a function of gene
expression inside and outside the gene set.

Gene set variation analysis (GSVA). GSVA can be applied to
microarray expression values or RNA-seq counts. Depending on
the data type, expression values (counts) are first transformed using
a Gaussian (or discrete Poisson) kernel into expression-level statis-
tics [30]. The sample-wise enrichment score for a gene set is
calculated using KS-like random walk statistic. An enrichment sta-
tistic (GSVA score) can be calculated as its maximum deviation
from zero over all genes (similar to the original GSEA) or as the
difference between the largest positive and negative deviations from
zero (see ref. 30 for more detail).

Single sample extension of GSEA (ssGSEA). The difference
between GSVA and ssGSEA stems from the way an enrichment
score is calculated. In ssGSEA the enrichment score for a gene set
under one sample is calculated as a sum of the differences between
two weighted empirical cumulative distribution functions of gene
expressions inside and outside the set [39]. The approach, together
with GSVA, is implemented in the Bioconductor GSVA package [30].

2.2 Gene Set

Analysis Approaches

for Testing Differential

Variability (GSA-DV)

It is well recognized that multivariate statistics have more power
than univariate in the case of GSA-DE when intergene correlations
are high [24, 27–29]; however, in the case of GSA-DV, this ques-
tion was not studied at all. Here, we address this shortcoming by
providing comparative power analysis for RKS, N-statistic, and
gene-level approach for GSA-DV (see below).

Null Hypotheses

H0 for GSA-DV.WhileH0 for RKS is the same general hypothesis
tested, e.g., by N-statistic, namelyH0: Fx ¼ Fy, an alternative in this
case is not Fx 6¼ Fy or μx 6¼ μy but σx 6¼ σy , i.e., differences in scale.
N-statistic tests an alternative Fx 6¼ Fy. Because this general alterna-
tive implicitly includes inequality of variances for distribution func-
tions Fx and Fy, N-statistic can also capture differences in scale, so if
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H0 is rejected by N-statistic the true alternative is unknown.
N-statistic is included in comparative power analysis for GSA-DV.

Gene-level GSA-DV approach we suggest here tests a null
hypothesis that the gene-set-associated score does not differ
between phenotypes. The score here is calculated by applying FM
to combine P-values from gene-level F-test of the equality of two
variances.

Gene-level GSA-DV test that combines genes P-values. To find
genes with significant variability we suggest using F-test, similar to
what was described for individual genes by Ho and colleagues [3].
Gene-level GSA-DV test is designed by combining P-values of
individual F-tests for genes in a pathway. Because for gene level
GSA-DE FM was found to be the best performing approach for
combining P-values amongmany others [24, 40] FM is also applied
here to combine P-values of F-tests. This method tests the alterna-
tive hypothesis that there are genes DV between two phenotypes.

Radial Kolmogorov Smirnov (RKS). The basic operational pro-
cedure employed in the univariate Kolmogorov-Smirnov test is to
sort pooled observations in ascending order. The difficulty in
extending this procedure to multivariate observations is that the
notion of a sorted list cannot be immediately generalized [9].
Friedman and Rafsky suggested overcoming this difficulty using
the Minimum Spanning Trees (MSTs) [9]. The multivariate gener-
alization of KS ranks multivariate observations based on their MST.
The purpose of MST ranking is to obtain the strong relation
between observations differences in ranks and their distances in
Rp. The ranking algorithm can be designed specifically to confine
a particular alternative hypothesis more power. The general scheme
is to root MST tree at a node with the largest geodesic distance and
then rank the nodes in the “height directed preorder” traversal of
the tree. If one is interested in a test with high power toward
changes in the variance structure of the distribution, the ranking
is implemented differently, aiming to give higher ranks to more
distant points in Rp. That is, MST tree is rooted at the node with
the smallest geodesic distance (centroid) and nodes with the largest
depths are assigned higher ranks [9]. This “radial” Kolmogorov-
Smirnov (RKS) test is sensitive to alternatives having similar mean
vectors but differences in scale. The test statistic considering N
samples under two phenotypes X and Y is the maximum absolute
difference

D ¼ s
ið Þ
X

NX
� s

ið Þ
Y

NY

�����
�����

where s
ið Þ
X and s

ið Þ
Y are respectively the number of observations in X

and Y ranked lower than i, 1 � i �N,NX andNY are respectively
the number of samples under phenotypes X and Y. The null
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distribution of the test statistic is estimated by a permutation pro-
cedure and P-value is defined as

Pvalue ¼
PN perm

k¼1 I Dperm kð Þ � Dobs

� �þ 1

N perm þ 1

where Dperm(k) is the test statistic of permutation k, Dobs is the
observed test statistic from the original data,Nperm is the number of
permutations, and I is the indicator function. RKS is implemented
in Bioconductor package Gene Set Analysis in R (GSAR) [10, 18].

2.3 Gene Set

Analysis Approaches

for Testing Differential

Co-Expression

(GSA-DC)

Null Hypotheses

Each individual GSA-DC approach we consider has its own null
hypothesis (see below).

Gene Sets Co-Expression Analysis (GSCA). Briefly, GSCAworks
as follows [17]. For all p(p-1)/2 gene pairs, GSCA calculates inter-
gene correlations under the two biological conditions. The test
statistic is the Euclidean distance, adjusted for the size of a gene set,

DGSCA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

p p � 1ð Þ=2
Xp p�1ð Þ=2

k¼1

ρ 1ð Þ
k � ρ 2ð Þ

k


 �2

vuut
where k is the index of the gene pair within the gene set and ρ ið Þ

k
denotes the correlation of gene pair k in condition i. GSCA tests the
hypothesis H0: DGSCA ¼0 against the alternative H1: DGSCA 6¼0.

Gene Sets Net Correlations Analysis (GSNCA). In order to
quantitatively characterize the importance of gene i in a correlation
network, we introduce a weight (wi) and set wi to be proportional
to a gene’s cross-correlation with all the other genes in the gene set
[24]. Then, the objective is to find a weight vector w, which
achieves equality between a gene weight and the sum of its
weighted cross-correlations for all genes simultaneously. Thus,
genes with high cross-correlations will have high weights that may
indicate their regulatory importance. This problem can be formu-
lated as a system of linear equations

wi ¼
X
j 6¼i

wj rij , 1 � i � p

where rij is the absolute correlation coefficient between genes i and
j, and p is the gene set size. Equivalently, this system of linear
equations can be represented in the matrix form

ðR � I Þw ¼ w

where R is the correlation matrix. This is an eigenvector problem
that has a unique solution when the eigenvalue λ(R � I) ¼ 1, w > 0.
Because the matrix (R � I) is not guaranteed to have eigenvalue
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λ(R � I) ¼ 1, we introduce a multiplicative factor, γ, which ensures
a proper scaling for eigenvalues and solves the following problem:

γðR � I Þw ¼ w

The unique solution w is an eigenvector of matrix γ(R � I)
corresponding to λγ(R � I) ¼ 1 [24]. As a test statistic, wGSNCA, we
use the L1 norm between the scaled weight vectors w(1) and w(2)

(each vector is multiplied by its norm to scale the weight factor
values around one) between two conditions,

wGSNCA ¼
Xp
i¼1

w
1ð Þ
i � w

2ð Þ
i

��� ���
This statistic tests the hypothesis H0: wGSNCA ¼ 0 against the

alternative H1: wGSNCA 6¼ 0. P-values for the test statistic are
obtained by comparing the observed value of the test statistic to its
null distribution, which is estimated using a permutation approach.
GSNCA is implemented in Bioconductor package GSAR [10, 18].

Co-expression Graph Analyzer (CoGA). Let G ¼ (V, E) be an
undirected graph with the adjacency matrix A. The spectrum of G is
a set of eigenvalues of its adjacency matrix A [20]. The spectrum of
a graph describes several of its structural properties, such as diame-
ter, number of walks, and cliques. Takahashi and colleagues [20]
suggested that the graph spectrum distribution is a better charac-
terization of graph’s properties than conventionally used measures
such as number of edges, average path length, and clustering
coefficient. Co-expression Graph Analyzer (CoGA) constructs co-
expression graphs and identifies differentially co-expressed gene
sets by testing the equality of the spectral distributions for two
graphs by calculating Jensen-Shannon divergence between spectral
densities of two adjacency matrices [19]. Let Θ measure the dis-
tance between structural properties of two graphs. CoGa tests H0:
Θ ¼ 0 againstH1: Θ > 0 [19]. CoGA is implemented in Biocnduc-
tor package CoGA [20].

3 Data Analysis

3.1 Comparative

Power Analysis and

Type I Error Rate:

Simulation Setup

Simulation Setup for GSA-DE

Due to the increasing popularity of RNA-seq data as compared to
microarrays the simulation setup here is presented in the context of
RNA-seq data. It is conventionally assumed that RNA-seq count
data follow Poisson or Negative Binomial (NB) distribution. Here,
the count for gene i in sample j is modeled by a random variableCij

with NB distribution

Cij ~ NB(mean ¼ μij, var ¼ μij(1 þ μijφij)) ¼ NB(μij, φij)
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where μij and φij are respectively the mean and dispersion para-
meters of gene i in sample j. For each gene, a vector of realistic
values of mean count, dispersion, and gene length information
(μi, φi, Li) is randomly picked from a pool of vectors derived from
a real RNA-seq dataset. As a real dataset, we selected a subset of the
Pickrell et al. [58] dataset of sequenced cDNA libraries generated
from 69 lymphoblastoid cell lines that were derived from Yoruban
Nigerian individuals. Samples from 58 unrelated individuals were
considered (29 males and 29 females). Dispersion parameters for
individual genes were estimated using the Bioconductor edgeR
package [43].

Type I error rate. To simulate the null hypothesis H0: Fx ¼ Fy, we
generated a dataset consisting of N samples (equally separated
between two different phenotypes) and S ¼ 1000 nonoverlapping
gene sets, each of size p. The randomly selected parameter vector
(μi, φi, Li) is used to generate counts from the Negative Binomial
distribution for gene i under all the samples in the dataset. Gene
length information is used for expression normalization if neces-
sary. To examine the effects of different sample and gene set sizes,
we estimated Type I error rate under different parameter settings.
We chose p∈ {16, 60, 100} andN∈ {10, 20, 40, 60}. Type I error
rate for a statistical test is calculated as the proportion of gene sets
detected by the test. The results were averaged over ten indepen-
dent datasets to obtain more stable estimates.

Detection Power. A differentially expressed (DE) gene set in real data
may include up-regulated, down-regulated, and equally regulated
genes between two phenotypes. To mimic real data we introduce
three simulation parameters: β, the proportion of gene sets in the
dataset that have truly DE genes; γ, the proportion of genes, truly
DE in each gene set; and FC, the fold change in gene counts between
two phenotypes. We consider β ∈ {0.05, 0.25}, γ ∈ {0.125, 0.25,
0.5}, and FC ∈ [1.2, 3]. Two different biological conditions are
represented by two groups of samples with equal size N/2 where
N ¼ 40. Under each condition, S ¼ 1000 nonoverlapping gene sets
were formed, each consists of p ¼ 16 random realizations from the
Negative Binomial distribution. The power for all statistical methods
was estimated by testing the hypothesisH0: μx ¼ μy (orH0: FC ¼ 1)
against the alternativeH1: μx 6¼ μy (orH1: FC 6¼ 1) for all gene sets.
For each of the (1 � β)S non-DE gene sets p random realizations
of NB(μi, φi) were sampled, 1 � i � p, under both phenotypes.
For each of the βS gene sets that have truly DE genes, half of the
γpDE genes in each gene set were up-regulated and half were down-
regulated between the two phenotypes. Specifically, γp/2 random
realizations fromNB(μi, φi) andNB(FC μi, φi) were sampled respec-
tively under phenotype 1 and phenotype 2 for 1 � i � γp/
2 and another γp/2 random realizations from NB(FC μi, φi) and
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NB(μi, φi) were sampled respectively under phenotype 1 and pheno-
type 2 for (γp/2) þ 1 � i � γp.

Simulation Setup for GSA-DV

Typically, RNA-seq counts are modeled using Poisson or Negative
Binomial (NB) distribution. Since in the case of Poisson distribu-
tion variance is equal to the mean and in the case of NB distribution
variance depends on the mean, there is no GSA-DV test for RNA-
seq data. Therefore, we present simulation setup assuming multi-
variate normal distribution of gene expressions that is a standard
assumption for microarray data.

Type I error rate.We generated two samples of equal size,N/2 from
the p-dimensional normal distribution N(0, Ip�p) where Ip�p is a
p � p identity matrix and p represent the gene set size. 1000 non-
overlapping gene sets were generated and Type I error rate for a
statistical test is calculated as the proportion of gene sets detected by
the test. We consider p ∈ {20, 60, 100} and N ∈ {20, 40, 60}.

Detection Power. In a real gene set, the proportion of DV genes, the
amount of difference in variance, and the intergene correlation vary.
Therefore, three parameters: γ, the proportion of genes truly DV in
a gene set, σ, the fold change in variance, and r, the strength of
intergene correlation were introduced. We examine how these
parameters influence the power of different tests. Two groups of
samples of equal size, N/2 from p-dimensional normal distribu-
tionsN(0, Σx) andN(0, Σy) to represent two biological phenotypes
were generated. We consider the relationship between the covari-
ance and correlation matrices where the correlation matrix R ¼
D�1ΣD�1, D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag Σð Þp
and Σ is the covariance matrix.

Let Σx and Σy be p � p positive definite and symmetric covari-
ance matrices. The diagonal elements of Σx are equal to 1 and off-
diagonal elements are equal to r. Matrix Σy is defined as

Σy ¼ A B
C D

� 


where A is a γp � γp matrix with Aij ¼ σ for i ¼ j and Aij ¼ rσ
for i 6¼ j, B and C are respectively γp � (1-γ)p and (1-γ)p � γp
matrices where Bij ¼ Cij ¼

ffiffiffi
σ

p
r for all i and j, and D is a (1�γ)

p � (1�γ)p matrix with Dij ¼ 1 for i ¼ j and Dij ¼ r for i 6¼ j. We
consider the parameters γ ∈ {0.25, 0.5, 0.75, 1}, r ∈ {0.1, 0.5,
0.9}, σ ∈ [1, 5], p ¼ 20, and N ¼ 40.

Simulation Setup for GSA-DC

Since GSA-DC approaches are not yet frequently applied to RNA-
seq data here again the simulation setup is presented for microarray
data, assuming multivariate normal distribution of gene expres-
sions. Let X and Y be independent p-dimensional vectors with
distribution functions Fx ¼ N(0, Σx) and Fy ¼ N(0, Σy).
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Type I error rate. To simulate the null hypothesis H0: Σx ¼ Σy, we
generated two samples of equal size, N/2 from the p-dimensional
normal distributionN(0, Ip�p) where Ip�p is a p� p identity matrix.
We generated 1000 gene sets and Type I error rate for a statistical
test is the proportion of gene sets detected by the test. We consider
p ∈ {20, 100, 200} and N ∈ {20, 40, 60}.

Detection Power. In a real biological setting, the proportion of co-
expressed genes in a gene set varies and intergene correlations vary
in strength. Therefore, two parameters: γ, the proportion of genes
truly co-expressed in a gene set, and r, the strength of intergene
correlation were introduced. We examine how these parameters
influence the power of different tests. We simulated two groups of
samples of equal size, N/2 (N ¼ 40) from p-dimensional normal
distributions N(0, Σx) and N(0, Σy) to represent two biological
phenotypes where p ∈ {20, 100, 200}. We test the null hypothesis
H0: Σx¼ Σy, against the alternative Σx 6¼ Σy. To ensure that Σx and Σy

are positive-definite and symmetric, two different scenarios for the
alternative hypothesis were studied.

First, Σx was set to Ip�p and Σy was set such that its elements are

σij ¼
r
0
1

i 6¼ j , 8i, j � γp
i 6¼ j , 8i, j > γp
i ¼ j :

8<
:

We consider γ ∈ {0.25, 0.5, 0.75, 1} and r ∈ {0.1, 0.2, . . .,
0.9}. Figure 2 (parts A and B) depicts the covariance matrices Σx

and Σy under this scenario for p ¼ 20 and γ ¼ 0.25. Dark and light
colors represent high and low correlations, respectively. This design
presents a gene set with low intergene correlations under one

Fig. 2 The correlation matrices of the two simulation setups with sample size N ¼ 40 and gene set size
p¼ 20. Parts (A) and (B) respectively represent the correlation matrices of two conditions when the alternative
hypothesis of setup 1 is true and γ ¼ 0.25. Parts (C) and (D) respectively represent the correlation matrices of
two conditions when the alternative hypothesis of setup 2 is true, β ¼ 0.25 and γ ¼ 0.6. Dark and light colors
respectively represent high and low correlation coefficients
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phenotype (Fig. 2A) and one group of highly co-expressed genes
under the second phenotype (Fig. 2B).

Second, both Σx and Σy are set such that they have diagonal
blocks of equal size βp, where β is the ratio of block size to gene set
size. For each of the diagonal blocks, the first scenario is repro-
duced. Therefore, each diagonal block has γβp genes with intergene
correlation specified by r while all the other genes in the block have
zero correlations. The locations of the γβp co-expressed genes
inside each block are assigned differently for Σx and Σy under the
alternative hypothesis. While for Σx these genes occupy the upper-
left corner of the block, for Σy they occupy the lower-right corner.
Figure 2 (C, D) depicts this scenario for p ¼ 20, β ¼ 0.25, and
γ ¼ 0.6. Dark and light colors represent high and low correlations,
respectively. Depending on γ, the diagonal blocks in Σx and Σy may
have a few common genes (when β > 0.5) or may be exclusive
(when β � 0.5). We consider the case β ¼ 0.25 and let γ ¼ 0.6, 0.4,
and 0.5 respectively when p ¼ 20, 100, and 200 to allow γβp to be
an integer number. These settings yield diagonal blocks of 3, 10,
and 25 genes respectively when p¼ 20, 100, and 200. All intergene
correlations outside the diagonal blocks are set to zero. This setup
presents a gene set with low intergene correlations except for a
selected group of highly co-expressed genes and the membership
of the genes in this group is changing between the two phenotypes.

3.2 Comparative

Power Analysis and

Type I Error Rate:

Results

Results for GSA-DE

Type I error rate. Table 1 presents the estimates of the attained
significant levels for all GSA tests considered (α ¼ 0.05). Overall,
self-contained and competitive tests control Type I error rate near
nominal α ¼ 0.05. For more detailed discussion of Type I error
rates for self-contained and competitive GSA-DE tests, see [47].

Power. Figure 3 presents the power estimates when H1: μx 6¼ μy is
true (N ¼ 20, p ¼ 16) (see ref. 47 for more detail). Self-contained
methods have higher power than competitive methods and because
they test a hypothesis about a single gene set by considering only its
gene expressions and ignoring the rest of the dataset, they are not
affected by the proportion of gene sets in the dataset that have truly
differentially expressed genes (β parameter). Overall, all self-
contained GSA-DE tests (ROAST, N-statistic, SAM-GS,
eBayes_FM) have virtually the same power. It should be noted
that the simulation setup here does not include intergene correla-
tions. This is why there is no difference in power of multivariate and
univariate self-contained approaches. For simulation setup that
includes intergene correlations, we refer the reader to [10, 28].
The power of ROMER demonstrates dependence on the propor-
tion of truly DE genes in a gene set (parameter γ). While the power
is relatively low at γ ¼ 0.125, it increases drastically at higher γ
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values. Competitive methods have slightly lower power for higher
values of β especially ROMER. This observation can be explained
by the fact that competitive methods are influenced by adding more
genes to the dataset where adding non-DE genes enhances their
power [36], while adding DE genes may decrease it.

The lack of power under all settings demonstrated by unsuper-
vised competitive methods (especially GSVA) can be explained by
the sample-wise ranking they perform to calculate the enrichment
scores for gene sets [47]. While half of the genes in the gene set are
up-regulated under one phenotype, the other half are up-regulated
under the other phenotype. This setup maintains a stable enrich-
ment score for the gene set under all samples and hence the gene set
is found non-DE between the two phenotypes. When all DE genes
in the gene set are up-regulated under one phenotype only, samples
under that phenotype would have had higher gene set enrichment
scores compared to the samples under the second phenotype. To
substantiate this explanation with simulation results, we consider
two hypothetical cases of expression patterns in a gene set consist-
ing of 16 genes. In the first case, all DE genes in a gene set are up-
regulated in phenotype 1 compared to phenotype 2. These genes
normally have higher ranks in samples under phenotype 1 com-
pared to samples under phenotype 2, and hence the gene set has

Table 1
Estimated Type I error rates for GSA-DE methods, α ¼ 0.05

Method placement

Self-contained N-statistic SAM-GS ROAST

Competitive GSVA ssGSEA ROMER

Combined P-value eBayes_FM – –

P ¼ 16 P ¼ 60 P ¼ 100

N ¼ 10 Self. 0.049 0.044 0.084 0.048 0.045 0.042 0.048 0.045 0.041
Comp. 0.025 0.042 0.047 0.017 0.047 0.050 0.013 0.045 0.047
Comb. 0.047 – – 0.042 – – 0.044 – –

N ¼ 20 Self. 0.052 0.046 0.044 0.055 0.050 0.047 0.051 0.055 0.050
Comp. 0.040 0.047 0.051 0.038 0.041 0.054 0.037 0.050 0.053
Comb. 0.048 – – 0.051 – – 0.054 – –

N ¼ 40 Self. 0.054 0.054 0.051 0.047 0.047 0.044 0.050 0.053 0.055
Comp. 0.051 0.044 0.050 0.057 0.048 0.045 0.060 0.049 0.052
Comb. 0.051 – – 0.047 – – 0.055 – –

N ¼ 60 Self. 0.051 0.051 0.052 0.046 0.047 0.048 0.049 0.054 0.054
Comp. 0.060 0.046 0.051 0.061 0.051 0.049 0.066 0.047 0.050
Comb. 0.052 – – 0.046 – – 0.055 – –
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higher enrichment score under phenotype 1 as compared to phe-
notype 2. This case is expected to demonstrate high power as shown
in Fig. 4. Consider the second case where DE genes in a gene set are
equally divided into up-regulated genes between phenotype 1 and
phenotype 2, similar to the simulation setup that produced Fig. 3.
While the up-regulated genes under phenotype 1 have higher ranks
under phenotype 1 as compared to phenotype 2, the up-regulated
genes under phenotype 2 are exactly the opposite. This case yields
high (however lower than the first case) enrichment score for the
gene set under all samples. Due to the expected small difference (if
any) in average enrichment score between the two phenotypes, low
power is expected (see Fig. 4). Since it is more likely to have both up-
regulated and down-regulated genes between two phenotypes in a
real gene set than having all up-regulated or down-regulated genes,
the power of supervised competitive methods is likely to be consis-
tently lower than other methods for real expression data. It should
be noted that the authors of the ssGSEA method expected their
enrichment score to be slightly more robust and more sensitive to

Fig. 3 The power of different DE tests to detect differential expression between two phenotypes of samples
when the alternative hypothesis μx 6¼ μy is true with different settings (values of β, γ and FC ). The gene set
size is p¼ 16 and the sample size in each group is N/2 (N¼ 20). Half of the γ � p DE genes in a gene set are
up-regulated under one phenotype and the other half are up-regulated under the other phenotype
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differences in the tails of the distributions compared to the Kolmo-
gorov–Smirnov-like statistic [39]. The simulation results in Fig. 4
confirm this expectation.

Results for GSA-DV

Type I error rate. Table 2 presents the estimates of the attained
significant levels for all GSA-DVapproaches considered (α¼ 0.05).

Fig. 4 The power of unsupervised competitive tests (GSVA and ssGSEA) to detect differences between two
phenotypes when the alternative hypothesis μx 6¼ μy is true with different settings (values of β, γ, and FC ).
The gene set size p¼ 16 and the sample size in each group is N/2 (N¼ 20). In case 1, all the γp DE genes in a
gene set are up-regulated in phenotype 1 as compared to phenotype 2. In case 2, half of the γp DE genes in a
gene set are up-regulated in phenotype 1 and the other half are up-regulated in phenotype 2. Both GSVA and
ssGSEA have much higher power under case 1

Table 2
Estimated Type I error rates for GSA-DV methods, α ¼ 0.05

Method N-statistic F-test RKS

p 20 60 100 20 60 100 20 60 100

N ¼ 20 0.050 0.047 0.050 0.044 0.040 0.043 0.036 0.025 0.049

N ¼ 40 0.052 0.060 0.045 0.057 0.040 0.052 0.047 0.038 0.039

N ¼ 60 0.053 0.035 0.049 0.053 0.054 0.056 0.041 0.038 0.034
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Overall, RKS test is slightly more conservative than N-statistic and
gene-level GSA-DV test that combines F-tests P-values with FM.

Power. Figure 5 presents the power estimates for the three GSA-DV
approaches considered against the alternative hypothesis σx 6¼ σy . It
appears that in contrast with GSA-DE approaches, where multivari-
ate tests always outperform univariate tests when correlation
increases, multivariate N-statistic and RKS have lower power than
gene-level GSA-DV test that combines F-test P-values with FM in all
settings. Gene-level GSA-DV test has the highest power, RKS test
has an intermediate power, andN-statistic has the lowest power in all
settings (Fig. 5). This pattern can be explained by the fact that it is
much easier to satisfy the alternative hypothesis tested by the gene-
level GSA-DV under our simulation setup than the alternatives
tested by both N-statistic and RKS. N-statistic and RKS both test
H0: Fx ¼ Fy, with different alternatives Fx 6¼ Fy and σx 6¼ σy , respec-
tively. Thus, the rejection ofH0 in the case of N-statistic can happen
when μx 6¼ μy , σx 6¼ σy or other higher order moments of Fx, Fy are
not equal. The rejection of H0 in the case of RKS test is supposedly
happened when σx 6¼ σy , but not necessary so because the RKS test
is just “more sensitive” to “differences in scale” as compared to “shift
differences” [9]. It means that both tests are sensitive to not strictly
one alternative, while gene-level GSA-DV test that combines F-test
P-values with FM is sensitive to only the case when genes in a gene
set are DV genes between two conditions. Figure 6 illustrates this
point by showing the estimated power when the alternative hypoth-
esis μx 6¼ μy is true. The power trend is just the opposite of the trend
presented in Fig. 5. Here, N-statistic has the highest power, RKS test
has an intermediate power, and gene-level GSA-DV test has the
lowest power in all settings (Fig. 6).

Results for GSA-DC

Type I error rate. Table 3 presents the estimates of the attained
significant levels for the three GSA-DC tests considered (α¼ 0.05).
Overall, all tests control Type I error rate near nominal α ¼ 0.05.

Power. Figure 7 presents power estimates under the first simula-
tion setup (see the simulation setup for GSA-DC) for different
parameter settings. For each parameter setting, the results are
obtained from 1000 independent gene sets. First, consider the
case when only 25% of genes in a gene set are co-expressed
(γ ¼ 0.25). This case is highly plausible in real expression data
since only a few genes in a gene set are expected to be highly co-
expressed [25, 27]. GSNCA has the highest power followed respec-
tively by GSCA and CoGA for all settings (p ¼ {20, 100, 200}).
Second, consider the case when 50% of genes in a gene set are co-
expressed (γ ¼ 0.5). While all tests show similar power when the
size of gene set is relatively small (p ¼ 20), GSNCA outperforms
both GSCA and CoGA when the size of gene set is relatively large
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Fig. 5 The power of three GSA-DV tests to detect differential expression between two phenotypes of samples
when the alternative hypothesis σx 6¼ σy is true with different settings (values of β, γ, and σ). The gene set
size p ¼ 20 and the sample size in each group is N/2 (N ¼ 20)
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Fig. 6 The power of three GSA-DV tests to detect differential expression between two phenotypes of samples
when the alternative hypothesis μx 6¼ μy is true with different settings (values of β, γ, and σ). The gene set
size p ¼ 20 and the sample size in each group is N/2 (N ¼ 20)
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(p¼ 100 and p¼ 200). Third, consider the case when 75% of genes
in a gene set are co-expressed (γ ¼ 0.75). While GSCA and CoGA
outperform GSNCA when the size of gene set is relatively small
(p ¼ 20), all tests have virtually the same power when the number
of genes is relatively large (p ¼ 100 and p ¼ 200). Fourth, consider
the case when 100% of genes in a gene set are co-expressed (γ ¼ 1).
GSCA and CoGA have similar power and GSNCA has virtually no
power.

The statistic used in GSCA depends on the average pairwise
correlation difference between the two phenotypes. Hence, power
increases when γ becomes higher as shown in Fig. 7. Similar argu-
ment can be applied to CoGA where larger γ causes larger changes
in the spectral distribution of the correlation matrix in one pheno-
type as compared to the other. When intergene correlation (r) is
uniformly low in one phenotype and uniformly high in another
phenotype (γ ¼ 1 and r is high), eigenvectors corresponding to the
largest eigenvalues for both correlation matrices remain unchanged
while the eigenvalues (spectral distribution) change. Therefore,
GSNCA does not detect changes regardless of the value of r
when γ ¼ 1, while CoGA shows high power. This case illustrates
the fundamental difference between GSNCA and both GSCA and
CoGA. Both GSCA and CoGA detect any differences in pairwise
correlations, while GSNCA detects differences in the co-expression
structure, i.e., when some pairwise correlations change relative to
others in the same phenotypes. The greatest change in the co-
expression structure between two phenotypes in the first simulation
setup occurs when γ ¼ 0.5 and hence GSNCA is expected to show
highest power as shown in Fig. 7.

Figure 8 presents power estimates under the second simulation
setup (see simulation setup for GSA-DC) for different parameter
settings. When p ¼ 20 and γ ¼ 0.6 (diagonal block size γβp ¼ 3),
GSCA outperforms GSNCA. When p ¼ 100 and γ ¼ 0.4 (diagonal
block size ¼ 10), both GSCA and GSNCA show similar power.
When p ¼ 200 and γ ¼ 0.5 (diagonal block size ¼ 25), GSNCA
outperforms GSCA. The increment in the size of the diagonal
block of differential correlations results in increased detection

Table 3
Estimated Type I error rates for GSA-DC methods, α ¼ 0.05

Method GSCA GSNCA CoGA

p 20 100 200 20 100 200 20 100 200

N ¼ 20 0.057 0.050 0.044 0.052 0.042 0.045 0.053 0.048 0.056

N ¼ 40 0.046 0.045 0.059 0.036 0.051 0.051 0.043 0.052 0.050

N ¼ 60 0.052 0.049 0.047 0.054 0.047 0.054 0.043 0.048 0.050
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power when the gene set size increases. When p¼ 200 and γ ¼ 0.5,
power follows similar pattern to what has been shown in Fig. 7
when γ ¼ 0.5, i.e., GSNCA outperforms GSCA. The difference in
power between GSNCA and GSCA when p ¼ 20 and γ ¼ 0.6
follows a similar pattern to what has been observed in Fig. 7
when γ ¼ 0.75 and could be attributed to the correlation matrix
in one phenotype moving closer to a uniformly high correlation
pattern. CoGa has almost no power for all settings. This is
explained by the fact that unlike eigenvectors the eigenvalues
remain unchanged when the number of pairwise intergene correla-
tions with value r remains unchanged but the set of pairwise corre-
lations having value r differs between phenotypes.

Fig. 7 The power of three GSA-DC tests to detect differential expression between two phenotypes of samples
when the alternative hypothesis of the first simulation setup is true with different settings (values of γ and r).
The gene set size p ¼ {20, 100, 200} and the sample size in each group is N/2 (N ¼ 40)
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3.3 Application to

Expression Data

We illustrate the use of GSA-DE, GSA-DV, and GSA-DC tests
applied to the NCI-60 cell lines (p53) dataset. The p53 dataset
comprises 50 samples of NCI-60 cell lines differentiated based on
the status of the TP53 gene: 17 cell lines carrying normal (wild
type, WT) TP53 gene and 33 cell lines carrying mutated TP53
(MUT) [38, 59]. For this data set, probe-level intensities were
quantile normalized and transformed to the log scale. Gene sets
were taken from the C2 pathways set of the molecular signature-
database (MSigDB version 5.1) [38, 60, 61]. Pathways with less
than 10 or more than 500 genes were discarded and the resulted
dataset comprised 4256 gene sets.

Results for GSA-DE

To find pathways, differentially expressed between cancer cell lines
with and without p53 mutation we applied SAM-GS. We choose
SAM-GS because it tests a fairly simple null hypothesis, namely
whether the difference in moderated t-statistics averaged over all
pathway genes, is zero between two phenotypes. SAM-GS detected
44 gene sets at the given significance level (P < 0.001) (Table 4).
All but one detected pathways were significantly enriched with p53

Fig. 8 The power of three GSA-DC tests to detect differential expression between
two phenotypes of samples when the alternative hypothesis of the second
simulation setup is true with different settings (values of β, γ, and r). The gene
set size p ¼ {20, 100, 200} and the sample size in each group is N/2 (N ¼ 40)
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target genes (Table 4). This is not a surprise because if the expres-
sion level of a regulator changes, so do the levels of the regulated
genes, leading to significant differences in the average expression of
pathways, enriched with p53 targets.

Results for GSA-DV

To find pathways with differential variability between cancer cell
lines with and without p53 mutation, the gene-level test combining
F-test P-values was applied. It detected only three pathways,
between WT and MUT phenotypes at a significance level
P < 0.001. These pathways are “BANDRES RESPONSE TO
CARMUSTIN WITHOUT MGMT 24HR UP,” “BANDRES
RESPONSE TO CARMUSTIN MGMT 48HR UP,” and
“ONGUSAHA BRCA1 TARGETS DN.” These pathways are not
significantly enriched in p53 targets. The first two pathways repre-
sent cellular response to carmustine treatment that involves regula-
tion of complex pathways responsible for cell death [62]. All of
them employ directly or indirectly expression of p53 gene and
expectedly mutation in this gene results in different variability in
these pathways. The “ONGUSAHA BRCA1 TARGETS DN”
pathway consists of BRCA1 target genes [63] and because the
p53 protein regulates BRCA1 transcription, mutation in p53 inter-
feres with gene’ functions, in particular regulation of BRCA1. This
may cause indirect mixed effects on regulation of BRCA1 targets.

Results for GSA-DC

To find pathways, differentially co-expressed between cancer cell
lines with and without p53 mutation GSNCA test was applied.
GSNCA detected only four pathways differentially co-expressed
between two phenotypes at a significance level P < 0.001. Two of
them (“KEGG PEROXISOME,” “REACTOME NOREPI-
NEPHRINE NEUROTRANSMITTER RELEASE CYCLE”) are
related to crucial metabolic processes such as fatty acid oxidation,
biosynthesis of ether lipids, and free radical detoxification and
release of noradrenalin synaptic vesicle. One is related to changes
in DNA methylation and histone acetylation (“ZHONG
RESPONSE TO AZACITIDINE AND TSA UP”) and one with
changes in gene expressions related to intercellular matrix (“PED-
ERSEN METASTASIS BY ERBB2 ISOFORM 4”). These path-
ways are also not significantly enriched in p53 target genes.

In addition to detecting DC pathways GSNCA identifies hub
genes—genes with the largest weights in each pathway. Hub genes
provide useful biological information beyond the test result that a
pathway is differentially co-expressed between two conditions. For
example, pathway KEGG PEROXISOME (Fig. 9) presents genes
that play key roles in redox signaling and lipid homeostasis. For p53
wild-type data, hub gene is MVK (mevalonate kinase Fig. 9A),
which encodes the peroxisomal enzyme mevalonate kinase, a key
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early enzyme in isoprenoid and sterol synthesis. When p53 is
mutated (Fig. 9B), hub gene becomes ACOX1 (acyl-coenzyme A
oxidase 1, palmitoy1) that is the first enzyme of the fatty acid beta-
oxidation pathway which catalyzes the desaturation of acyl-CoAs to
2-transenoyl-CoAs. That is in p53 MUT phenotype a shift from
isoprenoid and sterol synthesis to fatty acid beta-oxidation pathway
may happen. For more discussion of hub genes the reader is
referred to [18].

4 Conclusion

In this chapter, we provided an in-depth review of univariate and
multivariate Gene Set Analysis approaches (GSA-DE, GSA-DV,
GSA-DC) for testing different statistical hypotheses. A comparative
power analysis and Type I error rate estimates for different
approaches in each major type of GSA provide concise guidelines
for selecting GSA approaches that are best performing under par-
ticular experimental settings. An example was presented applying
the methods GSA-DE, GSA-DV, GSA-DC on a p53 data set. This
analysis demonstrated that different GSA types are allowing to
obtain new and complementary biological information for the
same underlying data set.

Fig. 9 MST2s of pathway “KEGG PEROXISOME” co-expression network under both (A) wild-type (WT) and (B)
mutated (MUT) p53 phenotypes

156 Galina Glazko et al.



Acknowledgments

We would like to thank Bárbara Macı́as Solı́s for proof reading of
the manuscript. Support has been provided in part by the Arkansas
INBRE program, with grants from the National Center for
Research Resources (P20RR016460) and the National Institute
of General Medical Sciences (P20 GM103429) from the National
Institutes of Health. Large-scale computer simulations were imple-
mented using the High Performance Computing (HPC) resources
at the UALR Computational Research Center supported by the
following grants: National Science Foundation grants CRI CNS-
0855248, EPS-0701890, MRI CNS-0619069 and OISE-
0729792.

References

1. Mootha VK et al (2003) PGC-1alpha-respon-
sive genes involved in oxidative phosphoryla-
tion are coordinately downregulated in human
diabetes. Nat Genet 34(3):267–273

2. Bar HY, Booth JG, Wells MT ((2012)) A
mixture-model approach for parallel testing
for unequal variances. Stat Appl Genet Mol
Biol 11(1.) p. Article 8

3. Ho JWet al (2008) Differential variability anal-
ysis of gene expression and its application to
human diseases. Bioinformatics 24(13):
i390–i398

4. Hulse AM, Cai JJ (2013) Genetic variants con-
tribute to gene expression variability in
humans. Genetics 193(1):95–108

5. Mar JC et al (2011) Variance of gene expres-
sion identifies altered network constraints in
neurological disease. PLoS Genet 7(8):
e1002207

6. Xu Z et al (2011) Antisense expression
increases gene expression variability and locus
interdependency. Mol Syst Biol 7:468

7. Bravo HC et al (2012) Gene expression anti-
profiles as a basis for accurate universal cancer
signatures. BMC Bioinform 13:272

8. Dinalankara W, Bravo HC (2015) Gene
expression signatures based on variability can
robustly predict tumor progression and prog-
nosis. Cancer Informat 14:71–81

9. Friedman JH, Rafsky LC (1979) Multivariate
generalizations of the Wald-Wolfowitz and
Smirnov two-sample tests. Ann Stat 7
(4):697–717

10. Rahmatallah Y, Emmert-Streib F, Glazko G
(2012) Gene set analysis for self-contained
tests: complex null and specific alternative
hypotheses. Bioinformatics 28
(23):3073–3080

11. Afsari B, Geman D, Fertig EJ (2014) Learning
dysregulated pathways in cancers from differ-
ential variability analysis. Cancer Informat 13
(Suppl 5):61–67

12. Fisher R (1932) Statistical methods for
research workers. Oliver and Boyd, Edinburg

13. Stadler N, Mukherjee S (2015) Multivariate
gene-set testing based on graphical models.
Biostatistics 16(1):47–59

14. Friedman J, Hastie T, Tibshirani R (2008)
Sparse inverse covariance estimation with the
graphical lasso. Biostatistics 9(3):432–441

15. Meinshausen N, B€uhlmann P (2006) High-
dimensional graphs and variable selection with
the lasso. Ann Stat 34(3):1436–1462

16. Schafer J, Strimmer K (2005) A shrinkage
approach to large-scale covariance matrix
estimation and implications for functional
genomics. Stat Appl Genet Mol Biol 4(1):
Article 32

17. Choi Y, Kendziorski C (2009) Statistical meth-
ods for gene set co-expression analysis. Bioin-
formatics 25(21):2780–2786

18. Rahmatallah Y, Emmert-Streib F, Glazko G
(2014) Gene Sets Net Correlations Analysis
(GSNCA): a multivariate differential coexpres-
sion test for gene sets. Bioinformatics 30
(3):360–368

19. Santos Sde S et al (2015) CoGA: an R package
to identify differentially co-expressed gene sets
by analyzing the graph spectra. PLoS One 10
(8):e0135831

20. Takahashi DY et al (2012) Discriminating dif-
ferent classes of biological networks by analyz-
ing the graphs spectra distribution. PLoS One
7(12):e49949

21. Goeman JJ, Buhlmann P (2007) Analyzing
gene expression data in terms of gene sets:

Gene Set Analysis (GSA) Approaches 157



methodological issues. Bioinformatics 23
(8):980–987

22. Tian L et al (2005) Discovering statistically
significant pathways in expression profiling
studies. Proc Natl Acad Sci U S A 102
(38):13544–13549

23. Ackermann M, Strimmer K (2009) A general
modular framework for gene set enrichment
analysis. BMC Bioinform 10(1):47

24. Rahmatallah Y, Emmert-Streib F, Glazko G
(2014) Comparative evaluation of gene set
analysis approaches for RNA-Seq data. BMC
Bioinform 15(1):397

25. Montaner D et al (2009) Gene set internal
coherence in the context of functional
profiling. BMC Genomics 10:197

26. Gatti DM et al (2010) Heading down the
wrong pathway: on the influence of correlation
within gene sets. BMC Genomics 11:574

27. Tripathi S, Emmert-Streib F (2012) Assess-
ment method for a power analysis to identify
differentially expressed pathways. PLoS One 7
(5):e37510

28. Glazko GV, Emmert-Streib F (2009) Unite
and conquer: univariate and multivariate
approaches for finding differentially expressed
gene sets. Bioinformatics 25(18):2348–2354

29. Wang X et al (2011) Linear combination test
for hierarchical gene set analysis. Stat Appl
Genet Mol Biol 10(1.) Article 13

30. Hanzelmann S, Castelo R, Guinney J (2013)
GSVA: gene set variation analysis for microar-
ray and RNA-seq data. BMC Bioinform 14:7

31. Khatri P, Sirota M, Butte AJ (2012) Ten years
of pathway analysis: current approaches and
outstanding challenges. PLoS Comput Biol 8
(2):e1002375

32. Maciejewski H (2014) Gene set analysis meth-
ods: statistical models and methodological dif-
ferences. Brief Bioinform 15(4):504–518

33. Nam D, Kim SY (2008) Gene-set approach for
expression pattern analysis. Brief Bioinform 9
(3):189–197

34. Tamayo P et al (2012) The limitations of sim-
ple gene set enrichment analysis assuming gene
independence. Stat Methods Med Res 25
(1):472–487

35. Tarca AL, Bhatti G, Romero R (2013) A com-
parison of gene set analysis methods in terms of
sensitivity, prioritization and specificity. PLoS
One 8(11):e79217

36. Tripathi S, Glazko GV, Emmert-Streib F
(2013) Ensuring the statistical soundness of
competitive gene set approaches: gene filtering
and genome-scale coverage are essential.
Nucleic Acids Res 41(7):e82

37. Dinu I et al (2007) Improving gene set analysis
of microarray data by SAM-GS. BMC Bioin-
form 8:242

38. Subramanian A et al (2005) Gene set enrich-
ment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A 102
(43):15545–15550

39. Barbie DA et al (2009) Systematic RNA inter-
ference reveals that oncogenic KRAS-driven
cancers require TBK1. Nature 462
(7269):108–112

40. Fridley BL, Jenkins GD, Biernacka JM (2010)
Self-contained gene-set analysis of expression
data: an evaluation of existing and novel meth-
ods. PLoS One 5(9)

41. Stouffer S, DeVinney L, Suchmen E (1949)
The American soldier: adjustment during
army life, vol 1. Princeton University Press,
Princeton, NJ

42. Taylor J, Tibshirani R (2006) A tail strength
measure for assessing the overall univariate sig-
nificance in a dataset. Biostatistics 7
(2):167–181

43. Robinson MD, McCarthy DJ, Smyth GK
(2010) edgeR: a Bioconductor package for dif-
ferential expression analysis of digital gene
expression data. Bioinformatics 26
(1):139–140

44. Anders S, Huber W (2010) Differential expres-
sion analysis for sequence count data. Genome
Biol 11(10):R106

45. Smyth G (2005) Limma: linear models for
microarray data. In: Smyth G, Gentleman R,
Carey V, Dudoit S, Irizarry R, Huber W (eds)
Bioinformatics and computational biology
solutions using r and bioconductor. Springer,
New York, pp 397–420

46. Law CW et al (2014) Voom: precision weights
unlock linear model analysis tools for RNA-seq
read counts. Genome Biol 15(2):R29

47. Rahmatallah Y, Emmert-Streib F, Glazko G
(2016) Gene set analysis approaches for
RNA-seq data: performance evaluation and
application guideline. Brief Bioinform 17
(3):393–407

48. Tusher VG, Tibshirani R, Chu G (2001) Sig-
nificance analysis of microarrays applied to the
ionizing radiation response. Proc Natl Acad Sci
U S A 98(9):5116–5121

49. Baldi P, Long AD (2001) A Bayesian frame-
work for the analysis of microarray expression
data: regularized t -test and statistical infer-
ences of gene changes. Bioinformatics 17
(6):509–519

50. Smyth GK (2004) Linear models and empirical
Bayes methods for assessing differential

158 Galina Glazko et al.



expression in microarray experiments. Stat
Appl Genet Mol Biol 3:3

51. Dinu I et al (2009) Gene-set analysis and
reduction. Brief Bioinform 10(1):24–34

52. Liu Q et al (2007) Comparative evaluation of
gene-set analysis methods. BMC Bioinform
8:431

53. Baringhaus L, Franz C (2004) On a new mul-
tivariate two-sample test. J Multivar Anal
88:190–206

54. Klebanov L et al (2007) A multivariate exten-
sion of the gene set enrichment analysis. J
Bioinforma Comput Biol 5(5):1139–1153

55. Wu D et al (2010) ROAST: rotation gene set
tests for complex microarray experiments. Bio-
informatics 26(17):2176–2182

56. Damian D, Gorfine M (2004) Statistical con-
cerns about the GSEA procedure. Nat Genet
36(7):663. author reply 663

57. Ritchie ME et al (2015) limma powers differ-
ential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Res 43
(7):e47

58. Pickrell JK et al (2010) Understanding
mechanisms underlying human gene expres-
sion variation with RNA sequencing. Nature
464(7289):768–772

59. Olivier M et al (2002) The IARC TP53 data-
base: new online mutation analysis and recom-
mendations to users. Hum Mutat 19
(6):607–614

60. Liberzon A et al (2011) Molecular signatures
database (MSigDB) 3.0. Bioinformatics 27
(12):1739–1740

61. Wu D, Smyth GK (2012) Camera: a competi-
tive gene set test accounting for inter-gene
correlation. Nucleic Acids Res 40(17):e133

62. Bandres E et al (2005) Gene expression profile
induced by BCNU in human glioma cell lines
with differential MGMT expression. J Neuro-
Oncol 73(3):189–198

63. Ongusaha PP et al (2003) BRCA1 shifts p53-
mediated cellular outcomes towards irrevers-
ible growth arrest. Oncogene 22
(24):3749–3758

Gene Set Analysis (GSA) Approaches 159



Chapter 8

Search for Master Regulators in Walking Cancer Pathways

Alexander E. Kel

Abstract

In this chapter, we present an approach that allows a causal analysis of multiple “-omics” data with the help
of an “upstream analysis” strategy. The goal of this approach is to identify master regulators in gene
regulatory networks as potential drug targets for a pathological process. The data analysis strategy
includes a state-of-the-art promoter analysis for potential transcription factor (TF)-binding sites using the
TRANSFAC® database combined with an analysis of the upstream signal transduction pathways that
control the activity of these TFs. When applied to genes that are associated with a switch to a pathological
process, the approach identifies potential key molecules (master regulators) that may exert major control
over and maintenance of transient stability of the pathological state. We demonstrate this approach on
examples of analysis of multi-omics data sets that contain transcriptomics and epigenomics data in cancer.
The results of this analysis helped us to better understand the molecular mechanisms of cancer development
and cancer drug resistance. Such an approach promises to be very effective for rapid and accurate identifi-
cation of cancer drug targets with true potential. The upstream analysis approach is implemented as an
automatic workflow in the geneXplain platform (www.genexplain.com) using the open-source BioUML
framework (www.biouml.org).

Key words Upstream analysis, Promoter analysis, Pathway analysis, Microarray data, ChIP-seq,
RNA-seq, Pathway rewiring

1 Introduction

Gene regulatory networks of cancer cells are currently subject of
very intense studies. Successful diagnosis and treatment of cancer
still remains difficult mainly due to our poor understanding of
underlying molecular mechanisms and respective gene regulatory
networks involved in the pathogenesis of cancer [1]. The elucida-
tion of these mechanisms for identification of novel drug targets
and promising biomarkers has therefore been a major focus in
cancer research in recent years. However, this is quite a challenging
task, since the multiplicity of pathways involved [2, 3]. And
another, even more challenging task is to understand the high
“plasticity” of regulatory networks governing pathological trans-
formations, growth and survival of cancer cells. Plasticity of cancer

Tatiana V. Tatarinova and Yuri Nikolsky (eds.), Biological Networks and Pathway Analysis, Methods in Molecular Biology,
vol. 1613, DOI 10.1007/978-1-4939-7027-8_8, © Springer Science+Business Media LLC 2017
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gene regulatory networks is characterized, first, by big amount of
individual genetic and epigenetic variations carried by cancer cells
leading to a huge diversity of respective variants of the
corresponding networks. Most difficult for understanding are
those changes in the gene regulatory networks that happened in
the course of development of the cancer in time, and in response to
anti-cancer therapy. These so-called pathway rewiring events are
characterized by changes in the set of active components of the
cellular network and inter-connections between them.

Nevertheless, intensive studies of the molecular phenotypes of
a big amount of individual cancer cases [4] led researchers to the
formulation of typical cancer subtypes, concluding that according
to such subtypes the particular cancers become “rewired” in con-
sistent and rather predictable ways. It appeared that gene regulatory
networks of such cancer subtypes often contain nodes called “mas-
ter regulators” that represent important regulatory molecules in
the signal transduction hierarchy which are necessary and sufficient
to achieve and maintain a certain tumor state [5]. Therefore,
revealing such master regulators is an important task since they
may serve as potential drug targets as well as good biomarkers
characterizing particular cancer subtypes.

Numerous “-omics” studies on various cancer samples offer the
possibility to mine these high-throughput data by applying existing
computational tools. Big collections of different “-omics” data are
deposited in databases such as ArrayExpress [6] or Gene Expression
Omnibus (GEO) [7], as well as in derived sets of differentially
expressed genes (DEG) (expression signatures) that can be found
in such databases as the Expression Atlas [8], theMouse Expression
Database (GXD) [9] and others. Direct identification of the most
significant expression changes in such experiments can be used for
selection of potential drug targets or identification of cancer bio-
markers, as it is done with the help of various statistical methods
and classification methods in many studies today [10]. However,
the high inter-sample variation of the gene expression and extreme
misbalance between relatively small number of samples analyzed
and, very often, astronomic number of features (genes and their
combinations) used for the training of the classification algorithms
leads to a very low reproducibility of suchmere statistical findings in
independent experiments, especially those developed in spe-
cific patient populations [11]. More refined analysis of the molecu-
lar mechanisms of disease is usually done by mapping the DEG sets
to Gene Ontology (GO) categories or to KEGG pathways, for
instance by GSEA (gene set enrichment analysis) [12, 13]. Since
such an approach provides only a very limited clue to the causes of
the observed phenomena, we introduced earlier a novel strategy,
the “upstream analysis” approach for the causal interpretation of
expression changes [14–17].
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The strategy of “upstream analysis” consists of two consecutive
data analysis steps: (1) identification of transcription factors (TFs)
potentially regulating DEGs through sequence analysis of promo-
ters and enhancers of the genes under study; (2) reconstruction of
signaling pathways that may activate identified TFs and search of
master-regulators at the top of such pathways. The promoter and
enhancer analysis step is done with the help of the TRANS-
FAC® database [18] and the site identification algorithms, Match
[19] and CMA [20]. The pathway analysis step is done with the
help of the TRANSPATH® database [21], one of the first signaling
pathway databases available, and special graph search algorithms
[14]. Recently, we introduced an important enhancement to the
upstream analysis approach [22], which helps to search for master-
regulators in the condition of so-calledwalking pathways.

With the term “walking pathways” we emphasize the fluctuat-
ing nature of the cancer pathway rewiring mechanism. A vast
amount of evidence confirms that during initiation and develop-
ment of tumors the structure of gene regulation and signal trans-
duction pathways in the tumor cells is often drastically changing
due to the variety of genomic and epigenomic alterations as well as
due to the gross changes in gene expression [23]. Such alterations
lead to changes in the pathways when a certain part of a pathway
becomes inactive (disappears), but other parts or pathway cross-
talks become hyper-active (appear), significantly changing the con-
nectivity of the signaling paths and gene regulation circuits in the
cells. In order to be able to “catch” such walking pathways and to
reconstruct the most probable wiring in a particular cellular situa-
tion, we introduced an enhancement into the previously published
network analysis algorithm [17]. We added a new graph-weighting
schema to the algorithm of master-regulator search that enables it
to incorporate proteomics or gene expression data by adding “con-
text nodes” lists that push the graph search toward those nodes that
are expressed in the cell in the particular cellular situation.

Currently, multiple “-omics” data are generated worldwide
that measure in various cancer samples several gene expression
profiles as well as various epigenomic signatures of DNA methyla-
tion and modifications of chromatin. Analysis of such data is very
important for deciphering cancer mechanisms. In this work, first,
we analyzed one set of multi-omics data consisting of gene expres-
sion data and data from ChIP-seq experiments on nucleosome
methylation. The data were generated on two cell lines, one being
malignant and the other not. With the help of our analysis strategy
we were able to identify master regulators in signal transduction
pathways potentially responsible for the transformation of the cells
into the malignant state. In this example, we demonstrated the
principle of “walking pathways” as a useful model for understand-
ing the molecular mechanisms of carcinogenic transition between
two relatively stable cellular states.
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In the second example, we applied the walking pathway princi-
ple to a real case study. We analyzed a multi-omics data consisting of
transcriptomics and ChIP-seq data that were generated on a colon
cancer cell line that developed resistance against one of the most
widely used chemotherapies—methotrexate (MTX). Our case
study was devoted to deciphering the mechanisms of development
of cancer cell resistance against MTX to identify possible ways to
suppress such resistance by interacting with specific molecular
targets. Emergence of resistance to MTX of various cancer cells is
one of the most important problems in the long-term application of
this drug. Methotrexate (MTX) is a folate antagonist, which kills
the proliferating cell by binding tightly to the enzyme dihydrofolate
reductase (DHFR). Due to this binding the pathway of de novo
DNA synthesis is blocked [24]. However, continued administra-
tion of MTX to patients often results in the emergence of drug-
resistance [25]. Our analysis helped not only to decipher the
potential mechanisms of resistance but also suggested potent
drug targets for possibly combating resistance mechanisms in
these cells.

In summary, in this work, we applied the upstream analysis
strategy to multi-omics data of different complexity, which leads
us to a better understanding of the molecular mechanisms trigger-
ing malignant transformation as well as the mechanisms of emer-
gent resistance of cancer cells to chemotherapy and propose
promising drug targets and biomarkers.

The upstream analysis strategy is implemented in the geneX-
plain platform (www.genexplain.com) [17] using the open-source
BioUML framework (www.biouml.org) in the form of an auto-
matic workflow that wire together several algorithms performing
the two analysis steps outlined above. Below in this chapter we will
present the details of this workflow and will briefly describe its user
interface and input parameters.

2 Data

2.1 Microarray Data,

Differential Expression

Analysis

For the analysis of gene expression profiles of a malignant cancer
cell line and comparing it with a non-malignant cell line, we used
publicly available microarray data from Gene Expression Omnibus
(NCBI, Bethesda, MD, USA), data entry GSE75168. The study
was done on breast tissue-derived cell lines: normal-like cell line,
MCF10A, and transformed breast cancer cell line MCF7 [26].
In total, six RNA-seq data sets (three for MCF10A and three for
MCF7) were generated by the authors with the help of the Illumina
HiSeq 1500 instrument. The raw RNA-seq fastq files were prepro-
cessed by the authors of the original paper [26] using the standard
procedure of adapter removal, low base quality trimming (with
FASTQ Quality Trimmer 1.0.0), alignment to genome build
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hg38 (using Tophap2), and read quantification (using HTSeq-
count with genecode annotation v21). We downloaded the table
with the read count data from GEO entry and further analyzed it
with the geneXplain platform. The Limma (Linear Models for
Microarray Data) method was applied to define fold changes of
genes and to identify the significantly expressed genes using a
Benjamini-Hochberg adjusted p-value cutoff (�0.05) [27].

For the analysis of gene expression changes in MTX-resistant
cells, we took publicly available microarray data from Gene Expres-
sion Omnibus, data entry GSE11440 [28]. The authors analyzed
the transcriptome of the colon cancer HT29 cells that were MTX-
sensitive and compared them to MTX-resistant cells generated
from the same cell line. In total, six Affymetrix microarray experi-
ments were done, three biological replicas for the sensitive cells and
three replicas for the resistant cells.

Raw microarray data of MTX-resistant and sensitive cells, the
latter being used as control in our study, were normalized and
background corrected using RMA (Robust Multi-array Average).
The Limma method was applied then as well to define fold changes
of genes and to identify the significantly expressed genes using a
Benjamini-Hochberg adjusted p-value cutoff (�0.05) [27].

2.2 ChIP-Seq Data ChIP-seq data for the breast cancer cell lines MCF7 and MCF10A
were downloaded from the links provided in Gene Expression
Omnibus (GEO), data entry GSE69377. This study examines the
distribution of H3K4me3 and H3K4ac histone modification asso-
ciated with active chromatin in these cell types. In our further
analysis, we took the H3K4me3 signal only as the most commonly
accepted mark of active chromatin.

In the second study of MTX resistance in colon cancer cell line
HT29, we analyzed ChIP-seq data of the CDK8 kinase mediator
complex, which is known to be over-expressed in colorectal cancer
[29]. We analyzed data from a study investigating genome-wide
localization of CDK8 in human colorectal cancer cell line HT29.
The data were extracted from Gene Expression Omnibus, data
entry GSE53602. In that study, Genomic DNA was enriched by
chromatin immunoprecipitation (ChIP) and analyzed by Solexa
sequencing. ChIP was performed using an antibody against CDK8.

In both studies, we have downloaded the raw NGS sequences
of ChIP-seq experiments from the SRA repository (http://www.
ncbi.nlm.nih.gov/sra), and analyzed them with the help of the
geneXplain platform. The ChIP-seq sequence reads were mapped
to the human genome build hg19 with the use of the genome
mapper Bowtie [30] with default parameters. The peak-calling
program MACS [31] (using almost all default parameters, except
parameter “Enrichment ratio,” which was set to value 5.0 to
achieve a higher number of peaks) was applied then to the obtained
alignments of ChIP-seq data from the MCF7 cell line with data
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from the MCF10A cell line as control. As a result, we obtained
13,738 peaks of H3K4me3 histone modifications with the length
varying from 349 bp up to 2000 bp. In the colon cancer cell line
HT29 MACS returned 29,400 peaks of CDK8 complex binding in
the whole human genome. In the case of the peaks for the CDK8
kinase mediator complex, we further trimmed the peaks to the
length of 400 bp around the summit of the identified peaks, since
the peaks were generally longer in comparison to the peaks
obtained from the H3K4me3 ChIP-seq experiments.

3 Methods

3.1 Analysis

of Enriched

Transcription Factor

Binding Sites

Transcription factor binding sites in promoters of differentially
expressed genes were analyzed using known DNA-binding motifs
described in the TRANSFAC® library, release 2014.4 (BIOBASE,
Wolfenb€uttel, Germany) (http://genexplain.com/transfac). The
motifs are specified using position weight matrices (PWMs) that
assign weights to each nucleotide in each position of the
DNA-binding motif for a transcription factor or a group of them.

The geneXplain platform provides tools to identify transcrip-
tionfactor-binding sites (TFBS) that are enriched in the promoter
regions under study as compared to a background sequence set
such as promoters of genes that were not differentially regulated
under the condition of the experiment. We denote study and
background sets briefly as Yes and No sets. The algorithm for
TFBS enrichment analysis, called F-Match, has been described in
[14]. Briefly, as it has been described in detail previously [17], the
procedure finds a critical value (a threshold) for the score of each
PWM in the library that maximizes the Yes/No ratio RYN as
defined in Eq. (1) under the constraint of statistical significance.

RYN ¼ #SitesYes=#SitesNo

#SeqYes=#SeqNo

ð1Þ

In Eq. (1), #Sites and #Seq are the sites and sequences counted
in Yes and No sets. A high Yes/No ratio indicates strong enrich-
ment of binding sites for a given PWM in the Yes sequences. The
statistical significance is computed as follows:

P X � xð Þ ¼
XN
n¼x

N

n

 !
� pn � 1� pð ÞN�n

p ¼ #SeqYes= #SeqYes þ #SeqNo

� �

N ¼ #SitesYes þ #SitesNo

n ¼ #SitesYes

ð2Þ

In the geneXplain platform, such a binding site enrichment
analysis is carried out as part of a dedicated workflow. We consider
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for further analysis only those TFBSs that achieved a Yes/No
ratio > 1 and a p-value <0.01. The workflow further maps the
matrices to respective transcription factors, and generates visualiza-
tions of all results. In the current work, we have modified the
workflow by considering not only promoter sequences of a stan-
dard length of 1100 bp (�1000 to þ100), but also sequences of
potential enhancers and silencers derived from combined transcrip-
tomics and epigenomics data as described below.

3.2 Finding Master

Regulators in

Networks

We searched for master regulator molecules in signal transduction
pathways upstream of the identified transcription factors using
geneXplain platform tools. The master-regulator search uses the
TRANSPATH® database (http://genexplain.com/transpath)
[21]. A comprehensive signal transduction network of human
cells is built by the network analysis module of the geneXplain
platform on the basis of reactions annotated in TRANSPATH®.
The main algorithm of the master regulator search has been
described earlier [14]. The goal of the algorithm is to find nodes
in the global signal transduction network that may potentially
regulate the activity of the set of transcription factors found at the
previous step of analysis. Such nodes are considered most potent
drug targets, since any influence on such a node may switch the
transcriptional programs of hundreds of genes that are regulated by
the respective TFs. In our analysis, we have run the algorithmwith a
maximum radius of ten steps upstream of the TFs.

3.2.1 Basic Algorithm

of the Master Regulator

Search

The basic algorithm of the master regulator search was described
previously [16, 17]. Here, we present a short summary of the
algorithm. The signal transduction network is represented as a
weighted graph, which is defined as Θ¼(M, E, S), where M is the
set of nodes (all molecules in the database), E is the set of edges
(all reactions between molecules in the database), and S : E!
Rþ\{0} is the cost function that defines a non-negative value for
every edge. In the simplest variant of the algorithm, the initial
values of the cost functions for each direct reaction are defined as
1.0. So, the cost of any path through the consequent reactions will
be equal to the number of reactions. In our application of the
algorithm in the geneXplain platform, we used a weighted graph,
which encodes the types of reactions (direct or indirect) in TRANS-
PATH® into different edge weights (costs).

The core of the algorithm is Dijkstra’s shortest-path algorithm
[32]. The upstream search starts from each molecule of the input
set (subsetMx ofM; e.g., transcription factors found in the previous
step) and constructs the shortest-path to all nodes i ofM, limited by
a specified radius. After evaluating all nodes of Mx the algorithm
calculates the number of visits Ni for each node i of M. This
corresponds to the number of molecules of the input set Mx that
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can receive the signal from the node i. The valuesNi are required to
calculate the “master-regulator” score. The higher the valueNi the
better chances molecule i has to transduce its signal to the mole-
cules of the initial list Mx. However, to use the value of Ni as a
straightforward “master-regulator” score would be too simplistic
since it would rank those molecules high that are in general highly
connected within the network and thus are likely to be false posi-
tives (so-called hub molecules). So, in our score, we incorporate the
full number of TF nodes in the whole network M that can be
reached from the molecule i. The score is computed for each
potential master regulator and reflects a certain balance between
sensitivity and specificity of signal transduction from this master
node to the downstream effector TFs:

S kð Þ ¼
Xkmax

k¼1

Mk

1þ κ � Nk

Nmax,k

� �
�Mmax,k

ð3Þ

where k is the radius of pathway steps from the master node to
the effector nodes, Mk is the number of input TFs reached by a
signal from the master node within k steps, and Nk is the total
number of all potential TFs in the database reached by a signal
from the master node within k steps. Mmax,k and Nmax,k are the
highest values among all possible master regulator nodes which
help to normalize the score to a (0,1)-interval. The higher this
score, the more sensitive and more specific this master regulator is
for the set of input TFs. The parameter κ is a user-defined penalty,
which is set by default to 0.1.

Incorporation of proteomics or gene expression data into the
analysis of master regulators is done through application of the so-
called Context Algorithm, which is implemented in the geneXplain
platform.

3.2.2 Context Algorithm When we have additional experimental information about the activ-
ity of certain components of the signal transduction network (addi-
tional context information) of the cells, we can use this information
to adapt the search for master regulators. To do that, the algorithm
encodes this additional context information as modified edge costs
in the signaling network. For instance, the proteomics data give
information about proteins that are expressed in the cell. Gene
expression data can also provide a proxy for such data. By putting
a certain threshold on the expression signal (obtained by micro-
arrays or through RNA-seq), we can obtain a set of genes, which are
expressed in the particular cellular condition, and we can assume
the proteins encoded in those genes are also present in the cells. We
call such a list of proteins “context nodes.” The idea of the
approach is to attract the key node search (e.g., the underlying
Dijkstra algorithm for shortest paths) toward context nodes by
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decreasing the costs of those edges that are close to the context
nodes in the network. There are two major parameters in this
algorithm: (1) Attraction power (gravity) of the shortest-paths
toward context nodes. The gravity is achieved by decreasing the
costs of the incoming and outgoing edges in the graph for the
nodes corresponding to the context proteins. A zero cost of the
edges gives the maximal “gravity” for the nodes. During the search
the path that follows through this node will be always “cheaper”
than other alternative paths. This way we push the search algorithm
to construct its paths maximally through the context proteins when
possible. (2) “Decay” factor. It is necessary to extend the attraction
power of the “gravity” to a wider area of the network around the
context proteins to attract the search algorithm to go as close as
possible to the context proteins, in case there is no path that goes
through the context gene directly. To enable such “long distance”
attraction power we distribute the gravity to edges of the next
neighboring nodes. This pushes the shortest path algorithm to
find alternative paths still at least close to the context proteins.
The gravity strength reduces with increasing distance from a
decay factor. The decay factor is set by default to 0.1 and can be
changed by the user by setting it to a value between 0 and 1.

The context algorithm is based on creating a graphG consisting
of gravity factors (0.1), which reflect both aspects described above
of modifying edge costs. GraphG is used to modify the costs of S of
original graph Θ resulting in S0 which can be then used for any
subsequent key node analysis or possibly other shortest path-based
analyses.

Usually, we use the list of proteins encoded by up-regulated
genes as the “context nodes.” With this we direct the algorithm of
master-regulator search toward those paths through the signal
transduction network that go maximally through those proteins
that are expressed by the genes known to be upregulated in this
type of cells. The algorithm does not exclude completely the other
paths through proteins that were not found to be up-regulated, just
because their concentration might be below the detection limit.
Therefore, they may well be active in the cells and may participate in
the transduction of the relevant signals. Nevertheless, the proteins
that were detected as upregulated are considered with higher
weights in the algorithm and contribute more to directing the
search toward master regulators. Even better source of information
for the “context nodes” could be proteomics or phosphoproteo-
mics data albeit not always being available.

3.3 GUI

of geneXplain Platform

GeneXplain platform is an online tool, which is available upon free
registration at the URL: http://platform.genexplain.com. When
users login into the geneXplain platform for the first time, a win-
dow opens that contains the following five areas 1–5: (see Fig. 1)
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1. The Work Space is the main part of the window. The Start page
presents a couple of predefined workflows and methods.

2. In the Tree Area the user finds the collection of databases, the
uploaded data files, and the available analyses methods under
the corresponding tabs.

3. The Info Box gives the user information about the data file or
analysis method that she may select with a single click in the
Tree Area. The user can also select the data resource to search
in.

4. The Operations Field provides additional analysis options
under the different tabs in a context-dependent manner.

5. The General Control Panel (tool bar), on top of the different
areas, shows a context-dependent set of icons for the available
operations.

The geneXplain platform provides a number of predefined
workflows for analysis of various omics data. The user can find the
list of workflows available for particular data type after clicking on
the respective area at the Work Space. For instance, by clicking on
the “Microarrays” area the user will see a list of workflows (see
Fig. 2) organized according to their consequent use. The list starts
with a data-loading utility and ends with a most complex workflow
“Find drag targets” that integrates many programs performing the
“upstream analysis” algorithm under default parameters.

Fig. 1 User interface of the BioUML/geneXplain platform after first user login. Practically any “omics” data can
be analyzed in the platform
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The GUI of the geneXplain platform is user-friendly and intui-
tive. In Fig. 3, we show an interface provided to the user to start a
workflow of promoter analysis and search for so-called composite
regulatory modules. This workflow opens after clicking on the
respective link in the list of workflows (see Fig. 2). The user can
see the full schema of the workflow in the Operation Field that
consists of individual programs (blue boxes) performing necessary
steps of the analysis connected between each other by arrows and
input and output data files (green and yellow small boxes). In the
Work Space the user sees the main window with the parameters of
the workflow that the user has to set to initiate the analysis, such as
“Input Yes gene set,” “Input No gene set,” and others. Under Yes
set we define here a set of genes from our experiment whose
promoters are going to be analyzed, for instance a set of up-
regulated genes. Under No set we define here any control set, for
instance a set of genes that did not change their expression in the
experiment. The user can specify the respective data sets with Yes
and No gene sets by “drag-and-drop,” dragging the files from the

Fig. 2 List of workflows for analysis of microarray data. The workflows are put under several categories
according to the consecutive steps of the data analysis. It starts by data loading and normalization of ends with
most complex workflows for identification of drag targets
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Tree Area into the necessary fields of the workflow. By clicking on
the “Run workflow” button the user starts the workflow, which is
performed automatically till the end of all calculations. The results
are automatically displayed in new tabs in the Work Space and are
stored as result files in the Tree Area in the user folder, so that they
are accessible for the user at any time. The results are represented as
tables, network diagrams, as well as various graphics that are avail-
able for export in many different formats.

4 Results

As was described above, our strategy of multi-omics “Upstream
Analysis” of regulatory genomic regions comprises two main steps:
(1) a systematic and comprehensive promoter and enhancer analysis
on the basis of transcriptomics (differentially regulated genes) and
epigenomic data (locations of regions of active chromatin) to iden-
tify transcription factors (TFs) involved in the regulation of the
cellular process under study, and (2) an analysis of the topology of
the signal transduction network upstream of transcription factors to
identify master regulators, which are signaling proteins in the cell

Fig. 3 User interface to start a workflow (as an example we use a workflow for the analysis of promoters of a
gene set). The front window gives the possibility to set the input data and other parameters of the analysis. The
window below shows the schema of the workflow that connects several programs (blue boxes) to each other
to determine their running order
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(receptors, their ligands, adapters, kinases, phosphatases, other
enzymes involved in signal transduction) that may regulate the
activity of transcription factors found in the previous step of the
analysis. Applying this concept in previous studies has successfully
revealed EGF and IGF2 as regulators during liver tumor develop-
ment [16]. We also had analyzed a dataset of TNFα-induced genes
in human endothelial cells [33], showing that our approach detects
TNFα as a master regulator and explains the activity of other
molecules from the TNFα pathway [14, 17].

4.1 Identification

of Up- and Down-

Regulated Genes

Identification of up- and down-regulated genes in gene expression
data was done with the help of workflow “Compute differentially
expressed genes using Limma.” The workflow takes a table that
summarizes all preprocessed gene expression values for all samples
and applies Limma (Linear Models for Microarray Data) with a
Benjamini-Hochberg adjusted p-value cutoff (�0.05) to retrieve
differentially expressed genes (DEG) between different conditions
(cell lines) that are defined by the user before the start of the
workflow. The table with expression values can be either directly
uploaded from the results of experiments or prepared inside gen-
eXplain platform with the help of a number of data preprocessing
workflows that are working with raw microarray data supporting a
big number of various microarray platforms, or preprocessing raw
RNA-seq data converting them into read counts or FPKM values.

In this work, first, we analyzed the RNA-seq data provided in a
form of read counts for the breast cancer cell lines in triplicates:
normal-like, MCF10A cell line, and malignant MCF7 cell line.
Comparison of the data for the MCF7 cell line versus the
MCF10A cell line with the help of DEG analysis workflow resulted
in the identification of 2066 upregulated (with higher expression
values in MCF7 cell line compared to MCF10A cell line) and 2199
downregulated Ensembl genes, respectively. The availability of the
read count data gave us an additional gene filtering possibility. We
filtered out genes with read counts lower than 200 in all the samples
from both cell lines. With this filtering we focused our attention on
those genes that not only differ in their relative expression signifi-
cantly between the two cell lines but also showed the high absolute
level of expression and therefore were unlikely to bear any signifi-
cant experimental noise. After such filtering, we obtained 764
upregulated and 1085 downregulated genes.

The second data set that we analyzed with the help of the
workflow “Compute differentially expressed genes using Limma”
was the microarray transcriptomics data on comparison between
MTX-sensitive and resistant derivatives of the colon cancer cell line
HT29. The resistant cell line in this case was a result of a long-term
treatment of the HT29 cell line by MTX and selection of a stable
MTX-resistant cell line. Similarly, as in the first data set, we identi-
fied up- and down-regulated genes from the comparison of
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transcriptomics data of resistant versus sensitive cells from raw
microarray data available in GEO [28]. As a result, we identified
1951 up-regulated and 2185 down-regulated genes.

In both of these data sets, we were interested in understanding
the nature of molecular switches that turn a normal-like cell line or
a chemotherapy-sensitive cancer cell line into the cells with aggres-
sive carcinogenic behavior. Understanding such switches can help
us to find effective approaches for identification of promising drug
targets.

In order to understand the basic functional changes in the
cancer cells during such switches, we performed a classical GO
and pathway mapping using the workflow “Mapping to GO cate-
gories and signaling pathways” of the geneXplain platform. The
analysis of the up-regulated genes of the first data set (breast cancer
cell lines) revealed the following major GO categories: anatomical
structure development, cell-cell signaling, cell adhesion, ion trans-
port; pathways (TRANSPATH®, REACTOME): beta-catenin net-
work, Interferon alpha/beta signaling. In turn, the analysis of
down-regulated genes revealed the GO categories: angiogenesis,
developmental process, response to external stimulus, response to
wounding, regulation of cell adhesion, cell migration; pathways
(TRANSPATH®, REACTOME): metabolism of DAG, metabo-
lism of eicosanoids, formation and degradation of triacylglycerols,
IL-8 pathway, Extracellular matrix organization, Dissolution of
Fibrin Clot.

For the second data set of the MTX-sensitive and resistant
colon cancer cells, the GO and pathways mapping resulted in rather
different profiles. The up-regulated genes are enriched by the fol-
lowing GO categories: oxidation-reduction process, lipid metabolic
process, purine deoxyribonucleotide metabolic process, dephos-
phorylation, negative regulation of cell adhesion, cell migration;
pathways (TRANSPATH®, REACTOME): serotonin degradation,
cholesterol metabolism, release of active TGFbeta, metabolism of
estrogens, regulation of lipid metabolism by peroxisome
proliferator-activated receptor alpha (PPARalpha), extracellular
matrix organization. The down-regulated genes are, in turn,
enriched by the following GO categories: cell cycle, apoptosis,
response to virus, protein phosphorylation, organelle fission,
response to interferon-alpha, M phase, response to stress; pathways
(TRANSPATH®, REACTOME): Aurora-B cell cycle regulation,
E2F network, cyclosome regulatory network, interferon signaling.

Comparing results of GO and pathway mapping for these two
data sets shows both high similarity and profound differences in the
processes going on in these two types of cancer cells. We can see
that up-regulation of such GO categories, as regulation of cell
adhesion, organ morphogenesis, and regulation of epithelial cell
proliferation is found common for both data sets. However, upre-
gulation of cell-cell signaling and transmembrane transport is
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clearly specific for the breast cancer cells, although upregulation of
oxidation-reduction process and lipid metabolic process is specific
for theMTX-resistant colon cancer cells. As for the down-regulated
genes, we found common such processes as regulation of biosyn-
thetic process, regulation of endopeptidase activity, regulation of
NF-kappaB cascade, and, in general, regulation of innate immune
response and cell death. And we also found down-regulated pro-
cesses such as anatomical structure development and extracellular
matrix organization specific for the breast cancer cells and such
processes as mitosis and regulation of cell cycle process specific for
the MTX-resistant colon cancer cells.

Such a GO and pathway analysis gives a general idea of the
global processes that changed their activity in the carcinogenic
transitions that we study here. For instance, they coincided
quite well with the existing knowledge about the mechanisms of
MTX-resistance in cancer cells. According to the results of multi-
ple studies, the most important resistance mechanisms to MTX
were found to be connected with an increase of expression of the
MTX primary target—enzyme DHFR [24, 25]. It is known that
recovery of activity of this enzyme takes place as a result of
amplification [34] and enhanced expression [35] of its gene.
DHFR plays a central role in the synthesis of nucleic acid pre-
cursors, which are essential for cell proliferation and cell growth.
As we can see from the GO analysis, many genes of cell cycle and
proliferation are clearly down-regulated in the MTX-resistant
cells, which might be explained by the influence of long-term
inhibition of DHFR by MTX. But still those cells seem to be
able to recover their proliferation, disregarding further treatment
by MTX through some additional mechanisms that potentially are
reflected by upregulation of the oxidation-reduction process and
lipid metabolic process specific for these cells. It is clear that a
more detailed analysis of molecular pathways is needed to fully
understand the mechanisms of emergent resistance and carcino-
genic transformation. To answer this question, we applied our
concept of “upstream analysis” to the data on breast cancer and
colon cancer cell lines.

4.2 Analysis of TF

Site Frequency

in Promoters

and Enhancers

In order to identify transcription factors that may be activated
during the carcinogenic transformations of breast cancer and
colon cancer cell lines, we analyzed several important genomic
regions of the genes that were differentially regulated during this
process. For this, we identified the up- and down-regulated genes
using a logFC cutoff (logarithm of the fold change to base 2)
higher than 1.5 for up-regulated genes or lower than �1.5 for
down-regulated genes (“Yes” sets of genes). As control we used
genes expression of which did not change significantly in this
experiment (“No” set of genes). From all these genes we extracted
the promoter regions from �1000 to þ1000 bp around the TSS
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(transcription start site). Next, we intersected the promoter regions
of these genes with the ChIP-seq peaks identified by MACS
algorithm (see Subheading 3). In both data sets, the ChIP-seq
peaks are marking regions of active chromatin. In the breast
cancer cell lines, the peaks correspond to the H3K4me3 signal
that is one of the commonly accepted marks of active chromatin.
In the colon cancer cell line, the respective peaks correspond to
signal from binding of CDK8 kinase, which is associated with the
mediator complex, a central integrator of transcription proven as a
marker of active transcription regulatory regions in colorectal
cancer cells (for the HT29 cell line) [29]. The central role of the
CDK8 kinase complex in the Wnt pathway, which is very often
dysregulated in colorectal cancers and contributes to their growth,
invasion, and survival [36], renders it a suitable marker for active
enhancers in colon cancer cells. The intersection procedure of
promoter regions with ChIP-seq peaks was done with the help
of “Intersect” function in the Galaxy section of the geneXplain
platform. With such an intersection we extracted those regions of
the genome that with the highest probability contain the active
promoter and enhancer regions regulating the activity of the
genes in the considered states of the cells. For further analysis,
we considered only those regions that have got the length equal
or above 400 bp.

We applied the F-Match algorithm to these regions of active
promoters and enhancers. The F-Match algorithm searches and
compares the frequency of TF-bindingsites in the Yes and No sets
of sequences applying the nonredundant set of PWMs from the
TRANSFAC® library. This program is able to find those PWMs and
corresponding transcription factors whose sites are overrepresented
in the Yes set compared to the No set (see Subheading 3). We
applied this method separately for the up- and down-regulated
genes to identify those specific transcription factors that are poten-
tially involved in activation or inhibition of the expression of these
sets of genes. The result of the analysis of up-regulated genes is
presented in Table 1. Also, in Fig. 4, we show a map of predicted
TF-binding sites in the enhancer region of TFF1 gene located in the
first intron, first noncoding exon and proximal promoter region
that overlaps with the ChIP-seq peak of H3K4me3. This gene is
one of the most highly upregulated genes in the MCF7 cell line
when compared to MCF10A. The more distal promoter of this
gene is well studied and a number of experimentally detected TF-
binding sites are reported in the TRANSFAC database (see Fig. 4)
that were found functionally active in the promoter of this gene in
various cellular conditions. For instance, the NF-kappaB transcrip-
tion factor-binding site marked in Fig. 4 which was also found in
our analysis was previously experimentally identified as acting in
gastric epithelial cells activated by TNF-alpha [37]. One can see
that our method allows identifying not only previously known sites
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Table 1
List of PWMs for transcription factors identified by site frequency search in regions of open
chromatin in promoters of up-regulated genes in MCF7 cells and in MTX-resistant cells

ID

Yes-No ratio
MCF7_vs_MCF
10A_UP

p-value
MCF7_vs_
MCF10A_UP

Yes-No
ratio_MTX-
resistant UP

p-value
MTXresis
tant_UP

V$MTF1_Q5 1.697 1.78E-07 0.787 1.49E-01

V$REST_01 1.650 9.25E-04 0.599 8.12E-02

V$AHR_Q6 1.633 2.89E-08 0.994 4.76E-01

V$E2A_Q6_01 1.515 1.52E-11 0.974 4.25E-01

V$INSM1_01 1.492 9.17E-03 0.805 2.66E-01

V$NFY_Q3 1.481 1.15E-06 0.962 4.28E-01

V$GCM2_01 1.446 1.51E-10 0.812 5.94E-02

V$COE1_Q6 1.415 9.42E-06 0.751 3.55E-02

V$P53_04 1.375 7.34E-80 0.976 2.48E-01

V$RREB1_01 1.268 1.50E-13 0.898 4.22E-02

V$MYOGEN
IN_Q6_01

1.252 6.35E-06 0.920 1.69E-01

V$HIF1A_Q5 1.245 2.82E-06 0.761 2.07E-03

V$EBOX_Q6_01 1.238 9.24E-06 0.933 2.24E-01

V$RFX1_01 1.237 1.48E-03 0.986 4.82E-01

V$DR4_Q2 1.127 8.43E-06 0.973 3.03E-01

V$ZIC1_05 1.277 1.59E-110 1.024 1.35E-01

V$AP2ALPHA_03 1.470 1.84E-222 1.049 3.47E-02

V$HES1_Q6 1.421 1.38E-13 1.053 3.14E-01

V$NF1A_Q6_01 1.114 3.65E-06 1.064 7.46E-02

V$MUSCLEINI_B 1.365 1.85E-27 1.070 1.41E-01

V$IK_Q5_01 1.189 9.18E-30 1.102 6.28E-04

V$MZF1_Q5 1.311 2.77E-11 1.103 1.20E-01

V$RNF96_01 1.575 4.75E-35 1.129 9.14E-02

V$GKLF_Q4 1.306 1.95E-80 1.155 1.41E-07

V$BEN_01 1.574 1.65E-156 1.159 6.48E-05

V$RELA_Q6 1.288 1.88E-05 1.196 6.96E-02

V$SP100_04 1.374 6.01E-34 1.208 1.73E-03

V$CPBP_Q6 1.490 1.09E-85 1.236 4.75E-07

V$CHCH_01 1.528 9.52E-169 1.239 2.98E-09

(continued)
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Table 1
(continued)

ID

Yes-No ratio
MCF7_vs_MCF
10A_UP

p-value
MCF7_vs_
MCF10A_UP

Yes-No
ratio_MTX-
resistant UP

p-value
MTXresis
tant_UP

V$FPM315_01 1.498 2.22E-10 1.271 2.75E-02

V$GLI_Q3 1.304 3.35E-42 1.282 2.24E-10

V$E2F_Q6_01 1.517 6.60E-38 1.382 4.48E-05

V$ZFP161_04 1.650 0.00E þ 00 1.389 5.38E-24

V$EGR1_Q6 1.640 2.67E-26 1.457 2.42E-04

V$MAZ_Q6_01 1.480 1.76E-30 1.615 8.96E-12

V$MAF_Q4 1.021 4.09E-01 1.628 4.46E-05

V$SP1_Q6_01 1.427 1.13E-31 1.717 8.48E-17

V$MAZR_01 1.374 1.42E-04 1.747 1.51E-03

V$EKLF_Q5_01 1.483 3.59E-03 2.120 3.02E-03

V$MECP2_02 1.404 1.94E-05 2.616 8.66E-06

V$CTCF_01 1.803 6.42E-03 19.183 3.53E-16

V$HMX1_02 0.645 6.04E-218 1.058 2.98E-03

V$PAX_Q6 0.958 2.11E-02 1.156 2.71E-05

V$FREAC3_01 0.639 4.52E-29 1.215 4.94E-04

V$RUSH1A_02 0.859 2.39E-03 1.236 7.76E-03

V$GATA_Q6 0.583 1.04E-17 1.239 7.59E-03

V$SRY_Q6 0.631 4.93E-19 1.284 4.65E-04

V$BBX_04 0.678 1.97E-21 1.291 9.17E-06

V$LEF1_Q5_01 0.865 6.70E-03 1.327 6.13E-04

V$CEBPA_Q6 0.720 9.54E-07 1.365 1.22E-03

V$PLZF_02 0.388 5.59E-20 1.376 7.92E-03

V$ERALPHA_Q6_01 0.860 1.61E-02 1.384 3.57E-03

V$CRX_Q4_01 0.645 4.13E-07 1.393 4.06E-03

V$ETS_Q6 0.982 2.97E-01 1.424 5.91E-11

V$IPF1_Q5 0.606 1.27E-10 1.469 1.56E-04

V$SOX2_Q3_01 0.839 6.50E-02 1.530 6.04E-03

V$HOXC13_01 0.637 2.88E-07 1.554 3.20E-04

V$CREBP1_01 0.779 1.87E-03 1.581 9.32E-04

V$AP1_Q6_02 0.782 3.10E-09 1.586 1.93E-15

(continued)
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Table 1
(continued)

ID

Yes-No ratio
MCF7_vs_MCF
10A_UP

p-value
MCF7_vs_
MCF10A_UP

Yes-No
ratio_MTX-
resistant UP

p-value
MTXresis
tant_UP

V$HNF3B_Q6 0.712 7.00E-10 1.592 5.00E-09

V$STAT1_Q6 0.911 2.09E-01 1.918 8.48E-04

V$HOXD12_01 0.692 5.74E-04 2.020 7.56E-05

V$ZFX_01 0.998 4.73E-01 2.242 9.28E-03

V$DBP_Q6 0.835 1.44E-01 2.297 4.68E-04

V$NF1_Q6 0.901 2.81E-01 2.396 2.13E-04

V$DLX3_02 0.819 1.86E-01 2.670 3.33E-03

V$TEF1_Q6_04 0.645 4.77E-02 3.433 6.64E-04

V$HNF4A_Q3 0.580 8.54E-02 8.221 1.87E-04

V$ZFP206_01 0.772 5.61E-02 20.869 1.31E-06

PWMs are the identifiers from TRANSFAC database. Yes-No ratio is the ratio between frequencies of TF sites in Yes

sequences (regions of open chromatin in promoters of genes up-regulated in MCF7 cells or MTX-resistance cells

respectively) and No sequences (corresponding controls in those experiments). PWMs specific for the MCF7 cells are
shown in red in the top of the table. PWMs specific for theMTX-resistant cells are shown in blue in the bottom of the table

Fig. 4 A map of predicted TF-binding sites in the enhancer region of the TFF1 gene located in the first intron,
first noncoding exon and proximal promoter region that overlaps with the ChIP-seq peak of H3K4me3. Exons
are represented by red thick lines, introns by thin black lines. The dotted vertical line indicates the TSS
(transcription start site) for the TFF1 gene. Colored arrows show positions of TF-binding sites (each color
corresponds to one PWM). Regions of DNAse hypersensitivity (from ENCODE) are shown in a separate track
which also indicates the area of open chromatin in Hela cells. In the last track, we show TF-binding sites
previously identified in the promoter of this gene (from the TRANSFAC® database) acting in different types of
cells. The site for RelA identified in our analysis coincides with the previously known RelA binding site. It can
be seen that the region of active chromatin identified in the MCF7 cell line in this gene only partially overlaps
with this area in other types of cells previously analyzed for this promoter
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but also novel sites that were previously not detected in the regu-
latory regions of the genes. Such novel sites seemed to be responsi-
ble for the activation of these genes in the particular cellular
conditions when during carcinogenic switch a new region of chro-
matin becomes active, which was not active in the normal-like cells
of MCF10A cell line.

Results of analysis of regulatory genomic regions in the sec-
ond data set are also shown in Table 1. Comparison of the
overrepresentation of transcriptionfactor-binding sites in our two
sets shows that there are few common transcription factors, of
such families as E2F, GLI, ERG1, SP1, CTCF, and several others,
whose sites are overrepresented in the transcriptionally active
regions in promoters of up-regulated genes in both carcinogenic
states. But there are also clear differences. Overrepresentation of
sites for such TFs as AHR, E2F NFY, P53, and RELA is clearly
specific for the MCF7 breast cancer cell lines, whereas overrepre-
sentation of the sites for HNF4A, ZFP206, TEF1, STAT1,
HNF3B, CREBP1, and AP1 is specific for the MTX-resistant
colon cancer cells.

In Fig. 5, we show a map of identified TF-binding sites in the
upstream aria of DHFR gene highly upregulated in the MTX-
resistant cell line. Upregulation of this gene is known to be one of
the most common mechanisms of the development of MTX resis-
tance [35]. The promoter of this gene has been extensively studied
and it was found that expression of the DHFR gene is tightly
regulated during cell cycle through binding sites for transcription
factor E2F [38]. Moreover, it was shown that at least one E2F site is
located near an Sp1 site forming a composite element and that E2F
and SP1 transcription factors act synergistically activating DHFR
transcription [39, 40]. It was proposed earlier that the activation of
the DHFR gene during development of MTX resistance is done
through this E2F site [35]. Our site frequency analysis indeed
revealed sites for E2F and Sp1 factors as overrepresented in the
regions of open chromatin in the upstream areas of up-regulated
genes (see Table 1). We also correctly identified the known E2F and
Sp1 sites in the studied upstream region of the DHFR gene and
even found a number of clusters of several E2F and Sp1 sites
together with sites for the other important transcription factors.
These site clusters colocalize with ChIP-seq peaks of the CDK8
mediator complex as well as with regions of DNase I hypersensitive
sites (Fig. 5). Also, we found that the region of high homology
between 46 mammalian genomes (PhastCons 46-way 50) is also
located in the area near the detected site clusters (Fig. 5), which
gives additional evidence about the functional importance of this
regulatory area of the genome.
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Fig. 5 Results of TF-bindingsites prediction in the overlapping promoters of DHFR and MSH3. (a) Low-
resolution map of gene structures. Exons are represented by red thick lines, introns by thin black lines. (One
can see that the first introns of DHFR and MSH3 genes actually overlap). The dotted vertical line indicates the
TSS (transcription start site) for the DHFR gene. Colored triangles show positions of TF-binding sites (each
color corresponds to one PWM). Clusters of sites can be recognized as peaks of overlapping triangles. The
track with blue arrows corresponds to the ChIP-seq reads from CDK8 experiment mapped to this genome
region. The peak of the reads indicates the region of high regulatory transcription activity. Similar indicators of
the open chromatin are the locations of the DNAse hypersensitivity (from ENCODE) shown in the bottom-most
track. Two conserved regions (for 46-way 50% conservation between mammalian genomes) indicate
potentially very important regulatory areas in these promoters. (b) High-resolution map. Each predicted
TF-binding site is shown as an arrow with the name of PWM (from TRANSFAC®) on the top of it. The intensity
of the blue color corresponds to the score of the binding site. The direction of the arrow shows at which DNA
strand the site was recognized by the respective PWM. Known sites for E2F and Sp1 are shown in the center.
One can see that predicted TF sites often overlap with each other indicating very complex potential regulatory
switches
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4.3 Identification of

Composite Regulatory

Modules

It is known that regulation of gene expression is controlled not only
by single transcription factors but rather by their functionally
connected combinations. Such combinatorial regulation of tran-
scription is maintained through so-called composite regulatory
modules CRMs (or composite regulatory elements) [20, 40]. A
CRM describes specific combinations of transcriptionfactor-
binding sites, sometimes with their specific arrangement to each
other that often can be found in regulatory regions of co-regulated
genes. Often such combinations of different TF sites located in
close proximity in DNA can serve as targets for transcription factors
that interact on a protein-protein level and through such interac-
tion work in synergistic or antagonistic manner during regulation
of transcription [40]. It is important to understand such interac-
tions between transcription factors during their regulation of spe-
cific gene activity to reveal the causative mechanisms of gene
regulation during carcinogenesis. We have therefore applied the
CMA algorithm (Composite Module Analyst) for searching com-
posite modules [20] in the regions of active chromatin of the
promoters of up- and down-regulated genes in both data sets.
The core of CMA is a genetic algorithm that identifies stable
combinations of TF sites that are colocalized at a certain distance
to each other in the analyzed regulatory sequences. In Figs. 6 and 7,
we present the results of such an analysis for the MTX-resistant
colon cancer cell lines and for the breast cancer cell line.

We identified that in both carcinogenic transitions a very
important role is played by the transcription factors of the E2F
family that are essential factors for regulation of cell division. CRMs
for both data sets contain PWMs for the E2F-binding sites as one of
the most important elements. Interestingly, the arrangements of
E2F with other factors were found to be quite different in different
data sets. In the MCF7 breast cancer cell line, the E2F sites in the
identified CRM controlling upregulated genes are accompanied by
PWMs for such important transcription factors as RELA, NFY,
ITF1, E2A, EGR, and GLI. In MTX-resistant colon cancer cell
line the CRM of upregulated genes arranges E2F sites with sites for
such factors as: TCF4, SP1, HNF3B, AP1, SRY, ETS, GLI, and
CTCF.

It is interesting that the TFs identified in this promoter analysis
are highly relevant for the carcinogenic processes analyzed. For
instance, the factors of the TCF/LEF family which were identified
in the MTX-resistant colon cancer cell line are involved in the Wnt
signaling pathway that is the most frequently deregulated pathway
in colorectal cancers. AP-1 and Egr1, a known immediate-early
response TFs, are activated by extracellular signals and mediating
mitogenic responses [41]. It is very interesting also to see the
presence of the RELA transcription factor (the NF-kB family mem-
ber) in the CRM regulating the transformation of the breast cancer
cells. The role of NF-kB factors in cancer is frequently discussed in

182 Alexander E. Kel



recent literature (e.g., [42]) as factors that interact with other
transcription factors such as p53, ETS, and EGR to regulate gene
in various cancers and to link cancer and inflammation. It is espe-
cially interesting that in our analysis we propose the cooperative
action of RELA factors with the E2F transcription factor. More-
over, such a cooperation between these two factors was reported
earlier [43]. Also, the cooperation of E2F factors with GLI factors
found in both our data sets was reported recently playing a central
role in melanoma [44]. Evidence also suggests that HNF3B
(FOXA1/2) is a tumor suppressor in certain cancers, including
pancreatic and other cancers [44]. In summary, we can say that
the CRMs identified by our genetic algorithm in the regions of
open chromatin in the upstream regions of the upregulated genes
in both our data sets provide a very reasonable hypothesis about
transcription factors acting as key regulators in the processes of
neoplastic transformation in our two systems under study.

Fig. 6 Screenshot of geneXplain platform visualization of results of CMA analysis of genomic regions of
activated chromatin in promoters of up-regulated genes of MTX-resistant colon cancer cell line. In the upper
left window, it shows the user data and result repository in the platform with the highlighted result entry that is
shown in the other three windows. The bottom right window shows the composition of the composite model
consisting of nine PWMs (modules) with defined parameters of their cutoffs, maximal number of considered
sites of the corresponding matrix (N), and preferable distance between the sites of the pair (Module width). The
bottom left window shows two distributions of the values of the Composite Module Score (described in [20];
briefly, it is the sum of scores of all sites of the model found in the promoter) for the Yes promoters (red) and
for the No promoters (blue). In the right window, it also shows the significance (Wilcoxon p-value) of the
differences between these two distributions. The upper right window shows the map of the TF sites of the
composite module found in the selected promoters. Here, we show promoters of the DHFR gene that is up-
regulated in the MTX-resistant cells
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4.4 Find Master

Regulators in

Networks

The next step of the upstream analysis is the search for potential
master regulators that can regulate the activity of the transcription
factors identified in the previous step. In both data sets the master
regulator search was done from the list of transcription factors fund
by the CMA analysis. The sets of upregulated genes were used as
sets of context nodes during the master-regulator search. To enable
that, we converted the lists of upregulated genes into proteins from
the TRANSPATH® database. During this conversion only genes
encoding proteins involved in gene regulation and signal transduc-
tion in human cells were taken into account. As a result, we identi-
fied 1839 and 2462 TRANSPATH® proteins in MCF7 cells and
MTX-resistant HT29 cells, respectively, encoded from the upregu-
lated gene (including alternative protein isoforms) participating in
various signal transduction and metabolic reactions according to
the knowledge stored in this database.

Fig. 7 Screenshot of geneXplain platform visualization of results of CMA analysis of genomic regions of
activated chromatin in promoters of up-regulated genes of MCF7 breast cancer cell line. In the upper left
window, it shows the user data and result repository in the platform with the highlighted result entry that is
shown in the other three windows. The bottom right window shows the composition of the composite model
consisting of nine PWMs (modules) with defined parameters of their cutoffs, maximal number of considered
sites of the corresponding matrix (N), and preferable distance between the sites of the pair (Module width). The
bottom left window shows two distributions of the values of the Composite Module Score (described in [20];
briefly, it is the sum of scores of all sites of the model found in the promoter) for the Yes promoters (red) and
for the No promoters (blue). In the right window, it also shows the significance (Wilcoxon p-value) of the
differences between these two distributions. The upper right window shows the map of the TF sites of the
composite module found in the selected promoters
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In the current work, we set the maximal distance of the search
for master regulator equal to ten steps, which gives a good chance
to find regulators that are quite distant in the network and still can
be responsible for the coordinated change of expression of the
genes in the studied systems. When the search reaches the level of
transmembrane receptors, or extracellular signaling molecules, the
identified nodes in such a search can be considered promising drug
targets.

Finally, after performing such a search for potential master
regulators we checked which of them are actually up-regulated in
the initial experimental data. We considered the fold change of the
genes expressing the proteins that were found by the algorithm as
potential master regulators. We require these genes to be statisti-
cally significantly up-regulated in MCF7 breast cancer cells or in
MTX-resistant cells, respectively.

We hypothesized that the observed pathological switches from
the non-malignant states into the MCF7 carcinogenic or MTX-
resistant states of cells might be supported by the presence of
positive feedback loops.We can observe such loops in the network
when the genes expressing master-regulator proteins are working
under the control of the transcription factors that receive activating
signals through the signaling cascade starting from the proteins
expressed by these genes (master regulators). Therefore, the up-
regulation of the genes encoding master regulators in this analysis
indicates the presence of such feedback loops. We believe that such
positive feedback loops can contribute not only to the transition of
one cellular state to another, but rather are necessary for the stabi-
lization of the malignant state, since they maintain constant activa-
tion of a certain set of genes through the autoactivation loop.
Therefore, we introduced into the algorithm an important require-
ment that the genes encoding selected master regulators should be
up-regulated, which reflects the presence of such positive feedback
loop in the system.

For MCF7 cells we identified 145 genes with LogFC > 2.0
that encode potential master regulators with a master regulator
score > 0.3. For MTX-resistant cells we identified 29 such
genes.

In Figs. 8 and 9, we show the networks of the top ten potential
master regulators found by the algorithm in the MCF7 and MTX-
resistant data sets. Genes encoding those ten master-regulator pro-
teins, as well as some more intermediary proteins in the recon-
structed signal transduction network, were also significantly up-
regulated in the MCF7 and MTX-resistant cells, respectively, as it
is indicated in the figures by the red circles decorating
corresponding nodes on the diagram. The intermediary up-
regulated nodes played the role of the “context nodes” in our
algorithm. One can see that these context nodes often connect
the identified master regulators with several transcription factors,
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Fig. 9 A diagram of the signal transduction network of MTX-resistant colorectal cancer cells reconstructed
with the help of the master-regulator search algorithm implemented in the geneXplain platform. Transcription
factors (blue) are shown at the bottom of the diagram. Potential master regulators (pink) are shown at the top
of the diagram. The direction of signal flow is from top to bottom. Intermediary molecules are green. Red
circles around several nodes show those signaling proteins that are encoded by genes up-regulated in MTX-
resistant cells. Such up-regulated nodes at the top of the diagram indicate the presence of positive feedback
loops in the system since they transduce the activation signal to TFs that, in turn, activate transcription of the
genes encoding these signaling proteins

Fig. 8 A diagram of the signal transduction network of MCF7 breast cancer cells reconstructed with the help of the
master-regulator search algorithm implemented in the geneXplain platform. Transcription factors (blue) are shown
at the bottom of the diagram. Potential master regulators (pink) are shown at the top of the diagram. The direction
of signal flow is from top to bottom. Intermediary molecules are green. Red circles around several nodes show
those signaling proteins that are encoded by genes up-regulated inMCF7 cells. Such up-regulated nodes at the top
of the diagram indicate the presence of positive feedback loops in the system since they transduce the activation
signal to TFs that, in turn, activate transcription of the genes encoding these signaling proteins



therefore playing an important role in transducing the signal from
the master regulators to these transcription factors, which in turn
regulate their target genes upon receiving such a signal.

When focusing on the MTX-resistance data set, altogether, we
noticed that many of the suggested master regulators are very
important proteins that are known to be involved in regulating
such process as cell cycle, apoptosis, cell adhesion, and metabolism
of nucleotides. All those processes were detected as changed in
MTX-resistant cells in our GO analysis above. Also, there are
many lines of evidence showing the potential role of some of
these proteins in sensitization of anti-cancer drug resistance
mechanisms. For instance, TGF-beta, which is found in our
master-regulator search and which is one of the most highly up-
regulated proteins in MTX-resistant cells, has been found poten-
tially responsible for acquired drug resistance in squamous cell
carcinoma stem cells [45]. It was also shown that integrin alpha9
(ITGA9), which facilitates accelerated cell migration and regulates
cancer cell proliferation and migration, is a target of epigenetic
regulation; its overexpression leads to acquired resistance against
5-aza-dC treatment in human breast tumors [46]. Recently, it was
shown that inhibition of insulin-like growth factor 1 receptor
(IGF1R) leads to sensitization of head and neck cancer cells to
cetuximab and methotrexate [47]. Therefore, it is extremely inter-
esting that we identified the IGFBP7 protein as a potential master
regulator, since this protein is a very potent modulator of IGF
binding to its receptors.

All these facts show that the list of targets selected by the master
regulator search algorithm has a very high potential. We can pro-
pose revealed master-regulators as promising drug targets for pos-
sible treatment of the MCF7-like breast cancer subtypes and for
potential re-sensitization of MTX-resistant colon cancer cells
toward action of MTX. Another possible application of such master
regulators is in the field of biomarker identification. Our analysis
can serve to reveal so-called causative biomarkers that during the
evolution of a disease have got key positions in the combined signal
transduction and gene regulatory networks acting in the disease
and controlling the activity of a large number of genes; thus genetic
or any other variations influencing activity of suchmaster regulators
should be a very good biomarker of disease subclasses which should
be robust toward cohort variability.

5 Conclusions

In this paper, we have further developed our approach of “upstream
analysis,” [14, 17] which is an extension of the recently introduced
idea of searching for “master regulators” in cellular networks [48].
We have introduced a new concept of “walking pathways,” which
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emphasizes the plastic behavior of molecular networks in cells in the
transition period between different states such as malignant and
non-malignant states of tumors. We support the point of view that
these different states are characterized by structurally different
signaling networks acting in these states that are largely determined
by the specific subsets of transcription factors cooperatively binding
to open regions of chromatin that carry specific combinations of
TF-bindingsites. Differences in the open and closed regions of the
chromatin in different states of the cells lead to a different rewiring
of respective signaling networks upstream of transcription factors.
We also consider a very important role of positive (and potentially
negative) feedback loops in such networks that have the ability to
stabilize the rewired pathways and lead to the stable maintenance of
a particular gene expression profile and respective cellular state
(e.g., malignant state). This “upstream analysis” approach and the
concept of “walking pathways” have been implemented in the
software tool BioUML/geneXplain platform. An important novel
part of the approach is the “Context Algorithm” of the master-
regulator search, which is described in this paper. In this algorithm
the sets of “context nodes” are defined using gene expression data
or, if available, proteomics data, or even by defining any set of
proteins that are known to be expressed in the cell types or tissues
under study. These sets provide a specific “context” for the master-
regulator search algorithm that searches through the signal trans-
duction network, and they help to find most relevant components
of the network in the given “context.” We also introduced a novel
way of integrating transcriptomics and epigenomic data, when
peaks of active chromatin identified by ChIP-seq experiments are
intersected with long 50 upstream regions of differentially expressed
genes to detect the locations of the most important “enhancers” of
genes driving the pathway rewiring (pathway walking), and
providing the state transformation.

We applied the developed tools to analyze two examples of cell
transition from one state to another. In both cases, we have got
multi-omics data that include transcriptomics (microarrays and
RNA-seq) and epigenomics (ChIP-seq) data which helps us to do
the analysis in a highly precise way. Frequency analysis of TFBS and
analysis of composite regulatory modules in “enhancer” regions
determined by the ChIP-seq data allow identifying transcription
factors involved in the mechanism under study. Our approach gives
us a nice possibility to integrate such different types of data, helping
to achieve the goal of identifying drug targets with true potential. A
considerable part of this analysis has been done with the help of
automatic workflows in the BioUML/geneXplain platform, and
therefore can be easily reproduced and can be applied to the analysis
of other similar tasks. As a result, we identified a number of very
promising drug targets, such as PKC-alpha,TGF-beta,insulin-like
growth factor-binding protein 7, alpha9-integrin, and several
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others, and reconstructed a potential signal transduction network
connecting these targets with the transcription factors triggering
activity of the MTX-resistance genes. Many of these proteins are
already known as important targets for anti-cancer drug therapy
and our results suggest them for the use as anti-resistance targets.
All these results demonstrate the validity of the presented
approach of upstream analysis strategy with the concept of walking
pathways.
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35. Bertino JR, Göker E, Gorlick R, Li WW, Bane-
rjee D (1996) Resistance mechanisms to meth-
otrexate in tumors. Oncologist 1(4):223–226

36. Firestein R, Bass AJ, Kim SYet al (2008) CDK8
is a colorectal cancer oncogene that regulates
beta-catenin activity. Nature 455
(7212):547–551. doi:10.1038/nature07179

37. Koike T, Shimada T, Fujii Y et al (2007) Up-
regulation of TFF1 (pS2) expression by TNF-
alpha in gastric epithelial cells. J Gastroenterol
Hepatol 22(6):936–942

38. Good L, Dimri GP, Campisi J, Chen KY
(1996) Regulation of dihydrofolate reductase
gene expression and E2F components in
human diploid fibroblasts during growth and
senescence. J Cell Physiol 168(3):580–588

39. Lin SY, Black AR, Kostic D, Pajovic S, Hoover
CN, Azizkhan JC (1996) Cell cycle-regulated
association of E2F1 and Sp1 is related to their
functional interaction. Mol Cell Biol 16
(4):1668–1675

40. Kel-Margoulis OV, Kel AE, Reuter I, Deineko
IV, Wingender E (2002) TRANSCompel: a
database on composite regulatory elements in
eukaryotic genes. Nucleic Acids Res 30
(1):332–334

41. Zwang Y, Oren M, Yarden Y (2012) Consis-
tency test of the cell cycle: roles for p53 and
EGR1. Cancer Res 72:1051–1054

42. Hoesel B, Schmid JA (2013) The complexity of
NF-κB signaling in inflammation and cancer.
Mol Cancer 12:86. doi:10.1186/1476-4598-
12-86

43. Kundu M, Guermah M, Roeder RG, Amini S,
Khalili K (1997) Interaction between cell cycle
regulator, E2F-1, and NF-kappaB mediates
repression of HIV-1 gene transcription. J Biol
Chem 272(47):29468–29474

44. Pandolfi S, Montagnani V, Lapucci A, Stecca B
(2015) HEDGEHOG/GLI-E2F1 axis modu-
lates iASPP expression and function and regulates
melanoma cell growth. Cell Death Differ 22
(12):2006–2019. doi:10.1038/cdd.2015.56

45. Oshimori N, Oristian D, Fuchs E (2015) TGF-
β promotes heterogeneity and drug resistance
in squamous cell carcinoma. Cell 160
(5):963–976. doi:10.1016/j.cell.2015.01.043

46. Mostovich LA, Prudnikova TY, Kondratov AG
et al (2011) Integrin alpha9 (ITGA9) expres-
sion and epigenetic silencing in human breast
tumors. Cell Adh Migr 5(5):395–401. doi:10.
4161/cam.5.5.17949

47. Hatakeyama H, Parker J, Wheeler D, Harari P,
Levy S, Chung CH (2009) Effect of insulin-
like growth factor 1 receptor inhibitor on sen-
sitization of head and neck cancer cells to
cetuximab and methotrexate. J Clin Oncol
ASCO Annual Meeting Proceedings (Post-
Meeting Edition) 27(15S):6079

48. Gevaert O, Plevritis S (2013) Identifying mas-
ter regulators of cancer and their downstream
targets by integrating genomic and epigenomic
features. In: Proceedings of Pacific Symposium
Biocomputing, USA, pp 123–134

Master Regulators in Cancer 191

http://dx.doi.org/10.1038/nature07179
http://dx.doi.org/10.1186/1476-4598-12-86
http://dx.doi.org/10.1186/1476-4598-12-86
http://dx.doi.org/10.1038/cdd.2015.56
http://dx.doi.org/10.1016/j.cell.2015.01.043
http://dx.doi.org/10.4161/cam.5.5.17949
http://dx.doi.org/10.4161/cam.5.5.17949


Chapter 9

Mathematical Modeling of Avidity Distribution
and Estimating General Binding Properties of Transcription
Factors from Genome-Wide Binding Profiles

Vladimir A. Kuznetsov

Abstract

The shape of the experimental frequency distributions (EFD) of diverse molecular interaction events
quantifying genome-wide binding is often skewed to the rare but abundant quantities. Such distributions
are systematically deviated from standard power-law functions proposed by scale-free network models
suggesting that more explanatory and predictive probabilistic model(s) are needed. Identification of the
mechanism-based data-driven statistical distributions that provide an estimation and prediction of binding
properties of transcription factors from genome-wide binding profiles is the goal of this analytical survey.
Here, we review and develop an analytical framework for modeling, analysis, and prediction of transcription
factor (TF) DNA binding properties detected at the genome scale. We introduce a mixture probabilistic
model of binding avidity function that includes nonspecific and specific binding events. A method for
decomposition of specific and nonspecific TF–DNA binding events is proposed. We show that the Kolmo-
gorov–Waring (KW) probability function (PF), modeling the steady state TF binding–dissociation stochas-
tic process, fits well with the EFD for diverse TF–DNA binding datasets. Furthermore, this distribution
predicts total number of TF–DNA binding sites (BSs), estimating specificity and sensitivity as well as other
basic statistical features of DNA-TF binding when the experimental datasets are noise-rich and essentially
incomplete. The KW distribution fits equally well to TF–DNA binding activity for different TFs including
ERE, CREB, STAT1, Nanog, and Oct4. Our analysis reveals that the KW distribution and its generalized
form provides the family of power-law-like distributions given in terms of hypergeometric series functions,
including standard and generalized Pareto and Waring distributions, providing flexible and common
skewed forms of the transcription factor binding site (TFBS) avidity distribution function. We suggest
that the skewed binding events may be due to a wide range of evolutionary processes of creating weak
avidity TFBS associated with random mutations, while the rare high-avidity binding sites (i.e., high-avidity
evolutionarily conserved canonical e-boxes) rarely occurred. These, however, may be positively selected in
microevolution.

Key words Transcription factor, Avidity, Binding site, Mixture probability, Birth–death process,
Skewed distribution, Kolmogorov–Waring distribution, Kemp distribution, Hypergeomeric function,
Scale-free, Specificity, Sensitivity, ChIP-PET, ChIP-Seq, Scale dependence, Sample size
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1 Introduction

1.1 Protein–DNA

Interaction In Vivo and

Its Relative Avidity at

the Genome Scale

The mathematical modeling of genome-scale next-generation
sequencing (NGS) datasets is used to discover and analyze signifi-
cant events arising in biological system. However, typically, NGS
datasets are derived from one or a few samples that have a wide
dynamic range with a large number of detected NGS signals. Fur-
thermore, they are noise-rich and essentially incomplete. There-
fore, one of the most serious dilemmas with genome-wide data
analysis and statistical modeling is how to extract reliable, predic-
tive, and meaningful knowledge about studied biomolecular sys-
tems from the resulting large but typically unique, noise-rich, and
incomplete datasets. Based on huge databases of such large and
multiscale biomolecular systems, common statistical properties can
be identified and used for analysis, classification, understanding,
and prediction of the system’s properties.

Identification of molecular interactions of gene regulatory ele-
ments is a central problem in many biological disciplines, including
biochemistry, molecular cell biology, systems biology, and func-
tional genomics. Among those interactions, the transcription fac-
tors (TFs) and their binding site (BS) interactions are considered to
be the basic units of functional gene activity [1–4]. A transcription
factor is a sequence-specific DNA-binding protein that binds to
such specific segments of DNA (called binding site, BS) [5, 6].
About 10% of the proteins in complex multicellular organisms carry
out TF functions in living cells. It has been estimated that there are
about 2500 proteins that potentially function as TF in human cells;
for 570 of these proteins, manually curated data was reported
(http://www.tfcheckpoint.org). These DNA-binding proteins are
part of the complex biological system that controls the transcrip-
tion activity of Pol-II and transcription of genetic information from
DNA to RNA, establishing the gene expression patterns that can
determine cellular programs and specific functions [7–9]. One TF
could physically bind and functionally control hundreds and
thousands of specific BSs in cells of complex eukaryotic organisms.
Moreover, some highly similar short DNA sequences (TF-binding
DNAmotifs) have the potential to serve as direct binding targets of
TFs [10, 11]. Different combinations of motifs are often clustered
in the proximal promoter (upstream and downstream 50end)
regions and these events could provide specific regulatory signals
for target genes.

Experimental models of DNA binding of these TFs have been
studied in detail in vitro and by use of fluorescence techniques in
live bacteria and eukaryotic cells. However, estimation of the DNA-
binding affinity of a native TF to a defined DNA sequence in vivo in
eukaryotes remains a challenge since it requires the quantitative
analysis of (1) the intranuclear TF concentration, (2) the
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concentration of specific DNA sites that are accessible for TF
binding, and (3) the fraction of DNA sites bound by the TF.
Furthermore, the eukaryotic genome is complex, and each cell
and in its different states contains a large number of different
DNA-binding sites that are expected to have different avidity for a
given TF. Additionally, in metazoans, the organization of the DNA
in chromatin is exploited to gain tissue-specific gene regulation
from a common genome achieved by composite binding of differ-
ent TFs to the chromatin landscape, including regulatory DNA
segments (i.e., enhancers). TFs are also capable of physical compe-
tition and/or synergistic protein–protein interactions with each
other and BSs and overall interact with many other regulatory
proteins, RNAs, metabolites, providing very complex and dynamic
regulatory networks [11–18].

In a cell nucleus, physical binding by specific TF molecule(s)
occur, leading to the formation of the TF–DNA pairs(s). Such
binding events allow a TF molecule to regulate the transcription
of a gene or a few neighboring genes in the proximal vicinity of a
TF–BS complex. In the case of a population of the given TF
molecules and corresponding BSs, TFs create within a cell nucleus
a virtual interaction network between the given TF molecules and
their target DNA BSs.

Here, we consider BSs as a population of genome-specific DNA
species, called TF-binding sites (BSs) distributed by their intensity
(or binding avidity, BA) for a given TF molecule. On a genome
scale, the BSs have different TF–DNA BA with regard to the
intensity of interactions with a given TF molecule. In this work,
the TF molecules are considered identical functional species.
According to this simplification, a BS set and its corresponding
TF molecule are considered a point on the graph characterizing a
virtual TF-BS binding network. In this graph, a TF is the single
hub, and the protein–DNA BA characteristics can be considered
the binding avidity-defined weighted domain of a BS set.

At the genome-wide level, the population distribution function
(DF) of relative binding avidity (RBA) for a given TF can reveal
significant statistical and functional attributes of the TF BSs. How-
ever, at the level of single cells or homogeneous cell samples, the
DF of RBA for any specific TF is mostly unknown, since many
technical obstacles in directly counting specific protein molecules
bound to DNA have not yet been overcome. Experimental evi-
dence at this time indicates that association and dissociation of a
given TF at a promoter site of a given gene are very complex and
stochastic events. The proportion of cells exhibiting TF–DNA
binding in each promoter region and/or its BS, rather than the
quantitative level of expression in each cell, is regulated at the cell
and/or tissue level. Furthermore, based on the growing body of
experimental findings on single cells, TF binding and dissociation
events in a given promoter region likely occur in short bursts
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with relatively long and highly variable periods of inactivity.
Transcription regulation in such discrete events is envisaged as
involving changes in the probability rather than the rate of tran-
scription initiation events. A quantitative transcription factor asso-
ciation and dissociation probabilistic model based on integrative
NGS experimental data may explain and specify the TF–DNA
binding mechanisms and associated gene expression profiling and
cellular regulation phenomena, which appear to involve stochastic
behavior.

According to the ChIP-based NGS detection methods, the
number of overlapping TF-bound DNA fragments in a given
genome locus (averaged across the cell population) can help to
statistically characterize the TF–DNA RBA [19, 20]. However,
direct experimental detection of the specific TF–DNA RBA and
the respective construction of the EFD of binding events is a
great biotechnology and statistical bioinformatics challenge. For
one, TF–DNA RBA of different genome loci for the same TF is
not a constant function. It has been observed that binding activity
can vary within a genome by several orders of magnitude [20] and it
can depend on many known and unknown factors. For instance, it
can vary in distinct genome sequence compositions of BSs (TF
binding with different motifs), the location of BSs in the gene
region or its vicinity, loci with different genome architecture com-
plexity, cell type, cell differentiation, genetic and epigenetic back-
grounds, physiologic conditions, and environmental factors. In
fact, due to biological complexity, the stochastic nature of regu-
latory processes and their spatiotemporal dynamics, detection sys-
tem limitations, biased information about RBA the total number of
binding sites per transcription factor in a given cell is unknown.
Information about experimentally detected TF–DNA binding
event values and associated EFD at the genome level is important
for understanding the genome, transcriptome, and interactome
biology and pathobiology of cells and tissues. However, only highly
specific TFBSs with relatively high binding avidity have been reli-
ably identified and characterized. A description of computational
methodologies for the identification of DNA regions of overrepre-
sented motifs that characterized TF binding via genome-scale
experiments was reported in [21]. Such techniques allow for the
prediction of TF–DNA binding events and can improve peak call-
ing in genome scale sequencing experiments. However, in biology,
the available experimental techniques do not sample and denoise
the whole population of potential BSs system, but only study the
noise-prone finite fraction. BA EFD is often not considered in the
high-throughput studies of TF–DNA binding events.
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1.2 High-Throughput

Methods for

Determining DNA-

Binding Events

TF–DNA interactions can be detected by chromatin immunopre-
cipitation (ChIP) and the power of this technique lies in its ability
to analyze protein–DNA interactions in vivo [15–17, 22–26]
(Fig. 1). In ChIP experiments, TFs are cross-linked with DNA
while an immune reagent (antibody) specific to a DNA-binding
factor is used to enrich target DNA fragments where the TF was
bound in a living cell. The bound DNA fragments that overlapped
and are enriched with TF BSs are then identified and mapped on
reference genomes. They are then further quantified to produce
additional computational results.

Fig. 1 Simplified work-flow of ChIP-based experiments for the genome-wide study of TF DNA binding sites in
living cells: DNA and proteins are cross-linked and purified, then bound DNA fragments are isolated and
amplified by massively parallel short-read sequencing methods. (a) ChIP-PET and (b) ChIP-seq-derived
sequences are mapped onto the reference genome. This information is analyzed using statistical bioinformat-
ics and computational genomics methods (see the next section)
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Historically, the first technical platform to conduct wide-scale
TF–DNA experiments was ChIP-on-chip DNA microarrays that
tiled significant regions of the genome ([18], see also references
in [2]). In ChIP-on-chip experiments, the copy number of DNA
segments associated with TFs of interest is compared to a reference
sample that is either genomic DNA or any DNA that might be
immunoprecipitated with a negative control antibody. Starting
with a biological question, a ChIP-on-chip experiment can be
divided into a few major steps: (1) set up and design the experiment
by selecting the appropriate array and probe type, (2) conduct
experimental detection, and (3) carry out bioinformatics and
computational analysis. The probabilistic models and statistical
tests also are used for the identification of significant ChIP-on-
chip signals. Although, over the years, ChIP-chip approaches have
significantly improved and have greatly expanded our understand-
ing of genome-wide TF–DNA interactions, it seems difficult to
make ChIP-on-chip analyses affordable, reliable, and highly sensi-
tive at the complex genome-wide scale [22–26]. In particular,
several technological drawbacks with this method include compli-
cations in array hybridization and probe design, low resolution of
the BS location, and experimental standardization.

Another way to achieve genome-wide identification of pro-
tein–DNA interactions is to adapt high-throughput DNA tag
sequencing for analysis of chromosome mapping of ChIP DNA.
Serial analysis gene expression (SAGE) is a short sequence tag
mapping method, which was originally developed to analyze tran-
scriptome profiles [2]. Several groups have modified the original
SAGE protocol to isolate sequence tags from ChIP DNA and
construct libraries of DNA tags for large-scale tag sequencing [16,
27]. For example, SACO [16] combines ChIP with a modification of
SAGE. This method has the potential to semiquantitatively interro-
gate an entire metazoan genome by combining ChIP with a modifi-
cation of long serial analysis of gene expression (Long-SAGE), a
method normally used for transcriptome analysis [2, 16]. By sequenc-
ing many thousands of concatemerized 21 bp genomic signature tags
(GSTs) generated from anti-TF ChIP sequences, a genome map of
TF-binding sites can be identified and quantified. These and next-
generation short-tag sequencing technologies [22–24] used to ana-
lyze protein–DNA fragments released after ChIP-on-chip have
distinct advantages over standard microarray hybridization
approaches. In particular, chromatin immunoprecipitation paired-
end ditag (ChIP-PET) [4, 9] and ChIP-sequencing (ChIP-seq)
methods [22–24] entail the possibility of a highly efficient process
with a potentially unbiased coverage of the mammalian genome
for large-scale identification of regulatory elements (promoters,
enhancers, hypermethylated regions, etc.) mediated by DNA–protein
interactions (Fig. 1). Current ChIP-PET technologies are capable
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of producing up to 100 or more millions of sequence reads during
each instrument run [4, 9, 28].

The advantage of using PET over single tags is that the PETs
mark the start and end of each ChIP fragment. When PET frag-
ments are mapped to the reference genome, the identity of each
ChIP fragment can be inferred by the PET mapping location, and
binding sites can be accurately defined by the common regions
within clusters of overlapping PETs. Furthermore, duplicate PET
fragments arising from fragment amplification events during clon-
ing can easily be distinguished and removed by treating these
multiple PETs that map to identical locations as a single fragment.
It has been demonstrated that the ChIP-PET method provides the
most powerful short-tag sequencing technique for accurate locali-
zation of the physically specific mammalian TF-binding regions at a
resolution of up to a few base pairs [23, 24, 28].

The ChIP-PET, ChIP-seq, and other IP-based sequence tag
experiments have revolutionized genome-wide mapping, profiling,
and interpretation of transcription factor-binding events. Although
maturing sequencing technologies allow these experiments to be
carried out with short (22–50 bps), long (75–100 bps), single-end,
or paired-end reads, the impact of these read parameters on the
downstream data analysis is still not well understood nor optimal
[28]. Detecting TF–DNA interactions using ChIP-based sequence
tag methods remains fraught with difficulties because it involves
multiple and nonlinear experimental steps, sampling procedures,
and unique data analysis methods. Our knowledge about optimiza-
tion of the relationship between the specific and noisy binding
events and sampling errors defined by ChIP technologies are still
limited. Difficulty in discerning a successful experiment from a
failed one and in choosing appropriate data analysis methods
often presents a challenge.

1.3 Importance

of Statistical and

Computational

Bioinformatics

Analyses

of Protein–DNA

Interaction Events

on the Genome-Wide

Scale SAGE-Couple

ChIP Assays

In many cases, it is desirable to quickly estimate the quality of the
sequencing data mapped on the genome and know the specificity
and sensitivity of genome-wide measurements of transcription fac-
tor-DNA-binding events. If one has prior knowledge of a set of all
TF-binding sites (TFBSs) and the BSs that are not bound by the
transcription factor, then conventional calculation of specificity and
sensitivity of genome-wide TF-binding events is straightforward.
However, in the absence of such prior knowledge, one must rely on
statistical analysis, data-driven biophysical models, and computational
predictions using currently available highly noisy and essentially
incomplete DNA fragment samples.

For example, one can rank the identified target TFBSs based on
the number of observed tags in a cluster of DNA fragments or in
the cluster overlap, split the genomic regions into nonoverlapping
blocks and count the frequency of events considered to be above
binding. After ranking the values of such “protein–DNA binding
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events,” this frequency information can be presented in the form of
an empirical frequency distribution function (FDF) of a pro-
tein–DNA binding event, which is an essential starting point for
any further statistical analysis and the planning of validation studies
[19, 20]. This function has been used to identify the adequate
statistical models required to perform appropriate statistical analysis
catered to different types of genome-wide sequence datasets or
prediction of specific TF binding regions [4, 12, 20]. This results
in an ability to estimate the sensitivity of genome-wide transcription
binding events using technically limited samples [19].

In 2005–2006, analyzing TF–DNA binding datasets detected
using the ChIP-PET method, we recognized that TF–DNA bind-
ing events exhibit skewed frequency distributions [4, 12]. These
binding events were detected by DNA sequence overlap and their
corresponding peak height values were detected using the ChIP-
PET method [12, 19]. This skewed frequency distribution shape
and slope were changed in a predictable manner depending on
sample size (the number of DNA fragment reads in the ChIP-
PET library): the fat tail of the function and the proportion of
specific detected TF–DNA binding sites grew when the number
of sequence reads mapped on the genome increased. The EFD
included two different functions related to technical noise and
specific TF–DNA binding events. The EFD can be approximated
by the mixture probabilistic model(s), where the EFD of the num-
ber of specific binding events followed the generalized discrete
Pareto distribution (GPD) [19, 29].

The GPD exhibited the sample size (number of TF–DNA BSs)
relevant properties and specific TF context dependence [12, 19,
30]. The statistical predictions of the TFBS regions and their
relative avidity have been experimentally validated [4, 12] and
successfully used in experimental studies [4, 11, 12, 20, 31, 32].
These findings have been used for the quality control of different
high-throughput TF–DNA binding data analyses. Our probabilis-
tic model approximation of the EFD of CHIP-PET binding signals
allowed us to evaluate (1) the specificity of an Ig in an immunopre-
cipitation reaction, (2) the sequencing method depth, (3) sequence
library data saturation level, and (4) critical cutoff values that
separate specific and noise-rich TF–DNA binding sites. It also
provided for (5) the quantitative comparison of the genome
mapped TFs according to their relative binding avidity. In addition,
adding motif-finding analysis, this approach allowed us to predict
many novel putative target genes for these TFs and link variation in
the TFBS binding activity to target gene expression levels. In the
last 10 years, several useful mathematical models have been devel-
oped to quantify TFBS-binding avidity level and stratification of
biological functions of specific genes at the genome scale [11, 13,
33–36]. Software for analyzing large-scale biomolecular systems
and their networks has also been developed [11, 13, 19, 36, 37].
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The importance of the mathematical analysis of empirical
frequency distributions of TF–DNA BA events has been recog-
nized, and some of the theoretical predictions have been experi-
mentally validated [11–13, 20, 35, 36, 38, 39]. The
characterization of the empirical frequency distributions of the
biomolecular events is important for our understanding of this
evolving and complex system’s function. For instance, the genes
directly repressed by c-myc showed low avidity of c-myc-DNA
binding in the proximal regions of genes [11]. This result was a
direct result of analysis using a mathematical model that assumes
two classes of c-myc TFBSs, a high avidity class of BSs with consen-
sus E-boxes and a second class of BS containing nonspecific DNA-
binding signals. These findings and assumptions are consistent with
our TF–DNA binding model and the results of the analysis of the
frequency distribution of TF–DNA binding events, E-boxes, and
expression patterns of the related target genes [34]. Both studies
suggest that DNA binding itself (even in the vicinity of transcrip-
tion sites) without additional quantitative and qualitative character-
ization of the BS cannot account for the functional activity of the
TF–DNA binding event. Novel and potentially useful mathematical
models were developed in [36, 38]. These models may help to
identify the TF–DNA sites with low- and high-avidity potential
and link these distinct avidity classes to different TF regulatory
functions.

The objective of this work is to develop a basic probabilistic
model and common statistical bioinformatics strategy to analyze
different types of genome-wide ChIP-based TF–DNA binding
experiments. We specifically propose a mixture probabilistic model
of nonspecific and specific TF–DNA association–dissociation DFs.
Our model estimates the basic statistical characteristics of the BA DF.
We also summarize the findings of a newly developed procedure
which can be used to estimate specificity and sensitivity of genome-
wide tag-coupled ChIP assays (SACO, ChIP-PET, and ChIP-seq).
Via parameterization of the model, we quantify the effect of denois-
ing and sampling on the macroscopic characteristics of BA DF. We
develop a uniform approach for quantitative analysis of such experi-
ments which can (1) identify confidence subsets of TFBS, (2) recon-
struct the low-avidity part of the specific TF–DNA binding DF, (3)
use such data to predict the total number of specific BSs for a given
TF in mammalian organism genomes (e.g., rat and human), and (4)
compare different ChIP-based tag sequencing approaches by
uniform statistical parameters. In the end, we validate our results
using TFBS motif search/prediction algorithms and microarray
expression data. Using diverse experimental data, we investigated
not only the effects of data undersampling but also proposed a
method of estimating the number of nonobserved TFBSs in a
noise-rich fraction with low avidity and the number of nondetected
TFBSs. We then discuss how our study results allow us to better
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understand the functional significance of observed quantitative
differences in the TF–DNA binding activity in low, moderate and
high TF–DNA BSs in gene promoter regions, and to link TF-BS
activity with gene expression profiling.

2 Data, Definitions, Empirical Models, and Methods

2.1 DNA Fragment

Cluster, Cluster

Overlap, Overlap

Cluster Regions,

Cluster Peak, and

TFBS Avidity

Serial Analysis of Chromatin Occupancy (SACO) is a DNA
sequence tag (GST) generation technology to identify genomic
locations of ChIP-isolated DNA fragments. SACO is a method
that has provided a conceptual basis for the development of next-
generation sequencing (NGS) strategies currently utilized for con-
ducting full-genome surveys of DNA-binding protein-binding
sites.

“Paired-End ditagging” (PET) analysis revolves around the
concept of extracting 18-base “signatures” or “tags” from each of
the 50 and 30 termini of any contiguous DNA sequence and ligating
them into Paired-End ditags (PETs) that are concatenated for
enhanced sequencing efficiency (Fig. 1a). Each PET can subse-
quently be mapped onto the appropriate genome assembly
(mapping 36 bp of the genome) to accurately define the location
of the original fragment from which it was derived.

ChIP-PET is a ChIP-based method that uses SAGE-like PETs
[14]. ChIP-PET analysis uses the principle of paired-end ditagging,
which can be applied to the efficient mapping of TFBS identified by
the ChIP method. It randomly shears genomic DNA fragments
that are first enriched for the TFBS of interest by ChIP, inserted
into a specific cloning vector (pGIS3) and then subjected to the
same ditagging approach. ChIP-PET signals (probable TFBS) are
indicated by the overlapping of multiple distinct PET sequences on
defined chromosomal loci.

In ChIP-seq, a ChIP-enriched SAGE-like tag is represented by
either a single internal 21 bp tag sequence (SACO), by a single
27 bp tag sequence (ChIP-Seq), or by a ~36 bp paired-end ditag
sequence (ChIP-PET, with a ditag from the 18 bp 50 and 30

signature sequences extracted from each end of the ChIP DNA
fragment) (Fig. 1b). Thus, SACO and ChIP-Seq demarcate a single
end of the sonicated ChIP DNA fragment, while ChIP-PET, the
full length of the sonicated ChIP DNA fragment. The pro-
tein–DNA BSs are then deduced based on the frequency with
which tags in a given genome locus are extracted from ChIP
DNA fragments using the background computational expectation
or background control data.

A distinctive feature of the binding event defined by any large-
scale ChIP-based technology is the DNA fragment cluster. With
sequencing depth increases, the sample size grows in the ChIP-seq
library, and the library includes more putative TF–DNA binding
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signals with less binding avidity potential. After DNA fragment
mapping, the TFBS-associated DNA fragments are preferentially
derived from the vicinities of TFBS and then accurately mapped to a
definite chromosomal region of the reference genome, forming
DNA fragment clusters. Such clusters can then be characterized as
a putative TFBS for a given protein, and appropriately counted.

However, due to the fundamental differences in the properties
of current high-throughput technologies, an identification of span
of ChIP DNA sequence clusters and the DNA sequence aggrega-
tion procedures into clusters are not standardized. Hence, it may be
technology-specific. For example, the SACO method requires
21 bp DNA fragments for the mapping of a specific region and
forms clusters that identify and quantify the TFBS by incorporating
GSTs in the “SACO cluster. . . that are within 2 kb of each other”
[16]. Additionally, most SACO loci are confirmed by identification
of chromosome location of that putative TFBS near or within
“transcriptional open regions.” A very different definition for frag-
ment (tag) DNA cluster and corresponding TF–DNA binding
event are used by the ChIP-seq method [22, 23].

ChIP-seq is a technique to specifically identify DNA sequences
bound by the protein of interest (such as transcription factor,
cofactor, or other chromatin protein of interest) (Fig. 1b).
ChIP-seq combines the ChIP assay with largely parallel DNA
sequencing to identify the protein–DNA binding sites on a
genome. The methodology of ChIP-seq comprises six step process:
(1) Protein-binding DNA is fixed in place with a cross-linking
agent; (2) using immunoprecipitation, DNA is sheared and pro-
tein–DNA complexes with targeted antibodies are isolated; (3)
DNA fragments are reverse cross-linked and isolated; (4) next a
DNA fragment library is constructed with subsequent sequencing;
(5) genome mapping is next; and (6) a Peak calling software is used
to identify regions and intensity of protein–DNA interaction.

For ChiP-seq TF–DNA binding data, called ChIP-seq single-
end tags (SETs), the authors define the “extended and overlapped”
DNA fragment clusters formed by distinct DNA fragments as over-
lapping if (1) they are overlapped resulting in computational exten-
sion of the original 27 nt sequence into a 174 nt [22, 23] extended
SET (eSET) and (2) they share common loci (at least 4 bp). After
denoising the DNA fragment datasets, the overlapping clusters
(observed as local peak heights on a genome coordinate) can pro-
vide genome mapping and the number of TF binding events in the
entire reference genome, data that are usually reported in the
processed ChIP-seq library dataset. Moreover, the height of the
peak cluster region can be used as an observed measure of relative
TFBS avidity. In essence, the number of transcription factor bind-
ing sites, reproducibility, and reliable identification of ChiP-seq
binding events depends on the avidity of specific antibodies and
the size of the sequence read library.
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According to ChIP-PET [4, 9], when PET DNA sequences
share the same locus (4+ common nt) in the same chromosome
region, they are recognized as a cluster and overlapping PET DNA
sequences, called “cluster overlap” (Fig. 2). The chromosome locus
of the cluster overlap can contain a TFBS region, and the number of
overlapped PET DNA sequences in that cluster overlap region can
represent a semiquantitative measure of relative avidity of a BS (see
below). If more than one statistically confident overlapped PET
DNA region is included in the PET DNA sequence cluster, the
cluster overlap region containing the largest number of DNA

Fig. 2 Mapping, processing, and characterization of TF–DNA binding sites defined after ChIP-PET DNA
fragment mapping onto genome and quantification of binding avidity. (a) Schematic example of the ChIP-
PET DNA fragment cluster and singleton (left panel), processed data, providing information about genome
location, total DNA fragment cluster span and peak height value of the local overlapped DNA fragment density
for a cluster (right panel) . (b) Illustration of DNA fragment undersampling from a mixture of two frequency
distributions where 1, 2, 3, and 5 (black rectangles) indicate the genome region with the intensities of true
bindings q1, q2, q3, q5. (c) Top panel shows region locations and avidity values for true TFBS regions. Bottom
panel illustrates ChIP-PET overlap with false positive data

204 Vladimir A. Kuznetsov



sequences (largest peak) is counted as the most confident “binding
event” associated with the cluster. The peak height in the cluster
overlap region, together with span of the overlap region, are con-
sidered important experimental features of the sequencing experi-
ment and are used for computational preprocessing of these data
and their statistical analysis. Figure 2a shows schematically the
DNA fragment cluster regions mapped on the genome and their
quantitative characteristics used for quality control, prefiltering,
assay optimization, and statistical analysis. Figure 2b illustrates
our concept of specific DNA fragment undersampling, assuming
random sampling from a mixture of frequency distributions,
including high-avidity (specific) and low-avidity (noise) DNA frag-
ments. Figure 2c shows the results of the ChIP-seq experimental
mapping data including typical errors. In this work, we show how
these errors can be related to real/(expected) genome data
mapping precision, to the overlap peak heights (specificity limita-
tion, related to variation of DNA–TF binding avidity), and to the
incompleteness of ChiP-seq data (sensitivity limitation).

In the figure above, the right panel demonstrates a cluster size
count of 5 (PET-5), and the cluster peak height value (binding
event intensity) is 4. If a total DNA fragment cluster overlap span is
longer and the cluster includes more than one peak, then such a
cluster may be split into two or more independent clusters. For
instance, using strict criteria, we may define two DNA fragment
clusters related to each distinct pea) with peak height values of 4
and 3, respectively. This data processing analysis allows improving
the accuracy of peak region identification. It was commonly used in
our analysis.

In Fig. 2b, q1, q2, q3, and q5 quantify the binding signal inten-
sity values detected in specific BS regions. The numbers 1 and 2 are
associated with red rectangles r1 and nd which are quantified bind-
ing signal intensity values detected in low-avidity and/or nonspe-
cific BS regions in a genome. Figure 2c, the top panel represents
region locations and avidity values of true TFBS regions. The
binding avidity value is described by the number of identical line
segments in a given BS region. Comparing panel (b), this panel
indicates that technical limitations and errors in the detection sys-
tem can provide a proximal location of the true binding sites
defined in a real experiment. Incomplete or bias sampling may
lead to the missing of some low- or moderate-avidity BSs (i.e.
binding site 6). The bottom panel of Fig. 2c illustrates that ChIP-
PET (and ChIP-seq) mapping data can include two types of false-
positive (noise) DNA fragment cluster overlap regions: the regions
with relatively low binding avidity (r1, r2, r3, r4) and the regions
with relatively high intensity binding events (s1). The former TFBS
region subset is usually random where results should are not likely
reproducible/correlated over location and the binding intensity
signal variation across biological samples. On the other hand, the
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last case (s1) can be a false finding due to systematic errors of
technology and/or intrinsic features of the biological system. This
second type of error may be reproducible across different experi-
mental systems (e.g., cell types or treatment conditions).

True TFBS regions defined in the experimental sample are
represented by the DNA clusters with the binding intensities q1,
q2, q3, q4, q5, q6. Among the TFBSs represented by this binding
activity, some neighboring BS regions (q1, q2) could not be distin-
guished as the distinct TFBS-positive cluster. Furthermore, some of
the true TFBSs may not be detected due to sampling and random
error issues (true TFBS in position 7; q4). Commonly, binding
avidity of nonspecific BSs on average is lower than binding avidity
for a true BS. Notice that ChIP-based sequencing methods provide
samples that could be incomplete due to limited depth of sequenc-
ing reads and technical or biological noise reads. DNA sequence
overlap regions can provide chromosome location of the highest-
avidity BS, but due to limited sample size and noise signals, the
moderate- and low-avidity specific BSs could not be reliably
detected [20].

Incompleteness of the noise-depleted ChIP-seq signals and
sample size dependence of the TF–DNA binding EFD are impor-
tant features of this data. These statistical characteristics can be
modeled and estimated by the mixture probability function,
which will be considered in the next sections. Several basic quanti-
tative characteristics of the ChIP-seq experiments are summarized
in Table 1. In this table, the statistical characteristics of two
STAT1–DNA binding ChIP-seq DNA fragment datasets are pre-
sented. These datasets (or sequence libraries) represent the samples
of STAT1–DNA fragments extracted from INF-γ-stimulated and
unstimulated human HeLa S3 cells. Note that the characteristics
shown in Table 1 consist of the features important for the quality
control and adequate quantification data analysis for ChIP-seq and
other next-generation sequencing (NGS) methods. We present
detailed biological and statistical characteristics of the
STAT1–DNA binding profiles in Subheadings 4.4 and 5.

2.2 Modeling

of the TF–DNA Binding

Frequency Distribution

The number of clustered/overlapped DNA fragment sequences
covering specific genome loci detected with a ChIP-based NGS
method should roughly reflect the binding site avidity of the
given TF–DNA interactome (Fig. 2b). We assume that when the
number increases, the avidity of a locus becomes higher. Let us
consider the number of occurrences of the DNA fragment
sequence clusters/overlaps as a realization of a random process of
TF–DNA binding. In this study, we consider the TF–DNA binding
events in terms of the probability functions derived from a random
continuous-time Markov jump process. The forward Kolmogorov
differential equations for the birth–death nonhomogeneous in-
time stochastic jump process are used in this work. We analyze the
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properties of a distribution function derived from a global steady-
state solution of Kolmogorov differential-difference equations for
the birth–death nonhomogeneous continuous-time jump process
[40], assuming that the transition rates between discrete states are
non-zero only for nearest neighboring states and at least linear
transition functions of state’s values are realized [30, 34]. In this
manner, the Kolmogorov equations allow for finding the limiting
probability function and the conditions for positive and stable
recurrence of the transition rates of the birth (association event)
and the death (dissociation event) processes. We have called this
function the Kolmogorov–Waring (KW) distribution function.
The dynamic model describing nonstochastic time-dependent

Table 1
Characteristics of updated ChIP-seq libraries [23] (after our reprocessing)

Parameter Stimulated Un-stimulated

Reads

Total sequenced (10�6) 24.1 22.7

Total, uniquely mapped onto genome (10�6) 15.1 12.9

In peaks (10�6) 2.71 (17.9%) 0.54 (4.2%)

Peak coverage (Mb) 34.5 (1.12%) 9.7 (0.31%)

Peaks

Median width (bp) 473 519

Peak height at revised threshold 10 9

# peaks 63,309 16,470

l Average height 19.9 12.9

Median height 13 12

# peaks in problematic clusters (due to systematic errors) 853 (1.3%) 727 (4.4%)

# peaks after filtering (used in our work) 62,456 15,743

Average height of clusters after filtering 20 12.6

Average height of clusters in problematic clusters 17.3 18

Peak coverage after filtering (Mb) 34.1 9.3

Peak coverage of problematic clusters (Mb) 0.45 0.4

Median width (bp) 474 522

Median width of problematic clusters (bp) 414 427

Number of sequences on peaks 1,246,120 198,566

Number of overlapping loci 14,874 (23.8%) 14,303 (90.8%)

Number of non-overlapping loci 47,582 (76.2%) 1440 (9.2%)
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trajectories and asymptotic values of mean and variance are
proposed and analyzed. Next, we generalize our probabilistic
model of binding events introducing the analysis of the global
steady-state solution of the Kolmogorov differential equations,
using the Kemp generalized hypergeometric probability distribu-
tion functions [40].

We use our global optimization method for goodness of fit
analysis, summarizing the weighted discrepancy between observed
values and the values expected under the model in question. We
identify the parameters of the KW probabilistic function which
describe how well its specific subfamilies fit a set of observations.
We then specify mechanisms and quantify parameters of the transi-
tion rate law driving jumps between states in TF–DNA binding
events.

2.3 Outcome, Event,

Random Variable, and

Probability Function

Let S be the sample space of an experiment. An event A is a set of
outcomes in an experiment, a subset of the sample space S, to which
a probability is assigned. A single outcome may be an element of
many different events, and different events in an experiment are not
equally likely since they may include very different groups of out-
comes. By Kolmogorov’s axioms, we assume that P(A) � 0,
P(S) ¼ 1 and A and B are mutually exclusive events; then
P(A [ B) ¼ P(A) + P(B). Any function of P that satisfies the axioms
of probability is called a probability function. Any random variable
X is a function from a sample space S into the nonnegative real
numbers, with the probability that for every outcome there is an
associated probability Pr(X ¼ x) that exists for all values of x.
Random variables will be denoted throughout this work by upper-
case letters. Realized values of the random variable will be denoted
by corresponding lowercase letter.

The random variable X takes on a finite or countably infinite
number of possible event values. We determined P(X ¼ xi) ¼ pi for
all of the possible values of X and called it the discrete probability
function (PF), which is a step frequency function with only an
enumerable number of steps. Its height of the step at xi is pi; then
P(X ¼ xi) ¼ pi. We say its support is the set{xi}. The cumulative
distribution function (CDF) of X is defined as P(X � xi). By
definition P(X � xi) is a nondecreasing function of x, and 0 � P
(X � xi) � 1. If lim

x!1P X � xð Þ ¼ 1 then the distribution is called
proper. Thus, X

i

pi ¼ 1

2.4 Experimental

Frequency Distribution

In the ChIP-based NGS data, the TF–DNA binding events can be
defined by the number of DNA fragment sequences belonging to
their cluster/overlapped region mapped to a genome locus.
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We define a ChIP-enriched DNA fragment library as a list of
ChIP-derived DNA fragments which uniquely map to the genome
and contain distinct tags (ditag in the case of the ChIP-PET
method). The size of a library, M, is the total number of distinct
DNA fragments observed in the library and uniquely mapped to
the genome. Let n(m,M) denote the number of TDB events in
which ChIP-enriched DNA fragment sequences in a cluster overlap
have peak height m; m is a count of distinct DNA sequence frag-
ments within a cluster overlap in a given genomic locus in the
library of size M. Let J denote the maximum observed TF–DNA
binding events (e.g., peak height in a given locus) in the sequence
library. Let N denote the number of specific binding events:

N ¼
XJ
m¼1

n m;Mð Þ: ð1Þ

Then, we can also call M the “DNA sequence mass”

M ¼
XJ
m¼1

mn m;Mð Þ: ð2Þ

The histogram or the frequency distribution of the number of
DNA fragments in a given locus within a library

�P X ¼ mð Þ ¼ �pm ¼ n m;Mð Þ=N
might be considered the empirical EFD of TF-binding activity.

Our analysis of the empirical EFDs in all studied datasets sug-
gests that a binding event can be represented by two (or more)
distinct random binding processes generated by different TF bind-
ing mechanisms. The binding events shown in Fig. 2c can be
described by the following empirical mixture EFD function:

�P X ¼ mð Þ ¼ α �P s X ¼ mð Þ þ 1� αð Þ �Pns X ¼ mð Þ, ð3Þ
where �P s is the frequency distribution (FD) function of the specific
TF–DNA binding event that occurred exactly m times in each
genome-wide experiment. �Pns is the FD function of nonspecific
binding; m ¼ {0,1,2,. . ., mmax} is the number of bindings in a
given genome-wide experiment; mmax ¼ J denotes the maximum
value of m. The parameter α is the fraction of specific DNA frag-
ments of the experiment observed in a total population of DNA
fragments mapped onto a genome in any location.

0 < α < 1.
For a given TF-bound DNA fragment library, we assume that

the corresponding probability function (PF) of the TF–DNA bind-
ing is defined as a sum of PFs of specific and/or nonspecific
TF–DNA binding events:
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P X ¼ mð Þ ¼ αP sp X ¼ mð Þ þ 1� αð ÞPns1 X ¼ mð Þ, ð4Þ

where P(X ¼ m) is the PF of occurrence of specific and nonspecific
bindings, X is the random number of bindings in the genome, m
{0,1,2,. . .} is the number of bindings, Psp is the PF of specific
bindings, 0 < α < 1 is the fraction of specific bindings, and Pns1 is
the PF of nonspecific bindings. Note that Pns1 represents the exper-
imental “background” noise and/or truly “low-avidity” binding
events.

Using ChIP-PET, ChIP-seq, and SACO datasets, we construct
an EFD of the binding events in a given experimental library. Pns

describes low-specific and/or nonspecific bindings, which are
mostly represented by singleton DNA fragment sequences and
low-height peak DNA fragment forming clusters. We found that
Pns can be well approximated by an exponential function. We also
model the noise part of the EFD using a Monte-Carlo simulation.
This method provides random sampling of DNA sequence frag-
ments from a given library and random mapping of corresponding
fragment spans onto a reference genome. DNA sequence fragment
mapping was carried out onto “available” regions of a reference
human genome by sampling the DNA fragments from a uniform
distribution. We called this method “mapping at random without
sequence specificity.” After such mapping, random DNA fragment
overlap clusters were identified and counted. As a result, the fre-
quency distribution of the “random” clusters was constructed [4,
20]. We observed that both methods often provide similar FDs for
the same library.

We described Psp using the so-called generalized discrete Pareto
distribution (GPD) function [20]. This probabilistic model consti-
tutes an approximation for many skewed empirical frequency dis-
tributions with a long right tail in genome-scale biomolecule
datasets. Such properties are often observed in evolving biological
systems and in samples from diverse big-size bimolecular datasets.

In this work, we provide the parameter estimates of the func-
tions Pns and Psp and the relative weight parameter α using the
algorithm published in [30] and briefly described in Subheadings
2.5 and 3.8 of this chapter. The attributes of nonspecific or low-
specific and relatively high-specific components of the mixture
probability binding model in Eq. 1 are presented in Subheading 3.

Note that some nonspecific DNA fragment clusters can be
found among highly abundant and experimentally reproducible
clusters and/or cluster overlaps with large enough heights. The
DNA sequence fragment clusters with the “problematic” or
“unlikely” TFBS locations such as mitochondrial DNA, centro-
meric regions, locations where no gene is found within a 100 kb
vicinity of a putative BS, that near a genome gap, or repeat element
regions should be considered a source of systematic errors,
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reproducible across different datasets and experimental conditions.
Such clusters can be eliminated from analysis by several empirical
rules and excluded at the prefiltering stage of data processing. This
type of systematic error can be identified computationally via addi-
tional analysis of suspicious genome regions.

In this case, the extended mixture probability model of
TF–DNA binding can be considered:

P X ¼ mð Þ ¼ αP sp X ¼ mð Þ þ βPns1 X ¼ mð Þ þ 1� α� βð Þ
� Pns2 X ¼ mð Þ, ð5Þ

where the probability functions Pns1(X ¼ m) and Pns2(X ¼ m) are
the probability of nonspecific random errors and of nonspecific
systematic errors, respectively. α, β are unknown weight para-
meters. In our analyses, Pns2 binding events can be defined in
experimental data as the false-positive DNA fragment clusters.
Our computational analysis provides an advanced genome region
annotation of the “problematic” regions, evolution conservation
regions [41], and specific sites (e.g., TFBS). A relatively small
fraction of DNA fragment data consists of systematic errors,
about 3–7% of all ChIP-based library sequences mapped onto a
genome.

Because sequence read sampling is an experimental parameter,
the EFD Eq. 4 is a function of sample size. In this case, EFD is, in
general, considered the sample size and a scale-dependent function
[15, 19, 20, 42]. Therefore, when the sample size M increases, the
shape of the EFD changes in accordance with a sequence library
size M. This important experimental fact is closely associated with
the skew form of the mixture EFD of binding events defined in
ChIP-based experiments, and all other NGS experiments as well.
This basic property of the EFD of TF–DNA binding events of NGS
experiments and their mathematical modeling of this property is
discussed in the next section.

2.5 Critical Cutoff

Values, Specificity,

and Sensitivity

If one has prior knowledge of all TFBS and ChIP-seq or ChIP-PET
sequences not bound by a given TF, then conventional calculation
of specificity and sensitivity is straightforward. However, in the
absence of such knowledge, one needs to rely on statistical analysis
of data-driven mathematical models and computational estimates
using available highly noisy and incomplete DNA fragment samples
[12, 28, 31, 34, 43, 44]. A significant amount of nonspecific
genomic DNA fragments (background or technical noise) is always
present in the immunoprecipitated DNA material of any ChIP-
derived dataset [12, 28, 31, 34]. Some nonspecific DNA might
easily be filtered out after computer mapping of the DNA frag-
ments onto the genome. In a larger library, the number of TF-
specific loci is of course increased. Furthermore, background or
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technical noise genomic DNA fragments are randomly located
in the genome and thus false clusters occur in any region of
the EFD.

The following basic statistical tasks are becoming imperative:
(1) specificity of the library that identifies statistically significant
TFBSs with a confidence level t; (2) power of the library which
identifies “true” specific binding events in a noise-enriched subset
of relatively low read counts (0 < m < t); and (3) sensitivity of
detection of “lost” BSs that are available for TF binding in given
cells under given conditions but were not detected due to a
limitation of the TF library size or the technical implementation.
We analyze these problems via probabilistic modeling, goodness-
of-fit analysis, and computational modeling of nonspecific and
specific TF–DNA binding event loci for a given TF in the ChIP-
Seq library.

For a given TF-bound DNA fragment library mapped on a
reference genome, let N denote the sum of two subsets of
TF–DNA binding events:

N ¼ N 1 þN 2 ¼
Xt�1

m¼1

n m;Mð Þ þ
XJ
m¼t

n m;Mð Þ, ð6Þ

where N1 is the number of observed “noise-rich” TF–DNA bind-
ing loci with relatively low/moderate TF -binding avidity potential;
N2 is the number of observed “specific-rich” TF–DNA binding loci
with relatively high TF binding avidity potential; t is the TF–DNA
binding specificity threshold value, indicating the critical cutoff for
the true and false TF–DNA fragments forming clusters. Atm¼ t or
m > t the, loci of DNA fragment clusters will be called “confidence
clusters.”

To quantify specific and nonspecific TF–DNA binding events,
we separate the uniquely mapped ChIP-seq or ChIP-PET DNA
fragments into two subsets:

M ¼ M 1 þM 2 ¼
Xt�1

m¼1

n m;Mð Þm þ
XJ
m¼t

n m;Mð Þm, ð7Þ

whereM1 is the number of ChIP-seq DNA sequences in the subset
of “noise-rich” and nonreliable TF–DNA loci;M2 is the number of
ChIP-seq DNA fragments in the subset of reliable specific
TF–DNA loci.

For a given ChIP-seq TF–DNA fragment library, let �N denote
the total number of specific TF–DNA binding loci in the ChIP-seq
DNA fragment library. Then, a set of specific TF–DNA binding loci
is split into two subsets as follows:
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�N s ¼ �N s1 þ �N s2 ¼
Xt�1

m¼1

�ns m; �Mð Þ þ
XJ
m¼t

�ns m; �Mð Þ, ð8Þ

where �ns m; �Mð Þ is the estimated number of specific binding events
at value m; �N s2 is the estimated number of loci in the subset of
observed specific TF–DNA loci; �N s1 is the estimated number of
specific TF–DNA loci in the subset of unreliable low-/moderate
avidity TF–DNA loci.

To quantify avidity-specific TF–DNA binding events and esti-
mate parameter α in Eq. 3, we can estimate the number of ChIP-
Seq DNA fragments in high confidence loci �M and split this into
two values:

�M s ¼ �M s1 þ �M s2 ¼
Xt�1

m¼1

ns m; �Mð Þm þ
XJ
m¼1

�ns m; �Mð Þm, ð9Þ

Using Eq. 9, the weight parameter α in Eq. 3 can be estimated
by the following:

a ¼ M s =M : ð10Þ
Parameter t is an unknown threshold value of a random variable

X domain separating the domain on two sub-domains a binding
specificity level defined by the following:

Sp ¼ �P s X � tð Þ= �P X � tð Þ � 100%, ð11Þ
where �P s X � tð Þ and �P X � tð Þ are as defined in Eq. 3; �N tot denotes
an estimate of the total number of binding events in the entire
genome in a given cell population under given experimental con-
ditions as follows:

�N tot ¼ �N 0 þ �N s1 þ �N s2, ð12Þ
where �N 0 is the number of undetected TFBSs. Then, the sensitivity
of the ChIP-seq assay is estimated by the following:

Se ¼ �N s= �N tot � 100%, ð13Þ
where �N s is the estimate of the number of true TF–DNA

binding events within the observed domain of library (1, 2, 3,. . ., J).

2.6 Models of Avidity

Distribution Function

of Specific Binding

Events

2.6.1 Standard Pareto PF

Having big and diverse NGS datasets, it is possible to extract some
common statistical properties that are robust and reproducible
across many biological systems, and their networks, at the genome
scale. The EFDs of the key biological parameters can be useful in
such a discovery strategy. As mentioned earlier, the following has
been observed: (1) the skewed nature of the EFD to the right and
(2) the robustness of such relative to small changes in environment,
cell type, or organism [15, 20, 30, 34].
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One widely used skewed PF is the standard discrete Pareto
distribution (SPD) [40, 45]

P X ¼ mð Þ ¼ pm :¼ f mð Þ ¼ ζ kð Þ
mkþ1

ð14Þ

where X is the nonnegative random variable which has a power-law
distribution if m ¼ 1, 2, . . . ; +1 > k > 1, and

ς kð Þ ¼ 1=
X
m�1

m� kþ1ð Þ
 !

ð15Þ

is the Riemann zeta function. This PF is characterized by a single
constant, which is the positive value exponent parameter k. Equa-
tions 14 and 15 are used for statistical characterization of many
different calculations of bimolecular systems such as the frequency
of specific DNA sequence subsets in the genome, protein domains
in proteins of a proteome, paralogous gene family, and the number
of links in network models.

The SPD function is a very useful for the approximation of the
skewed EFDs. In double-logarithmic coordinates, the log pm as a
function of log(m) is a straight line with a negative slope [14] has
scale-invariant property

f nð Þ ¼ ς kð Þð Þ�1f mð Þf lð Þ
for positive integers �1 , l � 1 , n ¼ m · l. Equation 14 has
“power-law” behavior, which is considered a basic feature in the
so-called scale-free network [46], self-organized growing network
and scaling theories [47, 48]. The similar scaling concept of self-
similarity is in fractal and scaling polymer theories, where the
probability function of set quantities is statistically self-similar at
every scale.

Currently, a scale-free (SF) random network is commonly
found in the literature today in random growing network models.
The concept of SF consists of many low degree nodes and a few very
large degree nodes. The number of degrees of nodal connectivitym
in the SF random network, the number of connections the node
has, is distributed according to the SPD, which has positive con-
stant exponent parameter k [46]. All SF networks are unlikely stable
outside the (0 < k < 2.5) region [49, 50]. Thus, with these
constraints, the SF model assumes an independence of the function
shape (and exponent parameter (k + 1)) from scale (e.g., size of the
network). This property suggests independence of the statistical
characteristics of the network nodes (objects) and their links (node
pair interactions) regardless of changes in the sample size of a
network. Note that the SF network concept postulates that the
SPD function, as a realization of a stochastic process of network

214 Vladimir A. Kuznetsov



growth, is fitted to the empirical data on the right tail of the
function at m ! +1 and t ! +1.

The only known randommechanism of a growing network into
a SF network is preferential linking [46, 49] where at each time step
a new node (site) is added. It connects to old nodes via a fixed
number of links. The probability of an old site getting a new link is
proportional to the total number of connections to this site. Intro-
duction of additional biologically or environmentally reasonable
mechanisms such as aging or death of sites in the SF network or
any other factor leading in increased power of the fat tail of the
distribution function changes the value of parameter k and breaks
the SF property even though m ! + 1 and t ! + 1 [30, 49,
50–53, 67]. These and many other theoretical results assume that
the SF model is unlikely to fit to actual biological data.

2.7 Implementation

of the Scale Free

Random Network

Model Is Unlikely

Possible

Challenge 1. Identification of a complete skewed frequency distri-
bution by its tail.

In a single cell or a cell population, TFBS avidity can range
widely, often within 4–5 orders of magnitude. It has also been
demonstrated that a large fraction of binding events in cells has
very low or moderate binding avidity (see below).

The standard Pareto distribution can be asymptotically derived
from many probability distribution functions at m ! 1 and
t ! 1 [18, 19, 29, 40, 44, 49, 51–61], which consists of a few
percent of the observed events in the right tail. For these reasons,
many alternative mathematical and mechanistic models can provide
similar asymptotic behavior and cannot be differentiated due to
theoretical uncertainty, incomplete sample size, and experimental
errors.

Thus, the goodness-of-fit of the parameter k of the right fat tail
of the EFD for NGS data (or equivalent FD tail characteristic)
cannot provide an identification of actual PF and the random
mechanisms leading to an empirical skewed PDF.

Challenge 2. Actual sample size of observation datasets avail-
able for the analysis of biomolecular systems is often unknown and
may be essentially incomplete [19, 20, 31, 34, 43, 44, 60, 62–66].

Thus, the goodness-of-fit of the parameter k of the right fat tail
of the EFD for NGS data is a function of sample size and cannot be
used for identification of actual PF and the random mechanisms
leading to a skewed EFD.

Challenge 3. Genome-wide NGS information includes noise-
rich quantities [4, 12, 14, 19, 20, 28, 34, 43, 63].

Due to sample preparation biases and nonlinear amplification
of sequences, the right tail of an EFD could be overloaded with
missing frequency data and false-positive events, reducing the reli-
ability of the parameter estimation of the DF right fat tail
(see Subheading 2.4).
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Basically, analyzing only a relatively small part of an EFD for the
identification of the probabilistic mechanisms leads to mathemati-
cal and experimental challenges. These great challenges are com-
monplace for any experimental information collected in big
biomolecular datasets. Theoretical and simulation studies of the
effects of false negatives in the detection of links and/or nodes
(i.e., bond and/or node undersampling) on network topologies
focused on the relation between true and observed degree distribu-
tions found that undersampling changes qualitatively the shape of
the degree distribution. In other words, the shape of the best-fitted
PF and the parameter k are dependent on sample size even at large
values of m [19, 34, 43, 60, 63, 66].

Curiously, the SF network distribution models have been tested
using correlation or linear regression models and estimation of k in
the SPD using small sample size biological databases [46]. This
results in the use of the intermediate part of the EFD (not the right
hand tail) where noise-rich data and non-regular distribution of
missing data are present. Alternative models have not been statisti-
cally compared and/or validated. Our visual inspection of the
studied Pareto-like EFD in the log–log plots and statistically
based goodness-of-fit model analysis criteria applied to the entire
and independent datasets have demonstrated systematic deviations
of the most empirical FDs from the SPD [19, 30, 31, 34, 60, 62,
66]. Thus, statistical analysis reveals a reproducible disagreement
between the statistical properties of the SF model and the EFDs
constructed based on different types of biomolecular datasets.

Summarizing the SF model statements, we conclude the
following:

1. Space of the events may not be defined. The SF statements
defined such that probability estimates may not satisfy the
Kolmogorov axioms. Excluding low- and moderate-frequency
event values, comprising a vast majority of the experimental
data, presents a great challenge for identification and unbiased
fitting, statistical analysis, and interpretation of the power law-
like form of the right tail EFD.

2. The standard power law Eq. 14, with or without normalization
factor [15], is systematically deviated from the EFD of ChIP-
Seq and other NGS data.

3. Exponent parameter k is frequently a function of sample size and
sample preparing procedure: the slope of the right tail of the
standard power law DF decreases with increased sample size.

4. Technical and natural biological noise may lead to biased
parameterization of the testing DFs.

These factors could lead to incorrect interpretation of statistical
properties of biomolecular datasets.

It has been suggested that self-organization models predicting
the power-law behavior may play a role in the course of natural
selection in evolutionary biology, namely, population dynamics,
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molecular evolution, and morphogenesis [48]. However, self-orga-
nization is not a model of natural selection and molecular evolu-
tion. The reactions of biological systems to external factors and
diversity of internal interactions in any cell, tissue, or multicellular
organism are not simply self-organizing, as they are thermodynam-
ically open and evolutionarily derived complex systems relying on
continuous input of energy and fitness to the environment.

Thus, more mechanistic, exploratory, and predictive probabi-
listic models of the biomolecular systems and their network quan-
tifying at the genome scale should be developed and validated using
appropriate datasets and statistical methods.

2.8 Generalized

Discrete Pareto

Distribution

Power law-like distributions with a skewed form and heavy tails are
common features of many large-scale evolving complex systems
such as the frequency distribution of earthquake or solar flare
size, the duration of neuronal avalanches in the brain, protein
domains in the proteomes or TF–DNA binding avidity in genomes.
In probability theory, a family of skewed DFs is very abundant with
many dozens of distinct functions [29, 30, 40, 51, 56–58, 67, 68]
and the family includes many well-studied DFs extensively used in
the analysis of biological data [30, 33, 34, 36, 44, 69, 70], suggest-
ing different stochastic processes occurring in these DFs.

Previously, we observed that several classes of skewed probabil-
ity functions (Poisson, exponential, standard power law, lognormal,
logistic functions [29, 40]) are available to fit the empirically
defined frequency distribution functions FDFs observed in geno-
mic and transcriptomic datasets. One such distribution is the FD of
the TF–DNA binding events. After performing goodness-of-fit
analysis using the method presented in [30, 34], we observed that
the best fit for the most EFD empirical frequency distributions was
obtained using the GPD PF [19, 30, 34]. Therefore, we propose to
describe the EFD of the TF–DNA binding events using the (up-
value) truncated GPD function [19, 30, 34, 45]:

f X ¼ mð Þ ¼ zJ
�1 1

m þ βð Þ kþ1ð Þ ð16Þ

where in our case the random variable X is a positive discrete
variable of TF–DNA binding avidity in a given TF–DNA BS; m
can be 1, 2, . . . J; in the EFD, the random variable X (in the m
domain) is the peak height of a given DNA fragment cluster of a
genome; f(X¼m) is the probability that a randomly chosen specific
BS has a TF–DNA binding avidity value m; function f is character-
ized by two explicate parameters, k and β, where k > 0 and β > �1;
and the normalization factor z is the generalized Riemann zeta-
function value [29].
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zJ ¼
XJ
m¼1

1

m þ βð Þ k þ 1
� � ,,

ð17Þ

where k characterizes the skewedness of the probability function; β
characterizes the deviation of the PF from a simple power law.

Figure 3 shows the sample size-define EFD for the INF-
gamma-induced STAT1 TF-binding events detected in ChIP-
PET binding experiments [15, 20]. ChIP-PET library dha01, the
pooled (dha01, dha02, sha01) or virtual sequence library, and
negative control library data (nonspecific binding, sequences
pooled down at nonspecific immunoprecipitation) are shown.
Binding events were defined by the DNA fragment cluster size. A
strict cluster size definition was used for discrimination of binding
events [15, 20].

Figure 4 shows the results of our goodness-of-fit analysis of the
SPD and GPD distributions. The EFD has been reconstructed after
data noise subtraction [34] using ChIP-Seq data for the Nanog
protein bound to specific BSs in the genome of a mouse embryonic
stem cell [13]. In a log–log plot, the EFD shows essentially differ-
ent properties in comparison to SPD. An asymptotical part selected
by visual inspection of the right tail of the EFD follows the SF
concept; using a cutoff value of 39, the truncated EFD of the fat tail
is approximated well by the SPD (at k¼ 1.6; Fig. 4a). However, the
left part of the dynamical range represented by the majority of

Fig. 3 Sample size-defined EFD of TF–DNA binding events for INF-gamma-
induced STAT1 TF. ChIP-PET binding events for studied ChIP-PET library dha01,
pooled (dha01, dha02, sha01), and negative control library are shown. Binding
event is defined by the DNA fragment cluster size for ChIP-PET data using a strict
cluster size definition
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events cannot be back-extrapolated. Using the cutoff value m ¼ 8,
the best-fit GPD fits well the studied events for the whole dynami-
cal range, including the left part of the distribution function on the
interval from 1 to 8 (Fig. 4b). Goodness-of-fit analysis was strongly
supported by the Fisher test (F ¼ 32,710; p < 0.0001) with a small
error (3.63), estimated using SigmaPlot-11 software. Based on
these high-confidence results, supported by the appropriate statis-
tical tests, we could select GPD as an appropriate model for future
analysis of ChIP-Seq databases. Figure 4c illustrates a track of
research of statistical properties of a complex system followed by
the scaling concept.

… we are trying following the Scaling  models
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Fig. 4 Results of goodness-of-fit analysis of the standard Pareto DF and the GPD PFs. The EFD has been
reconstructed after data noise subtraction [34], using ChIP-Seq data for the Nanog protein bound to specific
BSs in the genome of a mouse embryonic stem cell [13]. (a) Truncated part of the EFD fat tail is well
approximated by the standard Discrete Pareto PF (SPD) (at k ¼ 1.6); however, it cannot be used for back-
extrapolation. (b) Best-fit GDP PF at b ¼ 5.57 � 0.210 (at t-test value 25.92 and p < 0.0001) and
k ¼ 1.6 � 0.026 (at t-test value 60.9 and p < 0.0001) using the cutoff value m ¼ 8, and provides for
accurate fit of the studied data within the whole dynamical range, including the left part of the EFD. Goodness-
of-fit analysis was supported with the Fisher test (F ¼ 32,710; p < 0.0001) and at a very small error (3.63).
Parameters were estimated by SigmaPlot-11software. (c) Illustration of a track of research of the statistical
properties of a complex system followed by the scaling concept. This figure was adapted by the author (V.K.)
from Scaling Concepts in Polymer Physics by Dr. P.G. de Gennes [47] with minor changes
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2.9 Properties of the

Scale-Dependent

Pareto-Like

Distribution

In Eqs. 16–17, the sample size dependence is modeled after the
random parameter J. This parameter can be experimentally defined
as the value of themost abundant event. J¼max{m};m¼ 1, 2, . . ., J.
In Eqs. 16 and 17, the parameter J is a function of sample sizeM. In
the context of NGS datasets,M is the number of DNA fragments in
the NGS sequence library mapped onto the genome. When M
increases, the right hand tail of the probability function at β > �1
and k > 0 becomes longer, and the shape of the probability function
changes and gradually deviates from the SPD. If β ¼ 0 and J ! 1,
then Eq. 16 converges to the SPD.

Let us describe several important statistical properties of the
GPD distribution in more detail.

First, we show that when M is increased, the number of TFBSs
(N) becomes larger. We assume that intrinsic parameters of the
function (k, b, a) are constant.

For convenience, let us first find the relationship between N
and M for the continued form of a double-truncated generalized
Pareto PF:

f mð Þ ¼ ks
m0 þ bð Þk
m þ bð Þkþ1

, ð18Þ

where m0 � m � aM, s ¼ 1= 1� m0þb
aMþb

� �k� �
, m0, k, and b are

constants, and m0 > 0; k > 0, b > �1; a0 < a < 1, a > 0.
Function f could be estimated as follows:

f ¼ nm=N , ð19Þ
where nm is the observed number of distinct events (overlapped
DNA sequence fragments, peak heights) which have the occurrence
m in a given sample of size M.

Then, using estimation

M ¼
ðaM
m0

nmmdm, ð20Þ

we can derive the formula

N ¼ M �A Mð Þ; ð21Þ
where

A Mð Þ ¼ ks m0 þ bð Þk
ðaM
m0

m

m þ bð Þkþ1
dm

0@ 1A�1

: ð22Þ

Taking the integral, we find that if M ! 1, then
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N � Mk

at 0 < k < 1; and

N � M=logM

at k ¼ 1; N ~ M at k > 1.
Thus, in all cases, for parameter k, we have N ! 1 when

M ! 1.
Using a discrete form of the GPD function along with Eqs. 18,

19, and 22,

M ¼
XaM
m¼1

nmm ¼ N
XaM
m¼1

nmm= m þ bð Þkþ1, ð23Þ

where

N ¼
XaM
m¼1

nm ¼
XaM
m¼1

nm= m þ bð Þkþ1 ð24Þ

and k > 0 ; b > �1 , a0 < a < 1 , a0 > 0, we arrive at

N ¼ MAd Mð Þ, ð25Þ
where

Ad Mð Þ ¼
XaM
m¼1

1

m þ bð Þkþ1
=
XaM
m¼1

m

m þ bð Þkþ1
: ð26Þ

In the specific case of the Lotka–Zipf law (b¼ 0; k¼ 1), we have

Ad Mð Þ ¼
XaM
m¼1

1

m2
=
XaM
m¼1

1

m
	 π2=6 ln aMð Þ þ γð Þ�1, ð27Þ

where γ ¼ 0.5772. . . is the Euler constant. Then,

lim
M!1

N 	 π2=6 M= ln aMð Þð Þ ! 1 ð28Þ

In other specific case b ¼ 0, k ¼ 2, we have

lim
M!1

N 	 1þ π2=15
� �

M ! 1: ð29Þ

One could conclude that Eq. 24 has a similar growth to infinity
for N as we have shown for Eq. 20, when M ! 1.

Thus, when the sample size M increases, the right hand tail of
Eq. 18 becomes longer, and the shape of the distribution function
is gradually deviated from the direct line with a constant slop (SF
network assumption) and SPD (J ! 1).

Notice that the truncated GPD function can be used for param-
eterization of EDFs, estimation of specificity and sensitivity of the
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experimental data, and comparative analysis of the statistical char-
acteristics of the EFDs under different conditions and in differing
cellular contexts. According to our goodness-of-fit analysis of
diverse ChIP-seq/NGS datasets and our computational simula-
tions of the sample size changes of the modeled frequency distribu-
tion, the left and/or right truncated GPD can often be extrapolated
from the distribution tails and used for statistical inferences (see
next sections).

This PGF can be used even when the PF does not have an
asymptotical steady state at M ! 1 and the tail exhibits regular
(power law) reduction behavior at m ! 1, t ! 1. Examples of
such practical applications can be seen in [34]. In the next section,
we demonstrate that the scale dependence of the TF–DNA binding
EFDs is a general attribute of such experimental data sampling.

2.10 Waring

Distribution Function

There are many families of skewed distribution functions that have
power law-like shape and vary regularly at infinity with exponent
term [19, 40, 52, 62]. One of the useful skewed DFs is the Waring
distribution [34, 40, 51]:

pm ¼ p0
B b þ 1;mð Þ
B a;mð Þ ð30Þ

p0 ¼ 1� a

b

� �
ð31Þ

m ¼ 1, 2, . . ., B(x) is the Beta function [40] and
+1 > b > a > 0.

This function was introduced by Irwin in 1963 [70]. It is a
skewed DF that includes two positive parameters, which can be
defined based on EFD data. The function has a power law-like
shape and varies regularly [52] at infinity with exponent term
m�(1 + b � a) [52, 62]. Additionally, this probabilistic model allows
us to predict p0, which is the probability of unobserved events in a
data sample. This parameter can easily be estimated using good-
ness-of-fit analysis of the EFD and estimation of parameters a and b.
Importantly, the Waring distribution can be an explanatory model,
generated with the help of a specific Markov [30, 65] stochastic
process to model TF–DNA binding avidity.

Our previous studies have shown that this model fits well to
many empirical frequency distributions in bimolecular systems ana-
lyzed at the genome scale [19, 34, 62]. Furthermore, the estima-
tion of parameters a and b leads to the prediction of the total
number of distinct species, or rather TF–DNA binding sites, pres-
ent in the studied biological system [34]. Notice that the Waring
distribution function consists of a subfamily in the three-parametric
distribution function family, called the Kolmogorov–Waring (KW)
distribution function, which we consider and use in this work.
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3 Explanatory Relative TF–DNA Binding Avidity Model: The Kolmogorov–Waring
Function, Its Properties, and Generalization

3.1 The Birth–Death

Kolmogorov Random

Process Model

Let us denote the KW probability function by PKW(X ¼ m), where
m¼ 0, 1, 2, . . . [30]. The KW probability function has been derived
as a result of the modeling of fundamental biological phenomena—
birth and death in a gradually evolving population. This function
has been used in the analysis of different types of events at genome,
transcriptome, proteome, and interactome scales [20, 30, 31]. In
particular, we have shown that PKW can be used as a possible
exploratory model for stochastic “binding–dissociation” of TFs
on specific DNA BSs at the genome scale for different TFs in
differing cell types [34]. For statistical analysis of ChIP-based
experiments, we consider a population of the TF molecules in
which each TF molecule can bind specifically and/or nonspecifi-
cally to a given DNA locus with probable TFBS.

The mathematical part of this work focuses on relations
between asymptotic solutions to the time nonhomogeneous
birth–death Markov random process described using Kolmogorov
differential equations [62], skewed distribution function families
[34, 64, 65] and the Gaussian hypergeometric functions [40, 62].

Let us briefly describe the Markov process with continuous
time and countable number of states 0, 1, 2, . . .. We characterize
the N distinct BS loci for given TF molecules as a population of
DNA target sequences of a genome of an organism. Let d1, d2, . . .,
dN denote these N BSs. Let mi denote the number of countable
TF–DNA binding events (discrete occupancy values) of the BS di
presented in the list of distinct BSs of a given genome. mi ¼ 0, 1,
2,. . ., J, where J is the occupancy value of most avidity (most
abundant cluster of the DNA fragments in a given library) in a
genome. Let nm denote the number of distinct TFs which can bind
to a BS exactly m times in a genome detected in a DNA fragment
library. Then a likelihood estimate of the probability of such event
pm is nm/N. Note N ¼P J

m¼1 nm and J is the parameter, that may
be dependent from a sample size of DNA fragments library. We
model the continuous time evolution of TF–DNA binding events
in a genome as the stochastic biding-dissociation events in the
frequency of these events. Many distinct TFs may evolve in this way.

Let the random variable Dt(d, P) be the number of TF binding
events of the distinct BS d in the genome occurring at time t in the
stochastic trajectory P of BS d. Dt(d, P) is a realization of a contin-
uous time stochastic process D ¼ {Dt, t � 0}. We assume that time
parameter t is a continuous parameter in {Dt, t � 0}. The set of
possible state values of the process is denoted by the set of nonneg-
ative integers {0, 1, 2, . . .}. IfDt¼ i, then the process is said to be in
state i at time t. We propose that conditional transition probability
between states does not depend on states. We suppose that when-
ever the process is in state i at time t, there is a fixed probability
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Pi,j(t, s) that it will next be in state j at time s, where
P

j 6¼ iPij ¼ 1.
This process with additional standard assumptions [53, 55, 56, 62]
(see details below) can be considered a continuous-time Markov
chain random process with a countable number of states.

Evolutionary progress along this process, in general, results in the
appearance of which can never be other than �1, 0, or +1 and where
binding events are “born” and “die” during the process. A birth
indicates an increase in the number of binding events when counting
the random fixed BS d, and death indicates a decrease in this number.
We assume that the total number of BSs and the total number of TFs
associated with any bond is constant over long stretches of time.

Let pi(t)¼ P(Dt ¼ i) denote the probability function associated
with the random process {Dt, t � 0}. Let transition probability
Pi, j(t) ¼ P(Dt+s ¼ j|Ds ¼ i), assuming that for any i ¼ 0,1,2, . . .,
j¼ 0,1,2, . . . the transition probability does not depend on s, and for
t ! 0, we assume Pi,j(t) ¼ o(t) for 1 < |i � j| < 1, Pi,i +1(t) ¼
λi(t)t + o(t), Pi + 1,i(t) ¼ μi + 1(t)t + o(t). These assumptions suggest
that Pi,i(t) ¼ 1 � (λi(t) + μi(t))t + o(t) when t ! 0. Then the rate
of the probability functions pm (m ¼ 0, 1, 2, . . .) at moment t � 0
can be described by the Kolmogorov differential-difference
equations [34, 62]:

dp0 tð Þ=dt ¼ �λ0 tð Þp0 tð Þ þ μ1 tð Þp1 tð Þ ð32Þ

dpm tð Þ=dt ¼ � λm tð Þ þ μm tð Þð Þpm tð Þ þ λm�1 tð Þpm�1 tð Þ þ μmþ1 tð Þpmþ1 tð Þ, ð33Þ
where m ¼ 1, 2, . . .. The initial probabilities pm(0) � 0; (m ¼ 0, 1,
2, . . .) follow the condition

P
m � 0 pm ¼ 1. If t! +1, the random

birth and death processes describing TF–DNA binding events may
be kept near the equilibrium. This equilibrium solution can be
written explicitly by stating dpm/dt ¼ 0; m ¼ 0, 1, . . . in Eqs. 32
and 33 as

bpm ¼ p0 ∏
m

i¼1

λi�1

μi
, ð34Þ

p0 ¼ 1þ
X1
m¼1

∏
m

i¼1

λi�1

μi

 !�1

: ð35Þ

In this case, a necessary and sufficient condition for the exis-
tence of the nontrivial stationary solution of Eqs. 34 and 35 is
provided by convergence of the series

Q ¼
X1
m¼1

∏
m

i¼1
ηi, ð36Þ

where ηi ¼ λi�1

μi
� v < 1. This condition exists when starting from

some i¼ ic the condition ηi � v< 1 takes place for all i� ic (i.e., on

the right tail of the probability function).
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In the case of the probability function, this inequality implies
that starting from some large enough size ic of high-avidity pro-
tein–DNA binding events, the intensity of the birth (binding)
process must be less than or equal to the intensity of the death
process (dissociation) for all consequent DNA–TF binding events
characterized by i events for which i � ic.

Using Eqs. 34 and 35, we can obtain the nonzero limiting
probability function for the random process Dt ! 1:

P Dt ¼ mð Þ ¼ p∗m ¼ lim
t!1 pm tð Þ: ð37Þ

If we assume that the limiting probability distribution p∗m

obtain m exists, then all dpm/dt (m ¼ 0, 1, 2, . . .) would necessar-
ily converge to 0 as t ! 1 and we can obtain

p∗m ¼ bpm ¼ p0 ∏
m

s¼1
ηs : ð38Þ

In general, the birth and death intensity rates between states
can be approximated by the polynomial or rational functions of
integer argument m.

Then Eq. 34 (or Eq. 35) can be defined by the product of the

rational functions ηm ¼ λm�1
μm

¼ θ
miþai�1m

i�1þ���þa1mþa0ð Þ
mjþbjmj�1þ���þb1mþb0ð Þ of argument

m and constants θ, ai, bi (i ¼ 0,1,. . .; j ¼ 0,1,. . .), multiplied by the
positive constant p0. Using a major theorem of algebra, we can
present the probability Eq. 34 (or Eq. 38) as the m-th term of the
generalized hypergeometric series pFq [40, 62] (see below).

Accordingto thepreviousconsiderations,we specifiedtwobinding
transition probabilities: (1) “preferential binding” due to preferential
attachment mechanism of a TF to specific DNA regions on the chro-
mosome and (2) “nonpreferential” binding driven by the Poisson
process.Weassume two similar types of processes forTF–DNAdetach-
ment transition events. However, the preferential and nonpreferential
dissociation processes could be realized with different intensities.

For our application purposes, we consider a Markov birth–-
death random process such that the intensity rates are the linear
functions of m [62]:

λm ¼ λ∗1 þ λ∗2m ð39Þ
and

μm ¼ μ∗1 þ μ∗2m, ð40Þ
where m ¼ 0, 1, 2, . . . and constants λ∗1 > 0, λ∗2 > 0,
μ∗1 > 0, μ∗2 > 0. Hence, during an interval (t, t + h) where h is
small, we assume that there are four independent processes in the
TFBSs: the spontaneous “birth” and “death” ofDNA–TF pairs, with

Mathematical Modeling of Avidity Distribution and Estimating General Binding. . . 225



constant intensities λ∗1 and μ∗1 , respectively, and the “flows” of
the binding events with intensities proportional to the number of
DNA–TF binding events which have already occurred in given TFBS
μ∗1m and μ∗2m. Figure 5 shows the random directed graph and
schematic presentation of the skewed PF of the steady-state bind-
ing-dissociation process with intensities being the linear functions of
m.

Note that, the intensities λ∗1 and μ∗1 are the intensities of Poisson
processes. During a time interval (t, t + h), where h is small, the
intensity λ∗1 is proportional to a transitional (birth) probability of
sporadic increase of the number of DNA–protein binding event.
During the same time interval (t, t + h), the intensity μ∗1 is
proportional to a transitional probability of a spontaneous DNA–-
protein dissociation event.

At steady-state conditions, three parameters of the process can
be used for characterization of the probability function. Let

a ¼ λ∗1 =λ
∗
2 , θ ¼ λ∗2 =μ

∗
2 , b ¼ μ∗1 =μ

∗
2 :

Let us also denote factorial power z[m]¼ z(z + 1) . . . (z +m� 1),
wherem ¼ 0, 1, 2, . . .; z[0] ¼ 1. Using Eqs. 34, 35, 38, 39, and 40,
we can obtain the limiting (non-zero steady state solutions) proba-
bility function for the process in Eqs. 32 and 33 with the intensities
given by Eqs. 39 and 40:

Fig. 5 DNA-TF binding–dissociation model by Kolmogorov birth–death process. (a) Directed graph of the
process specified in our model. (b) Schematic presentation of the probability function of binding events under
steady-state conditions.
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p∗m ¼ bp0
a m½ 


b mþ1½ 
 θ
m ¼ p0

Γ aþmð ÞΓ bþ1ð Þ
Γ að ÞΓ bþmþ1ð Þθ

m ¼ p0
B bþ1;mð Þ
B a;mð Þ θm

ð41Þ

p0 ¼ 1þ
X1
m¼1

∏
m

i¼1

a � 1þ i

b þ i
θ

� � !�1

, ð42Þ

where m ¼ 0, 1, 2, . . ., Γ(x) is the Gamma function, and B(x) is the
Beta function [29, 40]. In the specific case b> a> 0 andp0 ¼ 1� a

b

� �
distribution Eqs. 41 and 42 will be the well-known Waring distribu-
tion [40]. We called Eqs. 41 and 42 the Kolmogorov–Waring (KW)
probability function [34, 62]. A series Σpi is called the hypergeometric
if the ratio pi + 1/pi is a rational function of i (i ¼ 0, 1, 2, . . .).

The sum of probabilities Eq. 41 can be written in a form of
hypergeometric series:

1¼ p0 1þ a

bþ1
θþ a aþ1ð Þ

bþ1ð Þ bþ2ð Þθ
2þ . . .þ a aþ1ð Þ . . . aþm�1ð Þ

bþ1ð Þ bþ2ð Þ . . . bþmð Þθ
mþ . . .

� �
ð43Þ

or

1 ¼ p0�2F 1 a; 1; b þ 1; θð Þ, ð44Þ
where 2F1(a, 1; b + 1; θ) is the hypergeometric Gauss series [29, 40]:

2F 1 α; β; γ; θð Þ ¼
X1
m¼0

α m½ 
β m½ 


γ m½ 

θm

m!
ð45Þ

at α ¼ a, β ¼ 1 and γ ¼ b + 1. The probability function in Eq. 41
has the probability generating function [62]

gKW zð Þ ¼ 2F 1 a; 1; b þ 1; θzð Þ
2F 1 a; 1; b þ 1; θð Þ :

A probability distributionmay be characterized by its moments. If
the points represent probability distribution then the zeroth moment
is the total probability (i.e. one), the first moment is the mean, the
second central moment is the variance, the third central moment is the
skewness. Studying discrete distributions, it is often advantageous to
use the factorial moments μ0[r] of order r [57]. For the probability
function Eq. 41, the factorial moment of order r is given by

μ0r½ 
 ¼ r!θr
α r½ 


γ r½ 


� �
p0�2F 1 αþ r; 1þ r; γ þ r; θð Þ:

Using Eqs. 44 and 45, we can obtain the following results [62]:
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If 2F 1 a;1; b þ 1; θð Þ < 1, then p0 ¼ 1

2F 1 a; 1; b þ 1; θð Þ > 0;

ð46Þ

If θ < 1; a > 0; b > 0, then p0 ¼ 1

b
Ð1
0

1� sð Þb�1 1� sθð Þ�ads

;

ð47Þ

If b > a > 0 and θ ! 1� 0, then lim
θ!1�0

p0 ¼ 1� a

b

� �
: ð48Þ

Note that Eqs. 46–48 provide a theoretically justified way to
estimate p0 only if θ � 1.

Using Eqs. 41, 42, and 46 and the integral presentation of the
Beta and hypergeometric Gauss functions, we can prove:

Statement 1 [62]: If b + 1 > a > 0 and θ � 1, then the limiting
probability function is

p∗
m ¼ p0

B aþm;bþ1�að Þ
B a;bþ1�að Þ θm ¼

Ð1
0

sb�a 1� sð Þaþm�1ds

2F 1 a;1;bþ1;θð ÞB a;b�1það Þθ
m

ð49Þ
and the probability is

P X � mð Þ ¼
X1
s¼m

p∗s ¼ pm
∗� 2F 1 a þm; 1; b þm þ 1; θð Þ ¼ p∗m=p0,m, ð50Þ

where p0,m ¼ b þmð Þ Ð1
0

1� sð Þbþm�1 1� θsð Þ� aþmð Þds

" #�1

and m ¼ 0,

1, 2,. . .; p0,0 � p0, where p0 is defined by Eq. 42 and p0,m is the hazard
function of the KW distribution.

3.2 Existence

of the Nonzero

Limiting

Distribution [62]

In Eqs. 41 and 42, the nonzero limiting probability p*m (m ¼ 1,
2, . . .) exists when p0 > 0 is at t ! 1. Therefore, it is important
to define the conditions that provide a convergence of the series

Q ¼
X1
m¼1

∏
m

i¼1
Ψ ið Þθ

� �
, ð51Þ

where Ψ (i) ¼ (a � 1 + i)/(b + i). Let us define the convergence
conditions of this series.

Corollary: The series Eq. 45 is converged at θ < 1 or at (θ ¼ 1; b > a).

Proof: Let λ∗1 > 0, λ∗2 > θ, μ∗1 > 0, μ∗2 > 0. Formula Eq. 51 can be
presented as follows:
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Q ¼
X1
m¼1

exp log ∏
m

i¼1
Ψ ið Þθ

� 	
 �
¼
X1
m¼1

θmexp
Xm
i¼1

logΨ ið Þ
( )

:

Let limi!1
O i�kð Þj
i�k

h i
¼ const > 0. Using MacLaurin decomposi-

tion, we obtain Ψ (i) ¼ 1 + (a � b � 1)/i + O(i�2). UsingPm
i¼k

1
i ¼ log m=kð Þ þO 1=kð Þ and

Pm
i¼k O

1
i2

� �
< const

P1
i¼k

1
i2
¼

O 1=kð Þ we obtain

Q k :¼
X1
m¼k

θm m=kð Þ a�b�1ð Þexp O 1=kð Þð Þ: ð52Þ

According to the comparison test of convergence, this series
converges at θ < 1 and diverges at θ > 1. At the critical point θ ¼ 1
(or λ∗2 ¼ μ∗2 ) the power series

P1
m¼k m=kð Þ a�b�1ð Þ converges when

b > a (i.e., λ∗1 < μ∗1 ) and diverges when b � a (i.e., at λ∗1 � μ∗1 ).

Statement 2: For the intensity functions defined by Eqs. 39 and 40, the
non-zero limiting solution of Eqs. 32 and 33 exists if

λ∗2 < μ∗2 ð53Þ
or

λ∗2 ¼ μ∗2 and λ∗1 < μ∗1
� �

: ð54Þ

Thus, conditions in Eqs. 53 and 54 provide the existence for
the nonzero steady-state probability function in Eqs. 41 and 42.

If μ0½r
 < 0 or μ0½r
 ¼ 1 of the random variable X, then the
factorial moments of order r and all higher orders are said not
to exist. If μ0½r
 > 0 for i < r � 1 and μ0½r
 ¼ 0, then all factorial
moments exist but are said to have the value 0 for order r and all
higher orders. According to the Statement 2 above, the results
concerning the existence of the first and second factorial moments
are as follows:

1. If θ < 1, a < 0, b > 0, then

μ0½1
 ¼ p0
a

b þ 1

� �
�2F 1 a þ 1; 2; b þ 2; θð Þθ

μ0½2
 ¼ p0
a a þ 1ð Þ

b þ 1ð Þ b þ 2ð Þ
� �

�2F 1 a þ 2; 3; b þ 3; θð Þθ2,

where p0 given by Eq. 47.

2. If θ ! 1 � 0, 0 < a < b, then

μ0½1
 ¼ a

b � a � 1

� �
, at b > a þ 1
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μ0½2
 ¼ a a þ bð Þ
b � a � 1ð Þ b � a � 2ð Þ

� �
at b > a þ 2:

Having found the factorial moments, we can easily find the
moments about the origin as well as the moments about the
mean. In particular, m∗

X ¼ μ0½1
, D∗
X ¼ σ2 ¼ μ0½1
 þ μ0½2
 � μ0½1


� �2
.

Using this formula, the mean, variance and high order moments
of the random variable X of a given probability function, repre-
sented by the hypergeometric series can be derived. For instance, if
constrains λ∗1 ¼ μ∗2 (or θ ¼1) and λ∗1 < μ∗1 (or aθ > b), then we have

m∗
X ¼ a/(b � a � 1) and D∗

X ¼ a b�1ð Þ b�að Þ
b�a�1ð Þ2 b�a�2ð Þ : The derived

formulas show that the mean value for the random variable X of
the stationary distribution exists not only if a > 0, b > 0, θ > 0 (or
λ∗1 > 0, λ∗2 > 0, μ∗1 > 0, μ∗2 > 0), θ ¼ 1 (or μ∗2 ¼ λ∗2) and b > a
(μ∗1 > λ∗1), as required by Statement 3, but it can also include
b > a + 1 (or μ∗1 > λ∗1 + λ∗2). The second moment exists if more
stringent constraint b > a + 2 (or μ∗1 > λ∗1 + 2λ∗2) is given.

Notice that the moments analysis is one of traditional analytical
strategy in probability theory for characterization of essential proper-
ties of theoretical distribution(s) and also uses the parameter estima-
tion of EFDs. Analytical identification of the moments can also
provide a selection of adequate explanatory and predictive probabilis-
tic model(s) for the parameterization and comparison of the skewed
Pareto law-like empirical frequency distributions often occurring in
bioinformatics, large-scale evolving biosystems, and network biology.
The existence of moments is one of the central problems in the
moment analysis, because its solution allows for the quantifying of
the basic characteristics of a given distribution function and identify-
ing of the distribution function subfamilies and provides their classi-
fication. The existence of moments and their analytical identification
is important for selection of the more adequate explanatory and
predictive probabilistic model for analyzing the empirical frequency
distributions occurring in bioinformatics, large-scale evolving biosys-
tems, network biology, etc. in the applications using advanced statis-
tical methods and mathematical modeling.

3.3 Dynamics

of Mean Value

and Variance

Let us to analyze the features of TF–DNA binding as a birth–death
continuous stochastic process. We are interested in the probabilistic
characteristics (mean, variance) over a period of time and the steady
state of the process when the intensities of association and dissocia-
tion rates of a given statem are independent linear functions of this
state (Eqs. 39 and 40).

Here, to simplify analysis, we assume that the state transition
rates are nonrandom real numbers and λ > 0, λ > 0, μ > 0, μ > 0.

Let us denote mean value mX(t) ¼ E[X(t)] ¼ P
i � 0ipi(t)

and variance DX(t) ¼
P

i � 0(i � mX(t))
2pi(t). Then, for Eqs. 32

and 33, we can derive differential equations for mX(t) and DX(t)
(and also for the higher moments) of random variable X(t). In
particular, in Eqs. 39 and 40, we obtain [62]
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dmX tð Þ
dt

¼ λ∗1 � μ∗1
� �� μ∗2 � λ∗2

� �
mX tð Þ þ μ∗1 p0 tð Þ, ð55Þ

dDX tð Þ
dt

¼ λ∗1 þ μ∗1
� �þ μ∗2 þ λ∗2

� �
mX tð Þ

� μ∗1 p0 tð Þ 1þ 2mX tð Þð Þ � 2 μ∗2 � λ∗2
� �

DX tð Þ ð56Þ
defined at time t0 by the nonnegative initial conditions
mX(t0) ¼ m0

X, DX(t0)¼D0
X. Notice that it could be a challenge,

then, to find a general solution for differential Eqs. 55 and 56 [57].
However, the simplifications of Eqs. 55 and 56 allow for specific
but useful analytical solutions, kinetic and statistical characteristics
of the stochastic process.

Combining the results presented in Eqs. 37, 39, 40, 41, 44, 47,
48, 53–56 and the results concerning the existence of the first and
second factorial moments, the next statement immediately follows.

Statement 3: If λ∗2 < μ∗2 (or θ < 1) and λ∗1 > μ∗1 1� p0 tð Þ� �
, where at

t ! 1, p0(t) is defined by Eq. 47, then for any initial value mX(0) � 0,
the Kolmogorov birth and death stochastic process exponentially
approaches a steady state at characteristic time 1= μ∗2 � λ∗2

� �
giving

lim
t!1 mX tð Þ ¼ λ∗1 � μ∗1 1� p0

� �� �
= μ∗2 � λ∗2
� �

and

lim
t!1 DX tð Þ ¼ λ∗2m

∗
X þ μ∗1 1� p0

� �� �
= μ∗2 � λ∗2
� � ð57Þ

and all moments of the steady state process of Eq. 57 exist.
If λ2∗ ¼ μ2∗ (or θ ¼ 1) and λ1∗ < μ1∗ or a < b, then

limt!1mX tð Þ ¼ λ∗1 =μ
∗
1 � λ∗1 � λ∗2

�
(or a/(b � a � 1)) exists if

μ∗1 > λ∗1 + λ∗2 (or b > 1 + a), E p0 tð Þ� 
 ¼ 1
t

Ðt
0

p0 sð Þ ds ¼ 1� λ∗1 =μ
∗
1

� �
(or E p0 tð Þ� 
 ¼ 1� a

b

� �
) and if μ*1 > λ∗1 + 2λ∗

2 then

lim
t!1 DX tð Þ ¼ a b � 1ð Þ b � að Þ= b � a � 1ð Þ2 b � a � 2ð Þ

� �
ð58Þ

and exists if μ∗1 > λ∗1 + 2λ∗2 (or b > a + 2).

The conditions λ∗2 ¼ μ∗2, λ
∗
1 < μ∗1 for Eqs. 57 and 58 imply the

process of the Waring distribution at steady state. We can see that
the Waring distribution corresponds to the critical steady state of a
linear Kolmogorov birth and death stochastic process, when (1) for
a given discrete state, the rate of specific TF–DNA association
transition from the m-th to the m + 1-th state equals the rate of
specific transition from them-th to them� 1-th state (μ∗2¼ λ∗2) and
(2) the rate of the sporadic dissociation of a TF from its BS is greater
than the rate of sporadic association of a TF and its DNA fragment
target (μ∗1 > λ∗1).

Moreover a mean for the non-zero steady state exists if the
sporadic dissociation rate exceeds both the association rates
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(μ∗1 > λ∗1 þ λ∗2), and the variance exists if the sporadic dissociation
rate exceeds the sporadic association rate plus twice the specific
association rate (μ∗1> λ∗1þ 2λ∗2). These predictions have been tested
via parametrization of the Eqs. 41 and 42 in goodness-of fit analysis
of the skewed EFDs, identified in several molecular mechanisms
and biological process [30, 34, 62, 65].

In several specific (and practically interesting) cases, the exact
analytical solutions for Eqs. 55 and 56 can be derived and the
kinetic properties of the mean value and variance of the stochastic
process can be analytically studied.

For instance, at λ∗2 ¼ μ*1 ¼ 0 and λ∗1 ¼ μ∗2 > 0, the random
variable X(t) at any time point follows the Poisson process with
the probability function pm(t) ¼ (mX(t)

m/m!) exp(�mX(t)),
where mX(t) ¼ (λ∗2(t)/μ

∗
1(t))(1 � exp(�μ∗1(t)) (at mX(0) ¼ 0)

and p(t) ¼ exp(�mX(t)).
Next, let us consider the analytical solutions in a more complex

case.
Let us assume that, in the KW process, a probability for the

unobserved events approaches zero in time. p0(t) ! + 0 at t > ts
> 0. (For instance, if p0(t) 	 e�mX tð Þ. Under such circumstances,
Eqs. 57 and 58 can be simplified to

dmX tð Þ
dt

¼ λ∗1 � μ∗1
� �� μ∗2 � λ∗2

� �
mX tð Þ,

dDX tð Þ
dt

¼ λ∗1 þ μ∗1
� �þ μ∗2 þ λ∗2

� �
mX tð Þ � 2 μ∗2 � λ∗2

� �
DX tð Þ:

At positive or zero initial conditions, this system of linear
differential equations has an exact analytical solution and, thus,
allows us to calculate the mean, variance and standard deviation of
the random variable X(t) for the stochastic process {Dt, t � ts}. It
also provides explicit and simple analytical forms of the mean,
variance and standard deviation values under the steady-state con-
dition of the process. For instance, at μ∗2> λ∗2 (θ<1), λ∗1> μ∗1(a> 1)
and the initial conditions mX(0) ¼ m0

X, DX(0) ¼ D0
X we have

mX tð Þ ¼ m∗
X

�
1� exp � μ∗2 � λ∗2

� �
t

� �þm0
Xexp � μ∗2 � λ∗2

� �
t

� �
,

where

m∗
X ¼ λ∗1 � μ∗1

μ∗2 � λ∗2
> 0;

DX tð Þ ¼ D∗
X þD∗

Xexp �2 μ∗2 � λ∗2
� �

t
� �þ

m0
X λ∗2 þ μ∗2
� �

= μ∗2 � λ∗2
� �� �

exp � μ∗2 � λ∗2
� �

t
� �� exp �2 μ∗2 � λ∗2

� �
t

� �� ��
m∗

X λ∗2 þ μ∗2
� �

= μ∗2 � λ∗2
� �� �

exp � μ∗2 � λ∗2
� �

t
� �þ

1=2 λ∗2 þ μ∗2
� �

λ∗1 � μ∗1
� �� λ∗1 þ μ∗1

� �
μ∗2 � λ∗2
� �� �

= μ∗2 � λ∗2
� �2� �

exp �2 μ∗2 � λ∗2
� �

t
� �

,

where
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D∗
X ¼ λ∗1 μ

∗
2 � λ∗2 μ

∗
1

� �
= μ∗2 � λ∗2
� �2

:

Thus, this analytical solution of the differential equations of the
mean and variance provides detailed kinetic and steady state char-
acteristics of the Kolmogorov stochastic process as a function of
time. At steady state, our analytical forms of the mean and variance
parameters can be defined by the three parameters: a ¼ λ∗1/λ

∗
2,

b ¼ μ∗1/μ
∗
2 and θ ¼ λ∗2/μ

∗
2. Using these notations, we derive the

expressions: m∗
X ¼ (aθ – b)/(1 � θ), D∗

X ¼ (a � b)θ/(1 � θ)2.
These simple expressions show that the mean and variance

values of the stationary stochastic process exist at θ < 1 (λ∗2 < μ∗2)
and a > b (μ∗1/μ

∗
2 > λ∗1/λ

∗
2). These results are consistent with

Statements 2 and 3. Notice that in the case μ∗1 ¼ 0, the stable
point of our differential equations on the phase plot is defined by
coordinatesm∗

X¼ aθ/(1� θ) andD∗
X¼ aθ/(1� θ)2. Interestingly,

the same expressions have been obtained for the stationary
distribution of the Kolmogorov process via factorial moments
analysis of a probability function presented in the form of the
hypergeometric series [58].

Because currently the sample size of the sequences in an NGS
experiment tends to be constantly growing, the frequency of non-
occurring events in the NGS datasets becomes smaller. Thus, the
estimates obtained based on this simplified model may actually be
quite accurate.

Thus, this section introduces simple deterministic equations
which allow one to estimate the kinetics of the mean values and
variances of the stochastic process (Eqs. 32 and 33) and also pro-
vides explicit formulas for the steady state (limiting) values of the
KW distribution parametersm∗

X andD∗
X. The results can then be

used to (1) identify the underlying stochastic mechanisms driving
TF–DNA association and dissociation processes, (2) estimate the
basic quantitative characteristics (best-fit KW parameters of the
skewed EFD) of TF–DNA binding datasets, (3) provide an unbi-
ased statistical comparison of the datasets, and (4) evaluate the
incompleteness (by estimating p0) of a sequence library [20, 34].

3.4 Family

of Skewed Frequency

Distributions

We can present Eq. 41 with the following recursive formula:

ηm ¼ p∗mþ1=p
∗
m ¼ θ

a þmð Þ
b þm þ 1

, ð59Þ

where m ¼ 0, 1, . . .. Using Eqs. 41, 42, and 59 and properties of
the gamma function, beta function, and hypergeometric series
[40], we can obtain several important degenerate forms (distribu-
tion subfamilies) of the KW distribution.

Statement 4: If θ ! 1 and b > 0, then we obtain the zero-truncated
Waring distribution, and as m approaches infinity
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p∗m � b � að Þ Γ bð Þ
Γ að Þ

1

mbþ1
θm, ð60Þ

i.e., distribution Eq. 41 approximates the Champernowne distribution at
θ! 1 [71] and the SPD at θ¼ 1 [71, 72] in the right tail. If p0> 0, and
we can define the zero-truncated limiting distribution

P X ¼ mjX ¼ 0ð Þ ¼ p
0f g∗

m as

p∗m 0f g ¼ p∗m= 1� p0
� � ¼ B b � a þ 1; a þmð Þ

B b � a; a þ 1ð Þ θm, ð61Þ

where m ¼ 1, 2, . . . and then prove it.

Statement 5 [62]: 1. If, in Eq. 41, a ! 0 +; θ ! 1; b > 0, then

lim
a!0þ, θ!1

p 0f g∗
m ¼ lim

a!0þ
b � að ÞΓ a þmð ÞΓ b þ 1ð Þ
Γ a þ 1ð ÞΓ b þm þ 1ð Þ lim

θ!1
θm

¼ bB b þ 1;mð Þ, ð62Þ
where bB(b + 1, m) is the Beta function [29, 40].

2. If in Eq. 41 a! 0, b! 0 and θ < 1, then Eq. 41 approaches the

Fisher logarithmic series distribution fm ¼ f1 θm – 1/m), where

f1 ¼ �θ/loge(1 � θ), m ¼ 1, 2,. . ..

3. If, in Eq. 41, a ! 1, b ! 1 but θa/b ! const ¼ q < 1, then
Eq. 41 approximates the geometrical distribution fm ¼ q
(1 � q)m, where m ¼ 0, 1, 2, . . ..

For case 1 of Statment 5, probability function Eq. 62 depends
on one positive parameter, b b ¼ μ∗1 =μ

∗
2

� �
, and this function approx-

imates the Yule distribution [40, 62] at λ1
∗/λ2

∗ ! 0;λ2
∗/

μ2
∗ ! 1 and, thus, lim

a!0þ, θ!1
p0 ¼ 1. Notice that the Yule distribu-

tion assumes b < 1. Simon constructed a birth random process
model of word distribution in the text [72]. The limiting distribu-
tion of this model approaches the Yule distribution [31] at b > 1
and in this case the KW distribution characterizes GPD [34, 73].
Cases 2 and 3 can be simply tested using Eq. 59. Interestingly,
Tripathi and Gurland [74] proposed the extend Katz family of
discrete distributions [29, 40] with hypergeometric probabilities
of which several are shared with the KW family.

Note that the critical case θ¼ 1 was not included in the Tripathi
and Gurland model [74]. Additionally, Shubert and Gl€anzel [73]
reported the same relationship between the zero-truncated Waring
and the Yule distributions [75]. Irwin [70] noted that the Yule
distribution is a specific case of the Waring distribution. However,
he made an error claiming that it is true at a ¼ 1. These results
demonstrate that the hypergeometric probability function, derived
from a steady-state (limiting) solution of the KW differential
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equations with the state transition rates defined by the linear func-
tions of state values, provides a large family of well-known and
practically used distribution functions. However, the diversity of
the distribution functions and their potential applications in data
analysis could increase if more general functional dependencies of
the state transition rates will be introduced and studied.

3.5 Generalized

Hypergeometric

Distributions

of Stationary Birth

and Death

Kolmogorov–Waring

Processes

In this section, we consider the generalization of the KW process
assuming that the intensity parameters νm and μm (m ¼ 0, 1, . . .)
are the ratios of two polynomials of m with all roots being real. In
this case, the steady-state solution of Eqs. 32 and 33 can be
described using the special functions of the generalized hypergeo-
metric functions (GHFs) theory [40, 56, 71]. pFq(a1, a2,. . .,ap; b1,
b2, . . . bq; θ), where ai, bi are called the numerator and denomina-
tor parameters and θ is called the variable and p and q are arbitrary
numbers of the numerator and denominator parameters.

pFq is symmetric in its numerator parameters and likewise in its
denominator parameters. These functions often occur in the con-
text of practical problems in the fields of physics, physical chemistry,
engineering, and applied statistics [29, 34, 40, 51, 57–59, 62, 71].
However, practical applications of GHFs in genome and system
biology are novel [30, 34, 51, 62]. The GHF function consists of
the series representation

P1
m¼0 f m with fm + 1/fm being a rational

function of m. If the numerator and denominator parameters are
different and can be factored, the ratio is usually written as

f mþ1

f m

¼ m þ a1ð Þ m þ a2ð Þ . . . m þ ap

� �
m þ b1ð Þ m þ b2ð Þ . . . m þ bq

� �
m þ 1ð Þ θ: ð63Þ

Parameter θ occurs because the polynomial that consists of
coefficients and a single variable may not be monic, with the leading
coefficient equal to one. The leading coefficient is found in the term
that contains the variable with the largest exponent. Equation 63 is
a rational function of m (m ¼ 0, 1, 2,. . .). The factor (m + 1) is
added for convenience to introduce m! into the hypergeometric
series Σpm. Here, bi (i ¼ 1, 2, . . ., q) are positive integers to avoid
making the denominator zero. If f0 is defined (see below), Eq. 63
can be solved for fm as

f m ¼ a
m½ 

1 a

m½ 

2 . . . a

m½ 

p

b
m½ 

1 b

m½ 

2 . . . b m½ 


a 1 m½ 
 θ
m: ð64Þ

where x[m] ¼ x(x + 1) . . . (x + m � 1) ¼ Γ(x + m)/Γ(m); x[0] ¼ 1;
Γ(m + 1) ¼ m! ¼ 1[m], and

pF q a1; a2; . . . ; ap; b1; b2; . . . bq ; θ
� � ¼ X1

m¼0

a
m½ 

1 a

m½ 

2 . . . a

m½ 

p

b
m½ 

1 b

m½ 

2 . . . b m½ 


q 1 m½ 
 θ
m

ð65Þ
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is a standard notation for GHF. There are p numerator parameters
and q denominator parameters. The series is well-defined as long as
the lower parameters b1, b2, . . ., bq, are not negative integers or
zero; i ¼ 1, 2, . . ., q.

The simplest generalized hypergeometric series is 0F0(-; - ;θ)
¼1+ θ + θ2/2! + � � � ¼ eθ. A blank indicates the absence of a parameter.
The series terminates if any of the upper parameters a1, a2, . . ., ap are a
nonpositive integer, otherwise it is nonterminating and therefore an
infinite series.m is the summation index.Thus, if oneof the numerator
parameters ai, i¼ 1, 2,. . ., p is a negative integer, ai¼�n (n is positive
integer) say, the series is terminated. If the series is well-defined and
nonterminating, thenquestions of convergenceor divergencebecome
relevant.

Let us consider Eqs. 32 and 33, where λm ¼ P1(m)/Q1(m) and
μm ¼ P2(m)/Q2(m). The real functions P1(m), Q1(m), P2(m),
Q2(m) are the polynomials of nonnegative integer m such that
0 < λm < 1, 0 < μm < 1. In particular, the P1(m) and Q2(m)
have all real roots such that λm or μm does not become infinite and
P2(m) and Q1(m) have all real roots such that λm or μm does not
become zero. Let us denote by k1, s1 the degrees of the polynomials
P1(m) , Q1(m), respectively. Let us denote with k2, s2 the degrees
of the polynomials P2(m) , Q2(m), respectively. Let α0 , β0 , γ0, δ0
denote the highest power coefficients of P1(m),Q1(m), P2(m),
Q2(m), respectively. Then the limiting probability function of the
Kolmogorov equations, if it exists, is given by

p∗mþ1=p
∗
m ¼ λm

μmþ1

¼ P1 mð ÞQ 2 m þ 1ð Þ
Q 1 mð ÞP2 m þ 1ð Þ θ

or

p∗mþ1=p
∗
m ¼ mþα1ð Þ . . . mþαk1ð Þ mþ1þδ1ð Þ . . . mþ1þδs2ð Þ

mþβ1ð Þ . . . mþβs1
� �

mþ1þ γ1ð Þ . . . mþ1þ γk2
� �θ,

ð66Þ
where αi, βi, δi, γi and θ are the parameters of the polynomials
P1(m), Q1(m), P2(m), Q2(m) and θ ¼ (α0γ0)/(β0γ0) > 0.

Using Eqs. 63 and 65, we can write Eq. 66 as

P x ¼ mð Þ≔p∗m ¼ p0
α m½ 

1 � � �α m½ 


k1
δ1 þ 1ð Þ m½ 
� � � δs2 þ 1ð Þ m½ 


β m½ 

1 . . . β m½ 


s1
γ1 þ 1ð Þ . . . γk2 þ 1

� � m½ 
 θ
m, ð67Þ

where

p0 ¼ 1=pþ1Fq 1; α1; . . . , αk1 ; δ1 þ 1; . . . ; δs2 þ 1; β1; . . . ; βs1 ; γ1 þ 1; . . . ; γk2 þ 1; θ
� �

,

and probability generating function
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G zð Þ¼ pþ1Fq 1;α1; . . . ;αk1 ;δ1þ1; . . . ,δs2 þ1;β1; . . . ;βs1 ;γ1þ1; . . . ;γk2 þ1;θz
� �

pþ1Fq 1;α1; . . . ;αk1 ;δ1þ1; . . . ,δs2 þ1;β1; . . . ;βs1 ;γ1þ1; . . . ;γk2 þ1;θ
� � ,

ð68Þ
where p¼ k1 + s2; q¼ k2 + s1 and z> 0 [44, 58]. If a numerator

and a denominator parameter coalesce, then omit the parameter,
whence the p + 1Fq becomes a pFq�1. The p + 1Fq series terminates
and, therefore, is a polynomial if a numerator parameters is a
negative or zero. The denominator parameters are also non nega-
tive integer or zero, as that would make the denominator zero.

In the case of k1 ¼ k2 ¼ k, s1 ¼ s2 ¼ s, we convert Eq. 67 into a
simple and useful form of the Beta function products:

p∗m ¼ p0 ∏
k

i¼1

B γi þ 1;mð Þ
B αi;mð Þ ∏

s

i¼1

B βi;mð Þ
B δi þ 1i;mð Þ θ

m: ð69Þ

In the specific case Q1(m) ¼ Q2(m) ¼ 1 and k ¼ 1, Eq. 68 is
reduced to Eq. 41. We call Eq. 69 the generalized power-Beta
function (GBF). The existence of limiting probability distribution
Eq. 67, where p0 is defined by Eq. 67, is determined by the
convergence of the p + 1Fq series. Let us also suppose that neither
the numerator nor the denominator parameters ai, bj of the GHF

pþ1Fq 1; a1; a2; . . . , ap; b1; b2; . . . , bq ; θ
� � ¼ X1

m¼0

a
m½ 

1 a

m½ 

2 . . . a

m½ 

p

b
m½ 

1 b

m½ 

2 . . . b m½ 


p

θm

ð70Þ
(as well as PGF Eq. 68) are a negative integers or zero. Then,

pmþ1=pm ¼ m þ a1ð Þ m þ a2ð Þ . . . m þ ap

� �
m þ b1ð Þ m þ b2ð Þ . . . m þ bq

� � θ ¼ θp�q
m 1þA=m þO m�2

� �� �
,

ð71Þ
where A ¼Pp

i¼1 ai �
Pq

i¼1 bi [40, 62]. Using the ratio test, it has
been shown that series Eq. 71 converges absolutely for all finite θ if
p< q and for θ< 1 if p¼ q, and it diverges for all non-zero θ if p> q
and the series does not terminate. For p ¼ q and θ ¼ 1, the q + 1Fq
series (as well as PGF Eq. 68) is absolutely convergent if A < 0 and
all polynomial coefficients are positive [40, 62].

Kapur [57] analyzed the global steady state solution of the
time-homogeneous Kolmogorov differential Eqs. 32 and 33
under the assumptions that the intensity parameters are time-inde-
pendent, P1(m) and P2(m) are the polynomial functions of m with
real roots such that they donot become infinite forP1(m) and zero for
P2(m). Of note, Kemp is a specific case when Q1(m)¼ Q2(m)¼ 1.

Thus, to arrive at the steady state solution for the time-
inhomogeneous process defined by Eqs. 32 and 33, we use dpi /
dt¼ 0 for allm and solve the system of algebraic equations with the
transition functions defined by
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P1 mð Þ ¼ λm ¼ b1 þ a1mð Þ b2 þ a2mð Þ . . . bp þ apm
� �

and

P2 mð Þ ¼ μm ¼ d1 þ c1mð Þ d2 þ c2mð Þ . . . dp þ cpm
� �

(m ¼ 0, 1, 2, . . .), where P1(m) and P2(m) are real functions of
nonnegative integer m such that 0 < λm < 1, 0 < μm < 1.

Let αi¼ bi /ai (i¼ 1, 2, . . ., p) and βj¼ dj/cj + 1 (j¼ 1, 2, . . ., q)
and θ ¼ (α1α2 . . . αp)/(β1β2 . . . βp) and assume that ai and bi (i¼ 1,
2, . . ., p), cj and dj (j¼ 1, 2, . . ., p) are not zeros. Then Eq. 67 yields

p∗m ¼ p0 α m½ 

1 � � �α m½ 


p

� �
= β m½ 


1 . . . β m½ 

q

� �� �
θm,

where

p0 ¼ 1=pþ1Fq 1; α1, . . . , αp; β1, . . . , βq ; θ
� �

:

The generalized hypergeometric series converges for all finite
positive θ if p < q and diverges for all non-zero θ if p > q. If p ¼ q,
the series converges for θ < 1 and also when θ ¼ 1 according to
Eq. 71. Interestingly, that Kemp’s and Kapur’s generalized hyper-
geometric functions have derived the analytical forms for dozens
probability generating functions, PFs and their characteristics [40,
57, 58, 71]. In fact, most of these PGFs have not been associated
with the stochastic birth-death in biological systems and never used
for analysis of the statistical distributions in biology and omics
studies.

Kapur has defined the factorial moments of all orders for the
steady-state probability function referring to the Kolmogorov
birth–death process with polynomial rate functions [57, 58].
These expressions could be simply generalized for the transition
rates presented by rational functions. Indeed, let us combine the
parameter sets {α1, . . . , αk1} of P1(m), and {δ1 + 1, . . . , δs2 + 1}
of Q2(m), shown in the Eq. 67, into the joint set {α1, . . . , αk1;
δ1 + 1, . . . , δs2 + 1} and re-name the set elements by the follow-
ing {α1, . . . , αk1; αk1 + 1, . . . , αp}. The total number of ele-
ments in the set equals p = k1 + s2. Let us also combine the
parameter sets {β1, . . . , βs1} of Q1(m) and {γ1 + 1, . . . , γk2 + 1}
of P2(m), that shown in the Eq. 67, into the joint set {β1, . . . ,
βs1; γ1 + 1, . . . , γk2 + 1} and re-name the set elements by the
following {β1, . . . , βs1; βs1 + 1, . . . , βq}. The total number of
elements in the set equals q = s1 + k2.

Let βj (j ¼ 1, 2, . . ., q) and αj (j ¼ 1, 2, . . ., p) be the non-zero
parameters of joint polynomial functions representing the birth (in
the numerator) and death (in denominator) transition rate func-
tions in Eq. 66, respectively. The factorial moment of order r of the
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probability function by differentiating the PGF Eq. 68 and z ¼ 1
substitution is defined as follows

μ0½r
 ¼ p0r! α1
r½ 
α2 r½ 
 . . . αp r½ 
� �

= β1
r½ 
β2

r½ 
 . . . βq
r½ 


� �
θr :

pþ1Fq 1þ r; α1 þ r; α2 þ r, . . . , ap þ r; β1 þ r; β2 þ r; . . . , βq þ r; θ
� �

:

Using this formula, we can generalize Statement 2 as follows:
If p < q or if p ¼ q and 0<θ<1 then the time inhomogeneous

Kolmogorov process has a global non-zero steady state solution
and the generalized KW distribution moments of all orders exist.

If p¼ q and θ ¼ 1 the moments of the r-th order exist, if�A>
r + 1, where A is the negative score, defined by Eq. 71, and r is the
order of the moment, r + 1 (r¼ 1, 2, . . .), and the moments do not
exist in the opposite case.

Probability generating function Eq. 68 belongs to a broad
family of Kemp’s generalized hypergeometric probability generat-
ing functions [40, 56]. Among others, this family includes many
subfamilies of skewed distributions such as Waring, Yule, hyper-
Poisson, extended Katz, and many other useful distribution func-
tions [29, 34, 40, 54, 55, 57, 58, 69, 73]. The multiparametric
families of the distribution functions, derived from Eqs. 66–69, can
also be useful in future theoretical studies and for diverse applica-
tions. Starting with Kemp’ publications [56, 40], the Kolmogorov
birth–death equations have been used to develop other types of
generalized hypergeometric distributions [40, 53, 57, 58, 62]. The
applications of the recently developed so-called regularly varying
generalized hypergeometric distributions to bimolecular data were
considered in [51–53].

3.6 Practical

Implementation of the

KW Distribution

Function

We limit the analysis to steady-state solution of such a stochastic
binding–dissociation process in which the proportions of the dif-
ferent states (m ¼ 0, 1, 2, . . .) become stable.

The exact steady-state solution of such a stochastic binding–-
dissociation process model can be described by the KW distribution
function, which is calculated via the following simple recursive
formula from Eq. 65:

pmþ1=pm ¼ θ
a þmð Þ

b þm þ 1
ð72Þ

wherem¼ 0, 1, 2, . . . and the other three parameters a, b, and θ are
unknown. Importantly, the KW distribution function allows us to
estimate the value p0, which gives the fraction of lost (undetected)
events in a given TF–DNA binding experiment.

p0 ¼ 1

2F 1 a; 1; b þ 1; θð Þ > 0, ð73Þ

where 2F1 is the hypergeometric Gauss series [40]. In this case,
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p0 ¼ 1þ
X1
m¼1

∏
m

i¼1

a � 1þ ið Þ
b þ ið Þ θ

� � !�1

ð74Þ

Specifically, if b > a > 0 and θ ! 1–0, then

lim
θ!1�0

p0 ¼ 1� a

b

� �
ð75Þ

In this important equation, estimating the parameters is simple.
By following a recursive formula, we can estimate the TFBSs at each
peak height intensity as the following:

p1 ¼ p0
a

b þ 1
θ, :::, pmþ1 ¼ pm

a þm

b þm þ 1
θ: ð76Þ

Note that the GPD function can be a fairly accurate approxi-
mation of the KW function throughout the entire dynamic range of
random variable X (m ¼ 1, 2,. . .). We use this attribute of the KW
probability function for (1) goodness-of-fit analysis of the model,
(2) estimation of specificity and sensitivity of the ChIP-based data-
set, and, finally, (3) estimation of the total number of real specific
BSs for a given TF in a given genome.

It is important to note that in the specific case when θ ¼ 1, the
model is described by the well-known Waring probability function
(PW (X¼m) [40, 62]). Atm!1 and t!1, this function has the
asymptotic properties of the generalized Pareto-like probability
function [62].

3.7 Truncated

Distribution

The robust and accurate estimation of the hypergeometric and
GPD-like probability function parameters based on real data is a
great challenge due to noise and overparameterization issues. The
last problem becomes much more difficult when the number of
unknown parameters increases. However, the three-, two-, or one-
parameter family distributions can be fitted well to the empirical
distributions.

Due to incompleteness of NGS samples, po can be large and
may have to be estimated. On the other hand, week signals on the
right side of the skewed EFD are commonly overloaded by false-
positive noise signals, and data from this part of the dynamic range
should be discarded from parameterization of the function. The
fraction of distinct signals on the right side of the EFD is minor and
may not cover the real dynamic range of the TF–DNA binding
avidity distribution.

In order to apply KW distribution Eqs. 72 and 73 to such
datasets, let us assume that the random variable X is doubly
truncated. For instance, let us consider the random variable X in
the restricted 1, 2, . . ., J; J < 1. Using Eqs. 50 and 61, the
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probability function of the resulting truncated probability function
is written as

p∗
T

m ¼ p∗m=
Xs¼J

s¼1

p∗s

 !
¼ p∗m

1� p0 � p∗Jþ1=p0, Jþ1

ð77Þ

This probability function corresponds to a typical situation in
which the values 0 and J + 1, J + 2, . . ., 1 are not observed. At
λ∗2 =μ

∗
2 ! 1 � 0, Eq. 77 is transformed to the expression

p∗
T

m ¼ p∗m

a=b � b þ J þ 1ð Þp∗Jþ1= b � að Þ : ð78Þ

which at J ! 1 could be simplified to yield p∗T
m ¼ bp∗m=a

.

3.8 Methods for

Parameter Estimates

[34, 62]

Given an empirical histogram of the number of TF binding events
in the DNA fragments sample of size M, and given the function P
(X¼m)¼ f(m; a, b, θ), wherem¼ 1, 2, . . . and a, b, and θ are the
unknown parameters of the PF model, we estimated these para-
meters based on multiple uniform partitioning of an initial rectan-
gular area for two parameters (a, b) at several chosen values of the
third parameter (i.e., θ{θ1, θ2, . . ., }). Let data points (m, nm(M)/
N) for m ¼ 1, 2, . . . , J, where J is the number of occurrences of
the more abundant event value, form the histogram
corresponding to the EFD gM(m).

Recall that
P J

m¼1 gM mð Þ ¼ 1 and that some of the nm values
may be 0 corresponding to missing data. Let {(a, b)|a ∈ (Al, Ar),
b ∈ (Bl, Br)} denote the initial rectangle area, where Al, Ar and
Bl, Br are the left and the right boundaries of the parameter domain
for a and b, respectively. To adjust the unknown parameters in the
functions f(m; a, b, θi) (i ¼ 1, 2, . . .) to fit the histogram points
(m, gM(m)), we minimized the sum of squared deviations,

D f m; �a; �b; θi
� �

; g mð Þ� �
, between the theoretical distribution and

the histogram in points m ¼ 1, 2, . . ., J for each chosen value of
parameter θi and estimated values �a and �b.

Let S denote the number of uniform intervals taken for each
parameter at each step of the optimization algorithm. Let s denote
the number of subareas in which a value of the criterion D is
smallest. s ¼ 0.1S. Let δ1, δ2 denote the minimal intervals of the
partitioning domain for a and b, respectively. The parameters δ1, δ2
provide the exactness of our estimates.

Step 1. The initial rectangle area is partitioned into S2 smaller
rectangles of the same size. The value of function f is calculated for
the central points of each smaller rectangle. The central point

a c
i ; b

c
i

� �
of the rectangle {(a, b)|a ∈ (ai, ai +1), b ∈ (bi, bi +1)} is

defined as a c
i ¼ aiþ1 þ aið Þ=2; b c

i ¼ biþ1 þ bið Þ=2� �
, where i¼ 1, 2,
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. . ., S � 1. These selected subareas become the input rectangle
subareas for the second step of the algorithm. If (Ar � Al)/S < δ1
and (Br � Bl)/S < δ2, then the central point ac∗

i ; bc∗i
� �

corresponding to the minimum value of criterion D is taken as
the final point estimate. Otherwise, the next step is executed.

Step k: Suppose we selected the “best” rectangle subareas
(sk � 1) at step k � 1. The first step is then executed for each of
these subareas. So, the “best” smaller rectangle subareas s are
selected for each of the rectangles of the k � 1th step of the
algorithm and, in total, we obtain sk (sk ¼ sk) “best-fit” smaller
rectangles. If (Ar � Al)/S

k+1 < δ1 and (Br � Bl)/S
k+1 < δ2, then

the central point ac∗

i ; bc
∗

i

� �
corresponding to the minimum value

criterion D is taken as a final point estimate. Otherwise, the next
step is executed.

Parameters in the models were also estimated using MLAB
mathematical modeling software (Civilized Software, Inc., Silver
Spring, MD, www.civilized.com ). For goodness-of-fit analysis, we
also used the Model Selection Criteria (MSC) and the reverse
cumulative function [30, 62].

3.9 Prediction

Method of the Total

Number of Binding

Events (BEs)

Below, we fit the truncated empirical distribution of binding events
BEs (e.g., ChIP-Seq peak height value), starting the fitting of the
specific part of the empirical distribution using Eqs. 72–78 and
estimating the “empirical” threshold which excludes the high-
noise component of the distribution using Eqs. 3, 6–8 [30, 34].
Then, after parameterization of specific and nonspecific probability
terms in the mixture probability function of the distribution with
Eqs. 77 and 78, and estimating weight parameter α (using Eq. 9
and 10), we extrapolate the best-fit probability function of specific
events into a noise-enriched event region of the empirical distribu-
tion to predict the entire specific frequency distribution of specific
BSs in the given ChIP-based experiments. Using parametrized
Eqs. 77 and 78, we estimate the total number of BSs in the entire
genome, sensitivity, specificity and several other practically impor-
tant quantitative characteristics of the parametrized KW function.

4 Data Preparation and Initial Data Analysis: SACO, ChIP-PET, ChIP-seq Methods
and Characterization of Datasets

4.1 SACO: Detection

of Transcription Factor

DNA–CREB BSs in the

Rat Genome

In this section, we present brief descriptions of three TF–DNA
methods, SACO, ChIP-PET, and ChIP-seq, and provide charac-
terization of datasets used in the validation of these methods.

TF CREB binds to the cAMP-response element (CRE), a
sequence identified in the promoters of many inducible genes
[16]. CREB has since been found to mediate calcium, neurotro-
phin, and cytokine signals as well as a variety of cellular stresses. The
SACO library was prepared using ChIP DNA obtained from ~108

rat PC12 cells. Chromatin occupancy in DNA was isolated from
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PC12 cells that were stimulated by forskolin to increase intracellular
cAMP 15 min prior to DNA extraction. Forskolin-treated PC12
cells were subjected to a CREB-DNA binding assay using an anti-
CREB antibody. For SACO experiments, sonicated CREB ChIP
DNA was blunted (protruding 30 and 50 ends were made flush) and
ligated to adapters for limited amplification. The resulting DNA
fragments in the assay, averaging around 700 bp in length, were
represented in a SACO library by 21 nt SAGE tags. These chroma-
tin DNA fragments were digested by NlaIII, which cleaves genomic
DNA at approximately every 120 bp, and a modified SAGE proce-
dure was used to create concatemerized 21 bp genomic signature
tags (GSTs). Approximately 5000 plasmids were used to obtain the
sequence of ~3 � 106 GSTs. The resulting distinct 21 bp SACO
GSTs were matched to genomic sites. GSTs with exact matches or
matches with one substitution error that were uniquely assignable
to a genomic location were considered positives. GSTs without a
genomic match (SACO Tag0) or with multiple matches were not
considered. GSTs within 2 kb of each other were taken to be
associated with the same SACO locus and formed “SACO clus-
ters.” GSTs were counted in clusters and thus can be used for
semiquantitative profiling of BSs of a given TF. For additional
details of SACO loci, see [16].

After genomic mapping and noise sequence filtration, the
authors selected ~41,000 GSTs that identified a single region in
the rat genome. The authors considered at least two SACO over-
lapped tags as a SATO tag cluster (called Tag-2) and are regarded as
high-specific clusters; clusters with sizes 2, 3,. . ., 94 were analyzed.
We will call all SACO clusters a Tag-2 + SACO tag set. We used
6269 for Tag-2, represented by 24,082 GST sequences (http://
genome.bnl.gov/SACO/). Additional information about
observed frequency distribution of intensity of DNA–TF binding
is presented in Table 2.

4.2 ChIP-PET:

Estrogen Receptor

Element (ERE)–DNA

Binding Sites and

STAT1–DNA Binding

Sites

Estrogen receptor alpha (ER-α) is amember of the nuclear hormone
family of intracellular receptors which is activated by the hormone
17β-estradiol (estrogen) [14]. The main function of ER-α is its role
as a DNA-binding transcription factor that regulates gene expres-
sion. ER-α interacts either directly with genomic targets encoded by
ER elements (EREs) (50GGTCAnnnTGACC30), or indirectly by
tethering to nuclear proteins such as AP-1, Sp-1, or NF-κb that
are bound to DNA at their cognate regulatory sites [14].

Briefly, hormone-deprived breast cancer cell line cells (MCF-7)
were treated with 10 nM 17β-estradiol for 45 min and then DNA-
bound receptor complexes were isolated through chromatin immu-
noprecipitation (ChIP) using anti-ERα antibodies. PET sequences
were extracted from the raw reads and mapped to the human
genome sequence assembly (hg18) . Ninety-five ChIP DNA frag-
ments ranged from 100 bp to 2 kb. The distribution of the
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sequence span of these DNA fragments followed the log-normal
function with a span average of 674 bp, median of 458 bp, and
mode of 277 bp.

To find relationships between relative binding avidity of ERE
BSs and expression level of putative direct ERE TF gene targets, we
used U133A&B expression profiling of transcripts of human ER-
positive MCF7 cells defined before and after stimulation with
10 nM 17β-estradiol [14]. In these experiments, the RNA was
extracted at 12, 24, and 48 h and hybridizations were performed
in microarray triplicates according to the manufacturer’s protocol.

The 480,042 original ChIP-PET sequencing reads of INF-γ-
stimulated STAT1–DNA binding (library shc016 in T2G DB;
HeLa S3 cells [15]) were mapped to single loci in the human
genome assembly (hg17), and 327,838 distinct (nonredundant)
PETs (68%) were identified. Of these unique fragments, the PET
tags whose DNA fragment spans 50- and 30-ends were <6 kb apart
were selected. Then, the PET DNA fragments mapped to the
regions of unlikely locations (mitochondrial DNA, Y chromosome,
centromeric loci, long gene-free chromosome regions, etc. (see
above)) were excluded from that PET DNA fragment dataset. We
then selected 324,523 distinct sequences in the ChIP-PET library
shc016, representing 260,953 DNA fragment cluster overlaps
(including singleton DNA fragment genome hits). From the
untreated control dataset (library shc019 in T2G DB; HeLa S3
cells), 507,828 original ChIP-PET sequencing reads were
mapped to a single location in the human genome assembly
(hg17) and 263,901 distinct PETs (52%) were identified. Of
these unique fragments, the PET tags whose DNA fragment
spans 50- and 30-ends were <6 kb apart were selected. Finally, we
selected 254,233 ((254,233/507,828) � 100% ¼ 50%) distinct
sequences of the ChIP-PET library shc019, representing 212,982
DNA fragment cluster overlaps, for further analysis. Additional
information about the observed frequency distribution of
DNA–TF binding events is presented in Table 2.

4.3 ChIP-PET:

STAT1–DNA Binding in

INF-γ-Stimulated and -

Unstimulated HeLa S3

Cells

Interferons (INFs) are well-known cytokines that play pivotal roles
in antiviral, antibacterial, cell proliferation and differentiation, and
antitumor responses primarily by modulating gene expression via
the JAK/STAT pathway [3, 23]. STAT1 regulates proliferation by
promoting growth arrest and apoptosis in response to INF signals.
These effects have given the INFs their major therapeutic value in
the treatment of hepatitis, melanoma, leukemia, lymphoma, and
multiple sclerosis, although their mechanism of action is still
unclear [23, 27]. The regulation of STAT1 by INF-γ provides a
useful system to understand how transcription factors select specific
binding sites, and ChIP-PET has been used to study INF-γ-
induced DNA–STAT1 binding. In our analysis, we used original
ChIP-enriched DNA fragments of INF-γ-induced the
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DNA–STAT1 ChIP-PET library (sch016) and noninduced DNA–-
STAT1 (sch019) library stored in the T2G DB [37]. Based on the
ChIP-PET protocol [4], STAT1 ChIP-PET libraries were prepared
from INF-γ-stimulated (sch016) and un-stimulated (sch019) HeLa
S3 cells as described in [15]. Briefly, for each biological replicate,
12 � 108 cells were used in total. These cells were split into INF-γ-
treated and untreated halves for STAT1 ChIPs. The ChIP-enriched
DNA fragments were cloned into the cloning vector pGIS3 to
generate the ChIP DNA fragment library. Additional information
about the libraries and mapping of ChIP-PET DNA fragments
onto the human genome can be found in the USCS browser track
“GIS-PET” (http://genome.ucsc.edu/).

The T2G DB contains 327,838 and 263,901 distinct ChIP-
PET DNA fragments obtained from INF-stimulated and unstimu-
lated HeLa S3 cells, respectively. These sequences that uniquely
mapped to the reference human genome (hg18) were clustered by
the T2GDB algorithm into 247,846 and 212,982 clusters (includ-
ing singletons), respectively. We also identified and excluded prob-
able false-positive clusters (and cluster overlaps) having a very large
size and located distantly (>100 kilobases (kbs)) from most neigh-
boring genes. Sequences and clusters located in centromeric
regions, Y and M chromosomes as well as alpha-satellites, and
overlapping gap regions were also excluded from analysis. Finally,
we used 324,523 and 259,759 ChIP-PET fragments obtained
from INF-γ-stimulated and unstimulated HeLa S3 cells, respec-
tively. We identified computationally these sequences in 246,644
and 211,619 clusters (including singletons) for INF-stimulated
and unstimulated datasets, respectively. To identify specific binding
loci, we also recalculated the number of PET cluster overlap peaks
(see below); for INF-stimulated and -unstimulated HeLa S3 cells,
we defined 260,953 and 218,440 PET cluster overlap peaks,
respectively.

To study the relationships between relative TF-binding avidity
of BSs and expression level of putative direct STAT1 gene targets,
we used U133 plus2 expression profiling of transcripts of HeLa
cells at 0, 2 and 4 h after stimulation with INF-γ in microarray
triplicates under standard experimental conditions (S. Hartman’s
microarray dataset; [14]).

To validate TF–DNA BS predictions, we provide computa-
tional identification of the position weighted matrix (PWM) of
canonical STAT1 motifs [6]. The PWM method of TF motifs is
used to scan the locations of STAT1 canonical motifs in unstimu-
lated and INF-γ-stimulated DNA sequence datasets derived via the
ChIP-PET method. The canonical STAT1 motifs are scanned by
the nmscan program of NestedMiCA tools using threshold-5
(Score Threshold-5.0) and dual strand search (http://www.
sanger.ac.uk/Software/analysis/nmica/).
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4.4 ChIP-seq:

STAT1–DNA Binding in

INF-γ-Stimulated and

Unstimulated HeLa S3

Cells

ChIP-seq maps single-end 27 bp tags using the Illumina 1G system
(1G), which provides for a 1.5–2-fold increase in the number of
sequences compared to other systems (e.g., SACO). The method is
based on deep 1G sequencing of short-read single-end tags (SETs),
which are simpler to prepare than PETs. Using ChIP-seq, the
authors in [23] compared STAT1–DNA binding in INF-γ-stimu-
lated and unstimulated human HeLa S3 cells, by generating
approximately 47 million reads from immunoprecipitated DNA
fragments. For each dataset (or DNA fragment library), the authors
calculated the number of “extended” overlapped SETs (composing
the extended SETs or “XSETs”) and the corresponding genomic
locations into a DNA fragment overlap profile. They identified
significantly overlapped SET cluster peaks by thresholding the pro-
files (with peaks �11 XSETs) at a height equivalent to an estimated
false discovery rate (FDR) of <0.001. The global properties of the
resulting two profiles were distinct and consistent with high ChIP
enrichment.

4.5 ChIP-seq Nanog

and Oct4-Binding Data

We used a similar method in our analysis of ChIP-Seq TFBS data-
sets for two ChIP-seq libraries (GEO ID: GSE 11431) derived
from mouse embryonic E14 cell lines [13].

5 Computational Preprocessing of Raw Sequence Data, Sequence Mapping,
Aggregation, and Preliminary Data Analysis

5.1 Long PET DNA

Fragments Presented

in the ChIP-Based

Generated Library Can

Form False Clusters

and Produce Bias in

the Count of Real

Clusters and Their

Sizes

The long tails of the frequency distribution of a span of DNA
fragments in ChIP-PET experiments can produce errors in
mapping, counting, and modeling of background (noise) events,
since longer DNA fragments have a greater chance to form random
(false-positive) clusters while shorter fragments can be a source of
multipeak clusters. For example, Fig. 6a shows the frequency dis-
tribution of a span (nt) of PET DNA fragments found in an INF-γ-
induced STAT1 ChIP-PET binding event dataset. Goodness-of-fit
analysis of the empirical frequency distribution showed that this
distribution is a mixture of the following distributions: relatively
short DNA fragments (<700 nt) and very long DNA fragments (up
to several thousands of nucleotides). Figure 6b demonstrates that
the lengths of DNA fragment clusters are often longer than that of
PET DNA fragments in PET fragment singletons. Data analysis
suggests that the longer PET DNA fragments can form false-posi-
tive clusters and inappropriately mapped regions, thus producing
bias in the count of PET clusters, incorrect peak heights, and
erroneous locations for BS loci. It seems that prefiltering very
long ChIP DNA fragments before mapping them onto genomes
is helpful reducing the size of false DNA clusters and counts.
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5.2 Sequence

Prefiltering and the

Compromise Between

Specificity and

Sensitivity in ChIP-seq

Data Analysis in

Identification of TF

STAT1 BSs in INF-γ-
Stimulated HeLa S3

Cells

An INF-γ-stimulated STAT1–DNA binding ChIP-seq assay pro-
duces millions of short (27 nt) unique sequence reads
(20–40 � 106), and in combination with the unstimulated (basal)
STAT1–DNA binding ChIP-seq assay, this experiment can be used
to estimate the specificity, sensitivity, and accuracy of the STAT1
TFBS mapping onto complex genomes [23]. After ChIP for
STAT1 in INF-γ-stimulated HeLa S3 cells, the 1G system pro-
duced a total of 24.1 million 27-bp sequence reads (SETs [23];
Table 1). Of these, 15.1 million reads (63%) uniquely aligned to the
non-repeat-masked regions of the human genome. For unstimu-
lated HeLa S3 cells, the authors generated 22.7 million reads and
uniquely mapped 12.9 million reads (57%).

A cluster peak height (maximum number of DNA fragments
overlapped in a genome locus) for the XSET overlaps was the
maximum number of overlapped XSETs in the cluster; peak height
and FDR were inversely related. For both STAT1 sequence
libraries, the authors estimated FDR ¼ 0.001 at peak height ¼ 11
XSETs. The resulting 41,582 overlapping peak regions containing
17.9% of mapped reads were experimentally defined as the probable
STAT1 BS in INF-γ-Stimulated HeLa S3 cell DNA. In the INF-γ-
Stimulated HeLa S3 cell DNA samples, only 11,004 DNA frag-
ment overlap cluster peak regions and only 4.2% of mapped reads
were experimentally defined and interpreted as the probable STAT1
BS ([23], Table 1). However, after the paper had been published
[23], the authors revised their statistical criteria. In particular, new
peak height critical cutoff values of 9 and 10 were used for genome
mapping using DNA fragment clusters derived from the ChIP-seq

Fig. 6 False-positive “significant” clusters in ChIP-PET datasets occurred due to suboptimal ultrasound
generation of DNA fragments with very long and very short PET DNA fragment spans. (a) An example of the
frequency distribution of a span of PET DNA fragments found in an INF-γ-induced STAT1 ChIP-PET binding
event dataset. This data contains a large fraction of long DNA fragments. (b) Red line: the cumulative functions
of the length of PET DNA fragments in the total set of DNA fragments which uniquely mapped onto the
reference genome (used in panel a); blue line: the spans of singleton PET DNA fragment sequences; green line:
and the spans of PET DNA fragments forming clusters of size 2 or greater (PET-2+)
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libraries of the stimulated and unstimulated STAT1 binding tumor
cells, respectively. The authors also identified and split the largest
clusters, redefined the genome coordinates of the significant DNA
fragment clusters and recalculated the number and the heights of
the peaks in DNA fragment overlap regions. In our analyses, we
used the revised sets as our raw data. With the new statistical
criteria, we counted 63,309 INF-γ-“stimulated peaks” and
16,470 “unstimulated peaks” for HeLa S3 cells, respectively. We
discarded all sequence reads that could not be uniquely mapped to
the genome and did not follow our filtering criteria.

Shot-height DNA fragment clusters might be observed in mul-
tiple unusual positions within genic or nongenic regions, including
30ends of the gene and downstream gene regions (Fig. 7). Such
unlikely real clusters are often superlative in a given genome region
across the different experiments and their number is very sensitive
to the statistical method and criteria used to estimate specificity of
the experiment (or FDR by [23], Table 1). Figure 7a shows an
example of a massive multicluster DNA fragment mapping in the
centromere region of chromosome 1. These clusters exhibit the
same location and the same shape of distribution of overlapped
DNA sequences in the clusters for unstimulated and INF-γ-

Fig. 7 Typical examples of nonspecific binding regions. (a) False-positive ChIP-PET clusters can often be
located within or near centromeric regions. Large clusters occur near chromosome gap regions in many ChIP-
PET libraries for different TFs (T2G data base). (b) False-positive ChIP-seq clusters can often be located within
or near centromeric regions. STAT1-DNA binding in INF-γ stimulated and unstimulated HeLa S3 cell ChIP-PET
datasets. (c) False-positive group(s) of shot-height multiple clusters in ChIP-seq-defined STAT1-DNA binding
in the genome of INF-γ stimulated and unstimulated HeLa S3 cells
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stimulated samples. Such clusters in the centromere regions and
near chromosome gap regions were considered false-positive clus-
ters (Fig. 7a, b). Clusters with relatively long spans, large sizes, and
distantly located (>100 kb) from the closest genes (and their
related cluster peaks) were also excluded from our analysis as
false-positive events. False-positive group(s) of shot-height multi-
ple clusters in ChIP-seq-defined STAT1–DNA binding in the
genome of INF-γ stimulated and unstimulated HeLa S3 cells are
shown in Fig. 7c.

Due to suboptimal experimental design, a small number of
biological samples, and ignoring the genome sequence complexity
information in peak calling and statistical background models of
computational algorithms, ChIP-qPCR validation experiments can
provide an optimistic estimate of specificity and sensitivity of a
ChIP-seq experiment [32].

In total, we filtered out 1.3% (853/63,309 � 100%) and 4.4%
(727/16,470 � 100%) problematic and false-positive stimulated
and unstimulated peaks, respectively (Table 1).

The resulting 62,456 stimulated peaks contained 8.2%
(1,246,120/15,100,000) of confidence-mapped reads, whereas
the 16,470 unstimulated peaks contained 36.8% (198,566/
540,000) of confidence-mapped reads (Table 1).

Finally, after all filters were applied, we selected 62,456 and
15,743 ChIP-seq fragments obtained from the libraries of INF-
stimulated and unstimulated HeLa S3 cells, respectively. Table 1
summarizes the characteristics of the revisited ChIP-PET sequence
libraries derived from the stimulated and unstimulated HeLa S3
cells.

5.3 ChIP-PET ERE

Data: Sequence

Filtering, Mapping

Onto Reference

Genome, and

Sequence Clustering

Are Essential Steps for

Data Analysis

A significant amount of nonspecific (background) genomic DNA is
always present in the inmmunoprecipitated DNA material of any
ChIP-basedDNA sequence library. In fact, about 35–80% of original
ChIP-based tag sequences are nongenomic/noise sequences. Fortu-
nately, theseDNAsequences caneasily befilteredout aftermappingof
the DNA fragments onto the genome. For example, in one
ERE–DNA binding study [14] (library shc07; http://t2g.bii.a-star.
edu.sg), 635,371 PETs were sequenced, of which 361,241
(~56.86%) were mapped unambiguously to unique loci in the refer-
ence genome [14]. We filtered and reanalyzed ChIP-PET DNA
fragment sequence data of ERE-binding sequences using our algo-
rithm of filtering, mapping, and clustering [20]. Due to PET
sequence duplication, the number of unique PET sequences mapped
uniquely to the genome was reduced to ~137,500 distinct PET
sequences. After additional filtering of the sequences mapped to Y
chromosomes, centromeres, gaps, and alpha satellite regions, we
finally selected 136,348 ((136,348/635,371)� 100%¼ 21.5%) dis-
tinct sequences of the ChIP-PET library representing 124,756 DNA
fragment cluster overlaps (including singleton DNA fragments).
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Additional information about the observed frequency distribution of
the intensity of DNA–TF binding is presented in Tables 2 and 3.

5.4 Specific TF

Binding Events in

ChIP-PET and SACO

Datasets Are Following

the Common Skewed

Statistics

The EFDs of the binding events for all ChIP-based datasets exhibit
monotonically skewed shapes with a greater abundance of rare
binding events, and more gaps and irregularities among the
higher-confidence binding events (Fig. 8). The forms of the dis-
tributions of binding events for different methods and TF–DNA
binding events and cell types are very similar to each other (see also
[4, 19, 20, 30, 31]).

Figure 8a–d demonstrate that the frequency distribution shapes
of the BEs are similar for both the ChIP PET and SACO methods.
Figure 8a–c show the histograms specifying the binding events
frequency in the ChIP-PET experiments: (panel a) INF-γ-stimu-
lated and unstimulated STAT1 DNA binding data; (panel b)the
same INF-γ-stimulated STAT1 DNA binding data; and (panel c)
estradiol-induced ER-DNA binding data. Comparing Fig. 8d to
a–c, the histogram specifying the frequency of CREB binding
events in the SACO experiment is similar to the histograms for
the ERE TF and STAT1 TF ChIP-PETexperiments. See Table 3 for
additional information and details. Thus, the shapes of the EFDs in
different experimental systems are robust across the methods. Fur-
thermore, our mixture distribution function (Eq. 4) provides for a
quantifiable description of these distributions. Next, the KW and
exponential functions characterizing the specific and nonspecific
TF–DNA binding events allow accurate analysis of the EFDs for
different mammalian organisms, cell types and TF–DNA inducing
pathways.

5.5 Specificity and

Critical Cutoff Values

of Binding Events in

ChIP-PET and SACO

Experiments

Using our curve-fitting analysis method for parameterization of the
GPD for the experimental data presented in Fig. 8a–d, we decom-
posed the noise and the specific components of binding events in
the ChIP-PET and SACO datasets and estimated a cutoff value for
binding events at a reasonable specificity. Table 2 contains detailed
information about the number of binding events (changed from 1
to 11) for the CREB SACO library and two ChIP-PET libraries and
their distributions. The numerical results of goodness-off-fit analy-
sis of the truncated GPD and KW functions are also presented in
Table 2 and both functions show an accurate approximation of the
available data. Based on the results, we found optimal cutoff values
in each experiment with acceptable p-values: p ¼ 0.038 SREB BS,
SACO method; p ¼ 0.014 ERE BSs, ChIP-PET method;
p ¼ 0.084 INF-γ-stimulated STAT1 BSs, ChIP-PET. There were
also acceptable specificity estimates for detection in each experi-
ment: 96.2% for SREB BS, 98.6% for ERE BSs, and 91.6% for INF-
γ-stimulated STAT1 BSs. A detailed description and numerical
values of these and other important statistical characteristics of
the libraries are presented in Table 3. Importantly, the parameteri-
zation of the mixture distribution function (Eq. 4) allowed us to
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Fig. 8 Common statistical properties of binding events and goodness-of-fit analysis of the distribution of
binding events across ChIP-based methods (ChIP-PET and SACO) and different TF–DNA binding systems: (a)
STAT1-DNA binding events in INF-γ-stimulated (open circle) a n d unstimulated (control—filled circle) cell
samples where a binding event was defined by the highest peak in overlap of cluster ChIP-PET DNA
sequences; dotted line: best-fit exponent function at power coefficient s ¼ 1.95 � 0.136; t ¼ 14.4; p <
0.0001. (b) A decomposition and estimation of the parameters of our mixture probability distribution model:
(open diamond) best-fit GPD to specific (right) tail of the empirical distribution; (solid circle) model-predicted
nonspecific binding events; (open circle) total number of specific and nonspecific events in the overlapped
region of the mixture distribution. The exponential function with a power coefficient of s ¼ 1.86 � 0.072 (t ¼
25.96; p < 0.0001) fits well to the predicted frequency distribution and simultaneously fits to the observed
frequency distribution of nonstimulated HeLa S3 cells (panel a). The GPD function [3] fits well to the truncated
statistics of specific binding events with a cutoff value of 6 and at k¼ 4.44� 0.0806 (t¼ 56.9; p< 0.0001);
b ¼ 6.258 � 0.1260 (t ¼ 51.9; p < 0.0001). (c) Frequency distribution of the estradiol-induced ERE-DNA
binding events in the genome of human breast cancer MCF7 cells, detected by via the ChIP-PET method and
the results of decomposition of this frequency distribution based on our mixture distribution model (Eq. 4). (d)
Frequency distribution of the CREB-DNA binding events in the genome of forskolin-treated rat PC12 cells,
detected by via the SACO method and the results of decomposition of this frequency distribution based on our
mixture distribution model (Eq. 4). Exponential and KW functions are used for the modeling and parameteriza-
tion of the frequency distributions of the nonspecific and specific TF–DNA binding events, respectively. See
Table 3 for additional information and details
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Table 3
Statistical characteristics of the TF–DNA datasets and the frequency distributions of binding events
generated by SACO, ChIP-PET and ChIP-seq platforms

Definition
CREB
(SACO)

ERE
(ChIP-PET
(1)

STAT1
(ChIP-PET
(2))

STAT1
(ChIP-seq
(1))a

STAT1
(ChIP-seq
(2))b

Number of mapped genome loci, in
dataset N

23,812 124,756 260,953 62,456 at
c+ ¼ 9

15,743 at
c+ ¼ 10

Number of DNA fragments inN loci,
M

41,702 136,348 324,523 1,246,120 at
c+ ¼ 9

198,566 at
c+ ¼ 10

Mean of binding event (e.g. height of
peak value), M/N

1.75 1.09 1.25 19.95 at
c+ ¼ 9

12.61 at
c+ ¼ 10

Frequency of DNA fragment
singletons, p1

0.74 0.94 0.81 N.A. N.A.

Estimated number of specific BS
occurred in dataset, Nsp

6737 6099 6074 16,872 4694

Number of DNA fragments in Nsp,
Msp

20,962 12,104 15,599 493,992 25,794

Mean value of specific binding
events, Msp/Nsp

3.11 1.98 2.57 29.28 5.5

Estimated frequency of specific BS
out of dataset, po

0.563 0.77 0.5 0.04 0.22

Predicted number of specific BS in
genome, Ntot (by KW)

15,438 26,350 12,252 17,661 5985

Critical cut-off value of specific
binding (e.g. peak height), c

4 3 6 61 31

Number of observed BS for binding
events � c+, N(c+)

1650 1487 534 2322 64

Number of DNA fragments in Nc+,
M(c+)

13,822 6834 4941 271,521 2809

Number of specific BS inNc+, Nsp(c+)
(by KW)

1568 1206 526 2134 58

Number of DNA fragments in
Nsp(c+), Msp(c+)

12,918 6011 4662 237,790 2448

Nsp/N * 100% 28.3 4.89 1.87 N.A. N.A.

% Specific DNA fragments in dataset,
α (%) ¼ Msp/M * 100%

50.3 8.8 4.54 N.A. N.A.

% at �c, Nsp(c+)/Nsp * 100% 25.5 25.84 8.09 12.65 1.36

% Specific sequences in Nc+, Msp(c+)/
Msp * 100%

61.6 49.66 29.88 48.14 9.49

Specificity ¼ Nsp(c+)/N(c+) * 100% 95.0 81.10 91.52 91.9 90.7

(continued)
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arrive at viable statistical estimates and effectively compare EFDs
(Eq. 3) across different methods, organisms, cell types, TFs and
their inducing pathways.

Figure 8a demonstrates that GPD fits well to the less noisy
binding events in the right tail of the empirical distribution of
binding events of TF STAT1in INF-γ-stimulated HeLa S3 cells,
as the exponential function fits well to the distribution of the
binding events in the unstimulated STAT1 HeLa S3 cells (Fig.
8b). Our colocalization analysis of spans of ChIP-PET-defined
significant cluster peaks in the stimulated and unstimulated datasets
showed that only a few BS regions were common in the stimulated
and unstimulated HeLa S3 datasets. The canonical STAT1 BS
(TTCCNGGAA) was also well-defined in a significant part of the
empirical distribution of TF–DNA binding events (cluster peaks) of
TF STAT1 in INF-γ-stimulated HeLa S3 cells, but rarely defined in
unstimulated HeLa S3 cells (not presented).

These results suggest that TF–DNA binding events in unsti-
mulated HeLa S3 cells cannot be reliably detected in the given
ChIP-PET experiment under the given experimental conditions
and design.

Figure 8c, d show that, for the SACO and ERE TF BEs
analyses, the exponential distribution statistics fit well to the mostly
false-positive low-abundance cluster overlap peaks, and that the

Table 3
(continued)

Definition
CREB
(SACO)

ERE
(ChIP-PET
(1)

STAT1
(ChIP-PET
(2))

STAT1
(ChIP-seq
(1))a

STAT1
(ChIP-seq
(2))b

Sensitivity ¼ Nsp(c+)/Ntot * 100% 10.16 4.58 4.36 12.08 0.97

θ (KW) 0.999 0.987 0.997 0.996 0.969

a (KW) 1.712 0.806 4.341 37.318 7.633

b (KW) 3.924 3.481 8.757 39.064 9.737

k (GDP) 2.224 2.565 4.446 2.266 2.975

β (GDP) 2.649 1.701 6.258 43.347 10.29

s (by exponential distribution; non-
specific binding events)

1.871 3.112 1.86 N.A. N.A.

Column 1: Characteristic; Column 2: Forskolin-induced CREB binding (SACO clusters); Column 3: Estradiol-stimu-

lated ERE-DNA binding; Column 4: INF-γ-stimulated specific STAT1 BS Type I (ChIP-PET peaks); Column 5: INF-γ-
stimulated specific STAT1 BS Type I (ChIP-seq peaks); 6. Unstimulated specific STAT1 BS Type I (ChIP-seq peaks)

θ, a, b: estimated parameters of KW function; k, β: estimated parameters of GPD function; s: estimated power parameter
in exponential function
aData for high-avidity STAT1 BS Type I
bData for low-avidity STAT1 BS Type I
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GPD and KW functions can approximate the tail of the empirical
frequency distribution of specific binding events (after filtering out
nonspecific clusters) efficiently. Fit parameters are represented in
Table 3. The estimates presented in Table 3 suggest that only a
relatively small fraction of real BSs in all these experiments can be
identified within the experiments. Notice that, we [4, 12, 14, 20]
and others [3, 8, 15, 22, 23] have shown that in combination with
motif search procedures (e.g., [6]) and expression data analysis,
many low-abundance ChIP-defined binding events can be consid-
ered the TF-specific BSs.

It is possible that there are many low-abundant and moderate-
abundant binding events (BEs) that cannot be considered true bind-
ing sites due to the high level of noise inChIP detection, as well as the
nonuniform distribution of those BEs. Even for singleton PET data,
the fraction of ChIP-PCR-confirmed specific BSs was 10–20% of all
observed single sequences mapped on the genome [9, 12].

In general, larger clusters (or cluster peaks) tend to map more
specific binding sites [4, 19, 20] (see also Fig. 8; Tables 2 and 3).
This property was observed for p53, Stat1, c-Myc ChIP-PET TF
binding loci in combination with microarray expression data analy-
sis and by a combination of direct qPCR measurements with motif
search analyses [4, 12, 14, 15, 20]. Those combined data analyses,
including validation of limited random subsets of PET clusters with
ChIP-qPCR, show that specific loci for these TFs also can be
determined in the corresponding PET datasets even in the smallest
of clusters (PET-2 peaks) and in singletons [12]. Moderate-sized
and large clusters can contain a relatively small fraction of nonspe-
cific clusters. However, these clusters can be accurately validated in
combination with other (mentioned above) independent methods
[4, 9, 12].

5.6 Sensitivity and

Estimates of the Total

Number of TFBSs in

ChIP-PET and SACO

Experiments

To estimate the number of specific BSs, we begin with an estima-
tion of the specific BS events in a highly noisy enriched region of the
distribution function in Fig. 8. For instance, for INF-γ-induced
STAT1 binding data, this region includes peak values 5, 4, 3, 2, 1
(Table 2; Fig. 8b). For such estimation, the best-fit GPD function
can be “back extrapolated” to the highly noisy enriched region of
the distribution. We then identify the dynamical subregion of the
random variable which can be used for fitting via the KW function.
According to this method, the entire GPD function was accurately
fitted using the KW distribution function, Eqs. 72 and 73 (discon-
tinued line; Fig. 8b), with model parameters θ ¼ 0.997, a ¼ 4.341;
b¼ 8.757. Finally, using the best-fitted Eq. 73, we can estimate the
fraction of undetected specific BSs of the STAT1 TF p0 ¼ (1 � a/
b) ¼ 0.50. Empirical distribution and KW fitting results in ERE
ChIP-PET experiments with p0 ¼ 0.77. Empirical distribution and
GPD fitting results in SREB SACO experiments with p0 ¼ 0.56.
Table 3 provides detailed information about the identified statistical
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distribution. For example, the total number of specific SACO-
defined SREB BSs in the rat genome is 15,438, and the total
number of specific PET-defined BSs for ERE and STAT1 in the
human genome is 26,350 and 12,252, respectively. These estimates
are consistent with those of previous publications [3, 13–15, 19,
20, 22, 23].

5.7 ChIP-seq DNA

Fragments for Nanog

and Oct4 TF Binding in

Mouse Embryonic E14

Cells

Nanog and Oct4 are key regulatory genes involved in self-renewing
and development of mouse and human embryonic stem cells [9,
13]. Identification of the binding avidity EFD for these TFs is
carried out in this section.

The DNA fragments have been mapped onto the reference
mouse chromosomes [13] and collected in the T2G libraries
[37]. In our analysis of a ChIP-seq dataset, a random variable X
represented the count of maximumDNA sequences overlapped in a
given genome region and identified as the isolated DNA fragment
density region with peak region height at X ¼ m > c. We used the
peak region height as a measure of the TF–DNA binding intensity
(or avidity). We analyzed the peak region height EFD and quanti-
fied the peak region height of the 200-nt ChIP-seq DNA fragments
for Nanog and Oct4 TF binding in the genome of mouse embry-
onic E14 cells.

Let c denote the critical cutoff value of the peak region height.
This value provides the requested specificity (0.95%) of the biding
intensity (quantified by the peak region height). According to pre-
vious publications, we selected c ¼ 11 DNA fragments for Nanog
and c ¼ 8 DNA fragments for Oct4 binding quantity events [13]).

Let Mc+ and Nc+ denote the numbers of DNA fragments and
the number of peak regions in the datasets in the NGS sequence
library, respectively. At confidence cutoff values defined on the
EFD, these numbers provide the subsets of most likely TF–DNA
specific binding DNA fragments and the peak region height values
above the critical cutoff, respectively. Thus, N is the subpopulation
of preferentially true positive peak regions on the genome and M is
the subpopulation of DNA fragments in these preferentially true
positive peak regions of the genome. For Nanog TF dataset:
M ¼ 468,156; N ¼ 52,004; Oct4 TF peak dataset: M ¼ 84,810;
N ¼ 19,160.

Both datasets show a similar shape of the EFD of binding
events (peak region heights). We used the KW distribution in
Eqs. 72 and 73 to describe the distribution of specific binding
events. Equations 77 and 78 allow us to fit the data well to the
left-side and right-side truncated empirical distributions. In our
goodness-of-fit analysis, we carried out back extrapolation of the
best-fitted truncated KW function into the left-sided high-noise
region of the EFD (to the left part of the distribution with height
values between 1 and the cutoff value of specificity).
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Moreover, using Eqs. 72 and 73, we can estimate what fraction
of specific BSs has not been detected in the ChIP-seq experiments
(p). Estimated parameters of Eqs. 72 and 73 for Nanog TF data are
the following: θ ¼ 0.997; α ¼ 5.870; β ¼ 7.465. Thus, by Eq. 73,
p ¼ 0.22. Estimated parameters for Oct4 data are θ ¼ 0.998;
α ¼ 5.681; β ¼ 8.32. Thus, by Eq. 73, p ¼ 0.32. Finally, we
estimated the total number of specific BSs in the mouse genome
for a given TF. This estimate equals ~66.7 � 10 BSs for the Nanog
TF and ~28.2 � 10 BSs for Oct4.

Figure 9 shows the results of our goodness-of-fit analysis for
Nanog-DNA binding events in the genome of mouse embryonic
E14 cells. Our mixture distribution function of TF–DNA binding
events in high-throughput experiments [3] specifies three of the
most important zones in the dynamical ranges of the events for data
analysis. As for other datasets, the KW distribution accurately iden-
tifies the specific zone of the right tail of the distribution that
comprises the most intense TF–DNA binding events. In total, our
modeling and analysis leads to extension of the high-confidence

Nanog
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Fig. 9 Three zones in the EFD in NGS experiments. Our mixture PF (Eq. 3) specifies the three most important
zones for data analysis. The KW distribution accurately identifies the specific statistical properties for Nanog-
DNA binding events in the genome of mouse embryonic E14 cells. Goodness-of-fit analysis of the frequency
distribution of binding events (# ChIP-seq peak region heights) fitted starting from the cutoff peak value
defined in [13]. For these data, the KW distribution fits to the observed right tail (reliable part of the mixture
frequency distribution), as well as the best-fit truncated GPD extrapolated to the smaller peak values, including
value 1 (belonging to the highly noise-rich subset). The KW function fits to the best-fit estimated GPD
function values on the entire dynamical range of peak values. Due to the high confidence of curve-fitting of
the KW distribution, the parameters of the KW function were accurately estimated. Vertical line: threshold
value c ¼ 11
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zone of TF–DNA binding events to the moderate and low-avidity
zones. As result, we can provide identification of the entire EFD of
specific binding events even in the noise-rich zone. This predictive
ability of the KW distribution makes our method practically reason-
able for the quantitative analysis of the binding profiles of Nanog,
Oct4, and other DNA-binding proteins in the NGS experiments.

5.8 Sample-Size

Dependence Analysis

Can Define Rescaling

in Binding

Mechanisms of ChIP-

Based Methods

ChIP-seq uses a much larger number of sequence reads than other
ChIP-based methods. Therefore, the examination of ChIP-seq TF-
binding sites might more adequately represent the true complexity
and diversity of TF-binding patterns. We suggest that due to this
advantage, the empirical distribution of the ChIP-seq dataset allows
us to find more diverse/complex patterns of STAT1–DNA binding
than ChIP-PET and other ChIP-based methods.

We hypothesized the existence of the “low-avidity” and “high-
avidity” subsets of binding events. We suggested that two distinct
specific distributions of STAT1 binding should be observed in a
ChIP-seq experiment. Figure 10 shows that a mixture model of two
KW functions fits well to the empirical frequency distribution of
STAT1–DNA binding events. ChIP-seq binding events are repre-
sented by a number of XSETs. Detailed notations and estimated
parameter values of the model are presented in Table 3. Table 4
shows that, in INF-γ-stimulated cells, the high-avidity STAT1 BSs
in HeLa S3 cells are strongly associated with the location of canon-
ical motifs (82% BS association), while small a number of relatively
high-avidity binding sites (64 BSs) also exists in a population of
unstimulated cells, and further that 47% (30/64 � 100%) of these
BSs are supported by canonical motifs. A large number of stimu-
lated and unstimulated HeLa S3 cells exhibit low STAT1-BS
avidity.

We also compared ChIP-PET and ChIP-seq detection of high-
avidity binding sites of the STAT1 TF in INF-γ-stimulated and
unstimulated HeLa S3 cells (Fig. 8a). ChIP-PET binding events
are presented by the peaks that correspond to the number of over-
lapping PET DNA sequences; ChIP-seq binding events are repre-
sented by XSETs. For stimulated HeLA S3 cells, the ChIP-seq and
ChIP-PET data are consistent in chromosome location (common
loci) and the relative value of the TF–DNA binding events. How-
ever, the ChIP-PET dataset (library size being much smaller than
that of the ChIP-seq dataset) lost essential information about truly
existing binding sites in the genome of the stimulated and unsti-
mulated cells. The fraction and height values of specific BEs in the
ChIP-seq dataset are expressed much more strongly and are often
more statistically significant than in the ChIP-PET dataset. Using a
95% specificity cutoff value of 31 eSETs, we suggest that ChIP-seq
data for unstimulated HeLa S3 cells can be used to detect 64
high-confidence specific STAT1 BSs in unstimulated HeLa S3
cells (Figs. 10 and 11).
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We found 45 RefSeq genes predicted as possible direct targets
for “basal” transcription regulation by STAT1 in INF-γ-unstimu-
lated cells including interferon regulatory factor 9 (IRF9), ATP-
dependent DNA helicase homolog (Saccharomyces cerevisiae
(HFM1)), polyamine-modulated factor 1 (PMF1), WD repeat
domain 74 (WDR74), polymerase (DNA directed), delta 1 catalytic
subunit 125 kDa (POLD1), Huntingtin Associated Protein 1
(HAP1) encoding the protein that interacts with huntingtin, with
two cytoskeletal proteins (dynactin and pericentriolar autoantigen
protein 1), and with a hepatocyte growth factor regulated tyrosine
kinase substrate playing a role in vesicular trafficking or organelle
transport, substrate recognition component of a SCF (SKP1-
CUL1-F-box protein) E3 ubiquitin-protein ligase complex
(SKP2) which produces mediators to the ubiquitination and
subsequent proteasomal degradation of target proteins involved
in cell cycle progression, signal transduction, and transcription
(Table 5). This table also includes poorly described and in silico
predicted genes such as LOC284801.cApr07, kloypeybo.aApr07,
RNU2P2.cApr07, LOC554226.bApr07. The listed genes provide
the important resource for study of the role STAT1 plays in regula-
tion of transcription and the functions of these and other genes of
Table 5.

We would like to indicate that noisy BEs in ChIP-seq and
ChIP-PET datasets are increased when data set sample size
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becomes larger. This common property of ChIP-based sequencing
methods is still a complex challenge to resolve in order to achieve
reliable detection of true low-avidity BS events even in a very large
sample size.

Figure 12 provides useful information regarding the compara-
tive sensitivity of ChIP-seq and ChIP-PET analyses. In our meta-
analysis of colocalization of STAT1-binding sites, both methods
provided a similar shape for binding site distributions near tran-
scription start sites (TSSs) of a gene. However, spatial variation of
the BSs in the ChIP-seq experiment is relatively smaller than in the
ChIP-PET experiment (Fig. 12a, c). Consistency between frequen-
cies of ChIP-PET and ChIP-seq binding events approaches 100% at
values PET-6 (solid line, Fig. 12d) and above (PET6+).

Fig. 11 Sample-size dependence of ChIP-based methods. Comparison of ChIP-PET [15] and ChIP-seq [23]
detection of high avidity binding sites of the STAT1 TF in INF-γ-stimulated (a, c) and unstimulated HeLa S3
cells (b, d). For stimulated cells, the data provides strong consistency in chromosome location (common loci)
and relative amplitude of the signals. However, the Chip-PET dataset lost essential information about truly
existent binding sites in the genome of unstimulated cells. Chip-PET binding events are presented by the
peaks corresponding to the number of overlapping ditags at a given genomic coordinate. ChIP-seq binding
events are represented by XSETs
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5.9 The ChIP-Based

Approach Allows

Measuring a Relative

Avidity Function

Interestingly, we determined a strong correlation between peak
height in STAT1 ChIP-PET experiments and expression signal
value (defined by microarray Hartmann’s data; [76]) in putative
gene targets located in the vicinity of 2 kb from the identified
STAT1 BS. Figure 12c shows that this correlation, estimated by
the Spearman coefficient correlation, presents in time-course
microarray experimental design (0, 2, and 4 h). These observations
suggest the probability of binding events in ChIP-PET clusters
located in a canonical promoter region can reflect a relative avidity
of STAT1 binding and increase the probability of regulation of the
transcription of STAT1 direct gene targets.
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Fig. 12 Comparison analysis of the results of ChIP-seq and ChIP-PET datasets. (a) ChIP-PET binding site
distributions near a transcription start site (TSS) of a gene. (b) Spearman correlation between relative avidity
(peak height in the ChIP-PET experiment) and expression signal value (time-course expression microarray
Hartmann’s data [3]). (c) ChIP-PET and ChIP-seq binding site distributions near transcription start sites (TSSs)
of a gene have a similar shape; however, variation of the distribution in the ChIP-seq experiment is better
compared to ChIP-PET. (ChIP-seq data in [23]). (d) Consistency between frequencies of ChIP-PET and ChIP-
seq binding events approaches 100% (solid line) at values PET-6 and above

Mathematical Modeling of Avidity Distribution and Estimating General Binding. . . 267



6 Discussion and Conclusion

The stationary distributions of the birth–death stochastic processes,
which are skewed to the right, can be used as explanatory models of
commonly observed EFDs of diverse biological phenomena taking
place in large-scale evolving systems [9, 12, 19, 20, 34, 51–53, 55,
59, 62, 64, 65, 69]. In this work, probabilistic models of the
TF–DNA binding site events on the genome scale and an algorithm
for the accurate identification of corresponding frequency distribu-
tions of TF binding events from IP-based sequence read clustering
and mapping on the genome were developed. The probabilistic
mechanisms of the dynamics of large-scale bimolecular systems
such as the TFBS virtual network can be modeled with the help
of the Kolmogorov birth–death process differential-difference
equations. This is done by deriving the steady-state solutions to
these equations with various assumptions regarding functional
properties of the process coefficients and transition probabilities.
We showed that the steady-state probability function of the Kol-
mogorov process can be described in terms of a series of hypergeo-
metric or Beta functions and the probability function includes a
broad family of skewed distribution functions, including but not
limited to Waring, GPD, several well-known power law-like proba-
bility functions, and scale-free network models.

For a given biological data and NGS method, selection and
fitting of appropriate probabilistic model of the biological phenom-
ena is often a difficult problem. We have specified our probabilistic
model in the context of analyzing different TF interactions with
their specific binding loci, cell types, and conditions defined by
different NGS methods. Our implementation of the KW process
model to TF binding, based on simple but reasonable binding–dis-
sociation assumptions, leads to a uniform explanation for experi-
mental TF–DNA binding avidity distributions at mammalian
genome scale, providing estimates of the total number of BSs for
a given TF in contexts of cell types and conditions. Additionally,
our model provides a simple, robust, quantitative, and visual
method for estimating the sensitivity, specificity, and accuracy of
any NGS-based experimental data in which a skewed form of the
distribution of events is observed.

We further demonstrated that the empirical distributions for all
the studied ChIP-based datasets are well fitted by a mixture model
with specific components of BEs described by the skewed Pareto-
like distribution function subfamilies (including Waring, Yule, Par-
eto, and other known skewed distributions), whose shape depends
in a predictable manner on the sample size [19]. Such distributions
can be generated as limiting/critical distributions of the KW ran-
dom birth–death process, where the birth and death intensities are
linear functions of (binding) events [30]. The power law for the
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analysis of ChIP-seq data was also used in [20, 32, 33, 42] and
supports these findings.

Actually, the skew form of the EFD is consistent with the well-
known fact that TFBSs of moderate and low predicted affinity have
many sequence variants of similar quality (noncanonical c-Myc E-
boxes), whereas the highest-affinity motifs have far fewer alterna-
tives of similar quality (e.g., canonical c-Myc E-boxes) [34]. This
means that there are many more ways to be a weak avidity-binding
site than a strong binding site at the genome scale. This is further
testable.

Our quantitative TF–DNA binding activity model [3], includ-
ing the KW distribution, allows us not only to identify a common
statistical law (Figs. 8–10) for specific TF–DNA binding, but also to
estimate the number and fraction of specific BSs for a particular TF
in different ChIP-based experiments even if the dataset is essentially
incomplete and enriched with noisy events.

Note that, by looking at the experimentally resulting mixture
distribution of peak region heights, a researcher can visually evalu-
ate the overall success of the chromatin immunoprecipitation
experiment and the depth of sequencing: the larger the difference
between the two distributions, the more specific was the antibody
and the DNA fragment numbers mapped onto a genome. Decom-
posing the mixture distribution function based on the visual analy-
sis of the frequency distribution curvature slope change can provide
the location of the proximal critical cutoff value, separating a frac-
tion of the significant putative specific TFBS (represented by the
peak height values) higher than the cutoff value.

The sensitivity and the specificity of our mixture model [3] are
demonstrated by applying the model to analysis of different ChIP-
seq datasets across different platforms. In this work, we developed
the probabilistic model of TF–DNA binding and binding statistics
of five biologically essential and well-characterized human tran-
scription factors: ERE (estrogen receptor-α), CREB (cAMF-
response element), Nanog (Nanog homeobox), Oct4 (POU class
5 homeobox 1), STAT1 (signal transducer and activator of tran-
scription protein 1). By our estimates, the number of BSs in the
genome is 66.7� 103, 28.2� 103, 15.5� 103, and 26.4� 103 for
the Nanog (ChIP-seq), Oct4 (ChIP-seq), CREB (SACO), and
ERE (ChIP-PET) TFs respectively. For STAT1, the number of
BSs in the human genome are 12.25 � 103 (ChIP-PET),
17.66 � 103 (ChIP-seq; high-avidity BS), and 5.99 � 103 (ChIP-
seq; low-avidity BS). Our goodness-of-fit analysis of the mixture
probability function Eq. 3 leads to prediction of a novel subset of
STAT1 BS in unstimulated cells.
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These findings provide insight into the field of basal transcrip-
tion machinery and predict new gene targets for direct STAT1
transcription control.

The frequency distribution of gene expression in human and
many other complex cell types is skewed; the long right tail usually
decreases when gene expression is increased. Most genes have very
low expression levels, whereas a few genes have high expression
levels. We found that all observed large-scale gene expression data-
sets follow a Pareto-like distribution model, skewed by many low-
abundance transcripts [19, 30, 60, 66]. These findings in combina-
tion with our knowledge about the driving role of TFBS binding
events in the transcription process and the KW distribution of the
TF–DNA avidity suggest the predictable correlations between
TFBS avidity and gene expression patterns. Our results of the
correlation analysis for STAT1 TFBS avidity and the expression of
their strong target genes support this hypothesis.

It is important to note that evolutionary enhancer sequence
alignment analysis suggested that, although many predicted low-
affinity sites are poorly conserved, overall, TF occupancy on an
enhancer may be maintained despite significant sequence turnover.
This may occur either through the rapid gain and loss of individual
sites, or through the maintenance of relatively weak binding affinity
at a site that is unstable at the level of the DNA sequence [77–79].
While this last idea requires further direct testing, it is consistent
with the fact that Gli sites of moderate predicted affinity have many
sequence variants of similar quality, whereas the highest-affinity
motifs have far fewer alternatives of similar quality [65]. This has
led the authors to conclude that low-affinity TF–DNA interactions,
mediated by nonconsensus and often poorly conserved sequence
motifs, could play important and widespread roles in developmen-
tal patterning and cis-regulatory evolution, and therefore can be
tested.

We determined that the specificity of all the studied experi-
ments was high (91–99%). These results are consistent with pub-
lished estimates of the specificity of ChIP-based methods [4, 13,
16, 22, 23]. The BE sensitivity issue raises the issue of how many
physical BSs, including low-avidity BSs, are present in the genome
of a given cell under given environmental conditions. Sensitivity is
difficult to assess experimentally because of the lack of reliable
bench markers and methods for detection of low binding avidity.
We used a computational approach to estimate the sensitivity of
ChIP-based experiments. By our estimations, the sensitivity of all
ChIP-based methods is low: 6.3%, 4.8%, 10.2%, 4.6% for Nanog
(ChIP-seq), Oct4 (ChIP-seq), CREB (SACO), and ERE (ChIP-
PET), respectively; and 4.36% (ChIP-PET), 12.1% (ChIP-seq,
high-avidity BS); 0.97% (ChIP-seq; low-avidity BS) for the
STAT1 TF (Table 4; Fig. 9). The surprisingly low sensitivity levels
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of the current ChIP-based sequencing methods for the identifica-
tion of TF–DNA binding can be associated with (1) a large fraction
of noisy sequences forming low- and moderate-avidity binding
events and (2) missing specific ChIP-derived sequences (not-detect
sequences) due to the limited sample size of the experimental
dataset and/or suboptimal design of experiments. The efficiency
of sequencing (the percentage-specific DNA sequences at a given
specificity cutoff peak, Table 4), defined by qPCR-ChIP, was also
low: 3.6%, 1.0%, 8.8%, 50.3%, and 0.54% for Nanog, Oct4, ERE,
SREB, and STAT1 (ChIP-PET) TFs, respectively.

We can conclude that although ChIP-seq is a powerful tech-
nique, nevertheless, it still produces essentially incomplete and
noise-rich data, underrepresenting the low- and moderate-avidity
DNA–protein binding events of TFs in complex genomes. Ten
years after Chip-based sequencing technology became available, it
still remains largely unclear how the Paired-end ditag (PE) and
single-end (SE) (in which only one end of the fragment is
sequenced) designs and long and short reads influence align-
ment/mapping rates and accuracy, coverage of repetitive elements,
sensitivity and specificity in peak calling, and allele-specific binding
detection [34].

While a higher number of reads may increase sensitivity and
resolution, it may also increase the fraction of noise sequence reads.
In fact, subsampling in all ChIP-seq and ChIP-PET datasets
showed that the noise component increases when the dataset sam-
ple size becomes larger. This common property of ChIP-based
sequencing methods is a dilemma in the reliable detection of real
BSs even with very large samples. In this case, other factors, such as
the specificity of antibodies, optimal (shorter/homogeneous)
length of ChIP DNA fragments, and better computational proces-
sing of raw data, have a direct impact on the sensitivity.

Similar to what was described in [12, 20, 42], we suggest that
the distance of BS from gene transcription start site influences the
distribution of relative avidity for binding (STAT1–DNA binding;
Fig. 12a–c).

Thus, we would like to propose the importance of the follow-
ing steps for the further optimization of ChIP-seq analysis: (1) an
adequate experimental design (assuming biological replication),
standardization and optimization (assuming a design of appropriate
positive and negative controls); (2) automatic, high-quality control
methods of ChIP-derived sequences; (3) nonredundant mapping
of the sequences onto complex genomes; (4) specification of filter-
ing and clustering procedures of ChIP-derived DNA sequences
in different regions of the chromosomes (pericentromere,
low-complexity, repeat regions, etc.); (5) adequate statistical meth-
ods to define a binding event (e.g., cluster peak height and cluster
overlap span); (6) minimization of signal-to-noise ratio; (7)
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adequate controls and statistical modeling of background (noise)
signals; and (8) deep data sampling to improve the sensitivity of
ChIP-based experiments, allowing the detection of low-affinity
genomic binding events which are frequent and could be function-
ally relevant.

Genome-wide assay development for direct TF–DNA binding
avidity is important. Recently, the apparent dissociation constant
(Kd) for specific binding of glucocorticoid receptor (GR) and
androgen receptor (AR) to DNA was determined in vivo in Xeno-
pus oocytes [59]. The total nuclear receptor concentration was
quantified as the amount of specifically retained [(3)H]-hormone
in manually isolated oocyte nuclei. DNA was introduced by nuclear
microinjection of single stranded phagemid DNA. Chromatin was
then formed during second strand synthesis. The fraction of DNA
sites occupied by the expressed receptor was determined by
dimethylsulfate in vivo-footprinting and used for the calculation
of receptor-DNA binding affinity. Furthermore, the forkhead tran-
scription factor FoxA1 enhanced DNA binding by GR with an
apparent Kd of �1 μM and dramatically stimulated DNA binding
by AR with an apparent Kd of �0.13 μM at a composite androgen-
responsive DNA element containing one FoxA1 binding site and
one palindromic hormone receptor binding site known to bind one
receptor homodimer. It was shown that FoxA1 exerted both weak
constitutive- and strongly cooperative DNA binding with AR but
had a less prominent effect on GR, the difference reflecting the
licensing function of FoxA1 at this androgen-responsive DNA
element. This study provides a new way to carry out more direct
detection of TF–DNA avidity in a given cell and also includes in the
analysis of the interactions between transcription factors and avidity
in these dynamic and complex processes.

Note that, during developmental process, acute phase of cell
stress response, severe medical conditions associated with genome
instability, transcriptome alterations and cellular reprogramming
processes, the form of the scale-dependent skewed frequency dis-
tribution function of the associated events can be changed signifi-
cantly and provide important biologically significant predictions
[19, 68]. In cell development or pathologic transformation, cellular
properties and regulatory pathways change globally in time and the
stochastic processes of TF–DNA binding and gene transcription
may significantly deviate from initial steady-state conditions. Anal-
ysis of the time-dependent transformation of the statistical distri-
butions of transcription machinery, including TF–DNA binding
events, is of great interest and a challenge for future studies. In
such studies, stochastic process models and wide classes of skewed
distributions associated with these models could be useful.

The distribution functions derived based on birth–death sto-
chastic process models have been developed and used for a long
time [20, 34, 36, 51–53, 55, 59, 62, 68–70, 75]. In the last several
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years, a group of authors has developed new families of GHFs,
generated from the Kolmogorov steady state birth–death stochastic
process [51–53]. By limiting with several empirical statistical facts,
they elaborated novel families of the generalized hypergeometric
distributions. Specifically, a multiparametric family of stationary
distributions of stochastic processes, called the Regularly Varying
Generalized Hypergeometric Distribution of the Second Type
(GHS), has been proposed and studied [53]. A subfamily of the
GHS that varies regularly at infinity and exhibits asymptotically
constant slowly varying component decreases, is log-downward
convex and unimodal. Such features can be observed in diverse
large biomolecular evolving system datasets. It is imperative to
identify the members of these regularly varying distribution func-
tions which fit to the EFDs of the TF–DNA binding events. Over-
wise, only few subfamilies of the skewed PFs have been associated
with stochastic birth-death mechanisms and fitted appropriately
used biological data and biomolecular processes genome-wide.
Further works on estimation for the families/subfamilies of these
explanatory-relevant models is clearly needed.

New stochastic process models of evolving biomolecular sys-
tems could provide a powerful and unbiased statistical basis for
analysis of CHIP-seq and other NGS methods. An integrative
genomics strategy can form critical links between transcription
regulation or diverse gene expression patterns and cellular pheno-
types or cell functions. However, due to the high complexity of
biological systems in general, technologic limitations, and experi-
mental biases, as well as different types of data noise, the goodness-
of-fit analysis results and statistical conclusions are requiring inde-
pendent experimental validations [19, 20, 34, 43].

On the other hand, accurate and reproducible mapping of the
regulatory sequences combined with functional tests and stimuli
response experiments at the level of homogenous cell populations
and individual cells is of significant benefit for the identification of
more mechanistic, informative, testable and predictive probabilistic
and biological models of the TF–DNA binding process acting at the
genome and cellular phenotype scales.
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Chapter 10

AWeighted SNP Correlation Network Method for Estimating
Polygenic Risk Scores

Morgan E. Levine, Peter Langfelder, and Steve Horvath

Abstract

Polygenic scores are useful for examining the joint associations of genetic markers. However, because
traditional methods involve summing weighted allele counts, they may fail to capture the complex nature of
biology. Here we describe a network-based method, which we call weighted SNP correlation network
analysis (WSCNA), and demonstrate how it could be used to generate meaningful polygenic scores. Using
data on human height in a US population of non-Hispanic whites, we illustrate how this method can be
used to identify SNP networks fromGWAS data, create network-specific polygenic scores, examine network
topology to identify hub SNPs, and gain biological insights into complex traits. In our example, we show
that this method explains a larger proportion of the variance in human height than traditional polygenic
score methods. We also identify hub genes and pathways that have previously been identified as influencing
human height. In moving forward, this methodmay be useful for generating genetic susceptibility measures
for other health related traits, examining genetic pleiotropy, identifying at-risk individuals, examining gene
score by environmental effects, and gaining a deeper understanding of the underlying biology of complex
traits.

Key words Polygenic score, Weighted network, GWAS, Height

1 Introduction

While genome-wide association studies (GWAS) have led to some
ground-breaking discoveries [1], overall their success has been
somewhat underwhelming. In general, GWAS have not been
very effective in identifying the genetic contributions to complex
traits that do not follow Mendelian laws of inheritance [2]. In
general, many of the results coming out of GWAS fail to replicate,
or for those markers that are independently validated, the major-
ity only explain a very small proportion of the variance in a given
trait [3, 4]. This is a valid concern as it impedes the ability to
incorporate “personalized medicine” into disease prevention and
treatment.

Tatiana V. Tatarinova and Yuri Nikolsky (eds.), Biological Networks and Pathway Analysis, Methods in Molecular Biology,
vol. 1613, DOI 10.1007/978-1-4939-7027-8_10, © Springer Science+Business Media LLC 2017

277



GWAS relies on linkage to examine the association between loci
and a given trait. Due to recombination during meiosis, the mar-
kers in a GWAS—single-nucleotide polymorphisms, or SNPs—are
used as proxies for detecting nearby variants, which are potentially
causal [5]. In a typical GWAS, the association between the trait of
interest and a large number m of SNPs (often in the millions) is
assessed using m regression models where for each model, the trait
is regressed on a single SNP. Such approaches fail to capture the
complex nature of biology, and suffer from a number of statistical
limitations that impede our ability to identify replicable molecular
mechanisms. For instance, because GWAS require testing of
millions of hypotheses, these studies tend to lack the power needed
to detect the very small individual effects observed for most SNPs
[2]. Further, there is significant evidence suggesting that many
complex traits are highly polygenic [6], implying multiple causal
variants contribute simultaneously to the genetic susceptibility of a
trait. Thus, examination of genetic scores, rather than individual
SNPs, may lead to better insights when studying the genetic con-
tributions to complex traits.

Polygenic methods that move beyond the one marker approach
have the ability to aid in genetic association studies by (1) increas-
ing statistical power to detect true effects via dimension reduction;
(2) providing biological insight regarding important pathways; and
(3) improving our ability to examine gene by environment interac-
tions. In 2007, Wray et al. proposed a method for examining the
aggregate influence of multiple genetic markers [7]. The method
involved generating a Polygenic Risks Score (PRS) based on results
from a GWAS. After running a GWAS on a discovery sample, SNPs
are selected for inclusion in the PRS on the basis of their association
with the phenotype. Using a validation sample, the PRS can be
calculated as a sum of the phenotype-associated alleles (often
weighted by the SNP-specific coefficients from the GWAS). Using
this score, the joint association of multiple SNPs with the given trait
can be evaluated. Overall, PRS techniques have become increas-
ingly popular, facilitating genetic discoveries for complex traits [6,
8–11]. However, given that they are based on linear combinations
of markers, traditional PRSmay fail to capture nonlinearity between
SNPs.

While PRSs often account for a larger proportion of the vari-
ance in a trait than individual SNPs, much of the heritability
remains unaccounted for—a phenomenon known as “missing her-
itability” [12]. One hypothesis is that the surprisingly low propor-
tion of heritability being explained may be due to the exclusion of
gene–gene interactions—or genetic network structure [13, 14].
However, very few methods exist that generate PRSs by incorpor-
ating gene network topology.

Weighted gene correlation network analysis (WGCNA) has
been used repeatedly for the successful identification of epigenetic
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and transcriptomic networks, which relate to a number of physical,
behavioral, and disease traits [15–19]. In WGCNA, network mod-
ules are identified using unsupervised machine learning methods—
hierarchical clustering based on topological overlap similarity
measure—and then represented using a single synthetic profile
referred to as the “eigengene” or more generally eigen-node,
which can be used to examine the association between a module
(network) and the trait of interest [20, 21]. However, the underly-
ing linkage-based structure of GWA data prevents the use of SNPs
in traditional WGCNA methods.

Here we present a WGCNA-based method that can be applied
to SNP data, which we call the weighted SNP correlation network
analysis (WSCNA). Aside from accounting for the influence of LD,
this method also incorporates a semisupervised machine learning
approach that will facilitate the detection of modules that are trait
specific. We demonstrate this method using human height as the
phenotype. Human height has been extensively studied using
GWAS, PRS, and heritability analyses. It is also predicted to be
approximately 80% heritable and highly polygenic.

2 Materials

In order to conduct WSCNA one either needs access to genotype
data or published GWAS results frommultiple studies/cohorts. For
our analytic example, we used genotype data from 10,466 persons
of European ancestry who were participants in the Health and
Retirement Study (HRS), a nationally representative longitudinal
study of health and aging in the US. Genotyping was done using
the Illumina Human Omni-2.5 Quad beadchip, with coverage of
approximately 2.5 million single nucleotide polymorphisms
(SNPs). Depending on both sample size and the number of geno-
typed markers, the ability to carry out WSCNA will also likely
require access to a multi-core, 64 GB computer. For our example
we used both [1] the University of Southern California’s high
performance super computer (https://hpcc.usc.edu/), for GWA,
clumping, PRS estimation; and [2] a 24-core desktop workstation
with 64GB of memory, for WSCNA and validation.

3 Methods

3.1 Using Published

GWAS Results

As mentioned previously, WSCNA can be run using published
GWAS results or by generating new GWAS results. When using
published results, many of the same criteria and concerns that go
into constructing traditional PRS apply. Namely, one should be
aware of strand ambiguous SNPs (A/T and C/G), linkage disequi-
librium (LD), and overlap in availability of SNPs across datasets.
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While using results from imputed data will help with the latter
concern, when it comes to strand-ambiguous SNPs, likely the safest
option is to drop them. To account for LD, conventional practice is
to prune data prior to conducting analysis—clump SNPs based on
R2 (typically between 0.1 and 0.5) and physical distance (typically
around 500 kb), and then select the most significant SNP to
represent the given block. One issue in pruning for WSCNA is
that unlike PRS, the analysis requires multiple sets of GWAS results
in order to look at SNP-SNP correlations. For that reason, identi-
fying “the most significant SNP” in an LD block is ambiguous, but
a natural solution is to select SNPs based on meta-analysis P values.

3.2 Running GWAS

for WSCNA

When conducting original GWAS for WSCNA it is essential to use a
training sample that is completely independent from the sample
that will be used to assess the predictive ability of the score/s. In
our example, we randomly divided our samples into a training set
(70%) and a test set (30%). Before conducting the GWAS, quality
control filters must be applied, which in our case resulted in
1,224,285 SNPs retained for the analysis. Additionally, principal
components were generated in accordance with the methods
described by Patterson et al. [22] to use as covariates to adjust for
population structure.

As mentioned before, SNPs need to be pruned according to
LD. To do so, a GWAS should be carried out in the training set, and
results should be used to clump SNPs according to linkage disequi-
librium (R2 > 0.5) and physical distance (�250 kb), such that only
the most significant SNP is used to represent a given haplotype
block. Once SNPs have been pruned and QC has been performed,
one can now conduct the GWAS that will be used as input for
WSCNA. Because the network structure in WSCNA is based on
pairwise correlations of beta coefficients for individual SNPs, mul-
tiple GWAS have to be run using either different samples or differ-
ent phenotypes. For our example, the training data was used to
create 60 subsamples of 500 participants each (with replacement)
and a GWAS for human height was run for each of the subsamples
using only those SNPs selected from the clumping procedure,
producing 60 GWAS results for each SNP.

3.3 Preparing Data

for WSCNA

Once one has either (1) collected results from multiple published
GWAS or (2) generated original results from multiple GWAS,
inclusion criteria based on significance can be used to select SNPs
for WSCNA. While it is possible to use all SNPs, this will likely be
very computationally demanding. Therefore, as with traditional
polygenic score estimation, we suggest significance criteria to select
SNPs (e.g., consider all SNPs with P < 0.05) in the training data.
For instance, in our example, we selected SNPs with P < 0.05
(n ¼ 32,284). The P-values used for selecting SNPs can be the
same as used for inclusion criteria when pruning. After SNPs of
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interest have been selected, the beta coefficients from each of the
GWAS can be used to populate an n � m matrix, where n refers to
the number of examined SNPs, and m refers to the number of
GWAS from which results have been gathered. In the case of our
example, we had a 32,284� 60matrix. Assuming all results files are
placed in the current working directory, the following R code can
be used to generate the appropriate matrices.

Mat¼matrix(NA,nrow¼32284,ncol¼60)

for (i in 1:60){

temp¼read.csv(paste("Height_sample",i,".assoc.

linear", sep¼""), sep¼"")

Mat[,i]¼temp$BETA

}

Data¼as.data.frame(Mat)datSNP¼as.data.frame(t

(Data[,]))

3.4 Module/Network

Detection Using

WSCNA

WSCNA (using the WGCNA package in R) is run much like
WGCNA; however, instead of using levels of expression or methyl-
ation as inputs, it uses the SNP associations with the trait/s of
interest, with the goal of identifying trait-specific SNP networks,
also known as modules. Weighted network construction requires a
user-specified soft-thresholding power, β, to which SNP-SNP rela-
tionships are raised to calculate adjacency. Adjacency, as shown in
Eq. (1), implies that the weighted adjacency aij between two SNPs
is proportional to their similarity on a logarithmic scale,

aij ¼ s βij , ð1Þ
As suggested by Zhang et al., the value for β could be selected

so that the resulting network is approximately scale-free. The
WGCNA package provides the functions pickSoftThreshold for eval-
uating scale-free topology as a function of β.

The next step in WSCNA is module detection. Modules repre-
sent clusters (or networks) of densely interconnected SNPs. Topo-
logical Overlap Matrix (TOM) is used to define a dissimilarity
matrix that is then used as input to cluster SNPs into modules by
applying hierarchical clustering. In order to define modules, one
can select to implement either a constant- or variable-height tree
cut—the latter is known as the Dynamic Tree Cut [23]. The
constant-height tree cut allows the user to visually inspect the den-
drogram and decide on a cut height that will be used to differentiate
modules. However, in most cases, there is no single cut height that
captures all prominent branches. For this reason, the Dynamic Tree
Cut can be employed, in which branches below the cut height can be

Weighted SNP Correlation Network Method 281



evaluated based on various branch shape measures and sufficiently
“different” branches are called separate modules [23].

In addition to selecting the branch cutting methods and the β
(thresholding power), as described above, a number of other net-
work construction and module identification options can be speci-
fied, including the correlation function (Pearson correlation or the
robust biweight midcorelation), signed vs. unsigned network, min-
imum module size and the sensitivity of Dynamic Tree Cut to
branch splits (argument deepSplit). The deepSplit command spe-
cifies a value between 0 and 4 (lower values will produce larger, less
finely split clusters). Signed vs. unsigned networks refer to whether
negative SNP-SNP correlations are considered connected or not.
In a signed correlation network, negative correlations are consid-
ered unconnected. Conversely, in unsigned correlation networks,
network adjacency is based on the absolute value of correlation,
such that strong negative correlations are treated as strong
connections.

3.5 Network-Based

Polygenic Scores

Using the network modules identified from WSCNA, we estimate
the module eigen-nodes in our validation sample. Eigen-nodes are
defined as the first singular vector of all SNP profiles in a given
module and values can be interpreted as module-specific polygenic
scores. The input data to calculate eigen-nodes for a validation
subsample includes a matrix of m SNPs by n participants, where
each cell represented a participant’s minor allele count for that
given SNP. This is similar to the information that would be
summed to generate a traditional polygenic score. The module
eigen-nodes can then be used to validate the modules in respect
to the phenotype of interest.

3.6 Gaining

Biological Insight from

SNP Correlation

Networks

Biological insights can be gained from network modules by exam-
ining their topology and relationships to known pathways,
biological processes, and molecular functions. For instance, for
relevant networks, intramodular connectivity can be calculated for
each gene in the network. The function intramodularConnectivity
in the WGCNA R package computes the whole network connec-
tivity (kTotal), the within module connectivity (kWithin),
kOut ¼ kTotal-kWithin, and kDiff ¼ kIn-kOut ¼ 2*kIN-kTotal.

ADJ1¼abs(cor(datSNP,use¼"p"))^8

Alldegrees1¼intramodularConnectivity(ADJ1, modu-

leColors)

The measure of within module connectivity can be used to
identify hub SNPs within the module. Similarly, module member-
ship values can be estimated to identify hubs, by examining how
strongly SNPs relate to module eigen-nodes.
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datKME¼signedKME(daSNP, datME, outputColumnNa-

me¼"MM.")

Finally, SNPs within modules of interest can also be mapped to
genes to be used as input in pathway enrichment and Gene Ontol-
ogy (GO) analyses.

4 Results

4.1 Identification

of SNP Networks Using

WSCNA

Here we illustrate the use of WSCNA using height as a phenotype.
For this example, we conducted original GWAS, rather than incor-
porating existing GWAS results. All GWAS were carried out on
European populations and included adjustments for age, sex, and
population stratification (using the first four principal compo-
nents). SNPs with P < 0.05 were selected and pruned, resulting
in 32,284 SNPs to perform WSCNA with. These SNPs were used
to conduct 60 GWAS—one for each training subsample of 500
subjects—and the resulting beta coefficients were used to create a
32,284 � 60 matrix. Scale-free topology analysis of this network
was used to select a soft-thresholding power of 8.

WSCNA was run using the following specifications to identify
SNP modules: signed network, dynamic tree cut, a module detec-
tion cut-height of 0.998, soft-thresholding power of 8, minimum
module size of 50, biweight midcorrelation, and a medium branch
split sensitivity (deepSplit ¼ 2). Fifty-five modules (excluding the
grey module, which represents ungrouped SNPs) were identified
(Fig. 1).

Fig. 1 WSCNA SNP clustering tree and modules. SNP clustering tree (dendrograms) obtained from hierarchical
clustering of SNPs based on their WSCNA dissimilarity. Module assignment for each SNP is indicated in the
color row below the dendrograms. Each module is represented by a single color, grey represents unassigned
SNPs
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4.2 Validation for

Associations between

SNP Modules and

Human Height

We used a single linear model to relate all module eigen-nodes,
which represent network-specific polygenic models, to human
height in the validation samples. Seven modules were found to be
associated with height (Table 1). The most significant was the
lightgreen module (P ¼ 3.84E�6), which contains 193 SNPs.
Next, we compared the amount of the variance in human height
explained by WSCNA-based polygenic scores (module eigen-
nodes) versus traditional polygenic scores. Three traditional poly-
genic scores were calculated using various significance based inclu-
sion criteria after SNP pruning—SNPs with P< 0.05 in the original
GWAS (n ¼ 32,284; the same SNPs included in WSCNA), SNPs
with P < 0.005 in the original GWAS (n ¼ 4318), and SNPs with
P < 0.0005 in the original GWAS (n ¼ 570). Traditional polygenic
scores were estimated in accordance with the methods outlined by
Wray et al., such that the score was equal to the sum of the minor
alleles, weighted by the beta coefficients from the GWAS. We
examined correlations between the three polygenic scores and the
seven module scores and found evidence that they were unique
from one another (Fig. 2). Overall most correlations between the
traditional polygenic scores and the WSCNA scores were less than
r ¼ 0.20.

The results for the comparison of the WSCNA polygenic scores
versus the traditional scores are shown in Table 2. Overall, the
traditional polygenic scores for SNPs with P < 0.05, 0.005, and
0.0005 had adjusted R2 of 0.0093, 0.0082, and 0.0079, respec-
tively. Conversely, the model with the seven significant modules of
interest had an adjusted R2 of 0.0139, while a model with just the

Table 1
Significant modules identified using WSCNA

Modules SNPs
SNPs that
mapped to genes

Beta coefficient
(P-value)

Light green 193 100 0.305 (3.84E�6)

Salmon 235 90 �0.236 (0.003)

Ivory 109 48 0.187 (0.015)

Navajo white2 63 37 0.162 (0.021)

Violet 131 66 �0.150 (0.028)

Thistle2 85 38 0.145 (0.030)

Dark orange2 93 49 �0.137 (0.043)

Beta coefficients and P-values come from a single model with the residual of height

(adjusting for age, sex and PC1–4) as the dependent variable and all 55 modules
identified in WSCNA as the independent variables
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Fig. 2 Correlations between WSCNA and traditional polygenic scores. Pearson’s correlations between the
seven significant polygenic scores (eigen-nodes of WSCNA modules), labeled using module colors, and three
traditional polygenic scores—SCORE_05 (included SNPs with P < 0.05), SCORE_005 (included SNPs with
P< 0.005), SCORE_0005 (included SNPs with P< 0.0005), are displayed both numerically (bottom) and using
a heatmap (top). In general, SNP scores were weakly correlated (R< 0.20). The strongest correlation between
a WSCNA score and a traditional polygenic score is found between the score for the Salmon module and
SCORE_05 (r ¼ 0.38)

Table 2
Variance in human height explained by models containing different
polygenic scores

Independent variable/s in each model R2 Adjusted R2

PRS 0.05 (n ¼ 32,284) 0.0096 0.0093

PRS 0.005 (n ¼ 4318) 0.0084 0.0082

PRS 0.0005 (n ¼ 507) 0.0083 0.0079

Light green module (n ¼ 193) 0.007 0.0066

The seven significant WSCNA modules (n ¼ 909) 0.0163 0.0139

n refers to the number of SNPs used to generate the polygenic score/s in each model
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light green module had an adjusted R2 of 0.0066. This is notewor-
thy, given the adjusted R2 for the model containing the significant
WSCNA scores was 50–70% higher than the R2 for the models
containing the first two traditional polygenic scores, even though it
was based on information from only 909 SNPs, compared to
32,284 and 4318 SNPs, respectively.

4.3 Hub Genes,

Pathways, and Gene

Ontology

Intra-modular connectivity was calculated for each SNP in the
seven significant modules. We then examined whether more
connected SNPs, which can be thought of as hubs, had higher
significance (�log10(P)) in the training sample (Fig. 3). Results
showed a significant association between connectivity and signifi-
cance for the light green module (r ¼ �0.28, P ¼ 8 � 10�5),
suggesting that hub SNPs for this module tended to be SNPs that
were highly significant in our original training GWAS. Next SNPs
were mapped to genes. We find that genes mapped from the hub
SNPs in the light greenmodule includedHHIP (kWithin¼ 0.213),
as well as its neighboring gene ANAPC10 (kWithin ¼ 0.605).
HHIP has been implicated in both GWAS and microarray studies
examining genes related to height [24] and has a well-established
role in chondrogenesis [25].

Finally, pathway enrichment, GO, and protein interaction net-
work module analysis were performed using WebGestalt (http://
bioinfo.vanderbilt.edu/webgestalt/). When examining all the
genes from the seven networks (n ¼ 428), we find enrichment for
“Signaling events mediated by the Hedgehog Family” (enrich-
ment¼ 4.99, Bonferroni adjusted P¼ 0.046), “Calcium signaling”
(enrichment ¼ 3.73, adjusted P ¼ 0.001), and “G alpha (q) signal-
ing events” (enrichment ¼ 3.76, adjusted P ¼ 0.046). “Signaling
events mediated by the Hedgehog Family” also was found to be
enriched when only examining genes in the light green module
(enrichment ¼ 14.20, adjusted P ¼ 0.011). This pathway has been
repeatedly shown to influence height in genetic association studies
[26–28].

We also found significant enrichment for GO biological pro-
cesses involved in “anatomical structure development” (enrich-
ment ¼ 1.32, adjusted P ¼ 0.046). Lastly, we identified a
significantly enriched protein-protein interaction network using
WebGestalt (enrichment ratio of 2.22, adjusted P-value¼ 0.0006),
shown in Fig. 4, which was highly associated with the molecular
function, “non-membrane spanning protein tyrosine kinase
activity.”
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Fig. 3 Module connectivity and significance in the GWAS. Within module connectivity for each SNP in the
seven significant modules is plotted against significance of that SNP in the original GWAS. Overall, we find a
moderately strong correlation between connectivity and significance among SNPs in the light green module,
suggesting that hub SNPs in this module tended to be those that had more significant relationships to height in
our training sample
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Fig. 4 Protein-protein interaction network enriched in genes mapped to significant SNP modules. This PPI
network was significantly enriched in genes that mapped to SNPs in the seven significant modules. Of the 619
genes in this protein interaction network, 32 are present on our gene list (enrichment ratio of 2.22, Bonferroni
adjusted P-value ¼ 0.0006). Genes present in our WSCNA modules are shown in green
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5 Conclusion

We illustrate here the methodology for performing WSCNA using
results from GWAS. We also show that the incorporation of net-
work structures in the analysis of large-scale genetic association data
can be used to estimate genetic scores for specific traits, identify hub
SNPs/genes, and lead to biological insight into the pathways
involved. Our example also demonstrated that the scores generated
from WSCNA can more closely relate to the phenotype of interest
in validation analysis than traditional polygenic risk scores. We were
also able to identify hub genes and pathways that are known to
relate to human height. This is consistent with what has been found
for co-expression analysis, for which the use of topological overlap
matrix, coupled with a signed correlation network gives rise to
biologically meaningful modules [29]. The ability to identify hub
genes/SNPs is a significant advantage of this methodology, as it has
been demonstrated that intramodular hub genes are often biologi-
cally meaningful and represent the module [30, 31].

The presented methodology also has important limitations.
First, since WSCNA relies on results of multiple GWAS, care must
be taken to ensure the underlying GWAS results are reliable. Thus,
it may be more reliable to use previously published results or
including as many studies as possible. Along those same lines, the
number of participants needed to carry out such analyses may be
quite large. In our example we used GWAS results from only 7,326
participants; however, sample sizes will need to increase in order to
improve efficacy of gene scores, particularly for traits whose herita-
bility is not as high as that of human height. Second, WSCNA is
relatively computationally expensive and may require the user to
have access to a multi-core workstation or a supercomputing clus-
ter. Third, users have to specify various parameters for network
construction and module identification.

The WSCNA method presented here offers a new and inno-
vative way to incorporate networks—a dominant feature in biol-
ogy and physiology—into genetic association studies of complex
traits. In moving forward, this type of methodology may be useful
for generating genetic susceptibility measures for other health
related traits, examining genetic pleiotropy, identifying at-risk
individuals, examining gene score by environmental effects, and
gaining a deeper understanding of the underlying biology of
complex traits.
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Chapter 11

Analysis of cis-Regulatory Elements in Gene Co-expression
Networks in Cancer

Martin Triska, Alexander Ivliev, Yuri Nikolsky, and Tatiana V. Tatarinova

Abstract

Analysis of gene co-expression networks is a powerful “data-driven” tool, invaluable for understanding
cancer biology and mechanisms of tumor development. Yet, despite of completion of thousands of studies
on cancer gene expression, there were few attempts to normalize and integrate co-expression data from
scattered sources in a concise “meta-analysis” framework. Here we describe an integrated approach to
cancer expression meta-analysis, which combines generation of “data-driven” co-expression networks with
detailed statistical detection of promoter sequence motifs within the co-expression clusters. First, we
applied Weighted Gene Co-Expression Network Analysis (WGCNA) workflow and Pearson’s correlation
to generate a comprehensive set of over 3000 co-expression clusters in 82 normalized microarray datasets
from nine cancers of different origin. Next, we designed a genome-wide statistical approach to the detection
of specific DNA sequence motifs based on similarities between the promoters of similarly expressed genes.
The approach, realized as cisExpress software module, was specifically designed for analysis of very large data
sets such as those generated by publicly accessible whole genome and transcriptome projects. cisExpress uses
a task farming algorithm to exploit all available computational cores within a shared memory node.
We discovered that although co-expression modules are populated with different sets of genes, they share

distinct stable patterns of co-regulation based on promoter sequence analysis. The number of motifs per co-
expression cluster varies widely in accordance with cancer tissue of origin, with the largest number in colon
(68 motifs) and the lowest in ovary (18 motifs). The top scored motifs are typically shared between several
tissues; they define sets of target genes responsible for certain functionality of cancerogenesis. Both the co-
expression modules and a database of precalculated motifs are publically available and accessible for further
studies.

Key words Promoters, Motifs, Gene expression, Genome annotation, Co-expression clusters, Cancer

1 Introduction

In any living organism, proteins function in groups, complexes,
biochemical and signaling pathways, and networks. Precise timing
and spatial assembly of protein machinery is closely regulated at
multiple levels, transcription being the major one. Genome-wide
transcriptional profiling has been the most accessible “omics”
method since the dawn of “genomics.” The amount of raw data
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in private and publicly accessible transcriptional databases grows
exponentially for over 20 years, both in a form of microarray
datasets and, more recently, as DNA and RNA sequences. In
order to be suitable for biomedical research and clinical practice,
these datasets are analyzed by methods of statistical and functional
analysis and annotated with phenotypic “metadata.” Yet only a
small fraction of accumulated expression data is now utilized in
biomedicine, typically in a form of transcriptional biomarkers
(“gene signatures”). Moreover, with a few exceptions, even these
markers are not approved for clinical use, mostly due to high
heterogeneity of expression patterns for any complex phenotype,
such as disease or drug response. As it was clearly demonstrated in a
massive FDA-led studyMAQC/SEQC, predictive power of expres-
sion signatures depends mostly on the biology of end point, and
there is no “silver bullet” statistical correlation method to deal with
natural heterogeneity [1]. Functional analysis approach takes into
account experimentally proven grouping of gene expression signals,
such as protein interactions, linear pathways and networks
(reviewed by Kristensen et al. [2]), as well as contextual modeling
of expression patterns, using text mining methods [3]. A combina-
tion of these methods were proven to marginally improve predictive
power and specificity of expression profiling in cancers [2] and
other diseases [4]. However, in spite the progress in analytical
methodology and technique, the bulk of expression data is not
usable and is waiting for exploring.

Therefore, in this study we intended to combine two indepen-
dent methods producing transcription regulation patterns: co-
expression networks and precalculated transcription regulation
motifs. Recently, we conducted a comprehensive study on global
co-expression profiling of 82 independent expression datasets
derived from nine major human cancers of different tissue origins
[5]. We applied the Weighted Gene Co-Expression Network Anal-
ysis methodology (WGCNA) [6] and identified over 3000 distinct
gene co-expression modules. Functional analysis revealed that the
clusters cover a range of known tumor features, such as prolifera-
tion, extracellular matrix remodeling, hypoxia, inflammation,
angiogenesis, specific biological pathways, various genomic altera-
tions, tumor differentiation programs and biomarkers of individual
tumor subtypes. Yet over 900 co-expression modules have shown
no direct reference to organized knowledge of cancer biology.
Exploration of these modules may shed light on yet unknown
aspects of cancer mechanisms. Taken together, we generated a
comprehensive, normalized, and well-documented collection of
gene co-expression modules in a variety of cancers as a rich data
resource to facilitate further progress in cancer research.

The key reason for the genes to be clustered in accordance with
expression is their co-regulation (activation or inhibition) by tran-
scription factors. Such regulation is orchestrated by cis-regulatory
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elements generally located in promoters of target genes. High
confidence identification of potential DNA cis-regulatory elements
was long associated with recovering putative genomic functionality.
Knowledge of regulatory motifs bound by transcription factors can
provide crucial insights into the mechanisms of transcriptional
regulation [7]. Moreover, a specific pattern of transcription regula-
tion may be a more robust expression biomarker for cancer pheno-
types than “gene signatures” per se [8]. Regulatory motifs may be
specific enough for tissues, cell types, pathological conditions, and
other contexts. Therefore, a comprehensive landscaping of major
regulatory motifs can contribute to understanding molecular
mechanisms of many complex diseases. In the mouse genome,
many in vitro-derived motifs performed similarly to motifs derived
from in vivo data [9]. However, specificity of the binding of
transcription factors to DNA motifs is difficult to access, due to
lack of data and deficiencies in predictive models for motif
detection.

The problem of motif detection can be formulated in several
ways, but the most common is the following: given a set of
co-expressed (and presumably, transcriptionally co-regulated)
genes and their promoters, one needs to identify the motif appear-
ing in all/most of the promoters. This approach is limited by
ambiguity in the selection of any particular co-expressed set of
genes and is, therefore, rather subjective. Alternatively, there are
genome wide methods that search for statistically significant asso-
ciations between “words” in both biological sequence and pheno-
typic data. Both approaches are commonly used and frequently are
useful. From an algorithmic perspective, tools that implement these
approaches can be classified as using either enumerativemethods or
alignment-based methods.

Enumerative methods typically list, or enumerate, all the words
of defined length in the text (expression dataset in this case) and
then assess statistical significance of each word. The most significant
words are then suggested as sequence motifs. The computational
complexity of these methods can be represented as O(NmAeLe),
where N is the number of sequences, m is their length, A is the
alphabet size, and e is the number of errors allowed in a match to a
catalog entry [7, 10]. Several commonly used motif-finding tools
are based on this approach, including Motifer [11], REDUCE and
MatrixREDUCE [12, 13], WordSpy [14], Vocabulon [15, 16],
Allegro [17, 18], and cisExpress [19].

Some of the most commonly used alignment-based methods
include AlignACE [20, 21], MEME [22] and Dialign [23]. This
class of methods generally builds probabilistic models of the
observed sequence data and then use optimization techniques to
find the words common to all input sequences. Most frequently,
researchers use expectation-maximization (EM) and Gibbs sam-
pling [24, 25] as optimization methods. Most of the motif-finding
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algorithms do not take motif position information into account
[26], although the position with respect to the transcription start
site is important [27].

EM is a general technique used for maximizing the likelihood
of a function with hidden variables. In the case of motif detection
based on a probabilistic model of observed data, the hidden vari-
ables are the positions of motifs in the input sequences. An EM
algorithm consists of two steps. The E-step calculates the expected
likelihood of the observed sequence data, using the current param-
eter setting. The M-step updates the parameters to improve the
expected likelihood (EM algorithms belong to the hill-climbing
algorithm family). Like every hill-climbing algorithm, the EM is
not guaranteed to converge to the global optimum and may
become stuck in a local optimum. EM is, therefore, very sensitive
to the input parameters and is typically run several times with
different initialization conditions. This feature is advantageous for
identification of biologically relevant motifs, which need not to be
necessary corresponded to the global optimum [24].

Gibbs sampling uses a global undirected search over the para-
meterized distribution. In the context of motif discovery, Gibbs
sampling typically initiates the hidden variables (the motif loca-
tions) by using random samples from the distribution. The para-
meters are then reestimated based on the random samples, and the
sampling is repeated. Gibbs sampling usually requires many itera-
tions to obtain adequate results, so its computation is time con-
suming [25].

An alternative approach consists of cataloguing known motifs,
mapping them on promoters of interest and, using gene expression
information, calculating motifs’ influence on gene expression. Such
a strategy was described, for example, by Jolma, Yan [26] as well as
by other groups.

The existing methods for computational identification of regu-
latory patterns were benchmarked several times, with mixed reviews
[11, 18, 28, 29]. Combination of various genomic features using
machine-learning methods is a promising approach. It was demon-
strated that no single feature provides sufficiently strong predictive
power; however, sophisticated approaches, such as TargetFinder,
can identify an optimal combination of features that is highly
informative and achieves a low false discovery rate [30]. Indepen-
dently, the authors noted that prediction of regulatory elements
remains a challenge; more work is needed to optimize the algo-
rithms and users are advised combining several motif-finding tools
for the best results. As the issue seems to be unresolved, we devel-
oped аn accurate tool, called cisExpress, designed for more effective
analysis of large datasets in a manner that is both cost effective and
highly robust in its predictive capacity. Here, we applied cisExpress
for the comprehensive analysis of co-expressed modules from 49
cancer datasets.

294 Martin Triska et al.



2 Materials

2.1 Gene Expression

Data

Following Ivliev, ‘t Hoen [5], 82 cancer-related datasets were
downloaded from the GEO database [31–33], all healthy control
samples excluded, and the resulting datasets normalized using
MAS5 algorithm followed by the quantile normalization, as
described in [34, 35]. The outliers were removed using the follow-
ing procedure: first, Pearson’s correlation coefficients were com-
puted between all samples within every dataset; second, mean and
standard deviation of the correlation coefficient were computed;
and third, samples that were more than four standard deviations
below the mean correlation coefficient were excluded [35, 36].
In total, we selected 6 tissues, resulting in 11 “Brain” datasets, 14
“Colon” datasets, 6 “Kidney” datasets, 12 “Lung” datasets, 7
“Ovary” datasets, and 4 “Prostate” datasets.

2.2 Promoter

Sequences

Positions of transcription start sites were obtained from the DBTSS
database [37] (ftp://ftp.hgc.jp/pub/hgc/db/dbtss/dbtss_ver9/
hg38/TSSseq/tsc_data/Adult/). DBTSS includes transcription
start site data for human adult and embryonic tissues; in total it
contains 491 million TSS tag sequences collected from 20 tissues
and seven cell cultures. The putative TSS were processed using the
TSSer algorithm [11] and its more recent nonparametric version,
NPEST [38], selecting one transcription start site per locus per
tissue. The resulted collection contained tissue-specific promoters
that have both TSS and gene expression support for six tissues:
Brain (15,068 sequences), Colon (12,262 sequences), Kidney
(12,976 sequences), Lung (12,438 sequences), Ovaries (10,825
sequences), and Prostate (12,037 sequences).

3 Methods

3.1 Weighted Gene

Co-expression

Network Analysis

(WGCNA)

Gene co-expression networks were calculated as in Ivliev et al. [5]
using the R packageWGCNA [6]. For every gene expression dataset,
the co-expression networks were constructed independently in the
followingmanner. First, an adjacencymatrixA [6, 39] was computed
for all genes in a given dataset from a matrix of Pearson’s correlation
coefficients raised to a fixed power β (adjacency ¼ correlationβ).
The value of β, ranging from 7 to 15, was chosen separately for
each dataset to penalize spurious weak correlations as an alternative
to setting an ad hoc correlation coefficient cut-off [6, 39].

Distance matrix D was obtained from the adjacency matrix A:

Dij ¼ 1�
P

k
AikAkjþAij

1þmin
P

k
Aik ;

P
k
Akjf g�Aij

. This transformation reinforced

consistent patterns and robustness of the network [6, 39]. Matrix
D was used for hierarchical clustering of genes within each dataset,

Regulatory Motifs in Cancer 295

ftp://ftp.hgc.jp/pub/hgc/db/dbtss/dbtss_ver9/hg38/TSSseq/tsc_data/Adult/
ftp://ftp.hgc.jp/pub/hgc/db/dbtss/dbtss_ver9/hg38/TSSseq/tsc_data/Adult/


with clustering dendrogram’s branches corresponding to gene co-
expression modules [40]. Each module can be characterized by a
representative expression trend, corresponding to the first principal
component of the gene expression matrix, known as a module
eigengene [6]. Modules with correlated eigengenes (Pearson’s cor-
relation >0.8) were combined [35].

As a result, each gene in a genome can be characterized by its
connectivity to each of the co-expression modules, measuring how
strongly a gene is connected with all the other genes in the module.

From the networking perspective, highly connected genes rep-
resent central genes in the module, while lowly connected ones can
be interpreted as peripheral genes. For each gene and each module
the expression connectivity is defined as a Pearson’s correlation
between the expression profile of a gene and the eigengene of the
module [6].

3.2 cisExpress

Algorithm

cisExpress algorithms is based on two important assumptions:

1. The function of promoter motifs is position-specific.

2. Microarray data provide reasonable measurements of transcript
abundance and reflect promoter activity.

cisExpress divides the problem into two general stages:

1. Finding “seed” motifs. This part of the method outputs the
motif in the form of a consensus sequence and includes its
approximate position in promoter region.

2. Optimizing the motifs obtained by the first part of the method.
This part inputs a motif that was detected in the first step and
applies a Genetic Algorithm (GA) [41] to find the best possible
motif model and motif position. The output consists of an N-
by-4 motif matrix (where N is the length of the motif), repre-
senting the relative frequencies of nucleotides in the motif. For
each position within the motif there is a probability that each
base occurs at that position. The matrix structure also includes
motif conservancy and position of the motif. This stage is
unique to cisExpress.

Identification of the “seed” motifs consists of four stages: initial
data processing, merging similar motifs, clustering, and selection of
the best ancestor word.

Initial data processing. cisExpress takes as its input a set of pro-
moter sequences for all genes in a genome of interest (promoter
sequences are aligned by the position of Transcription Start Site
(TSS)), and a set of gene expression values for an experimental
condition of interest. The expression values can be taken from
individual microarray experiments, or may be averaged across simi-
lar experimental conditions. The expression levels can be either log-
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fold change, number of ESTs, gene connectivity to a co-expression
module (as described above) or any other expression measure.
Then the promoter region is partitioned into overlapping windows,
each of which is independently searched for the motifs. This
decomposition into discrete tasks makes the algorithm naturally
suited for implementation in a parallel computing environment.

Within each window k, and for each l-letter word w, a summary
statistic dwith, dwithout (resp. swith, swithout) is computed across all N
promoter sequences as follows:

dwith w; kð Þ ¼
XN
i¼1

eiδ w; k; ið Þ ð1Þ

dwithout w; kð Þ ¼
XN
i¼1

ei 1� δ w; k; ið Þð Þ ð2Þ

swith w; kð Þ ¼
XN
i¼1

e2i δ w; k; ið Þ ð3Þ

swithout w; kð Þ ¼
XN
i¼1

e2i 1� δ w; k; ið Þð Þ ð4Þ

where ei is the expression value of the ith gene and δ(w,k,i) is
the Kronecker delta symbol (equal to 1 if the word w is present in
promoter i in the window k, and 0 otherwise). In every window, the
significance of each word is determined by the corresponding Z-
score:

nwith w; kð Þ ¼
XN
i¼0

δ w; k; ið Þ ð5Þ

nwithout w; kð Þ ¼
XN
i¼0

1� δ w; k; ið Þð Þ ¼ N � nwith w; kð Þ ð6Þ

Stdevwith w; kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
swith w; kð Þ
nwith w; kð Þ �

dwith w; kð Þ
nwith w; kð Þ

� �2s
ð7Þ

Stdevwithout w; kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
swithout w; kð Þ
nwithout w; kð Þ �

dwithout w; kð Þ
nwithout w; kð Þ

� �2s
ð8Þ

Z score w; kð Þ ¼
dwith w;kð Þ
nwith w;kð Þ � dwithout w;kð Þ

nwithout w;kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Stdev2with w;kð Þ
nwith w;kð Þ þ Stdev2without w;kð Þ

nwithout w;kð Þ

q ð9Þ

The algorithm displays a list of significant motifs with Z-scores
above a user-defined threshold.
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Merging similarmotifs. Deterministic approaches frequently
report several highly similar motifs, which differ in only one nucle-
otide. In this case it is reasonable to assume that, in fact, just one
motif has been found and that it can occur in several variations.
cisExpress, is tailored to deal with these ambiguous nucleotides in
transcription factor binding sites as described below.

Suppose that two motifs, ACTGA and ACTGC, are found in a
single window, and have a Z-score above some predefined thresh-
old. ACTGA and ACTGC may represent two instances of the same
motif, occurring as ACTGA and ACTGC (this ambiguity can be
written as ACTG[AC]. We show the ambiguous nucleotides in
square brackets. For example, [AG] stands for either adenine or
guanine). The Z-score of the composite motif is computed, and, if
the composite motif is also significant, then the two original motifs
can be replaced by the composite. The possibility of further merg-
ing of the resulting composite motif with other motifs in the same
window is investigated in an iterative manner. For example, if there
is a motif CCTGC in the same window as the ACTG[AC], the
significance of the composite motif [AC]CTG[AC] is investigated.
If the Z-score of the new composite motif is above a desired
threshold, the merge is accepted. This process is continued until
there are no more candidate motifs that result in significant com-
posite motifs.

To make the computation as fast as possible, each character of
the original DNA motif is treated as a bit-mask, where each base is
represented by one bit. Bit-mask corresponds to the possibility of
nucleotide occurrence in every position. For example, the binary
mask 0001 indicates that there is Adenine, 0010—Cytosine,
0100—Guanine, 1000—Thymine. Binary mask 1101 indicates
that there can be any nucleotide except Cytosine. Using binary
masks allows usage of bitwise AND operations to find the inter-
sections of two motifs. For example, for a given position in a
motif: [ACT] (1011) AND [AGT] (1101) ¼ [AT] (1001). The
union of two motifs is found using the bitwise OR operator, e.g.,
T (1000) OR [AT] (1001) ¼ [AT] (1001). Two words may be
merged if the intersection of each corresponding pair of nucleo-
tides (obtained by performing bitwise AND over their binary
representations) is non-zero (0000). If the intersection is zero,
then the investigated pair of nucleotides does not match. The
results for all positions in the motif are added and compared to
one (only one nucleotide difference is allowed between two
motifs that are being merged). The pseudo-code for merging of
words is displayed below:
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Initialize: collect all words into the pool
do{
Find two words, which differ only in one nucleotide and
find their composite word (union)
if (Z-score (composite word)> cutoff) then
Replace the words by the composite
}While (words were merged in last cycle)

Next, it is necessary to define the merging relation A ~ B,
indicating that words A and B can be merged (i.e., words A and
B are in relation), and the merging operationA� Bwhich results in
the merged composite words. The relation and operation have the
following properties:

1. Relation ~ is symmetric: if A ~ B is true, then B ~ A is also true
(and likewise for false).

2. Operation � is commutative: A � B ¼ B � A.

3. For all words A, B, C, if A ~ C, then (A � B) ~ C.

4. All motifs that are in relation with word A are also in relation
with word (A � B) as well, i.e., A ~ C¼ > (A � B) ~ C.

5. There are different ways to assemble a composite word from
simple words: If A ~ B, B ~ C, A ~ C then (A � B) � C ¼ A�
(B � C) ¼ (A � C) � B.

Note that the merge operation is not associative. For example,
consider the words A: ACCGT, B: CCCGT, and C: ACCAT. The
word C is not in relation with word B (they differ in nucleotides 1
and 4), but it is in relation with (A � B) (A � B ¼ [AC]CCGT,
motif C differs only in the nucleotide 4). Thus, it is necessary for
the algorithm to cycle through more than one iteration in order to
account for all possible merges: in this example the merged word
(A � B) � C only becomes possible after A and B have been
merged.

Clustering. Up to this point treatment of fixed-size motifs has been
described. Usually the sizes of motifs are not known a priori. To
accommodate arbitrary size words, one can cluster basic words of
fixed size into larger composite motifs. For example, two 5-
nucleotide words TACCTand ACCTG, can be parts of a composite
motif TACCTG.We define the noncommutative clustering relation
as A + B, indicating that word B can extend the word A in 30

direction. Note, that B + A being true does not necessarily imply
that A + B is true. It is also possible to define an associative
clustering operatorA�B that inputs two words of size n and outputs
one motif of size n + 1. Operator � is associative, so for any wordsA,
B, C, (A�B)�C ¼ A�(B�C).Using the described operator � shorter
words can be clustered to longer ones. The clustering process is
iterative, described by following pseudo-code:

Regulatory Motifs in Cancer 299



Initialize: collect all words after merging process
into the pool

do{
Find two words A,B, which are in relation A+B
if (Z-score (A�B)> cutoff) then
Replace the words A,B by the composite C¼A�B
}While (words were clustered in last cycle)

Selection of the best ancestor word. Using the approaches
described above, the words in the dictionary can be merged and
clustered while there are at least two words that are in a relation
A ~ B or A + B (two words that can be merged by operator “�” or
clustered by operator “�”) and the Z-scores of the resulting com-
posite words remains above some predefined threshold. After each
merging/clustering operation the statistical properties are recom-
puted and the Z-scores are reevaluated. The danger of this approach
is that important but short motifs maybe sacrificed in favor of long
and spurious ones. To avoid this, the ancestor of each motif with
the best Z-score (“the best ancestor”) is also stored. When a new
basic motif is identified, it becomes its own best ancestor. After a
merger/clustering step, the Z-score of the composite motif is com-
pared to the Z-scores of the best ancestors. If the new Z-score is
greater than the ancestral Z-scores, the new word becomes its own
“best ancestor.” Otherwise it inherits the “best ancestor” from the
best ancestors. The process is shown in the Fig. 1.

3.2.1 Parallelization The method described in previous subsections independently
examines promoters by windows (in respect to their distance from
the TSS). Therefore, the algorithm can be parallelized by examin-
ing the various windows in parallel. A task-farming algorithm has
been implemented to allow cisExpress to exploit multiple computa-
tional cores within a single shared memory computer system to
perform the window search. Significant parallel scaling can be
achieved using intra-node parallelism due to the current trend
towards more cores per node in high-performance computing
(HPC) systems.

The task-farming algorithm is illustrated by the flowchart in the
Fig. 2. A given set of input data contains a fixed number W of
windows. The search of each of these windows is considered to be a
task and all of the tasks are added to a queue. A master process is
launched to act as a queue manager. Note that the number P of
cores assigned should be less than the number of windows present
(since there are only as many tasks as there are windows, so addi-
tional cores will be redundant). The master process initially loads
the input data into memory and forks P slave processes, each of
which is then assigned one window search (such that W � P tasks
then remain in the queue). The slave processes read the promoter
and expression data via shared memory, and therefore do not
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Fig. 1 Workflow overview. In each dataset, the following workflow was applied. (1) The dataset was used as a
starting point to construct a gene co-expression network based on Topological Overlap between genes. TO
determines similarity between gene expression profiles taking into account a systems level context. The
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perform any I/O. The master process monitors the progress of the
slaves and ensures that as tasks are completed, new ones are started,
so that all CPU cores are maximally utilized at all times. Once all the
window searches have completed, the master process post-
processes the data for output.

3.2.2 Second Stage:

Motif Optimization

After the approximate sequences and positions of motifs have
been identified, the next step is to find the optimal sequence
model and position. Since regulatory motifs are rarely conserved
perfectly, the best possible results cannot be reached using only
consensus representations. In the optimization step, the matrix
that best describes its probabilistic model is being searched for. At
the same time the best positional boundaries describing the posi-
tion of the motif are being sought. The sequence of a motif is
represented by the N � 4 matrix (where N is the length of motif)
and number match threshold which represents the motif conser-
vancy. An example of a matrix representing motif is as follows:

caccg z=3.14
best = caccg

caccg z=3.14
best = cacct

accta z=6.55
best=accta

accga z=4.04
best=acctg

cacc[gt] z=4.33
best=cacc[gt]

cacc[gt]a z=6.01
best=accta

acc[gt]a z=5.56
best=accta

Merging strict motifs
to more ambigous

Clustering shorter
motifs to longer motifs

Fig. 2 Selection of the best ancestor motif

�

Fig. 1 (continued) network was next hierarchically clustered, resulting in a cluster dendrogram. (2) Using
DynamicTreeCut algorithm, branches were identified in the dendrogram, leading to identification of gene co-
expression modules. (3) Genes in each module were further prioritized by intramodular connectivity, providing
a distinction between lowly and highly connected genes. The entire workflow was repeated independently for
82 datasets, resulting in a set of gene co-expression modules in each of them
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#A C G T

1 0 0 0

0.26 0.49 0.09 0.14

0 0 1 0

0 0 0.15 0.84

0.60 0 0.28 0.11

0 0.21 0.03 0.75

# from: 400
# to: 426
# match_threshold: 0.8
Each row represents one position in the motif, numbers in A,

C, G, T columns represent the probability of given base being on
this position.

The cisExpress optimization routines are based on the GA
approach, and are the only nondeterministic part of cisExpress
(due to the nondeterministic nature of GAs). The GA was imple-
mented using the GAlib library [42]. The GA optimization method
uses terms such a genotype, genome, population, mutation in differ-
ent contexts to those used in the rest of this chapter. Therefore, in
the following section we write terms in italic when referring to their
GA meaning.

3.2.3 GA Specification Representation of a genotype: From the optimization point of view
a solution (genome) is a motif. One motif consists of the following
properties: motif matrix, degree of conservation (match_threshold)
and positional boundaries. The motif matrix is encoded as a one-
dimensional array, where each cell of this array contains one row of
the matrix. (In the context of GA, each cell in this array is called a
gene. Operations such as mutation and crossover (described below)
are therefore applied to entire rows rather than to separate numbers
in the matrix.)

Population initiation: Initially, the population is completely
filled by a matrix representation of the motif to be optimized. The
matrix is built from the motif as follows. For each row: if the motif
allows only one base in this position, then the value in the
corresponding column is 1.0 and all other values are zero; if the
motif allows two possible bases in this position, then the values in
each corresponding column are 0.5 and the remaining values are
zero.

Mutation operator: The Mutation operator is the tool of the GA
responsible for bringing variability into a population. A mutation is
divided into three steps: (1) Matrix mutation, (2) Positional
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boundaries mutation and (3) Motif conservancy mutation. For
Matrix mutation, each row of the matrix undergoes the mutation
with a certain probability, given by one of optimization parameters.
If the row is selected for mutation, a random number given by a
Gaussian distribution with mean value zero and variance given by
the optimization parameter is added to each entry in the row.
Positional boundaries and Motif conservancy mutation: each of
these entries is mutated with a given probability. If a value is chosen
for mutation, a random number given by Gaussian distribution
with a mean value of zero and variance given by the optimization
parameter is added to it. After the mutation, all mutated values are
checked to be nonnegative and each row of the matrix is
normalized.

Crossover operator: The crossover operator is the part of the GA
responsible for information exchange between individuals in the
population. A one-point crossover operator, implemented at the
library level (Fig. 3), was used. From the GC point of view, genes
are not numbers in the matrix but rather whole rows of the matrix.
The crossover operator (Fig. 4) does not move entries between
columns, but operates on entire rows of the matrix.

Fitness function: In GA terms, the fitness function is a function able
to assess how “good” a genome is. The principle of evaluation of a
motif represented by genome described above is similar to the

Fig. 3 Task-farming flowchart of cisExpress. A master process loads the
promoters and expressions, then forks a number of slave processes equal to
the number of cores available (which must be no more than the total number of
windows) to perform the window search

304 Martin Triska et al.



evaluation described in the section on Initial data processing. The
only difference is in the way of deciding whether or not the motif is
present in the observed window of the promoter. In this case one
must compute a match score (similarity of the observed promoter
sequence to the motif matrix), which can be subsequently com-
pared to the match threshold (motif conservation). If the match
score of the matrix to the promoter is greater than or equal to the
match threshold, then the motif is considered to be present in the
promoter. If the match of the matrix to the promoter is lower than
the match threshold, then the motif is considered not to be present.
The match score is computed as follows: (1) compute the match
score for each position in the motif—i.e., each row in the matrix;
(2) the match score of a row is equal to the mean value of all
columns that the promoter sequence allows on this position. This
is usually only one column; however, sometimes there is uncer-
tainty in promoter sequence; (3) the match score of the matrix to
the promoter sequence is equal to the mean of the match scores of
each row. After deciding whether or not the motif is present in the
promoters, the evaluation of the motif is the same as described in
Initial Data Processing and Eqs. (1–9) apply.

4 Notes

Availability, Installation, and Configuration of the Software
Latest version of the WGCNA R package can be downloaded from:
https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/
Rpackages/WGCNA/ or from the CRAN website. The package is
installed in R using standard R package installation procedures.
Detailed instructions are provided on the WGCNA home page
(see the UCLA website above). Once the package is installed, it is
ready for use in an R session.

Fig. 4 The crossover operator is the tool of GA responsible for information exchange between individuals in
population
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cisExpress is available from http://chcb.saban-chla.usc.edu/
cisExpress/home.php. cisExpress consists of two programs: the
searching program and the optimization program. Both are imple-
mented in C++ as console applications. For the easier access to the
tool, a PHP/SQL based web interface has been implemented. This
allows a user to run and display results of motif searches and
optimization algorithms in a user friendly environment.

The user-friendly interface helps to reduce computational load
by storing the results into the database. When multiple users run
the application using the same input data with the same parameters,
the results are returned from the database. The interface also
includes tools to display graphical logos and statistical properties
of discovered motifs.

cisExpress requires two input files: (1) a file containing promoter
sequences aligned by the position of Transcription Start Site (in
multi-fasta format; length of promoter is arbitrary) and (2) a file
with expression values (in format [Sequence_Name<TAB>
Expression_Value<EndLine>]).

Analysis of Identified Motifs
A comprehensive functional analysis of all found motifs and their
possible role in cancerogenesis is beyond the scope of this chapter.
Here, we only briefly describe the approach we took and several
most relevant motifs. In order to access functionality of identified
promoter sequence motifs, we have compiled lists of motifs com-
mon for different tissues and expression clusters. Consider motifs
that are present across many expression clusters for a given tissue
(Table 1).

Table 1
Most common motifs in promoters

Tissue Motif
Fraction of clusters
containing motif, %

Fraction of promoters
containing motif, %

Brain CGGAA 37 86
TTCCG 33 65

Colon CGGAA 37 75
TTCCG 40 81

Kidney CGGAA 16 49
TTCCG 22 44

Lung CGGAA 40 78
TTCCG 41 81

Ovary CGGAA 40 76
TTCCG 41 81

Prostate CGGAA 37 42
TTCCG 50 78
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TTCCG or its complement, CGGAA are the most common
significant motifs (Z-score > 4) in promoters of genes expressed in
five out of six tissues (Prostate, Ovary, Lung, Brain and Colon
(Fig. 5)). This sequence is also present in the promoters of
Kidney-related genes, although it is twice less prevalent (Table 1).
TTCCG is a well-known target for E2f transcription factors family,
the major regulators of initiation of DNA replication and G1/S
transition in both human and mouse. E2f targets include cyclins,
CDks, DNA repair proteins, such as major cancer-related tumor
suppressor gene BRCA [43, 44]. Importantly, Rb/E2f pathway is
deregulated in virtually all cancers [45], the phenomenon which
contributes to cell proliferation and other cancerogenic pheno-
types. A number of E2f-controlled genes are directly involved in
cancerogenesis, such as Thymidylate synthase (TYMS). Inactivation

Fig. 5 Instances of motifs CGGAA (a) and TTCCG (b) in brain-specific promoters
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of TTCCG motif in the promoter of the TYMS gene may lead to
moderately decreased gene expression [46, 47].

The most tissue-specific motif is GGAAG, found at 11% in the
“Brain tumor” promoters and only at 2% of promoters in other
tissues. Tandem repeat GGAAG is the binding site for the GA-
binding protein (GABP) [48]. GABP reactivates telomerase reverse
transcriptase, which allows cancer cells to avoid apoptosis, a funda-
mental step in initiation of cancer development [49].

It is necessary to point out that cisExpress represents transcrip-
tion factor binding sites using position weight matrices. Therefore,
it inherits all known deficiencies of PWM-based methods, such as
inability to take into account gaps of variable length, and depen-
dencies between the residues in the binding site [9, 50]. Neverthe-
less, there are classes of transcription factors that can be efficiently
modeled by PWMs [9]; cisExpress is a convenient tool for the PWM
identification.

In conclusion, we developed a computational organism-
independent pipeline for identification of co-expression modules
from whole-genome expression profiles and a novel method of
sequence analysis of regulatory elements corresponding to expres-
sion patterns of interest, cisExpress. We applied this pipeline to a
diverse set of 82 expression profiling experiments in nine cancers of
different origin. The resulted database is, arguably, the most com-
prehensive database of cancer-related co-expression modules and
promoter sequence motifs. Functional analysis of modules revealed
very high enrichment with cancer-related pathways and processes,
and the most prevalent motifs proved to be highly cancer-related.
Therefore, we believe that the modules and motifs with yet
unknown function may be an important resource for follow-up
studies on molecular mechanisms of cancerogenesis in tumors of
different origin. The resource is freely available for further
investigation.
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Chapter 12

Rule Mining Techniques to Predict Prokaryotic Metabolic
Pathways

Rabie Saidi*, Imane Boudellioua*, Maria J. Martin,
and Victor Solovyev

Abstract

It is becoming more evident that computational methods are needed for the identification and the mapping
of pathways in new genomes. We introduce an automatic annotation system (ARBA4Path Association Rule-
Based Annotator for Pathways) that utilizes rule mining techniques to predict metabolic pathways across
wide range of prokaryotes. It was demonstrated that specific combinations of protein domains (recorded in
our rules) strongly determine pathways in which proteins are involved and thus provide information that let
us very accurately assign pathway membership (with precision of 0.999 and recall of 0.966) to proteins of a
given prokaryotic taxon. Our system can be used to enhance the quality of automatically generated
annotations as well as annotating proteins with unknown function. The prediction models are represented
in the form of human-readable rules, and they can be used effectively to add absent pathway information to
many proteins in UniProtKB/TrEMBL database.

Key words Pathway prediction, Machine learning, Rule mining, Automatic annotation, Functional
genomics, Proteomics

1 Introduction

The widening gap between the amount of known proteins and
knowledge of their functions has encouraged the development of
methods to automatically infer annotations. Functional annotation
of proteins encoded in newly sequenced genomes is expected to
meet the conflicting requirements of providing as much compre-
hensive information as possible while avoiding erroneous func-
tional assignments. This trade-off imposes a great challenge in
designing intelligent systems to tackle the problem of automatic
protein annotation. Hence, the need for automated methods is
urgent to help increase the annotation coverage, detect
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inconsistencies and provide seeds for manual curation. There are
several approaches proposed in the literature for such a task. A quite
promising approach is to apply knowledge discovery and data
mining techniques to predict some protein features based on a set
of known data. Such rule-based methods provide rich automatic
functional annotations and aid in performing integrity checks. For
instance, Kretschmann et al. [1] applied C4.5 data mining algo-
rithm [2] to gain knowledge about the Keyword annotation from
UniProtKB/Swiss-Prot [3]. Rule-base [4] is another semiauto-
matic annotation system run on UniProtKB/TrEMBL [3]. It
uses the annotation of UniProtKB/Swiss-Prot entries that possess
a set sequence signatures to annotate UniProtKB/TrEMBL entries
that contain the same signature, fundamentally with keywords and
comments. Other examples of automatic annotation systems that
generate annotations of several protein features integrated into
UniProtKB/TrEMBL are HAMAP-Rule [5], EDIT to Uni-
ProtKB/TrEMBL [6], and PIR [7].

One of the central research goals of systems biology is model-
ing various biological processes. Elucidation of chemical reactions
and pathways is one of the challenging problems in this field.
A biological pathway is formed by a series of chemical reactions
catalyzed by enzymes within a cell. Some of the most common
biological pathways are those associated with metabolism, regula-
tion of gene expression and transmission of molecular signals.
A metabolic pathway involves the step-by-step modification of an
initial molecule to form another product. The resulting product can
be stored by the cell, secreted, used immediately, or used to initiate
another metabolic pathway. An example of a metabolic pathway is
the cellular respiration equation where glucose is oxidized by oxy-
gen to produce ATP, adenosine triphosphate [8]. Pathways play a
key role in advanced studies of functional genomics. For instance,
identifying pathways involved in a disease may lead to effective
strategies for diagnosing, treating, and preventing diseases. More-
over, by comparing the behavior of certain pathways between a
healthy person and a diseased person, researchers can discover the
roots of the disorder and use the information gained from pathway
analysis to develop new and better drugs [9–11]. It is increasingly
clear that mapping dysregulated pathways associated with various
diseases is crucial to fully understand these diseases [12]. In addi-
tion, pathways are often conserved, thus studying their interactions
in model organisms may help elucidate cellular response mechan-
isms in other organisms.

One of the very first pathway prediction systems was Path-
Finder [13] which aims to identify signaling pathways in protein–
protein interaction networks. It extracts the characteristics of
known signal transduction pathways and their functional annota-
tions in the form of association rules. There are also tools that
predict biodegradation pathways such as META [14], CATABOL
[15], and UM-PPS [16]. In addition, relative reasoning has been
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used in the prediction of mammalian detoxification pathways in
order to limit combinatorial explosion [17]. The PathoLogic com-
ponent of the Pathway Tools software [18] is the state of the art in
pathway prediction. It performs prediction of metabolic pathways
in sequenced and annotated genomes using MetaCyc [19] as the
reference metabolic pathway database. One of the limitations of this
system is extendibility due to the fact that its logic is hardcoded.
That is because PathoLogic incorporates rules and heuristics devel-
oped using feedback from biologists to improve the accuracy of the
predictions. Another limitation is becoming more apparent with
the growth of MetaCyc size, resulting in PathoLogic suffering from
more false-positive pathway predictions. In addition, the algorithm
is limited to Boolean predictions with a coarse measure of predic-
tion confidence making it difficult to filter the predictions with a
probability cutoff. A comparative analysis was conducted [20]
revealing that some machine learning approaches performed better
than PathoLogic in pathway prediction.

The tremendously increasing growth of UniProtKB raises a
double challenge for both high-quality and high-coverage annota-
tions. Although literature-based manual annotation of pathways
ensures incorporation of a valuable knowledge and the quality of
the database, it is very far away from keeping up with the ever
increasing amount of recently sequenced genomes. Therefore, we
suggest that association rule mining could be used effectively as a
computational method for pathway prediction. Association rule
mining is a technique originated from the analysis of data onmarket
baskets. The objective is to locate trends by means of association
relationships and correlations within a dataset. Essentially, the aim
of such analysis is to discover a set of useful rules that are shared by a
percentage of the dataset. An association rule is an implication
expression of the form X ) Y, where X and Y are disjoint itemsets.
Association rule mining was used in several applications of bioin-
formatics including mining gene expression data [21], analyzing
microarray data [22], and identifying related GO terms [23].
Moreover, association rule mining was used to improve the quality
of automatically generated annotations by detecting anomalies in
annotation items [24]. In the context of automated protein anno-
tation, we consider association rules in the form of many-to-one
implications. If an annotation satisfies a rule with accepted quality
of metric values, then we hypothesize that such a rule may reflect a
biological regularity. An example of an association rule in a database
of annotated proteins is: “Nuclear localization ) Origin:eukar-
yota”, which describes that every protein which is annotated as
localized in nucleus has a eukaryotic origin [24].

In this chapter we describe ARBA4Path, an automatic annota-
tion system, that was introduced in [25]. ARBA4Path utilizes rule
mining techniques to predict metabolic pathways for UniProtKB/
TrEMBL data. ARBA4Path can be used to enhance the quality of
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automatically generated annotations as well as annotating proteins
with unknown function. The pathway prediction system utilizes
proteins from UniProtKB/Swiss-Prot [3], which is a high quality
manually annotated and nonredundant protein sequence database
containing experimental results, computed features, and scientific
conclusions. Specifically, the pathway prediction system uses Inter-
Pro [26] signatures and organism taxonomy attributes of
UniProtKB/Swiss-Prot entries to predict metabolic pathways asso-
ciated with each protein entry. The association algorithm, Apriori
[27], is used in the learning phase to identify significant relation-
ships between the attributes of UniProtKB/Swiss-Prot annota-
tions. Furthermore, we use a filtering method, SkyRule [28, 29],
to select the best rules based on a combination of several interest-
ingness metrics. The resulting rules represent the predictionmodels
that are in the form of human-readable rules, and they can be used
effectively to add absent pathway information to many proteins in
UniProtKB/TrEMBL database. We finally present an evaluation
study on UniProtKB prokaryotic entries to demonstrate the per-
formance, capability, and robustness of this approach.

2 Methods

ARBA4Path is designed to solve the following problem: given a set
of UniProtKB/SwissProt entries, generate models for pathway
prediction using rule mining techniques. As any machine learning
system, the system has twomajor phases: the learning phase and the
applying phase. The learning phase involves the training and testing
on UniProtKB/Swiss-Prot input data to obtain the prediction
models while the applying phase involves applying the prediction
models on the respective UniProtKB/TrEMBL entries.

2.1 Creation

of Itemsets

First, we extract the necessary information from the desired input
entries of UniProtKB/SwissProt with metabolic pathways as tar-
gets, and InterPro signatures and organism taxonomic lineages as
attributes. We chose InterPro signatures as an attribute since it
covers 96.3% of UniProtKB/Swiss-Prot entries and 77.2% of Uni-
ProtKB/TrEMBl entries (as of November 2015). This high cover-
age will aid us in the learning process by using InterPro signatures
identifiers as an attribute for the prediction models as well as in the
annotation phase. The attributes and target representation in Uni-
ProtKB are described as follows:

2.1.1 Target: Metabolic

Pathway Comment

Represented as a structured hierarchy of controlled vocabulary
where each process is split up into superpathway, pathway, and/or
subpathway. When known, the step number mediated by the pro-
tein within the pathway is also indicated. On the other hand, when
the metabolic pathway is not fully known, only the superpathway
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and pathway labels are indicated. Moreover, a protein can partici-
pate in different pathways or in different steps of the same pathway.
An example of a fully known pathway representation in UniProtKB
for the protein Anthranilate synthase component 1 is: Amino-acid
biosynthesis; L-tryptophan biosynthesis; L-tryptophan from chor-
ismate: step 1/5. Also see Note 1.

2.1.2 Attribute: InterPro

Signature ID

The InterPro signature IDs are cross-referenced from InterPro
database, which is an integrated resource for protein families,
domains, and functional sites. InterPro provides functional analysis
of proteins by classifying them into families and domains. Protein
signatures are combined from 11 member databases into a single
searchable resource. A protein entry could be associated with one
or more InterPro IDs. An example of InterPro IDs associated with
the protein Anthranilate synthase component 1 is: IPR005801
(a domain), IPR019999 (a family), IPR006805 (a domain),
IPR005256 (a family), and IPR015890 (a domain).

2.1.3 Attribute:

Taxonomic Lineage

The taxonomy in UniProtKB is based on the NCBI taxonomy
database and is organized in a tree structure that represents the taxo-
nomic lineage. It contains the taxonomic hierarchical classification
lineage of the source organism. It lists the nodes as they appear top-
down in the taxonomic tree,with themoregeneralgrouping listedfirst.
An example of taxonomic lineage representation for protein Anthrani-
late synthase component 1 is: Bacteria; Proteobacteria;Gammaproteo-
bacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas.

The extracted list of attributes and targets for each loaded entry
will be characterized in the form of an itemset. Table 1 describes
some examples of the forms of itemsets that are associated with
some UniProtKB/Swiss-Prot protein identifiers.

Table 1
Examples of itemsets corresponding to some UniProt/Swiss-Prot entries

Entry ID Corresponding itemset

Q8TRZ4 PATHWAY: One-carbon metabolism; methanogenesis from acetate, TAXON:Archaea,
TAXON: Euryarchaeota, TAXON: Methanomicrobia, TAXON:Methanosarcinales,
TAXON: Methanosarcinaceae, TAXON: Methanosarcina, IPR: IPR017896, IPR:
IPR017900, IPR: IPR004460, IPR:IPR004137, IPR: IPR009051, IPR: IPR011254,
IPR: IPR016099

P18335 PATHWAY: Amino-acid biosynthesis; L-arginine biosynthesis; N(2)-acetyl-L-ornithine from
L-glutamate: step 4/4, PATHWAY: Amino-acid biosynthesis; L-lysine biosynthesis via DAP
pathway; LL-2,6-diaminopimelate from (S)-tetrahydrodipicolinate (succinylase route):
step 2/3, TAXON: Bacteria, TAXON: Proteobacteria, TAXON: Gammaproteobacteria,
TAXON: Enterobacteriales, TAXON: Enterobacteriaceae, TAXON: Escherichia, IPR:
IPR017652, IPR: IPR004636, IPR:IPR005814, IPR: IPR015424, IPR:IPR015421, IPR:
IPR015422
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2.2 Generation of

Association Rules

The prepared itemsets form the input of Apriori algorithm pro-
posed by Agarwal and Srikant [27]. Apriori, a bottom-up approach,
is one of the well-known association rule mining techniques.
Apriori aims to discover all significant association rules that repre-
sent trends in a large database of entries or transactions. It proceeds
by identifying the frequent individual items in the database and
extending them one item at a time as long as those itemsets appear
sufficiently often in the database. The frequent itemsets determined
by Apriori are used to generate association rules which highlight
general trends in the database: We use the Apriori implementation
developed by Borgelt [30]. This implementation uses a prefix tree
to organize the support counters and a doubly recursive procedure
to process the transaction to count the support of candidate item-
sets. Apriori could be configured to provide different evaluating
measures with each generated association rule. Each evaluation
measure tries to quantify the dependency between the antecedent
and the consequent of and association rule. The user has the
freedom to select the threshold values for each evaluation measure
based on his requirements. We use a combination of four measures
to effectively minimize false positives and the number of rules
generated out of pure randomness. The chosen metrics are:

2.2.1 Support According to [31], the support of an association rule R ¼ A AND
B) C (noted supp(R)) is the support of the set S ¼ A, B, C which
is defined by the absolute or relative number of cases in which the
rule is correct. In the prior example, it is the number of cases where
the occurrence of item C follows from the occurrences of items A
and B. However, this definition may cause some problems if multi-
ple evaluation measures are used [30]. Hence, we adopt the defini-
tion proposed by [30, 32, 33] which describes the support of an
association rule as the absolute or relative number of cases inwhich it is
applicable, in other words, in which its antecedent part holds. Unlike
the original definition, the support in this case provides a useful
statistical meaning of the support of a rule and its confidence [30].

2.2.2 Confidence Confidence metric is used to measure the quality of a particular
association rule. More intuitively, it measures the reliability of the
inference made by a rule. Introduced in [31], the confidence of an
association rule R ¼ X ) Y (noted conf(R)), where X and Y are
itemsets, is calculated as the support of the set of all items that
appear in the rule divided by the support of the antecedent set.
More formally,

conf Rð Þ ¼ supp X \ Yð Þ
supp Xð Þ

In other words, the confidence of a rule is the number of cases in
which the rule is correct relative to the number of cases in which it is
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applicable. A high confidence ratio indicates that its associated rule
has a high probability of correctness and thus makes correct pre-
dictions. It is worth mentioning that rules with high confidence
may occur by chance. Determining whether the antecedent and the
consequent are statistically independent is used to detect such
spurious rules. One of the measures that could assist with this is
the lift value.

2.2.3 Lift Value The lift value, or confidence quotient, is basically the quotient of
the posterior and the prior confidence of an association rule. Math-
ematically speaking, the lift of a rule R ¼ X ) Y is:

lift Rð Þ ¼ conf X ) Yð Þ
conf ∅ ) Yð Þ

where ∅ is the empty set and hence supp(∅) is the number of
transactions (entries) in the database. Lift measures how far from
independence the antecedent and consequent are. A lift value
equals to one implies that the antecedent and consequent are
independent and that the support of a rule is expected considering
the supports of its components which renders such rule not inter-
esting. If the resulting lift value is greater than one, this implies that
the presence of the antecedent items raises the confidence. Like-
wise, if the lift value is less than one, then the presence of the
antecedent items lowers the confidence.

2.2.4 p-Value In statistics, the p-value is used to measure the statistical significance
of a result. Several statistical tests have been used to calculate
p-values of association rules [34, 35]. Here, we adopt the p-value
computed from G-Statistic. Under independence, the G-statistic
also has a χ2-distribution. The chi-squared statistic can be used to
calculate a p-value by comparing the value of the statistic to a
χ2 distribution. That is, the p-value is computed as the probability
that the χ2-value of an association rule can be observed by chance
assuming that the antecedent and the consequent of the rule are
independent. This measure does not assess the strength of correla-
tion between antecedent and consequent. It only assists in deciding
about the independence of the antecedent and the consequent in a
rule. The p-value is used to infer how likely the occurrence of the
rule is due to a systematic effect instead of pure random chance. If a
rule has a low p-value, then this rule has a low chance to occur if its
two sides are independent. Given that this rule is observed in the
data, then its two sides are unlikely to be independent, and thus,
the association between them is likely to be real. On the other hand,
high p-value means that the rule has a high chance to occur even if
there is no association between its two sides. Such rules should be
discarded.

Some examples of rule representation along with their quality
metrics are shown in the Table 2 (see Notes 2–4).
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2.3 Selection of

Association Rules

Apriori typically generates a large number of rules especially for
large databases (mining irrelevant rules etc.). The user is thus
unable to determine the most interesting association rules and
make decisions based on these rules. Hence, we need an efficient
evaluation of rules to select those that are actually relevant. The
generated list of rules will be analyzed by SkyRule software [28, 29]
to selects the rules that are supposed to be the most interesting ones
accounting several measures. In our case, the interestingness mea-
sures considered are support, confidence, lift, and p-value that were
discussed in the previous subsection. SkyRule approach adopts the
notion of dominance and comparability between association rules
to discover interesting association rules without favoring or exclud-
ing any measure among the used ones. SkyRule also eliminates the
need for the threshold value specification through the use of domi-
nance relationship. The dominance relationship which is the cor-
nerstone of the SkyRule operator is applied on rules and can be
summarized as follows:

l A rule r is said to be dominated by another rule r’, if for all used
measures, r’ has better measures than r.

l A rule x¼ (A) B) is said to be comparable to rule x’¼ (C)D)
if B ¼ D AND A \ C ¼ ∅.

The dominance relationship describes the relevance of rules
whereas the semantic comparability helps to decide if the consid-
ered association rules are semantically related (i.e., comparable).
Comparability defines a kind of semantic relationship between rules
in order to restrict the use of dominance. Concretely, the domi-
nance between two rules must be applied only if a semantic
relationship exists between them. SkyRule utilizes the concepts
of dominance and comparability to select a family of
inter-independent and statistically relevant rules, we term them
representative rules. SkyRule works as follows:

Table 2
Examples of rules generated by Apriori along with their evaluation measures from a set of UniProt/
Swiss-Prot entries

Consequent Antecedent Support Conf Lift p-value

PATHWAY:Cofactor biosynthesis;
adenosylcobalamin biosynthesis

IPR:IPR003705 3.25E-04 1 90.5787 6.47E-63

PATHWAY:tRNA modification;
archaeosine-tRNA biosynthesis

IPR:IPR004804 IPR:IPR002616
TAXON:Archaea

3.35E-04 1 2983.44 2.72E-127

PATHWAY:Amino-acid
biosynthesis; L-leucine
biosynthesis; L-leucine from
3-methyl-2-oxobutanoate:
step 2/4

IPR:IPR004430 IPR:IPR018136
IPR:IPR001030 TAXON:
Enterobacteriaceae TAXON:
Proteobacteria TAXON:Bacteria

8.07E-04 1 94.6184 1.07E-155
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1. Add all rules of the set of candidate rules.

2. For each rule, compute the Euclidean distance to the normal-
ized ideal metrics (1.0) for all four quality metrics.

3. Sort the set of rules in a descending order by their associated
distances.

4. Select a representative rule as the rule which has metrics closest
to the normalized ideal metrics (smallest distance value).

5. Discard all rules comparable to the representative rule from the
set of candidate rules.

6. Repeat items 4 and 5 until no more rules in candidate set.

Essentially, SkyRule will filter out rules so that only undomi-
nated and incomparable rules are maintained. The set of represen-
tative rules will be used to construct our prediction models as
described in the next subsection.

2.4 Construction of

Prediction Models

The chosen rules by SkyRule will be aggregated to create a model
for each pathway target. For example, if we have two rules of the
form A ) C and B ) C, then we aggregate them to a single rule
such that A OR B ) C. The set of the aggregated rules will build
the final prediction models that are presented in a human readable
format. Table 3 shows some examples of the aggregated rules
presented in the form of prediction models. For each rule, the
antecedent set is accompanied by its four evaluation measures and
its Euclidean distance to normalized ideal metrics. These prediction
models are applied to UniProtKB/TrEMBL entries to annotate
them accordingly (see Note 5).

2.5 Annotation of

UniProtKB/TrEMBL

Entries

The final step in our pipeline is to apply the generated prediction
models on the respective data set (or part of it) of those entries in
UniProtKB/TrEMBL that belong to the same taxonomic group as
those from UniProtKB/Swiss-Prot for the learning phase. That is,
the target entries (with their InterPro signatures and taxonomic
lineage attributes) will be annotated based on the satisfaction of one
or more of the prediction models rule and consequently, annotated
with one or more pathways (see Notes 6 and 7).

3 Materials

In this section, we discuss the choice of the dataset and present a
case study of our system on prokaryotic data in UniProt which
illustrates an application of our methods with evaluation and com-
parison to other existing automatic annotation systems.

3.1 Dataset

Preparation

The current status in UniProtKB for prokaryotes is summarized in
Table 4. Firstly, the system loads all prokaryotic protein entries
from UniProtKB/Swiss-Prot. After that, we filter out the entries
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that do not contain pathway functional annotation as an attribute.
Moreover, in order to maintain data quality, the system only con-
siders entries with manual assertion evidence. An evidence is
described by a code from the Evidence Codes Ontology (ECO)
[36]. ECO is a controlled vocabulary of terms that describe scien-
tific evidence in the realm of biological research. ECO can be used
to document both the evidence that supports a scientific conclusion
and how that conclusion was recorded by a scientist. The evidence
types that are used in UniProtKB for manual assertion are described
in Table 5. At this stage, we ended up with a total of 96,280 entries
that will form our itemsets (see Note 8).

Table 3
Examples of prediction models obtained in the form or aggregated rules along with their evaluation
measures. Each rule is accompanied by its four evaluation measures and its Euclidean distance to
normalized ideal metrics

[PREDICT] PATHWAY:Quinol/quinone metabolism; 1,4-dihydroxy-2-naphthoate biosynthesis; 1,4-
dihydroxy-2-naphthoate from chorismate: step 7/7

[IF]
[IPR:IPR022829] 0.000332364–1.0–0.030303074366431242–1.0$\,\to\,$1.3927122854520324
OR
[IPR:IPR029069, TAXON:Cyanobacteria]
0.000332364–1.0–0.030303074366431242–1.0$\,\to\,$1.3927122854520324
[END]

[PREDICT] PATHWAY:Purine metabolism; IMP biosynthesis via de novo pathway; N(2)-formyl-N
(1)-(5-phospho-D-ribosyl)glycinamide from N(1)-(5-phospho-D-ribosyl)glycinamide (formate
route): step 1/1

[IF]
[IPR:IPR005862] 0.00232655–1.0–0.004464281262982967–1.0 ➔ 1.4094125301401756
OR
[IPR:IPR001509, IPR:IPR011761] 0.000633569–1.0–0.004464281262982967–1.0 ➔

1.4106114385935296
OR
[IPR:IPR003135, IPR:IPR013815, TAXON:Enterobacteriaceae]
0.000436228–1.0–0.004464281262982967–1.0 ➔ 1.4107512543237724
[END]

Table 4
Current status in UniProtKB for prokaryotes

Swiss-Prot TrEMBL

Total number of entries 351,649 34,356,770

Entries with pathway annotations 30.44% 5.22%

Entries with InterPro annotations 98.76% 76.17%

As of November 2015
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3.2 Apriori and

SkyRule

For our given scenario, Table 6 displays the suggested threshold
values we considered for Apriori. Given our selected dataset and
parameters, Apriori successfully generated 568,006 rules in total.
Next, out of all the rules generated by Apriori, SkyRule selected
1347 rules as representative rules. These rules were aggregated to
form 356 prediction models.

3.3 Annotation of

UniProtKB/TrEMBL

In order to capture the performance of our system, we considered
the reference proteome set of prokaryotic entries of UniProtKB/
TrEMBL for the purpose of annotation using our prediction mod-
els. Reference proteomes are a subset of proteomes that have been
selected either manually or algorithmically according to some cri-
teria to provide a broad coverage of the tree of life and a represen-
tative cross-section of the taxonomic diversity found within

Table 5
Considered evidences for pathway annotation in UniProtKB/Swiss-Prot

Evidence ID Evidence label Description

ECO:0000269 Experimental evidence Manually curated information for which there is published
experimental evidence.

ECO:0000303 Non-traceable author
statement evidence

Manually curated information that is based on statements in
scientific articles for which there is no experimental
support.

ECO:0000305 Curator inference
evidence

Manually curated information which has been inferred by a
curator based on his/her scientific knowledge or on the
scientific content of an article.

ECO:0000250 Sequence similarity
evidence

Manually curated information which has been propagated
from a related experimentally characterized protein.

ECO:0000255 Sequence model
evidence

Manually curated information which has been generated by
the UniProtKB automatic annotation system or by various
sequence analysis programs that are used during the
manual curation process and which has been verified by a
curator.

ECO:0000244 Combinatorial evidence Manually curated Information inferred from a combination
of experimental and computational evidence.

Table 6
Apriori threshold values considered for the system

Parameter Value

Minimum number of items per association rule 2

Minimum support of an itemset (absolute number of transactions) 20

Minimum confidence of a rule as a percentage 100%
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UniProtKB. It also covers the proteomes of well-studied model
organisms and other species of interest for biomedical research.
These reference proteomes are tagged with the keyword “Refer-
ence proteome.” As of November 2015, the reference proteome set
of UniProtKB/TrEMBL entries of prokaryotes represents a frac-
tion of around 18% over all prokaryotic UniProtKB/TrEMBL
entries available in UniProtKB. In details, there are 6,193,540
prokaryotic reference proteome entries in UniProtKB/TrEMBL
out of 34,356,770 total prokaryotic UniProtKB/TrEMBL entries.
The coverage of our automatic annotations over the set specified is
illustrated in the next section.

3.4 System

Evaluation

In order to evaluate the robustness of our system, we use the cross-
validation technique with multiple runs. Cross-validation is a stan-
dard technique to give an insight on how the prediction models will
generalize to an independent dataset. A single round of cross-
validation involves partitioning data into complementary subsets
and performing the analysis on one subset (called the training set),
and validating the generated predictor on the other subset (called
the validation set or testing set). For this experiment, we used the
set of UniProtKB/Swiss-Prot prokaryotic entries containing path-
way annotations with manual assertion evidence (96,280 entries in
total as of November 2015). We define our positives and negatives
relative to our reference set of pathways present in at least 20
protein entries of our target set. The positive class contains associa-
tions between each entry and its pathway annotation, which is
present in the reference set of pathways. On the other hand, the
negative class has associations between each entry and all pathways
of the reference set which are not present in the entry annotations.
Moreover, we define a true positive (TP) as to when we successfully
predict a pathway present in the protein from the reference set.
Likewise, a true negative (TN) case is when we do not predict a
pathway annotated for the protein and present in the reference set
of pathways. For example, if a protein has an annotation with two
pathways (both present in the reference set) and the system pre-
dicted only one of two pathways, then we will count one True
positive and one false negative. A more general example is; if we
have x number of pathways in the reference set of pathways and n
proteins where each protein is annotated with a unique pathway
from the set of x, assuming we predicted them all correctly, then we
will have n TP and n(x � 1) TN.

Our validation results are averaged over two runs where at each
run, a five-fold cross-validation is performed. There are five differ-
ent evaluation metrics considered which are accuracy, precision,
recall, F1-measure, and area under the curve (AUC) defined as:

l Accuracy ¼ TPð +TNÞ
TPð +FP+TN+FNÞ

l Precision ¼ TP
TP+FP
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l Recall ¼ TP
ðTP+FNÞ

l F1‐measure ¼ 2� Precision � Recall
Precision + Recall

l AUC ¼ Area under the ROC curve. A receiver operating char-
acteristic (ROC) is a plot that illustrates the performance of a
binary score-based classifier. It depicts the trade-offs between
the true positive rate and the false positive rate while varying the
score threshold from best to worst values. The area under the
ROC curve is a summary measure that essentially averages diag-
nostic accuracy across the spectrum of threshold values. Calcu-
lating the global evaluation metrics over all target pathways, our
system achieved a very high accuracy of pathway identification
with an F1-measure of 0.982, a precision of 0.999, a recall of
0.966 and an AUC of 0.987.

3.5 Relevance of GO

Annotations to

Pathway Annotations

Recently, the use of similarity measures [37] for comparison
between various biological ontologies or, by extension, between
entities annotated with some concepts (functional annotations in
our case) had increased rapidly. We aim to study the relevance of
Gene Ontology (GO) [38] of the entries we annotated by our
predictionmodels to those entries known to possess the same target
pathway annotation. We considered, as a case study, the set of
protein entries of Escherichia coli in UniProtKB/Swiss-Prot
(NCBI Taxonomy Identifier: 83333) since the coverage of GO
annotation on UniProtKB/TrEMBL is low. We applied our predic-
tion models on those entries that lack pathway annotations (4749
entries in total). The prediction models provided 365 predictions
touching 326 entries with 62 pathways that vary in their hierarchi-
cal representation. The set of those entries along with their pathway
annotation are mapped to their corresponding entries of
UniProtKB/Swiss-Prot with manual assertion evidence (171
entries) that share the same pathway annotation. This mapping is
constructed in a form of pairs such that if protein P1 is known to
participate in pathway P and protein P2 is predicted to participate
in the same pathway P, then we form a pair in our mapping list as
(P1 P2), and so on. We intend to test the hypothesis that the
computed GO semantic similarity scores of these pairs will be
significant compared to the GO semantic similarity scores com-
puted for the rest of protein pairs.

We computed semantic similarity for all GO ontology annota-
tions available for the set of UniProtKB/Swiss-Prot entries of
Escherichia coli (taxid: 83333) (5394 entries in total). We used
Semantic Measures Library SML [39] with Resnik measure [40]
that is based on the information content of the most informative
common ancestor. The GO scores of the resulting pairwise seman-
tic similarity computation with best matching average are recorded.
The GO scores that correspond to the computed mapping pairs will
form the set of our positives for theWilcoxon rank-sum test and the
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rest of the pairs are the negatives. We found that the p-values are
less than 2.2e-16 which firmly indicates that there is a strong
significance of the Go scores corresponding to the positive pairs.
A summary of this workflow is illustrated in Fig. 1. Therefore, we
conclude from this analysis that the current state of GO annotations
of protein entries can provide information that can be used reliably
to relate proteins that share the same pathway.

3.6 Distribution of

Annotation Coverage

Here, we provide a comparison of our system annotation coverage
over UniProtKB/TrEMBL with reference to all other automatic
annotation systems run on UniProtKB/TrEMBL such as Rule-
Base [4] and HAMAP-Rule [5]. Fig. 2 illustrates some statistics
about the UniProtKB/TrEMBL entries annotated by our system as
follows. Out of 6,193,540 prokaryotic reference proteomes entries
in UniProtKB/TrEMBL, 663,724 were annotated using the pre-
diction models built by our system. Interestingly, a considerably
large set of 436,510 entries lacked any previous pathway annota-
tions and is now annotated by our system. A total of 150,295
entries of those covered constitute the entries that had previous
annotations by other systems in addition to the annotation pro-
posed by our system. The remaining set of only 76,919 entries
represents those that had been annotated by other systems and
were not touched by our prediction models.
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Fig. 1 Workflow for evaluating GO annotation relevance to our pathway annotations. A coloured molecular
symbol represents a protein with a pathway annotation whereas a gray coloured molecular symbol represents
a protein lacking any pathway annotation. Also, a shaded molecular symbol depicts a protein we annotated
using our prediction models with a pathway and a non-shaded molecular symbol depicts a protein manually
asserted with a pathway annotation. Different colours of the symbols illustrate different pathways associated
with proteins
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3.7 Comparison of

Annotation Coverage

In Fig. 3, we compare the coverage of entries of our system to three
other main automatic annotation systems present in UniProtKB/
TrEMBL, namely SAAS, HAMAP-Rule, and Rule Base. Our sys-
tem significantly surpasses the other three systems in terms of the
number of entries covered. It annotated 663,724 entries where the
next best system was HAMAP-Rule with a coverage of only
229,402 entries. Rule-base touched the least number of entries of
only 93,613 entries.

3.8 Comparison of

Total Number of

Prediction

In Fig. 4, we take a deeper look into the various predictions made by
our system in comparison to those made by Rule-base, SAAS, and
HAMAP-Rule. Note that an entry in UniProtKB/TrEMBL could
gain multiple predictions and hence obtain multiple pathway anno-
tations accordingly. Here we were able to make a total of 786,819
predictions by our system where the majority of these predictions,
516,042, touched entries that have no previous pathway annota-
tion. Moreover, 237,784 predictions were found to be identical
matches to the annotations proposed by other systems. We also
found 20,901 of our annotations similar to those proposed by
other systems either being more specific or more general in their
pathway hierarchical representation. Finally, there were 12,092 pre-
dictions distinct from those already assigned by the other systems.

In order to better quantify the proportion of identical or similar
predictions shared between our system and the other three main
automatic annotation systems, Rule Base, HAMAP-Rule and

Fig. 2 Annotation coverage for UniProtKB/TrEMBL reference proteome prokary-
otic entries. (a) represents entries we could cover which lack pathway annota-
tion, (b) represents entries we could cover which already have pathway
annotation, and (c) represents entries we could not cover which already have
pathway annotation
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Fig. 3 Comparison of annotation coverage of UniProtKB/TrEMBL reference
proteome prokaryotic entries with three main automatic annotation systems
present in UniProtKB/TrEMBL which are SAAS, HAMAP-Rule, and Rule-base

Fig. 4 Comparison of predictions applied on UniProtKB/TrEMBL reference prote-
ome prokaryotic entries relative to three main automatic annotation systems
present in UniProtKB/TrEMBL which are HAMAP-Rule, SAAS and Rule-base

326 Rabie Saidi et al.



SAAS, we compare the predictions that correspond to entries
touched by our system and the three other systems. Fig. 5 compares
the distribution of annotations produced by our system and those
provided by Rule-base, HAMAP-Rule, and SAAS systems. For
instance, there were 35,849 annotations in Rule-base identical to
those predicted by our system, while there were 209,860 and
160,895 predictions identical to those made by HAMAP-Rule
and SAAS respectively. On the other hand, we found 4816 Rule-
base, 19,498 HAMAP-Rule and 10,294 SAAS annotations that
were similar to those annotated by our system. The similarity occurs
due to the hierarchical property of pathway annotations that ren-
ders some annotations to be either more general or more specific.
Moreover, we observed 4,750 Rule-base annotations, 1,201
HAMAP-Rule annotations, and 3,370 SAAS annotations that
were completely different to those annotations provided by our
system. These results indicate that for those entries touched by
both our system and the other two systems, the majority of predic-
tions were identical and similar. This provides an insight into the
behavior of our system as an automatic annotation tool. This shared
similarity supports the validity of our prediction models and their
relevance on UniProtKB/TrEMBL entries.

4 Conclusions

In this chapter, we introduce a new approach to computationally
assign pathway membership for protein sequences. The approach is
based on the generation of association rules by the well-known
Apriori algorithm and subsequent selection of significant

Rule Base
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209,860

Distinct Predictions Similar Predictions Identical Predictions

Fig. 5 Comparison of predictions corresponding to UniProtKB/TrEMBL reference proteome prokaryotic entries
touched by our system, HAMAP-Rule, SAAS, and Rule Base
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(undominated and incomparable) rules by recently developed Sky-
Rule software. It was demonstrated that specific combinations of
protein domains (recorded in our rules) strongly determine path-
ways in which proteins are involved and thus provide information
that let us very accurately assign pathway membership to proteins of
a given prokaryotic taxon. Our system implemented in the ARBA4-
Path software gains its knowledge on pathway identification from
UniProtKB/Swiss-Prot prokaryotic entries with manual assertion
evidence. This knowledge was presented in the form of human
readable prediction models to annotate UniProtKB/TrEMBL pro-
karyotic reference proteomes entries. Using ARBA4Path we anno-
tated 551,418 UniProtKB/TrEMBl entries, where 371,265 of
them lacked any previous pathway information. Furthermore,
cross-validation testing demonstrated a very high accuracy of
ARBA4Path pathway identification with an F1-measure of 0.987
and an AUC of 0.99. Future development of this system includes
studying the obtained pathway models to unveil pathways presence
patterns across prokaryotic taxa and possible extension of the sys-
tem to the annotation of eukaryotic proteins.

5 Notes

1. Since many entries in UniProtKB/Swiss-Prot are cross-
referenced with KEGG or MetaCyc databases of pathways,
the user may choose to apply the proposed method using
KEGG or MetaCyc identifiers as pathway target instead of
UniProt textual representation of pathways as described in
this chapter.

2. There are different implementations proposed for Apriori. The
user may wish to select another implementation for the target
task.

3. The choice of threshold values for support and confidence of
association rules depends on several factors such as the initial
size of the dataset and how frequent the target type is present in
the dataset. The user may wish to experiment with these para-
meters in order to obtain an optimal threshold that satisfies the
requirements of high coverage and high quality annotations.

4. The user may choose another set of additional statistical evalu-
ation measures based on his/her preference.

5. The full list of prediction models obtained is available at: http://
www.ebi.ac.uk/~rsaidi/arba/prokaryotapathway/
learningdetails in JSON format and can be viewed using any
JSON viewer.

6. A Java Archive (JAR) package for our system ARBA4Path to
apply the prediction models on various UniProtKB/TrEMBL
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prokaryotic entries is provided at: http://www.ebi.ac.uk/
~rsaidi/arba/software. This module was built based on a case
study describing an application of our system on UniProtKB
prokaryotic data.

7. Predictions applied on some prokaryotic organisms present in
UniProtKB/TrEMBL along with graphical reports illustrating
ARBA4Path’s prediction compared to those made by other
systems present in UniProtKB/TrEMBL are available at:
http://www.ebi.ac.uk/~rsaidi/arba/prokaryotapathway/
organisms/comparison.

8. In case the user is not satisfied with the size of the input data
that has manual assertion evidence, the user may choose to
neglect filtering the input dataset by evidence.
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Chapter 13

ArrayTrack: An FDA and Public Genomic Tool

Hong Fang, Stephen C. Harris, Zhenjiang Su, Minjun Chen, Feng Qian,
Leming Shi, Roger Perkins, and Weida Tong

Abstract

A robust bioinformatics capability is widely acknowledged as central to realizing the promises of toxicoge-
nomics. Successful application of toxicogenomic approaches, such as DNA microarrays, inextricably relies
on appropriate data management, the ability to extract knowledge from massive amounts of data and the
availability of functional information for data interpretation. At the FDA’s National Center for Toxicologi-
cal Research (NCTR), we are developing a public microarray data management and analysis software, called
ArrayTrack that is also used in the routine review of genomic data submitted to the FDA. ArrayTrack stores
a full range of information related to DNA microarrays and clinical and nonclinical studies as well as the
digested data derived from proteomics and metabonomics experiments. In addition, ArrayTrack provides a
rich collection of functional information about genes, proteins, and pathways drawn from various public
biological databases for facilitating data interpretation. Many data analysis and visualization tools are
available with ArrayTrack for individual platform data analysis, multiple omics data integration and
integrated analysis of omics data with study data. Importantly, gene expression data, functional informa-
tion, and analysis methods are fully integrated so that the data analysis and interpretation process is
simplified and enhanced. Using ArrayTrack, users can select an analysis method from the ArrayTrack tool
box, apply the method to selected microarray data and the analysis results can be directly linked to individual
gene, pathway, and Gene Ontology analysis. ArrayTrack is publicly available online (http://www.fda.gov/
nctr/science/centers/toxicoinformatics/ArrayTrack/index.htm), and the prospective user can also
request a local installation version by contacting the authors.

Key words ArrayTrack, Bioinformatics, MAQC, Pharmacogenomics, VXDS, VGDS, Microarray,
Toxicogenomics, Systems Toxicology, Database, Genomics
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KEGG Kyoto Encyclopedia of Genes and Genomes
MAQC MicroArray Quality Control
MIAME Minimum Information About a Microarray Experiment
NCTR National Center for Toxicological Research
PCA Principal Component Analysis
PGx Pharmacogenomics
SDTM Study Data Tabulation Model
TGx Toxicogenomics
VGDS Voluntary Genomic Data Submission

1 Introduction

Genomics, proteomics, and metabonomics (collectively called
omics), along with other emerging methodologies, e.g., high-
density genotyping for Genome Wide Association Study, contrib-
ute to our understanding of disease and health. The use of “omics”
technologies to assess the gene/protein expression changes in
chemical- and/or environment-induced toxicity, with emphasis
on determination of corresponding gene/protein functions, path-
ways, and regulatory networks, are driving the emergence of the
new research field of toxicogenomics [1]. DNAmicroarray is one of
the main technological advances that has revolutionized both the
theory and practice of addressing toxicological questions at the
molecular level [2–4].

A DNA microarray experiment proceeds through hypothesis,
experimental design and gene expression measurement in a manner
similar to a conventional toxicology study. The amount and nature
of data associated with a microarray experiment, however, impose
far more substantial bioinformatics support requirements. There
are three major bioinformatics requirements for the microarray
experiment:

l Data management—This step acquires, organizes, and enables
access to description of data from a microarray experiment.
A microarray experiment involves multiple steps and the data
in each step needs to be appropriately managed, annotated, and,
most importantly, stored in an appropriate data structure for
ready access. This enables efficient and reliable access for
subsequent data analysis normally done by a multidisciplinary
group of scientists. This is the same for periodic reexamination
of the data in light of continual evolution of gene annotation
information in the public domain. Furthermore, reanalysis is
likely to be needed as new or more accepted analytic methods
evolve, a process much more easily carried out with a well-
managed and annotated dataset can be easily reanalyzed.
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l Data analysis—A single experiment can produce a large amount
of data and a formidable analysis undertaking. Normally, the
immensity of data analysis scales directly with the complexity of
the experiment, such as the number of technical and biological
replicates, and temporal and dose response parameters. The
ability to search, filter, and apply mathematical and statistical
operations and graphically visualize data quickly with an intuitive
user interface facilitates the laborious process.

l Data interpretation—Experiment interpretation is a highly con-
textual process incorporating known and unknown functions of
genes, proteins, and pathways. The inherent noise in microarray
data and a plethora of potential sources of variability inevitably
complicate and possibly confound interpretation. Efficient and
effective interpretation demands that relevant knowledge resid-
ing in public sources for gene annotations, protein functions,
and pathways are readily available and integrated with the data
analysis process.

The National Center for Toxicological Research (NCTR) of
the US Food Drug Administration (FDA) has developed an
integrated software system meeting the aforementioned bioinfor-
matics requirements related to recently advanced high throughput
and/or high content genomic assays, with emphasis on DNA
microarrays [5]. ArrayTrack was originally conceived and devel-
oped to provide a one-stop bioinformatics solution for DNA
microarray experiments, a capability now extended to integrated
analysis of multiple “omics” expression profiles, such as proteomics
and metabonomics.

2 A Brief History of ArrayTrack—Its Role in FDA and Public Use

2.1 Early Mission NCTR has the mission of conducting peer-reviewed research to
support the FDA regulatory mission. NCTR earned its reputation
in the toxicological research community by conducting diverse
toxicology studies, to which toxicogenomics (TGx) was added in
2000. Like many other institutes in the nation that invested early in
TGx, NCTR began by printing its own two-color arrays and inex-
pensive filter arrays; ArrayTrack was initially developed as a research
tool to support in-house DNA microarray experiments done with
these platforms.

The following criteria were considered at ArrayTrack’s incep-
tion and remain salient during continuing development: (1) A rich
collection of gene, protein, and pathway functional information to
provide context in data interpretation; (2) A software environment
that automatically integrates gene expression data with functional
information and visual and analytic tools for efficient and effective
data analysis and interpretation; (3) Ability to cross-link gene
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expression and conventional toxicological data for phenotypic-
driven exploration of underlying mechanisms of toxicity; and
(4) modularization for easy extensibility to other types of “omics”
data (e.g., proteomic and metabonomic data) to enable systems
toxicology research.

The early ArrayTrack has progressively evolved to serve more
roles inside and outside FDA, to accommodate additional data
types, to provide ever richer analytic tools and functionality, and
improved ease of use.

2.2 Roles in FDA Over 7 years in development at this writing, ArrayTrack has had
increasing and demonstrable impacts in FDA programs, of which
the Voluntary Genomics Data Submission (VGDS) program [6]
and the MicroArray Quality Control (MAQC) project [7] are
notable examples. The program roles and demands have, in turn,
led to identification and implementation of new capabilities and
functionalities.

The VGDS is a novel data submission mechanism within FDA.
Through VGDS, the sponsor can interact with FDA by submitting
the genomic data on the voluntary basis. ArrayTrack became the
FDA genomic tool to support VGDS in early 2004. All VGDS
DNA microarray data received from 2004 on has exclusively been
from Affymetrix GeneChip technology. Accordingly, significant
ArrayTrack development has been oriented to improve GeneChip
data handling and analysis. New functionality includes (1) direct
loading of CEL files into ArrayTrack; (2) choice of converting
probe level data to any or all of the probe-set level data types
including MAS5, RMA, DChip, and Plier; (3) data filtering based
on the presence/absence call; (4) mapping the affy ID to
other types of gene IDs (e.g., Entrez Gene ID), protein ID
(e.g., SwissProt Accession number), and different array platform
ID (e.g., Agilent ID); and (5) providing annotations (e.g., path-
ways, functions) for all Affymetrix chips.

A primary goal in VGDS is better understanding of how spon-
sors reach biological conclusions from genomics data, a process
requiring reproducing the sponsors’ analysis methods. Reanalyses
together with reviewing PGx/TGx studies in the literature enabled
delineation of many issues, including (1) Array quality—what
degree of experiment quality and individual array platform techni-
cal performance should be deemed achievable and adequate?
(2) Data analysis issues—what results can be anticipated from
different algorithms and approaches, and its corollary: can consen-
sus be reached for a baseline approach to microarray data analysis?
and (3) cross-platform issue—what consistency can be expected
among different microarray experimental platforms?

Addressing the above issues were major motivators for initiat-
ing the MAQC program in 2005 [7]. MAQC is FDA led, but has a
huge collaborative community spanning public, private, and
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academic communities. MAQC Phase I used six different commer-
cial and one institutionally developed microarray platforms, a scope
requiring significant expansion of ArrayTrack functionalities to
manage data. As a result, a generalized data management scheme
was implemented that can handle data from most if not all com-
mercial array platforms. Since most commercial array types are
preloaded in ArrayTrack (available from ChipLib in ArrayTrack), a
cross-chip comparison can be carried out to assess commonality
and difference between chips provided by the same company (e.g.,
Affymetrix) as well as the chips provided by different companies
(e.g., Affymetrix versus Agilent).

Importantly, VGDS and MAQC emphasize interaction and
collaboration among FDA, private industry and elements of the
entire research community with the stated objective of moving
toward consensus on best practices for microarray data manage-
ment, analysis, and interpretation. The programs are similarly
geared toward advancing the science and consensus. The lessons
learned from both VGDS and MAQC are paving the way for
development of a Best Practice Guidance Document for future
voluntary as well as regular submissions of PGx data to the FDA.
Recently, such a best practice document draft, a companion docu-
ment to “Guidance for Industry—Pharmacogenomic Data Sub-
mission” was released for comments [8]. ArrayTrack both
supports VGDS and MAQC, and benefits from the programs,
contributing to an ever more powerful and versatile FDA
integrated bioinformatics infrastructure to support data manage-
ment, analysis, and interpretation. Synchronizing ArrayTrack
development with VGDS and MAQC will assure the platform
meets agency needs to routinely employ PGx/TGx data in regu-
latory review and decision making (Fig. 1), when that time arrives.

2.3 Beyond DNA

Microarrays

ArrayTrack development initially focused on management, analysis,
and interpretation for DNA microarray data. By the end of 2006,
however, the VGDS program has seen proteomics and metabo-
nomics data appearing as voluntary submissions. ArrayTrack was
subsequently modified to accommodate significant lists of proteins
and metabolites, and a new systems biology function called Com-
monPathway was added that enabled examination of common
pathways and functional categories (e.g., Gene Ontology terms)
shared by different data types (see Subheading 5 below).

VGDS submissions normally came with a large amount of both
clinical and non-clinical information. To manage these traditional
data types, a general mechanism for handling study data was imple-
mented in ArrayTrack using the Study Data Tabulation Model
(SDTM) for nonclinical data and clinical data standard suggested
by the Clinical Data Interchange Standard Consortium (CDISC)
[9]. Additionally, functions were developed to facilitate interpreta-
tion of multiple data types (nonclinical, clinical, and “omics”) in the
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context of phenotypic anchoring, which, in turn, enabled identifi-
cation of possible molecular level mechanisms related to phenotype
(see Subheading 5 below).

2.4 Public Use ArrayTrack has been a key genomic tool for the VGDS program
and genomic submission in FDA. By now, over 100 FDA reviewers
and scientists have attended the ArrayTrack training. However, the
need of making the tool publicly available to the research commu-
nity was identified early on and has been a continuing priority
throughout the planning and development phases of ArrayTrack.
As with VGDS, the feedback from the wide user community has
reciprocally benefited ArrayTrack through linking its development
to emerging common practices, and providing validations of func-
tions and usefulness. ArrayTrack was made openly available to the
public in 2003, where users can gain access either through the FDA
website [5] or by requesting media for local installation, which
would then normally entail local provision of backend database
support with ORACLE.

Fig. 1 A schematic presentation about the integrated nature of an array of
pharmacogenomic effort at FDA: (1) the FDA genomic software, ArrayTrack; (2)
the FDA Voluntary eXploratory Data Submission (VXDS); (3) the MicroArray
Quality Control (MAQC) project; and (4) the best practice presented in the draft
companion document to “FDA Guidance for Industry: Pharmacogenomic Data
Submission." VXDS and MAQC are program mechanisms allowing FDA
interaction in a collaborative environment with the private sector and research
community, respectively. Both programs are aimed at gaining consensus on
analysis methods for and valid applications of recently advanced molecular
technologies in drug development and regulation. The collective lessons
learned from both programs formed the basis to develop the companion
document. ArrayTrack provides primary support to VXDS and MAQC, thereby
continuing its evolution to be the software vehicle that translates best practices
into routine application for regulatory review and decision making in the FDA
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In addition to its broad use within FDA in various regulatory-
driven programs, ArrayTrack is also freely available to the entire
scientific community. ArrayTrack user base has steadily grown
(Fig. 2), and has been adopted by several government agencies
(e.g., EPA, CDC, and NIH), academia, and private sector. At this
writing, ArrayTrack version 3.4 can be accessed through http://
edkb.fda.gov/webstart/arraytrack (http://weblaunch.nctr.fda.
gov/jnlp/arraytrack for FDA users). The full user manual, quick-
start manual, and tutorial are available from the ArrayTrack website
http://www.fda.gov/nctr/science/centers/toxicoinformatics/
ArrayTrack/

3 ArrayTrack Architecture

As depicted in Fig. 3, ArrayTrack is a client-server system. The
ORACLE server stores and integrates in-house omics data, study
data and data from public resources about genes, proteins, and
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Fig. 2 A summary of unique users accessing ArrayTrack in the quarterly basis. There are two types of users:
(1) Using the FDA ArrayTrack and (2) Accessing ArrayTrack installed in their respective institutes or companies
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pathways. The Java language was used to construct the entire user
interface, query mechanism, and data visualization and analysis
tools. ArrayTrack was implemented using Java Webstart technology
that allows installation through a single web link, with updates
of the software performed automatically whenever the application
is run.

ArrayTrack has a modular architecture. Each module for each
application has been constructed independently, such that existing
or new capabilities can be enhanced, changed or added in accor-
dance with priorities and evolving experimental progress. In this
manner ArrayTrack has remained in continuous development and
updating.

The client-server connection in ArrayTrack is accomplished
through JDBC (Java Database Connectivity). The use of JDBC
makes it easy for ArrayTrack to use other relational databases for
backend storage. Currently, database support is in the process of
being extended to open source PostgreSQL. Because ArrayTrack’s
client-server implementation uses the fat client, performance of
ArrayTrack is largely dependent on the client computer. A benefit
of this architecture is the option to apply the analysis functions in
ArrayTrack to data stored in the local machine instead of the server.

Fig. 3 ArrayTrack Architecture. ArrayTrack is a client-server system. The omic data, study data, and the data
from the public domain are managed by the ORACLE database while the visualization and analysis tools are
available from the client side mainly using Java. The tools in the client side can also be directly applied to the
data outside of ArrayTrack such as these stored in the local hard drive
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Use of Java ensures portability of ArrayTrack to all major
computer operating systems. Integration with non-Java applica-
tions can readily be made through socket-based communication
on a local computer. In this manner, ArrayTrack has been interfaced
with a number of other open and commercial applications, includ-
ing R program, JMP Genomics, GeneGo MetaCore, Ingenuity
Pathway Analysis (IPA), and others.

4 ArrayTrack Core Components

ArrayTrack comprises three major integrated components (Fig. 4):
(1) MicroarrayDB that stores essential data associated with a
microarray experiment, including information on slides, samples,
treatments, and experimental results; (2) TOOL that provides
analysis capabilities for data visualization, normalization, signifi-
cance analysis, clustering, and classification; and (3) LIB that
contains information (e.g., gene annotation, protein function and

Fig. 4 ArrayTrack core components. The software consists of three integrated components that are organized
as three panels in the left side of interface: (1) MicroarrayDB captures toxicogenomic data associated with a
microarray experiment; (2) TOOL provides data visualization and analysis capabilities; and (3) LIB contains
annotated information on genes, proteins, and pathways
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pathways) from public repositories. Through a user-friendly
interface, the user can select an analysis method from the TOOL,
apply the method to selected microarray data stored in the Micro-
arrayDB, and the analysis results can be directly linked to associated
functional annotations in the LIB.

The key functionalities associated with these three components
are discussed below and the full list of functions is available from
the ArrayTrack Website [10].

4.1 MicroarrayDB ArrayTrack supports the MIAME (Minimal Information About
a Microarray Experiment) guideline. MIAME defines essential
information for a microarray experiment that enables the results
to be interpretable and the experiment to be reproducible [11].
Microarray information along with a study data can be input
through three submission formats, manual submission, batch
uploading and SimpleTox format.

The manual data submission is through a comprehensive data
submission form in ArrayTrack [10]). It is common that hypothesis
generation, hybridization experiment, and sample preparation is
done by different groups of people within an organization,
especially in one that has a microarray core facility. The form design
of ArrayTrack is advantageous in such a collaborative environment,
where information can be separately entered into each section by
different scientists.

Both batch uploading and SimpleTox allows a larger number of
arrays to be input in batch mode. Input schemas and rationales are
as follows. First, we have observed that most biologists tend to
organize the data using an excel spreadsheet, where rows corre-
spond to array IDs and columns correspond to experiment para-
meters. Accordingly, both submission formats directly accept such
spreadsheet formats (i.e., Excel or tab delimited). Secondly, to
ensure that essential information related to gene expression and
study data is being managed in a consistent way for cross-study
analysis, the MIAME and SEND standards are enforced as the
column headers for preparing the spreadsheet. The major differ-
ence between the batch uploading and SimpleTox is that the
latter provides a flexible mechanism that can be used to manage a
large variety of data from literature for comparative analysis of
multiple studies, which could also ultimately serve as a means for
knowledge base development.

In addition to inputting the raw gene expression data, a user
can also upload any lists of genes, proteins, and metabolites into
ArrayTrack. Such lists can be generated outside of ArrayTrack, such
as those calculated in a customized statistical method or simply
assembled from literature or other knowledge sources. This func-
tion is useful in many ways. First, any statistical analysis tool imple-
mented in ArrayTrack has the option to be applied only to a
specified gene list such that, for example, the grouping of the
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treated samples across different time points and doses can be
examined using a cluster analysis based on a preloaded gene list.
Secondly, the preloaded gene list can be directly compared with the
gene list generated using the ArrayTrack tool for comparative
analysis. In VGDS, for example, significant genes chosen by the
ArrayTrack tool are often then compared with the list provided by
the sponsor to assess the commonalities and differences in
biological interpretation. Thirdly, if the lists of genes, proteins,
and metabolites from a multi-omic experiment are input indepen-
dently into ArrayTrack, the common pathways and/or functional
categories shared by three lists can be examined (see Subheading 5
below).

4.2 LIB The ArrayTrack LIB comprises of a number of libraries. Each library
contains the content-specific information that is organized in such a
way that they are not only convenient for interpretation of omics
data but also useful for other genomic research. Each library has a
common look-and-feel. Specifically, the main part of a library is an
Excel-like spreadsheet, where each row is associatedwith an entity of
interest that can be gene, protein, chemical, pathway, etc., depend-
ing on the content of a library. Each column presents particular
information for each entity in the row, such as functional annota-
tion, chromosomal location, pathways, etc. The query function is on
left side of the spreadsheet, where the user can quickly identify the
functional information for a set of significant genes derived from the
analysis by searching the library. In addition, a set of functions
available on the top of the spreadsheet allows the information in a
library to be mapped to other libraries in ArrayTrack or to external
resources such as GeneGo, MetaCore, IPA, etc.

ArrayTrack contains libraries that partially mirror the contents
of GenBank, SWISS-PROT, LocusLink, KEGG (Kyoto Encyclope-
dia of Genes and Genomes), GO, and others. We extract the func-
tional information from these databases to construct several
enriched libraries, such as GeneLib, ProteinLib, and PathwayLib
that, as the names suggest, concentrate functional information on
genes, proteins, and pathways, respectively [5]. ChipLib contains all
functional information for the probes on a chip provided by the
array manufacturers. Since understanding the function and
biological characteristics of the probes (genes) present on a micro-
array could be essential for interpretation of microarray results,
genes present on the array are also directly linkedwith other libraries
for facilitating biological interpretation of experiment results.

4.3 TOOL Microarray data analysis normally starts with data normalization
and quality control, followed by class comparison, class discovery,
and/or class prediction. At this time, ArrayTrack provides all the
functionalities associated with data analysis except class prediction
(which will be available soon).
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4.3.1 Normalization ArrayTrack provides several normalization methods to convert the
probe level data to the probe-set level data for the Affymetrix
GeneChip, including MAS5, RMA, DChip, and Plier. The raw
gene expression data from other array platforms can be processed
using several global normalization approaches, such as total inten-
sity normalization [12], log ratio mean scale normalization [13],
and LOWESS normalization.

4.3.2 Quality Control AQA/QC tool was developed to assist quality control of two-color
array results. The tool summarizes most relevant information into
one interface to facilitate the process of quality control. The user
can determine the quality of individual microarray results by visua-
lizing data, applying statistical measures and viewing experimental
annotation. Statistical measures are provided to assess the quality of
a hybridization result based on the raw expression data, including
signal-to-noise ratio and the percentage of non-hybridized spots.
The experimental annotations associated with the processes of
hybridization, RNA extraction and labeling are also available to
the end-user. Additionally, a scatter plot of Cy3 vs. Cy5 together
with the original image is available for visual inspection for quality
control purposes [10].

4.3.3 Class Comparison One of the most common data analyses in DNA microarrays is
determining a list of genes that are differentially expressed by
comparing, for example, the treated group with the control
group, and then using this subset of differentially expressed genes
(DEGs) for biological interpretation. Over the years, a number of
methods have been proposed to identify DEGs. ArrayTrack offers
many such methods, ranging from the simple t-test, to ANOVA,
the Volcano plot, and more advanced statistical approaches such as
False Discovery Rate (FDR) and Significance Analysis of Microar-
rays (SAM) [14].

4.3.4 Class Discovery Two commonly employed tools for class discovery and pattern
identification, Principal Component Analysis (PCA) and Cluster
Analysis are available. PCA generates the linear combination of
the genes, named principal components, using a mathematical
transformation. The algorithm ensures that the first principal com-
ponent explains the maximal amount of variance of the data. The
second principal component explains the maximal remaining vari-
ance in the data subject to being orthogonal to the first principal
component, and so on, such that all principal components taken
together explain all the variance of the original data. The PCA plot
of the first three principal components, which usually explains the
majority of variance in the data, is used to inspect the inter-sample
and inter-gene relationships. ArrayTrack offers both 2D and 3D
views of the PCA results, along with the loading tables.
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ArrayTrack also provides two cluster analysis methods, a two-
way Hierarchical Cluster Analysis (HCA) and k-mean clustering, to
investigate the grouping of samples in terms of their similarities in
gene expression profiles, as well as the grouping of genes in terms of
their similarity of samples. The primary purpose of two-way HCA
analysis is to present data in such a manner that genes with similar
expression level across the samples are clustered together along one
axis while the samples with similar gene expression patterns are
grouped together along another axis. Since the genes in the same
cluster are likely to share similar functions, this analysis could
reveal the relationships of molecular functions and phenotypes.
In contrast, k-mean clustering is mainly used to assess the gene
expression profiles across different experiment conditions defined
in the experiment design.

5 ArrayTrack Use Cases

Four examples are provided below to illustrate the utility of Array-
Track in addressing the bioinformatics challenges in the FDA
VGDS program and research.

5.1 A Common

Workflow

Drug X was being evaluated for treatment of cancer in a Phase II
clinical trial with 100 cancer patients. Before treatment, samples of
peripheral blood mononuclear cells were obtained from individual
patients and gene expression in peripheral blood mononuclear cells
measured with Affymetrix microarrays. Treatment benefit was
observed for 80 patients, but not for the rest. The purpose of this
study was to identify a testable hypothesis to explain the treatment
outcome. Thus, the analysis required identification of DEGs by
comparing patients responsive to treatment with Drug X with
those who were not, followed by an interpretation of the biological
significance of the comparison.

Figure 5 depicts a prototypical workflow inArrayTrack to carry
out the required bioinformatics (i.e., data management, analysis,
and interpretation), all of which can be done in the single Array-
Track software platform, precluding the need for cumbersome
import and export of data between software. ArrayTrack was
designed a priori to provide such a one-stop solution. UsingArray-
Track, the user can select an analysis method from the TOOL and
apply the method to selected omics data stored in DB; the analysis
results can then be linked directly to pathways, Gene Ontology
database and other functional information stored in LIB. To fur-
ther facilitate the data interpretation, ArrayTrack also provides a
direct link of analysis results to the external public data repositories,
such as OMIM, UniGene, Chromosomal Map, and GeneCard.
Finally, the power and flexibility of ArrayTrack is furthered by its
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interface to, or integration with, many commercial and public
software systems, including IPA, GeneGO MetaCore, PathArt,
JMP Genomics, and R package.

5.2 Gene Ontology

Analysis Using GOFFA

Gene Ontology (GO) which characterizes and categorizes the
functions of genes and their products according to biological pro-
cesses, molecular functions and cellular components has played an
increasingly important role in interpretation of data from high-
throughput genomics and proteomics technologies. A FDA GO
tool named as Gene Ontology for Functional Analysis (GOFFA)
was implemented in ArrayTrack. With GOFFA, the user can dyna-
mically incorporate ArrayTrack analysis functions with the GO data
in the context of biological interpretation of gene expression data.

Fig. 5 A typical workflow using ArrayTrack to identify differentially expressed genes (DEGs) distinguishing
treatment and control groups, followed by pathway and Gene Ontology (GO) analyses. (a) DEGs are identified
using the Volcano plot or other means in ArrayTrack. DEGs can also be identified using other commercial or
public tools and uploaded into ArrayTrack; (b) DEGs are summarized in a table format and can be readily linked
to ArrayTrack library functions for biological interpretation; (c) Significant altered KEGG pathways are identified
based on DEGs; (d) DEGs are submitted to Gene Ontology For Functional Analysis (GOFFA) tool in ArrayTrack to
identify GO terms associated with significantly altered gene expression
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GOFFA first ranks GO terms in the order of prevalence for a list
of selected genes or proteins, and then it allows the user to interac-
tively select GO terms according to their significance and specific
biological complexity within the hierarchical structure. GOFFA pro-
vides five interactive functions (Tree view, Terms View, Genes View,
GO Path, and GO TreePrune) to analyze the GO data. Among the
five functions, GOPath andGOTreePrune are unique. TheGOPath
ranks the GOFFA Tree Paths based on statistical analysis. The GO
TreePrune provides a visualization of a reducedGO term set based on
user’s statistical cutoffs. Therefore, the GOFFA can provide an intui-
tive depiction of the most likely relevant biological functions.

A dataset from a toxicogenomics study was used to demon-
strate the utility of GOFFA. In this study, the renal toxicity and
carcinogenicity associated with the treatment of aristolochic acid
(AA) in rats was studied using DNA microarray [15]. The DEG list
was determined in ArrayTrack and then directly passed to GOFFA
for functional analysis. Of 1176 identified genes, 417 genes had
GO information for analysis [16]. The GOFFA results are summar-
ized in Fig. 6.

Fig. 6 In GOFFA, lists of genes or proteins from an experiment are analyzed by five functional modules, Tree
View, Terms View, Genes View, GO Path, and GO TreePrune. (a) GO Path identified the significant GO term
based on its path. The most significant ten paths are graphically displays and a color key for the top ten paths
is located beneath the plot. Clicking either a circle in a path in the plot or its corresponding color key launches
a Tree View (b) with the selected path highlighted in blue. (c) GO TreePrune display allows the user to filter out
nodes and thus reduce the complexity of a tree by specifying the p- and E-value as well as the user-defined
number of genes in the end node
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The statistics based on a combination of Fisher’s Exact Test
(p < 0.05) and Relevant Enrichment Factor (E > 2) identified 52
enriched GO terms in the GO biological process. The majority of
the terms are related to four functional categories, induction of
apoptosis, defense response, response to stress, and amino acid
metabolism. These four functional categories reflect the known
biological and pharmacological responses of kidney to the AA
treatment [17]. Out of these four functional categories, GO Path
ranked “defense response” as an important mechanism associated
with the AA treatment (Fig. 6a), and similar results were obtained
from GO TreePrune as well (Fig. 6c). This finding is consistent
with the general understanding that defense response, which
includes immune response, is a complex network response of a
tissue to toxins and carcinogens (such as AA) for defending the
body. Figure 6b gives the GO Path results in the Tree window,
where the majority of genes involved in the defense response are
upregulated to oppose damage by AA. For example, the inhba gene
(first gene in the right panel) is a growth factor with 4.1-fold
increase in expression in kidney. This is a tumor-suppressor gene
and it produces protein that increases arrest in the G1 phase of
tumor cells [18]. Therefore, its induction inhibits tumorigenesis in
kidney treated with AA.

5.3 Analysis of

Microarray Gene

Expression Data

with Conventional

Toxicological

Endpoints

A number of drugs were recently removed in post market due to
liver toxicity. In fact, hepatotoxicity is recognized as such a signifi-
cant problem that its study is prevalent in both public and private
research communities. The VGDS program has observed consider-
able effort by sponsors to identify relevant preclinical biomarkers
for drug-induced liver toxicity.

This example used DNA microarrays to identify a set of genes
with differential expression correlating with clinical pathology para-
meters associated with, and thus possibly biomarkers for, hepato-
toxicity. Specifically, rats were treated with a single high dose of
Drug Y and sacrificed at days 2, 4, 8, 16, and 24. Each time point
contained five treated animals along with five matched controls.
The liver samples were collected for both treated rats and controls
at each time point and analyzed by using Affymetrix microarrays,
and clinical pathology.

This example required integrating conventional toxicological
endpoints with gene expression data in such a way that phenotype-
anchored toxicogenomic analysis could be performed. ArrayTrack
enables such analyses because a “study domain” is definable based
on SDTM developed by CDISC [9]. Using SDTM, ArrayTrack is
able to concurrently manage disparate clinical and non-clinical data
types together with PGx and other biomarker data. Moreover,
various statistical analyses at the toxicological data level, gene
expression level, or in combination can be conducted.
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In this example study, the first step to identify relevant
biomarker genes was determining whether the clinical pathology
data contained sufficient biological information to distinguish time
points, as well as to separate the control and treatment groups.
As illustrated in Fig. 7a, HCA based on four clinical pathology
parameters clearly separated all treatment groups, but not the
control group sacrificed on day 16. Further analysis using PCA
indicated that one of the five control animals had anomalous clinical
pathology (Fig. 7b) and should be considered for removal before
differential expression analysis. Next, the DEGs at each time point
were identified, and these genes were correlated with each type of
the clinical pathology data (Fig. 7c). Genes that showed the highest

Fig. 7 A typical data analysis procedure and results for Example Study 3 correlating gene expressions at
multiple time points with conventional toxicological endpoints. (a) Hierarchical Cluster Analysis is used to
assess the ability of clinical pathology to distinguish treatment and control groups. (b) Principal Component
Analysis of the clinical pathology data enable an anomalous outlier in the control group to be identified. (c) The
DEGs at each time point are correlated with each corresponding set of clinical pathology data. The correlation
coefficients are summarized in a table format and each correlation can also be displayed in a pairwise plot.
(d) The correlation results between the clinical pathology data and gene expression data is summarized in a
heat map, where each cell represents a specific pair (a clinical pathology observation and a gene) in the
correlation analysis with magnitude of correlation represented with color (red for the positive correlation and
green for the negative correlation)
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positive or negative correlations (Fig. 7d) with any of the measured
clinical pathology data were identified for further validation as
potential biomarkers.

5.4 Omics Data

Integration

Integration of gene, protein, and metabolite information for iden-
tifying potential biomarkers through perturbed pathways or func-
tion is another type of application encountered in the VGDS
program. The rationale is that, in the absence of data integration,
markers (whether genes, proteins, and metabolites) derived from
an individual omics platform are just lists providing but a single
level of biological information, and subject to Type 1 errors.
In contrast, integrating multiple omics data types provides richer
elucidation of biological contexts such as the perturbed
functions, signaling pathways, transcription-factor mechanisms of
action, gene regulatory networks, and posttranslational modifica-
tions, among many others. Where differentially expressed
genes, proteins, and metabolites implicate the same biological
context, there is a qualitative enhancement of both validity and
reliability [19].

In this example study, a VGDS submission proposed develop-
ment of a testable hypothesis for the underlying mechanisms of a
disease. The differentially expressed genes, proteins, and metabo-
lites between disease and the disease-free patients were generated
from DNA microarray, proteomics, and metabolomics platforms,
respectively. The hypothesis was that pathways common to signifi-
cant gene, protein, and metabolite lists are more likely to be
disease-relevant pathways than pathways identified by a single sig-
nificance list.

The CommonPathway function in ArrayTrack was used to
identify the common pathways or functions shared by a combina-
tion of genes/proteins/metabolites differentially expressed
between disease and disease free groups. Figure 8 depicts a typical
ArrayTrack workflow for required analyses. Once differentially
expressed genes, proteins, and metabolites were independently
identified from corresponding data, each profile was independently
mapped to the pathways to determine which pathways were signifi-
cantly altered for each data type. The separate pathway lists from
the gene, protein, and metabolite profiles were then compared in a
Venn diagram to determine the commonly altered pathways. The
statistical significance of each pathway was estimated using Fisher’s
Exact Test. Each significant pathway’s details were also displayed
with its differentially expressed genes, proteins, and metabolites
highlighted in different colors. The same process can be equally
applied to GO data to identify commonly altered GO terms (i.e.,
gene functions).
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6 Conclusions

New high-throughput molecular technologies play an increasingly
important role in both basic research and in drug discovery and
development, and widespread anticipation exists that this trend will
continue. The FDA has gained experience in analyzing new omics
data through the VGDS program. The management, analysis, and
interpretation of these data constitute a formidable effort for regu-
latory review. An efficient and integrated bioinformatics infrastruc-
ture within the agency is therefore essential to review and
understand how sponsors reach their biological conclusions, to
enable effective interactions with sponsors, and to ensure the incor-
poration of PGx data into regulatory processes.

ArrayTrack continues to undergo constant refinement and
enhancement based on the feedback and needs of reviewers.

Fig. 8 An illustration of omics data integration logic in ArrayTrack. First, differentially expressed genes,
proteins, and metabolites are generated or uploaded/stored in ArrayTrack. Then genes, proteins, and
metabolites are each independently mapped to pathways or GO terms which are considered to also be
significantly altered. Altered pathways or GO terms common between data types are next identified using a
Venn diagram. The statistical significance of each common pathways or GO terms is estimated and displayed
in a bar chart or spreadsheet. For each common pathway, the detailed pathway map can be viewed where the
differentially expressed genes, proteins, and metabolites are highlighted in different colors
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Because ArrayTrack has been provided freely to the public,
improvements have also been made based on feedback obtained
from outside the agency, including academic, pharmaceutical, and
other government agency users. For example, one function recently
added to ArrayTrack allows for the development of predictive
signatures (classifiers) for use of diagnosis, prognosis, and treat-
ment selection relevant to personalized medicine.

ArrayTrack has become an integral tool for the analysis and
interpretation of genomic and other biomarker data at the FDA.
The fact that ArrayTrack is developed internally within the FDA
has facilitated the integration of enhancements and updates. Several
examples illustrate the successful application of ArrayTrack in the
review of voluntary, but also nonvoluntary data submissions. With
this, ArrayTrack and the notion of an integrated, flexible, and
robust bioinformatics infrastructure have become a cornerstone
on the FDA’s Critical Path Initiative that is aimed at helping to
move medicine from a population-based to a more individually
based practice.

Disclaimer

The views presented in this chapter do not necessarily reflect those
of the US Food and Drug Administration.

References

1. Schmidt CW (2002) Toxicogenomics: an
emerging discipline. Environ Health Perspect
110:A750–A755

2. Afshari CA, Nuwaysir EF, Barrett JC (1999)
Application of complementary DNA microar-
ray technology to carcinogen identification,
toxicology, and drug safety evaluation. Cancer
Res 59:4759–4760

3. Nuwaysir EF, Bittner M, Trent J, Barrett JC,
Afshari CA (1999) Microarrays and toxicology:
the advent of toxicogenomics. Mol Carcinog
24:153–159

4. Hamadeh HK, Amin RP, Paules RS, Afshari
CA (2002) An overview of toxicogenomics.
Curr Issues Mol Biol 4:45–56

5. Tong W, Cao X, Harris S, Sun H, Fang H,
Fuscoe J, Harris A, Hong H, Xie Q, Perkins
R, Shi L, Casciano D (2003) ArrayTrack—
supporting toxicogenomic research at the
U.S. Food and Drug Administration National
Center for Toxicological Research. Environ
Health Perspect 111:1819–1826

6. Frueh FW (2006) Impact of microarray data
quality on genomic data submissions to the
FDA. Nat Biotechnol 24:1105–1107

7. Shi L, Reid LH, Jones WD, Shippy R, Warring-
ton JA, Baker SC, Collins PJ, de Longueville F,
Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey
JC, Setterquist RA, Fischer GM, Tong W, Dra-
gan YP, Dix DJ, Frueh FW, Goodsaid FM,
Herman D, Jensen RV, Johnson CD, Loben-
hofer EK, Puri RK, Schrf U, Thierry-Mieg J,
Wang C, Wilson M, Wolber PK, Zhang L,
Amur S, Bao W, Barbacioru CC, Lucas AB,
Bertholet V, Boysen C, Bromley B, Brown D,
Brunner A, Canales R, Cao XM, Cebula TA,
Chen JJ, Cheng J, Chu TM, Chudin E, Corson
J, Corton JC, Croner LJ, Davies C, Davison
TS, Delenstarr G, Deng X, Dorris D, Eklund
AC, Fan XH, Fang H, Fulmer-Smentek S, Fus-
coe JC, Gallagher K, Ge W, Guo L, Guo X,
Hager J, Haje PK, Han J, Han T, Harbottle
HC, Harris SC, Hatchwell E, Hauser CA,
Hester S, Hong H, Hurban P, Jackson SA, Ji
H, Knight CR, KuoWP, LeClerc JE, Levy S, Li
QZ, Liu C, Liu Y, Lombardi MJ, Ma Y, Mag-
nuson SR, Maqsodi B, McDaniel T, Mei N,
Myklebost O, Ning B, Novoradovskaya N,
Orr MS, Osborn TW, Papallo A, Patterson
TA, Perkins RG, Peters EH, Peterson R, Phi-
lips KL, Pine PS, Pusztai L, Qian F, Ren H,

352 Hong Fang et al.



Rosen M, Rosenzweig BA, Samaha RR, Schena
M, Schroth GP, Shchegrova S, Smith DD,
Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z,
Thierry-Mieg D, Thompson KL, Tikhonova I,
Turpaz Y, Vallanat B, Van C, Walker SJ, Wang
SJ,Wang Y,WolfingerR,WongA,Wu J, XiaoC,
Xie Q, Xu J, Yang W, Zhong S, Zong Y, Slikker
W Jr (2006) The MicroArray Quality Control
(MAQC) project shows inter- and intraplatform
reproducibility of gene expression measure-
ments. Nat Biotechnol 24:1151–1161

8. Guidance for Industry: Pharmacogenomic data
submissions–Companion Guidance: Depart-
ment of Health and Human Services (HHS),
Food and Drug Administration (FDA)
(August 2007) http://www.fda.gov/cder/
guidance/7735dft.pdf

9. Clinical Data Interchange Standard Consor-
tium (CDISC): CDISC Inc., 15907 Two Riv-
ers Cove, Austin, Texas 78717 (2007) http://
www.cdisc.org/index.html

10. Tong W, Harris S, Cao X, Fang H, Shi L, Sun
H, Fuscoe J, Harris A, Hong H, Xie Q, Perkins
R, Casciano D (2004) Development of public
toxicogenomics software for microarray data
management and analysis. Mutat Res
549:241–253

11. Brazma A, Hingamp P, Quackenbush J, Sher-
lock G, Spellman P, Stoeckert C, Aach J,
Ansorge W, Ball CA, Causton HC, Gaasterland
T, Glenisson P, Holstege FC, Kim IF, Marko-
witz V, Matese JC, Parkinson H, Robinson A,
Sarkans U, Schulze-Kremer S, Stewart J, Taylor
R, Vilo J, Vingron M (2001) Minimum Infor-
mation About a Microarray Experiment
(MIAME)-toward standards for microarray
data. Nat Genet 29:365–371

12. Quackenbush J (2002) Microarray data nor-
malization and transformation. Nat Genet 32
(Suppl):496–501

13. Fielden MR, Halgren RG, Dere E, Zachar-
ewski TR (2002) GP3: GenePix post-
processing program for automated analysis of
raw microarray data. Bioinformatics
18:771–773

14. Tusher VG, Tibshirani R, Chu G (2001) Sig-
nificance analysis of microarrays applied to the
ionizing radiation response. Proc Natl Acad Sci
U S A 98:5116–5121

15. Chen T, Guo L, Zhang L, Shi LM, Fang H,
Sun YM, Fuscoe JC, Mei N (2006) Gene
expression profiles distinguish the carcinogenic
effects of aristolochic acid in target (kidney)
and non-target (liver) tissues in rats. BMC Bio-
informatics 7(Suppl 2):S20

16. Sun H, Fang H, Chen T, Perkins R, Tong W
(2006) GOFFA: Gene Ontology for Func-
tional Analysis—a FDA Gene ontology tool
for analysis of genomic and proteomic data.
BMC Bioinformatics 7(Suppl 2):S23

17. Arlt VM, Ferluga D, Stiborova M, Pfohl-
Leszkowicz A, Vukelic M, Ceovic S, Schmeiser
HH, Cosyns JP (2002) Is aristolochic acid a
risk factor for Balkan endemic nephropathy-
associated urothelial cancer? Int J Cancer
101:500–502

18. Shav-Tal Y, Zipori D (2002) The role of activin
a in regulation of hemopoiesis. Stem Cells
20:493–500

19. Fang H, Perkins R, Tong W (2007) Omics
integrating systems using ArrayTrack and
other bioinformatics tools. Am Drug Discov
2:49–52

ArrayTrack 353

http://www.fda.gov/cder/guidance/7735dft.pdf
http://www.fda.gov/cder/guidance/7735dft.pdf
http://www.cdisc.org/index.html
http://www.cdisc.org/index.html


Chapter 14

Identification of Transcriptional Regulators of Psoriasis
from RNA-Seq Experiments

Alena Zolotarenko, Evgeny Chekalin, Rohini Mehta, Ancha Baranova,
Tatiana V. Tatarinova, and Sergey Bruskin

Abstract

Psoriasis is a common inflammatory skin disease with complex etiology and chronic progression. To provide
novel insights into the molecular mechanisms of regulation of the disease we performed RNA sequencing
(RNA-Seq) analysis of 14 pairs of skin samples collected from psoriatic patients. Subsequent pathway
analysis and an extraction of transcriptional regulators governing psoriasis-associated pathways was
executed using a combination of MetaCore Interactome enrichment tool and cisExpress algorithm, and
followed by comparison to a set of previously described psoriasis response elements. A comparative
approach has allowed us to identify 42 core transcriptional regulators of the disease associated with
inflammation (NFkB, IRF9, JUN, FOS, SRF), activity of T-cells in the psoriatic lesions (STAT6, FOXP3,
NFATC2, GATA3, TCF7, RUNX1, etc.), hyperproliferation and migration of keratinocytes (JUN, FOS,
NFIB, TFAP2A, TFAP2C), and lipid metabolism (TFAP2, RARA, VDR). After merging the ChIP-seq and
RNA-seq data, we conclude that the atypical expression of FOXA1 transcriptional factor is an important
player in psoriasis, as it inhibits maturation of naive T cells into this Treg subpopulation (CD4þFOX-
A1þCD47þCD69þPD-L1(hi)FOXP3�), therefore contributing to the development of psoriatic skin
lesions.

Key words Psoriasis, RNA-Seq, FOXA1, Transcriptional regulation, Inflammation, Signaling
pathways

1 Introduction

Psoriasis is a common chronic immune-mediated inflammatory
condition characterized by complex alterations of cell signaling
leading to the progression of the disease. The observed synergy
between the aberrant activation of immune cells and an abnormal
proliferation and differentiation of keratinocytes leads to the devel-
opment of typical psoriatic symptom—red scaly thickened plaques
on the skin surface. Another feature of psoriasis is a “cytokine
storm” that begins locally within the skin, and then spreads
throughout the body in form of a systemic inflammation that

Tatiana V. Tatarinova and Yuri Nikolsky (eds.), Biological Networks and Pathway Analysis, Methods in Molecular Biology,
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contributes to a development of comorbidities such as heart
disease, stroke, diabetes, and psoriatic arthritis.

In order to identify the key signaling cascades and gene expres-
sion alternations causing the disease development and progression,
we have performed RNA-Seq analysis of skin transcriptome in 14
patients with psoriasis [1]. As compared to other methods of gene
expression analysis, RNA-Seq provides a more precise measurement
of transcription levels, wider dynamic range of detection, and
higher reproducibility of results. It was pointed out in Quigley
[2], while for the most abundant transcripts both microarray and
RNA-Seq produce similar results, RNA-Seq is capable of identifica-
tion of a large number of transcripts expressed at low levels that
could not be confidently called as differentially expressed when
using microarrays to analyze the same number of samples.

In this study, we present the results of RNA-Seq analysis that
allowed us to identify important signaling cascades enriched
with differentially expressed genes (DEGs) that highlight potential
transcription regulators contributing to the development of the
disease. To identify transcriptional regulators of psoriatic pathol-
ogy, we utilized two knowledge-based tools, MetaCore [3] and
cisExpress [4, 5]. Modulation of the identified signaling pathways
may be a promising approach for development of novel manage-
ment strategies of psoriasis and other diseases commonly associated
with this condition [6–8].

In psoriasis, the observed changes in gene expression levels may
be due to two different disease-associated phenomena: the change
in transcription and degradation rates of mRNA, and alterations in
cell composition within the lesion that is usually characterized by
the epidermal thickening, the accumulation of immune cells, and
the thinning of subcutaneous fat layer. Therefore, whether the
differential expression observed in comparison of lesional and
non-lesional psoriatic samples truly reflects alterations of intracellu-
lar signaling remains unclear [9].

We have identified 1564 genes differentially expressed in psori-
atic lesions (psoriatic DEGs), 938 of them were upregulated and
626 downregulated [1]. Analysis of the Top 20 upregulated DEGs
highlighted the importance of the unspecific immune defense
mechanisms, inflammatory response, taxis and chemotaxis of
immune cells, and epidermal differentiation. It seems that
impairment of these pathways contributes to the pathogenesis of
psoriasis. This analysis suggests that the genes with the largest
magnitude of expression changes are the “response” genes that
contribute to pathophysiological manifestations of psoriasis rather
than an initiation of the disease. In particular, a majority of the top
20 overexpressed genes were linked to lipid biosynthesis and lipid
metabolism. Interestingly, among the top 20 downregulated genes,
we detected a number of poorly characterized expression units,
including possible pseudogenes, and noncoding RNAs. It remains
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an open question if noncoding RNAs enrichment is of any
functional significance or just an indication of technology bias.

In order to identify the molecular underpinning of the psoriatic
pathology, the gene ontology (GO) analysis and the MetaCore-
guided pathway analysis were performed [3]. The results of the
Gene ontology (GO) analysis generally supported the findings by
MetaCore pathway enrichment (Fig. 1). The most DEG-enriched
GO processes pointed at signaling alternations either relevant to
psoriasis or to the cell populations contributing to the development
of the disease. Top ten signaling pathways highlighted the impor-
tance of activation and chemotaxis of immune cells mediated by
local enhanced production of pro-inflammatory cytokines and
chemokines and the escalating reinforcement of inflammation.
Below we discuss a number of psoriasis-associated pathways in
details.

Skin serves as a first line of defense against the pathogen
invasion. The stimulation of different pathogen-sensing receptors
(such as PRRs) leads to activation of antimicrobial defense that is
orchestrated by a number of key transcription factors, including
nuclear factor kappaB (NF-κB), activator protein 1 (AP-1), cAMP
response element-binding protein (CREB), and interferon-
regulatory factor (IRF). Although the putative antigen leading to

Fig. 1 Top ten DEG-enriched signaling pathways, as sorted by statistical significance of the findings
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the activation of pro-inflammatory signaling in psoriasis has not yet
been identified, it is widely accepted that the signaling cascades
activated in course of psoriatic inflammation are mainly the same
as these stimulated during the pathogen invasion. Activation of
inflammatory and anti-apoptotic proteins ultimately alerts the
immune system of invasion and induces the recruitment of leuko-
cytes to the site of infection [10].

In order to ascertain the key regulatory “hub points” of the
psoriatic networks, two independent approaches were used. The
first of them utilizes the MetaCore Interactome enrichment tool
[3] that evaluates levels of connectivity between the nodes (that can
be either proteins or genes), identifies overconnected nodes and,
according to the node function, suggests possible transcriptional
regulators that drive the observed pattern of the gene expression in
entire dataset. The second approach relies on the cisExpress algo-
rithm [4, 5] that allows one to perform de novo discovery of the
motif within the putative promoter regions of DEGs by means of
comparison of these regions with the content of HOCOMOCO v9
[11], JASPAR 2014 [12], HumanTF 1.0 [13], and footprintDB
[14] databases of known transcription factor binding sites (TFBSs).
Next, the identified lists of transcriptional regulators were
compared to the data compiled by Swindell et al. [15, 16] using
meta-analysis of transcriptomes of 237 psoriatic patients and a
dictionary of 2935 putative TFBSs and the sites for unconventional
DNA-binding proteins (uDBPs). Swindell et al. [16] identified
psoriasis response elements (PREs) overrepresented upstream of
psoriasis DEGs in putative promoters that were defined as
sequences starting at 5 kb upstream and ending at 500 bp down-
stream from the major transcription start site (TSS).

2 Materials

2.1 Patients

and Samples

The patients in the RNA-Seq study were unrelated Caucasian indi-
viduals with plaque form of psoriasis from the Bryansk regional
STD and Dermatology Center. Two 4mm punch biopsy specimens
were taken from skin of the patients with psoriasis, one from the
lesional (LS sample) and another from nonlesional (NL sample)
skin 3–4 cm apart from the lesion, so as the area does not have any
visual signs of psoriasis. Patients did not obtain any systemic or
PUVA/UV treatment 1 month before the biopsy taking. All biopsy
samples were immediately transferred to the liquid nitrogen until
RNA extraction.

2.2 RNA Sequencing TissueLyser LT homogenizer (Qiagen, USA) was used to homog-
enize biopsy specimens. Total RNA was extracted with ExtractRNA
reagent (Evrogen, Russia) according to the manufacturer’s proto-
col. Isolated RNA was dissolved in RNase free water, rRNA was
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depleted using RiboMinus™ Eukaryote Kit for RNA-Seq (Life
Technologies, USA), and the samples were stored at �80 �C. The
quality of total RNA was evaluated with RNA 6000 Pico Chip Kit
and Agilent 2100 Bioanalyzer (Agilent Technologies Inc., USA)
and with Quant-iT™ RNA Assay Kit and Qubit Fluorometer (Life-
Technologies, USA). The average RNA integrity number (RIN) of
samples was �7. Library preparation and sequencing were per-
formed using SOLiD 4 System platform and sequencing chemistry
according to the manufacturer’s instructions (Life Technologies,
USA).

2.3 Processing

and Mapping

of RNA-Seq Reads

and Differential

Expression Analysis

Raw pair-end reads (50 þ 25 bp) were obtained from SOLID4
System (Applied Biosystems) in color space format were filtered for
quality, the adaptor sequences were trimmed and the reads were
aligned to the UCSC human reference genome (hg19) using the
Applied Biosystems’s Bioscope software to obtain reads in the BAM
format. Mapping to multiple locations was permitted. The aligned
read BAM files were assembled into transcripts, their abundance
was estimated and tests for differential expression were processed
by Bioconductor DESeq package [17]. FDR correction for multi-
ple testing was performed according to Benjamini et al. [18–20].

2.4 Pathway

Analysis and

Identification

of Transcriptional

Regulators

List of differentially expressed genes (FC > 1.5, FDR < 0.05) was
used for gene ontology analysis with DAVID tool (Database for
Annotation, Visualization and Integrated Discovery ver. 6.7) [21]
and pathway analysis as well as Interactome analysis with MetaCore
database from Thomson Reuters (ver. 6.11, build 41105, GeneGo,
Thomson Reuters, USA) [3]. Using the cutoffs of fold change
(FC) > 1.5 and false discovery rate of (FDR) <0.05, only genes
that had read counts at all samples were listed, we have identified
1564 DEG, 938 of them were upregulated and 626
downregulated.

MetaCore Pathway analysis tool was used to perform gene
network enrichment analysis, MetaCore Interactome tool was
used for identification of transcriptional regulators of DEG-
enriched pathways [3]. cisExpress algorithm [4, 5] was used for
identification promoter motifs and discovery of cis-elements in
promoter sequences that are statistically associated with expression
patterns of DEG.

FOXA1 target list was obtained by merging ChIP-seq data
from GSE39241 [22] and GSM1099031 [23] using edgeR [24]
and DESeq [17] packages as recommended by authors, and then
compared to DEG list.
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3 Methods

3.1 MetaCore Guided

Identification of the

Transcriptional

Regulators

MetaCore Interactome tool determines density of interactions
between each protein from a dataset of interest, and all other
proteins, evaluates statistically significant interactions within the
set, and analyzes the functions of the selected interacting proteins
[3]. Since proteins usually work in groups (such as protein com-
plexes and pathways), which are defined by protein interactions, it is
assumed that relative connectivity of each hub reflects its relevance,
or importance, and may be used for identification of transcriptional
regulators of DEG-enriched signaling cascades. Even if the expres-
sion levels of mRNA that encodes transcriptional factor itself is not
altered, for example, when the TF in question is predominantly
regulated posttranscriptionally, the number of targets it interacts
depends on the state of its activation or suppression. Hence, the
enrichment or the depletion of interacting protein networks indi-
cates activation or suppression of the TF that orchestrates this
network.

We identified possible transcriptional regulators of DEGs, com-
puted their ranking according to the enrichment of interactions
between the analyzed datasets, calculated from the normalized
difference between the obtained number of targets and the
expected number of expressed proteins, allowed us to identify the
“Top” transcriptional regulators of the differentially expressed
genes (Fig. 2) that lead to the development of the main distinctive
features of psoriasis. In the “Top” TF list there are both cell-type
specific transcriptional factors (e.g., PU.1 that is a master regulator
of myeloid cells [25]) and ubiquitously expressed transcriptional
factors associated with inflammatory pathways (e.g., NFkB and IRF
[26]) that reflects alternations in cell populations in a plaque com-
pared to unaffected skin. In addition to the transcription factors
commonly associated with psoriasis, we have identified transcrip-
tional factors that have not been previously associated with this
disease. Further analysis is needed to determine their roles in the
disease progression.

3.2 De Novo Analysis

of Transcriptional

Regulation of DEGs

Using cisExpress

Algorithm

Another approach that we have utilized for identification of the
transcriptional regulators of DEGs was based on the cisExpress
algorithm [4, 5]. cisExpress finds putative regulatory elements
using a combination of sequence and expression information.
Promoter sequences were obtained from the EPDnew database
[27], which is a collection of experimentally validated promoters
in human, mouse, fruit fly and zebrafish genomes. Evidence comes
fromTSS-mapping from high-throughput experimental techniques
such as CAGE [28] and Oligocapping [29]. Positions of promoters
were validated using the NPEST algorithm [30]. We identified
16,542 H. sapiens promoters that have corresponding RNA-Seq
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gene expression measurements in lesional and non-lesional skin.
Relative expression values for every gene were calculated from
gene expression data for lesional (n ¼ 14) and non-lesional
(n ¼ 14) skin according to the formula:

Expression ¼ ln
Avg NL expression value

Avg LS expression value
:

The length of a promoter region varies from gene to gene, and
the identification of a “promoter window” containing the most
important regulatory sequences for each gene is a separate chal-
lenge. Hence, for our analysis we used the “core promoter-50

UTR” region of þ500 –500 bp around the TSS of each gene.
The analyzed set of the promoters was examined for the presence
of motifs (putative transcription factor binding sites), and the
corresponding gene expression values were compared for genes

Fig. 2 Top 15 transcriptional regulators of DEG genes. Transcriptional factors ranked according to their Z-
score (the level of connectivity of the TF to the DEG list). The colors from green to pink indicate the number of
target genes for this transcriptional factor in the DEG list
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whose promoters did and did not contain the motifs using the t-
test. We compiled a ranked list of over 100 position-specific motifs
in the promoter regions of DEGs.

Top ten motifs in the ranked list have the highest influence
on gene expression (Table 1). For every motif, Z-score was
calculated. The positive values of Z-score suggests that presence
of this motif is associated with elevated levels of gene expression
in non-lesional skin, while negative value shows that presence of
this motif is associated with elevated levels of gene expression
in lesional skin. Absolute value of Z-score can be used to
calculate the confidence level of influence of the motif on gene
expression. The complete list of motifs can be found in Zolotar-
enko et al. [1].

The motifs were examined for similarity with known transcrip-
tion factor binding sites (TFBSs). HOMOCO v9 [11], JASPAR

Table 1
Top ten motifs with the highest confidence of influence on gene expression identified with cisExpress

From. . .to,
bp Motif Z-score Source E-value Associated proteins

10. . .30 AAGATG 7.08 1 1.3e�05 ETS1, p54
2 1.4e�05 AP-1, p39, AP1

�20. . .0 CCGGAA 5.87 3 3.1e�08 ELK4

�10. . .10 CAC[CT]
C

�5.71 4 2.3e�06 ZIC1, ZIC2, ZIC3
4 6.1e�06 GLI3, KLF1
2 1.3e�05 SREBF1
4 3.8e�04 NKX25
4 0.002 AP-1, p39

�60. . .�40 CGGAA 5.64 1 2.7e�08 NFATC2, ETS2,
ELK4

4 5.8e�06 NRF-2/GABP1
3 5.9e�06 ELK1

(continued)
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Table 1
(continued)

From. . .to,
bp Motif Z-score Source E-value Associated proteins

10. . .30 TGGCGG 5.64 3 8.6e�08 E2F8, NF-E1
4 1.7e�06 TFDP1

0. . .20 AAGAT 5.56 3 1.9e�05 TCF7L1
4 0.001 GATA2, GATA6
2 0.001 JUN

�50. . .�30 CGGAA 5.44 1 2.7e�08 NFATC2, ETS2,
ELK4

4 5.8e�06 NRF-2/GABP1
3 5.9e�06 ELK1

300. . .320 CCGGT 5.43 4 6.0e�06 ELK4
3 6.0e�06 GRHL1

�10. . .10 GCCAT 5.37 4 6.9e�05 RFX3
3 8.1e�05 E2F2

0. . .20 GATGGC 5.31 4 8.3e�07 ZBTB4
4 4.9e�05 HXA1, HXB1
4 1.5e�04 TAL1

“From. . .to” is the position of the “window” where the motif has been discovered, relative to the gene transcription start.
Source: 1 footprintDB, 2 JASPAR, 3 HumanTF 1.0, 4 HOCOMOCO. The positive values of Z-score suggest that

presence of the motif promotes the expression of a gene in non-lesional skin while negative values of Z-score suggest that
motif acts in lesional skin
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2014 [12], HumanTF 1.0 [13], and footprintDB [14] databases
were used for this analysis. For example, one of the identified motifs
(AAGATG) is related to the ETS1 transcription factor, which was
associated with psoriasis because ETS1 is a negative regulator of
Th17 cells [31] and GATA-3, differentially expressed in Th1/Th2
cells during psoriasis [32]. CCGGAA motif is associated with
ELK4, which is highly expressed in lesional psoriasis skin [15].

3.3 Identification of

the Key

Transcriptional

Regulators of Psoriatic

Transcriptome

In order to find the key transcriptional regulators of DEG we
compared lists identified by the two computational approaches
(MetaCore and cisExpress), as well as the results of Swindell et al.
[16]. Comparison of the three groups of transcription regulators
(327 cisExpress-identified, 200 MetaCore-identified, and 439
identified by Swindell et al.) (Fig. 3) found 42 common transcrip-
tional factors representing the “core” TF regulators of psoriatic
transcriptome (Table 2).

The majority of elements of the “core TF” list are transcription
factors associated with inflammation (NFkB, IRF9, JUN, FOS,
SRF), activity of T-cells in the psoriatic lesions (STAT6, FOXP3,
NFATC2, GATA3, TCF7, RUNX1 etc.), hyperproliferation and
migration of keratinocytes (JUN, FOS, NFIB, TFAP2A,
TFAP2C), and with lipid metabolism (TFAP2, RARA, VDR).
There were several FOX (Forkhead box) family proteins in the
list, containing the evolutionary conserved “fork-head” or
“winged-helix” DNA-binding domain (DBD). These proteins

Fig. 3 Venn diagram showing overlap between lists of transcriptional regulators
of DEG. Violet—TFs, identified by cisExpress tool; yellow—identified in Swindell
et al. [16], green—identified by the MetaCore software
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Table 2
Core TF regulators if psoriatic transcriptome

Ensembl gene ID
Gene
symbol Transcription factor name

ENSG00000067955 CBFB Core-binding factor, beta subunit

ENSG00000105516 DBP D site of albumin promoter (albumin D-box) binding protein

ENSG00000101412 E2F1 E2F transcription factor 1

ENSG00000164330 EBF1 Early B-cell factor 1

ENSG00000120738 EGR1 Early growth response 1

ENSG00000134954 ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)

ENSG00000170345 FOS v-fos FBJ murine osteosarcoma viral oncogene homolog

ENSG00000129514 FOXA1 Forkhead box A1

ENSG00000125798 FOXA2 Forkhead box A2

ENSG00000111206 FOXM1 Forkhead box M1

ENSG00000150907 FOXO1 Forkhead box O1

ENSG00000128573 FOXP2 Forkhead box P2

ENSG00000049768 FOXP3 Forkhead box P3

ENSG00000107485 GATA3 GATA binding protein 3

ENSG00000162676 GFI1 Growth factor independent 1 transcription repressor

ENSG00000135100 HNF1A HNF1 homeobox A

ENSG00000101076 HNF4A Hepatocyte nuclear factor 4, alpha

ENSG00000213928 IRF9 Interferon regulatory factor 9

ENSG00000177606 JUN Jun oncogene

ENSG00000169926 KLF13 Kruppel-like factor 13

ENSG00000106689 LHX2 LIM homeobox 2

ENSG00000099326 MZF1 Myeloid zinc finger 1

ENSG00000101096 NFATC2 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-
dependent 2

ENSG00000147862 NFIB Nuclear factor I/B

ENSG00000165030 NFIL3 Nuclear factor, interleukin 3 regulated

ENSG00000109320 NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

ENSG00000143190 POU2F1 POU class 2 homeobox 1

ENSG00000131759 RARA Retinoic acid receptor, alpha

ENSG00000159216 RUNX1 Runt-related transcription factor 1

(continued)
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could work as active regulators of cell proliferation and metabolism
and also serve as pioneer factors that decondense chromatin, there-
fore facilitating binding of other sequence-specific transcription
factors to target enhancers, repressors and promoters, wiring global
gene networks essential for cell fate decisions [33]. We also found
294 DEG-associated transcription factors not identified by Swin-
dell et al. [16]. Sixty-six of them were identified by cisExpress as
well as by MetaCore (Fig. 3).

3.4 Pathway

Analysis

In order to investigate relationships between the DEGs, we per-
formed gene network enrichment analysis with the MetaCore soft-
ware. The top ten signaling networks enriched with DEGs were
mainly associated with different alternations in immune signaling
present in the psoriatic lesions (Fig. 1), e.g., the map “Immune
response_IL-17 signaling pathway” (Fig. 4) This agrees with the
hypothesis that the main feature of psoriasis is the cytokine storm
and alternated balance of cytokines, chemokines, and growth fac-
tors regulating various immune and inflammatory responses (see
Zolotarenko et al. [1] for a detailed discussion). The main

Table 2
(continued)

Ensembl gene ID
Gene
symbol Transcription factor name

ENSG00000186350 RXRA Retinoid X receptor, alpha

ENSG00000175387 SMAD2 SMAD family member 2

ENSG00000143842 SOX13 SRY (sex determining region Y)-box 13

ENSG00000125398 SOX9 SRY (sex determining region Y)-box 9

ENSG00000112658 SRF Serum response factor (c-fos serum response element-binding
transcription factor)

ENSG00000166888 STAT6 Signal transducer and activator of transcription 6, interleukin-4
induced

ENSG00000162367 TAL1 T-Cell acute lymphocytic leukemia 1

ENSG00000071564 TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding
factors E12/E47)

ENSG00000081059 TCF7 Transcription factor 7 (T-cell specific, HMG-box)

ENSG00000148737 TCF7L2 Transcription factor 7-like 2 (T-cell specific, HMG-box)

ENSG00000137203 TFAP2A Transcription factor AP-2 alpha (activating enhancer binding protein
2 alpha)

ENSG00000087510 TFAP2C Transcription factor AP-2 gamma (activating enhancer binding
protein 2 gamma)

ENSG00000111424 VDR Vitamin D (1,25-dihydroxy vitamin D3) receptor
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transcriptional regulators of this map are NFkB, C/EBPb and
different proteins from the AP1 superfamily. All these transcription
factors were identified in the Top10 list of MetaCore analysis
(Fig. 2) as well as in the cisExpress analysis.

The importance of different populations of T-cells in the path-
ogenesis of the disease is illustrated by the DEG-enriched map
“Immune response: T-cell subsets secreted signals.” It shows the
shift of T-cell populations to the IL-17-producing types, hence,
being a sign of activation and enhanced migration of psoriasis-
specific populations of T-cells to the lesional skin.

Fig. 4 Immune response_IL-17 signaling pathway. Illustration generated with MetaCore pathway analysis tool
(GeneGO/Thomson Reuters)
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One of the main regulators of T cell polarization and population
maintenance is regulatory T-cell population (Treg). One of the
hypotheses points out the alternations in presence and activity
of regulatory T cells in skin of psoriasis patients as a possible reason
of the development of the disease [34]. Recent studies uncovered a
new population of regulatory T FOXA1þ Treg cells that carry
noncanonical marker FOXA1 instead of canonical FOXP3 [35].
This population also plays suppressive role in autoimmunity as adop-
tive transfer of such cells inhibited experimental autoimmune enceph-
alomyelitis in a FOXA1- and PD-L1-dependent manner [35].
We found that most of the markers of regulatory T cells are over-
expressed in the analyzed transcriptomic data (CD4, CD47, CD69,
PD-L1) except for the FOXA1 itself, which is significantly down-
regulated (FC 0.485; FDR 0.013). Hence, we hypothesize that the
atypical expression of FOXA1 transcriptional factor could lead to the
inhibition of maturation of naive T cells into this Treg subpopulation
(CD4þFOXA1þCD47þCD69þPD-L1(hi)FOXP3�), therefore
contributing to the development of the disease.

Another possible consequence of FOXA1 reduced expression is
the disturbed keratinocyte differentiation. In order to evaluate
putative contribution of FOXA1 regulation to the development
of the psoriatic process, we have compared lists of FOXA1 targets,
identified in ChIP-Seq experiments by Hurtado et al. [36], and the
DEGs identified by RNA-Seq that we have performed. The analysis
had shown that FOXA1 is a transcriptional regulator of the top
differentially expressed genes that serve as the major histopatholo-
gical contributors, encoding S100 proteins, serpins, and genes for
chemoattractant CXCL proteins. Among other important upregu-
lated targets contributing to the disease were HLA-DPB1 (HLA
class II beta chain paralog expressed in antigen presenting cells a
risk allele for the disease [37]); keratins 6B and 6C (activation
markers of keratinocytes essential for formation keratin intermedi-
ate filaments that also take part in wound healing); PPARD (tran-
scription factor overexpressed in psoriasis that enhances
proliferation of keratinocytes and is induced by JUNB in keratino-
cytes) [38]. Among the downregulated targets, there were genes
associated with lipid disturbances observed in psoriatic lesions,
including known components of fatty acid metabolism acyl-CoA
wax alcohol acyltransferase gene AWAT2, fatty acid elongase gene
ELOVL3, fatty acid binding protein FABP4, and many others.
Ontology analysis of FOXA1 target DEGs had shown a similar list
of ontologies as the whole DEG list discussed above. Comparison
of the lists of ontologies has shown that FOXA1 is a part of
regulatory complex accounting for the most important psoriatic
alternations and signaling cascades important for the pathology, so
this transcription factor is a promising candidate for future investi-
gation in the context of psoriasis.
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4 Conclusions

In conclusion, the performed analysis has highlighted the impor-
tance of immune system alternations for the development of the
disease. We present a list of identified core transcriptional regulators
of psoriatic transcriptome that should be further investigated as a
source of insights into the mechanisms of pathology-specific gene
regulation. We have also identified novel transcriptional regulators
of psoriasis-associated pathways previously not suspected to play a
role in the pathology. The comparison of our data with public
ChIP-seq data has allowed us to formulate a hypothesis explaining
the role of FOXA1 transcription factor in psoriasis.
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Chapter 15

Comprehensive Analyses of Tissue-Specific Networks
with Implications to Psychiatric Diseases

Guan Ning Lin, Roser Corominas, Hyun-Jun Nam,
Jorge Urresti, and Lilia M. Iakoucheva

Abstract

Recent advances in genome sequencing and “omics” technologies are opening new opportunities for
improving diagnosis and treatment of human diseases. The precision medicine initiative in particular aims
at developing individualized treatment options that take into account individual variability in genes and
environment of each person. Systems biology approaches that group genes, transcripts and proteins into
functionally meaningful networks will play crucial role in the future of personalized medicine. They will
allow comparison of healthy and disease-affected tissues and organs from the same individual, as well as
between healthy and disease-afflicted individuals. However, the field faces a multitude of challenges ranging
from data integration to statistical and combinatorial issues in data analyses. This chapter describes
computational approaches developed by us and the others to tackle challenges in tissue-specific network
analyses, with the main focus on psychiatric diseases.

Key words Psychiatric diseases, Autism, Genetics, Gene expression, Protein–protein interactions,
Alternatively spliced isoforms, Copy number variants, De novo mutations, Network analyses, Systems
biology

1 Introduction to Psychiatric Disease Networks

Recent large-scale genetic studies of patients and family cohorts
have begun to unravel the genetic architecture of psychiatric
disorders, including autism spectrum disorders (ASD), schizophre-
nia (SCZ), and intellectual disability (ID) [1]. Hundreds to
thousands of genetic loci have been identified as putative risk factors
for these diseases, with only a handful of them being strongly
implicated as causative. To understand how this overwhelming
number of identified genetic risk factors contributes to abnormal
functioning of the brain and ultimately leads to disease phenotypes,
it is necessary to adopt rigorous data-driven framework that oper-
ates at the system or network levels [2]. Over the past decade, rapid
progress has been made in our understanding that biological
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networks formed by complex sets of interactions between numer-
ous genes, transcripts and proteins play important role in decipher-
ing disease phenotypes [3, 4]. In particular, gene expression
networks have been increasingly used to obtain systematic views
about an immensely complex molecular landscape across brain
development [5–10]. However, a dramatic increase in high-
throughput experimental and computational data created a need
for further improvement of effective network analytical techniques
in order to unravel the molecular basis of brain disorders. This
chapter describes computational approaches developed by us and
the others for analyzing brain-specific biological networks related
to psychiatric disorders (Fig. 1). The approaches described below
are generally applicable to other human diseases for which genetic,
transcriptomic, and protein interaction data are readily available.

2 Gene-Level Networks for Psychiatric Disorders

2.1 Construction

of Protein–Protein

Interaction Networks

In order to build a protein–protein interaction (PPI) network
relevant to a specific disease, it is necessary to first select a set of
the disease risk factors, and then obtain a set of PPIs connecting
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Fig. 1 Schematic representation of the multilayer analyses of disease networks leading to the identification of
the disease-relevant pathways. Three layers of network complexity are considered (left panels): top, the CNV-
level network, where proteins encoded by genes from the same copy number variant (CNV) are grouped into
one network node and the interactions of these proteins are merged; middle, the gene-level network, where
each network node represents one gene/protein; bottom, the isoform-level network, where a new layer of
complexity is added by splitting gene nodes into multiple splicing isoform nodes. (Right panels) Various types
of analyses carried out on the networks. Examples of disease-relevant pathways are shown at the bottom and
represent potential new disease biomarkers or drug targets. Abbreviations: CNV - Copy Number Variant, SNV -
Single Nucleotide Variant, PCC - Pearson Correlation Coefficient
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these factors. The list of disease candidate genes could be obtained
either by literature curation of multiple studies with diverse sources
of experimental evidence, or by extracting relevant genes from the
high-throughput genetic studies, such as whole exome sequencing
(WES) [11–13] or whole genome sequencing (WGS) of patients or
family cohorts [14, 15], or from the genome-wide association
studies (GWAS) [16]. The set of PPIs for these genes can be
obtained experimentally [17, 18], predicted computationally
[19], or alternatively downloaded from public databases such as
BioGRID [20], HPRD [21], IntAct [22], and similar. The
literature-curated protein interaction databases aim to aggregate
all known interactions between proteins from multiple experimen-
tal sources. However, individual experiments generally focus on a
selected subset of target proteins, and typically use a specific
method for data collection, such as yeast two-hybrid (Y2H) system,
tandem affinity purification, or co-immunoprecipitation followed
by mass spectrometry proteomics. In addition, the majority of
PPIs are not collected in a tissue-specific manner. This complicates
interpretation of the results relevant to the disease networks that
likely operate in a tissue-specific manner. Therefore, selection of
appropriate control (or background) networks for the analyses are
crucial for obtaining meaningful insights into specific disease
mechanisms.

2.2 Selection

of Control Networks

for the Analyses

The PPIs from the public databases are intrinsically biased toward
highly studied proteins, for example those implicated in cancer.
These well-studied proteins accumulate more interactions than
less studied ones, and consequently tend to become hubs in the
PPI networks. Although hub proteins may be highly relevant to
some disease networks, they may not have similar strong relevance
to other disease networks. In order to minimize the biases intro-
duced by well-studied proteins, one needs to carefully select subsets
of compatible background data for network analyses in order to
draw meaningful conclusions about a specific disease.

Other important sources of network biases are the intrinsic
properties of the genes/proteins within the network. It has been
noted that the number of interactions of a protein is correlated with
the length of a protein, with longer proteins having a greater
number of interactions [23]. Thus, when using genetic data to
construct and analyze networks, it is important to take into account
the properties of the genes, particularly gene length and GC con-
tent [24]. It is especially important to ensure that the control net-
works chosen for the comparison have similar properties with the
disease network under consideration. One possible way to control
for biases is to limit the control or background networks to proteins
that are most similar to the subset of studied proteins from the
disease network, as detailed below.
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2.2.1 Experimentally

Compatible Control Protein

Interaction Networks

In order to control for experimental biases of the PPIs networks,
one could limit the PPIs to only those interactions that are obtained
through the high-throughput systematic screens [17, 25, 26].
These and similar studies identify thousands of PPIs by systemati-
cally testing large number of human proteins against the entire
human ORFeome [27] using consistent experimental procedures
with follow-up pair-wise verification by independent methods [28].
Although such selection strategy may decrease the number of PPIs
that could be used for network construction, compared to those
available from large public databases such as STRING [29] or
InWeb [30], selection of unbiased PPIs would likely increase confi-
dence and reliability of the resulting networks.

In cases, when the PPIs for building disease network were
obtained through a new experimental screen, it is essential to use
PPIs generated in a similar manner as a control for network
analyses. In our recent work [31], we constructed an Autism Splice-
form Interaction Network (ASIN) by screening over 400 isoforms
of autism risk factors (baits) against ~15,000 human ORFs (preys)
using a systematic yeast-two-hybrid (Y2H) screen. We used a simi-
lar, but much larger independent control dataset, the Human
Interactome (HI) [17] for comparison with ASIN. HI is a set of
~14,000 high-quality binary human PPIs obtained in an unbiased
reciprocal screen of ~15,000 human ORFs [17]. Both, the ASIN
and the HI, shared the same prey search space and were generated
in the same laboratory using similar experimental pipelines. There-
fore, HI served as a perfect control network for enrichment analysis
in ASIN [31].

Alternatively, in the absence of an experimental control dataset,
a set of PPIs with comparable quality curated from the published
literature or public databases can be used. To assemble such a
dataset, one should restrict the curated data to only human high-
quality interactions and preferably only those obtained using the
same experimental method (e.g., binary physical interactions) [32,
33]. For example, in case of ASIN, in addition to HI control
network, we have also used a human binary literature-curated
interaction (LCI) dataset consisting of ~40,000 PPIs. The LCI
was assembled by updating a previously used PPI dataset [32] to
include all newly reported PPIs from major databases with the
identical filtering criteria. To verify that the control networks are
comparable to ASIN, we tested for gene length and GC content
biases and observed no statistically significant differences between
the ASIN and both control datasets [31].

2.2.2 Randomized

Control Networks

Another common strategy for analyzing disease networks when
biologically comparable control networks are unavailable is to cre-
ate randomized networks and then estimate the null distribution of
the test statistic (i.e., number of interacting partners of certain
nodes, network connectivity and others). The statistics of the null
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distribution can be estimated from a set of randomized networks
(e.g., 10,000 random networks with comparable properties). Such
randomized networks could be generated by randomly selecting
one protein of an interacting pair and replacing it with another
protein from a randomly selected interaction pair, and repeating the
replacement X number of times (where X is at least four times
the total number of nodes in the network) to achieve complete
randomization. Each randomized network preserves the degree
distribution of the corresponding real network. As in all statistical
hypothesis tests, the significance of a permutation test is repre-
sented by its P-value, which is estimated by the probability of
obtaining an observed value at least as extreme as the test statistic
given that the null hypothesis is true. In our work [31], we applied
this strategy to create random control networks for assessing ASIN
quality using different functional annotations (i.e., co-expression
and co-regulation).

2.3 Comparing

Properties of Disease

and Control Networks

After the disease and control networks are constructed, it is
sometimes desirable to compare the properties of these two net-
works. This could be achieved through calculating various para-
meters: (1) network degree is the number of interacting partners
(i.e., the number of edges) of a network protein (i.e., a node);
(2) network shortest path is the minimal number of protein–protein
interactions (i.e., edges) needed to connect two nodes (i.e., the
minimal number of edges traversed); (3) network clustering coeffi-
cient (Cx) calculates the degree of interconnectivity of the partners
of one protein. The clustering coefficient is defined as:

Cx ¼ 2px
Nxð Nx � 1

��� ,

whereNx is the number of neighbors of x and px is the number of the
connected pairs between all neighbors of x, which ranges from zero
(the partners of the node are not connected) to one (the partners are
fully connected); and (4) network betweenness centrality is a measure
that could be used for ranking a protein node within a network
considering the number of shortest paths that pass through that
node. The betweenness centrality is calculated as follows:

B vð Þ ¼
Xn
s�1

Xs�1

p�1

nsd vð Þ
nsd

where nsd is the total number of shortest paths from a protein s to a
protein d, and nsd(v) is the number of the paths that traverse the
node v. This value is then normalized by dividing the number of all
possible edges between all proteins in the network (excluding s):
((n � 1)(n � 2))/2. The parameters that are statistically different
between the disease and carefully chosen control networks could
represent biologically important findings.
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2.4 Obtaining

Biological Insights

from Disease

Networks

The disease networks could be useful in many aspects, from pre-
dicting the pathways disrupted by the disease mutations, to discov-
ering new disease risk factors. The latter task could be accomplished
by ranking binding partners (i.e., preys) of the confident disease-
implicated proteins. The prey ranking method can be applied suc-
cessfully when an unbiased control network with similar properties
to the disease network is available. This method involves estimation
of preys’ biological connectivity. First, the number of confident
disease proteins, to which a prey binds in the disease network is
calculated. Then, the disease proteins are mapped to the control
network, and binding enrichment is subsequently calculated using
one-tailed Fisher’s exact test with 5% FDR correction (Fig. 2). This
type of ranking is sensitive to network degree variations; therefore,
the ranking should be repeated by decreasing/increasing the
degree of each node tested in the disease network and for each
partner in the control networks. The subset of preys consistently
ranked high after applying these corrections could be potentially
relevant new disease risk factors (Fig. 2).
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Another approach for analyzing disease networks is to compare
their properties to those of the compatible control networks.
Connectivity among binding partners of the disease risk factors
(i.e., prey connectivity) could be compared using the control net-
works, thereby identifying preys that serve as biological linkers of
the disease genes. First, the binding partners of the disease proteins
from the disease network are mapped to the prey space of the
control network (Fig. 3). Then, the statistical significance is calcu-
lated by comparing connectivity of the binding partners in the
control network with the empirical null distribution of connectivity
of 10,000 or more sets of partners randomly selected from the
control network. For example, we observed that in the background
unbiased control network (HI), significantly more ASIN preys were
connected to each other with the shorter path lengths [31] (Fig. 3).
This suggests that ASD risk factors form a highly connected group
and may converge on similar functions or processes.

2.4.1 Cell-Type

and Tissue-Specific

Networks

When performing network analyses of a disease affecting a particu-
lar tissue or organ, it is important to restrict the networks to only
those genes/proteins that are expressed in the tissue of interest.
Given the lack of tissue-specific PPI data, other methods could be
utilized to construct tissue-specific networks. The results of such
restrictive types of analyses are more biologically meaningful, as the
PPIs identified experimentally by the in vitro assays in principle
could occur only if both interacting genes/proteins are expressed
in the same tissue and/or developmental point.
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Collaborative and consortium-level efforts, including Illumina
Body Map 2.0 (GEO accession number GSE30611), ENCODE
[34], and GTEx [35], collected transcriptomes of various human
tissues and cell lines. Recently, a large dataset of brain transcrip-
tomes has been generated [5, 36] and deposited into the BrainSpan
(http://www.brainspan.org/). Other brain-related resources
include quantification of the epigenetic landscape in CNS tissues
and cell types by the Roadmap Epigenomics Mapping Consortium
[37], integration of genetic variation with gene expression in the
brain by the Genotype-Tissue Expression (GTEx) project [38]
(http://www.gtexportal.org/), as well as datasets from the Brain-
Cloud [39] and CommonMind Consortiums (http://www.com
monmind.org/). All these datasets are applicable for the
construction and analyses of the brain-specific disease networks,
as described below.

2.4.2 Co-expression

Network Analyses

Gene expression has long been used to elucidate biological and
functional relationships between human genes. Gene co-expression
analysis in particular was designed to identify shared patterns of
expression across different experiments, tissues, or species [40–43].
Co-expression network analysis uses gene expression as a proxy for
the biological and functional state of the system under
investigation.

One popular approach for analyzing gene co-expression net-
works is to identify Topological Overlap (TO) between functional
modules or subnetworks that are relevant to the disease. The mod-
ule discovery using the Weighted Gene Co-expression Network
Analysis (WGCNA) package [44] is a widely used method for this
purpose. WGCNA aims to identify modules of genes that are highly
correlated based on their expression patterns, with the goal to
facilitate the identification of potential therapeutic targets or bio-
markers. The usefulness of this method has been widely demon-
strated as evidenced bymultiple publications including diseases such
as cancer, Alzheimer, and ASD among many others [10, 45, 46].

In order to perform WGCNA analyses, the pair-wise correla-
tion matrix is computed for each gene pair, and an adjacency matrix
is calculated by raising the correlation matrix to a power of 10 using
the scale-free topology criterion. Modules are defined as branches
of the clustering tree and are characterized based on the expression
of the module eigengene (ME), or the first principle component of
the module. To obtain moderately large and distinct modules, the
minimum module size could be set at five genes and the minimum
height for merging modules at 0.25. Genes are then assigned to a
module if they have a high module membership (kME > 0.7). In
ASIN, we have applied the WGCNA method to our PPI network
genes and successfully detected five modules, with two of them
enriched in brain-relevant functions [31] (Fig. 4).
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2.4.3 Integration of

Co-expression and Protein

Interaction Networks

Despite several recent efforts to generate genome-wide
complete interactomes [17, 18], the PPI datasets are still largely
incomplete and lack tissue specificity, especially with regard to the
brain tissue. In the absence of brain-specific PPIs, one approach for
building brain-relevant networks is to integrate brain-specific RNA
expression (or co-expression) data with the PPIs [9]. The aim for
integrating transcriptional (RNA-seq) and translational (PPIs)
information is to render the networks more biologically relevant
and dynamic, by restricting PPIs to only those that have a higher
probability to occur within the brain tissue. Since two types of
independent lines of evidence are used for network construction,
the Pearson Correlation Coefficient could be used to identify co-
expressed gene pairs. Then, the edges between two genes/proteins
are drawn onlywhen these two nodes are co-expressed (PCC�0.5),
and there is also a reported physical PPI between these nodes/
proteins. More stringent PCC cutoffs (0.7–0.9) could also be used
if desired.
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Using this strategy, we have recently generated dynamic spatio-
temporal networks by integrating gene expression data from the
developing human brain (obtained from BrainSpan) with the PPIs
for genes from different Copy Number Variants (CNVs) implicated
in various psychiatric diseases [9]. Based on the constructed net-
works, we observed that different CNVs showed distinct spatio-
temporal signatures. This suggested that the dynamic CNV
networks can reveal changes during the brain development.

2.4.4 Integration of GO

Annotations with Protein

Interaction Networks

Another way to render networks more biologically relevant is by
adding functional information extracted from public databases such
as Gene Ontology (GO), KEGG Pathways, and others. Although
the information about biological processes, functions or pathways
is still incomplete and could only be applied to a limited number of
genes, using currently available annotations together with PPIs has
a potential to identify novel gene functions, modules and
connections.

One interesting strategy that we used in our work is to utilize
GO Biological Process annotations for identification of functional
modules within networks, and then integrate PPI information to
construct co-GO networks [31]. GO database can be downloaded
from the GO website (http://geneontology.org/page/lead-data
base-downloads), and we suggest to exclude GO annotations
inferred from Electronic Annotation (IEA) entries as less confident
since they were not annotated by a human curator. Three GO
branches, Molecular Function (MF), Biological Process (BP) and
Cellular Component (CC), could be used for the analyses. GO
annotations should first be filtered based on information content
(IC). The IC of a GO term t is defined as:

IC(t) ¼ � ln (p(t))

where p(t) is the fraction of genes annotated with term t or its
descendants. GO terms with IC < 0.95 (i.e., those shared by more
than 5% of all the annotated genes in one GO branch) should be
discarded to avoid the “shallow annotation problem.” After filter-
ing, G-SESAME method [47] could be implemented to calculate
the similarity score of gene pairs in each GO branch. Once the
functional modules are defined based on GO, the PPI information
should be combined to either detect novel connections or to
support existing functional links.

We applied this strategy to the ASIN network [31] with the aim
to test the functionality of the autism risk factors that we have
initially selected for the analyses. We investigated how known
autism risk factors are functionally related, and whether adding
newly discovered PPIs would provide new functional insights. We
constructed the co-GO networks as described earlier, and the
majority of the candidate genes were grouped into three functional
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modules (Fig. 5). The new PPI data provided novel, previously
unknown links for connecting these modules (Fig. 5).

2.4.5 Functional Network

Enrichment Using

Independent Sources

of Evidence

In addition to general information extracted from public databases
such as gene expression, PPIs, GO and others, the independent
sources of information that are specific to a particular disease and
are curated by expert investigators could also be incorporated into
the networks. The expertise of the investigators in a specific disease
is a crucial part of this process.

With the advent of whole exome (WES) and whole genome
(WGS) sequencing technologies, genetic data for many psychiatric
and other human disorders are becoming available. Integrating
genetic data into the networks and testing for genetic enrichment
of the disease networks in genes mutated in the patients is a feasible
way to identify key functional modules or disease pathways and to
prioritize disease genes.

For example, when analyzing autism disease networks [31], we
used the following lines of evidence to perform the enrichment
analyses: (1) genes present in the de novo autism CNVs; (2) genes
impacted by the de novo mutations from autism patients; (3) genes
preferentially expressed in the brain; (4) post-synaptic density
(PSD) genes [48]; (5) genes annotated with psychiatric phenotypes
in the Online Mendelian Inheritance of Men (OMIM) database;
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(6) Fragile X Mental Retardation Protein (FMRP) targets [49];
(7) genes that are sensitive to mutations [50]; and (7) neuronal
marker genes [51]. It is important to verify that there is no correla-
tion between multiple sources of evidence, by plotting the anno-
tated properties against each other and testing for correlation (e.g.,
calculating correlations between different sources of evidence as
previously shown [31]). Using the described strategy we were
able to not only better understand functional relevance of the
autism network that we have built, but also predict new protein
partners that may be relevant to this disease.

3 CNV-Level Networks for Psychiatric Disorders

Copy number variants comprising large deletions and duplications
that span hundreds of thousands of DNA bases are the most
widespread structural variation in the human genome [52]. Multi-
ple studies have consistently demonstrated that CNVs play a major
role in psychiatric disorders [53]. De novo CNV discovery and
CNV burden studies have been successful in identifying precise
genomic regions and even individual CNV genes conferring high
risk for multiple neuropsychiatric disorders [54–60]. The CNV-
level networks integrated with protein interaction networks have
been previously used by us and others to investigate the mechan-
isms of psychiatric diseases [9, 31, 59]. The first step is to assemble
the list of the disease-relevant CNVs defined by the genomic coor-
dinates, and then to extract the list of genes spanning these CNVs’
boundaries. The next step is to identify functional links among the
CNV genes, which could be represented by co-expression, protein
interactions, or other functional measures.

3.1 Co-expression

Networks of CNV

Genes

Gene co-expression can be used to investigate how different CNVs
conferring high risk for psychiatric disorders are related to each
other in the context of brain development. The knowledge of when
and where CNV genes are co-expressed in the brain will help to find
the potential convergence points of different CNVs and to identify
convergent molecular pathways that are disrupted by different
CNVs. We used this approach to investigate 11 CNVs, each
strongly implicated in more than one neuropsychiatric disorder
(ASD, SCZ, ID or bipolar disorder). Using 169 genes from 11
CNVs, we constructed CNV–CNV co-expression networks using
BrainSpan gene expression data (5) (Fig. 6). Co-expressed
gene pairs were defined as those with the pairwise PCC of �0.7.
The weight of the edges connecting different CNV nodes was
calculated as a fraction of co-expressed gene pairs between CNVs
normalized by the total fraction of co-expressed gene pairs between
all CNVs within the network. Specifically, the edge weight (Wa,b) is
defined as:
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P2 P3 P4 P5

P6 P7 P8 P9

P10 P11 P12 P13

P2 (Early fetal: 8-9 PCW)
P3 (Early fetal: 10-12 PCW)
P4 (Early mid-fetal: 13-15 PCW)
P5 (Early mid-fetal: 16-18 PCW)
P6 (Late mid-fetal: 19-23 PCW)
P7 (Late fetal: 24-37 PCW)
P8 (Neonatal-early infancy: 0-5 M)
P9 (Late infancy: 6-11 M)
P10 (Early childhood: 1-5Y)
P11 (Mid-late childhood: 6-11Y)
P12 (Adolescence: 12-19Y)
P13 (Young adult: 20-39Y)

15q11.2-13.1
16p13.11
7q11.23
15q13.3
15q11.2
3q29
17q12
22q11.21
16p11.2
1q21.1
2p16.3

Fig. 6 The CNV–CNV co-expression networks. Each CNV is shown as a circle with different color and size. The
size of the circle reflects the number of genes in each CNV. The edge represents the normalized fraction of co-
expressed gene pairs between different CNVs. PCW post conception weeks, M months, Y years.
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W a,b ¼ Ca,b

T a,b

� �
=

Call

T all

� �

Ca,b: The number of co-expressed gene pairs between CNV a and
CNV b.

Call: The number of co-expressed gene pairs among all CNVs.

Ta,b: The number of total gene pairs between CNV a and CNV b.

Tall: The number of total gene pairs among all CNVs.

The CNV–CNV co-expression networks demonstrate period-
specific connectivity among different CNVs. For example, in the
brain developmental period P2 (early fetal: 8–9 post conception
weeks), 2p16.3 CNV (spanningNRXN1 gene) has strong connec-
tions with many other CNVs, e.g., 15q12.2, 15q13.3, and
7q11.23 (Fig. 6). However, the same CNV has only one strong
connection with 15q11.2–13.1 in the brain developmental period
P8 (Neonatal–early infancy: 0–5 months). Thus, the period-specific
connectivity can provide insight into functional relationships
between CNV genes implicated in multiple psychiatric disorders.

3.1.1 CNV Genes

Prioritization Using Co-

expression

The CNVs have been implicated as causative mutations for multiple
psychiatric disorders, and some of them have demonstrated pheno-
typic effects in humans and model organisms. For example, the
16p11.2 CNV is associated with macrocephaly in deletion carriers
and with microcephaly in duplication carriers in humans [61] and
model organisms [62, 63]. However, the mechanisms by which
gene dosage changes within CNVs cause these diseases and specific
phenotypes are still unknown in majority of cases.

One previous study investigated transcriptomic effect of CNVs
in human lymphoblastoid cell lines (LCLs) from different human
populations [64]. The authors demonstrated that the changes of
gene copy number within CNVs explained approximately 20% of
transcriptional variation [64]. Other studies [65, 66] investigated
the transcriptional changes caused by the deletion and duplication
of 16p11.2 and 22q11.2 CNVs, respectively. They show that CNV
genes affected by the deletions demonstrate ~30% expression level
decrease, whereas those affected by the duplications demonstrate
~30% increase. Therefore, one could expect cis-effect of CNVs on
expression to be approximately at the level of ~20–30%, usually in
the same direction as CNV gene dosage changes. This approxima-
tion could be used to simulate the effect of CNVs on gene expres-
sion in order to prioritize the genes within CNVs that are most
sensitive to dosage changes. Below, we simulated expression levels
of 169 genes within 11 high-risk CNVs implicated in psychiatric
disorders (Fig. 7a).

To estimate relative expression level changes of CNV genes, we
first calculated the percentile rank of the expression levels of each
CNV gene by comparing its expression with expression levels of all
human genes during 12 periods of brain development (Fig. 7b).
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For example,MAPK3 andKCTD13, two genes within the 16p11.2
CNV, are highly expressed in the brain with more than 80th per-
centile rank in most brain developmental periods. In contrast,
CHD1L and GJA5, two genes within the 1q21.1 CNV, are lowly
expressed in the brain, with less than 20th percentile rank (Fig. 7c).
After the simulation of expression level changes due to deletion or
duplication (~30% difference from the original values), the percen-
tile ranks of these two genes were largely reduced or increased due
to deletion or duplication, respectively (Fig. 7d). These opposing
effects of CNVs on expression may be different for different CNV
genes, depending on their initial level of expression under the
normal copy number conditions. Although the ranking of the
CNV genes based on a specified 80th and 20th percentile threshold
is quite arbitrary, it is reasonable to speculate that highly and lowly
expressed genes would be influenced by the deletions and duplica-
tions to a different degree. When more experimental gene expres-
sion data for either CNV carriers or CRISPR cell lines with specific
CNVs becomes available, it would be possible to model transcrip-
tomic effects of different CNVs and to prioritize genes that have the
largest cis- and even trans-effects. The availability of such models
will improve our understanding of the functional mechanisms
behind high-risk CNVs implicated in psychiatric disorders.

3.1.2 CNV Genes

Prioritization Using

Expression Data from

Patients and Controls

One caveat that greatly impairs studies of psychiatric diseases is
inaccessibility of the brain tissues for molecular investigation. The
availability of postmortem brain tissues from the carriers with spe-
cific genetic mutations is also scarce, especially for diseases with
early onset such as autism. Therefore, the investigators frequently
rely on the peripheral tissues (i.e., blood) for gene expression
studies. We have used gene expression dataset derived from
lymphoblast cell lines (LCLs) of autism patients and controls
(GSE37772) [65] to identify gene pairs that are highly
co-expressed and interacting at the protein level with the genes
from the 16p11.2 CNV deletion and duplication carriers [9]. To
reduce noise, only the probes with evidence of robust expression
(detection p � 0.05 in at least 50% of 439 samples) were used for
this study.

Briefly, for each network pair, a list of “partner-alike genes” was
assembled by selecting genes that are highly co-expressed
(SCC � 0.7) with each partner of the 16p11.2 genes in the healthy
control siblings (Fig. 8). Then, the expression profiles of the “part-
ner-alike genes” from the control siblings were compared with
those for the same “partner-alike genes” from the 16p11.2 deletion
and duplication carriers. The network pair was considered to have a
significantly reduced expression in the deletion carriers, or a signifi-
cantly increased expression in the duplication carriers, if its
co-expression correlation coefficient was lower than 5th percentile
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or higher than 95th percentile of the background distribution of
the correlation coefficients for the “partner-alike genes” (Fig. 8).
We observed that some highly co-expressed interacting pairs,
including KCTD13-Cul3, have a significantly reduced expression
in the lymphoblasts of deletion carriers, whereas other pairs have a
significantly increased expression in the duplication carriers. This
allowed identification of gene pairs that are dysregulated by the
16p11.2 CNV deletions and duplications in the ASD patients [9].

3.2 CNV-Level

Protein Interaction

Networks

The CNV-level networks could provide additional insights into
functional relationships between different mutations involved in
human diseases. In addition to the gene-level networks, individual
genes from the same CNV could be combined into the same node
and the CNV networks could be constructed (Fig. 1). Various
types of functional data could be used to draw the edges between
different CNVs. Below, we describe the construction of the CNV
networks using protein interaction data derived from the Y2H
studies.

To generate CNV-level protein interaction network, each
protein-encoding gene of interest is first mapped to either a specific
CNV (for example, the CNV implicated in a disease), or to a non-
CNV region. The genes that overlap CNVs are denoted as “baits,”
and their non-CNV interacting partners as “preys.” Two types of
CNV networks can be built: (1) CNV-prey networks, with CNV
nodes as baits and interacting partners as preys; and (2) CNV–CNV
networks, with CNV nodes as both, baits and preys.

To build a CNV–prey network, all baits from the same CNVs
are merged to create a new network CNV node, and all edges
become links between the CNV node and interacting prey proteins.
This type of network allows identification of new disease risk factors
that link more than expected number of disease CNVs. In order to
generate compatible background network for enrichment analysis,
random genomic regions need to be generated to mimic real
CNVs. Two alternative randomization procedures of human geno-
mic regions can be used: (1) either preserving the genomic size of
CNVs and the total number of interactions for each CNV; or (2) by
randomly selecting genomic regions (i.e., random CNVs) with
the same number of genes (controlling for gene length and GC
content) and similar interaction degree distribution as observed in
the real CNV network. Likewise, the CNV–CNV network is
constructed by merging all network genes into the new CNV
nodes and preserving only edges between different CNV nodes.
Next, the null distribution of the test statistic can be estimated by
generating a large set of simulated CNV networks (~10,000).
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3.3 Biological

Applications for the

CNV-Level Networks

In our hands, the CNV-prey network has been a useful tool for
detecting new autism risk factors [31]. By generating the CNV-
prey network, we were able to identify 25 network preys that bind
to at least two different de novo CNVs, with some of them linking
five or even six different CNVs. The null distribution of 10,000
random CNV-prey networks with simulated CNVs could find no
random networks with any prey binding to more than 4 CNVs. The
preys that connected significantly more CNVs than expected by
chance represent potentially new autism risk factors [31]. In the
same study we also generated CNV–CNV network that directly
connected 27 de novo autism CNVs into a single connected com-
ponent. The largest connected component of the control network
generated from randomly simulated CNVs with the same number
of genes and PPIs as the real CNV network comprised only eight
CNVs, a significantly smaller number than in the real network
(Fig. 9). The autism CNV–CNV network connected several indi-
vidually rare autism CNVs with each other at the protein level,
thereby pointing toward common molecular networks shared
among different ASD patients.

4 Isoform-Level Networks for Psychiatric Disorders

4.1 Introduction to

Isoform–Isoform

Networks

The majority of the multi-exon human genes undergo alternative
splicing or use alternative promoters to increase proteomic diversity
[67, 68]. The brain, in particular, is one of the most complex tissues
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with finely regulated mechanisms of alternative splicing [35, 69,
70]. As a result, it is important to consider the diversity of interac-
tion patterns of protein variants encoded by different isoforms of
the same gene. Until now, only a limited number of studies, includ-
ing one by us, have considered this variability in interaction net-
works, and these studies were also based on various subsets of
human genes [31, 71, 72]. Recently, we have performed a global
systematic screen of over a thousand of protein isoforms for inter-
actions [73]. We demonstrated that the majority of isoform
pairs, encoded by the same gene, share less than 50% of their
interactions. In the global context of interactome network maps,
alternative isoforms tend to behave like distinct proteins rather
than minor variants of each other. We also showed that interaction
partners specific to alternative isoforms tend to be expressed in a
highly tissue-specific manner and belong to distinct functional
modules [73].

To build an isoform-level PPI network, it is necessary to obtain
isoform-level experimental data. Public databases are still scarce in
any type of information at the isoform level, with the most compre-
hensive database recently designed by us (see http://isoform.dfci.
harvard.edu/). Alternatively, the data could be generated experi-
mentally for a selected subset of disease gene candidates by cloning
their splicing isoforms from a relevant tissue and then testing them
for PPIs either with the Y2H system [31], or by using cloned
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isoforms for pull-down experiments combined with mass-
spectrometry [74]. It should be noted, however, that the latter
approach does not provide binary interaction information that is
critical for building accurate isoform-level networks.

While building isoform-level networks using Y2H, it is crucial
to plan the experiments in a way that minimizes false positive and
false negative interactions. In our recent study [73], each cloned
isoform of a gene was tested for interactions against the entire
human ORFeome (first-pass, ~15,000 ORFs), and subsequently
each isoform was retested in triplicate against a union of all interac-
tion partners for all isoforms of the same gene from the first-pass.
This ensured that the observed lack of interaction for a specific
isoform is a true negative event.

Using the described methods, it is possible to construct two
types of isoform-level networks. First, if isoforms of only disease
candidates (i.e., baits) are available for testing, then the isoform-
level network would be unidirectional. However, if the isoform
clones are also available for the interaction partners (i.e., preys),
then bidirectional isoform networks could be constructed
(Fig. 10).

We observed that having isoform-level information for both
interacting partners increases the number of interactions and the
level of depth and complexity of the networks. For example, when
we included the isoform-level PPI information in our autism net-
work, it was expanded by 30% compared to the network con-
structed from only a single reference isoform of each gene [31].

4.2 Evaluating

Interaction Profile

Similarity of Different

Isoforms Encoded by

the Same Gene

More than 90% of multi-exon human genes encode multiple iso-
forms. These isoforms may share and/or have unique interacting
partners at the protein level. The differences in interaction profiles
of isoforms can be calculated using the Jaccard distance. This value
measures the dissimilarity between sample sets, i.e., the differences
in interaction profiles of multiple isoforms of a protein (Fig. 11).
The Jaccard distance DJ(A, B) is calculated as follows:

DJ A;Bð Þ ¼ 1� J A;Bð Þ ¼ 1� A [ Bj j � A \ Bj j
A [ Bj j

where J(A, B) is the Jaccard Score. When all isoforms interact with
exactly the same partners, the Jaccard distance is 0; alternatively, when
isoforms share no interacting partners the Jaccard distance is 1. In our
recent study we observed that ~16% of the isoform pairs shared no
interacting partners, whereas ~63% shared less than half of their
interacting partners [73]. This suggests that different protein iso-
forms encoded by the same gene have strikingly different functional
properties, and that they can behave like completely different proteins
in interaction networks. We also observed that different isoforms can
participate in different cellular pathways, thereby further emphasizing
the importance of isoform networks for improving our understand-
ing of human disease pathways.
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4.3 Isoform-Level

Networks of Co-

expressed and

Interacting Proteins

Many of the isoform variants are differentially regulated, and their
expression is often restricted to certain organs, tissues or cells [68].
The differences in isoform expression have also been observed
across tissues or organs development [75]. A given isoform may
even exhibit dominant negative effects over other isoforms encoded
by the same gene, be up- or down-regulated instead of being
constitutively active, or even have opposing cellular functions
[76]. Traditionally, and similar to protein interaction networks,
the isoform-level expression data are less abundant in the public
databases than the gene-level data. The majority of previous pub-
lications that use isoform-level expression data are typically only
focused on a selected subset of genes of interested [77, 78].

Although both, isoform-level PPI and isoform-level expression
data, started to accumulate during last couple of years, the direct
integration of these two types of datasets to create the isoform-level
networks of co-expressed and physically interacting proteins still
pose a great challenge. This is mainly due to the fact that these
datasets are usually generated separately in different laboratories,
and often different sets of isoforms are selected for the experiments.
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4.3.1 Integration of

Isoform-Level Co-

expression and Protein

Interaction Data

As a feasible alternative to collecting both types of data, one can
computationally estimate the expression levels of isoforms by quan-
tifying it from the available tissue-specific RNA-Seq data, extracted
from the Human Body Map (GEO accession number GSE30611),
BrainSpan [5] (http://www.brainspan.org/) or GTEx [35]
(http://www.gtexportal.org/). The dataset of known isoforms for
each gene could be assembled from public databases, such as
RefSeq, GenCode, UCSC known genes, and others.

When experimental isoform-level PPI networks are available for
the genes of interest [31, 73], one can first computationally quan-
tify the expression levels of the network isoforms using tissue-
specific RNA-seq data and the tools, such as TopHat [79], RSEM
[80], or eXpress [81]. Next, co-expression between all interacting
isoforms can be calculated by a correlation measurement (i.e.,
Pearson’s correlation coefficient, Spearman’s rank correlation coef-
ficient, Mutual information, or Euclidean distance). Alternatively,
in the absence of the isoform-level PPI network for the genes of
interest, one can start with a literature-curated gene-level PPI
network. Then, all gene pairs in the network could be expanded
to include all possible isoform pairs. Since isoform expression levels
could be quantified using RNA-seq data, the isoform-level co-
expression network can be generated by calculating co-expression
coefficient for all isoform pairs. Typically, we connect a pair of
isoforms with an edge in the network when co-expression coeffi-
cient between them is �0.5 (or �0.7 if a more stringent network is
desired), and if they are also shown to physically interact (i.e., the
PPI is reported). Figure 12 shows the example of two different
isoforms of a CTBP1 gene that are co-expressed and interacting
with different isoforms of four other genes during brain develop-
ment. Note that the isoform-level interaction networks change
depending on the brain developmental period (P2–P13). Other
examples of spatio-temporal networks are shown in in our recent
publication [9]. It is likely that the detailed isoform-level co-
expressed PPI networks could provide more detailed information
about healthy or disease states compared to the gene-level
networks.

5 Summary

This chapter describes approaches to data integration that have been
developed over the years in our laboratory for building and analyz-
ing disease-relevant networks. Heterogeneous data sources that
include genetic, gene expression, GO, pathway annotations, disease
variants (DNMs, CNV) could be used to build disease networks.
Here, we used three levels of data abstraction (gene, CNV, and
isoform) (Fig. 1) to demonstrate how to gain insights into molecu-
lar mechanisms of psychiatric diseases using tissue-specific dynamic
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networks. In addition, we also described how to use appropriate
controls to eliminate potential biases, as well as summarized the
advantages and limitations of the developed approaches.

Overall, integrating co-expression data with protein–protein
interactions networks proved particularly useful in our hands for
inferring disease pathways and functional modules, and leading to
improved understanding of autism biology [9, 31]. Other studies
also used networks to discover disease mechanisms by integrating
multiple data types (e.g., RNA expression, genetic variation, epige-
netics, or PPIs) and data sets (e.g., human postmortem brain,
mouse data, in vitro assays) [82]. Data integration is becoming
the method of choice for many human disease studies, because
data from diverse datasets can reveal unexpected and distinct rela-
tionships between genes, RNAs, and proteins that are invisible
when only a single dataset is used for the analyses. Developing
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Fig. 12 The example of different isoforms of the CTBP1 gene interacting with different isoform partners during
human brain development. (a) Expression values of two different isoforms of CTBP1 gene across different
brain developmental periods (P2–P13, fetal to adult). (b) Exon-intron structure of CTBP1 isoforms. (c) Static
PPIs between CTBP1 isoforms and the isoforms of their interacting partners. (d) The heatmap shows co-
expression between interacting isoform pairs across brain developmental periods (P2–P13). Green color
represents negative correlation and red color represents positive correlation. The dynamic networks below the
heatmap are constructed by integrating co-expression with PPIs; note network changes in different brain
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reliable approaches to data integration is especially important in
light of the precision medicine initiative. Large patient-derived
datasets such as WGS, transcriptomic, metabolomic, and proteo-
mic, will soon be produced with the aim of predicting disease
susceptibility, or the course of disease development. Integrating
these datasets is currently presenting enormous challenges that
likely will be solved during the next decade of research. We hope
that approaches described in this chapter will be contributing to the
bright future of precision medicine.
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Chapter 16

Semantic Data Integration and Knowledge Management
to Represent Biological Network Associations

Sascha Losko and Klaus Heumann

Abstract

The vast quantities of information generated by academic and industrial research groups are reflected in a
rapidly growing body of scientific literature and exponentially expanding resources of formalized data,
including experimental data, originating from a multitude of “-omics” platforms, phenotype information,
and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists
can identify relevant information, to integrate this information as specific “knowledge bases,” and to
formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and valida-
tion. Here we report on progress made in building a generic knowledge management environment capable
of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge.
Risk management in drug discovery and clinical research is used as a typical example to illustrate this
approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects,
typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical
networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how
a domain such as oncology is represented and how this representation is utilized for research.

Key words Knowledge management, Bioinformatics, Biomarkers, Biological networks, Semantic
technologies, Data integration, Ontologies, Oncology

1 Introduction

Today, the life sciences generate an ever-increasing amount of
information. This information explosion is mainly driven by two
factors. First, the life sciences are highly complex fields of research.
There are millions of enzymes, genes, chemical compounds,
diseases, species, cell types, and organs that interact and are related
in many different ways. Second, new experimental methods are
continuously being developed and as their throughput increases,
the amount of raw data generated increases with overwhelming
speed.

Any system aiming to support a scientist in “understanding”
large amounts of data should “speak” the language of the scientist’s
research domain. Information technology (IT) solutions are
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needed to support the knowledge generation cycle to ultimately
gain an adequate understanding of whole biological systems [1].
Modern semantic technologies provide a conceptual foundation
that helps to meet these demanding requirements. Promising
advances like the “Semantic Web” and current progress in ontology
development [2, 3] are expected to contribute to the next genera-
tion of software for the life sciences by enabling the scientist to
actually voice specific questions instead of having to “construct”
technical database queries.

Biomax Informatics AG has developed the BioXM™ Knowl-
edge Management Environment, an enterprise platform for seman-
tic data integration focusing on the life science industry [4]. In the
BioXM system, knowledge is conceptualized as typed relationships
between semantic objects representing “elements of a scientific
domain” (such as genes or drugs). Those relations are supplemen-
ted by the annotation of evidence to provide validation. For the
related objects, further validated relations to other “elements of a
scientific domain” (such as cell types or diseases) may exist and,
thus, expand the knowledge network. Specific parts of the knowl-
edge model may be organized in subnetwork contexts (such as a
particular signal transduction pathway in an organism of interest),
which allow hierarchical structuring of knowledge.

The conceptualization of entire areas of interest in ontologies
allows the use of inherent inference relationships for the explora-
tion of knowledge networks. Entities from external public or pro-
prietary databases, accessible through either the embedded
BioRS™ Integration and Retrieval System or external relational
database management systems (RDBMS), can serve as “virtual
semantic objects” in the knowledge network. They can also be
used as “read-only” annotation of the “real” semantic objects.
All semantic objects (such as elements, relations, contexts, ontol-
ogy instances, or external database entries) can be annotated with
additional information. Annotations are form based and support
hierarchical organization of information.

The BioXM system provides graphical browsing through the
network. An advanced query builder allows flexible exploration of
the knowledge with complex queries that use a natural-language-
like syntax. Flexible reporting allows specified sets of information
relevant to the particular semantic objects to be displayed in one
view. A versatile data management system allows the information
networks to be modified and expanded without the need for addi-
tional programming. In this way, research projects can be modeled
and extended dynamically.

While the main client application of the BioXM system provides
a graphical user interface for all purposes—administration, query-
ing and data mining, graphical exploration and reporting—research
scientists often require a task-centric and project-specific graphical
user interface. The BioXM system, thus, allows configuration of
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specialized and easy-to-use web apps that can be deployed quickly
to large user groups and communities via Intranet or Internet.
These web apps can be used with any modern web browser on all
devices including desktop and tablet computers as well as smart
phones.

Applications for platforms, such as the BioXM Knowledge
Management Environment, that use semantic technologies, are
manifold. The BioXM system has been used in many different
domains in the last 10 years, including oncology research and
drug development, toxicology, food and nutrition, clinical research
and healthcare in both Europe and the USA, and has been con-
stantly extended to address new scientific areas.

2 Materials

The key to semantic network definitions is to be able to unite two
requirements: (a) to formulate a descriptive model of the world and
(b) to relate data resources to that model. Formulating a descriptive
model in a systematic way requires a set of well-defined building
blocks. The model should be extendable, like a model made of
LEGO® building blocks; by combining the pieces, the model
evolves (see Subheading 3.2.1 and Note 1). Definition of the
building blocks is essential for the design (see Subheading 3.2.2
and Note 2).

The objective is to come up with a universal tool kit, i.e., with a
set of building-block concepts which constitute the foundation of a
generic semantic network building system. In the BioXM system,
the set of semantic objects provides this foundation.

2.1 Semantic Objects The set of semantic objects formulates the principles of what can be
expressed in the system. Table 1 shows the semantic objects defined
in the BioXM system. Each semantic object implements a concept
of expression.

2.1.1 Elements Elements represent the basic units in a knowledge model. Once an
element type has been specified, elements can be defined and
imported or created. For example, the “gene” and “disease”
elements could be created to represent genes and disease informa-
tion in a project for studying genetic diseases. Elements are
the generic nodes in the network. Note that each instance of an
element should reflect exactly one unique real-world object: one
gene, one protein, etc.

2.1.2 Relations Relations are semantic objects that describe a relationship between
two semantic objects. For example, the “gene-disease” relation
could be created to represent the participation of a gene in a
known disease by associating elements of type “gene” and
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“disease.” Relations are generic edges in the network. Relations are
directed. Note that relations are typed in terms of which objects
they are allowed to connect. This does not mean that exactly one
element type is connected with another distinct element type.
There can be more than one type at each side of the link; however,
the set of related objects is defined and establishes constraints on
what instances of semantic objects may be connected.

2.1.3 Annotations In addition to the nodes and edges in the network tool kit, annota-
tions allow supplementary information to be assigned to a semantic
object and managed by the BioXM system. This “data about data”
(metadata) is used to describe the annotated object with specific
information from various sources, such as analyses and experiments
as well as proprietary and common knowledge. Annotation is
assigned to objects with user-defined annotation forms. For exam-
ple, the “Patient information” annotation form could be created to
assign annotation to elements of type “Patient.” The assigned
annotation might contain information such as “Name” and “Date
of birth,” Annotations are generic content containers in the net-
work. They add substance to the semantic network.

Table 1
Fundamental semantic objects

Semantic
object Description Example

Element Represents a basic unit of a
knowledge model

“Gene” element type can be used to create the
“STAT3” gene element

“Disease” element type can be used to create
the “pancreatic tumor” disease element

Relation Describes a relationship between
semantic objects

“Gene-disease” relation class can be used to
create the “STAT3 is associated with disease
pancreatic tumor” relation

Annotation Extends the properties of a semantic
object by a set of attributes

Gene report
Patient record
Protein entry
Literature abstract
Experimental data (evidence)

Ontology Classifies semantics objects according
to a defined hierarchical
nomenclature of concepts

Gene Ontology to classify biological function

NCI Thesaurus of disease terms taxonomy

Context Represents sets of semantic objects Metabolic pathways
Protein complexes
A disease process or pattern
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Annotations do not necessarily need to be assigned to only one
semantic object; in fact, an annotation can be shared by multiple
semantic objects. An annotation can consist of multiple, hierarchi-
cally organized annotations. In this way, an annotation constitutes a
data structure in itself.

2.1.4 Ontologies Ontologies, a central concept in knowledge management, relate the
conceptualization of a domain to the knowledge model. Ontolo-
gies are the link between the semantic network and knowledge
management. An ontology may be linked to any semantic network
including another ontology. In contrast to the relations used
to create the BioXM semantic network, relationships within an
ontology are typically defined using a formal semantic (e.g., mer-
onymy: “A is_part_of B”, hypernomy: “A is_a B”, or synonymy: “A
is_the_same_as B”) that allows rule-based inference. The BioXM
system allows any relation type defined in an ontology, supporting
both transitive and reflexive relation types. Transitive relation types
need to adhere to the constraints of directed acyclic graphs (DAG),
while non-transitive relation types are allowed to form cycles within
an ontology. The BioXM system allows single-type and multi-type
inference on transient relation types.

Ontologies are often developed by domain experts as a set of
“scientific nomenclature” and are widely used in the life sciences.
Linking ontology entries to specific instances of semantic objects is
an art in itself. For example, linguistic analysis using highly sophis-
ticated recognizers/taggers [5, 6] is often applied to provide this
link. The challenge is often described as the “mapping problem.”

2.1.5 Contexts Knowledge networks can become quite extensive. Different levels
of abstraction are often represented within the network. Contexts
are a means to define a set of semantic objects and to treat that set of
objects as a single object. Contexts are subnetworks, though a
context may be related as an entity to other semantic objects,
including another context. In that sense, contexts provide a link
between different levels of abstraction.

2.2 Additional

Concepts

Besides classical user management and work organization in pro-
jects, a set of additional concepts is available within the BioXM
system to complete the required functionality (Table 2).

2.2.1 Queries Queries are formulated on the basis of the knowledge model.
Consequently, everything that is described in the model can be an
argument in a query expression. Because the knowledge model is
the basis of the query building process, any change to the knowl-
edge model has immediate effect on the expressive power of the
system with respect to the queries that can be formulated.
The advantage of a domain-specific knowledge model is that
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queries based on such a model are relatively easy to read. For
example, a query may read as follows: “give me all genes which are
related to a disease which has the name ‘lung cancer.’”

Queries can be accessed in three ways: by a query builder
exporting the model, by templates in which only specific query
variables need to be inserted by the user, and through the so-
called smart folders. Smart folders are canned (i.e., predefined)
queries which behave like a folder, but render a dynamic query
result. The three levels of query formulation reflect the levels of
user skill necessary to interact with the system. Smart folders are the
easiest method, since no understanding of the knowledge model is
required. Using the templates and the query builder require more
experience.

Table 2
Additional concepts

Concept Description Example

Alias Alternative identifier composed of “alias
source” and “alias id”; aliases can be
assigned to all semantic objects and are
not type-specific

UMLS:1234 is assigned to OntologyEntry:
DOID:1234 and UMLS:2345 is
assigned to OntologyEntry:NCI
Thesaurus:25432

Query Allows exploring the knowledge network
using a natural-language-style
mechanism

A query to “Find Genes which are in
relationship to a disease with a name like
Cancer”

Information
layer

Organizes different levels of complexity as
a semantic context

Layers of metabolic pathways, expression
data, or signaling pathways

Graph Renders the knowledge network as an
interactive whiteboard

See Fig. 6

Experimental
data

Provides a numerical data matrices of
experimental results

A gene expression chip result or a protein
analysis assay

External
database
entry

Integrates entries from external relational
database tables or views as external
semantic objects

An entry from the “Physical Entities” table
of the Reactome Simplified Database is
integrated as a semantic object

BioRS
databank
entry

Integrates entries from BioRS databanks as
external semantic objects or,
alternatively, as metadata associated with
native semantic objects

A DrugBank entry is integrated as a
semantic object; The PubChem entry
with CID 2244 is assigned as metadata to
the BioXM Element:Compound:Aspirin

Report Provides tables or documents of compiled
information

A table to compare the gene function of two
organisms or a clinical record of a patient

Import/
Export

Enables two-way data interchange An Excel® spreadsheet can be loaded to the
system to map the semantics of the
columns and the rows to the knowledge
network or a report of all information
about a gene can be exported in Portable
Document Format (PDF)
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BioXM queries may also extend to external data resources to
make any external resource searchable. This expands the explicit
knowledge model, de facto, to a transient model representing
external resources.

2.2.2 Information Layers Information layers are similar to contexts in that they also allow the
management of complexity. In an information layer, certain seman-
tic objects can be grouped on the same level of complexity, whereas
a context organizes semantic objects by meaning. One can imagine
information layers to be a stack of transparencies, which can be
placed on top of each other. For example, a metabolic pathway may
constitute a context. The proteins and metabolites can be defined as
a layer that establishes the rough picture. Further, the side reactions
can be defined as a second layer, flux in the network as a third, and
expression activity as a fourth.

Information layers allow information to be overlaid depending
on a particular point of focus. This becomes relevant when dealing
with complex graphs (see Subheading 2.2.3) and helps to maintain
an overview and manage complexity.

2.2.3 Graphs A graph can be used to visualize a semantic object with any asso-
ciated objects. This tool provides functions that are central to
understanding and using semantic objects such as elements and
relations as well as associated objects of other types. A graph is
primarily a visualization tool for the network, but it is also used to
explore and navigate within the network. It provides paths, which
can be followed virtually. Furthermore, the graph can be used to
formulate questions, such as the following: Are there connections,
either direct or indirect, between any given node in the graph? For
example, given a compound and a disease: Can a connection
between them be found? In the graph, the items can be selected
and, if a connection exists, the system will render the edges that
represent the connecting paths. Taking the example further, the
graph may also show additional relevant information, for example,
that the compound regulates a gene which is known (from litera-
ture) to be associated with the disease and that there is a clinical
study which used the compound in the disease context.

Any type of classical biological network, such as metabolic and
signaling pathways, can also be rendered as a graph. Information
layers are typically used in the context of graph exploration to
manage complex graphs and make them comprehensible (see Sub-
heading 2.2.2).

2.2.4 Experimental Data Experimental data are, in fact, a special type of annotation—
typically of samples taken from a patient, a plant or an animal.
Experimental data are defined as a distinct semantic object type
“Experiment” in the system because they may be large and require
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specific mathematical operations or interaction with external ana-
lytical tools, such as the “R” package. Experiment objects represent
a design pattern optimized for high-throughput experiments. One
experiment contains all experimental measurements for every single
element (e.g., probes or proteins) being measured. Aggregate func-
tions can be used with experimental data, enabling queries like
“give me all probes which are at least twofold over-expressed in
all experiments owned by my project of interest.”

2.2.5 External Database

Entries

External database entries allow integration of external relational
database tables and views. External database entries have all proper-
ties of a native semantic object in the BioXM system; they can be
annotated, become the source or target for relationships, andmore.

The capability to integrate existing Relational Database Man-
agement Systems (RDBMS) is especially helpful in existing research
infrastructures that already maintain, for example, LIMS databases,
corporate gene or compound indices which are continuously
updated and are an integral part of existing business processes.

2.2.6 BioRS Databank

Entries

The BioRS Integration and Retrieval System [7] is a middleware
developed by Biomax that allows the integration of typical life
science databases. In particular, flat-file databases, sequence data-
bases and databases that require efficient full-text indexing are
efficiently managed using the BioRS system. The BioRS system
automatically maintains all cross-references between the integrated
databases, enabling efficient traversal of “chains” of multiple public
databases.

The BioXM system can directly incorporate any BioRS data-
bank, such as Genbank, UniProtKB, or PubChem. In contrast to
external database entries, BioRS databank entries can be used in
two different ways. They can be used as semantic objects, similar to
native semantic objects such as elements, or they can be used as
metadata that is assigned to native semantic objects, similar to
annotation (see Subheading 2.1.3).

2.2.7 Reports Reports have two principal forms: tables or documents.
Tables report on sets of semantic objects and documents report
on a specific semantic object. Both types are rendered through
configured views; multiple table and document report styles can
be defined. For both types of reports anything that can be reached
within the network can be compiled. This feature facilitates render-
ing knowledge in condensed form, exporting the information to
external applications and so forth. Table reports can also be used
with the reimport mechanism of the system, which allows semantic
objects to be repopulated with different content and results from
external applications to be integrated permanently. The reporting
mechanism is also used to define object-type-specific report labels
for visualization in graphs (see Subheading 2.2.3).
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2.2.8 Import/Export The import functionality provides a way to connect the BioXM
system to external resources. The most frequently used external
format is Excel® spreadsheet. The importer allows mapping the
meaning of the rows, columns, and cells in the spreadsheet to the
semantic network. This can be used to populate the knowledge
network with information and puts the pieces of information into
place (see Subheading 3.2.2).

The export functionality is based on the reports concept (see
Subheading 2.2.7); any view formulated can be exported to the file
system or an external application.

2.3 Representing

Explicit and Implicit

Knowledge

Though the BioXM system is based on the concepts of semantic
networks, it significantly extends these concepts to handle current
technologies and requirements in the life science, biomedical, and
clinical domains.

Assertions retrieved from the knowledge network maintained
in the system are represented mostly as edges in the network. These
edges may have been created explicitly, but they may also be implied
logically or generated on-the-fly as virtual edges representing the
result of arbitrary algorithms. The BioXM system offers the follow-
ing main technical concepts to model both explicit and implicit
knowledge:

l Relations (see Subheading 2.1.2) represent typed associations
that are explicitly instantiated. Relations are the main contribu-
tor to most usage scenarios that manage explicit knowledge.

l Ontology relations (see Subheading 2.1.4) define the semantic
rules for inference within an ontology. Instantiated assertions
allow implied assertions to be inferred with a level of confidence
that reflects the quality of design and content of the ontology
used.

l Virtual relations defined by an associated query (see Subheading
2.2.1) are used to imply associations by special business logic.
The associated query implying an association can be composed
using both the built-in search criteria derived from the knowl-
edge model as well as external search criteria that contribute any
type of external logic (analysis results, tool integration, etc.).

While relation classes are exclusively used to manage knowl-
edge explicitly, the other two concepts—inference using ontologies
and implicit associations resulting from for example statistical ana-
lyses or other types of calculations or algorithms—are the main
mechanisms offered by the BioXM system to generate new
knowledge.

Compared to other semantic integration platforms, the BioXM
system is unique because it generates implications using its main
query mechanisms which go beyond explicit paths or paths that are
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“only” logically implied by the semantic inherent to the ontology
used.

Because the BioXM query language supports extension with
“external” search criteria that can virtually implement any algo-
rithm, analysis or tool, the user can also leverage implicit knowl-
edge generated analytically.

2.4 Searching on a

Semantic Network

Meta Index

While the knowledge network can be searched very effectively by
constructing an exact query tree using knowledge-model-derived
search criteria for querying and mining both explicit and implicit
knowledge, building a query requires some understanding of the
underlying knowledge model.

To allow for efficient information retrieval without prior
knowledge about the knowledge model, the system offers a global
full-text index on top of the knowledge graph to allow for unstruc-
tured search expressions that essentially return a subgraph of the
global knowledge network maintained by the system. The default
views configured are used to build this index. Alternative views can
be configured for specific semantic object types, allowing users to
optimize the index.

The user interaction model is similar to that of familiar Internet
search engines. Simple keyword entries, supporting an optional
Boolean search syntax, result in retrieval of semantic assertions
which can be reviewed both as textual reports and graphically as
knowledge networks.

3 Methods

Components of a knowledge system are modeled in the BioXM
environment using semantic objects (see Subheading 2.1). The
flexibility of the system allows semantic objects to be defined and
constrained to the knowledge model used. This is summarized in
Fig. 1. The process of building a biomedical knowledge network
utilizes the components and concepts described in Subheading
2 and maps them to the requirements of a specific application.
This is a defined three-step process, which is continuously
reiterated.

l Step 1—Modeling: Define the domain-specific knowledge
model.

l Step 2—Implementation: Populate the knowledge model and,
thus, instantiate the semantic network with data and informa-
tion from external resources and user interaction.

l Step 3—Use: Use the semantic network by querying, exploring
the graph, and reporting.
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The three steps are interdependent and should be conducted in
a closed feedback loop (see Note 3). In the following section, the
steps are described using an example.

3.1 Example

Application

3.1.1 Scenario

A typical usage scenario for the BioXM Knowledge Management
Environment is the integration of clinical research data with infor-
mation about the molecular background of the disease of interest
and the actual results of experiments, e.g., gene expression analyses.

Fig. 1 The BioXM system supports user-defined semantic objects representing elements of a scientific
domain. Elements, such as gene products, diseases, or drugs, can be annotated with additional information
using configurable forms (a). In the BioXM system, knowledge is conceptualized as relationships between
elements. Those relations are supplemented by the annotation of evidence, which provides validation (b). For
the related objects, further validated relations with other elements (such as cell types or diseases) may exist,
thus expanding the knowledge network. The conceptualization of entire areas of interest in ontologies like the
Gene Ontology or other ontologies allows the use of inherent inference relations for the exploration of
knowledge networks (c). Specific parts of the knowledge model may be organized in subnetwork contexts
(e.g., a particular signal transduction pathway in an organism of interest) allowing for hierarchical structuring
of knowledge (d). Note that all semantic objects (not only elements but also relations, contexts, ontology
concepts, or external database entries) can be annotated with additional information using user-defined
annotation forms
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The following example demonstrates how the BioXM system can
be configured to manage translational research in a clinical setting,
integrating study data with molecular data from various sources.
This configured example is then deployed as a “systems medicine”
information portal to be used by the intended end users directly in a
web browser.

A wide range of information must be considered. The study
provides patient data, including detailed information about patient
demographics, diagnosis, and treatment. Biopsy material taken
from various organ sources requires management of tissue sample
information. Furthermore, gene expression analysis experiments
have been performed for all tissue samples and must be
incorporated. Though analysis of primary experimental data has
been done with statistical software packages, the actual results of
those analyses should be evaluated within the context of existing
knowledge about the molecular processes of involved genes and
associated cancers. Existing knowledge about tissue-specific gene
expression patterns should be integrated as well, allowing patient-
specific genomic information to be related with established tissue-
specific biological interaction networks. The genomic context of
those genes needs to be accessible to allow for single nucleotide
polymorphisms (SNPs) to be analyzed. Additional public informa-
tion about drugs that might be functionally associated with those
genes should be taken into account.

3.1.2 Public Data Sets The example that is presented here depends on a number of pub-
licly available data sets:

l Human reference genome (RefSeqHomo sapiens GRCh38.p7).

l Physical and genetic protein–protein interactions [8] (BioGRID
version 3.4.140).

l DisGeNet Gene–Disease Interactions [9].

l GTEx Gene–Tissue Expression data [10] (GTEx Analysis V6p).

Additional public databases such as EntrezGene, ENSEMBL,
UniProtKB are integrated to allow a richer environment of
biological entities with associated identifiers.

3.2 Modeling

3.2.1 Configuration of a

Knowledge Model

The established BioXM knowledge model represent a “set of rules”
describing a particular scientific domain as seen by the scientists. It
represents a hypothesis of how things interact and work together.
This hypothesis will change as the way things are viewed/under-
stood evolves over time. The BioXM system allows the domain
model to be changed at any time and provides supporting mechan-
isms to update existing knowledge according to the changed
model.

In implementing a BioXM knowledge model suitable to repre-
sent the above scenario, the following entities are defined based on
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the semantic object type “Element”: “Patient,” “Disease,”
“Gene,” “Drug,” and “Tissue Sample” (see Subheading 2.1.1).
Classification of biological function and diseases is enabled by
importing the Gene Ontology Plus [11], IUPAC Enzyme Nomen-
clature, the NCI Thesaurus [12], and the Human Disease Ontol-
ogy [13] as BioXM Ontologies: “GO,” “EC,” “NCI Thesaurus,”
and “DOID” (see Subheading 2.1.4). The public database “Clin-
cialTrials.gov” is integrated virtually using an embedded version of
the BioRS Integration and Retrieval System (see Subheading 2.2.6).
Gene expression analysis experiments are managed in the user-
defined object “Expression Experiment” based on the static object
type “Experiment” (see Subheading 2.2.4). For more information
about building the knowledge model, see Note 1.

Figure 2 shows an excerpt of the actual knowledge model as
configured in the BioXM graphical knowledge model editor. Based
on the initial object configuration, the user defines relationships to
specify rules about how the objects interact (see Subheading 2.1.2).
As shown in Fig. 2, BioXM “Relations” have different types which
represent different semantics. For example, the relation “Interac-
tion” is defined to connect Genes and is used to represent the
BioGRID protein–protein interactions (see Subheading 3.1.2).

BioRS entry: ENSEMBL
Attribute: _ID_: Text
Attribute: AllText: Text
Attribute: Chromosome: Text
Attribute: CreationDate: Date
Attribute: Description: Text
Attribute: Gene: Text
Attribute: GeneType: Text
Attribute: GO: Text
Attribute: HGNC: Text
Attribute: Organism: Text
Attribute: PreferredGene: Text
Attribute: Status: Text
Attribute: Update: Date
Attribute: HomologGene: Text
Attribute: HomologGeneSymbol: Text
Attribute: HomologOrganism: Text
Attribute: ProteinID: Text
Attribute: GeneID: Text
Attribute: ensembl_ref: Text
Attribute: entrezgene_ref: Text
Attribute: go_ref: Text
Attribute: uniprot_ref: Text
Attribute: omim_ref: Text
Database Category: Nucleotide Sequences

Context: DNA
Property: name
Property: description
Item: Context: DNA
Item: Context: Protein
Sequence Type: DNA

Annotation: BioGRID Interaction Evidence
Property: name
Attribute: Experimental System Name: Ontology
Attribute: Pubmed ID: List of objects
Attribute: Interaction Throughput: Thesaurus
Attribute: Quantitative Score: Numeric
Attribute: Post Translational Modification: List of objects
Attribute: Phenotypes: Text
Attribute: Qualifications: Text
Attribute: Tags: Text
Attribute: Source Database: Text

Ontology entry: GO
Property: name
Property: description
Property: UID

Annotation: Evidence for Function
Property: name
Attribute: Evidence Code: Ontology
Attribute: Source: Text
Attribute: Date: Date
Attribute: PMID: List of objects

Ontology entry: DOID
Property: name
Property: description
Property: UID

Annotation: DisGeNET Gene-Disease Association
Property: name
Attribute: Score: Numeric
Attribute: Number of PubMed IDs: Numeric
Attribute: Association Type: Ontology
Attribute: Source: Text

Experiment: GTEx
Property: name
Property: description
Format: RNA-seq

Attribute: RPKM: Float

Ontology entry: ICD-10
Property: name
Property: description
Property: UID

Ontology entry: NCI Thesaurus
Property: name
Property: description
Property: UID

Element: Patient
Property: name
Property: description

Annotation: Patient information
Property: name
Attribute: Diagnosis: Text
Attribute: Sex: Thesaurus

Context: Study
Property: name
Property: description
Item: Element: Patient

BioRS entry: DrugBank
Attribute: AHFS_Code: Text
Attribute: ATC_Codes: Text
Attribute: Absorption: Text
Attribute: AllText: Text
Attribute: Biotransformation: Text
Attribute: Brand_Mixtures: Text
Attribute: Brand_Names: Text
Attribute: CAS_RegistryNumber: Text
Attribute: Calculated_InChI: Text
Attribute: Calculated_Molecular_Weight: Float
Attribute: Calculated_Monoisotopic_Weight: Float
Attribute: Calculated_SMILES: Text
Attribute: Calculated_Water_Solubility: Text
Attribute: Calculated_logP: Float
Attribute: Calculated_logS: Float
Attribute: ChEBI_ID: Text
Attribute: Chemical_Formula: Text
Attribute: Chemical_IUPAC_Name: Text
Attribute: Chemical_Structure: Text
Attribute: CreationDate: Date
Attribute: DPD_Drug_ID_Number: Text
Attribute: Description: Text
Attribute: Dosage_Form: Text
Attribute: Dosage_Route: Text
Attribute: Drug_Category: Text
Attribute: Drug_Reference: Text
Attribute: Drug_Target_Cellular_Location: Text
Attribute: Drug_Target_Gene_Name: Text
Attribute: Drug_Target_General_Function: Text
Attribute: Drug_Target_Name: Text
Attribute: Drug_Target_Pfam_Domain_Function: Text
Attribute: Drug_Target_Specific_Function: Text
Attribute: Drug_Target_Synonyms: Text
Attribute: External_Links: Text
Attribute: Food_Interactions: Text
Attribute: GenBank_ID: Text
Attribute: Half_Life: Text
Attribute: Hydrophobicity: Float
Attribute: Indication: Text
Attribute: Isoelectric_Point: Float
Attribute: KEGG_Compound_ID: Text
Attribute: KEGG_Drug_ID: Text
Attribute: Mechanism_Of_Action: Text
Attribute: Melting_Point: Text
Attribute: Molecular_Weight: Text
Attribute: Name: Text
Attribute: Organisms_Affected: Text
Attribute: PDRhealth_Link: Text
Attribute: PharmGKB_ID: Text
Attribute: Pharmacology: Text
Attribute: Primary_Accession_No: Text
Attribute: Protein_Binding: Text
Attribute: PubChem_Compound_ID: Text
Attribute: PubChem_Substance_ID: Text
Attribute: Synonyms: Text
Attribute: Synthesis_Reference: Text
Attribute: Toxicity: Text
Attribute: Update: Date
Attribute: _ID_: Text
Attribute: chebi_ref: Text
Attribute: genbank_ref: Text
Attribute: kegg_ref: Text
Attribute: pdb_ref: Text
Attribute: pubchem_ref: Text
Attribute: uniprot_ref: Text
Attribute: druginteractions_ref: Text
Attribute: medline_ref: Text
Attribute: Groups: Text
Attribute: Type: Text
Database Category: Molecular Interactions

BioRS entry: ClinicalTrials
Attribute: AcceptsHealthyVolunteers: Text
Attribute: AllText: Text
Attribute: Condition: Text
Attribute: Country: Text
Attribute: Description: Text
Attribute: EligibilityCriteria: Text
Attribute: FirstReceivedDate: Text
Attribute: Gender: Text
Attribute: Intervention: Text
Attribute: LastChangedDate: Text
Attribute: MaxAge: Text
Attribute: MinAge: Text
Attribute: StartDate: Text
Attribute: Status: Text
Attribute: StudyPhase: Text
Attribute: StudyType: Text
Attribute: Title: Text
Attribute: VerificationDate: Text
Attribute: _ID_: Text
Attribute: medline_ref: Text
Database Category: Diseases

Ontology entry: EC
Property: name
Property: description
Property: UID

Relation: Interaction

Relation: Functional Classification

Relation: Gene-Disease Association

Relation: Synonymous concepts

Relation: Synonymous concepts

Relation: Diagnosis according to ICD10

Relation: Interaction

Relation: Trial Subject
Relation: Functional Classification

Annotation assignment

Annotation assignment BioRS databank mapping

Annotation assignment

Experiment subject

Annotation assignment

Context participation

Annotation assignment

Fig. 2 Excerpt of a knowledge model displaying the relevant semantic objects and relationships for a
biomedical research setting
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The relation “Gene-disease association” connects drugs with genes
based on the content of the DisGeNet data set (see Subheading
3.1.2), pointing out potential disease markers. For scenarios like
this, there is a lot of metadata associated with each “object of
interest” (patients, genes, diseases, gene–disease associations,
etc.), which need to be integrated accordingly. For more informa-
tion about integrating metadata, see Note 2.

As described in Subheading 2.1.3, the BioXM system offers
form-based annotation that allows configuration of any type of
property typically needed to describe a scientific entity. Because
such scientific entities can also be modeled as relations in the
BioXM system, annotation can provide the evidence required to
further assess the validity of such relations. This allows, for example,
patient demographics to be collected in one annotation form, and
experimental information about protein–protein interactions to be
assembled in another annotation form.

Annotation forms can be used to supplement all static BioXM
object types (such as elements, database entries, relations, ontolo-
gies, and contexts) with user-defined properties. Many different
attribute types are supported, e.g., simple attributes like “numeric”
or complex attributes like “ontologies.” Attribute types such as
“numerical value with physical unit” allow physical properties to
be stored efficiently and accessed with on-the-fly interconversion of
units. An attribute type “file” supports the import of images and
text files, for example, and is used to annotate the “Tissue sample”
element type with microscopy images of histological sections.
Imported PDF files are indexed and the user can search within
the files’ content, which can be used, for example, to provide
quick full-text access to electronic pathology reports.

3.2.2 Population of the

Knowledge Model

Once a knowledge model is established, populating it is straight-
forward: one resource at a time is attached to the semantic objects
of the model. After an initial model that captures the specifics of an
ongoing project or research environment is configured, users can
import their own data.

The BioXM system supports direct import of various XML-
based (Extensible Markup Language) files such as RDF (Resource
Description Framework) or OWL (Web Ontology Language) and
other structured file formats, but in many cases tabular data, e.g.,
Excel spreadsheets, need to be imported. For this example, the
study data, the BioGRID data [8] and the RNA-seq data from
GTEx [10] were imported as Excel spreadsheets or plain text tables.
The BioXM system implements a versatile importer for tabular
data, enabling the user to define the semantic of the table columns
and graphically build instruction sets (“scripts”) guiding the data
transformation process. During the import, all information
contained in the input data sheet is transformed according to the
semantics of the knowledge model. This mapping process between
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the defined knowledge model and the data records ensures consis-
tency. Figure 3 gives an example of how the link between the
spreadsheet data and the model is established.

With respect to the clinical study used here, three main tables
have been imported. The first table contained extensive clinical
information (e.g., demographic data, information about diagnosis,
result of lung function tests, and treatment data). The second table
contained information about the tissue sample preparation process
(e.g., sample quality) with reference to standard operating proce-
dures (SOPs) for Affymetrix gene expression array experiments.
The third table contained all primary results from the expression
analysis (e.g., expression levels, p-values).

Other resources, e.g., disease and treatment information from
the ClinicalTrials.gov database are tied to the specific elements and
relations through the BioRS system, which makes external data
resources accessible (see Subheading 2.2.6).

3.2.3 Using the

Knowledge Network

Using the knowledge network includes exploring the network
through the graph, querying, and reporting (see Subheading 2.2).
These actions are based on the knowledge model.

Fig. 3 This screenshot of the BioXM tab importer shows a typical example of an import script to transform the
“flat” semantic of tabular data into the network representation of the BioXM system. The script is built by
dragging an import operation from the left list of available operations into the growing script located in the
middle panel. Parameters of single operations can be specified in the right panel. A preview of the table to be
imported is available at the bottom of the window. Import scripts can be saved as templates and reused in a
simplified import wizard. In addition, import scripts can be used from the system’s APIs and published to the
web portal framework to be used by end users
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An example of the query builder (see Subheading 2.2.1), which
allows users to take full advantage of the knowledge model with a
natural-language representation, is shown in Fig. 4. In it, a
biological network is generated representing the “Liver Interac-
tome.” The knowledge model defines the query space, and thus
any information that is maintained in the system can be found and
returned to the user. The query in Fig. 4 spans a substantial portion
of the global knowledge network maintained by the BioXM system
and puts conditions on what attributes of semantic objects need to
be satisfied to qualify as a result.

The result of a query is usually a set of semantic objects that
become nodes and edges in a graphical representation of the search
result. For each instance of a semantic object, a report with multiple
views can be configured (see Subheading 2.2.7). Figure 5 gives an
example of such a report, which is configured using the populated
annotation forms of an element found and related elements. A
report is a specific aggregation of the knowledge network from
the perspective of the semantic object being reported. The example
given in Fig. 5 is configured using the web portal framework
(see Note 4).

Fig. 4 This screenshot shows the BioXM advanced query builder. Similar to the tab importer, this GUI allows a
query to be built graphically (middle panel) by using available search criteria found in the left panel. The query
builder automatically offers only search criteria that are valid in the context of the selected criterion in the
middle panel. This example generates a “Liver Interactome” network from physical protein–protein interac-
tions (BioGRID [8]) in just one query expression, considering tissue-specific gene expression (GTEx [10] RNA-
seq data) and known associations of genes expressed in liver with any liver disease (DisGeNet [9])
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Knowledge networks are made of relationships between seman-
tic objects. The graph (see Subheading 2.2.3) is the interactive
visualization of the network. Figure 6 is an example of a network
instance based on the designed and populated network, which is
expandable at any node of the graph.

Graphs, reports, and queries are the ultimate point of feedback
for the user, and the test for a successful design (see Note 5);
however, the intellectual work is the design of the model.

4 Notes

1. On designing the model
When you design the model, reflect on the fact that you are

dealing with a LEGO building-block type of system in which
you are allowed to formulate the shape and properties of your
pieces. It is important to understand the problem you want to
solve and how that reflects on the basic concepts detailed in
Subheading 2. This process is similar to an agile software devel-
opment process, with a focus on the modeling phase. The fol-
lowing questions will help you understand and model your
domain: What are the main semantic objects and how do they

Fig. 5 This report presents information corresponding to the apoE gene, which is part of the “Liver
Interactome” as retrieved by the query shown in Fig. 4. The report shown is presented in the web portal
framework that was used to configure a dedicated “systems medicine” portal
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relate? What attributes are relevant and what questions would
you like to answer with the system? Stay close to your scientific
domain and your scientific objects of interest, do not compro-
mise on clarity of your design for technical reasons in your first
iterations. Once your design is validated, i.e., the implementa-
tion starts to provide relevant answers to your scientific ques-
tions, optimize your knowledge model in additional iterations.

2. On data definition and populating the model
Start simple: for example, “a gene expresses a protein.” In the

BioXM system, this means you need to model elements and a
relationship. What attributes constitute a gene: the unique
name, the species, and perhaps the chromosomal location? For
the protein this is similar; What attributes constitute a protein: a
name and functional properties? A gene is usually represented by
an identifier in a specific database, but what do you do if a gene
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Fig. 6 (a) The “Liver Interactome” network retrieved by the query shown in Fig. 4. The network nodes
represent genes expressed in liver. The size of the node represents the measured median RPKM (reads per
kilobase transcript per million reads) for the corresponding gene. The color represents the number of drugs
known to be associated with the corresponding genes, based on DrugBank information. (b) An excerpt of the
Liver Interactome expanded to show known disease interactions. The focus is on the apoE genes, for which
the corresponding report is shown in Fig. 5
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does not exist in that database? Use databases to populate your
knowledge network, not to determine the semantics of the
network. Make sure the names are always readable and mean-
ingful to the user, not necessarily to the modeler of the system.
Be aware that names reflect identity both from a design point of
view (e.g., uniqueness) and the scientist’s point of view (e.g.,
common use).

It has been said that when you have two scientists, you will
have three opinions on how a gene should be named. If this
happens, do not try to follow the user blindly, follow the antici-
pated usage and try to reflect the diversity of opinions. If
nomenclature is disrupted, you could say there is one gene
with one name in each species and take (or make) an ontology
or defined vocabulary, which reflects the standard. That ontol-
ogy can be used to assign the name and all other variants can be
indicated as synonyms. The synonyms will be treated as equiva-
lent to the given name within the system. When representing the
gene, information from different resources and synonyms may
be combined in multiple representations in different report
views.

Note, if your elements are not well defined within the BioXM
system there is the risk of ambiguity. Ambiguities may have
consequential effects, because elements have many information
resources available and when you extend themodel and populate
it, “ambiguous” elements become your anchors for new data or
elements.

3. An interactive process
Once you have an element or a relation or a question, start to

populate the knowledge network early. This makes the knowl-
edge network more concrete with respect to the intended pur-
pose and allows for feedback. Try to make the full round-trip
cycle of the three-step development process as short as possible.
Embrace the Manifesto of Agile Software Development [14]:
interactivity is important. The faster the iteration cycle moves
the better. See yourself as the translator, who describes the world
of science in the BioXM system and mirrors it back to science.
The theme is to listen, think, and act. Use the knowledge
network to explore ideas and hypotheses. Imagine yourself in
an ultra-extreme programming environment, only that you do
not write code, but configure your knowledge system.

4. On creating web apps for the intended users
You are likely implementing applications for a larger group of

intended users (sometimes called “end users”). Keep in mind
that their usage scenarios differ significantly from those of any
user implementing and maintaining a solution. Their main focus
is not to model and build the knowledge network, but to address
their main scientific questions. They need to benefit from your
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efforts—ideally effortlessly without the need to dive deep into
the details of the implementation.

The BioXM system provides the easily configurable portal
system for deployment of web apps targeting specific use cases.
When you configure such a browser-based web app, you should
deliberately change to the end-user perspective. Your intended
users need to solve very specific problems, try to address them as
specific as possible. If necessary, configure “wizards” that guide
the users through a sequence of interactive steps leading to the
intended result. While focusing on the narrow needs of the end-
user-specific application, you can leverage the broad scope of the
knowledge network maintained by the BioXM system. Hide its
complexity, but use it to enable end users to get easy answers to
difficult questions.

5. A good design metric
Maintain a close link to the questions you want to answer.

Reflect these questions in queries and easy-to-use smart folders.
The best guidance is to continuously validate your design: Do I
get meaningful answers to my scientific questions?
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Chapter 17

Knowledge-Based Compact Disease Models: A Rapid Path
from High-Throughput Data to Understanding Causative
Mechanisms for a Complex Disease

Anatoly Mayburd and Ancha Baranova

Abstract

High-throughput profiling of human tissues typically yields the gene lists composed of a variety of more or
less relevant molecular entities. These lists are riddle by false positive observations that often obstruct
generation of mechanistic hypothesis that may explain complex phenotype. From general probabilistic
considerations, the gene lists enriched by the mechanistically relevant targets can be far more useful for
subsequent experimental design or data interpretation. Using Alzheimer’s disease as example, the candidate
gene lists were processed into different tiers of evidence consistency established by enrichment analysis
across subdatasets collected within the same experiment and across different experiments and platforms.
The cutoffs were established empirically through ontological and semantic enrichment; resultant shortened
gene list was reexpanded by Ingenuity Pathway Assistant tool. The resulting subnetworks provided the basis
for generating mechanistic hypotheses that were partially validated by mined experimental evidence. This
approach differs from previous consistency-based studies in that the cutoff on the Receiver Operating
Characteristic of the true–false separation process is optimized by flexible selection of the consistency
building procedure. The resultant Compact Disease Models (CDM) composed of the gene list distilled
by this analytic technique and its network-based representation allowed us to highlight possible role of the
protein traffic vesicles in the pathogenesis of Alzheimer’s. Considering the distances and complexity of
protein trafficking in neurons, it is plausible to hypothesize that spontaneous protein misfolding along with
a shortage of growth stimulation may provide a shortcut to neurodegeneration. Several potentially over-
lapping scenarios of early-stage Alzheimer pathogenesis are discussed, with an emphasis on the protective
effects of Angiotensin receptor 1 (AT-1) mediated antihypertensive response on cytoskeleton remodeling,
along with neuronal activation of oncogenes, luteinizing hormone signaling and insulin-related growth
regulation, forming a pleiotropic model of its early stages. Compact Disease Model generation is a flexible
approach for high-throughput data analysis that allows extraction of meaningful, mechanism-centered gene
sets compatible with instant translation of the results into testable hypotheses.
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1 Introduction

In developed economies, the costs of medical services are con-
stantly rising, stifling the economic growth and projecting to
become unsustainable if the trend remains unchanged [1, 2].
Some solutions propose the shift of the focus to early diagnostics
of the diseases with the highest societal impact, to designing the
strategies for reliable risk assessment and to tailoring prophylaxis
efforts to the highest risk groups [3]. Another approach seeks to
streamline the process of drug development by focusing the effort
on the most promising targets and preclinical drug candidates.
Both solutions may be assisted by the methods of bioinformatics
and chemoinformatics that operate within the realm of systems
biology [4–6].

The most common type of the data analyzed by bioinformati-
cians is a set of differentially expressed genes obtained by micro-
array or RNAseq. Typical candidate list derived from these kinds of
studies contains hundreds to thousands differentially expressed
genes. However valuable, these sets are riddled with false positives
that changed their expression levels due to compensation for an
overall increase in cellular stress or as a secondary effect of certain
regulatory events, for example, the suppression of transcription
factor activity or the shift in histone modification landscape. In
other words, the differential expression of given gene often is a
passive consequence of stress rather than a critical event directly
contributing to disease pathogenesis.

Obviously, the focus of the research efforts should be on genes
most essential in pathogenesis of given disease. However, this
focusing is not trivial, as every chronic disease is studied by multiple
research groups that customarily formulate multiple competing
hypotheses [7], thus populating the lists of potential candidates
with thousands of entries. For Alzheimer’s disease alone, the Gene
Cards compiled by Weizmann Institute of Science list 1890 mole-
cules of relevance [8]. With <25,000 genes known to comprise a
genome, and no more than a third of them being expressed in a
single tissue [9], this number is indicative that the long gene lists of
today reflect rather poor target prioritization. Thus, there is a need
for highly prioritized shortlists of potential targets directly linked to
major pathogenic processes. Such lists, contracted by ontological
enrichment, reexpanded by interaction network, and validated by
network clustering and alignment with literature, were termed here
Compact Disease Models (CDMs).

The reproducibility of a result in an independent experiment
with at least slightly varied technical settings is the typical verifica-
tion criterion for any scientific derivation [10]. In accordance to
that, the gene-specific probes differentially expressed in the same
direction in independently analyzed multiple subsets of the same
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experimental dataset and also in different experiments are less likely
to report noise. Filtering of biological signals by consistency of
gene-expression changes already demonstrated its value for enrich-
ment analyses of genes mechanistically important for tumorigenesis
[11, 12] and metastasis [13]. As compared to gene lists generated
using t-test, the lists generated using consistency of differential
expression are target-enriched [4, 11–14] and, thus, are more
mechanistically relevant. For example, a reliable cancer mortality
signature was produced by meta-analysis for the consensus changes
observed in a variety of experiments across a number of model
organisms [15]. An enrichment of gene expression signatures
with mechanistically relevant targets was also attempted for
neurodegeneration studies, such as Alzheimer’s and Parkinson’s
diseases [16].

While any enrichment technique is capable of demonstrating
the target enrichment, the utility of this enrichment is determined
by the Receiver Operating Characteristic (ROC) of the process and
the point of ROC cutoff. Importantly, nonoverlapping compo-
nents of individual datasets may be disease-specific while remaining
related to pathogenic mechanism. Therefore, the requirement of
consistency has to be imposed with minimally stringent cutoffs
[17]. Here we present an approach that provides an improvement
over previously described techniques. In that, we implemented
sorting out the gene lists into the Consistency Tiers, thus gaining
control of the extent of information loss in the nonoverlapping
subsets. Each Tier can be assessed further by functional enrichment
and alignment with independent literature data. The optimal size of
the consensus signature could be selected depending on the nature
of the disease [17]. Altogether, our process includes a three-step
noise filter composed of (1) prioritization of candidates by
consistency of reported directional gene expression changes,
(2) functional enrichment and (3) co-clustering of candidates in a
network [18].

The resultant Compact Disease Model (CDM) provides a
significant saving of research effort. AssumingN independent plat-
forms being included in given analysis and m intersections needed
to provide a robust mechanism-related gene list, the number of
potential contributions becomes:

REC ¼ CN
mP mð Þ ð1Þ

where REC is the recall number (the number of totally available
true positives), CN

m is the number of contributing platform com-
binations, and P(m) is the number of strong mechanistic associates
extracted per a single platform combination. In this case, the multi-
platform nature of analyzed datasets would compensate for a low
ROC curve area observed due to low recall (yield) component,
while enrichment is high. Additional platforms to consider are
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comparative proteomics and quantitative PCR studies, massive
parallel genome sequencing, promoter methylation arrays or
others. To further improve the recall rate and polish the mechanis-
tic details, the aggregated gene lists produced by all platforms
combined are subjected to an interaction network building algo-
rithm, subnetwork identification and detailed assessment of the
most relevant subnetworks by literature review.

Compacting mechanistically relevant genes into distilled short-
lists may have a major impact on the routine verification of individ-
ual mechanistic hypotheses. Assume that a hypothesis H assigns
correct connectivity between the functions X, Y, Z, the X being a
receptor, Y being a G-protein and Z being a kinase. Relevance of
the gene list is measured by factor of q, where q is the decimal
fraction of bona-fide mechanistically relevant genes in the total list.
The assignment will receive experimental verification only if all
members X, Y, Z are bona-fide mechanistically related. For a
3-member sequence, the relationship is PEC ¼ q3 which can be
generalized into:

PEC ¼ qn ð2Þ
where PEC (probability of experimental correctness) is

the probability that the mechanistic hypothesis is correct for a
n-member sequence; q is the distillation factor of the list, n is the
number of steps in a sequential mechanistic hypothesis. Under all
other factors and techniques being equal, the exclusion of false
positives from the gene lists is especially important for the mechan-
isms studied to a lesser degree (low g) and for complex hypotheses
(high n).

To test CDM approach, we selected an example of Alzheimer
disease, the most common form of adult-onset dementia. We
were especially interested in addressing the earliest stages of this
disease, when the pathological changes are still reversible and/or
preventable. The particular focus of our analysis was at previously
demonstrated anti-Alzheimer effects of antihypertensive drugs
[19–22]. In our study, an application of CDM resulted in the
distilled, tiered list of Alzheimer’s disease-related genes integrated
into a biological network model. As potential players in early
disease, a group of genes that encode proteins associated with traffic
vesicles, oncogenes, G-protein regulators, gonadotropin hormones
and insulin-related signaling molecules was identified. Insights
gained by an analysis of this CDMmay aid in shifting the therapeu-
tic efforts to the reversible stages of neurodegenerative disease,
when the neuronal damage is mild and self-perpetuating misfolded
protein oligomers do not yet form.
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2 Materials

2.1 Selection

of Datasets

Datasets for the study included (A) GSE5281 on GPL570 HG-
U133 Plus 2 Affymetrix Human Genome U133 Plus 2.0 Array
including 71 normal controls and 91 disease related samples
(N ¼ 162); (B) GSE15222 on GPL2700 Illumina Sentrix
Human Ref-8 Expression Bead Chip, including 187 normal
controls and 176 disease samples (N ¼ 363); and (C) GSE26927
on GPL6255 Illumina human Ref-8 v2.0 expression bead chip
platform, including 58 normal controls and 60 disease samples
(N ¼ 118). The latter dataset comprises differential expression
data covering several neuropathies: Alzheimer’s disease; Amyo-
trophic lateral sclerosis (ALS); Huntington Disease (HD); Multiple
Sclerosis (MS); Parkinson Disease (PD); and Schizophrenia (SHIZ)
of approximately equal size. The patient histories and disease
severities were extracted from the information that accompanies
the public domain datasets at GEO, NCBI at http://www.ncbi.
nlm.nih.gov/geo/. Other datasets covering Alzheimer’s disease
and dementia on GPL96 and GPL90 Affymetrix platforms were
explored but not included due to failure to pass the quality con-
trols, namely, large number of missing genes, evidence of data
imputation or evidence of weak hybridization/weak signal.
The primary data describing datasets A, B, and C are presented in
Additional file 1.

2.2 Forming of a

Distilled Gene List

(CDM): Consistency

Profiling Step

The dataset GSE5281 comprises several distinct tissue subsets:
EC—entorhinal cortex; HIP—hippocampus; MTG—Medial Tem-
poral Gyrus; PC—Posterior Singulate; SFG—Superior Frontal
Gyrus; VCX—Primary Visual Cortex, each being composed of
control and Alzheimer’s disease samples. The expression values
were averaged for each anatomical locus for norm and disease.
The averaged signal intensities were sorted by their magnitude
and the upper 40% of the entries were included in the analysis on
assumption that the expression levels for the remaining low-
intensity signals is unlikely to exceed experimental noise. The ratios
of the averages produce either upregulated or downregulated fold
change values. The primary data were subjected to two-tail, differ-
ent variance hypothesis T-tests between normal control and disease
subsets for each brain tissue type. The p-values of these T tests were
converted into negative logarithms and the logarithms were aver-
aged across all tissue types. For GSE5281, these averages formed the
Primary Consistency Scores (PCSs). In addition to differential
expression, for each gene, absolute expression levels were also
tracked.

The dataset GSE15222 comprises normal controls separated
into two subsets, numbers 1–85 and 86–178. The disease samples
were also separated into two subsets, numbers 1–85 and 86–176.
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Absolute averaged expression levels were computed for each
normal and disease subset, separately. Similarly to analysis of previ-
ous dataset, the upper 40% of entries by their expression level
intensities were considered significant and included in the analysis.
The difference in expression between the normal and disease sub-
sets was assessed by T-tests as described above to compare each
disease subset to each normal subset, four separate values were
produced, and the negative decimal logarithms of T-test p-values
were computed. The average of four negative logarithms formed
Primary Consistency scores for GSE15222.

All gene-specific labels in GSE5281 and GSE15222 were
ranked according to their Primary Consistency scores (PCSs) and
the top 10% were selected. The highest ranking probes in GSE5281
and GSE15222 were assigned to a Consistency Tier 3, if the func-
tionally related molecules (members of the same pathway) were also
displaying high PCS. Assignment to Consistency Tier 2 was made
in either of two situations: (a) two Affymetrix probes representing
the same gene were displaying high rank PCS, and the direction of
differential change was the same for both probes (all downregu-
lated or all upregulated) in the group; (b) Affymetrix and Illumina
probes representing the same gene were displaying high rank PCS
and the direction of differential change was identical for both plat-
forms. Consistency Tier 1 was assigned if either of three situations:
(a) to the genes that displayed high PCS on both Affymetrix and
Illumina platforms as well as multiple probes on Affymetrix plat-
form, when the direction of differential expression changes was the
same for all gene-specific probes; (b) to the probes that simulta-
neously qualify for Tier 3 and Tier 2; (c) to the three or more
probes on Affymetrix platform that simultaneously showed high
PCS ranking and the direction of expression changes was identical
for all probes. Tiered consistency scores for all scored genes are
available as the dataset D of the Additional file 1. The Tier 0 was
produced by overlapping the Tier 1 and Tier 2 genes with the
highest PCS ranks of GSE26927, thus identifying a group of
genes commonly participating in a number of neuropathies in
addition to Alzheimer’s disease.

3 Methods

3.1 Forming of a

Distilled Gene List

(CDM): Ontological

Enrichment Analysis

Step

Quantitative ontological analysis was performed usingGO-MINER
tool (http://discover.nci.nih.gov.gominer) using high-throughput
online computing option at http://discover.nci.nih.gov/gominer/
GoCommandWebInterface.jsp“GoCommandWebInterface.jsp.
This techniquemeasures preferential enrichment of the differentially
expressed gene lists in one or more of approx. 9300 functional
categories, organized in a tiled partially overlapping manner, with
smaller specific categories merging into greater ones. To compute
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enrichment in a given category, the genes that are known to be
related are tracked in the differential expressed gene list and in the
total list. The enrichment coefficient can be estimated as:

ENR ¼ CG=L½ �= TG =T½ � ð3Þ
Where: ENR—enrichment coefficient, CG—the number of

genes with detected expression changes in a given functional cate-
gory in the experimental gene list L, L—the number of genes in the
experimental gene list, TG—total number of genes in a given
functional category, T—the total number of genes assessed.
Robustness of the enrichment coefficients is established by
permuting the composition of L and expressed as p-value and
False Discovery Rate (FDR). The current implementation of
GoMiner uses a one-sided p-value calculated from a Fisher’s exact
test. To get a low p-value, good enrichment and a fairly large size of
category are required. The FDR approach addresses the multiple
comparison problem, and protects against over-interpreting
p-values that do not have a biological meaning.

The combination of Affymetrix and Illumina probe popula-
tions was used as the “Total file” or T. Since highly expressed
genes are more likely to produce consistent differential expression
signatures, the total file (T) was normalized to ensure equal average
expression level as compared to the gene lists (L) under study,
compensating this bias. Specifically, the total list in each case was
ranked by expression levels and the upper rank populations of T
producing equal averages to the given L were retained as
expression-adjusted total files, and the rest were discarded from
the analysis, effectively decreasing the number of genes in T. Tier
0, Tier 1, Tier 1 + Tier 2, and Tier 1 + Tier 2 + Tier 3 gene lists were
used as “Changed file.” An option “All” was elected for “Data
source.” Evidence Code was elected as “All,” accepting either
experimental, curator inferred or computed data of functional
involvement. Lookup setting for gene searching in the GO Con-
sortium database was accepted as achieved by both cross-
referencing and by use of synonyms. Both p-value of a functional
enrichment category and false discovery rate (FDR) were elected as
statistical criteria for including the qualifying genes in the summary
report. The prospective functional enrichment categories were vali-
dated by 100 randomization cycles according to GO-MINER pro-
tocol. The smallest size for a functional enrichment category was
accepted as 5. The GO-MINER output was sorted by FDR with
the cutoff FDR <0.2. The functional categories with the lowest
false discovery rates were re-sorted by enrichment coefficients in
the descending order. The relative functional enrichment coeffi-
cients reflect the extent of association of the differentially expressed
genes with the pathological mechanism that caused the differential
expression event in first place. The outputs of GO-MINER
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ontological analysis to the genes within Consistency Tiers 0–3 are
available in the Additional files 2, 3, 4, and 5 datasets G–J.

The extent of ontological enrichment provides a cut-off for
selection of the Consistency Tier levels to be submitted to network
association step. The Tier 1 provided a conditionally optimal ROC
cut-off due to high ontological enrichment and preserved pathway
diversity. The Tier 1 + 2 + 3 was accepted, but considered less
preferential due to a substantially lower proportion of mechanisti-
cally relevant genes based on ontological enrichment step.

3.2 Forming of a

Distilled Gene List

(CDM): Network

Analysis Step

To organize sets of genes into biological networks, Ingenuity Path-
way Assistant (IPA) tool was utilized (http://ingenuity.com/).
Briefly, the tool places a gene list in the context of experimental
and computed interactions systematized in its database. The func-
tional links between the members of a gene list under study form a
network with high clustering coefficients for members of the same
biological pathway while clustering coefficients for random associ-
ates are low. Indeed, the members of the same pathway must be
functionally associated with multiple other members of the same
pathway, directly or via intermediates, thus producing nonrandom
clustering. The extent of observed clustering is compared with a
random model and the extent of observed clustering is expressed as
a p-value of a network. The p-value matches a probability that the
associations in the network have emerged randomly. The network is
partitioned into subnetworks based on global optimization of clus-
tering when a gene under consideration is shifted between the
subnetworks as a test. The formed subnetworks are ranked based
on the score, the latter being the negative decimal logarithm of
subnetwork nonrandomness p-values.

The sets of subnetworks were built using gene lists comprising
Consistency Tier 1 and a joint list composed of all three numbered
Tiers (Tier 1 + Tier 2 + Tier 3), the latter as a benchmark control to
illustrate the loss of the priority rank by the subnetwork comprising
the genes relevant to neurological diseases. In each analysis, the
highest ranking subnetworks were selected, merged and plotted as
connectivity graphs. The genes displaying experimentally observed
differential expression were co-plotted with sets of known network
interaction partners. The possible network hubs were expanded,
producing additional connections to more distant members. The
Additional files 6 and 7 comprise the subnetwork compositions for
the Tier 1 and (Tier 1 + Tier 2 + Tier 3), including both experi-
mental and inferred members.

3.3 Validation of

CDM by Semantic Tag

Enrichment Analysis

The quantitative evaluation of enrichment of the microarray-
derived dataset with literature-derived associations was applied as
a validation criterion. Each gene lists was converted into Boolean
(OR) statement, for example: (gene name 1) OR (gene name 2)
OR . . .etc. and used as a search query in Pubmed. The hits
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produced by PubMed were defined as Total. Additional delimiting
search queries were imposed: A. ((disease or pathology or
disorder)); B. (cancer); C ((disease or pathology or disorder) and
stress; D. ((disease or pathology or disorder) and (Alzheimer’s or
Alzheimer or neuropathy or neuropathic or neuro-degeneration or
neurodegeneration or neurodegenerative or dementia)). The num-
bers of hits for each delimited strategy were enumerated and related
to the number for the total list based on gene names only. Variation
in the datasets was taken into account by dividing each consistency
tier list into subsets and repeating the procedure independently for
each subset, pooling the variation and distributing it equally per
each subset (within each consistency tier).

In this technique, both (cancer) and ((disease or pathology or
disorder)) strings were used as controls accounting for nonspecific
organism or tissue-level stress that generally accompanies any
severe pathology, while the string ((disease or pathology or disor-
der) and stress) was controlling for explicit gene association with
stress in pathological conditions and the string ((disease or pathol-
ogy or disorder) and ((Alzheimer’s) or (Alzheimer or neuropathy
or neuropathic or neuro-degeneration or neurodegeneration or
neurodegenerative or dementia)) was controlling the expected
specific association of the gene lists and the disease of interest.

3.4 Validation

of CDM by Global

Differential Expression

Pattern Consistent

with Broad

Mechanistic Picture

of the Disease

Affymetrix GPL570 platform comprises approximately 54,000
probes, while Illumina platform comprises ~22,000 probesets. Of
the ~24,000 independent expressed genes measured by both plat-
forms, 78 sets were satisfying criteria of the Tier 0, 105 sets were
satisfying the criteria of the Tier 1, 85 sets were satisfying the
criteria of the Tier 2, 450 sets matched the Tier 3 and 1298 sets
were demonstrating high PCS without being validated by other
consistency criteria. On both platforms, the genes within the top
40% range by their absolute expression served as random control.
Of the 190 probe-sets in Tier 1 + Tier 2, the Tier 0 comprised 78,
indicating that >40% of genes robustly reported as being differen-
tially expressed in Alzheimer’s disease also produced robust detec-
tion in other neuropathies in agreement with [16]. In all
Consistency Tiers, the fold differences of differential expression
effects were relatively small, rarely exceeding threefold. In Tier 1,
20 out of 105 probe-sets were upregulated and the remaining 85
being downregulated. In Tier 2, 12 out of 97 probe-sets were
upregulated, the remaining 85 being downregulated. In Tier 3,
the downregulated pattern was shown by 316 genes and 176 genes
were upregulated. In the high PCS/unconfirmed group, 715 genes
were downregulated and 570 were upregulated. In random con-
trol, the ratio of upregulation and downregulation signals was close
to 1. The extent of relative downregulation was strongly correlating
with the extent of differential expression detection consistency.
These numbers show a greater tendency for downregulation in
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Alzheimer’s disease-related genes and support functional signifi-
cance of the consistency profiled gene lists, in agreement with
degenerative character of the Alzheimer’s process [23].

3.5 Exclusion

of Transcript

Copy-Number Bias

in Producing

a Condensed Gene

List for CDM Building

The absolute expression levels were also positively correlating with
consistency of differential expression detection. Thus, Tier 0 aver-
age signal was ~4300 arbitrary units, the remaining (Tier 1 + Tier
2) signals were, after exclusion of Tier 0, at ~2330 arbitrary units,
while the random control genes were at ~1725 arbitrary units for
the top 40% of ranked intensities and ~730 arbitrary units for the
entire array (see the Dataset C in Additional file 1). The three- to
fivefold increase in average absolute expression in the Consistent
gene lists vs. Random Control may be an artifact: the genes with
higher expression levels may also display higher signal-to-noise
ratio at hybridization. Also, at a higher concentration of transcript
the thermodynamic quotient and Gibbs energy of binding
increases. For genes with higher expression levels the relative pro-
portion of binding at nonspecific sites is lower. However, it is also
known that mechanistically important targets tend to be the hubs
of the biological network that also tend to be expressed at higher
levels than non-hub entities [14, 24]; this feature of biological
networks provides additional robustness [25, 26]. However, to
account for possible gene intensity bias, further functional enrich-
ment analysis was conducted after respective normalization. Specif-
ically, the Consistent gene list (Subheading 3.2) was compared with
a sample of Random gene list with the average copy number equal
to the copy number of the Consistent gene list. Both sets were
subjected to Ontological Enrichment step (Subheading 3.3). If the
Consistent gene list emerged due to above listed artifacts, it would
have demonstrated ontological enrichments comparable to the
magnitude and p-values of the enrichments in the copy-number
adjusted random control, emerging due to random drawing of the
gene population. In fact, the resulting ontological enrichments for
the copy-number adjusted control did not differ substantially from
non-adjusted random controls, but differed dramatically from the
Consistent gee list. Thus, a confident conclusion can be made that
the consistency profile does not emerge due to higher copy-number
bias and corresponding artifacts. On the contrary, the differential
expressed genes are the network hubs or stand in proximity to the
hubs and thus are relatively overexpressed to ensure greater net-
work robustness.

3.6 Exclusion of Low

Variation Bias in the

Consistency Selected

Gene Lists for CDM

Building

Another concern was a possibility of a bias due to decreased inher-
ent variation within consistently reporting gene sets, as could be
expected for tightly regulated pathways. If this is true, the consis-
tency in differential expression of these genes would reflect not a
prevalence of their biological relevancy, but lower levels of respec-
tive backgrounds. To rule this scenario out, variations were
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measured among all Consistency Tiers and were compared to
variations observed in Random Control genes both globally and
in the subsets selected by matching of their expression intensities.
The results are presented in Fig. 1. This analysis points at higher
variation in consistent differentially expressing datasets. Thus, the
biased scenario was ruled out and the consistency of the gene
expression changes, indeed, was found to reflect the difference
between the disease and the norm.

3.7 Exclusion

of Stress Response

Bias in the

Consistency Selected

Gene Lists for CDM

Building

Still, there might be a concern that the differentially expressed data
represent stress responses at both organism and tissue-specific
levels, in other words, the responses expected to be pertinent to
any severe pathology rather than to reflect a disease-specific mech-
anism. Figure 2 shows the extracted Consistency Tiers as analyzed
by the methodology described above. The method comprises the
Boolean presentation of the gene list crossed with the delimiting
statement reflecting either association with a nonspecific stress or
with a specific disease. The statements like ((disease or disorder or
pathology)) crossed with the corresponding Boolean representa-
tions of the consistency tiers would locate the literature publica-
tions associating the genes of interest with any disease, nonspecific
to the study. The query statements like (cancer) crossed with the
corresponding Boolean representations of the consistency tiers
would locate the literature publications associating the genes of
interest with cancer as another proxy for a nonspecific multiple
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Fig. 1 Tier 0 and Tier (1 + 2) genes differentially expressed in Alzheimer’s disease and other neuropathies are
compared with significantly expressed random genes on Illumina platform, dataset C. Tier 0 is produced by an
overlap of Tier (1 + 2) in Alzheimer’s disease panel (Datasets A and B) with the multiple neurodegeneration
disease panel (Dataset C). Tier (1 + 2–0) is produced by the balance of Tier (1 + 2) genes with the subtraction
of Tier 0. Random genes ranked by intensity were sampled based on the position in the rank. Expression
intensities in the groups of genes formed as described above were measured and plotted
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roles played by many signaling molecules. The statement relating
the gene list of interest to stress-response comprises the negative
control. Thus, relative enrichment of the disease-specific vs. disease
nonspecific PubMed hits for certain levels of consistency would
represent a measure of ensuring the mechanistic involvement of
the genes in the disease-specific pathogenesis. Figure 2 represents
Venn-transformed enrichment diagrams for all Consistency Tiers.

Based on the results presented in Fig. 2, it is apparent that only
the Tier 0 produces a highly enriched disease associated gene list,
the Venn Tier 1–0 is still significantly more enriched than the
Random Control gene list, while an enrichments in Venn Tiers
2–1 and 3–2 were marginal. In fact, the enrichment for the

Fig. 2 Dependence of the relative enrichment in literature-inferred gene roles as a function of detection
consistency. For each gene list (Tier 0, Tier 0–1, Tier 2–1, Tier 3–2, Random control), the gene symbols were
converted into a Boolean representation (simply connected by the operator (OR)). Each Boolean-converted list
was used as a query in PubMed and the number of hits was detected. The primary query for each gene list was
modified by four subqueries, from left to right: Checkered bars: (gene list) + ((disease or pathology or disorder)
and (Alzheimer’s or Alzheimer or neuropathy or neurodegeneration)); black bars: (gene list) + (cancer); striped
bars: (gene list) + ((disease or disorder or pathology)); grey bars: (gene list) + ((disease or pathology or
disorder) and stress). The modified queries produced the numbers of hits smaller than the number of hits
produced by undelimited gene list in Boolean form. The ratios of the database responses for the modified vs.
unmodified query were plotted for each group of four bars representing a consistency tier. The relative
frequencies (ratios) for the queries ((disease or pathology or disorder) and stress) and ((disease or pathology or
disorder) and (Alzheimer’s or Alzheimer or neuropathy or neurodegeneration)) were multiplied by 10 for
convenience of representation and analysis. The Tiers 0–3 represent the lists of genes obtained as disclosed
in the Methods; the Tier 1–0 is the result of subtracting the Tier 0 list from the Tier 1 list; the Tier 2–1 is the
result of subtracting the Tier 1 from the Tier 2 list; the Tier 3–2 is the result of subtracting the Tier 2 from the
Tier 3 list; the Random control set was obtained by randomly selecting the genes among Affymetrix and
Illumina total lists and the list is not expression intensity normalized
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delimiter query ((disease or pathology or disorder) and (Alzhei-
mer’s or Alzheimer or neuropathy or neurodegeneration)) in the
Tier 0 was approximately tenfold as compared to the Random
Control. The degrees of enrichment against all nonspecific
disease-related controls were similar in each Consistency Tier and
remained within a margin of experiment error. Altogether, against
the non-delimited gene list’ background and against the panel of
negative controls, the disease-specific genes demonstrate the rela-
tive enrichment of ~10 in the Tier 0, ~3 in the Tier 1–0, ~1.5–2 in
the Tiers 1–2 and 3–2.

3.8 Applicability

of Subheadings

3.1–3.9 to Other

Sources of Data

Beyond

Transcriptomics

Differential expression and integration of individual experiments as
well as multiple platforms in a data fused consistency profile is
available not only for microarrays. Any protocol relying on differ-
ential signals between the disease state and healthy control can be
subjected to the same processing, also including ontological enrich-
ment and network building. The primary methods of differential
data collection include SAGE and EST tag libraries, quantitative
PCR, differential proteomics on protein arrays, differential immu-
nocytochemistry, differential immunohistochemistry, parallel
sequencing projects comparing healthy control groups and disease,
differential polymorphism detection studies, differential phosphor-
ylation arrays, differential data by miRNA arrays, metabolomics
data traceable to the genes in the active pathways, differential
promoter methylation and demethylation studies, differential
G-protein assays, differential intron arrays, differential alternative
splicing events. In all these categories the genes important in the
disease would display some distinctions—for example prevalent
polymorphisms, prevalent splice forms, metabolic products
traceable to a gene product. The statistical significance of these
differences can be further validated by comparing the direction of
change across multiple research groups, emphasizing consistency
and penalizing discrepancies in the total score. Every individual
signature can be subjected to ontological enrichment and the
most consistent tiers integrated in the common network, produc-
ing multi-source CDMs, possibly superior to the single source
transcription based CDM in this chapter.

3.9 The Link

Between Higher

Consistency Score

and Causation

In this report, Alzheimer’s Compact Disease Model (CDM) was
built using both Illumina and Affymetrix platforms through extrac-
tion of differential expression data followed by tiering the gene
expression evidence by its consistency. Both microarray platforms
rely on oligonucleotide multi-probe approach; however, the exper-
imental workflow, probe length, probe choice and signal processing
statistics between the two platforms substantially differ [27, 28]. In
our approach, this inter-platform discrepancy is expected to serve as
a filter that eliminates the signals that display poor consistency due
to low reproducibility of expression level changes or due to elevated
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person-to-person expression variability, thus cutting out the
probability to detect meaningless (i.e., false positive) signals.

Inferring clinically relevant insights from the complex picture
of the quantitative changes in gene expression/polymorphism/
transcript processing/function levels remains a major challenge of
systems biology. An interpretation of the disease signature remains
the least standardized part of analytic procedures. In most cases,
this analysis is riddled with subjective inference about whether
given change in expression levels should be classified as causal,
passively associated with observed phenotype or simply incidental
to study design. Recent introduction of knowledge-based
algorithms is expected to aid in producing reasonable hypotheses
linking altered pathways to phenotypic changes. We assume that
molecular targets pertinent to pathogenesis of certain chronic dis-
ease may be recognized by their consistent visibility (differential
expression, association of SNPs, functional evidence, etc.) across
most of independently designed experiments. In other words, a
molecular target highlighted in a majority of studies (high-
prevalence target) is more likely to be mechanistically important
than the target detected in a minority of studies (low-prevalence
target), although this relationship may be not so straightforward
[17]. For example, the comparative prevalence of particular SNPs
in a disease set vs. norm relatively clearly points to the pathways
determining predisposition. However, the prevalence of the com-
parative signal at differential expression, differential methylation,
transcript processing, phosphorylation and metabolic levels may—
at least in theory—reflect a convergence of analogous secondary
changes caused by diverse etiologies within the same broad mecha-
nism (see Sect. 4.5 for the proposed broad mechanism). To rule this
alternative out, an alignment with literature data is required point-
ing to causative nature of the most prevalent comparative signals.
Such alignment was conducted and in general confirms the hypoth-
esis (see Subheading 4). In addition, the genes prioritized by rela-
tively simple approach described in our study are later validated by a
highly clustered network, amplifying causative evidence for each
member of the cluster through “guilty by association” principle. In
other consistency profiling reports (mostly in cancer studies [11,
12]), the prevalent signature was therapeutic target-rich and the
ability of the targets to influence the outcome of the disease points
to proximity to causation and at the very least to practical utility.

3.10 How Effective

Is the Benchmark

T-Test in the Analysis

of Differential Data?

Producing the cutoff at Tier 1 in the consistency profiling and
validating it by network building allowed us to obtain a putatively
true result and thus enabled to reassess alternative methodological
approaches. One of such approaches is selection based on high log
value of differential expression and low p-value of significance for
each gene, enough to pass the stringent Bonferroni correction.
The T-test filtered data were later validated by network

438 Anatoly Mayburd and Ancha Baranova



aggregation. As shown in Fig. 2, the Tier 3–2 data corresponding
to this approach are better than random control set in terms of
relevant functional enrichment in literature-based tags (compare
the checkered leftmost bars, see the legend). However, consistency
distilled Tier 0 and Tier 1–0 demonstrate much greater level of
functional enrichment. Furthermore, the current networking algo-
rithm cannot overcome the noise in T-test only set based on analyz-
ing the composition of the network reconstructed from the inferior
consistency tiers. Suchmodels are dominated by stress response and
inflammation pathways—important as a consequence and for self-
perpetuation of neurodegeneration—but not as a cause according
to the more distilled network construct defined above. Apparently,
to equal the potency of consistency based “compartmentalized”
approach, the benchmark T-test must compare much greater
groups of samples which directly effects resource economy of the
research. An informal (qualitative) statistical explanation of the
efficiency of consistency profiling may stem from treating the sub-
sets with the greatest noise. Instead of full contribution in the noise
as is the case in the benchmark method, in consistency approach
such noise-rich subsets contribute just one vote (compartmentali-
zation of noise), improving resolution. Considering the reliance on
Big Data and the substantial investment in the field, the improved
downstream extraction of translational information from high-
throughput datasets would amplify already significant potential of
the new methodologies. With the increase in the number of
distilled gene lists by diverse methods, the quality of the final
CDM should improve through improvement of recall rate of
bona fide causative players.

4 Practical Example: Applications of CDM Methodology to Understanding of Early
Alzheimer’s Disease

4.1 Overview

of Differential

Expression

Consistency

in Alzheimer’s

Disease: Biases

Are Ruled Out

The data of the report show a pattern of downregulation for the
majority of the genes comprising the consistency tiers (see Subhead-
ing 3.6), with the proportion of downregulated genes increasing
with the stringency of consistency. This observation is in agreement
with the degenerative nature of the disease. The bias potentially
associated with high copy-number artifacts was eliminated by the
controls described in Subheading 3.7. The bias associated with the
possibility of the initial strong T-test (in differential expression
data) arising due to a potential decreased expression variation across
data points for network hubs was tested and the results pointed to
actually increased expression variation across consistent gene list.
Thus the consistency of gene detection in mechanism related
signatures occurs despite higher variation, explicable by a more
complex regulation of potent hubs and a greater error propagation
in these control loops as compared to the regulation of random
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genes (Fig. 1). To ensure relevance to the true mechanism of
pathology and not to nonspecific chronic inflammation and stress
response, the tiers of the Consistent gene list were screened against
known literature and the enrichment in neurodegeneration related
tags was evaluated (Fig. 2). The result shows that the Tiers 0 and 1
are strongly enriched in disease-specific tags suggesting a rational
cutoff in the initial distilled gene list intended for subsequent
network analysis.

4.2 Functional

Enrichment Analysis

Specific pathological mechanisms manifest by differential expres-
sion of genes that belong to just a few selected pathways. The
effected functional categories may develop high and statistically
significant enrichment coefficients in the changed gene list. The
higher the extent of enrichment, the stronger is the link between
the disease mechanism and the functional category of interest,
pointing to greater specificity of the signal. Table 1 below combines
expression-normalized functional enrichment coefficients com-
puted for Top 20 most enriched ontological categories for gene
lists in the Tiers 0–3.

In general, the enrichment coefficients positively correlate with
consistency scores, decreasing in the direction from Tier 1 (highest
consistency) to Tier 3 (lowest consistency). The trend reversal from
Tier 0 to Tier 1 can be explained by significant reduction (by 90%)
of the total gene number in the Tier 0 as a result of expression
normalization. In the Top 20 categories, the enrichment
coefficients were in the range of 4.5–19, with a tendency to an
upper side of the range. In non-normalized datasets, the stringent
normalization by absolute expression masks the extent of
functional enrichment as it may reach the values of ~100 for Tier
0 and ~40 for Tier 1, being far above the typical values observed
in traditional microarray experiments [29]. Thus, much higher
distillation coefficient q of the model (1)–(2) may be reached.
Based on comparison of the functional enrichments in CDM
approach and the benchmark exemplified by [29], the increase in
network-assisted capability to infer relevant mechanisms may be
quite dramatic and certainly merits further study.

Based on the Table 1, the function of traffic vesicle formation
dominates in the Tiers 0 and 1 and Venn Tier 1 + 2. This function
includes subfunctions of kinesin binding (synuclein-α; actin β;
actin γ1; kinesin-associated protein 3), clathrine vesicle formation
(synaptotagmin 1; synaptotagmin 13; synaptic vesicle glycoprotein
2B), calcium release (calmodulin 2; synuclein-α; thymus cell
antigen 1, θ; cholecystokinin B receptor; guanine nucleotide bind-
ing protein (G protein), γ 3). Synaptic vesicle development cate-
gories were prominent in the Tier 0, while an axon
development category was prominent in the Venn Tier 1 + 2
(synaptotagmin 1; synaptotagmin 13; synaptic vesicle glycoprotein
2B). Vesicle formation-related functionalities displayed the highest
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enrichment coefficients among all consistency tiers and were
accompanied by the lowest p-values and FDRs. Microtubule and
cytoskeleton development were prominent in the Tier 1 and Venn
Tiers 1 + 2 and 1 + 2 + 3 (tubulin, γ complex associated protein 3;
tubulin, γ complex associated protein 2; tubulin, β 3 class III;
tubulin, β 2C; tubulin β, class I; tubulin, α1c; tubulin, α1b). A
related function of cell motility was predominately populated by the
molecules that relate to mast cell activation (tyrosine 3-monoox-
ygenase/tryptophan 5-monooxygenase activation protein, ζ poly-
peptide; thymus cell antigen 1, θ; synuclein-α). Another prominent
functional category, common to the Tiers 0–3, was MHC binding,
receptor binding, ubiquitin targeting and other forms of protein
binding mediated by proteasome subunits, cytoskeleton and
chaperones (ubiquitin-conjugating enzyme E2N; p21 protein
(Cdc42/Rac)-activated kinase 1; thymus cell antigen 1, θ; actin β;
actin γ1). Regulation of G-protein signaling was highly enriched
category in the most conserved Venn Tiers 0–2 (regulator of
G-protein signaling 4; regulator of G-protein signaling 6; regulator
of G-protein signaling 7; synuclein-α, calmodulin 2; cholecystoki-
nin B receptor; γ-aminobutyric acid (GABA) B receptor, 2; guanine
nucleotide binding protein (G protein), γ3). Less surprisingly, an
importance of GABA neurotransmission was detected (γ-aminobu-
tyric acid (GABA) B receptor, 2; γ-aminobutyric acid (GABA) A
receptor, gamma 2), as well as related glutamate secretion (gluta-
minase; synaptotagmin 1; synuclein-α), neurotransmitter binding
(cholinergic receptor, muscarinic 1; cholecystokinin B receptor;
γ-aminobutyric acid (GABA) A receptor, γ2) and brain morpho-
genesis (platelet-activating factor acetylhydrolase 1b, regulatory
subunit 1; McKusick–Kaufman syndrome; presenilin 2) function-
alities. Remarkably, consistent datasets lacked amyloid β (A4) pre-
cursor protein APP. One possible explanation is that differential
expression of APP monomer is negligible, while its pathological
role unfolds at the level of toxic oligomers [30–32].

4.3 Biological

Network Modeling

The molecules populating Consistency Tier 1 that was optimal in
terms of balance between functional enrichment and recall rate of
the most relevant mechanistic participant entries were analyzed
using Ingenuity Pathway Assistant (IPA) tool. The first order inter-
actions were imputed automatically, the partners being the hubs of
the cell signaling pathways in network proximity to the changed
genes. The addition provided by the IPA network is valuable, since
this feature partially compensates for low recall rate observed when
the consistency criteria are applied. The distinctions between the
subnetworks are algorithm-generated and therefore somewhat arti-
ficial. We retained for further analysis all significant hubs regardless
of the subnetwork they were assigned to by IPA. A subnetwork 1 of
the interaction network is shown in Fig. 3 and the composition of
the entire network is provided in Table 2.
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Molecules in network comprise both experimentally discovered
molecules and known/predicted close interaction partners. The
Score is a measure of clustering coefficient between the subnetwork
components. Focus Molecules are the differentially expressed gene
products with experimental evidence of the linkage to disease path-
ogenesis and are denoted by capital letters, while small letters
designate inferred interactions.

According to the Table 2, the subnetworks 1 and 2 demonstrate
significant scores associated with p-value of 10�49 and 10�47,
respectively, where the score being the probability that the genes
associated at this extent of clustering were drawn randomly. Per IPA
functional assignment, the highest score subnetwork 1 corresponds

Fig. 3 Biological network-based model of interactions between the most essential Alzheimer’s disease-related
genes representing the subnetwork 1 of Table 2. Green figures indicate downregulation, red figures indicate
upregulation, grey figures mean unchanged expression levels. Rectangular figures indicate receptors,
rombi—peptidases, triangles—kinases/phosphatases, circles—other; solid connecting line—binding only,
solid connecting arrow—acts upon, dotted lines indicate indirect functional relationships (such as co-
regulation of expression of both genes in cell lines)
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to neurological diseases and comprises vesicle-forming components
in agreement with GO-MINER analysis, validating the CDM
approach from the point of internal consistency. The subnetwork
2 comprises mostly cytoskeleton and mitochondrial components.
The subnetwork 3 displays a score of 31 and comprises other
components such as chaperones, ubiquitin pathway members and
proteasome subunits. Subnetworks 4–9 were significant but dis-
played lower scores.

The abundance of oncogenes in the associated hub subset was
remarkable. To quantify the extent of association with oncogenes,
the symbol T was defined as Pubmed response to the gene symbol,
assumed to be proportional to the total number of biological
interactions mediated by the gene and its products. High T num-
bers correspond to the hubs of biological network.

To put it in a larger genomic context, a random sample of 118
gene names was extracted and the T-values were determined, pro-
ducing two hits with 1000 < T < 5000, two hits with
5000 < T < 10,000 and one hit with T > 10,000. Based on this
sampling and the total number of genes ~20,000, an estimate of
~500 hubs with T > 5000 was shown for the human interaction
network. In the network sample associated with the Tier 1 consis-
tently expressed gene list, 36 hubs of the comparable connectivity
was present per 96 network associates. This is not a remarkable
finding, considering that Ingenuity databank is likely biased in favor
of hub enrichment. However, the finding that the ratio of onco-
genes to tumor suppressors is skewed toward oncogenes is coun-
terintuitive for a degenerative disease.

To assess the background ratio of oncogenes vs. suppressors,
several databases were enquired. Search of OMIM (www.ncbi.nlm.
nih.gov/omim) leads to 647 hits responding to the query ((“onco-
gene or oncogenes”)), while 882 hits responded to the queries
((“tumor suppressor” or “tumor suppressors”)). These numbers
correspond to ~7:5 ratio of tumor suppressors to oncogenes in the
global network. Similar search with the databases “Genes” and
“Proteins” at NCBI produced ~1:2 ratios. An analysis of the data-
base GeneCards at www.genecards.org leads to the ratio ~1:1 for
the same queries. With that, an average ratio of ~0.8:1 of tumor
suppressor to oncogenes may be assumed as a random global
control.

This ratio markedly differs from the ratio observed in our data.
Tumor suppressor–oncogene ratio in the hubs associated with
neuropathy network was 2:9 (APC and TGFB1 as tumor suppres-
sors, ERK1/2, AKT,MYC, FOS, AP-1, BCL2L1, HSP70, HSP90,
RELA being pro-growth and oncogenic, while the MAPK3,
MAPK8, and MAPK14 were marked as having context dependent
dual functions). Except APC, none of the hits in this T range was
associated with “tumor suppressor” label, while AKT, MYC, FOS,
AP-1, BCL2L1, RELA were denoted as “oncogenes.”
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We further tested if this oncogene association is limited to our
data or is more general. A PubMed query ((Alzheimer’s or Alzhei-
mer or neuropathy or neuropathic or neuro-degeneration or neu-
rodegeneration or neurodegenerative or dementia)) was further
delimited by the keywords ((“oncogene” or “oncogenes”)) as
well as ((“tumor suppressor” or “tumor suppressors”)). The ratio
of 3.4:1 was observed, while a control query ((disease or disorder))
produced 1.9:1 ratio. Similar queries (neuropathy or neurodegen-
eration) and (dementia or “cognitive decline”) produced the ratio
3.5:1 above the random ~2:1, consistent with our data.

The high-T subpopulation of network associates was
segregated from the initial changed gene list (Tiers 0, 1–0, 2–1
combined) and all subpopulations underwent a similar analysis as
above. Specifically, the corresponding gene lists were converted
into Boolean queries and were delimited with “oncogene” and
“tumor suppressor” terms. The Alzheimer’s related genes were
compared with a random gene sample. The random control and
the initial (non-tiered) list of differentially expressed genes demon-
strated comparable oncogene/tumor suppressor hit ratios of 2:1,
while the population of extracted network associates produced the
hit ratio of 5.7:1. For sense of perspective, the corresponding ratio
for oncogene BCL2-centered network was 4.6:1 and for tumor-
suppressor-centered p53-centered network was 1:2.2. Considering
these ratios, the Alzheimer’s disease network associates were as a
group more oncogenic than the associates of BCL-2, considered to
be a benchmark oncogene and this result is counterintuitive, con-
sidering the degenerative character of the disease.

In another analysis, the control query (disease or disorder) and
(activation or activator) generated ~125,000 hits, while the query
(disease or disorder) and (deactivate or deactivator or suppressor or
repress or repressor) generated ~25,000 hits. The target query
((Alzheimer’s or Alzheimer or neuropathy or neuropathic or
neuro-degeneration or neurodegeneration or neurodegenerative
or dementia)) and (activation or activator) produced 17,500 hits,
while the query ((Alzheimer’s or Alzheimer or neuropathy or neu-
ropathic or neuro-degeneration or neurodegeneration or neurode-
generative or dementia)) and (deactivate or deactivator or
suppressor or repress or repressor) produced ~1300 hits. The ratios
point to neuropathies being more preferentially associated with
activation processes (compare 125,000:25,000 for the control
and 17,500:1300 for the neuropathies).

Thus, we conclude that an analysis of entire PubMed shows that the neuropathy-
related information is more closely and paradoxically associated with oncogenes
and activation than with tumor suppressors and deactivation, confirming the
trend observed in our data.
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4.4 A Study

of Intersection

for Alzheimer’s

Disease and

Angiotensin Receptor

Blocker Response

Pathways

The limited number of mechanistically relevant members compris-
ing CDM list allows aligning with the literature data covering
downstream effects of Angiotensin receptor AT-1. Both the results
in Table 2 of the current study and the AT-1 literature review
indicate AT-1 related genes as likely to mediate the effect of ARBs
(angiotensin receptor blockers) on Alzheimer’s development.

Literature analysis points to significant interaction of AT-1
pathway with oncogene activation as well as with luteinizing hor-
mone and insulin dependent pathways in neurons [32–37]. The
role of oncogene modulation in response to AT1R blockers is
complex, with some oncogenes being inhibited [32, 33], while
some being upregulated [34]. In the cases when the ARBs exhibit
neuroprotective effects via c-JUN inhibition, levels of other onco-
genes remain as they were and the overall impact of oncogenic
activation could still be executed through collateral routes. An
example of such collateral pathway is a compensatory increase in
activity of oncogenic angiotensin II receptor II (AT-2)/MAS path-
way after the blockade of angiotensin II receptor I (AT-1) [38].
In mouse model, the alleviation of Alzheimer’s disease was
experimentally achieved by hippocampal delivery of the oncogenic
fibroblast growth factor FGF2 [39]. The predominance of neuro-
protective effect in oncogene stimulation by ARBs is emphasized by
ARB induction of IGF1, a molecule with a powerful anabolic and
pro-survival impact [37]. Thus, the connection between AT1R
inhibition and general activation of neuronal oncogenes is rather
prominent in the body of research literature.

The LH/FSH regulation was previously linked to Alzheimer-
like degeneration in murine models [40], thus lending greater
significance to stimulation of luteinizing hormone expression by
angiotensin II that was previously observed in neurons [36].

Another group of entries in the higher score subnetworks 1 and
2 belongs to cytoskeleton rearrangement pathways. Cytoskeleton
rearrangement related signaling that is the necessary step in vasocon-
striction and vasodilation, a major short term effect of any antihyper-
tensive drug. Angiotensin pathway is certainly involved in the
pathways featured in the subnetworks 1 and 2 [41–43]. According
to our data, the most abundant subnetworks of the Tier 1/sub-
network 1 are the regulators of G-protein signaling and G-proteins:
GNAS, GNB5, GNG3, GPRASP2, RGS4, RGS6, RGS7. The vascu-
lar remodeling and vasodilating role of GRS2,GRS3,GRS5,GRS18,
and GNB3 in regulating of vascular tonicity in the context of Angio-
tensin receptor (AT-1) signalingwas described previously in [44–48].
Vascular tone is maintained by the cytoskeleton rearrangement and
the intracellular motility, thus connecting it to the protein misfolding
and/or defective chaperone complex formation.

To conclude, substantial literature evidence connects the CDM
derived in the current report and organized in the network of
Table 2 with Angiotensin Receptor I pathway or its blockers, in
the neuronal setting.
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4.5 Entropic Disease

Model and Pleiotropic

Role of Angiotensin

Receptor Blockers

Based on the observations of the current report, a pleiotropic
model of early-stage Alzheimer’s disease could be proposed.

From very general considerations, a rigid differentiation pro-
gram and complex shape of the neuron makes it an inherently
disadvantaged cell type. Thermodynamically, expression of a gene
in the nucleus that is followed by long route of the delivery of
resultant protein to the target site at the synaptic junction either in a
folded or properly prefolded state is unfavorable due to high Boltz-
mann entropy loss associated with long processes. In the neurons,
the travel distances may reach 0.5–1 m; the maintenance of prop-
erly folded protein requires costly coordination of its intracellular
traffic with the chaperone assembly sites and migration of the
chaperone-protein complex to the destination. The high Boltz-
mann entropy loss of the process has to be matched by a high influx
of free energy in the protein traffic path, derived in sufficient
stimulation of anabolic and trophic pathways. This fundamental
understanding is in agreement with our findings that the pathways
jointly implicated in both blood pressure control and neurodegen-
eration are mostly anabolic and pro-survival. When anabolic path-
ways become downregulated in CNS due to aging, neurotoxicity or
mutation, it takes its toll on energy balance within the cell and
increases the risk of misfolding. Thus, the long-term sustainability
of anabolic processes in the neurons may be favored by regular
antihypertensive treatments that assist cell survival.

In this balance of energy, the state of cytoskeleton organization
determines the Boltzmann entropy loss. Disorganized cytoskeleton
has higher initial entropy and the required intra-neuronal coordina-
tion would impose higher entropy costs. Thus, the intensity of
anabolic processes is not the only factor determining energy supply
for proper protein folding and trafficking. The luteinizing and folli-
cle stimulating hormones (LH and FSH) both regulate menstrual
cycle in females and spermatogenesis in males serving as upstream
stimulators of androgen and estrogen production. Importantly,
gonadotropins were found to be involved in the earliest stages of
Alzheimer’s disease and inmemory-related processes in humans and
in multiple murine models [49, 50]. Non-pituitary expression of
FSH and its co-localization with FSH receptor and GnRH receptor
in rat cerebellar cortex was shown previously [50]. Brain regions
susceptible to degeneration in AD are enriched in both LH and its
receptor; moreover, in animal models of AD, pharmacologic sup-
pression of LH and FSH reduced plaque formation [51]. As both
the oocytes meiosis that is triggered by LH and the process of
spermatogenesis that is initiated by FSH require extensive cytoskel-
eton remodeling [52, 53], it is tempting to speculate that the
Boltzmann entropy state of neuronal cytoskeleton may be, in part,
dependent on FSH and LH stimulation, possibly through
G-protein activation. Respectively, G-protein regulators form a
tightly connected cluster around FSH and LH nodes (Fig. 3).
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It is generally accepted that the probability of any chronic
disease of old age increases in parallel with an increase in genomic
entropy that degrades the complexity of epigenetic landscapes [54].
Age-dependent demethylation of the genome leads to an increase
in the transcription of noncoding RNAs, while CpG-rich 50 regions
of select genes may become hypermethylated [55]. In case of
neurons, the global hypomehylation and site-specific hypermethy-
lation was found to be associated with degenerative and psychotic
diseases [56, 57]. In agreement with these observations, our data
point to an overall decrease in transcript expression levels in the
most of the functional categories showing high enrichment coeffi-
cients by GO-MINER. In some form, the downregulation bias was
traced among ~200 members of the Tiers 0–2 and ~1300 members
of consistency Tier 3 and PCS groups. It is possible that this
phenomenon is reflected by negative downstream changes in the
stability of RNA transcripts and proteins, efficiency of translation
and posttranslational modifications and, again, protein folding and
trafficking. An exception to this trend is prominent upregulation of
NF-kB pathway (Fig. 3, NF1C), that is involved in inflammation,
cellular stress, and apoptosis.

Another chromatin remodeling associated pathway is insulin
signaling (Table 2). Importantly, IGF1 pathway is implicated in
both life span control and antihypertensive response. For example,
a protective hormone Klotho, a competitive antagonist of IGF1 in
kidney, is known to reverse degenerative nephropathies in murine
models, and, as well, shown as downregulated in aging primates
through chromatin methylation [58]. Interestingly, an inhibition of
angiotensin II signaling by counteracting expression of IGF-II
receptor is also shown to upregulate Klotho [59, 60]. Taken
together, these data suggest a potential of antihypertensive agents
to oppose the long-term age-related chromatin remodeling.

4.6 Literature

Validation of the

Entropic Model Built

Based on CDM Filtered

Gene List

The principle assumption of our study is that the pathways that
relevant to the disease mechanism should be consistently discov-
ered in a number of independent studies. Many pathways high-
lighted by our enrichment strategy were also described as
experimental findings relevant to the context of early stages of
Alzheimer’s disease, or, in general, the process of neurodegenera-
tion. Extreme functional enrichment for protein traffic vesicle pro-
teins observed in the CDM dataset points to a substantial role of
this mechanism in the neurodegeneration, and is likely to be an
early pathogenetic event. Some experimental reports confirm
impairment of protein vesicle traffic in early stages of neurodegen-
eration [61, 62]. The body of literature that discusses protein traffic
vesicles in the context of neurodegeneration is relatively small and
recent, as compared to more common andmore general discussions
of cytoskeleton and heat shock protein involvement in Alzheimer’s
disease. Hence, we may conclude that the proposed CDM building
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technique aids the acquisition of relatively novel mechanistic
insights underrepresented in broader literature.

Another important finding of the report is abundance of onco-
genes in the Alzheimer’s disease interaction network built around
the CDM gene list cut-off at a Tier 1 consistency. The independent
literature search uncovers numerous publications describing the
connection of oncogenes to improper, but possibly compensatory
reactivation of cell cycle in terminally differentiated neurons that
eventually leads to a cell death [63–65]. An alternative hypothesis
points to the fact that patients with Alzheimer’s disease have lower
risk of incident cancer than general population [63, 66, 67]. One
explanation to that paradox is a mitochondrial dysfunction that is
both implicated in early stages of Alzheimer’s disease development
and impacted by the oncogene-tumor suppressor balance [65–67].
The connection between oncogene activation and bioenergy avail-
able to a neuron appears to be well described in the literature, in
agreement with the conclusions of CDM-based analysis. Themech-
anistic support to the bioenergetic view of oncogene role over
improper reactivation of cell cycle is provided by much higher
score rank of the Ingenuity subnetwork 2 (Table 2) comprising
mitochondrial ATPase subunits vs. subnetworks 8 and 9, compris-
ing cell cycle components.

Additionally, the CDM gene list analysis uncovers the promi-
nent role of follicle-stimulating hormone, luteinizing hormone,
and gonadotropin in the development of early Alzheimer’s. The
independent literature search presents evidence of increased expres-
sion of LH in the neurons vulnerable to Alzheimer’s disease [68].
In aged transgenic mice with Alzheimer-type of brain degeneration
(Tg 2576), an ablation of the luteinizing hormone by a
gonadotropin-releasing hormone analogue leuprolide acetate sig-
nificantly attenuated cognitive decline and decreased amyloid-beta
deposition as compared to placebo-treated animals [51]. Hence,
the data presented in [68] and [51] and supported by CDMmodel
indicate an involvement of FSH/LH pathway in Alzheimer’s.

The gene list distilling steps and its subsequent compacting are
crucial to CDM-based hypothesis generation. If these steps would
be omitted, the resultant CDM would be represented by impracti-
cally large gene network, dominated by the nonspecific pathways
common for many pathologies. In Alzheimer’s, non-compacted
gene lists are dominated by stress response and inflammatory path-
ways marked as the highest scoring subnetworks. Without denying
the aggravating role of inflammation in Alzheimer’s disease, inflam-
mation abating approaches are unlikely to produce sustainable
therapeutic results as they target relatively late stages of pathogene-
sis. Importantly, the distillation of the gene list into compact model
(CDM) introduces an opportunity to catch a glimpse at possibly
causative mechanistic alternatives that otherwise would took years
to uncover through hypothesis-driven experimental studies that
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tend to look after overall plausibility of possible findings at the stage
of the study design. While some models caution us against too
stringent cutoffs for initial CDM composition [17], milder cutoffs
that are combined with a cross-platform analysis appear to be a
promising direction that requires further efforts.

4.7 Implications

for Therapy

Development

in Alzheimer’s Disease

Development of radical therapies for delaying and/or reversing of
Alzheimer’s disease is the most frustrating area of pharmaceutical
research with very high failure rate for clinical trials [69, 70].
Detailed discussion of pro and contra of the current approaches in
clinical trials is beyond the scope of this chapter. The entropic
pleiotropic model, suggested by the Alzheimer’s disease CDM
described above, provides a framework for novel therapeutic
approaches that may be immediately tested in clinical trials.

One of the examples is the glucose utilization deficiency com-
monly observed in Alzheimer’s disease predisposed subjects
[71–73]. This primary glucose utilization deficiency may be related
to Warburg effect, and may possibly explain the link between
Alzheimer’s disease and cancer morbidity [63–67]. As intervention
at the level of oncogenes/tumor suppressor genes in the brain may
be difficult to achieve, the modulation of the hormonal master
switches common for both an Alzheimer’s and cancers provide an
attractive option.

Among CDM-shortlisted molecular targets are insulin,
estrogen, follicle-stimulating hormone, and luteinizing hormone
pathways already well studied from pharmaceutical viewpoint. It is
tempting to speculate that the pharmacological modification of
these pathways may provide sufficient compensation for the
pathological oncogene signaling that predisposes the patients
both to Alzheimer and to tumorigenesis. The assessment of these
interventions in clinical trials may by complicated by brain specific
isoforms of the cognate hormone receptors and by endogenous
production of the hormones, but the promise is apparent at least for
insulin therapies [74, 75].

Moreover, age-related decrease in the level of reproductive
hormones and strong transcriptomic signatures of this pathway in
the Alzheimer’s disease [76] produce an intuitively attractive con-
cept of using hormone replacement therapy (HRT) for Alzheimer’s
prophylaxis. Indeed, menopause and andropause represent the
points when the evolutional mechanisms of dying can be triggered.
The initial results of HRT are promising, but also equivocal [77,
78] and the methodologies need more refinement, possibly focus-
ing on brain isoforms of the corresponding receptors and the
bioavailable small molecular modulators of these receptors capable
of passing blood-brain barrier. This principle applies of FSH, LH,
GNRH, ESR1 and other brain steroid hormone receptors.

Exposure to growth factors such as NGF and FGF2 may also
aid in elimination of the metabolic deficiency by direct trophic
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activation of the neurons that will produce both stimulation and
neuroprotection [39, 79, 80]. The difficulties experienced in deliv-
ering these peptide agents across blood-brain barrier (BBB) and the
promise of therapy points once more to the modulation of the
cognate brain receptors by low-molecular weight mimics, capable
of BBB penetration. Especially promising seems combining of
regenerative NGF delivery with activation of stem cells, restoring
the brain tissue [79].

In both hormonal and regenerative treatments, the lasting
improvement depends on sustainable disruption of the positive
feedback loop that instigates the disease propagation. In Alzhei-
mer’s, these positive feedbacks would persist if the misfolded par-
ticles accumulated during the pre-intervention history would
remain [81, 82]. This feature contributes to the difficulty of revers-
ing even initial stage of Alzheimer’s as opposed to its prevention
that, at least from the molecular standpoint, looks more feasible.
The study of the network 2 points to the broad role of cytoskeleton
and traffic vesicle function in the disease origin, coupled to meta-
bolic deficiency through high ordering requirements of normal
neuronal state. The very fact that structurally dissimilar proteins
such as APP and TAUwere selected as causative agents suggests the
possibility that other, yet unknown, proteins contribute to misfold-
ing events. The heterocomplex misfolding may result in an array of
toxic oligomers disturbing metabolically distressed neurons with
diminished ability to control entropy.

In our opinion, the generic amphyphylic ligands such as meth-
ylene blue [83–85], brilliant blue G [86–88], Chicago Sky Blue
6B [89] can be considered as initial leads in design of misfolded
protein disaggregants. The alteration of scaffolds and side-chains of
these molecules may be an interesting avenue that may produce less
toxic molecular derivatives capable of BBB penetration.

The CDM of Alzheimer’s disease suggest that it is an extremely
complex pathology that results from concerted deregulation of a
number of metabolic pathways both in the neurons and in the
supportive cells of the brain, as well as in the brain vasculature.
Therefore, reducing its pathogenesis to single causative agent (i.e.,
misfolded protein aggregates) is a harmful oversimplification. The
CDM of Alzheimer’s simultaneously highlights multiple processes
that contribute to metabolic deficiency of aging neurons, with
further translation of this deficiency into the destabilization of
cytoskeleton/vesicle network, support for the misfolded protein
aggregation and subsequent progression of the pathology.
Hence, the treatment and/or prevention strategies must also be
combinational. We envision the prophylactic and disease modifying
therapies of the future as a combination of metabolic deficiency
repair, and neuronal stimulation with pharmaceutical control of the
protein aggregation and an abatement of inflammatory compo-
nent. The combination aspect is essential. The aggregates are
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known to be cleared from neurons [90] by glia, thus enabling the
reversion of the disease. We envision Alzheimer’s disease eventually
becoming a manageable disease, not different to diabetes, some
forms of cancer, chronic infection with HIV, and other ailments
that in its time were considered fatal.

5 Conclusions

Here we present a novel knowledge-based algorithm that generates
network clustering-validated, highly prioritized shortlists of
potential targets pertinent to pathogenesis, the Compact Disease
Models, or CDMs. This algorithm allowed us to generate a dis-
tilled, tiered list of Alzheimer’s disease-related genes and to derive a
pleiotropic, network-based model for early stages of this disease.
In this model, the first degree network associates were character-
ized by strong predominance of oncogenes. Loss of anabolic stim-
ulation in neurons appears to progress with age due to promoter
methylation, until the available free energy in the terminally differ-
entiated cells would cease to compensate Boltzmann entropy loss
that is due to the toll of the folding and long-distance delivery of
the neuronal proteins. The prophylactic, anti-Alzheimer effect
of the ARBs and beta blockers suggest that they play a role at the
inception steps in the development of degenerative symptoms.
Consequently, understanding of the pathways opposed by these
agents has a substantial value since these pathways are likely to be
causative to the degenerative process. Based on this logic,
protein traffic vesicles, oncogenes, gonadotropin hormones, and
insulin-related pathway were identified as potential players in early
Alzheimer’s disease. This understanding may aid in shifting the
therapeutic efforts to the reversible stages of neurodegenerative
disease, when the neuronal damage is relatively mild and self-
perpetuating misfolded protein oligomers are not yet formed.
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Chapter 18

Pharmacologic Manipulation of Wnt Signaling
and Cancer Stem Cells

Yann Duchartre, Yong-Mi Kim, and Michael Kahn

Abstract

Wnt (Wingless-related integration site)-signaling orchestrates self-renewal programs in normal somatic
stem cells as well as in cancer stem cells. Aberrant Wnt signaling is associated with a wide variety of
malignancies and diseases. Although our understanding has increased tremendously over the past decade,
therapeutic targeting of the dysregulated Wnt pathway remains a challenge. Here we review recent
preclinical and clinical therapeutic approaches to target the Wnt pathway.

Key words Wnt signaling, Cancer stem cells, Drug resistance, Self-renewal, Clinical trial, Somatic
stem cells

1 Introduction

Drug resistance remains a major obstacle in the treatment of cancer.
Cancer stem cell (CSC) or cancer-initiating cell (CIC) [1] popula-
tions share the properties of self-renewal and pluripotency with
their normal somatic stem cell (SSC) counterparts. CSC appear to
be the root cause of drug resistance. By definition, the self-renewal
of a stem cell leads to production of one daughter cell identical to
the mother cell, thereby retaining its stem cell properties. Pluripo-
tency enables stem cells to differentiate into multiple divergent
committed and specialized cell types. Understanding the similari-
ties and differences of normal and cancer stem cells, to enable safely
therapeutically targeting and eliminating CSCs, may be the key to
overcome drug resistance. CSC may emerge from normal SSC after
genetic alterations acquired during DNA replication, via various
insults and/or from microenvironmental factors [1]. CSC and SSC
are regulated by the same evolutionarily conserved signaling path-
ways, e.g., Notch [2], Hedgehog [3] and Wnt/β-catenin [4, 5].
Here, we review recent findings on Wnt signaling in tumorigenesis
and therapeutic strategies targeting this pathway.
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2 Wnt Signaling Pathways

Wnt signaling is often parsed into three pathway groupings: canon-
ical, noncanonical planar cell polarity (PCP) pathway, and nonca-
nonical Wnt/calcium pathway. The central protein of the canonical
pathway is β-catenin: whose cytoplasmic and nuclear levels are
normally under very strict controls. Wnt ligand binding to Frizzled
receptors as well as LRP5/6 co-receptors (low density lipoprotein
receptor-related protein 5/6) initiates an intracellular signaling
cascade and subsequent β-catenin nuclear translocation. In the
absence of Wnt ligands, cytoplasmic β-catenin is targeted by a
degradation complex composed of the tumor suppressor Adeno-
matous Polyposis Coli (APC), the scaffolding protein AXIN and
two kinases CK1α (casein kinase 1α) and GSK-3β (glycogen
synthase kinase 3β) [6] (Fig. 1a). These last two components are
able to phosphorylate β-catenin on several serine and threonine
residues in its N-terminus. Phosphorylated β-catenin is then recog-
nized by β-Transducin, which is part of an ubiquitin ligase complex,
leading to polyubiquitination and proteasomal degradation of
β-catenin [7]. Wnt ligand binding to Frizzled receptors in associa-
tion with LRP5/6 induces Dishevelled (DVL) phosphorylation,
which recruits Axin, thereby deconstructing the degradation com-
plex and achieving β-catenin stabilization and subsequent nuclear
translocation. In the nucleus, in the classical canonical signaling
cascade, β-catenin binds members of the TCF/LEF (T-cell Factor/
Lymphoid Enhancer Factor) family of transcription factors and
recruits the transcriptional Kat3 co-activators, p300 and/or CBP
(CREB-binding protein), as well as other proteins, e.g., BCl9, to
transcribe Wnt target genes and engender chromatin modifications
[8–11] (Fig. 1b).

The noncanonical PCP and Wnt/calcium pathways are termed
“β-catenin-independent pathways” and coexist and interact with
the canonical Wnt pathway. The noncanonical PCP pathway is
characterized by Wnt ligand binding to Frizzled receptors and
activation of small GTPases such as RhoA (Ras homolog gene
family member A), RAC (Ras-related C3 botulinum toxin sub-
strate) and Cdc42 (cell division control protein 42), via recruitment
and activation of Dishvelled [12] (Fig. 2a). The PCP pathway
affects the cytoskeleton and triggers the transcriptional activation
of target genes responsible for cell adhesion and migration [13].

The noncanonical calcium-dependent pathway is characterized
by engagement of Wnt ligands with Frizzled receptors and RYK or
ROR (alternative receptors) enhancing cell migration and Wnt
canonical pathway inhibition through the management of intracel-
lular calcium flux and activation of Calmodulin kinase II (CaMK2),
Jun kinase (JNK), and PKC [14] (Fig. 2b).
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Even though these three Wnt pathways are separately deli-
neated for convenience, in reality Wnt signaling involves the inte-
gration of all the three pathways [15–17].

3 The Role of Wnt Signaling in Cancer Stem Cells

Over the past decade, CSCs have been identified in multiple tumor
types [18–21], including brain tumors [22], melanoma [23], breast
[24], liver [25], pancreatic [26], colon cancers [27, 28], and leuke-
mia [29, 30] and are strongly correlated with poor outcome [31,
32]. CSCs constitute a very small subset within a tumor, sustaining
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Fig. 1 (a) “Wnt Off.” In the absence of Wnt ligands, a destruction complex composed of Axin-1 and its tumor
suppressor partners Adenomtous Polyposis Coli (APC), Glycogen synthase kinase 3 beta (GSK3B), and Casein
kinase 1 (CK1α) is formed. The destruction complex phosphorylates ß-catenin and targets it for proteasomal
degradation, regulating the cytoplasmic level of ß-catenin. (b) “Wnt On.” Wnt ligands bind to the Frizzled/Lrp5/
6 (Low density lipoprotein receptor-related proteins 5 or 6) receptors leading to the phosphorylation of a
negative regulator of the destruction complex, Dishevelled (Dvl). Dvl recruits Axin, inhibiting its interaction with
other components of the destruction complex. ß-catenin is then free to accumulate in the cytoplasm and
translocates to the nucleus, where it activates the transcription of Wnt target genes after association with
transcription factors of the TCF/Lef family and co-activators such as CBP (cyclic AMP response element-
binding protein) and p300. Arrows indicate activation/induction; blunt ended lines indicate inhibition/blockade
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the tumor via proliferation and self-renewal [27] capabilities and
telomerase expression [27]. They are also known to be more
chemotherapy and radiotherapy resistant, leading to relapse and
metastasis of the disease [33–36]. Resistance is also associated
with their quiescent state and specific interactions with their micro-
environment [37]. Therefore, targeting CSCs, specifically while
sparing normal SSCs, is a critical therapeutic goal. Dysfunctional
Wnt signaling has been related to the evolution of and maintenance
of leukemic stem cells as well as many other different cancers.
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Fig. 2 (a) Noncanonical Wnt-signaling: Noncanonical Wnt/PCP (planar cell polarity) pathway. Wnt ligand
binding to frizzled receptors leads to activation of Dishevelled (Dvl), which recruits DAAM1 (Dishevelled
associated activator of morphogenesis 1), enhancing the stimulation of GTPases Rac (Ras-related C3
botulinum toxin substrate), and RHOA (Ras homolog gene family member A), leading to actin cytoskeleton
rearrangement. In addition, Dvl activates Rac and finally JNK (c-Jun-N-terminal-kinase) thereby modulating
cell migration. (b) Noncanonical Wnt/calcium pathway. Wnt ligands bind to Frizzled receptors and Ror/Ryk co-
receptors, activating Dvl and trimeric G-proteins (Gα, β, γ). This leads to the generation of IP3 (inositol 1,4,5-
triphosphate) and DAG2 (diacylglycerol) through PLC (Phospholipase C) activation. IP3 triggers the release of
calcium ions (Ca2+) from the endoplasmic reticulum activating calmodulin and subsequently CAMKII (calcium/
calmodulin-dependent kinase II), TAK-1 (TGF-β activated kinase 1), and NLK (Nemo-like kinase), thereby
inhibiting the canonical Wnt pathway. Moreover, calmodulin activation stimulates calcineurin and NFAT
(Nuclear Factor of Activated T-cells) involved in adhesion and migration processes. This pathway activates
also PKC (Protein Kinase C) and Cdc42 (cell division control protein 42), rearranging the actin cytoskeleton.
Arrows indicate activation; blunt ended lines indicate inhibition/blockade
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This is not surprising given the importance of the Wnt pathway in
stem cell homeostasis [38]. Examples of aberrant Wnt signaling in
cancer stem cell development include the progression of chronic
phase CML toward blastic crisis phase due to GSK3βmutations and
β-catenin stabilization in GMP cells (granulocyte-macrophage
progenitor cells) [39]. A recent study showed that despite the
inhibitory effect of tyrosine kinase inhibitor (TKI) on the Wnt
signaling pathway in CML stem cells, relapses occur in patients
at least in part by reactivation of the Wnt pathway [40]. TKI
treatment induces a downregulation of miR29 involved in CD70
promoter methylation. The overexpression of CD70 enhances the
transcription of CD27, which is a known activator of the Wnt
signaling pathway [41]. Wang et al. also showed that constitutive
activation of the canonical Wnt pathway, via expression of a stabi-
lized form of β-catenin, is necessary to generate AML leukemic
stem cells from MLL-AF9-transduced progenitors cells [42]. This
study suggests that aberrant Wnt pathway activation could give rise
to leukemic stem cells (LSCs) not only from hematopoietic stem
cells (HSC) but additionally from more committed progenitors.
Recently, Giambra and colleagues showed, using a Wnt reporter
construct expressing GFP under the TCF promoter, that minor
subpopulations of bulk T-cell acute lymphoblastic leukemia
(T-ALL) had highly activated Wnt/β-catenin pathway signaling
and that these cells were able to transplant the disease in a limiting
dilution assay [43]. Leukemic stem cells were highly enriched in the
GFP+ Wnt expressing population compared to the GFP� (ratio of
over 200-fold) population, suggesting that Wnt signaling is also
required for T-ALL stem cell self-renewal. In this model, the tran-
scriptional activation of β-catenin seems to be triggered by the
transcription factor HIF1-alpha (Hypoxia-Induced Factor
1-alpha) and deletion of HIF1-alpha leads to LSC targeting [43].
Our group recently demonstrated the implication of the Wnt path-
way in the self-renewal of B-cell acute lymphoblastic leukemia
(B-ALL). The treatment of B-ALL cells with a small molecule
that specifically binds to the N-terminal of CBP, ICG-001,
inhibits the interaction between β-catenin and CBP leading to
differentiation and loss of self-renewal [44]. Additionally,
iCRT14, a β-catenin/TCF interaction inhibitor, leads to a decrease
in Wnt target gene expression, decreases the viability of ALL cell
lines in combination with chemotherapy and sensitizes chemoresis-
tant patient sample-derived ALL cells responsible for relapse [45].

In order to efficiently target CSCs, researchers initially focused
on ways to identify them. Even if the normal SSCs and CSCs usually
express the same cell surface markers [46], some reports have
successfully characterized cancer stem-like cells in for example
breast cancer based upon specific marker sets (expression of
CD44highCD24low) [24]. Interestingly, both CD44 and CD24
are direct Wnt target genes [47–50]. CD44 acts as a positive
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regulator of the Wnt pathway by affecting LRP6 localization and
activity [49–51]. The Wnt signaling pathway also appears to play
an important role in another hallmark of cancer stem cells and
metastasis, i.e., the epithelial-to-mesenchymal transition (EMT)
[52–54]. The downregulation of E-Cadherin (usually tightly
associated with β-catenin in normal epithelium) triggers the nuclear
translocation of β-catenin and activation of canonical Wnt signaling
[55]. The gene slug, a marker gene of EMT, also induces nuclear
translocation of β-catenin [56]. Moreover, twist and slug, strong
activators of EMT are both putative β-catenin targets [57].
Furthermore, a number of Wnt/β-catenin targets genes have
been associated with invasion, migration, and metastasis (S100A4,
fibronectin, L1CAM, CD44,MMP7, uPAR, etc.) [58]. Wnt signal-
ing may also play an important role in the resistance of cancer stem
cells to chemotherapy. The promoter sequence of the multidrug
resistance gene ABCB1/MDR-1 contains several TCF binding
elements triggering its transcription in colorectal cancer [59].
Fang et al. have recently shown that an inhibitor of the β-cate-
nin–TCF4 interaction (LF3) induces strong inhibition of Wnt
pathway gene expression involved in cell cycle and metastasis in a
colon cancer cells [60]. Interestingly, this inhibitor, similar to the
CBP/catenin antagonist ICG-001, also blocks the self-renewal
capacity of colon and head and neck cancer stem cells in vitro and
decreases the growth and induces differentiation of colon cancer
cells in vivo. The inhibition of another interaction involving
β-catenin (β-catenin/CBP interaction), using the small molecule
ICG-001 decreases the expression of Survivin/BIRC5, which is an
inhibitor of apoptosis and a target of CBP, leading to eradication of
drug resistant ALL cells in vitro and prolonged survival of
ALL engrafted mice [44]. Similar results have been obtained
using ICG-001 with CML LSC [61]. Wnt signaling has also been
linked to hematopoietic CSC which seem to be dependent on this
pathway [42, 62]. In CML, Wnt pathway deregulation favors
the progression of disease to more advanced phases [63].
The deregulation of Wnt signaling can also occur at the epigenetic
level. For example, the promoters of several Wnt pathway inhibitors
(i.e., SFRP, DKK, and WIF-1) were found to be hypermethylated
in both ALL and AML, correlating negatively with the survival of
these patients [64, 65].

4 Preclinical and Clinical Wnt Inhibitors

After decades of research and discovery on the Wnt signaling
pathway, few molecules are considered to be truly specific for
targeting the Wnt pathway, and to date none has been approved
by the US Food and Drug Administration (FDA). We summarize
here nonspecific and specific Wnt-inhibitors that are in preclinical
and clinical use (Table 1; Fig. 3).
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4.1 Nonspecific Wnt

Inhibitors

Nonsteroidal anti-inflammatory drugs (NSAIDS, used for treat-
ment of pain, fever) and vitamin derivatives that target nuclear
receptors have demonstrated interesting anticancer effects [66,
67] and particularly in Wnt-dependent cancers, e.g., colorectal
cancer [68, 69]. Cyclooxygenases (COX1 and 2) metabolize
arachidonic acid into prostaglandins (PG) that, via their G-protein
Coupled Receptors, can lead to β-catenin stabilization and activa-
tion of canonical Wnt signaling [81–83]. The inhibition of COX by
NSAIDS (aspirin, sulindac or specific COX2 inhibitors like
celecoxib) suppresses the synthesis of prostaglandins and thereby
inhibits Wnt signaling. These compounds, especially celecoxib, also
showed COX-independent anticancer effects, notably in a
xenograft model of COX2-deficient tumors [84–87]. NSAIDS
have the capacity to decrease the number of polyps in a mouse
model of Familial Adenomatous Polyposis (FAP) mouse, where
the APC gene is truncated and Wnt/β-catenin signaling constitu-
tively actived [88, 89]. FAP patients treated for 6 months with the
NSAID sulindac showed a reduction in nuclear β-catenin in polyps
and a reduction in polyp formation, maybe via direct inhibition
of dishevelled by sulindac [73, 90–93]. The aspirin derivative
NO-ASA (NO-releasing aspirin) showed even better efficacy in
reduction of polyp formation in vitro and in vivo possibly via
disruption of the β-catenin/TCF complex without any observable
toxicity to the normal intestine [94–96]. COX2 has also been
recently implicated in imatinib resistance in a model of Chronic
Myeloid Leukemia [97]. Treatment of imatinib-resistant K562 cells
with celecoxib, via Wnt and MEK signaling pathway modulation,
downregulates the expression of ABC transporter protein family
members such as MRP1, MRP2, MRP3, ABC2, ABCA2,

Table 1
Wnt inhibitors clinically approved

Clinical Disease Mechanism Ref

NSAID (Aspirin,
Celecoxib)

PGE2 generated via COX suppresses
β-catenin degradation

[66–69]

Retinoids APML Unclear [99]

Vitamin D Colorectal and
breast cancers

Unclear [70]

Pyrvinium
pamoate

Lung cancer, colon
cancer

Unclear: Wnt signaling inhibition via CK1α
activation or GSK3 activation

[72]

Sulindac Dishevelled inhibition [73]

This table presents the nonspecific Wnt inhibitors that are already clinically approved. The mechanism of action of these
drugs (when it is known) involves the inhibition of different intracellular proteins implicated in the Wnt signaling

pathway (β-catenin, CK1α, GSK3β, and Dvl)
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and ABCG2, which are associated with drug resistance, thereby
sensitizing the K562 cells to imatinib.

Retinoids, produced from vitamin A metabolism, demon-
strated anticancer effects at least in part via Wnt signaling pathway
inhibition [70]. 1α,25-dihydroxy-vitamin D3, the active form of
vitamin D, demonstrated tumor suppressor activity, notably by
formation of a transcriptional complex able to bind β-catenin and
thereby enhancing the expression of E-cadherin. These effects lead
to retention of β-catenin in the cytoplasm, resulting in inhibition of
the Wnt pathway in both breast and colon cancers [71].

4.2 Specific Wnt

Inhibitors

Besides these FDA-approved nonspecific Wnt inhibitors, several
molecularly targeted agents have been developed and have entered
preclinical or clinical trials. Dvl, being one of the key regulators of

Frizzled LRP5/6

Wnt

OMP-18R5
OMP-54F28

XAV-939
IWR-1

Sulindac
NSC668036
3289-8625

PRI-724
ICG-001

LGK974
ETC-159

Wnt

Wnt

DVL

-
cat

-
cat

TCF/Lef1

-
cat

-
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CBP p300

Porcupine

Tankyrase-cat

APCG
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3
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b b b
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Fig. 3 Modulators of the Wnt signaling pathway. The Wnt signaling pathway can be modulated with a wide
variety of drugs currently in preclinical studies, in clinical trial or already approved (see text and Table 2).
These drugs act at different levels in the Wnt pathway: Wnt receptors (OMP-18R5, OMP-54F28, Foxy-5, and
ETC-961), Wnt posttranslational modification and secretion (LGK974 and ETC-159), tankyrase inhibitors (XAV-
939 and IWR-1), Dvl inhibitors (Sulindac, NSC668036 and 3289–8625), β-catenin indirect modulators
(Celecoxib and Sulindac), and inhibitors of β-catenin/CBP interaction (ICG-001 and PRI-724). Arrows indicate
activation; blunt ended lines indicate inhibition/blockade

470 Yann Duchartre et al.



the Wnt canonical pathway, has been a focus of numerous studies
and has engendered the development of several inhibitors.
The PDZ domain of Dvl plays an essential role in Dvl-Frizzled
receptor interactions and the intracellular transduction of the
Wnt signal. Some inhibitors of the Dvl PDZ domain
(NSC 668036, FJ9, 3289-8625—Fig. 3), discovered by in silico
screening, demonstrated the ability to inhibit the Wnt pathway
in vivo [98–100].

LGK974 is a porcupine (PORCN) inhibitor, which entered
into a phase I clinical trial in 2011 (Novartis, NCT01351103,
recruitment phase) [77]. Porcupine is a member of the
membrane-bound O-acetyltransferase (MBOAT) family and is
responsible for lipid modification of Wnt and subsequent Wnt
secretion [101, 102]. The trial will investigate the effects of
LGK974 on the Wnt signaling pathway in patients affected with
Wnt-dependent cancers (pancreatic adenocarcinoma, BRAF
mutant colorectal cancer) (clinicaltrials.gov).

Recently, another PORCN inhibitor, ETC-1922159 (ETC-
159), developed in a collaboration between the Agency for Science,
Technology and Research (A*STAR) and Duke-National

Table 2
Wnt inhibitors currently in clinical trials

Clinical trials Disease Mechanism Ref

OMP18R5,
Vantictumab

Solid tumors Humanized Ab against multiple Fzd
receptors

[74]

OMP-54F28, Fzd8-Fc Pancreatic, Ovarian,
Hepatocellular, Colorectal,
and Breast

Fc fusion protein with Fzd8, which
binds all Wnt ligands

[75]

PRI-724 Solid Tumors, Colon and
Pancreatic Cancer, CML and
AML

Small molecule inhibitor of CBP/
catenin binding

[76]

LGK974, Porcupine
inhibitor

Melanoma, Breast cancer, and
Pancreatic adenocarcinoma

Wnt posttranslational acylation and
palmitoylation

[77]

ETC-1922159 (ETC-
159), Porcupine
inhibitor

Colon, Ovarian, and Pancreas
cancers

Wnt posttranslational acylation and
palmitoylation

[78]

UC-961 (cirmtuzumab) Chronic Lymphoid Leukemia Humanized antibody against ROR1 [79]

Foxy-5 Breast, Colon, Prostate Reduced cell migration through
Fzd-5 and cytosolic calcium
signal

[80]

This table summarizes the different Wnt pathway modulators with variable specificities and at different stages of

development (fully described in the main text)
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University of Singapore Graduate Medical School (Duke-NUS)
entered into a phase I clinical trial in Singapore. The first patient
was dosed on Jun 18, 2015. ETC-159 inhibits Wnt secretion and
activity and is highly efficient preclinically in different cancers driven
by Wnt signaling and notably in R-spondin translocated colorectal
cancers [78].

Cucurbitacin B, a tetracyclic triterpene found in plants of the
family Cucurbitaceae, has been shown to downregulate the Wnt
signaling pathway, essentially via inhibition of Wnt3 and Wnt3a
expression and GSK3 proteins (α and β) upregulation and activa-
tion, accelerating the degradation of the β-catenin [103]. This Wnt
pathway inhibition leads to a reduction of the “stemness,” angio-
genic and metastatic properties of non-small cell lung cancer cells,
as well as the inhibition of growth and increased apoptosis of breast
cancer cells both in vitro and in vivo [103, 104].

The tankyrase inhibitors (XAV-939 and IWR-1) stabilize axin
thereby inducing the degradation of the β-catenin [105] and may
act as antitumor drugs also by participating in telomere shortening
[106]. Wu et al. have recently shown that XAV939 has a synergistic
effect on 5-fluorouracil/cisplatin-induced apoptosis of colon can-
cer stem cells in vitro [107]. Pyrvinium pamoate (PP) was shown to
inhibit the Wnt pathway in different models of lung and colon
cancers in vitro as well as in vivo [87, 108]. Even though its
mechanism of action is still unclear (CK1α or GSK3 activation),
this compound decreases proliferation and self-renewal of lung and
colon cancer stem cells [72]. A new inhibitor of FLT3, SKLB-677,
has been found to also inhibit the Wnt signaling pathway in acute
myeloid leukemia (AML) cell lines and in vivo. Although the
mechanism of action is not well described, this compound seems
to be able to downregulate FLT3 and Wnt signaling and may
improve the targeting of AML stem cells, which are responsible
for AML relapse [109].

Among the few agents already in clinical trials, two were devel-
oped by Oncomed Pharmaceuticals Inc.; OMP-18R5 (Vantictu-
mab), is a fully humanized antibody directed against minimally five
different Frizzled receptors. In preclinical studies, OMP-18R5
demonstrated antiproliferative effects in various human tumors
model (lung, pancreas, breast, and colon) and had synergistic
effects with conventional chemotherapy [74]. The results of the
Phase Ia study showed a decrease in Wnt pathway gene expression
and increased expression of differentiation genes with some adverse
events including fatigue, vomiting, diarrhea, constipation, nausea,
and abdominal pain (ASCO, 2013). This compound is now in
Phase Ib trials in combination with standard chemotherapy for
solid tumors (breast, lung, and pancreas cancers).

OMP-54F28 (Oncomed Pharmaceuticals), is a recombinant
fusion protein containing the extracellular ligand binding domain
of human Frizzled 8 receptor fused to a human IgG1 Fc fragment
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[75]. OMP-54F28 can bind native Fzd8 receptor’s ligands and
thereby inhibit Wnt signaling. Preclinical studies demonstrated
the antitumor efficacy of OMP-54F28: reduction of tumor growth
and decrease of CSC frequency as a single agent and in combination
with other chemotherapeutic agents [75]. A phase I trial
(NCT01608867) is currently ongoing. It is a dose escalation
study in patients with advanced solid tumors. Subjects will be
assessed for safety, immunogenicity, pharmacokinetics, biomarkers,
and efficacy. It appears that the most common adverse events are
fatigue, muscle spasms, alopecia, nausea, decreased appetite, and
dysgeusia (http://www.eurekalert.org/pub_releases/2014-05/
uocd-rip053014.php). Additionally, patients are followed for
bone density evolution, as bone fracture was observed in one
patient at the highest tested dose (20 mg/kg every 3 weeks after
6 cycles). Three Phase 1b studies have started to check the dose
escalation of OMP-54F28 in ovarian (NCT02092363), pancreatic
(NCT02050178), and hepatocellular (NCT02069145) cancers in
combination with respective conventional chemotherapy.

Another way to modulate the extracellular part of the Wnt
pathway is the inhibition of the Wnt receptor ROR1. A novel
humanized antibody (UC-961, cirmtuzumab) targeting the
Receptor tyrosine kinase-like Orphan Receptor 1 (ROR1),
expressed by chronic lymphocytic leukemia cells (CLL), but not
on normal cells, showed anticancer effects in a CLL mouse model
[79]. This antibody recently entered a Phase I clinical trial to
determine the safety and the effects of this antibody
(NCT02222688).

The Wnt pathway, implicated in both cancer growth and drug
resistance, is also highly involved in cancer cell migration and
metastasis [66, 110, 111]. Recently, a hexapeptide mimicking
Wnt5a named Foxy-5 has been developed and used to treat various
breast cancers in vitro and in vivo [80]. The treatment of murine
and human breast cancer cell lines in vitro and in vivo with Foxy-5
did not affect apoptosis or proliferation but decreased the migra-
tion and invasion of these cells and finally metastasis. A phase Ia
study evaluating safety and pharmacokinetics has been completed
and a phase Ib (dose escalating study) is ongoing in breast,
colon, and prostate cancer patients (NCT02020291 and
NCT02655952).

Wnt signaling can also be modulated very late in the pathway.
Our group used a secondary structure-templated chemical library
to identify ICG-001 which can efficiently modulate the Wnt path-
way [112]. Despite the huge homology between the two Kat3 co-
activator proteins CBP and p300, ICG-001 was shown to bind
specifically to the cyclic AMP response element-binding protein
(CBP) and not to the related transcriptional coactivator p300
[112, 113]. ICG-001 disrupts the ß-catenin/CBP complex and
increases the proportion of ß-catenin bound to p300, leading to
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downregulation of survivin/BIRC5 mRNA and specific apoptosis
in colon cancer cells in vitro and in vivo. Recently, Prism Pharma-
ceuticals developed a second-generation ß-catenin/CBP inhibitor
PRI-724. In a Phase Ia safety study in colon cancer, this compound
was able to decrease, in a dose-dependent manner, the expression of
survivin/BIRC5 in circulating tumor cells, with an acceptable tox-
icity profile (ASCO, June 2013 and NCT01302405 [76]). Three
patients had stable disease for 8, 10, and 12 weeks. Three Phase I/
II trials are ongoing in patients with AML/CML (NCT01606579,
alone or in combination with AraC or dasatinib), with advanced or
metastatic pancreatic adenorcarcinoma (NCT01764477, in combi-
nation with Gemcitabine) and in patients with newly diagnosed
metastatic colorectal cancer (NCT02413853, in combination
with bevacizumab, leucovorin calcium, oxaliplatin, and fluoroura-
cil). A Phase I dose escalation trial in patients with HCV-induced
cirrhosis is also on going (NCT02195440).

5 Concluding Remarks

Even after more than 30 years of discovery and investigation of the
Wnt signaling pathway, no therapeutic agent is available on the
market that specifically and efficiently targets this pathway. More-
over, many of the potential targets like ß-catenin are also implicated
in others critical functions including cell–cell adhesion, develop-
ment, self-renewal [114, 115]. Clearly, precise modulation of the
Wnt pathway will be necessary to balance antitumor efficacy with
adverse events and will be a challenge for ongoing and future
clinical trials. Despite these concerns, new regulators of the Wnt
signaling cascade offer the opportunity for us to increase our
comprehension of this exceedingly complex pathway and poten-
tially for the treatment of Wnt-related diseases including cancer.
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Chapter 19

Functional Network Disruptions in Schizophrenia

Irina Rish and Guillermo A. Cecchi

Abstract

It has been long recognized that schizophrenia, unlike certain other mental disorders, appears to be
delocalized, i.e., difficult to attribute to a dysfunction of a few specific brain areas, and may be better
understood as a disruption of brain’s emergent network properties. In this chapter, we focus on topological
properties of functional brain networks obtained from fMRI data, and demonstrate that some of those
properties can be used as discriminative features of schizophrenia in multivariate predictive setting. While
the prior work on schizophrenia networks has been primarily focused on discovering statistically significant
differences in network properties, this work extends the prior art by exploring the generalization (predic-
tion) ability of network models for schizophrenia, which is not necessarily captured by such significance
tests. Moreover, we show that significant disruption of the topological and spatial structure of functional
MRI networks in schizophrenia (a) cannot be explained by a disruption to area-based task-dependent
responses, i.e., indeed relates to the emergent properties, (b) is global in nature, affecting most dramatically
long-distance correlations, and (c) can be leveraged to achieve high classification accuracy (93%) when
discriminating between schizophrenic vs. control subjects based just on a single fMRI experiment using a
simple auditory task.

Key words Schizophrenia, Functional magnetic resonance imaging (fMRI), Functional networks,
Multivariate predictive modeling, Classification, Predictive features

1 Introduction

Attributing schizophrenia to abnormal interactions among differ-
ent brain areas has a long history in psychiatric research. It is often
referred to as the “disconnection hypothesis” [1, 2], and can be
traced back to the early research on schizophrenia: in 1906, Wer-
nicke [3] was the first one to postulate that anatomical disruption of
association fiber tracts is at the roots of psychosis; in fact, the term
schizophrenia was introduced by Bleuler [4] in 1911, and was
meant to describe the separation (splitting) of different mental
functions. The failure to identify specific areas, as well as the con-
troversy over which localized mechanisms are responsible for the
symptoms associated with schizophrenia, have led us among others
[5–7] to hypothesize that this disease may be better understood as a
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disruption of the emergent, collective properties of normal brain
states, which can be better captured by functional networks [8],
based on inter-voxel correlation strength, as opposed (or limited)
to activation failures localized to specific, task-dependent areas.

However, while most of the previous work mainly focused on
mass-univariate statistical hypothesis testing, investigating differ-
ences between the functional (and anatomical) networks of
schizophrenic patients versus healthy subjects, we focus herein on
multivariate predictive models, and investigate discriminative abil-
ity of various features (i.e., “statistical biomarkers”) derived from
functional networks. Unlike hypothesis testing that reveals statisti-
cally significant differences between two groups of subject (e.g.,
schizophrenic and control) on a given, fixed dataset, predictive
framework evaluates the generalization ability of models built
using the features of interest, i.e., the ability to predict whether a
previously unseen subject is schizophrenic or not. Note that dis-
criminative tasks are typically more challenging than significance
testing, i.e., presence of significant (low p-value) features in fMRI
data does not always imply accurate classification [9], and statisti-
cally significant variables are not necessarily the best predictors
[10]. Thus, a combination of both evaluation criteria provides a
better characterization of candidate features in terms of their rele-
vance to the disease. Moreover, predictive modeling has potential
applications in practical settings, such as, for example, early diagno-
sis of schizophrenia based on imaging data.

Herein, we considered diverse topological features of the func-
tional brain networks obtained from functional magnetic resonance
imaging (fMRI) data collected for both schizophrenic and control
subjects performing a simple auditory task in the scanner [11]. In
Functional Magnetic Resonance Imaging (fMRI), a MR scanner
noninvasively records a subject’s blood-oxygenation-level depen-
dent (BOLD) signal, known to be correlated with neural activity, as
a subject performs a task of interest (e.g., viewing a picture or
reading a sentence). Such scans produce a sequence of 3D images,
where each image typically has on the order of 10,000–100,000
subvolumes, or voxels, and the sequence typically contains a few
hundreds of time points, or TRs (time repetitions). Standard fMRI
analysis approaches, such as the General Linear Model (GLM),
examine mass-univariate relationships between each voxel and the
stimulus in order to build the so-called statistical parametric maps
that associate each voxel with some statistics that reflects its rela-
tionship to the stimulus. Commonly used activation maps depict
the “activity” level of each voxel determined by the linear correla-
tion of its time course with the stimulus.

Our goal was to both explore the disruptions of functional
connectivity due to schizophrenia and to assess whether the func-
tional connectivity changes in schizophrenia can be simply
explained by alterations in area-specific, task-dependent voxel

480 Irina Rish and Guillermo A. Cecchi



activations. We observed that functional network features reveal
highly statistically significant differences between the schizophrenic
and control groups; moreover, statistically significant subsets of
certain network features, such as voxel degrees (the number of
voxel’s neighbors in a network), are quite stable over varying data
subsets. In contrast, voxel activation show much weaker group
differences as well as stability, which suggests that network disrup-
tions are not necessarily explained by local task-based activation
patterns. Moreover, most of the network features, and especially
pairwise voxel correlations (edge weights) and voxel degrees, allow
for quite accurate classification, as opposed to voxel activation
features: degree features achieve up to 86% classification accuracy
(with 50% baseline) using Markov Random Field (MRF) classifier,
and even more remarkable 93% accuracy is obtained by linear
Support Vector Machines (SVM) using just a dozen of the most-
discriminative correlation features. It is interesting to note that the
traditional approaches based on a direct comparison of the correla-
tion at the level of relevant regions of interest (ROIs) or using a
functional parcellation technique, presented in [9], did not reveal
any statistically significant differences between the groups. Indeed,
a more data-driven approach that exploits properties of voxel-level
networks appears to be necessary in order to achieve high discrimi-
native power.

The material presented in this chapter is based on our prior
work from [9, 12, 13].

2 Materials and Methods

2.1 Experimental

Paradigm

The dataset in this study was previously acquired according to the
methodology described in [11], and involved a group of 15
schizophrenic subjects (nine women) fulfilling DSM-IV-R criteria
for schizophrenia with daily auditory hallucinations for at least
3 months despite well-conducted treatment. Their mean � S.D.
age was 34� 10 years (i.e., 22–49 years range), and the duration of
illness was 12 � 10$ years (3–28 years range). All schizophrenic
patients were treated with antipsychotic drugs (mean � S.D. ¼
425 � 604 mg) chlorpromazine equivalent/day [14]. Four sub-
jects were discarded because of acquisition issues, leaving us with 11
subjects that were approximately matched for gender and age by
the control group of 11 healthy subjects. All subjects were submit-
ted to the same experimental paradigm involving language. The
task is based on auditory stimuli; subjects listen to emotionally
neutral sentences either in native (French) or foreign language.
Average length (3.5 s mean) or pitch of both kinds of sentences is
normalized. In order to catch attention of subjects, each trial begins
with a short (200 ms) auditory tone, followed by the actual sen-
tence. The subject’s attention is asserted through a simple
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validation task: after each played sentences, a short pause of 750 ms
is followed by a 500 ms two-syllable auditory cue, which belongs to
the previous sentence or not, to which the subject must answer to
by yes (the cue is part of the previous sentence) or no with push-
buttons, when the language of the sentence was his own. A full
fMRI run contains 96 trials, with 32 sentences in French (native),
32 sentences in foreign languages, and 32 silence interval controls.

Data were acquired on a 1.5 T Signa (General Electric). For
each subject, two fMRI runs are acquired (T2-weighted EPI), each
of which consisted of 420-scans (from which the first four are
discarded to eliminate T1 effect), with a repetition time (TR) of
2.0 s, for a total length of 14 min per run. Data were spatially
realigned and warped into the MNI template and smoothed
(FWHM of 5 mm) using SPM5 (www.fil.ucl.ac.uk); also, standard
SPM5 motion correction was performed with the SPM5 realign-
ment preprocessing. For each volume of the time-series, the process
estimates a six degree-of-freedom movement relative to the first
volume. These estimated parameters are combined to warping
parameters (obtained by nonlinear deformation on an EPI tem-
plate) to get the final, spatially normalized and realigned time-
series. Finally, a universal mask was computed as the minimal inter-
section of thresholded EPI mean volumes across the entire dataset.
This mask was then applied to all subjects.

Note that the schizophrenia patients studied here have been
selected for their prominent, persistent, and pharmaco-resistant
auditory hallucinations [11] which might have increased their clin-
ical homogeneity, but they are not representative of all schizophre-
nia patients, only of a subgroup.

In summary, our dataset contained the total of 44 samples
(there were two samples per subject, corresponding to the two
runs), where each sample corresponds to a subject/run combina-
tion, and is associated with roughly 50,000 voxels � 420 TRs � 2
runs, i.e., more than 40,000,000 voxels/variables. In the
subsequent sections, among other methods, we discuss feature-
extraction approaches that reduce the dimensionality of the data
prior to learning a predictive model.

2.2 Methods We focus here on data-driven approaches based on various features
extracted from the fMRI data, such as standard activation maps and
a set of topological features derived from functional networks. Note
that a model-driven approaches based on prior knowledge about
the regions of interest (ROI) that are believed to be relevant to
schizophrenia, was originally explored in [9], but did not reveal any
statistically significant differences between the groups.
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2.2.1 Feature Extraction

Activation Maps

To find out whether local task-dependent linear activations alone
could possibly explain the differences between the schizophrenic
and normal brains, we used as a baseline set of features based on the
standard voxel activation maps, computed using General Linear
Model (GLM). The GLM analysis described here is a standard
component of the Statistical Parametric Mapping (SPM) toolkit.

Given the time-series for stimulus s(t) (e.g., s ¼ 1 if the stimu-
lus/event is present, and s ¼ 0 otherwise), and the BOLD signal
intensity time-series vi(t) for voxel i, GLM is simply a linear regres-
sion vi(t)¼ βi*x(t)þ biþ ε, where x(t) the regressor corresponding
to the stimulus convolved with the hemodynamic response func-
tion (HRF) in order to account for delay between the voxel activa-
tion and change in the BOLD signal, ε is noise, bi is the baseline
(mean intensity), and βi coefficient is the amplitude that serves as an
activation score (note that βi coefficient is simply the correlation
between vi(t) and x(t) when both are normalized and centered prior
to fitting the model). Given multiple trials, multiple estimates of βi
are obtained and a statistical test (e.g., t-test) is performed for the
mean of βi against the null-hypothesis that it comes from Gaussian
noise distribution with zero mean and fixed noise (the level of noise
for BOLD signal is assumed to be known here).

In case of multiple stimuli, the GLM model uses a vector of
regressors x(t) and obtains the vector of the corresponding coeffi-
cients β. For example, in our studies, the following stimuli/events
were considered: “FrenchNative,” “Foreign,” and “Silence,”
together with several additional regressors, such as some low-
frequencies trends and the movement parameters (additional 1-
only column is added to account for the mean of the signal, as
above—a standard step in linear regression with the unnormalized
data). Once the GLM is fit, we focus on βi coefficients obtained for
the above three stimuli, and the corresponding three activation
maps. Next, several activation contrast maps were computed by
subtracting some maps from the others (hoping that such differ-
ences, or contrasts, may provide additional information). The fol-
lowing activation contrast maps were computed: activation contrast
1: “FrenchNative–Silence,” activation contrast 2: “FrenchNative–-
Foreign,” activation contrast 3: “Silence–FrenchNative,” activation
contrast 4: “Foreign–FrenchNative” (note that maps 2 and 4 are
just negations of the maps 1 and 3, respectively), activation contrast
5: “Foreign–Silence”; also, the following three contrast maps are
simply the difference of the corresponding βi coefficient (activa-
tion) and the mean (bi); activation contrast 6: “FrenchNative,”
activation contrast 7: “Foreign,” activation contrast 8: “Silence.”
For each of those maps, t-values are computed at each voxel (with a
null-hypothesis corresponding to zero-mean Gaussian). The result-
ing t-value maps were used herein, rather than just the “raw”
activation maps (i.e., β coefficient maps); to simplify the terminol-
ogy, we just refer to them as “activation” or “activation contrast”
maps.
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The above activation contrast maps (that we will further refer
to as simply activation maps) were computed for each subject and
for each run. The activation values of each voxel were subsequently
used as features in the classification task. We also computed a global
feature, mean-activation (denoted mean-t-val), by taking the mean
absolute value of the voxel’s t-statistics.

Network Features In order to continue investigating possible disruptions of global
brain functioning associated with schizophrenia, we decided to
explore lower-level (as compared to ROI-level) functional brain
networks [8] constructed at the voxel level, as follows: More spe-
cifically, we computed voxel-level functional networks, as follows: [1]
pairwise Pearson correlation coefficients were computed among all
pairs of time-series (vi(t), vj(t)), where vi(t) corresponds to the
BOLD signal of i-th voxel; [2] an edge between a pair of voxels is
included in the network if the correlation between the
corresponding voxel’s BOLD signals exceeds a specified threshold
(herein, we used the same threshold of c(Pearson) ¼ 0.7 for all
voxel pairs; we tried a few other threshold levels, such as 0.8 and
0.9, and the results were similar; however, we did not perform an
exhaustive evaluation of the full range of this parameter due to high
computational cost of such experiment).

For each subject, and each run, a separate functional network
was constructed. Next, we measured a number of its global topo-
logical features, including:

l The mean degree, i.e., the number of links for each node
(corresponding to a voxel), averaged over the entire network.

l The mean geodesic distance, i.e., the minimal number of links
needed to reach any to from any other node, averaged over the
entire network.

l The mean clustering coefficient, i.e., the fraction of triangulations
formed by a node with its first neighbors relative to all possible
triangulations, averaged over the entire network.

l The giant component, i.e., the size (number of nodes) of the
largest connected subgraph in the network.

l The giant component ratio, i.e., the ratio of the giant component
size to the size of the network.

l The total number of links in the network.

Besides global topological features, we also computed a series
of voxel-level network features, based on topological properties of
an individual voxel in functional network; the following types of
features were used:

l (Full) degree: the value assigned to each voxel is the total num-
ber of links in the corresponding network node.
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l Long-distance degree: the number of links making nonlocal con-
nections (i.e., links between the given voxel and the voxels that
are five or more voxels apart from it).

l Interhemispheric degree: only links reaching across the brain
hemispheres are considered when computing each voxel’s
degree.

l Strength: node strength is the sum of weights of links connected
to the node. In our study, the full correlation matrix was used as
a weighted adjacency matrix, where each pairwise correlation
corresponds to the link weight; thus, for each voxel, its strength
is the sum of its correlations with the other voxels.

l Absolute strength: same as above, but the link weights are
replaced by their absolute values.

l Positive strength: same as node strength, but only positive link
weights are considered.

l Clustering coefficient of a node is the fraction of triangles around
a node, i.e., the fraction of node’s neighbors that are neighbors
of each other; herein, we first computed a functional networks
by applying a threshold of 0.7 to the absolute values of the
pairwise correlations, and then used the resulting graph to com-
pute the clustering coefficients for each node/voxel.

l Local efficiency: the local efficiency is the global efficiency com-
puted on node neighborhoods, and is related to the clustering
coefficient. The global efficiency is the average inverse shortest
path length in the network, that is 1/<1/dn>, where dn is the
shortest path for node n, such that for disconnected nodes
dn ¼ 1, i.e., 1/1/dn ¼ 0.

l Edge weights: finally, we simply used as features a randomly
selected subset of 200,000 pairwise correlations out of
53,000 � 53,000 entries of the correlation matrix (the location
of pairs were randomly selected once, and then same locations
used to derive features for all subjects); the rationale behind
random sampling from the correlation matrix was to reduce
the computational complexity of working with the full set of
correlations, which would exceed 2800 million features. Never-
theless, subsequent feature ranking procedure was able to select
a highly discriminative subset of correlation features, which
would only improve if the feature ranking was allowed to con-
tinue running over the rest of the correlation matrix. Note that
we also tried other sets of randomly selected 200,000 voxels and
obtained similar results to those presented herein. Clearly, the
results may vary if we keep selecting other random sets of voxels
that may not include the top most informative voxel pairs dis-
covered in our analysis. However, the point of our analysis is to
show that it is possible to find predictive features among pairwise
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correlations, and that our results demonstrate only a lower
bound on a potentially even better predictive performance of
correlation features.

For each of the above feature types, except the edge weights,
we call the corresponding feature sets “feature map,” since each
voxel is associated with its own feature value, e.g., (full) degree
maps, strength maps, and so on. These maps were utilized for
further analysis of statistical significance of group differences,
including t-test and several classification approaches, described
below.

Note that, for each sample, we also computed spatially normal-
ized activation and degree maps, dividing the corresponding maps
by their maximal value taken over all voxels in the given map. As it
turned out, normalization affected both statistical testing and clas-
sification results presented below. We mainly focus on normalized
activation and degree maps (full, long-distance, and interhemi-
spheric), since they yield better classification results. In case of
hypothesis testing, however, unnormalized (raw) activations
maps, unlike the degree maps, happened to outperform their nor-
malized counterparts, and thus both sets of results were presented.

2.2.2 Classification

Approaches

We focused on discriminating between the schizophrenic and nor-
mal subjects only, that resulted into well-balanced dataset contain-
ing 2 � 11 positive (schizophrenic) and 2 � 11 negative (healthy)
samples (since there were two runs per each subject), with 50%
baseline prediction accuracy.

Classifiers First, standard off-the-shelf methods such as Gaussian Naı̈ve Bayes
(GNB) and Support Vector Machines (SVM) were used in order to
compare the discriminative power of different sets of features
described above. We used standard SVM implementation with
linear kernel and default parameters, available from the LIBSVM
library. For GNB, we used our own MATLAB implementation.

Moreover, we decided to further investigate our hypothesis
that interactions among voxels contain highly discriminative infor-
mation, and compare those linear classifiers against probabilistic
graphical models that explicitly model such interactions. Specifi-
cally, we learn a classifier based on a sparse Gaussian Markov Ran-
dom Field (MRF) model [15], which leads to a convex problem
with unique optimal solution, and can be solved efficiently; herein,
we used the COVSEL procedure [15]. The weight on the l1-
regularization penalty serves as a tuning parameter of the classifier,
allowing to control the sparsity of the model, as described below.

Sparse Gaussian MRF classifier. Let X ¼ {X1,...,Xp} be a set of
p random variables (e.g., voxels), and let G ¼ (V, E) be an undi-
rected graphical model (Markov Network, or MRF) representing
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conditional independence structure of the joint distribution P(X).
The set of vertices V ¼ {1,...,p} is in the one-to-one correspondence
with the setX. The set of edges E contains the edge (i, j) if and only if
Xi is conditionally dependent onXj given all remaining variables; lack
of edge between Xi and Xj means that the two variables are condi-
tionally independent given all remaining variables. Let x ¼ (x1,...,xp)
denote a random assignment to X. We will assume a multivariate
Gaussian probability density p(x) ¼ (2π)�p/2 det(C)1/2 e�1/2 x0Cx ,
where C is the inverse covariance matrix (also called the precision
matrix), and the variables are normalized tohave zeromean.Letx1,...,
xnbe a set ofn i.i.d. samples from this distribution, and let S¼ (1/n)Σ
xi
Txi denote the empirical covariance matrix. Missing edges in the

above graphical model correspond to zero entries in the inverse
covariance matrix C, and thus the problem of learning the structure
for the above probabilistic graphical model is equivalent to the prob-
lem of learning the zero-pattern of the inverse-covariance matrix.
Note that the inverse of the empirical covariance matrix, even if it
exists, does not typically contain exact zeros. Therefore, an explicit
sparsity constraint is usually added to the estimation process. A popu-
lar approach is to use l1-norm regularization that is known topromote
sparse solutions, while still allowing (unlike non-convex lq-norm
regularization with 0 < q < 1) for efficient optimization. From the
Bayesian point of view, this is equivalent to assuming that the para-
meters (entries) Cij of the inverse covariance matrix C are indepen-
dent random variables following the Laplace distributions
p(Cij) ¼ (λij/2) exp(�λij|Cij|) with equal scale parameters λij ¼ λ.
Our objective is to find the maximum-likelihood parameters in C,
subject to the Laplace prior, which yields the standard optimization
problem over positive definite matrices C (denoted C � 0), fre-
quently considered in the sparse Gaussian MRF learning literature
(see, e.g., [15]):

min
C�0

ln det Cð Þ � tr SCð Þ � λ Cj jj j1,

where det(A) and tr(A) denote the determinant and the trace (the
sum of the diagonal elements) of a matrix A, respectively, S the
empirical covariance of the data. For the classification task, we
estimate on the training data the Gaussian conditional density
p(x|y) (i.e., the inverse covariance matrix parameters) for each
class Y ¼ {0, 1} (schizophrenic vs. control), and then choose the
most-likely class label for each unlabeled test sample x.

Variable Selection Note that each sample is associated with roughly 50,000 vox-
els � 420 TRs � 2 runs, i.e., more than 40,000,000 voxels/vari-
ables. Thus, some kind of dimensionality reduction and/or feature
extraction appears to be necessary prior to learning a predictive
model. Extracting degree maps and activation maps reduced
dimensionality by collapsing the data along the time dimension.
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Moreover, we used variable selection as an additional prepro-
cessing step before applying a particular classifier, in order to [1]
further reduce the computational complexity of classification (espe-
cially for sparse MRF, which, unlike GNB and SVM, could not be
directly applied to 50,000 variables), [2] reduce noise, and [3]
identify relatively small predictive subsets of voxels. We applied a
simple filter-based approach, selecting a subset of top-ranked vox-
els, where the ranking criterion used p-values resulting from the
paired t-test, with the null-hypothesis being that the voxel values
corresponding to schizophrenic and non-schizophrenic subjects
came from distributions with equal means. The variables were
ranked in the ascending order of their p-values (lower p-values
correspond to higher confidence in between-group differences),
and classification results on top k voxels will be presented for a
range of k values. Clearly, in order to avoid biased estimate of
generalization error, variable selection was performed separately
on each cross-validation training dataset; failure to do so, i.e.,
variable selection on the full dataset, would produce overly opti-
mistic results with nearly perfect accuracy (e.g., 95% accuracy using
GNB on just 100 top t-test voxels).

Evaluation via Cross-

Validation

Since there were two samples corresponding to two runs per each
subject, another source of overly optimistic bias that we had to
avoid was possible inclusion of the samples for the same subject in
both training and test datasets—for example, if using the standard
leave-one-out cross-validation approach. Instead, we used leave-
one-subject-out cross-validation, where each of the 22-folds on
the 44-sample dataset (11 schizophrenic and 11 control samples,
two runs each) would set aside as a test set the two samples for a
particular subject.

3 Results

Empirical results are consistent with our hypothesis that schizo-
phrenia disrupts the normal structure of functional networks in a
way that is not derived from alterations in the activation; moreover,
they demonstrate that topological properties are highly predictive,
consistently outperforming predictions based on activations.

3.1 Voxel-Level

Statistical Analysis

In order to find out whether various features exhibit statistically
significant differences across the two groups, we performed two-
sample t-test for each feature xi from the corresponding feature
vector x ¼ (x1,...,xn) of a particular type (activations, degrees,
etc.); herein, n is the number of voxels for voxel-level features,
and n ¼ 200,000 for the weight features (pairwise correlations).
Clearly, when the number of statistical tests is very large (i.e., n here
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is exceeding 50,000), a correction for multiple comparisons is
necessary, since low p-values indicating statistically significant dif-
ferences given one test may just occur due to pure chance when
many such tests are performed. A commonly used Bonferroni
correction is overly conservative in brain imaging analysis since it
assumes test independence, while there are obviously strong corre-
lations across the voxel-level features. A more appropriate type of
correction that is now frequently used in fMRI analysis is the False
Discovery Rate (FDR) method, designed to control the expected
proportion} of incorrectly rejected null hypotheses, or “false dis-
coveries.” In general, FDR is less conservative than the familywise
error rate (FWER) methods (including the Bonferroni correction),
since it does not guarantee there are no false positives, but rather
that there are only a few of them. For example, FDR with threshold
0.05 guarantees no more than 5% of false positives. Herein, we
include the results for both FDR and Bonferroni corrections (see
columns 5 and 6 of the Table 1, respectively). However, our dis-
cussion is mainly based on FDR results, while Bonferroni results are
mentioned purely for completeness sake, to demonstrate that some
of the statistical differences we observed are so strong that they
survived even an overly strict Bonferroni correction.

Our main observation is that the network features show much
stronger statistical differences between the schizophrenic vs. non-
schizophrenic groups than the activation features. Figure 1 shows
the results of two-sample t-test analysis for all voxel-level features,
and the corresponding FDR threshold at α ¼ 0.05 level. Panel (a)
shows a direct comparison between the best activation features
(dashed lines) and three (spatially normalized) degree maps: full,
long-distance, and interhemispheric. In all degree maps, on the
order of 1000 voxels survive FDR correction (i.e., have their p-
values below the black line corresponding to the FDR threshold),
while only a handful (less than ten) of activation voxels do. The
other measured graph features, including clustering and local effi-
ciency, have less statistical power than degrees (i.e., have p-values
closer to the FDR threshold), but yet outperform activation maps
by almost two orders of magnitude, as shown in panel (b). A full list
showing the number of surviving voxels for each map is shown in
Table 1. (Note that for the activation maps, the results for both
normalized and unnormalized maps are shown, since unnormalized
ones performed better in hypothesis testing. In classification study
presented next, the situation was reversed, i.e., normalized activa-
tions predicted better than unnormalized; thus, we always included
the best possible results achieved by activations. In case of degree
maps, we always used only their normalized versions, which per-
formed best in both hypothesis testing and classification scenarios).

Finally, randomly selected pairwise correlations, as shown in
Panel (c), behave similarly to degrees, with an order of 10,000
correlations surviving the FDR test, i.e., an order of magnitude
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more than for degrees. (Note, however, that the total number of
correlation features (200,000) is also much larger than the number
of degree features (about 50,000), i.e., voxels; therefore, the results
for correlations are not directly comparable to those for degrees and
other voxel features, and thus plotted in a separate panel).

The spatial localization of the network maps is shown in Fig. 2,
representing the voxels surviving correction for (a) (normalized)

Table 1
Detailed t-test results for all activation and network-based features. Each column shows the number
of voxels that satisfy a given constraint, such as having p-value below the specified threshold or
surviving the FDR or Bonferroni correction with the significance level α ¼ 0.05 (the number of voxels
common with the full degree maps is shown in parenthesis for unnormalized linear activation maps)

Map p < 0.01 p < 0.001 p < 0.0001 FDR Bonferroni N

Norm, full degrees 2583 1046 448 1033 50 53,750

Norm, long-dist. Deg. 2335 972 398 924 43 53,737

Norm, inter-hem. Deg 1448 677 258 508 18 51,373

Activation 1 (3) 1799 (341) 317 (76) 52(9) 7(2) 0 53,456

activation 2 (4) 805 (27) 112 (0) 15(0) 0(0) 0 53,456

Activation 5 1356 (306) 262 (69) 63 (10) 0(0) 0 53,456

Activation 6 1481 (152) 303 (14) 55(1) 2(0) 1 53,456

Activation 7 1294 (130) 163 (13) 20(1) 0(0) 0 53,456

Activation 8 2369 (97) 467 (1) 53(0) 0(0) 0 53,456

Norm, activation 1 (3) 885 108 15 0 0 53,456

Norm, activation 2 (4) 688 95 13 0 0 53,456

Norm, activation 5 647 58 8 0 0 53,456

Norm, activation 6 1357 245 37 0 0 53,456

Norm, activation 7 1019 123 10 0 0 53,456

Norm, activation 8 1511 236 30 1 1 53,456

Corr subset(200 K) 23,573 6437 1718 12,240 37 199,998

Strength 10,917 2197 393 11,294 6 53,750

Absolute strength 6721 1053 154 971 0 53,750

Positive strength 8938 1594 277 5724 2 53,750

Clustering coef. 3812 955 240 789 4 53,750

Local efficiency 4142 1076 286 1077 4 53,750

The last column shows the total number of voxels N with non-zero values in the corresponding map (recall that

Bonferroni correction filters out the voxels with p > α/N). Note that for the activation maps, the results for both

normalized and unnormalized maps are shown, since unnormalized ones performed better in hypothesis testing

490 Irina Rish and Guillermo A. Cecchi



degree maps, (b) strength (red-yellow), absolute strength (blue-
light blue), and positive strength (black-white), (c) clustering coef-
ficient and local efficiency maps. Normalized degrees (a) show the
most spatially coherent organization, with contiguous bilateral
clusters in auditory/temporal areas, prominently BA 22 and BA
21. Note also that the degree of the normal population is higher
than the patient population. Strength-related features (b) have less
bilateral symmetry and are also less spatially coherent, while clus-
tering (c) is even more scattered.

Fig. 1 Two-sample t-test results for different features: p-values vs. FDR threshold. (a) Activations vs.
normalized degrees; (b) clustering coefficients, strength, absolute strength, positive strength, and local
efficiency of each voxel; (c) 200,000 randomly selected pairwise correlations. The null hypothesis for each
feature assumes no difference between the schizophrenic vs. normal groups. p-values of the features are
sorted in ascending order and plotted vs. FDR baseline; FDR test select voxels with p < α·k/N, α—false-
positive rate, k—the index of a p-value in the sorted sequence, N—the total number of voxels. Note that
graph-based features yield a large number of highly significant (very low) p-values, staying far below the FDR
cutoff line, while only a few voxels survive FDR in case of (unnormalized) activation maps in panel (a): 7 and
2 voxels in activation maps 1 (contrast “FrenchNative – Silence”) and 6 (“FrenchNative”), respectively, while
the rest of the activation maps do not survive the FDR correction at all
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The network in Fig. 3 visualizes the top 30 most significantly
different edges selected out of 200,000 edge features, or pairwise
correlations (the total number of such features surviving FDR
correction was 12,240, as shown in Table 1 and visualized in
Fig. 1c. Figure 4 shows a stable subset of nine edges common to
all top-30 ranked edges, over all cross-validation subsets, making it
a highly robust representation. Note that unlike the degree maps,
this network includes areas other than BA 22 and BA 21, promi-
nently left precentral gyrus BA 44 (Broca’s area), right middle

Fig. 2 Two-sample t-test results for different features: voxels surviving FDR correction. (a) Normalized degree
maps; (b) strength (red-yellow), absolute strength (blue-light blue), and positive strength (black-white); (c)
clustering coefficient and local efficiency maps. Here the null hypothesis at each voxel assumes no difference
between the schizophrenic vs. normal groups. Colored areas denotes low p-values passing FDR correction at
α¼ 0.05 level (i.e., 5% false-positive rate). Note that the mean (normalized) degree at highlighted voxels was
always (significantly) higher for controls than for schizophrenics. Coordinates of the center of the image: (a)
and (c) X ¼ 26, Y ¼ 30, Z ¼ 16, (b) X ¼ 26, Y ¼ 30, Z ¼ 18

Fig. 3 Thirty top-ranked (lowest-p-value) edges (all surviving Bonferroni correction) out of 200,000 pairwise
correlation features, computed on the full dataset. (a) All views and (b) enlarged sagittal view. Edge density is
proportional to their absolute value
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frontal gyrus BA 10, medial precuneus BA 7, and the declive of the
cerebellum. A complete list of the nodes is presented in Table 2,
while area-to-area functional connections determined by the nine
most stable links are shown in Table 3. Note that most links span
both hemispheres, and that there are no local, intra-area links, even
though we introduced no voxel clustering.

Our observations suggest that (a) the differences in the collec-
tive behavior cannot be explained by differences in the linear task-
related response, and that (b) topology of voxel-interaction net-
works is more informative than task-related activations, suggesting
an abnormal degree distribution for schizophrenic patients that
appear to lack hubs in auditory cortex, i.e., have significantly
lower (normalized) voxel degrees in that area than the normal
group, possibly due to a more even spread of degrees in
schizophrenic vs. normal networks. Note that, as discussed earlier,
ROI- and parcellation-level network topologies do not seem to
retain information present in voxel-level networks (see ref. 9 for
more detail), apparently due to averaging the signal over ROIs or
parcels.

We also evaluate the stability of all features with respect to
selecting a subset of top ranked voxels over different subsets of
data. For each value of k, stability of the top-k-ranked feature subset
is defined as a fraction of features in common over all cross-
validation data subsets (recall that there are 22 of them). Namely,
given a fixed value of k, for each data subset, we rank the features by
their p-values computed on that particular subset, choose the top k
of them, and then compute the intersection over all 22 of those
top-k feature subsets. The number of features common to all

Fig. 4 Nine stable edges common to all subsets of 30 top-ranked (lowest-pvalue) edges that survived
Bonferroni correction, over 22 different cross-validation folds (leave-subject-out data subsets). (a) All views
and (b) enlarged sagittal view. Edge density is proportional to their absolute value. The network includes
several areas not picked up by the degree maps, i.e., other than BA 22 and BA 21, mainly the cerebellum
(declive) and the occipital cortex (BA 19)
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Table 2
Areas corresponding to the nodes on the nine most stable links

Hemis. Broad Anatomy Brodmann X y z

R Temporal Fusiform Gyrus 20 45 �24 �18

R Temporal Fusiform Gyrus 20 48 �21 �18

L Middle Temporal Gyrus 21 �42 0 �21

L Middle Temporal Gyrus 21 �54 6 �15

L Middle Temporal Gyrus 21 �51 2 �12

L Middle Temporal Gyrus 21 �57 �51 3

L Superior Temporal Gyrus 38 �45 18 �18

L Superior Temporal Gyrus 38 �51 6 �9

R Superior Temporal Gyrus 22 57 �6 0

R Superior Temporal Gyrus 22 63 0 0

R Superior Temporal Gyrus 22 48 �12 6

L Superior Temporal Gyrus 22 �51 �12 6

L Precentral Gyrus 44 �54 12 6

R Middle Frontal Gyrus 10 48 51 21

L Medial Precuneus 7 �12 �78 36

L Medial Precuneus 7 �3 �84 45

R Inferior Parietal Lobe 40 48 �45 54

� Declive Cb 0 �63 �12

Table 3
Area-to-area functional connections determined by the nine most stable
links

Left BA 21 $ Cb

Right BA 20 $ left BA 7

Right BA 20 $ left BA 21

Left BA 38 $ left BA 44

Left BA 21 $ right BA 22

Left BA 38 $ right BA 22

Right BA 22 $ medial BA 7

Right BA 10 $ right BA 40
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subsets (i.e., the size of their intersection), divided by k, gives us a
measure of feature stability. Interestingly, network-based features,
such as degrees (full, long-distance, or interhemispheric) demon-
strate much higher stability than activation features, as well as other
network-based features. Figure 5a shows that degree maps have up
to almost 70% top-ranked voxels in common over different training
data sets when using the leave-one-subject out cross-validation,
while activation maps have below 50% voxels in common between
different selected subsets. This property of degree vs. activation
features is particularly important for interpretability of predictive
modeling. Stability of the other network-based features is shown in
Fig. 5b, c, where the Fig. 5c shows the same results as Fig. 5b, but
using logarithmic scale instead of linear, in order to focus on the

Fig. 5 Stability of feature subset selection over cross-validation (CV) folds. Stability is measured as the percent
of voxels in common among the subsets of k top variables selected at all CV folds: (a) activations and degrees;
(b, c) edge weights (correlations), clustering coefficients, strength, absolute strength, positive strength, and
local efficiency: (b) linear scale on x-axis, (c) log-scale on x-axis (focusing on small number of features
selected)
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regimes when only a small number of features is selected. While the
overall stability of the remaining network features does not reach
the high values of the degree features, it is still interesting to note
that the pairwise correlations appear to be the most stable of the
remaining network features when the number of selected features is
relatively small, e.g., below 100.

3.2 Interhemispheric

Degree Distributions

As suggested by the predominance of interhemispheric edges in the
set of most significantly different pairwise correlations (Table 3), a
closer look at the degree distributions reveals that a large percent-
age of the differential connectivity appears to be due to long-
distance, interhemispheric links. Figure 6a compares the probability
of finding a link in the networks as a function of the Euclidean
distance between the nodes (in millimeters), for schizophrenic
(red) versus control (blue) subjects. The bars correspond to one
standard deviation, drawn on the top only, to avoid clutter in the
figure, and the lines correspond to power-law fits for the interme-
diate distances (i.e., between 10 and 150 mm). The fit is P ¼ aDk,
with k ¼�1.46 for schizophrenics, and k¼ �1.15 for controls. We
see that for this distance range, schizophrenics have reduced con-
nectivity, i.e., lower link probabilities than controls. Figure 6b
compares the fraction of interhemispheric connections over all
connections, for schizophrenic (red) versus normal (blue) groups.
For each subject, a unique value was computed dividing the num-
ber of links spanning both hemispheres by the total number of
links. The figure represents the normalized histogram of this inter-
hemispheric link density for each group. The schizophrenic group
shows a significant bias towards low relative interhemispheric con-
nectivity. A t-test analysis of the distributions indicates that differ-
ences are statistically significant (p¼ 0.025). Moreover, it is evident
that a major contributor to the high degree difference discussed
before is the presence of a large number of interhemispheric con-
nections in the normal group, which is absent in schizophrenic
group. Furthermore, we selected a bilateral region of interest
(ROI) corresponding to left and right Brodmann Area 22 (roughly,
the clusters in Fig. 1a), such that the linear activation for these ROI’s
was not significantly different between the groups, even in the uncor-
rected case. For each subject, the connection strength between the
left and right ROIs was computed as the fraction of ROI-to-ROI
links over all links. Figure 6c shows the normalized histogram over
subjects for this connectivity measure. Clearly, the normal group
displays higher ROI-to-ROI connectivity, which is significantly
disrupted in the schizophrenic group (p ¼ 3.7 � 10�7). This
provides a strong indication that the group differences in connec-
tivity cannot be explained by differences in local activation.
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3.3 Global Features For each global feature we computed its mean for each group and
p-value produced by the t-test, as well as the classification accuracies
using our classifiers. While mean activation (we used map 8, the
best performer for SVM on the full set of voxels—see Table 4b) had
a relatively low p-value of 5.5 � 10�4, as compared to less

Fig. 6 Functional connectivity disruption in schizophrenic subjects vs. controls. (a) Probability of finding a
network link as a function of the Euclidean distance between the nodes (in millimeters): schizophrenics (red)
show reduced connectivity than controls (blue) for distances in the middle range (10–150 mm). (b) Disruption
of global interhemispheric connectivity. For each subject, we compute the fraction of links spanning both
hemispheres over the total number of links, and plot a normalized histogram over all subjects in each group
(normal—blue, schizophrenic—red). (c) Disruption of task-dependent interhemispheric connectivity between
specific ROIs (Brodmann Area 22 selected bilaterally). The ROIs were defined by a 9 mm radius ball centered
at (x¼ �42, y¼ �24, z¼ 3) and (x¼ 42, y¼ �24, z¼ 3). For each subject, we compute the fraction of
links connecting the bilateral ROIs over all links, and show a histogram of this connectivity measure over all
subjects in each group. The histograms are similarly normalized
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Table 4
Classification errors using (a) global features and (b) activation and degree maps; results for the SVM
classifier applied to the complete set of voxels (i.e., without voxel subset selection)

(a)

Feature GNB SVM MRF(0.01)

Degree (D) 27.50% 27.50% 27.50%

Clustering coeff. (C) 30.00% 42.50% 45.00%

Geodesic dist. (G) 67.50% 45.00% 45.00%

Mean activation (A) 40.00% 45% 72.50%

D þ A 27.50% 27.50% 32.50%

C þ A 27.50% 45.00% 55.00%

G þ A 45.00% 45.00% 72.50%

G þ D þ C 37.50% 27.50% 27.50%

G þ D þ C þ A 30.00% 27.50% 32.50%

(b)

Feature Err FP FN

Correlations (53750) 14% 14% 14%

Degree (full) 16% 27% 5%

Degree (long-distance) 21% 32% 9%

Degree (inter-hemis) 32% 46% 18%

Clustering 23% 32% 14%

Local efficiency 23% 32% 14%

Strength 23% 23% 23%

Abs strength 34% 41% 27%

Pos strength 25% 32% 18%

Activation 1 (and 3) 54% 29% 82%

Activation 2 (and 4) 50% 55% 45%

Activation 5 43% 18% 68%

Activation 6 36% 27% 46%

Activation 7 32% 18% 46%

Activation 8 30% 23% 37%

For each feature, we show the average error, as well as the fraction of false positives (FP) and false negatives (FN)
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significant p¼ 5.3� 10�2, formean-degree, the predictive power of
the latter, alone or in combination with some other features, was
the best among global features reaching 27.5% error in
schizophrenic vs. normal classification (Table 4a), while mean acti-
vation yielded more than 40% error with all classifiers In general,
low p-values not necessarily imply low generalization error, as the
results with other global features show. This is not particularly
surprising, especially when the data violate Gaussian assumption
of the t-test as it is in our case.

3.4 Classification

Using Activations vs.

Network Features

While mean-degree indicates the presence of discriminative infor-
mation in voxel degrees, its generalization ability, though the best
among global features and their combinations, is relatively poor.
However, voxel-level network features turned out to be very infor-
mative about schizophrenia, often outperforming activation fea-
tures by far. Table 4b shows the results of classification by SVM
using all voxel-level network features of each type. Herein, all voxels
and their corresponding features were used, without any subset
selection; for correlation features, defined on pairs of voxels, we
just used same number of features as in all other cases, i.e., the
top 53,750 correlations out of 200,000, since 53,730 is the num-
ber of voxels used in the other features. Note that the top-
performing network features are correlations (14% error) and
(full) degree maps (16% error), greatly outperforming all activation
maps that yield above 30% error for even the best-performing
activation map 8.

Next, in Fig. 7, we compare the predictive power of different
features using all three classifiers: Support Vector Machines (SVM),
Gaussian Naive Bayes (GNB) and sparse Gaussian Markov Random

Fig. 7 Classification results: degree vs. activation features. Three classifiers, Gaussian Naive Bayes (GNB) in
panel (a), SVM in panel (b) and sparse MRF in panel (c) are compared on two types of features, degrees and
activation contrasts; (d) all three classifiers compared on long-distance degree maps (best-performing for
MRF)
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Field (MRF), on the subsets of k top-ranked voxels, for a variety of
k values. For sparse MRF, we experimented with a variety of λ
values, ranging from 0.0001 to 10, and present the best results;
while cross-validation could possibly identify even better-
performing values of λ, it was omitted here due to its high compu-
tational cost (also, using the fixed values listed above we already
achieved quite high predictive accuracy as described later). We used
the best-performing activation map 8, as well as maps 1 and 6 (that
survived FDR); map 6 was also outperforming other activation
maps in low-voxel regime. Also, to avoid clutter, we only plot
the results for the three best-performing network features: full
and long-distance degree maps, and pairwise correlations. We can
see that:

l Network features outperform activation maps, for all classifiers we
used, and for practically any value of k, the number of features
selected. The differences are particularly noticeable when the
number of selected voxels is relatively low. The most significant
differences are observed for SVM in low-voxel (approx. <500)
regime: using just a dozen of most-predictive pairwise correla-
tions achieves a remarkable 7% error while the activation maps
yield 30% and larger errors. Also, both pairwise correlations and
degrees noticeably outperform activations on the full set of
features (far right of the x-axis). Moreover, degree features
demonstrate excellent performance with MRF classifiers: they
achieve quite low error of 14% with only 100 most significant
voxels, while even the best activation map 6 requires more than
200–300 to get just below 30% error; the other activation maps
perform much worse, often above 30–40% error, or even just at
the chance level.

l Full and long-distance degree maps perform quite similarly, with
long-distance map achieving the best result (14% error) using
MRFs.

l Among the activation maps only, while the map 8 (“Silence”)
outperforms others on the full set of voxels using SVM, its
behavior in low-voxel regime is quite poor (always above
30–35% error); instead, map 6 (“FrenchNative”) achieves best
performance among activation maps in this regime. (We also
observed that performing normalization really helped activation
maps, since otherwise their performance could get much worse,
especially with MRFs).

l MRF classifiers significantly outperform SVM and GNB with
degree features, possibly due to their ability to capture inter-
voxel relationships that are highly discriminative between the
two classes (see Fig. 7d). However, with the correlation features
the situation is reversed, and the overall best results (7% error) is
achieved using SVM with just a dozen of top-ranked
correlations.
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4 Summary and Discussion

Recent advances in neuroimaging have provided researchers with
tools for studying not just anatomical but also functional connec-
tivity and its disruption in schizophrenia. The “disconnection syn-
drome” article by [1] was among the first ones to point out
abnormalities in functional connectivity using PET imaging data
(see also [16]). (More recently, the “dysconnection” term was
suggested [2] in order to better capture the fact that schizophrenia
is associated with a broader range of network dysfunctions besides
just missing connections.) The paper studied functional connectiv-
ity captured by temporal correlations among different brain areas
during a linguistic task, using principal component analysis (PCA)
decomposition of the functional connectivity (covariance) matrix.
Analysis of spatial components (“eigenimages”) revealed that “pro-
found negative prefronto-superior temporal functional interactions
associated with intrinsic word generation” was strongly present in
healthy subjects, but practically absent in schizophrenic patients;
vice versa, positive prefronto-left temporal correlations were pres-
ent in schizophrenic group but in the normal group, suggesting a
reversal of prefrontotemporal integrations, attributed to “failure of
prefrontal cortex to suppress activity in the temporal lobes (or vice
versa).”

More recently, several studies demonstrated altered patterns in
default-mode networks of schizophrenia, e.g., altered temporal
frequency and spatial location of the default mode networks [5],
and other patterns of aberrant connectivity [17, 18]. Also, multiple
recent studies [7, 19] focused on graph-theoretic analysis of func-
tional connectivity networks [8] in schizophrenia, demonstrating,
for example, that in schizophrenia patients “the small-world topo-
logical properties are significantly altered in many brain regions in
the prefrontal, parietal and temporal lobes” [7]. There is also
continuing work exploring abnormalities in anatomical networks
in schizophrenia [6, 20, 21].

In general, the importance of modeling brain connectivity and
interactions became widely recognized in the recent neuroimaging
literature beyond schizophrenia research ([22–24] give just a few
examples). However, practical applications of such approaches such
as dynamic causal modeling [22], dynamic Bays nets [23], or
structural equations [24] are often limited to interactions among
a relatively small number of known brain regions believed to be
relevant to the task or phenomenon of interest. As discussed below,
such approach can be sometimes disadvantageous, while a more
data-driven, voxel-level functional networks analysis can achieve
better results.

In this chapter, we discuss an approach to constructing predic-
tive features based on functional network topology, and applied it
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to predictive modeling of schizophrenia. We demonstrated that [1]
specific topological properties of functional networks yield highly
accurate classifiers of schizophrenia and [2] functional network dif-
ferences cannot be attributed to alteration of local activation pat-
terns, a hypothesis that was not ruled out by the results of [6, 7] and
similar work. In other words, our observations strongly support the
hypothesis that schizophrenia is indeed a network disease, associated
with the disruption of global, emergent brain properties.

Specifically, we demonstrated that topological properties of
(voxel-level) functional brain networks are highly informative
about the disease, unlike localized, task-related voxel activations,
that were greatly outperformed by network-based features in both
hypothesis testing and predictive settings. We also showed that it is
highly important to use functional networks at the proper level: in
our study, discriminative information present in voxel-level net-
works was apparently lost (perhaps due to averaging over large
groups of voxels) at both regions-of-interest (ROI) and functional
parcellation levels; the latter did not reveal any statistically signifi-
cant differences between the schizophrenic and control groups.
Unlike most traditional studies of schizophrenia networks based
solely on hypothesis testing approach (e.g., [6, 7, 21]), we also
employed predictive modeling techniques in order to evaluate how
well the models built using network vs. local features would gener-
alize to previously unseen subjects. Using generalization power,
besides statistical significance, provides a complimentary (and often
a more accurate) measure of disease-related information contained
in a particular type of features, such as network properties or local
activations. Moreover, predictive models have potential applica-
tions in clinical setting, e.g., for early diagnosis of schizophrenia
based on abnormal patterns in imaging data. (Note, however, that
multiple studies on a variety of subjects and experimental condi-
tions may be necessary to come up with a robust predictive model).

In summary, our observations suggest that voxel-level func-
tional networks may contain significant amounts of information
discriminative about schizophrenia, which may not be otherwise
available in voxel activations or ROI-level networks. Note, however,
that the schizophrenic population studied here has been selected
for their prominent, persistent, and pharmaco-resistant auditory
hallucinations [11], which might have increased its clinical homo-
geneity and reduced its value as representative of the full spectrum
of the disease. The experimental protocol may also restrict the
applicability of our approach to generic cases. The areas more
evidently involved in the discriminative networks, BA 22 and BA
21, are involved in language processing and are known to alter their
activity in schizophrenics [25], and to display genetic and anatomi-
cal anomalies [26]. The direct analysis of pairwise correlations (as
opposed to the voxel-centric degree maps) identifies anomalies in
functional connectivity with Broca’s area, the cerebellum and,
interestingly, the frontal lobe (BA 10), in loose agreement with
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previous findings regarding disrupted frontotemporal connectivity
associated with auditory hallucinations [27]. However, the analysis
of correlations as a function of (Euclidean) distance provides a more
nuanced perspective, as it shows weaker long-distance and stronger
short-distance correlations for the patient population. This sug-
gests a global reorganization of functional connections, and is
further evidence of the emergent nature of the disruptions intro-
duced by the disease. In the context of this finding, the identifica-
tion of specifically affected areas, or area-to-area links, may be less
relevant for the purpose of understanding functional alterations.

Note that the hypothesis of an emergent signature for schizo-
phrenia does not necessarily reject the possibility of localized acti-
vation differences with respect to the normal population, for
specific tasks or conditions. The finding that long-range functional
connections are differentially affected, as demonstrated by the pau-
city of interhemispheric links and the weakness of long-distance
correlations, may still be interpreted in terms of localized changes.
Our findings may follow from subtle, undetectable changes (by
fMRI at least) in the local activation of a handful of areas, that get
amplified by the effect of the large number of links that are pooled
when network features are computed, and bear no relationship to
disruptions in the effective connectivity of the network (deter-
mined, for instance, by the lack or excess of specific neurotransmit-
ters). The fact is, however, that there is no such thing as a
completely “local” activation in the brain, since the driving input
to most areas of the central nervous system is provided by the
activity of other areas. In this sense, the hypothesis can be reformu-
lated to imply that the disease is concomitant with a much stronger
disruption of emergent than of local features.

While our conclusions may not necessarily apply to the
schizophrenic population in general, we believe that our approach
transcends the specific details of the particular population and
experimental protocol we studied, and can guide future investiga-
tions of schizophrenia and other complex psychiatric diseases that
can be better understood as network dysfunctions. Directions for
further research include exploration of network abnormalities in
other schizophrenia studies that involve different groups of patients
and different tasks, as well as better characterization of connections
involved in the predictive discrimination.
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