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Preface

Steel-plated structures are important in a variety of marine and land-based applica-
tions, including ships, offshore platforms, box girder bridges, power/chemical plants,
bins, bunkers and box girder cranes. The basic strength members in steel-plated struc-
tures include support members (such as stiffeners, plate girders), plates, stiffened panels/
grillages, and box girders. During their lifetime, the structures constructed using these
members are subjected to various types of loading which is for the most part operational,
but may in some cases be extreme or even accidental.

In the past, criteria and procedures for the design of steel-plated structures were primar-
ily based on allowable stresses and simplified buckling checks for structural components.
However, it is now well recognized that the limit state approach is a better basis for design
since it is difficult to determine the real safety margin of any structure using linear elastic
methods alone. It also readily follows that it is of crucial importance to determine the true
limit state if one is to obtain consistent measures of safety which can then form a fairer
basis for comparisons of structures of different sizes, types and characteristics. An ability
to better assess the true margin of safety would also inevitably lead to improvements in
related regulations and design requirements as well.

The design of marine structures such as FPSOs (floating, production, storage and
offloading systems), mobile offshore drilling units, the deck structures of jacket plat-
forms and even relatively novel concepts such as tension leg platforms by and large now
tends to be perhaps less limit state oriented than land-based structures such as bridges,
where the preference is now clearly for limit state design.

To obtain a safe and economic structure, the limit-state-based capacity as well as struc-
tural behavior under known loads must be assessed accurately. The structural designer
can perform such a relatively refined structural safety assessment even at the preliminary
design stage if there are simple expressions available for predicting the limit state behav-
ior accurately. A designer may even desire to do this not only for the intact structure, but
also for structures with premised damage, in order to assess their damage tolerance and
survivability.

Most structural engineers in the industry are very skilled and well experienced in
the practical structural design aspects based on the traditional criteria, but may need a
better background in the concept of limit state design and related engineering tools and
data. Hence there is a need for a relevant engineering book on the subject, which has
an exposition of basic knowledge and concepts. Many structural specialists in research
institutes continue to develop more advanced methodologies for the limit state design of
steel-plated structures, but may sometimes lack the useful engineering data to validate
them. Students in universities want to learn more about the fundamentals and practical



procedures regarding the limit state design, and thus need a book that provides useful
insights into the related disciplines.

This book reviews and describes both fundamentals and practical design procedures for
the ultimate limit state design of ductile steel-plated structures. Serviceability limit state
based on buckling and accidental limit state based on collision and grounding accidents are
also described. Existing mechanical model test results as well as nonlinear finite element
solutions are included where relevant. The book is basically designed as a textbook so
that the derivation of the basic mathematical expressions is presented together with a
thorough discussion of the assumptions and the validity of the underlying expressions
and solution methods.

It is the intention of the authors that the reader should be able to obtain an insight into
a wider spectrum of limit state design considerations in both an academic and a practical
sense. The present book is also to be seen in part as an easily accessed design tool box
that hopefully facilitates learning by applying the concepts of the limit state for practice.
Selected computer software which automates design methodologies or expressions pre-
sented in the book will hence be made available on an as-is basis through an internet web
site. The user’s manuals for the software, including illustrative example data sheets, will
also be provided at the web site as noted in the appendices to this book.

The present book is primarily based on the two authors’ own insights and developments
obtained over more than a total of 40 years of professional experience, as well as existing
information and findings by numerous other researchers and limit state practitioners.
Wherever possible, we have tried our best to acknowledge the invaluable efforts of other
investigators and practitioners, and if we have failed anywhere in this regard, it was solely
inadvertent. Any additional information brought to our notice in this regard will of course
be included in the future editions of this book.

The initiation of this book originated from a desire to summarize existing knowl-
edge and also bring more advanced developments and insights obtained through various
research projects undertaken by the Pusan National University, the American Bureau of
Shipping (ABS), and of course many others in the past several years. In this regard,
sincere thanks are given to many ABS staff members including Dr. Donald Liu, Dr. John
Spencer, Dr. Yung Sup Shin and Dr. Ge Wang. Dr. Anil K. Thayamballi formerly worked
for ABS for a number of years.

We are very pleased to acknowledge all those individuals who helped make this
book possible. Dr. Ge Wang (American Bureau of Shipping, USA) and Prof. Manolis
Samuelides (National Technical University of Athens, Greece) were involved in writing
major sections of Chapter 9, while Prof. Weicheng Cui (Shanghai Jiaotong University,
China) was involved in writing major sections of Chapter 10.

A number of experts kindly reviewed the draft manuscript and provided quite valu-
able and comprehensive comments to improve it at an earlier stage. Prof. Rene Maquoi
(University of Liege, Belgium) reviewed Chapter 7. Prof. Norman Jones (University of
Liverpool, UK) reviewed Chapter 9. Prof. Susumu Machida (Chiba University, Japan)
reviewed Chapter 10. Mr. Hwa Soo Kim (Hyundai Heavy Industries, Korea) reviewed
major parts of the entire draft manuscript. Prof. Toshiyuki Kitada (Osaka City Univer-
sity, Japan) and Prof. Norman Jones (University of Liverpool, UK) provided a number of
useful references for Chapters 7 and 9, respectively. Dr. Ge Wang (American Bureau of
Shipping, USA) provided some illustrations for Chapter 8, while Dr. Shengming Zhang
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(Lloyd’s Register of Shipping, UK) and Prof. Preben T. Pedersen (Technical University
of Denmark, Denmark) provided some illustrations for Chapter 9.

In the initial stage of organizing the table of contents for this book, a number of experts,
colleagues and friends provided valuable comments and interests. These individuals, in
alphabetical order of their names include: Prof. Bilal M. Ayyub (University of Maryland,
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How to Use This Book

The intention behind writing this book is to develop a textbook and handy source to the
principles of limit state design of steel-plated structures. This book has been designed to
be well suited to university students who would be approaching the limit state design tech-
nology of steel-plated structures perhaps for the first time. In terms of more advanced and
sophisticated design methodologies being presented, the book should also meet the needs
of structural designers or researchers who are involved in the field of naval architecture,
offshore, civil, architectural and mechanical engineering.

Hence, apart from its value as a ready reference and an aid to continuing education for
the established practitioners, this book can be used as a textbook in teaching courses on
limit state design of steel structures at the university level. The book in fact perhaps cov-
ers a wide enough range of topics which may be considered for more than one semester
course! A teaching course of 45 hours for undergraduate students in structural mechanics
or thin-walled structures may cover Chapter 1, Principles of Limit State Design, Chap-
ter 2, Buckling and Ultimate Strength Behavior of Plate—Stiffener Combinations: Beams,
Columns and Beam—columns, Chapter 3, Elastic and Inelastic Buckling of Plates, Chap-
ter 5, Elastic and Inelastic Buckling of Stiffened Panels and Grillages, and Chapter 7,
Ultimate Strength of Plate Assemblies: Plate Girders, Box Columns/Girders and Corru-
gated Panels. During that course, it is suggested that the student should carry out practice
problems related to the design of steel-plated structures using the computer programs
introduced in this book and available from the web site given in the appendices.

For graduate students who pass the teaching course for the undergraduate students
noted above, a more advanced course of 45 hours may cover Chapter 1, Principles of
Limit State Design (repeated), Chapter 4, Post-buckling and Ultimate Strength Behavior
of Plates, Chapter 6, Post-buckling and Ultimate Strength Behavior of Stiffened Panels and
Grillages, Chapter 8, Ultimate Strength of Ship Hulls (for students on a naval architecture
course), Chapter 9, Impact Mechanics and Structural Design for Accidents, Chapter 10,
Fracture Mechanics and Ultimate Strength of Cracked Structures, and together with hands-
on practice of ultimate limit state design using in part the related computer programs.

Chapters 11, 12 and 13 as well as the rest of the chapters may be utilized by practitioners
in industry or research institutes both for their work and for continuing education where
desired. The computer programs together with more sophisticated design methodologies
presented in this book will certainly be very useful for those researchers who want to
study, facilitate and develop more advanced design concepts. The authors, in any event,
have attempted to serve these many lofty aims in developing this book. They sincerely
hope that their effort has been successful, however modestly!
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1 Principles o Limit
State Design

1.1 Design Philosophies for Steel Structures

Steel-plated structures are likely to be subjected to various types of loads and deformations
arising from service requirements that may range from the routine to the extreme or
accidental. The mission of the structural designer is to design a structure that can withstand
such demands throughout its expected lifetime.

In design, the structure is hence required to have an adequate margin of safety against
such demands, the safety factor being necessary to account for various uncertainties due to
natural variability, inaccuracy in procedures used for the evaluation and control of loads
or load effects (e.g., stress, deformation), similar uncertainties in structural resistance
(capacity) and its determination, and also variations in building procedures.

A ‘demand’ is analogous to load, and a ‘capacity’ is analogous to strength necessary
to resist that load, both measured consistently (e.g., as stress, deformation, resistive or
applied load or moment, or energy either lost or absorbed, and so on). The partial safety-
factor-based design criterion for a structure under multiple types of loads applied at the
same time is expressible as follows:

Dy < C4 or safety measure = Cq/Dyq > 1 (1.1

where Dg = y0 ); Di(Fyi, yii) = design ‘demand’, Cyq = Cx/ym = design ‘capacity’,
Dy; (Fy, i) = characteristic measure of demand for load type i, calculated from the
characteristic measures of loads, Fi, and magnified by the partial safety factor, ys, taking
account of the uncertainties related to loads, ¥ = partial safety factor taking into account
the degree of seriousness of the particular limit state in regard to safety and serviceability
accounting of economical and social consequences as well as any special circumstance
(e.g., the mission of the ship, type of cargo, interaction of the limit state considered with
the others, etc.), Cy = characteristic measure of capacity, ym = YmY. = capacity-related
safety factor, y, = partial safety factor taking account of the uncertainties due to material
properties, y, = partial safety factor taking account of the uncertainties on the capacity
of the structure, such as quality of the construction, corrosion, method considered for
fietermination of the capacity. More discussion about the design format may be found
in Section 1.10.
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A nominal or characteristic measure of demand or capacity is defined to correspond
to a specified percentage of the area below the probability curve for the corresponding
random variable. For instance, one may base characteristic strength or capacity on a lower
bound or 95% exceedence value, while a characteristic load or demands may be based
on an upper bound or a 5% exceedence value. The partial safety factors applied may be
based on past experience, but are in principle meant to provide an acceptable level of
safety or performance. To achieve a successful design, criteria similar to Equation (1.1)
must be satisfied for each limit state for which structural performance must be assured.

Limit state design is different from the traditional allowable stress design. In the allow-
able stress design, the focus is on keeping the stresses resulting from the design loads
under a certain working stress level that is usually based on successful similar past expe-
rience. In the marine context, regulatory bodies or classification societies usually specify
the value of the allowable stress as some fraction of the mechanical properties of materials
(e.g., uniaxial yield or ultimate tensile strength).

In contrast to the allowable stress design, the limit state design is based on the explicit
consideration of the various conditions under which the structure may cease to fulfill its
intended function. For these conditions, the applicable capacity or strength is estimated
and used in design as a limit for such behavior.

The load-carrying capacity of a structure is for this purpose normally evaluated using
simplified design formulations or by using more refined computations such as nonlin-
ear elastic—plastic large-deformation finite element analyses with appropriate modeling
related to geometric/material properties, initial imperfections, boundary condition, load
application, and finite element mesh sizes, as appropriate.

During the last two decades, the emphasis in structural design has been moving from the
allowable stress design to the limit state design since the latter approach makes possible
a rigorously designed, yet economical, structure considering the various relevant modes
of failure directly.

A limit state is formally defined by the description of a condition for which a particular
structural member or an entire structure fails to perform the function that is expected of
it. From the viewpoint of a structural designer, four types of limit states are considered
for steel structures, namely:

serviceability limit state (SLS);
ultimate limit state (ULS);
fatigue limit state (FLS); and
accidental limit state (ALS).

SLS conventionally represents failure states for normal operations due to deterioration
of routine functionality. SLS considerations in design may address:

e local damage which reduces the durability of the structure or affects the efficiency of
structural elements;

e unacceptable deformations which affect the efficient use of structural elements or the
functioning of equipment relying on them;

e excessive vibration or noise which can cause discomfort to people or affect the proper
functioning of equipment; and

e deformations and deflections which may spoil the aesthetic appearance of the structure.
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ULS (also called ultimate strength) typically represents the collapse of the structure
due to loss of structural stiffness and strength. Such loss of capacity may be related to:

o loss of equilibrium in part or of entire structure, often considered as a rigid body (e.g.,
overturning or capsizing);

o attainment of the maximum resistance of structural regions, members or connections
by gross yielding, rupture or fracture; and

o instability in part or of the entire structure resulting from buckling and plastic collapse
of plating, stiffened panels and support members.

FLS represents fatigue crack occurrence of structural details due to stress concentration
and damage accumulation (crack growth) under the action of repeated loading.

ALS represents excessive structural damage as a consequence of accidents, e.g., colli-
sions, grounding, explosion and fire, which affect the safety of the structure, environment
and personnel.

It is important to emphasize that in limit state design, these various types of limit states
may be designed against different safety levels, the actual safety level to be attained for
a particular type of limit state being a function of its perceived consequences and ease of
recovery from that state to be incorporated in design. Within the context of Equation (1.1),
for useful guidelines in determining the partial safety factors related to limit state design
of steel structure, ISO 2394 (1998), NTS (1998) and ENV 1993-1-1 (1992) of Eurocode 3
may be referred to.

1.2 Considerations in Limit State Design
1.2.1 Serviceability Limit State Design

The structural design criteria used for the SLS design of steel-plated structures are nor-
mally based on the limits of deflections or vibration for normal use. In reality, excessive
deformation of a structure may also be indicative of excessive vibration or noise, and
so, certain interrelationships may exist among the design criteria being defined and used
separately for convenience.

The SLS criteria are normally defined by the operator of a structure, or by established
practice, the primary aim being efficient and economical in-service performance without
excessive routine maintenance or down-time. The acceptable limits necessarily depend
on the type, mission and arrangement of structures. Further, in defining such limits,
other disciplines such as machinery designers must also be consulted. As an example,
the limiting values of vertical deflections for beams in steel structures are indicated in
Table 1.1.

Table 1.1 Serviceability limit values for vertical deflections of beams, see
Figure 1.1 (ENV 1993-1-1 1992).

Condition Limit for §max Limit for &,
Deck beams L/200 L/300
Deck beams supporting plaster or L/250 L/350

other brittle finish or
non-flexible partitions
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Figure 1.1 Nomenclature: lateral deflections of a beam

In Table 1.1, L is the span of the beam between supports. For cantilever beams, L may
be taken as twice the projecting length of the cantilever. dmax is the maximum deflection
which is given by 8pmax = 81 + 82 — 8o, where & is the pre-camber, §; is the variation of
the deflection of the beam due to permanent loads immediately after loading, and &, is
the variation of the deflection of the beam due to variable loading plus any subsequent
variant deflections due to permanent loads.

For steel-plate elements, criteria based on elastic buckling control are often employed
for SLS design, in some cases to prevent such an occurrence, and in other cases to allow
elastic buckling to a known and controlled degree. Elastic plate buckling, and the related
effects such as relatively large lateral deflections, must be prevented if such effects are
likely to be detrimental. On the other hand, since a plate may have some reserve strength
beyond elastic buckling until its ultimate strength is reached, to allow elastic buckling in a
controlled manner can in some cases lead to a more efficient structure. Later in Chapters 3
and 5 of this book, the use of such elastic buckling strength SLS design methodologies
for steel-plated structural members will be presented and discussed further.

1.2.2 Ultimate Limit State Design

The structural design criteria to prevent the ULS are based on plastic collapse or ultimate
strength. The simplified ULS design of many types of structures including merchant
ship structures has in the past tended to rely on estimates of the buckling strength of
components, usually from their elastic buckling strength adjusted by a simple plasticity
correction. This is represented by point A in Figure 1.2. In such a design scheme based
on strength at point A, the structural designer does not use detailed information on the
post-buckling behavior of component members and their interactions. The true ultimate
strength represented by point B in Figure 1.2 may be higher although one can never be
sure of this since the actual ultimate strength is not being directly evaluated.

In any event, as long as the strength level associated with point B remains unknown (as
it is with traditional allowable stress design or linear elastic design methods), it is difficult
to determine the real safety margin. Hence, more recently, the design of structures such
as those of navy ships as well as offshore platforms and land-based structures such as
steel bridges has tended to be based on the ultimate strength.

The safety margin of structures can be evaluated by a comparison of ultimate strength
with the extreme applied loads (load effects) as depicted in Figure 1.2. To obtain a safe
and economic structure, the ultimate load-carrying capacity as well as the design load
must be assessed accurately. The structural designer may even desire to estimate the
ultimate strength not only for the intact structure, but also for structures with existing or
premised damage, in order to assess their damage tolerance and survivability.

The ULS design criterion can also be expressed by Equation (1.1). The characteristic
measure of design capacity, Cq, in Equation (1.1) is in this case the ultimate strength while
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A
Linear < Ultimate strength
elastic / B
response ,,'

\/
A

’ -—— Buckling strength

Load

, Design load level

T~ Proportional limit

Displacement

Figure 1.2 Structural design considerations based on the ultimate limit state

Dy is the related load or demand measure. For the ULS design, the resulting capacity
factor, ym, related to variability of design capacity, Cq, is sometimes taken as ym = 1.15
for marine structures (NTS 1998).

It is of importance to note that any failure in a structure must ideally occur in a ductile
rather than brittle manner. This is because avoiding brittle failure will lead to a structure
that does not collapse suddenly, since ductility allows the structure to redistribute internal
stresses and thus absorb greater amounts of energy prior to global failure. Adequate
ductility in the design of a structure is facilitated by:

e meeting requisite material toughness requirements;

e avoiding failure initiation situations of combined high stress concentration and unde-
tected weld defects in the structural details;

e designing structural details and connections so as to allow a certain amount of plastic
deformation, i.e., avoiding ‘hard spots’; and

e arranging the members such that a sudden decrease of structural capacity would not
take place due to abrupt transitions or member failure.

This book is primarily concerned with ULS design methodologies for structural mem-
bers and systems constituted of such ductile members.

1.2.3 Fatigue Limit State Design

The FLS design is carried out to ensure that the structure has an adequate fatigue life.
Also the predicted fatigue life can be a basis for planning efficient inspection programs
during operation of the structure. Although this book is concerned with the ULS design
of steel structures, we discuss fatigue design here for the sake of completeness since no
other part of the book will include the topic of fatigue design. The treatment here is not
meant to be comprehensive but rather, introductory.

The design fatigue life for structural components is normally based on the structure
service life required by the operator or other responsible body such as a class society.
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For marine structures, the fatigue life is often taken as 20 years or longer. The shorter
the design fatigue life, or the higher the required reliability, the smaller the inspection
intervals need to be if an operation free from crack problems is to be assured.

The FLS design and analysis should in principle be undertaken for every suspect source
of fatigue cracking which includes welded joints and local areas of stress concentrations.
The structural design criteria for the FLS are usually based on the cumulative fatigue
damage of a structure under repeated fluctuation of loading, as measured by the Palm-
gren—Miner cumulative damage accumulation rule. A particular value of the Miner sum
(e.g., unity) is taken to be synonymous with the formation or initiation of a crack. The
structure is designed so that when analyzed for fatigue, a reduced target Miner sum results,
implying that cracks will not form with a given degree of certainty.

The fatigue damage at a crack initiation site is affected by many factors such as the
stress ranges experienced during the load cycles, local stress concentration characteristics,
and the number of stress range cycles. A comprehensive literature review on the fatigue
damage analysis methods has been made by many investigators (e.g., Fricke et al. 2000,
among others).

Two types of the FLS design approach are typically considered for steel structures,
namely:

e S—N curve approach (S = fluctuating stress, N = associated number of cycles)
e fracture mechanics approach.

In the S—N curve approach, the Palmgren—Miner cumulative damage rule is applied
together with the relevant S—N curve. This application normally follows three steps,
namely (1) define the histogram of cyclic stress ranges, (2) select the relevant S—N curve,
and (3) calculate the cumulative fatigue damage.

One of the most important factors in fatigue design is the characteristic stress to be
employed in both defining the S—N curve (the capacity) and also in the stress analysis
(the fluctuating local fatigue stresses being the demand on the structure). Four types of
methods have been suggested on this basis, namely:

the nominal stress method;
the hot spot stress method;
the notch stress method; and
the notch strain method.

The nominal stress method uses the nominal stresses in the field far from the stress con-
centration area together with S—N curves that must include the effects of both structural
geometry and the weld implicitly. In the nominal stress method, therefore, the S—~N curve
should be selected for structural details depending on the detail type and weld geometry
involved. A large number of S—N curves for various types of weld as well as geometry
are generally needed, and, indeed, are available. When a limited number of standard S—N
curves are used, any structural detail being considered must be categorized as belonging
to one of those categories; this requires a certain amount of judgment.

The hot spot stress method uses a well-defined hot spot stress in the stress concentration
area to take into account the effect of structural geometry alone, while the weld effect
is incorporated into the S—N curve. This is a very popular approach today, but certain
practical difficulties must be conceded. The most basic of these pertains to the hot spot
stress concept itself, which is more appropriate for surface cracks than imbedded cracks.
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Difficulties can also arise in the consistent definition of hot spot stresses across a range of
weld and structural geometries, and the estimation of the hot spot structural stress needed
for the application of the technology in regions of stress concentration. For instance,
attention should be paid to the extrapolation of the stress to the weld toe for calculating
the stress concentration factor, while the need for the appropriate selection of a relevant
S—N curve among those for different weld types is still significant.

The notch stress method uses the stresses at the notch calculated by taking into account
the effects of both structural geometry and weld, while the S—N curve is developed
representing the fatigue properties of either the base material, the material in the heat-
affected zone, or the weld material, as appropriate. A significant advantage of the notch
stress method is that it can address specific weld toe geometry in the calculation of fatigue
damage. A related difficulty is that the relevant parameters (e.g., the weld toe angle) in
the case of the actual structure must be known with some confidence.

The notch strain method uses the strains at the notch when low-cycle fatigue is predom-
inant, because the working stresses in this case sometimes likely approach the material
yield stress and the stress-based approaches are hence less appropriate.

The fracture mechanics approach considers that one or more premised cracks of a small
dimension exist in the structure, and predicts the fatigue damage during the process of
their crack propagation including any coalescence and break through the thickness, and
subsequent fracture. In this approach to design, a major task is to pre-establish the relevant
crack growth equations or ‘laws’. The crack growth rate is often expressed as a function
of only the stress intensity factor range at the crack tip, on the assumption that the yielded
area around the crack tip is relatively small. In reality, the crack propagation behavior is
affected by many other parameters (e.g., mean stresses, load sequence, crack retardation,
crack closure, crack growth threshold, stress intensity range) in addition to stress intensity
factor range.

While the fracture mechanics will be dealt with later in Chapter 10, the S—N curve
approach using nominal stresses is now briefly described under the assumption of the
linear cumulative damage rule, i.e., the Palmgren—Miner rule.

In the fatigue damage assessment of welded structural details, of primary concern is the
ranges of cyclic maximum and minimum stresses rather than mean stresses, as shown in
Figure 1.3, because of the usual presence of residual mean stresses near yield magnitude.
This tends to make the entire stress range damaging. The situation in non-welded cases
is of course different, and in such cases mean stresses can be important.

Ao = Stress range

Omax

Omean

0

Omin

Figure 1.3 Cyclic stress range versus time
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For practical FLS design using the nominal stress-based approach, the relevant S—N
curves must be developed for various types of weld joints. To do this, fatigue tests are
carried out for various types of specimen which are subjected to cyclic stress ranges
of uniform amplitude. As indicated in Figure 1.3, the maximum and minimum stresses
are denoted by Omax and Omin, respectively. In such tests, the effect of mean stress,
Omean = (Omax + Omin)/2, on fatigue damage can be quantified, which is necessary in non-
welded cases. For convenience, the fatigue tests for specimens incorporating non-welded
geometries are usually carried out at either omin = 0 Or Omax = —Omin With constant stress
range, i.e., A0 = Opax — Omin = 20,, where o, is the stress amplitude.

Based on the fatigue test results, the number of stress cycles, Nj or NE, the former being
the crack initiation life, i.e., until a crack initiates, and the latter being the fracture life,
e.g., until a small-scale test specimen is separated into two pieces, are obtained. Through
a series of such tests for a variety of stress ranges, Ao, the S—N curves for the particular
structural details may typically be plotted as shown in Figure 1.4. The curves for design
are usually expressible by curve fitting the test results plotted on a log—log scale, namely

log N =loga — 25 — mlog Ao (1.2a)
N(Ao)" = A (1.2b)

where Ao = stress range, N = number of stress cycles with constant stress range, Ao,
until failure, m = negative inverse slope of the S—N curve, log A =loga —2s,a = life
intercept of the mean S—N curve, s = standard deviation of log N.

For the FLS design criterion based on the S—N curve approach, Equation (1.1) may be
rewritten in the non-dimensional form when the distribution of a long-term stress range
is given by a relevant stress histogram in terms of a number of constant amplitude stress
range blocks, Ao;, each with a number of stress fluctuations, n;, as follows:

B B
n; 1 m
D= z N2 E ni(Ac;)" < D (1.3)
i=1 ! i=1

where D = accumulated fatigue damage, B = number of stress blocks, n; = number of
stress cycles in stress block i, N; = number of cycles until failure at the ith constant
amplitude stress range block, Ao;, D, = target cumulative fatigue damage for design.

[l Crack propagation

Log Ao

Log N, or log N

Figure 1.4 Typical S—N curves from constant amplitude tests
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To achieve greater fatigue durability in a structure, it is of importance to minimize
stress concentrations, potential flaws (e.g., misalignment, poor materials) and structural
degradation including corrosion and fatigue effects. Interrelated to fatigue design is the
maintenance regime to be used. In some cases, it may be more economical in design
to allow a certain level of possibility of fatigue damage, as long as the structure can
perform its function until repairs are made after the fatigue symptoms are detected. In
other cases, fatigue damage may not be allowed to occur, if it is inconvenient to inspect
the structure or interrupt production. The former approach may thus be applied as long
as regular inspections and related maintenances are possible, while the latter concept is
obviously more relevant if there are likely to be difficulties associated with inspections
and thus the high likelihood of undetected fatigue damage.

1.2.4 Accidental Limit State Design

The primary aim of the ALS design for steel structures may be characterized by the
following three broad objectives, namely:

e to avoid loss of life in the structure or the surrounding area;
e to avoid pollution of the environment; and
e to minimize loss of property or financial exposure.

In ALS design, it is necessary to achieve a design such that the main safety functions
of the structure must not be impaired during any accidental event or within a certain time
period after the accident. The structural design criteria for the ALS are based on limiting
accidental consequences such as structural damage and environmental pollution.

Since the structural damage characteristics and the behavior of damaged structures
depend on the types of accidents, it is not straightforward to establish universally applica-
ble structural design criteria for the ALS. Typically, for a given type of structure, design
accidental scenarios and associated performance criteria must be decided upon the basis
of risk assessment.

In the case of merchant ships or warships, possible accidental events that may need
to be considered for ALS include collisions, grounding, significant hydrodynamic impact
(slamming) leading to deck buckling or bottom damage, excessive loads from human error,
berthing or dry docking, internal gas explosions in oil tanks or machinery spaces, and
underwater or atmospheric explosions. In land-based structures, the accidental scenarios
may include fire, explosion, foundation movements or related structural damage from
earthquakes.

In selecting the design target ALS performance levels for such events, the approach is
normally to tolerate a certain level of damage consistent with a greater aim such as surviv-
ability or minimized consequences; not to do so would result in an uneconomical structure.

The main safety functions of the structure that should not be compromised during any
accident event or within a certain time period after the accident include:

usability of escape ways;

integrity of shelter areas; and control spaces;
global load-bearing capacity;

integrity of the environment.
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Therefore, the ALS-based design criteria should be formulated so that the main safety
functions mentioned above will work successfully, and the following are considered to
adequate levels:

energy dissipation related to structural crashworthiness;
capacity of local strength members or structures;
capacity of the global structure;

allowable tensile strains to avoid tearing or rupture; and
endurance of fire protection.

For the ALS design, the integrity of the structure will be typically checked in two
steps. In the first step, the structural performance against design accident events will be
assessed, while post-accident effects such as damage to the environment are evaluated in
the second step.

In the case of accidents to ships, for instance, the primary concern of the ALS design is
to keep the watertightness of ship compartments, the containment of dangerous or pollutant
cargoes (e.g., chemicals, bulk oil, liquefied gas), and the integrity of reactor compartments
of nuclear-powered ships. To continue normal operations for the structure’s mission, it is
also of importance to keep the integrity and residual strength of damaged structures at a
certain level, immediately after the accidents occur.

The different types of accident events normally require different methodologies to ana-
lyze the resistance of the structure. For ALS design criteria under predominantly impact-
oriented loading, Equation (1.1) may typically be rewritten using energy-dissipation-
related criteria adopted with the view that the safety of the structure or the environment
is not lost, as follows:

Exye < b (1.4)

T

where Ey = kinetic energy lost during the accident, E, = available energy absorption
capability until critical damage occurs, Y, ¥, = partial safety factors related to kinetic
energy loss and energy absorption capability.

Accidental load

N\

Energy dissipation

Displacement

Figure 1.5 Energy absorption of the structure under accidental loading
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The dissipated energy of the structure during the accident may usually be calculated by
integrating the area below the load—displacement curve of the structure under accidental
loading as shown in Figure 1.5. In Chapter 9, a more elaborate description for the ALS
design of marine structures is presented.

1.3 Material Behavior of Structural Steels

In structural design, it is of obvious importance to select suitable materials. In this regard,
in addition to strength, attention should be paid to ductility or toughness, weldability and
corrosion resistance requirements for the steel concerned.

Steels used for structural applications are typically classified into four groups with
progressively increasing strengths, namely carbon steels, high-strength low-alloy (HSLA)
steels, heat-treated carbon and HSLA steels and heat-treated alloy steels.

The structural designer must have a better understanding of the mechanical properties
of a structural steel, which depend on many factors such as its composition, heat treat-
ment and thickness (the grain size of thinner rolled steel plating tends to be smaller, for
instance), and also the effects of temperature and strain rate on mechanical properties.

In the following, the characteristics of mechanical properties for structural steels are
briefly noted. For more elaborate descriptions, Brockenbrough for example (1983, 1991)
may be referred to.

1.3.1 Monotonic Tensile Stress-Strain Curve

Figure 1.6(a) shows typical stress—strain curves for structural steels which are obtained
by using monotonic tensile coupon tests, the stress versus strain curves representing

800
Heat-treated alloy steels

Heat-treated carbon and HSLA steels
E HSLA steels

Stress (MPa)
F-S
[
o
|

Carbon steels

Strain

(@)

Figure 1.6 (a) Typical stress—strain curves for structural steels (Brockenbrough & Johnston
1981); (b) Idealized monotonic stress—strain relationship for structural steels; (c) A schematic of
stress—strain curve and offset yield stress for heat-treated higher tensile steels
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Figure 1.6 (continued)

repeated cyclic behavior being usually different. Figure 1.6(b) represents typical schematic
relationships between nominal stress, o, and strain, &, for structural steels.

Mechanical Property Characterization

For the ULS design, the relevant mechanical properties of structural steels can be char-
acterized by the following parameters, namely:

e Young’s modulus (or modulus of elasticity), E
e proportional limit, op
e upper yield point, oyy
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lower yield point, oy (Foy)

yield strength, oy

yield strain, ey

strain-hardening strain, &
strain-hardening tangent modulus, Ej
ultimate tensile strength, ot

ultimate tensile strain, et

necking tangent modulus, E,
fracture strain, &g

Poisson’s ratio, v

Young’s Modulus, E

The initial relationship between stress and strain is linear elastic wherein the steel recovers
perfectly upon unloading. The slope of the linear portion of the stress—strain relationship
in the elastic regime is defined as the modulus of elasticity, E (also called Young’s
modulus). Table 1.2 indicates typical values of Young’s moduli for selected metals and
metal alloys at room temperature.

Poisson’s Ratio, v

Poisson’s ratio, v, is the ratio of the transverse strain to longitudinal strain of the coupon
under axial load in the elastic regime. For structural steels, the value of v is in the range
0.25-0.33, and is typically taken as 0.3 for ULS analysis of steel-plated structures, as
indicated in Table 1.2.

Elastic Shear Modulus, G

The mechanical properties of steels under shear are usually defined using principles of
structural mechanics rather than by tests. The elastic shear modulus, G, is expressed by
a function of Young’s modulus, E, and Poisson’s ratio, v, as follows:

E
G=— 1.
2(1+v) (>
Proportional Limit, op

The maximum stress in the elastic regime, i.e., immediately before initial yielding, is
termed proportional limit, op.

Table 1.2 Typical values of Young’s moduli and Poisson’s
ratios for metals and metal alloys at room temperature (Cal-
lister 1997).

Material E (GPa) v

Aluminum and aluminum alloys 69 0.33
Copper 110 0.34
Steels (plain carbon) 207 0.30
Titanium and titanium alloys 104-116 0.34
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Yield Point, Yield Strength, oy, Yield Strain, ey

Most lower yield strength steels have upper and lower yield points. The latter typically
has an extended plateau in the stress—strain curve, being approximated by yield strength,
oy, and the corresponding yield strain, ey = oy/E.

Mechanical properties of steel vary with the amount of work and heat treatment applied
during the rolling process. Typically plates which receive more work have higher yield
strength than plates that do not. The yield strength of a steel is also increased by the heat
treatments (e.g., quenching, tempering) or cold forming.

For heat-treated (i.e., quenched or tempered) or cold-formed higher tensile steels, the
stress versus strain curve monotonically increases until it reaches a maximum value and
neither upper nor lower yield points may appear, as shown in Figure 1.6(c). Thus the yield
strength may not be determined based on the definition indicated above. In this case, the
yield strength is commonly defined as the stress at the intersection of the stress—strain
curve and a straight line passing through an offset point strain, i.e., (0, €) = (0, 0.002),
which is parallel to the linear portion of the stress—strain curve in the elastic regime.

For structural design purposes, regulatory bodies or classification societies identify a
‘minimum’ yield strength required of a particular steel, and its chemical composition and
heat treatment. The specified yield stresses are normally in the range of 205-290 MPa for
carbon steels, 290—450 MPa for HSLA steels, 315-515 MPa for heat-treated and HSLA
steels and 620—690 MPa for heat-treated alloy steels (Brockenbrough 1983).

Strain-hardening Tangent Modulus, Ey,

Beyond the yield stress or strain, the steel flows plastically without appreciable changes
in stress until the strain-hardening strain, ey, is reached. The slope of the stress—strain
curve in the strain-hardening regime is defined as the strain-hardening tangent modulus,
Ej,, which may not be constant, but is typically 5 to 15% of the Young’s modulus for
structural steels.

The stress beyond the yield strength of the elastic—plastic material with strain hardening,

od, is often expressed at a certain level of plastic strain as follows:

EEs
E — Ep

ol = oy + & (1.6)

where ¢, = effective plastic strain.

Figure 1.7 shows the illustrative effect of strain hardening on the elastic—plastic large-
deflection behavior (i.e. average stress—strain curve) of a steel rectangular plate under
uniaxial compressive loads in the longitudinal direction, as predicted by nonlinear finite
element analysis. The plate is simply supported at all edges, keeping them straight. It is
evident that because of the strain-hardening effect the steel plate ultimate strength can be
larger than that obtained by neglecting it. For pessimistic strength assessment of steel-
plated structures, however, an elastic and perfectly plastic material model, i.e., without
strain hardening, may be considered sufficient.

Ultimate Tensile Strength, ot

When strain exceeds the strain-hardening strain, ey, the stress increases above the yield
stress, oy, because of strain-hardening, and this behavior can continue until the ultimate
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Figure 1.7 The effect of strain hardening on the ultimate strength of a steel plate under axial
compression (wy, = buckling mode initial deflection of the plate)

tensile strength (also simply termed tensile strength), or, is reached. The value of oy is
obtained by the maximum axial tensile load divided by the original cross-sectional area
of the coupon.

The specified tensile strengths are normally in the range of 380—620MPa for carbon
steels, 415—550 MPa for HSLA steels, 450-790 MPa for heat-treated and HSLA steels
and 760895 MPa for heat-treated alloy steels (Brockenbrough 1983). The ultimate tensile
strength, o, of structural steels must normally be greater than 1.2 times the minimum
yield strength, oy, for a sufficient ductility or rupture margin. The ultimate tensile strain,
er, of low-strength structural steels is usually at least 20 times the yield strain, sy.

Necking Tangent Modulus, E,

With further increase in the strain, the large local reduction of cross-section which is
termed necking occurs. The internal stress decreases in the necking regime. The slope of
the stress—strain curve in the necking regime is sometimes defined as necking tangent
modulus, E;.

Fracture Strain, ¢

The steel ruptures when the strain reaches the fracture strain, er, perhaps 20% for bare
steel, but considerably less for the material of the heat-affected zone, and even less (e.g.,
8%) for the weldment material. When any defect such as notches or premised cracks
exists, the fracture strain can significantly decrease further. The fracture strain, s, of
structural steels on a gauge length of 5.65./A¢ (Ao = original cross-sectional area) must
not be less than 15% (ENV 1993-1-1 1992).

1.3.2 Yield Condition under Multiple Stress Components

For a one-dimensional strength member under uniaxial tensile or compressive loading,
the yield strength determined from a uniaxial tension test can be used to check the state
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of yielding, the essential question to be answered being simply whether the axial stress
reaches the yield strength. ‘

A plate element which is the principal strength member of steel-plated structures is
likely to be subjected to a combination of biaxial tension/compression and shear stress,
which can be usually considered to be in a plane stress state (as contrasted to a state of
plane strain).

For an isotropic two-dimensional steel member for which the dimension in one direc-
tion is much smaller than those in the other two directions, and with three in-plane stress
components (i.e., two normal stresses, oy, oy, and shear stress, Tyy) OF equivalently, two
principal stress components (i.., 01, 02), three types of yield criteria are usually adopted
as follows:

(1) Maximum principal-stress-based criterion: The material yields if the maximum abso-
lute value of the two principal stresses reaches a critical value, namely

max(|o1], |o2]) = oy (1.7a)

(2) Maximum shear-stress-based criterion (also called the Tresca criterion): The material
yields if the maximum shear stress, Tmax, reaches a critical value, namely

01— 02
2

oy
=— 1.7b
5 (1.7b)

Tmax =

(3) Strain-energy-based criterion (also called the Mises—Hencky or Huber—Hencky—Mises
criterion): The material yields if the strain energy due to geometric changes reaches a
critical value, which corresponds to that where the equivalent Stress, Oeq, reaches the
yield strength, oy, determined from the uniaxial tension test as follows:

Oeq = /02 — 020y + 02 + 377, =0y (1.7¢)

It is recognized that the yield condition Equation (1.7a) is relevant for a brittle material,
and that the last two conditions, Equations (1.7b) and (1.7¢) are more appropriate for a
ductile material. The shear yield strength, Ty, under pure shear, can be determined by
solving Equation (1.7¢) with regard to 7,y when oy = 0y = 0, the result being as follows:

Ty = (1.7d)

oy
V3

1.3.3 Effect of Temperature

During fabrication and operation, steel structures can be exposed to different levels of tem-
peratures, and thus the designer needs to account for the influence of temperature on the
behavior of structural steels. Mechanical properties of a structural steel vary with tempera-
ture. In material behavior, changes in temperature can cause the following effects, namely:

e elastic constants (e.g., E, v) of the material can change;

e strain can develop without mechanical loading;

e material yield strength decreases with increase in temperature; and
o the material can lose ductility with decrease in temperature.
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For many structural materials, a change in temperature of a few tens of degrees Celsius
from room temperature may not result in much change in the elastic constants. Therefore,
the effect of temperature on the elastic constants is often neglected in the structural design
as long as changes in temperature are not significant. The strain caused by a temperature
change is termed thermal strain. When change in temperature is relatively small, the
thermal strain is nearly a linear function of the temperature change. If the temperature of
the material is changed from Ty to T, then the thermal strain, €T, is approximated by

eT = (T — Tp) (1.8a)

where « is the linear coefficient of thermal expansion. Table 1.3 indicates the linear
coefficients of thermal expansion for selected metals and metal alloys at room temperature.
The total strain in a structure is generally the sum of the strains due to mechanical
loading and temperature change. For instance, the total strain, &, of a bar under axial
tensile stress, o, and with a change in temperature is given in the material elastic regime

as follows: .
&= E+a(T—T0) (1.8b)

The important properties in determining the performance of steel at a specified temperature
are its strength, deformation, thermal expansion, specific heat and thermal conductivity
characteristics. At high enough temperatures, the stiffness and strength of structural steels
may be reduced even if the ductility increases. At low temperature, the yield strength
tends to increase while brittle fracture can more easily initiate and propagate since the
ductility is reduced. However, it is noted that temperature is not usually the sole reason of
brittle fracture, which can occur by a sufficiently adverse combination of tensile strength,
temperature, strain rate and geometrical discontinuity (notch) and so on.

For fire safety of steel structures, the capacity of structural members should be adequate
to resist the applied loads in a fire. While the behavior of steel in fire is affected by the
heating rate, steel begins to lose strength at temperatures above 300 °C and reduces in
strength at an approximately steady rate until around 800 °C, as shown in Figure 1.8
(Lawson 1992). The strength reduction factor in Figure 1.8 represents the yield strength
of steel at a particular temperature relative to that at room temperature. To avoid excessive
deformations due to fire, regulations recommend strain limits: ECCS (1982) uses a 0.5%
limit for temperatures exceeding 400 °C, BS 5950 (1985) uses a 1.5% limit for beams and
0.5% limit for columns, and ENV 1993-1-2 (1992) of Eurocode 3 uses a 2% limit. These

Table 1.3 Linear coefficients of thermal expansion for selected metals and
metal alloys at room temperature (Callister 1997).

Material Thermal expansion coefficient, 1076 /°C
Aluminum 23.6

Aluminum alloys (cast) 18.0-24.5

Aluminum alloys (wrought) 19.5-24.2

Copper 17.0

Steels (low alloy) 11.1-12.8

Steels (plain carbon) 11.0-12.0

Titanium and titanium alloys 7.6-9.8
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Figure 1.8 Strength reduction factor for structural steel at elevated temperatures (Lawson 1992)

strain limits can be useful to define the ALS criteria against fire accidents; ALS-related
design was previously noted in Section 1.24.

1.3.4 The Bauschinger Effect —~ Cyclic Loading

During operation, structural members are likely to be subjected to load cyclic effects, as
shown in Figure 1.9. If a steel that has been plastically strained in tension is unloaded
and subsequently strained in compression, the stress—strain curve for the compression
Joading deviates from a linear relationship at stresses well below the yielding point of
the virgin material, but it returns to the point of maximum stress and strain for the first
tension loading cycle. The same effect is observed for the opposite loading cycle, i.e.,
compression first and tension next. In this case, the modulus of elasticity is reduced, as
shown by the shape of the stress—strain curve of Figure 1.9. This phenomenon is typically
termed the Bauschinger effect. When stiffness is of primary concern, ¢.g., in evaluating
buckling or deflection, the Bauschinger effect may be of interest.

Within an acceptable level of accuracy, however, the mechanical properties of a par-
ticular steel as determined by uniaxial tension testing are also approximately accepted as
being valid for the same steel under uniaxial compression.

1.3.5 Limits of Cold Forming

Excessive strain during cold forming can exhaust ductility and cause cracking. Hence the
strain in cold forming structural shapes must be limited not only to prevent cracking but
also to prevent buckling collapse of structural elements subject to compressive loads. The
cold-forming-induced strain is usually controlled by requiring the ratio of bending radius
to the plate thickness to be large, e.g., 5 to 10.
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Figure 1.9 The Bauschinger effect in carbon steels (Brockenbrough & Johnston 1981)

1.3.6 Lamellar Tearing

In most cases of steel-plated structures, of primary concern related to load effects are
the behavior in the length and breadth direction of plates. The steel behavior in the
wall thickness direction is normally not of interest. In heavy welded steel constructions,
particularly in joints with thick plates and heavy structural shapes, however, crack-type
separation or delamination can take place in the wall thickness direction underneath the
surface of steel plates or at weld toes. This failure is typically caused by large through-
thickness strain, sometimes associated with weld metal shrinkage in highly restrained
joints. This phenomenon is termed lamellar tearing. Careful selection of weld details,
filler metal and welding procedure, and the use of steels with controlled through-thickness
properties (the so-called Z grade steels), can be effective to control this failure mode.

1.3.7 Variability in Mechanical Properties

The mechanical properties of structural steels as obtained by the tensile coupon tests
in any specific case may vary from specified minimum values for several reasons. One
reason is due to locations of the test specimen taken. According to a comparative study on
the yield point at various selected sample locations of coupon test specimens, the mean
difference was found to be —5MPa (AISI 1974), for example. However, this is usually
offset by the fact that the official test value is usually greater than the specified minimum
value, since the mean yield stress and COV (coefficients of variation) are normally in
the range of 1.05-1.10 and 0.10-0.11, respectively (Brokenbrough 1991). This implies
that for ULS design purposes the specified minimum values of structural steels may be
safely used.
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1.4 Strength Member Types for Steel-Plated Structures

The geometrical configuration of a steel-plated structure is determined primarily depending
on the function of the particular structure. Figure 1.10 shows a basic part of a typical
steel-plated structure. A major difference between plated and framed structures is that
principal strength members of the former type of structure are plate panels together with
support members, while the latter typically consists of truss or beam members for which
the dimension in the axial direction is usually much greater than those in the other two
directions. Typical examples of steel-plated structures are ships, deck structures of offshore
platforms and box girder bridges.

Basic types of structural members usually making up steel-plated structures are as
follows:

) platé panels: plating, stiffened panel, corrugated plate;
¢ small support members: stiffener, beam, column, beam—column; and
e strong main support members: plate girder, box girder.

To improve the stiffness and strength of plate panels, increasing the stiffener dimensions
is usually more efficient than simply increasing the plate thickness, and thus the plate
panel is usually reinforced by beam members (stiffeners) in the longitudinal or transverse
direction. Figure 1.11 shows typical beam members used for the stiffening of plating. A

Longitudinal girders

Figure 1.10 Typical steel-plated structure
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Figure 1.11 Various types of beam members (stiffeners)
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Figure 1.13 Various types of strong main support members

self-stiffened plate, e.g., corrugated plate as shown in Figure 1.12, may also be used in
some cases.

When the stiffened panels are likely to be subjected to lateral loads or out-of-plane bend-
ing, or just for lateral support, they are supported by stronger beam members. Figure 1.13
shows typical strong main support members used for building steel-plated structures. For
marine structures, plate girders which are composed of deep webs and wide flanges are
typically employed for main support members. The deep web of a plate girder is often
stiffened vertically and/or horizontally. Box-type support members which consist of plate
panels are used for construction of land-based steel bridges. Diaphragms or transverse
floors are arranged at a relevant spacing in the box girder.

While plating primarily sustains in-plane loads, support members resist out-of-plane
(lateral) loads and bending. A plate panel between stiffeners is called ‘plating’ and the
plating with stiffeners is termed ‘stiffened panel’. A large stiffened panel supported by
heavy support members is sometimes idealized by a grillage, which in concept is essen-
tially a set of intersecting beam members. When a one-dimensional strength member is
predominantly subjected to axial compression, it is called a ‘column’, while it is termed a
‘beam’ under the action of lateral loads or bending. A one-dimensional strength member
under combined axial compression and bending is called a ‘beam—column’.

Strong main support members are normally called ‘girders’ when they are located in
the primary loading direction (i.e., longitudinal direction in a box girder or a ship hull),
while they are sometimes called ‘frames’ or main support members when they are located
in the direction orthogonal to the primary load direction (i.e., in the transverse direction
in a box girder or a ship hull).

For strength analysis of steel-plated structures, stiffeners or some support members
together with their associated plating are often modeled as beams, columns or
beam-columns.

1.5 Types of Loads

The terminology related to the classification of applied loads for marine structures is
similar to that for land-based structures. The types of loads to which steel-plated structures
or strength members are likely to be subjected may be categorized into the following four
groups, namely:
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e dead loads;
e live loads;

e environmental loads; and
e accidental loads.

Dead loads (also called permanent loads) are time-independent, gravity-dominated ser-
vice loads. Examples of dead loads are the weight of structures or permanent items that
remain in place throughout the life of the structure. Dead loads are typically static loads
and they can usually be determined accurately even if the weight of some items may in
some cases be unknown until the structural design has been completed.

Live loads are gravity loads that vary in magnitude and location during normal oper-
ation of the structure. Examples of live loads are weight of persons, furniture, movable
equipment, wheel loads from vehicles and stored consumable goods. In the design of land-
based bridges, highway vehicle loading is usually separately classified under highway live
loads. While some live loads (e.g., persons and furniture) are practically permanent and
static, others (e.g., cranes and various types of machinery) are highly time dependent
and dynamic. Since the magnitude, location and density of live load items are generally
unknown in a particular case, the determination of live loads for design purposes is not
straightforward. For this reason, regulatory bodies sometimes prescribe the design live
loads which are based on experience and proven practice.

Environmental loads are loads related to wind, current, waves, Snow and earthquake.
Most environmental loads are time dependent and repeated in some fashion, i.e., cyclic.
The determination of design environmental loads in the marine field is often specified
by classification society rules, typically using the concept of a mean return period. The
design loads of snow or wind, for instance, may be specified based on a return period of
50 years, indicating that extreme snowfall or wind velocity that is expected to occur once
in 50 years is used for design.

Accidental loads are loads arising from accidents such as collision, grounding, fire,
explosion and dropped objects. Accidental loads typically have a dynamic or impact effect
on structural behavior. Guidelines for predicting and accounting for accidental loads are
more meager because of the unknown nature of accidents. But it is important to treat such
loads in design, particularly where novel types of structures are involved, about which
past experience may be lacking. This often happens in the offshore field, where several
new types of structures have been introduced in the last two decades.

The maxima of the various types of loads mentioned above are not always applied
simultaneously, but more than one load type normally coexist and interact. Therefore, the
structural design needs to account for the effects of phasing for defining the combined
loads. Usually, this involves the consideration of multiple load combinations for design,
each representing a load at its extreme value together with the accompanying values of other
loads. Guidelines for relevant combinations of loads to be considered in design are usually
specified by regulatory bodies or classification societies for particular types of structures.

1.6 Basic Types of Structural Failure
This book is concerned with the fundamentals and practical procedures for limit state

design of steel-plated structures. One primary task in limit state design is to determine
the level of imposed loads which causes structural failure of individual members and
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overall structure. Therefore, it is of crucial importance to better understand what types of
structural failure can primarily occur.

Failure of ductile steel structures is normally related to either one or both of the fol-
lowing nonlinear types of behavior, namely:

o geometric nonlinearity associated with buckling or large deflection;
¢ material nonlinearity due to yielding or plastic deformation.

For steel members, many basic types of structural failure are considered, the more
important of which being as follows:

o large local plasticity;

¢ instability (also called buckling);

o fatigue cracking related to cyclic loading;

o ductile or brittle fracture, given fatigue cracking or pre-existing defects; and
e excessive deformations.

All of the basic failure types mentioned above do not always occur simultaneously,
but more than one phenomenon may in principle be involved until the structure reaches
the ULS. For convenience, the basic types of structural failure noted above are often
described and treated separately.

As the external loads increase, the most highly stressed region inside a structural mem-
ber will yield first resulting in local plastic deformation, and this decreases the member
stiffness. With further increase in the loads, local plastic deformation will grow larger
and/or occur at several different regions. The stiffness of the member with large local
plastic regions becomes quite small and the displacements increase rapidly, eventually
becoming so large that the member is considered to have failed.

Instability or buckling can occur in any structural member which is predominantly sub-
jected to load sets that result in compressive effects in the structure. In buckling-related
design, two types of buckling are considered, namely bifurcation and non-bifurcation
buckling. The former type is seen for an ideal perfect member without initial imperfec-
tions, while the latter typically occurs in an actual member with some initial imperfections.
For instance, a straight elastic column has an alternative equilibrium position at a critical
axial compressive load which causes a bent shape to suddenly occur at a certain value
of the applied load. This threshold load which separates into two different equilibrium
conditions is called buckling or bifurcation load for the member.

An initially deflected column or a beam—column induces bending from the beginning of
the loading contrary to the straight column, and lateral deflection increases progressively.
The member stiffness is reduced by a large deflection and local yielding, and eventually
it becomes zero at a peak load. The deflection of the member with very small or zero
stiffness becomes so large that the member is considered to have collapsed. In this case, an
obvious sudden buckling point does not appear until the member collapses, and this type
of failure is called non-bifurcation instability or limit-load buckling (Galambos 1988).

Due to repeated fluctuation of loading, fatigue cracking can initiate and propagate in
the stress concentration areas of the structure. Fracture is a type of structural failure
caused by the rapid extension of cracks. Three types of fracture are considered, namely
brittle fracture, rupture and ductile fracture. Brittle fracture normally takes place in low-
toughness materials or below a certain temperature when the ultimate tensile strength of
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steel diminishes sharply. For very high-toughness materials, rupture occurs by necking of
the member typically at room or higher temperature. Ductile fracture is an intermediate
fracture mode between the two extreme failure modes, namely brittle fracture and rupture.
In steels, the tendency to fracture is related not only to the temperature, but also to the
rate at which loading is applied. The higher the loading rate, the greater the tendency
toward brittle fracture.

1.7 Fabrication-related Initial Imperfections

Steel structures are typically fabricated by flame cutting and welding, and thus initial
imperfections in the form of initial distortions and residual stresses may develop and will
reduce the structural capacity. Therefore, these initial imperfections should be included
in structural design as parameters of influence.

When local heating is input to structural steels, the heated part will expand, but because
of adjacent cold parts it will be subjected to compressive stress and distortion. When the
heated part is cooled down, it will be locally shrunk rather than revert to its initial shape
and thus now be subjected to tensile stress.

While some efforts have been made to predict the initial imperfections theoretically
or numerically, e.g., Masubuchi (1980) or Ueda (1999), approximate methods based on
the insights from measurements are usually adopted for design purposes, both because of
the complexity of the phenomena involved and because the related effects in flat-plated
structures are normally of a secondary rather than primary interest.

Both the residual stresses and welding distortions should be minimized by application of
proper welding procedures and fabrication methods. While in practice heat treatments for
stress relief may usually not be undertaken to reduce the welding residual stresses, the con-
trol of welding procedures will help, including (1) proper positioning of the components
of joints before welding, (2) selection of welding sequences determined by experience and
expertise, (3) deposition of a minimum volume of weld metal with a minimum number
of passes for the design condition, and (4) preheating. Weld procedures are validated by
shop testing (AISC 1993).

1.7.1 Weld Distortions

Figure 1.14 shows various types of welding-induced distortions. In practice, both angular
change and longitudinal bending distortion are of greater concern, while the shrinkages
in the longitudinal or transverse direction may often be neglected.

Figure 1.15 shows some typical initial deflection shapes of welded one-dimensional
members and their possible idealizations. For practical design purposes, the initial deflec-
tion shape of a welded one-dimensional member may be idealized as the dotted line in
Figure 1.15 which can be approximately expressed in mathematical form as follows:

TX
wo = 8o Sin — 1.9
0 =dosin — (1.9
where wq = initial deflection function, 8y = initial deflection amplitude, which is often

taken as 0.0015 L for a practical strength calculation at an ‘average’ level of imperfections,
L = member length between supports.
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Figure 1.14 Various shapes of welding-induced distortions
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Figure 1.15 Idealization of initial deflection shapes for welded one-dimensional members

Figure 1.16 represents a schematic of fabrication-related initial deflections in steel-
stiffened plate structures. According to measured data for welding-induced initial deflec-
tions of plates in merchant steel ship structures (e.g., Carlsen & Czujko 1978, Antoniou
1980, Kmiecik et al. 1995), the geometric configuration of such initial deflections is quite
complex. The insights developed by such measurements lead to the following expression
for the post-weld initial deflection of steel plating between stiffeners, namely

M N . .
Wo L inx . Jwy
— E E By;j sin —— sin —— (1.10a)
Wopl io1 =1 a b

where a = plate length, b = plate breadth. By;; indicates the welding-induced initial de-
flection amplitude normalized by the maximum initial deflection, wqp, which can be
determined based on the initial deflection measurements. The subscripts i and j denote
the corresponding half-wave numbers in the x and y directions.

If measured data for the initial deflection for plating are available, the initial deflec-
tion amplitudes of Equation (1.10a) can be determined by expanding Equation (1.10a)
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Figure 1.16 Fabrication-related initial deflections in steel-stiffened panels
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Figure 1.17 Some typical initial deflection patterns in steel plating between stiffeners in the long
(plate length) direction

appropriately using a selected number of terms, M and N, depending on the complexity
of the initial deflection shape.

For practical design purposes, further idealization may sometimes be necessary. The
measurements of initial deflection for plate elements in steel-plated structures show that
a multi-wave shape is predominant in the long direction, as shown in Figure 1.17, while
one half wave is found in the short direction, as shown in Figure 1.18.
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Figure 1.18 A typical initial deflection pattern in steel plating between stiffeners in the short
(plate breadth) direction

For a nearly square plate element, therefore, Equation (1.10a) may simplify by taking
M = N = 1. For a long plate element with a multi-wave shape in the x direction and one
half wave in the y direction, Equation (1.10a) becomes

M .

W L imx | my

_—= By; sin — sin — 1.10b
Z 0i a n ( )

In practice, M in Equation (1.10b) may be taken as an integer which corresponds to about
three or more times the a/b ratio greater than 1 (Paik & Pedersen 1996). On this basis,
Bg:i of Equation (1.10b) can be determined for the assumed M if the initial deflection
measurements are available. The values of coefficients, By;, for the initial deflection
shapes shown in Figure 1.17 are given in Table 1.4, by taking M = 11.

When relevant initial deflection measurements are not available, the initial deflection
amplitudes may be approximately defined by assuming an appropriate initial deflection
configuration as previously noted. For this purpose, some empirical formulations of the
maximum plate initial deflection are relevant for steel plates between stiffeners, namely:

e Faulkner (1975):

Wopl _ [kB*(tw/t) fort, <t
r {kﬁ2 for ty, >t (1.11a)

where 8 = (b/t)s/(0y/E), b = plate breadth (between stiffeners), ¢+ = plate thickness,
E = Young’s modulus, oy = material yield strength, z, = thickness of stiffener web,
k = coefficient which may be in the range 0.05-0.15 for marine structures and less
than 0.1 for land-based structures. Faulkner (1975) adopted for his sample calculations

Table 1.4 Initial deflection amplitudes for various initial deflection shapes indicated in Figure 1.17.

Initial By By Bos  Bus Bos Bos  Bor  Bog Bgo Boio  Bon
deflection
shape

#1 1.0 —0.0235 0.3837 —0.0259 0.2127 —0.0371 0.0478 —0.0201 0.0010 —0.0090 0.0005
#2 0.8807 0.0643 0.0344 —0.1056 0.0183 0.0480 0.0150 —0.0101 0.0082 0.0001 —0.0103
#3 0.5500 —0.4966 0.0021 0.0213 —0.0600 —0.0403 0.0228 —0.0089 —0.0010 —0.0057 —0.0007
#4 0.0 —0.4966 0.0021 0.0213 —0.0600 —0.0403 0.0228 —0.0089 —0.0010 —0.0057 —0.0007
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k=0.12 for 8 <3 and k =0.15 for g > 3, while Antoniou (1980) suggested k =
0.091 for t, < t and k = 0.0628 for ty, > ¢.
e Carlsen & Czujko (1978):

b
F’_t"ﬂ — 0.016? ~0.36 for — > 40 (1.11b)

e Antoniou (1980) (modified Carlsen & Czujko’s formula):

wopl _ [0.018b/t —0.55 for ¢ < 14mm (1.11c)
~; ~ 10.014b/t —0.32 fort > l4mm
e Smith et al. (1988):
w 0.02582 for slight level
0.18?  for average level (1.11d)
! 0.38%  for severe level
e Masaoka (1996): X
a2 =k(é) (1.11e)
t t

where k = coefficient which may be taken as k = 8 x 1073 for merchant ship structures.

Classification societies or other regulatory bodies specify construction tolerances of
strength members as related to the maximum initial deflection with the intention that the
initial distortions in the fabricated structure must be less than the corresponding specified
values. Some examples of the limit for the maximum plate initial deflection are as follows:

e Det Norske Veritas:
9? <0.01

where b is as defined in Equation (1.11a).
e Shipbuilding quality standards of Japan and Germany:

wopr < 7mm for bottom plate

wop < 6 mm for deck plate

e Steel box girder bridge quality standards of the UK:

w0p|§min<%+2, %), ¢t in mm

Related to this, it is of interest to note that quite often, specifications of quality to be
achieved are developed (and used) without specific reference to the loads and response
at a particular location. In that case, the corresponding specifications suggest wha}t can
be generally achieved in an economical way, rather than what should be achieved in the
context of a particular situation.
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Figure 1.19 Effect of initial deflection shape on the ultimate strength of a simply supported steel
plate under biaxial compression (assuming that buckling mode initial deflection = W)

It has been recognized that the initial deflection shape may affect the ultimate strength
behavior of steel plating as well. Figure 1.19 shows the effect of initial deflection shape on
the ultimate strength of a simply supported plate under biaxial compression. The solutions
by the nonlinear finite element method (FEM) were obtained by using the shapes of initial
deflection indicated in Figure 1.17 or Table 1.4.

1.7.2 Welding-induced Residual Stresses

Figure 1.20 shows typical residual stress distributions in welded steel members, represent-
ing the tensile residual stresses that develop in heat-affected zones and the compressive
residual stresses that then must also exist to achieve a self-equilibrium condition in the
plane of the member.

For practical design purposes, the welding residual stress distributions of a plate element
between support members for which welding has been carried out along its four edges
may be idealized to be composed of tensile and compressive stress blocks, such as those
shown in Figure 1.21. Among them, Figure 1.21(c) is a typical idealization of the welding
residual stress distribution in a plate element.

Along the welding line, tensile residual stresses are usually developed with magnitude
Oy in the x direction and oy, in the y direction, the welding being normally performed
in both x and y directions, see Figure 1.22. To obtain equilibrium, corresponding com-
pressive residual stresses with magnitude oy, in the x direction and oy, in the y direction
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Figure 1.20 Schematic illustration of tesidual stress distributions in welded steel members (+:
tension, —: compression)

are developed in the middle part of the plate element. From equilibrium consid'erati.ons,
the breadth or length of the related tensile residual stress blocks in the x and y directions
can be shown to be as follows:

o= — T pog = — g (1.12)
Orcx — Orx Orcy — Oty

The above-noted idealizations are largely consistent with the measurements of welding-
induced residual stresses in steel plate between two longitudinal stiffeners (Kmiecik 1970,
Cheng et al. 1996), see Figures 1.23(a) and 1.23(b). These figures indicate that the max-
imum tensile residual stress in such cases may well reach the yield stress. In evaluating
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Figure 1.21 Various idealizations of residual stress distribution in a plate element (+: tension,
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Figure 1.22 A typical idealized welding-induced residual stress distribution inside the steel-plate
element in the x and y directions

the effect of residual stresses on the compressive buckling strength, a somewhat reduced
tensile residual stress (e.g., 80% of the yield stress) may be used for idealization of the
welding residual stress distribution as indicated by the dotted line in Figure 1.23(b) if
potential shake-down effects are thought to be present.

Once the magnitudes of the compressive and tensile residual stresses are defined, the
breadths of the tensile residual stress blocks can be determined from Equation (1.12). One
can then define the residual stress distributions in the x and y directions, as expressed by

O for0<y<b Ony for0<x<aq
O = {arcx forby<y<b—b 0y =0cy forai<x<a-—a (1.13)
Oy forb—b<y<b Oyy fora—a<x=<a
The magnitude of post-weld residual stresses in the longer direction will normally
be larger because the weld length is longer. The residual stresses of plates in either
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Figure 1.23 (a) Example of residual stress distribution in mild steel plating between s'tiffene.:rs,
based on the measurements of Kmiecik (1970); (b) Sample of residual stress distribution in a high
tensile steel plating between stiffeners, based on the measurements of Cheng et al. (1996)

the unloaded or the shorter direction are often neglected. However, where needed, the
transverse (plate breadth direction) residual stresses may be approximated pessimistically
as follows:

Orcy = C;O'rcx (1.14)

where ¢ = correction factor which typically takes a value less than 1.0 in steel plates.
When the applied stress is predominant in the x direction, ¢ = 0 is often assumed.
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Based on the measurements for steel plates of naval ship structures, Smith et al. (1988)
suggest the following representative values for the overall strength offsetting effect of
welding-induced compressive residual stress of steel plates in the longitudinal (x) direction
(taking compressive stress as negative), namely

o —0.05 for slight level
== [——0.15 for average level (1.15)
oY —0.3 for severe level

These values of welding compressive residual stresses may be considered together
with the corresponding characteristic values of initial deformation levels as noted in
Equation (1.11).

1.8 Age-related Structural Degradation

In aging steel structures, of significance are defects related to corrosion and fatigue cracks,
sometimes in a marine environment. In a number of damage cases for aging marine and
land-based steel structures that have been reported, it is possible that corrosion damage
and fatigue cracks may have existed in primary and other strength members. In any event,
fatigue and corrosion are the two most important factors affecting structural performance
over time.

It is therefore of importance that the structural designer and operator should have
a better understanding of the location and extent of structural damage formed during
operation of the structure and how it can affect the structural capacity. One reason that
this is necessary is to facilitate repair decisions. Another possible broad reason may be
to support a structural life extension decision later in life.

1.8.1 Corrosion Damage

Due to corrosion damage, the structural capacity can be decreased, and/or leakages can
take place in oil/watertight boundaries, the latter possibly leading to undesirable pollution,
cargo mixing, or gas accumulation in enclosed spaces. The corrosion process is time
variant and the amount of corrosion damage is normally defined by a corrosion rate with
units of, say, mm/year, representing the depth of corrosion diminution per year. The
corrosion rate itself can be a function of time in some cases, due for example to effects
such as increased structural flexibility as the corrosion process proceeds.

Figure 1.24 shows some of the more typical types of corrosion-related damage which
affect the strength of steel structures. The ‘general’ corrosion (also called ‘uniform’ cor-
rosion) uniformly reduces the thickness of structural members as shown in Figure 1.24(a),

(b)

@ ©

Figure 1.24 Typical types of corrosion damage: (a) general corrosion; (b) localized corrosion;
(c) fatigue cracks arising from localized corrosion
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while localized corrosion (e.g., pitting or grooving) causes degradation in local regions as
shown in Figure 1.24(b). Sometimes fatigue cracks may arise from localized corrosion,
as shown in Figure 1.24(c).

The corrosion damage of steel structures is influenced by many factors including the
corrosion protection system and various operational parameters (Afanasieff 1975, Schu-
macher 1979, Melchers & Ahammed 1994). In general, the corrosion protection systems
employed for ships or offshore platforms are coatings (paint) and anodes. The operational
parameters include maintenance, repair, percentage of time in ballast, frequency of tank
cleaning, temperature profiles, use of heating coils, humidity conditions, water and sludge
accumulation, microbial contamination, composition of inert gas, etc. To date, basic work
to understand the effect of many of these factors and their interactions is lacking in the
case of marine structures.

To predict likely corrosion damage tolerance, it is necessary to be able to make estimates
of the corrosion rates for various structural members grouped by type, location and other
parameters. To generalize this further, there are four aspects related to corrosion that one
ideally needs to define for structural members, as follows:

Where is corrosion likely to occur?

When does it start?

What is its extent?

What are the likely corrosion rates as a function of time?

The first question would normally be answered using historical data of some form,
e.g., results of previous surveys. As to when corrosion starts, this again is information
that should come from prior surveys for the particular structure. Lacking specific data,
assumptions as to time of start of corrosion can of course be made, depending on the use
of the protection system, characteristics of coatings and anode residence time.

For the residual strength and similar performance assessment of corroded steel struc-
tures, one needs to clarify how corrosion develops and proceeds in structural members,
the spatial extents of member degradation, and the likely effects of such corrosion on
structural performance measures such as strength and leakage characteristics. These con-
siderations are complicated by the sheer number of factors potentially affecting corrosion,
including type of protection employed, type of cargo, temperature, humidity, etc. Also,
to take into account the various uncertainties associated with corrosion, a probabilistic
treatment is essential.

The extent of corrosion presumably increases with time, but our ability to predict
the spatial progress of corrosion remains meager. The only real alternative is then to
pessimistically assume more of a corrosion extent than is really likely, such as what one
would do in the case of nominal design corrosion values. To put this in another way,
one can assess the structural performance based on premised extents of corrosion where
specific information on extent of corrosion is lacking or unavailable.

Where coatings are present, the progress of corrosion would normally very much depend
on the degradation of such coatings. Related to this, most classification societies usually
recommend carrying out maintenance for the corrosion protection system over time, and
most owners do carry out such maintenance, so the particular maintenance philosophy
used also has a significant effect on the structural reliability considering corrosion effects
in the long term.

PRINCIPLES OF LIMIT STATE DESIGN 35

Transition
Durability 1 i . Il
~of coating-"‘_"": Progress of corrosion

Corrosion depth, t. (mm})

0 T. T+ T,
Structure age, T (years)

Figure 1.25 A schematic of the corrosion process for steel structures

Figure 1.25 represents a plausible schematic of the corrosion process for a coated area
in a steel structure. It is assumed in Figure 1.25 that there is no corrosion as long as
the coating is effective and also during a short transition time after breakdown of the
coating. Therefore, the corrosion model accounts for three factors, namely (1) durability
of coating, (2) transition and (3) progress of corrosion.

The curve showing corrosion progression indicated by the solid line in Figure 1.25
is a little convex, but it may in some cases be a concave curve in dynamically loaded
structures as indicated by the dotted line where flexing continually exposes additional
fresh surface to the corrosion effects. However, one may take a linear approximation
between them for practical assessment.

The life (or durability) of a coating essentially corresponds to the time when the cor-
rosion starts after the contribution of a structure, or the application of a coating in a
previously bare case, or repair of a coating area to a good, intact standard. The life of a
coating typically depends on the type of coating systems used and relevant maintenance,
among other factors. The coating life to a predefined state of breakdown is often assumed
to follow the log-normal distribution, given by

1 Tc_ C 2
exp [—(n—zczﬂ] (1.16)

1
T.) =
FIo) = 7=

where p. = mean value of In T, in years, o, = standard deviation of InT¢, T, = coating
life in years.

The coating systems are sometimes classified by their target life. For example, IMO
(1995) uses three groups for marine structures, namely coating systems I, II and III, where
the corresponding target durability of coating is 5, 10 and 15 years, respectively. But this
particular classification is by no means universal. TSCF (2000) defines the requirements
for 10, 15 and 25 year coating systems for ballast tanks in oil tankers. Generally, however,
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a 5 year coating life may be considered to represent an undesirable situation, while 10
years or longer would be representative of a relatively more desirable state of affairs. The
selection of a target life to be achieved is primarily economical. For any given mean or
median coating life, the uncertainty of coating life is high and the coefficient of variation
(COV) of coating life is sometimes taken as oc/pc = 0.4 for In T, (NK 1995).

After the effectiveness of a coating is lost, some transition time, i.e., duration between
the time of coating effectiveness loss and the time of corrosion initiation, is considered
to exist before the corrosion ‘initiates’ over a large enough and easily measured area.
The transition time is sometimes considered to be an exponentially distributed random
variable following other past work. As an example, the mean value of the transition time
for transverse bulkhead structures of bulk carriers is shown to be 3 years for deep-tank
bulkheads, 2 years for watertight bulkheads and 1.5 years for stool regions (Yamamoto &
Tkegami 1998). When the transition time is assumed to be zero (i.e., Ty = 0), it is implied
that the corrosion will start immediately after the coating effectiveness is lost.

As shown in Figure 1.25, the wear of plate thickness due to corrosion may be generally
expressed as a function of the time (year) after the corrosion starts, namely

t=C TS (1.17)

where #, = corrosion depth (or wear of plate thickness due to corrosion) in mm, Tz =
exposure time in years after breakdown of the coating, whichistakenas T =T — T. — Ty,
T = age of structure in years, T, = life of coating in years, T; = duration of transition in
years which may be pessimistically taken as 7 = 0. C, and C, are coefficients.

The coefficient C, in Equation (1.17) determines the trend of corrosion progress, while
the coefficient C; is in part indicative of the annualized corrosion rate which can be
obtained by differentiating Equation (1.17) with respect to time. As may be surmised
from Equation (1.17), the two coefficients closely interact, and they can simultaneously be
determined based on the carefully collected statistical corrosion data of existing structures.
However, this approach is in most cases not straightforward to apply, mainly because of
differences in data collection sites typically visited over the life of the structure. That is, it
is normally difficult to track corrosion at a particular site based on the typically available
gauging data. This is part of the reason for the relatively large scatter of corrosion data
in many studies. An easier alternative is to determine the coefficient C; at a constant
value of the coefficient C,. This is mathematically a simpler model, but it does not negate
any of the shortcomings due to the usual methods of data collection in surveys. It does,
however, make possible the postulation of different modes of corrosion behavior over
time depending on the value adopted for C; in an easy-to-understand way.

For corrosion of marine structures, past studies indicate that the coefficient C, can
sometimes be in the range of 0.3—1.5 (Yamamoto & Ikegami 1998, Melchers 1999). This
implies a behavior wherein the corrosion rates are not constant while they apparently
decrease or stabilize over time. While for statically loaded structures, such behavior is
plausible, for dynamically loaded structures in which corrosion scale is continually being
lost and new material is being exposed to corrosion because of structural flexing, such
values of C, may not always be appropriate or safe.

Figure 1.26 plots Equation (1.17) which shows curve fits to a total of 1279 points of
corrosion data gathered from the thickness measurements of outer bottom plates for 109
existing bulk carriers, varying the coefficient, C,. In Figure 1.26, it is assumed that the
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Figure 1.26 Sample formulations for the corrosion depth measured for outer bottom plates of
existing bulk carrier structures as a function of ship age

coating life is 7.5 years and the corrosion initiates without a transition time after the
effectiveness of coating is lost. It is seen from Figure 1.26 that the trend of the corrosion
progress slightly varies with the coefficient C;, as would be expected, but its effect may
be ignored as the ship gets older. For practical design purposes, therefore, C; = 1 may be
taken. For more refined treatments, C, may of course be taken as a random variable so that
the corrosion model can represent the variation of annualized corrosion rate over time.

Once the coefficient C; is set to be a constant value, the next step is to determine
the coefficient C;, which corresponds to the annualized corrosion rate, and its statistics
(mean, variance and type of probability density). It is evident that the characteristics
of the coefficient C; must be evaluated in such a probabilistic form because of the
uncertainties involved.

From Equation (1.17), the coefficient C; can be readily given for a sampling point
when the transition time is taken as T; = 0 as follows:

I

Cl=——
T T -1)e

(1.18)

Thus, given a set of available statistical corrosion data, the coefficient C; may be
calculated from Equation (1.18), and the relative frequency of the coefficient C; can then
be evaluated. It is apparent from Equation (1.18) that the coating life may significantly
affect the coefficient C;, and hence the annualized corrosion rate which is extremely
uncertain in nature.
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Figure 1.27 The Weibull-type probability density distribution for the coefficient Cy, with C; = 1.0
and T, = 7.5 years, corrosion data for the outer bottom plates of existing bulk carriers

Figure 1.27 shows the best fit of a Weibull-type probability density distribution of the
coefficient C;, with C, = 1.0 and T, = 7.5 years, corrosion data for the outer bottom plates
of bulk carriers. It is recognized that the probability density function of the coefficient C,
in marine immersion corrosion typically follows the Weibull distribution as follows (Paik

et al. 1998):
f@a==(3) ew [— (g)l] (1.19)

where « and A are scale and shape parameters, respectively, which will be determined
through a probability density distribution fit using the method of moments, the maxi-
mum likelihood method or other appropriate method. The choice of a Weibull density
distribution offers us some flexibility as it is capable of representing a range of types of
exponential behavior.

Hence, the cumulative distribution function of the coefficient C; may be given by

F(x)c, = 1 —exp [— (g)k] (1.20)

It is now necessary to determine the mean and standard deviation of the coefficient
C, for evaluating the probabilistic characteristics of corrosion. Their calculation using
Equation (1.19) or (1.20) may be possible in several ways, and an approximate procedure
may be used. For instance, Equation (1.20) is rewritten in terms of

Y=1X—-2Alne (1.21)

where X =Inx, ¥ = In{—1In[1 — F¢, (x)]}.
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Figure 1.28 The best fit of Equation (1.21) for the outer bottom plates of existing bulk carriers
having a coating life of 7.5 years

By using the least squares method, the unknown parameters, « and A, are determined
for each primary member type for which corrosion data have been collected over time.
Figure 1.28 shows a typical example of determining parameters « and A so obtained for
the bulk carrier bottom corrosion data. This figure indicates that a Weibull density function
can be an adequate fit in this case. However, whether it is the best fit is of course open
to question lacking a goodness of fit study using other types of probability distributions.

Once the scale and shape parameters (i.e., & and 1) are determined the mean value and
standard deviation of the coefficient C; can be calculated in terms of the gamma function
as follows:

pei= [ afot)dx =ar (1 + %) (1.222)
0

2 *° 2 2 2 1 :
gclzfo (x — w2 fo, () dx =a F<1+X)_[F<1+X>] (1.22b)

where ¢, and o¢, = mean and standard deviation of the coefficient C;.

The mean and standard deviation (or the coefficient of variation) for the coefficient
C; can thus characterize the annualized corrosion rate. Based on the available statis-
tical corrosion data, these values can then be determined for every necessary member
location/category of a structure.

It is important to realize that the annualized corrosion rate for structural members
can differ between types of structures or even member locations within the same struc-
ture. In evaluating the probabilistic characteristics of corrosion diminution, the prescribed
corrosion diminution interval must be small enough to reduce the level of the coefficient
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of variation. Figure 1.29 shows the effect of the interval, A, of coefficient C; on the
resulting mean value and COV of the annualized corrosion rate for the outer bottom
plates of bulk carriers. It is apparent that the interval (bin width) may in this case need
to be taken as 0.0014 mm/year or smaller.

Figure 1.30 shows the mean value and COV of the annualized corrosion rate for the
23 longitudinal strength member locations/categories of bulk carrier structures, obtained
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Figure 1.29 Effect of the interval (bin width), A, of coefficient C, on the annualized corrosion
rate characteristics for the outer bottom plates of existing bulk carriers
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Figure 1.30 Mean and COV of the annualized corrosion rate for the 23 member location/category
groups of a bulk carrier structure

PRINCIPLES OF LIMIT STATE DESIGN 41

based on the method noted above. In this case, the interval of coefficient C; was taken
as A = 0.0014 mm/year. The reference coating life of IBP (inner bottom plates) and LSP
(lower sloping plates) was supposed to be 5 years, while that of the rest of the member
Jocations was considered to be 7.5 years. Different, possibly equally useful, corrosion rate
models have also been suggested by other investigators for bulk carrier structures (e.g.,
Ivanov 1986, Yamamoto & Ikegami 1998) and also for oil tanker structures (e.g., Hart
et al. 1985, Lgseth et al. 1994, Paik & Park 1998), amongst others.

The effects of corrosion damage will be addressed in Chapter 4 on the ultimate strength
of steel plates and in Chapter 8 on the ultimate strength of ship hulls.

1.8.2 Fatigue Cracks

Under the action of repeated loading, fatigue cracks may be initiated in the stress con-
centration areas of the structure. Initial defects or cracks may also be formed in the
structure by the fabrication procedures applied. In addition to their fatigue propagation
under repeated cyclic loading, cracks, as they grow, may also propagate under monoton-
ically increasing extreme loads, a circumstance which eventually can lead to catastrophic
failure of the structure when given the possibility of rapid and uncontrolled crack exten-
sion without arrest, or if the crack attains such a length resulting in significant degradation
in structural capacity.

For residual strength assessment of aging steel structures under extreme loads as well
as under fluctuating loads, it is thus often necessary to take into account an existing crack
as a parameter of influence. The ultimate strength of steel-plated structures with existing
crack damage will be presented in Chapter 10.

1.9 Accident-induced Damage

Potential accidents such as collision, grounding, impact due to dropped objects or mis-
handled cargo loading/unloading, fire, explosions, etc., can result in structural damage
which reduces structural resistance or leads to even total loss of the structure.

Collision and grounding accidents typically result in crushing (folding), yielding and
tearing. Hydrodynamic impact can raise plastic deformation damage. Dropped objects can
cause local dents and/or global permanent deformation. Because of fire or explosions the
steel can be exposed to high temperatures, the latter being also accompanied by impact.
Exposure to a fire at very high temperatures can cause not only structural damage but
also metallurgical changes. For fire safety and the resistance of steel structures, Lawson
(1992) and Nethercot (2001) may be referred to.

In this book, ship collision and grounding mechanics as well as the dynamic/impact
response of structural members are described in Chapter 9. The effect of collision and
grounding damage on the ultimate strength of ship hulls is presented in Chapter 8.

1.10 Ultimate Limit State Design Format
For the ULS design of steel-plated structures, the basic variables which characterize load

effects, material properties and geometric parameters should be identified first. Methodolo-
gies or simplified models for computing the load effects and the load-carrying capacities
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must be established. Once the two models, i.e., for calculatir}g both load efffacts and
ultimate strength, are obtained, the ULS function, G, can be given from Equation (1.1)
as a function of the basic variables xj, *2, ..., Xn, a8 follows:

G(x1,%2,..-,%:) =0 (1.23)

When G > 0, the structure is considered to be the desired stat.e. .The models a‘lway?f
have uncertaﬁnties due to many reasons. The computation model is in fact a function o

random variables, namely
Ym = Y(x1, %2, ..+» Xn) (1.24)

where Y, = value computed by the model, Y = function of the model, x; = random
ariables. . o

! As long as the random variables are uncertain, the modeling function is not exact so
that ¥, may always have some errors. This is typically due to lack of knowledge lc))r
simplification in developing the model. The exact solution, Yo, of the problem may be

expressed by
p Y0=Y*(x19x23"-7xn’811821"'18m) (125)

where 8; = random variables related to the model uncertainties, Y* = exact fupctl(;)r;. .
In Equation (1.25), the statistical properties of §; may normally be deterrfm;e T o
experiments or observations. For the ultimate sUengm model, the mean of o; can
determined as the average value which correctly predicts the test results. o -
It is necessary to ensure that the structure has an adequate degree of rehabll;tgsagams
the ULS. Two types of design format are normally used, namely (ISO 2394 1998)

e the direct probabilistic design format
o the partial safety factor format.

While the latter format is typically used for normal design purposes, the former'ls1
sometimes more relevant for specific design problems or for‘ calibration of tl;e pal’tli‘:l
safety factors. The design condition of a structure in the partial safety factor format 18

expressed as follows:

ComDo= 2 — 3 Y Du(Fia, ) 2 0 (1.26)

YmYc

The actions are normally dynamic and varying in nature and may have the following
representative values (ISO 2394 1998):

e characteristic value;
o load combination value;
e frequent value; and
e quasi-permanent value.

isti i i hat it may have a specified

The characteristic value of load effects 1s determined 50 ] :
probability being exceeded toward unfavorable values during the reference picr.lod. The
combination value is determined so that the probability that the load effects arising frorlxl
the load combination will be exceeded is approximately the same as that for a single
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action. The frequent value is determined so that the total time which it will be exceeded
during the reference period is limited to a specified short period or the frequency of its
exceedance is limited to a specified small value. The quasi-permanent value is determined
so that the total time which it will be exceeded during the reference period is of the
magnitude of perhaps half the reference period.

The partial factors may depend on the design situation and the types of the limit states.
In most cases, while Dy is defined as the characteristic value noted above, y; is defined
taking into account the possibility of unfavorable deviations of the action values from the
representative values and the uncertainties in the model of load effects.

Similarly, while the characteristic value of Cy against the limit state is calculated using
more sophisticated models as presented in this book, yy, is defined taking into account
the possibility of unfavorable deviations of material properties from the characteristic
(specified) values and the uncertainties in the conversion factors. y, may be determined
taking into account the possibility of unfavorable deviations of geometric parameters from
the characteristic (specified) values including the severity (importance) of variations, the
tolerance specifications and the control of the deviations, and the cumulative effect of a
simultaneous occurrence of several geometric deviations, the possibility of unfavorable
consequences of progressive collapse, and the uncertainties of the models as quantified
by deviations from measurements or benchmark calculations.
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Bu kling and Ultimate
Strength Behavior

of Plate-Stiffener
Combinations:
Beams, Columns

and Be m-Columns

2.1 Structural Idealizations of Plate-Stiffener Assemblies

A steel-plated structure is typically composed of plate panels and rolled or built-up sup-
port member§ usually termed stiffeners, as shown in Figure 2.1. The overall failure of
the structure is certainly affected and can be governed by the buckling and plastic col-
lapse of thesg individual members. In the ultimate limit state (ULS) design, therefore, a
ls)tl;lun;?;)r/a;arsli Ilsbt:r Sallccurately calculate the buckling and plastic collapse strength of such
_ Stmc':tural elements making up steel-plated structures do not work separately, resulting
in a high degree of redundancy and complexity, in contrast to those of ste,el—framed
.strucFure.s. To enable the behavior of such structures to be analyzed, simplifications or
1deahzat1.ons must essentially be made considering the accuracy needed and the degree of
Fomplex1ty of the analysis to be used. Generally the more complex the analysis the greater
is the accuracy that may be obtained. However, the amount of structural simplifications
noppally depe.nds on the particular situation surrounding the problem. For instance, the
ability to pfov1de a reasonable answer quickly, with considerably less information, is c;ften
of gr.eater importance than extreme accuracy for an initial estimate while a ﬁn;ll check
solution should of course be as accurate as the circumstances allow.

A steel-plated structure may be idealized into an assembly of many simpler ‘mechanical
structural element models’ or ‘idealized elements’, each type of which behaves similarly
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I I I

Figure 2.1 A continuous stiffened plate structure

under given load application, and the assembly of which behaves in the (nearly) same
way as the actual structure. . .
Typical examples of structural idealization to model a continuous stiffened panel shown

in Figure 2.1 are as follows:

o plate—stiffener (beam) combination model (also called beam—column model);
e plate—stiffener (beam) separation model; and
e orthotropic plate model.

One of the most typical approaches is the plate—stiffener combination idealiza.tion which
models a continuous stiffened panel as an assembly of possibly unsymmetric I—bems
together with attached plating (i.e., flanges) assuming that the flanges support bt?n‘dl.ng
moments while stiffener webs resist shear loads, see Figure 2.2(a). The torsional rigidity
of the stiffened panel, the Poisson ratio effect and the effect of the intersecting beams are
all neglected in this modeling. The degree of accuracy for this approach may therefore
become critical when the flexural rigidity of the stiffeners is small compared to the
plate stiffness, but the plate—stiffener combination mode} may be Felevapt when support
members (i.e., stiffeners) are of a medium or larger structural dimension so that they
would behave as a beam—column together with the associated plating. The plate—beam
combination approach may also be applied to model a cross-stiffened panel as a system
of discrete intersecting beams (or called grillage), each beam being com'posed of st.lffener
and associated effective plating. In this chapter, the primary concern 1s to examine the
behavior of the plate—stiffener combinations. ‘

Alternatively a mechanical idealization may be feasible by separating suppf)rt members
from plate panels at plate/web junctions, see Figure 2.2(b). Tl?e so—Falled plate—beam
separation model’ will be more appropriate when structural dimensions of. the support
members are relatively large so that the stiffener web as well as the plating between

(a) Plate-stiffener (beam) combination model
1 I 1 )

(b) Plate—stiffener (beam) separation model

|

— 3
(c) Orthotropic plate mode!

Figure 2.2 Three types of structural idealizations possible for a steel-plated structure
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stiffeners may be regarded as a plate panel in itself. In this case, local buckling of
the stiffener web as well as the attached plating will be a primary failure mode since
support members are strong enough to remain straight well after plate failure. Buck-
ling and collapse of plating between stiffeners are described later in Chapters 3 and 4,
respectively.

On the other hand, if support members are relatively weak, they will deflect together
with plate panels so that the behavior of the stiffened panel may in this case be idealized
as that of an ‘orthotropic plate’ by smearing the stiffeners into the plating, as shown
in Figure 2.2(c). The orthotropic plate approach will be useful for computation of the
panel ultimate strength based on the overall grillage collapse mode. In this approach, the
orthotropic plate theory is used. This implies that stiffeners are relatively numerous and
small (i.e., they deflect together with the plating) and that they remain stable through
the ranges of orthotropic plate behavior. The validity of representing the stiffened panel
by an equivalent orthotropic plate normally depends on the number of stiffeners in each
direction, their spacing, and how identical they are as far as their stiffness characteristics
are concerned. It has been said that the application of the orthotropic plate theory to
cross-stiffened panels must be restricted to stiffened panels with more than three stiffeners
in each direction (Smith 1966, Troitsky 1976, Mansour 1977). In addition, stiffeners in
each direction must be similar. The orthotropic plate approach will be described later in
Chapters 5 and 6.

It is therefore important to realize that different mechanical modeling for the same
type of structure may be required to analyze actual behavior under different structural
dimensions or load applications. Clearly it may be necessary to idealize a structure by
combining the modeling methods mentioned above in some cases. For instance, a longi-
tudinally stiffened panel between strong transverse frames may be modeled by either an
assembly of the plate—beam combinations or an orthotropic plate, while heavy transverse
frames or plate girders may be idealized by using the plate—beam separation modeling
where their webs are modeled as plate panels.

In any event, the idealized structure should of course be similar or nearly the same
in behavior to the actual structure. The real ultimate strength of the structure will then
be determined at the limit state which provides the lowest load-carrying capacity among
those obtained for the various failure modes.

In the ULS design of plate—stiffener combinations using Equation (1.1) of Chapter 1,
the design load effects (e.g., stress, bending) are calculated by classical theory of structural
mechanics, while the structural capacity may be determined by relevant ultimate strength
formulations. This chapter describes the ultimate strength formulations of plate—stiffener
combinations under a variety of loading and end conditions. It also presents the axial
stress—strain relationships of plate—stiffener combination elements until and after the
ULS is reached.

2.2 Geometric and Material Properties

In a continuous stiffened plate structure, a stiffener (support member) with attached plating
is idealized by the plate—beam combination model whose span extends between two
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Figure 2.3 Typical types of plate—beam combination models made up of a stiffener and its
attached effective plating (N.A. = neutral axis)

Table 2.1 Properties of a plate—stiffener combination section with full or effective plating.

Property Expression

Cross-sectional area A=Ap+ A, + Ap Ae = Ape + Ay + Af
where Ap = bt, Ape = bet, Ay = hyty, Ar = bste
ApoYp + A, ovy + Afoye

Equivalent yield strength Oyeq = N
over the cross-section

_ 0.5bt% 4+ Ay (t + 0.5hy) + Ac(t + hy + 0.5t

Distance from outer 20 1
surface of attached
plating to elastic 0.5b1% + Aw(t + 0.5hy) + Ae(t + by + 0.5%)
horizontal neutral axis Zp = A,
b t\r Rt hy\?
Moment of inertia 1=1—2-+Ap(zo—§> +—¥21+Aw Zo_t__z_

2
bftg ( te )
P L ac(t+het 2 -2
+12+f + 5 "%

b.t3 A ha\?
1,=%+Ape<zp—§) + ;"2 tAvln—t——

2
13 t
+bf—2f+Af<t+hw+—f—zp>

1 2
. . . [1,
Radius of gyration r=yge=vya
L Uqu L O'ch
Column slenderness ratio A o / E o= o / £

b [o
Plate slenderness ratio B = 71 / —;3

Note: The subscript ‘¢’ represents the effective cross-section.
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adjacent major support members in the other direction. The attached plating takes the
‘effective width’ instead of full width as will be described in Section 2.5.

Figure 2.3 shows geometrical configurations of typical plate—beam combination
sections together with the attached effective plating. For convenience, the x axis is taken
in the longitudinal direction of the member and its length (span) between supports is
denoted by L. The full and effective widths of the attached plating are denoted by b and
be, respectively.

While the material of the web and flange of the stiffener is usually the same, it is some-
times different from that of attached plating, e.g., higher tensile steel for web and flange
and mild steel for plating. For general purposes, the yield strengths of the stiffener web,
flange and attached plating are herein defined separately by oy, oyr and oy, respectively.
The modulus of elasticity is E and Poisson’s ratio is v. The shear modulus is

G E
T 2(14v)’

Some important properties of the plate—stiffener combination sections with the attached
full or effective plating are given in Table 2.1.

It is noted that the expressions of Table 2.1 are of course valid for flat bars with
bs = tr = 0 and also symmetric I-sections. The equivalent yield strength over the cross-
section and the slenderness ratio of the attached plating between stiffeners are calculated
for the full section, i.e., with full width of the attached plating.

2.3 Modeling of End Conditions

The end conditions (also called boundary conditions) of support members in steel-plated
structures are affected by the joining methods and rigidities of support members in the
other direction. In welded steel-plated structures, the ends of support members typically
have a certain degree of restraint to rotation and/or translation which is sometimes not
straightforward to model mathematically. For practical design purposes, however, the end
condition of the plate—beam combination model is typically idealized by one or more of
the five types shown in Figure 2.4.

At a free end, no restraints are present. The simply supported end represents a condition
wherein rotation freely takes place with zero bending moment while lateral deflection
(translation) is fixed. At the fixed or clamped end, both rotation and lateral deflection are
not allowed. Depending on the possibility of axial movements, two different situations may
be relevant, namely Figure 2.4(b) or (c) for the simply supported end and Figure 2.4(d)
or (e) for the fixed end. With axial restraints, membrane axial tension may develop as

{ 3 é[- 3 él}; LY Y — /%
(@) (b) (©) (d) (e)

Figure 2.4 Typical idealized end conditions for plate—beam combination models: (a) free;
(b) simply supported or pinned but translationally restrained; (c) simply supported or pinned;
(d) fixed; (e) clamped
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the member deflects, while a free axial movement can occur when axial restraints are
not provided.

The same end condition may sometimes be applied at each end, but the possibility of
different conditions must in general be considered in accordance with the dimensions and
joining methods of support members. However, at least one end should accommodate the
condition that the translation is restrained in order to remove rigid-body motion.

While both the upper and lower flanges of I-beams in typical steel-framed structures
away from the I beam’s ends are normally free to move, it is important to realize that
the edges of flanges (the attached plating) of the plate—beam combination models in
continuous steel-plated structures may be restricted from deforming sideways as may be
surmised from Figure 2.2(a), since the symmetric condition is attained along the edges of
the plate—beam combination, i.e., the center line between two adjacent support members
(stiffeners), even if the stiffener flanges are free to deflect vertically and rotate sideways.
This will essentially cause a different failure mode behavior for plate—beam combination
models of steel-plated structures when contrasted to those for simple I-beams of steel-
framed structures.

2.4 Loads and Load Effects

The plate—beam combination model for steel-plated structures is likely to be subjected
to various types of loads such as axial compression/tension, concentrated or distributed
lateral load and end moment, as shown in Figure 2.5.

Lateral loads distributed over the attached plating may typically be idealized as a lateral
line load of ¢ = pb (i.e., multiplied by uniform lateral pressure p and the full breadth
of attached plating between support members), assuming that the stiffener web resists all
shear forces caused by the distributed lateral loads.

A one-dimensional structural member such as the plate—beam combination model is
called a column under axial compression, while it is called a beam under lateral load or
end moment subsequent to occurrence of bending from the beginning of loading. The
member is called a beam—column under combined axial compression and bending. While
axial tension normally stabilizes the behavior of beams, the beam under combined bending
and axial tension is sometimes termed a tension-beam.

The load effects (e.g., stress, bending) of the plate—beam combination as an element of
a complex structure are normally computed by a global analysis using the linear elastic
finite element method. They can also be analyzed by the classical theory of structural
mechanics as described in many textbooks (e.g., Timoshenko & Goodier 1970, Chen &
Atsuta 1976, 1977).

q=pb p
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Figure 2.5 Typical load applications on a plate—beam combination
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2.5 Effective Breadth/Width of Attached Plating

The attached plating of the plate—beam combination model does not work separately
from the adjacent members and it is restricted from deforming sideways while the stiff-
ener flange may be free to deflect vertically and sideways. When a stiffened plate structure
is idealized as an assembly of plate—beam combination elements, therefore, one of the
primary questions is to what degree and extent the attached plating reinforces the associ-
ated strut web.

Related to this problem, two concepts, namely effective width and shear lag, are relevant
to characterize the ineffectiveness of the attached plating arising from the non-uniform
stress distribution.

The former concept is used to model the effectiveness of plate elements that have
buckled under predominantly axial compression or have inherently initial deflections sub-
sequent to occurrence of the non-uniform stress distribution in the regime of post-buckling
or large deflection.

On the other hand, the latter (i.e., shear lag) is primarily due to the action of lateral
loads or out-of-plane bending. In a wide flanged beam (i.e., plate—beam combination
model) under out-of-plane bending, classical beam theory provides a uniform distribution
of longitudinal stress across the flange section. In reality, however, the non-uniform stress
distribution can occur, because the longitudinal stress caused by bending is transmitted to
the flange non-uniformly through shear at the junction between the flange and the web.

As a result, the distribution of the stress across the flange is not uniform but larger at the
edges (i.c., intersections between the plating and stiffener web) than at the middle, showing
a lag with increasing distance from the web, as shown in Figure 2.6. The departure of
the non-uniform stress from the uniform stress assumed by the classical beam theory is
termed ‘shear lag’, which essentially arises from the fact that the shear modulus of the
material takes a finite value.

The problem of the effective width, i.e., for steel plating under in-plane compression,
was initially raised by John (1877), a naval architect, who investigated the strength of a
ship which had broken into two pieces during heavy weather, presumably as a result of
high stress induced by sagging moment. He pointed out that the light plating of the deck
and topsides could not be considered as fully effective under compression. To account
for this effect in the calculation of section modulus of the ship, he reduced the thickness

Figure 2.6 Shear-lag-induced non-uniform stress distribution
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of the plating, keeping the stress (which could be calculated without considering buck-
ling) unchanged.

A pioneer of using an analytical approach for the plate effective width is Bortsch
(1921) who employed an approximate analytical effective width formula for the practical
problems related to bridge engineering. The modern era in the effective width concept
was started by von Karman (1924) who developed a general method to solve the problem
theoretically, and introduced for the first time the term ‘effective width’. He calculated
the stress distribution of two-dimensional problems using the stress function approach
to evaluate the effective width. A remarkable advancement of the Karman method was
achieved by Metzer (1929) who studied the effective flange width of simple beams and
continuous beams.

In the 1930s, a large series of compression tests on steel plates were undertaken by
Schuman & Back (1930). Based on the test results, they noted that the buckled steel plate
may behave as if only part of its width is effective in carrying loads. By applying the
effective width concept, this phenomenon was investigated theoretically by von Karman
et al. (1932) who obtained the first effective width expression of plating, which was later
shown to be equivalent to b./b = /(0/0y), where b = full plate width, b, = effective
plate width, o, = plate buckling stress, oy = material yield stress.

To make a distinction between the two concepts mentioned above, the reduced effec-
tiveness of the flange breadth due to shear lag is sometimes called the ‘effective breadth’
or ‘effective flange width’, while the compressive-buckling-induced reduction of the plate
effectiveness is termed the ‘effective width’, although in some situations the plate flange
itself may be blissfully unaware of whether its distress is because of effective breadth or
effective width effects.

Figure 2.7 shows a typical non-uniform stress distribution of plating between stiffeners.
The maximum membrane stress occurs at the intersection between the plate and stiffener
web while the stresses inside the plate are comparatively smaller. This implies that the
effectiveness of the plate in carrying load through a uniform stress may be idealized as
confined to only a part near the plate/web junctions (plate edges). It is thus quite usual in
such a situation that the total load is carried by two strips of combined width, b, situated
near the plate edges, carrying the maximum stress uniformly as a representative, instead
of actual stress distribution.

Ox

Ox max

Figure 2.7 Effective width of the attached plating in a stiffened panel
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No matter what the reason of the non-uniform stress distribution is, the plate effec-
tiveness may typically be characterized by a parameter b., which is a width (breadth)
over which the maximum membrane stress at the intersection of the flange and web is
idealized to occur uniformly, the total force thus carried being the same as that supplied
by the (actual) non-uniform stress distribution across the flange (attached plating).

Following the coordinate system as that shown in Figure 2.7, the effective width
(breadth), b., can be evaluated by

b/2
/ o, dy
—b/2 =b Oxav

Ox max Ox max

be = @.1)

where o, = non-uniform membrane stress, oy,y = average Sstress, Oymax = Maximum
membrane stress at plate/web junctions.

2.5.1 Shear-lag-induced Ineffectiveness

An analytical formulation of the effective breadth for a plate—beam combination under
predominantly shear lag or bending on wide flange is now derived. For a review of vari-
ous methods to derive analytical formulations of the shear-lag-oriented effective breadth
for wide flanged beams (plate—beam combination), the interested reader may refer to
Troitsky (1976).

It is evident from Equation (2.1) that the non-uniform membrane stress distribution
must be known to calculate the effective breadth. To compute the stress distribution,
the classical theory of elasticity (Timoshenko & Gere 1961) can be applied. For two-
dimensional problems, the relationship between strains and displacements is given by

8_8u s_av _3u+8v
T > ’y"’_ay 0x

) 2.2
0x ay @22

where &, £, = normal strains in the x or y direction, y,, = shear strain, u, v = displace-
ments in the x or y direction.
The relationship between stresses and strains for two-dimensional problems is given by

2(1 +v)

Ty (2.3)

1 1
Ex = E(ax - Vay)a &y = ‘E‘(Uy — voy), Vxy =

where o,, 0y = normal stresses in the x or y direction, t,, = shear stress, v = Poisson’s
ratio.

The stress distribution for two-dimensional problems can be obtained by solving the
following compatibility equation:

3*F *F  9'F
- S W — 2.4
x4 + 0x209y? + ay* 24)

where F is Airy’s stress function which satisfies the following condition:

9%F 8%F 0%F
= s Oy = —=, T _
dy? YT x? w 0xdy

(2.5)
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To calculate the non-uniform longitudinal stress distribution in the attached plating, it
is assumed that the plate lateral deflection is proportional to sin(27x /w) where w is the
deflection wave length depending on the rigidities of the stiffener and the type of load
application. For stiff transverse frames, one may approximately take @ = L.. '

In this case, the longitudinal axial displacement, u, along the plate/web intersection,
i.e., at y = £b/2, may be calculated as follows (Yamamoto et al. 1986):

2
U = —uUgcCos —_ITX (26)
w

where uy = amplitude of the axial displacement function. '
The axial strain, &,, at y = £b/2 can then be calculated by substituting Equation (2.6)

into Equation (2.2) as follows:

du 2mx

Exly=tb/2 = = go sin o 2.7

X |y—tp/2

where g = uo(2/w).
To satisfy Equation (2.4), the stress function, F, may be expressed as follows:

F = f(y)sin nx 2.8)
w

where 5 ” 2y
Ty | Ty

= C;—= sinh — + C; cosh —

fo) =¢C; P si P +C; p

with C;, C, = constants to be determined by the boundary. conditions.

To determine the two unknowns, C; and C,, of Equation (2.8), two boundary conditions
are applied. While Equation (2.7) can be one boundary condition, the other one is provided
so that the symmetric condition must be attained along the center line of the attached
plating between two adjacent stiffeners, which is given by

dv

v =0 2.9
0x

y=0

By substituting Equation (2.5) into Equation (2.3), the axial strain, £,, can be expressed
in terms of the Airy stress function as follows:

2F 9%F
e = L(OF_ v_) 2.10)
E \ 8y? dx?

By substituting Equation (2.8) into Equation (2.10) and considering Equation (2.7), the
first boundary condition can be written as

df
dy?

b
+ v’ f(y) =Egaty = +2 (2.11)
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The second boundary condition, Equation (2.9), can be rewritten using Equation (2.2)

as follows:
vy 0% N v u 3 v =0 2.12)
dx  dxdy 9x2  dxdy 9y v = '

Substituting Equations (2.2), (2.3), (2.5) and (2.8) into Equation (2.12), the second
boundary condition becomes the following third-order differential equation:

3
i) 2d{1§])’) —0aty=0 (2.13)

ay -2+vo

By substituting f(y), Equation (2.8), into Equations (2.11) and (2.13) and solving the
set of resulting two simultaneous equations with regard to C; and C,, we get

b 1— b b b
C, = Cssinh 22, C2=C3[( ”)sinh”——”—cosh”—]
w w w w

1+v
21 /3 — -1 2.14)
) —v\ . 2x% 7
C3 = Egg (_Zn) [( 5 ) sinh - 1+ u)——w ]

The membrane stress, oy, can now be obtained by substituting Equations (2.8) and
(2.14) into Equation (2.5) as follows:

2r\2[ .2 2 2 2
o, = (_”) [cl Y sinh 222 4 2C + C3) cosh ﬂ] sin 2% (2.15)
w w w w w

By substituting Equations (2.14) and (2.15) into Equation (2.1), the effective breadth,
be, can be calculated as follows:

B 4o sinh® (wb/w)
T w(1 +v)[(B — v)sinh@rb/w) — 2(1 + v)(wb/w)]

(2.16)

e

The effective breadth normally varies along the span of plate—beam combination, but
for practical design purposes it may be taken to have the smallest value which occurs at
the location where the maximum longitudinal stress develops. Since b, must be smaller
than b, Equation (2.16) may be approximated to be
b

e { 1.0 for b/w <0.18 @2.17)

b ~ 1018 L/b for bjw > 0.18

As previously noted, the wave length, w, Equation (2.16) or (2.17), may approximately
be taken as w = L for the attached plating between two stiff transverse frames. Figure 2.8
shows the variation of the effective breadth from Equations (2.16) and (2.17) versus the
ratio of stiffener spacing to the beam span when w = L. It is seen from Figure 2.8 that the
normalized effective breadth significantly decreases as the breadth of the attached plating
becomes wider or the span length becomes longer.

Equation (2.16) or (2.17) can then be used to evaluate the effective breadth for the
attached plating of a plate—beam combination model under predominantly out-of-plane
bending.
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Effective flange width, b,/b

0.0 — T T T T T ]
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b/L

Figure 2.8 Variation of the effective breadth versus the ratio of stiffener spacing to the beam span
when w =L

2.5.2 Buckling-induced Ineffectiveness

Strictly speaking, three different aspects of the term ‘effective width’ have in fact been
applied in the analysis of plate post-buckling behavior, namely the effective width for
strength, the effective width for stiffness and the reduced tangent modulus width.

Immediately after buckling of a perfect plate under axial compression, the maximum
stress becomes larger than the average stress. It may be apparent in this case that the
ratio of effective width to full width is the same as the ratio of the average stress to
the maximum stress as defined in Equation (2.1). It has been shown that the maximum
load-carrying capacity of a plate is close to that load at which the maximum membrane
stress reaches the material yield stress. Since the effective width in terms of the maximum
membrane stress is useful in predicting the ultimate strength of a plate, it is termed the
effective width for strength.

The tendency of increasing the average strain with the average stress is of course
greater after buckling than that before buckling. As long as the plate/web junction remains
straight, the average value of the maximum membrane stress along the plate edges may
be obtained for a uniaxially compressed plate as follows:

u
Oxmax = Eéyay = Ez (2.18)

where €.,y is the average axial strain of the attached plating which may approximately
be taken as the average value of axial strain along the plate/web junctions, i.e., £yay = &
at y = £b/2, and u is the end displacement.

In this case, the effective width can also be evaluated from Equation (2.1) but replacing
Oxmax DY the axial strain of Equation (2.18). An effective width for stiffness, i.e., based
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on the average axial strain, may be used to characterize the overall stiffness of a buckled
plate under predominantly axial compression.

The plate stiffness against axial compression is reduced immediately after buckling.
While this behavior may be characterized by the effective width for stiffness, it is some-
times of interest to know the magnitude of the tangent stiffness or the slope of the average
stress—strain curve after buckling, which can mathematically be computed by 30y ay/09€xay
in the post-buckling regime. The tangent stiffness after buckling is termed the ‘tangent
effective width’ or the ‘effective Young’s modulus’, E*. Using this formulation the ratio
of the compressive stiffness after buckling to that before buckling is given by E*/E. For a
perfect plate simply supported at four edges, it is known that E*/E = 0.5 after buckling.
As long as unloaded edges remain straight so that some transverse stresses are developed
along unloaded edges, it is recognized that E*/E corresponds t0 80yay /0% max, While the
former is always greater than the latter when unloaded edges are free to move in plane
subsequent to no stresses along them (Rhodes 1982).

Extensive reviews of the derivation of the effective width formulas for plates, under-
taken in studies made until the mid 1970s and early 1980s, have been made by Faulkner
(1975) and Rhodes (1982). Since then, Ueda et al. (1986) derived the effective width
formula for a plate under combined biaxial compression and edge shear taking into
account the effects of initial deflections and welding-induced residual ‘stresses. Usami
(1993) studied the effective width of plates buckled in compression and in-plane bending.

While the concept of effective width is aimed at the evaluation of in-plane stiffness
of plate elements buckled in compression, Paik (1995) suggested a new concept for the
effective shear modulus to evaluate the effectiveness of plate elements buckled in edge
shear. The effective shear modulus concept is useful for computation of the post-buckling
behavior of plate girders under predominant shear forces.

One of the most typical effective width expressions for compressive strength of long
plates which are often employed by merchant ship classification societies is given in the
following form:

b .
e _ { 1.0 for g <1 (2.192)

b lC/B-Cy/B forp=1

where Cy and C, are constants depending on the plate boundary conditions. S is the non-
dimensional plate slenderness ratio for the full section, as defined in Table 2.1. Based
on the analysis of available experimental data for steel plates with initial deflections at
a moderate level but without residual stresses, Faulkner (1975) proposes C; = 2.0 and
C, = 1.0 for plates simply supported at all (four) edges, or C; = 2.25 and C, = 1.25 for
plates clamped at all edges.

While the original von Karman effective width expression of plates, i.e., b./b =
J/(0/0Y), is considered reasonably accurate for relatively thin plates, it is found to
be optimistic for relatively thick plates with initial imperfections. In this regard, Winter
(1947) modified the von Karman equation as follows:

%: Ter (1—0.25 "“) (2.19b)

Omax Omax

where oy, is the applied maximum (edge) stress which may be taken as o = oy.
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Equation (2.19b) has been widely used to evaluate post-buckling strength for cold-
formed steel plates (AISI 1996, ENV 1993-1-1 1993). In some design codes, the term
0.25 in Equation (2.19b) is changed to 0.218 or 0.22.

Equations (2.19) may be used for evaluating the effective width for the attached plating
of a plate~beam combination model under predominantly axial compressive loads. The
plate effective width expressions will be further described later in Chapter 4.

2.5.3 Combined Shear-lag- and Buckling-induced Ineffectiveness

In reality, it is important to realize that the plating in steel-plated structures is likely to be
subjected to combined in-plane and lateral loads, resulting in both shear lag and buckling.
In this case, the effectiveness of plating must of course be evaluated taking into account
both effects.

In this case, oy max Of Equation (2.1) must be the maximum compressive stress which is
expressed as a function of combined in-plane and lateral loads and initial imperfections,
as will be presented in detail later in Chapter 4.

2.6 Plastic Cross-sectional Capacities

In the conventional allowable stress design method, ‘first yield’ is typically employed for
a design criterion. This is despite the fact that most steel structures can experience local
yielding and still may be able to withstand some further increase of loading since internal
stresses are redistributed because of the ductility of steel.

In contrast, the structural design criteria for the ULS design are based on maximum load-
carrying capacity or ultimate strength based on plastic theory. When the ultimate strength
of a plate—-beam combination is being so considered, plastic cross-sectional capacities are
sometimes of interest when the effects of local buckling and strain hardening are not of
primary concern.

In the subsequent sections, the cross-sectional capacities of plate—beam combination
models at either first or full (complete) yield are presented under axial load, sectional
shear, bending or their combinations.

2.6.1 Axial Capacity

The plastic capacity, Pp, for axial load is calculated by
Pp = (A oy, + Awoyw + AfOyr) (2.20)

where Equation (2.20) is valid for axial tension as well as axial compression when local
buckling does not take place, and a relevant sign convention is used (e.g., positive sign
for tension or negative sign for compression).

2.6.2 Shear Capacity

It is practically considered that only the cross-section part parallel to the direction of
shearing force contributes to the shear structural resistance. When the vertical sectional
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shear force (with positive sign for positive shear and negative sign for negative shear)
is considered, for instance, only the stiffener web cross-sectional area of a plate—beam
combination model] is included in the calculation of shear capacity, Fp, as follows:

Fp = +(Autyw) (2.21)

where Tyy = oyw /J 3 = shear yield stress of web.

2.6.3 Bending Capacity

In a beam with uniform material properties, the first yield occurs at the outer fiber of the
cross-section where the highest bending develops in the span. With further loading, the
cross-section will become entirely plastic. The plastic bending capacity of beams typically
depends on the cross-sectional geometry as well as material properties. The capacity
formulas take positive sign for positive bending and negative sign for negative bending.

Rectangular Cross-Section

Before the plastic bending capacity of the plate—beam combination is calculated, a simpler
case with rectangular cross-section is considered. The neutral axis (N.A.) is in this case
located at a half height of the web due to the symmetry, as shown in Figure 2.9.

The first yield bending capacity, My, can then be obtained by the first moment of axial
stresses with regard to the neutral axis when either the upper or lower outer fiber just
yields as follows:

he/2
My = i/ Oxtwzdz = £ Zvyoyw (2.22)
—hy/2

where Zy = t,,h2 /6 = first yield section modulus.

The bending capacity at first yield can also be predicted by applying simple beam
theory, leading to the following linear relationship between bending moment and bending
stress: o

M= if[ (2.23)

Oyw Oyw

S

Ny

IYw Oyw

Figure 2.9 Stress distribution of a rectangular cross-section beam at first and full yielding
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where M = bending moment, o, = bending stress, I = moment of inertia, z = distance
from the neutral axis.

In the case of the rectangular cross-section beam, since I = twhf’V /12, and ox = gy
at the outer fiber, i.e., z = +h/2, the first yield bending capacity obtained from
Equation (2.23) corresponds to Equation (2.22). The position of the plastic neutral axis
is determined so that the areas on two parts, i.e., in the tension or compression side, are
equal. For a symmetric rectangular cross-section beam, the plastic neutral axis is located
at a half height of the web.

The full plastic bending capacity, Mp, is calculated by the first moment of axial stresses
with regard to the plastic neutral axis when the cross-section entirely yields as shown in
Figure 2.9, namely

hyl2
Mp = :i:/ Octwzdz = £ Zpoyy 2.24)
—hw/2

where Zp = t,h? /4 = plastic section modulus.

Plate—beam Combination Section

Since the elastic neutral axis and moment of inertia for the effective section of a
plate—beam combination are given by Table 2.1, the first yield bending capacity, My,
can be calculated by applying classical simple beam theory as follows:

+Zyyov, for first yield at attached plating

+Zyfoys for first yield at stiffener flange 225

My =

where Zy, = I./z, = first yield section modulus at outer fiber of attached plating side,
Zys = I./(hy +t + t; — zp) = first yield section modulus at outer fiber of stiffener flange
side, z, I. = as defined in Table 2.1.

The full plastic bending capacity, Mp, is now calculated. In this case, three types of
calculations are basically necessary in accordance with the location of the plastic neutral
axis, i.e., on (1) the attached plating, (2) the stiffener web or (3) the stiffener flange. In
reality, case (3) may not be considered as long as the stiffener flange is relatively small
compared to the attached plating, and hence the bending capacity formula is herein derived
for cases (1) and (2). Figures 2.10(a) and (b) represent stress distributions of plate—beam
combination sections at full yield for cases (1) and (2), respectively.

(1) Apeoyp = Awoyw + Aroys: In this case, the plastic neutral axis of the plate—beam
combination where the plate itself is very thick can be located in the attached plating.
Since the location of the plastic neutral axis is determined so that the total cross-
sectional area is equally divided into two, we then have

A A A A A A
beeay, = peOYp + AwOyw + AfOyr or e— peOYp + AwOyw + AfOye (2.26)
2 2beo'yp

The plastic bending capacity is calculated as the first moment of axial stresses with
regard to the plastic neutral axis over the entire cross-sectional area. In the interest of
simplicity, the yield strength of the entire cross-section material may be represented by
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Figure 2.10 Stress distribution of the plate—beam combination section at full yield

the equivalent yield stress, oyeq. In this case, since e = 0.54./b,, the plastic bending
capacity formula simplifies to

Mp = £Zpovyeq 2.27)

where Zp=C; + (C/b,) + C3 =plastic section modulus, C; = %(bel‘2 + twh, + bitd),
CZ = _%(bet - twhw - bftf)zv C3 = hwatf'

(2) Apeoyp < Awoyw + Aroye: In this case, the plastic neutral axis will be located on the
stiffener web, which is determined by

ApeUYp + Ayoyw + Afoys
2

—A A A
o peOYp + AwOyw + AfOys np (2.28)
2t 0yw

betUYp + tw(e — Doyy =

In this case, if the yield strength of the entire cross-section is represented by the
equivalent yield strength, oy.q, the plastic bending capacity formula can also be given
by Equation (2.27), but replacing the plastic section modulus, Zp, by the following
equation since e = [(—Ap. + Ay + Af)/2t,] + ¢, namely

C
Zp=C; + t—z +Cs (2.29)

w

where C, Cy, C3 = as defined in Equation (2.27).
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2.6.4 Capacity under Combined Bending and Axial Load

When combined bending and axial loading is applied, the stress distribution at full yield
of the cross-section can be presumably considered as that shown in Figure 2.11. The
axial load, P, and bending moment, M, can then be calculated by integration of the stress
distribution over the cross-section as follows:

P=/ax dA, M=/axsz (2.30)
A A

where [,( ) dA represents the integration over the cross-sectional area.

In Equation (2.30), P and M will be expressed as a function of an unknown parameter,
e, which is the distance from the outer fiber of the attached plating to the plastic neutral
axis. Combining these two equations with regard to the unknown parameter, an interaction
relationship between P and M can be obtained. It is to be recognized that the plastic
capacity of the sections under combined bending and axial load will be less than that for
bending alone.

Rectangular Cross-section

Before the plastic capacity of the plate—beam combination under combined M and P is
calculated, a simpler case with rectangular cross-section is considered. The stress distri-
bution over a rectangular cross-section at full yield may be presumed as that shown in
Figure 2.12. In this case, the stress distribution can be divided into two parts, namely one
for pure bending stress and the other for pure axial stress.

Based on the presumed stress distribution, the reduced bending moment capacity, M,
and the associated axial load, P, can be calculated by

P =1t,(hy —2¢)0yw (2.31a)
M = Mp — Mpe = Mp — ZpeOyw
tyh? ty(hw — 2€)?
= Moy, - ( " 9 v (2.31b)

where Pp = tyhwOyw, Mp = (twh%/4)0veq, Mpe = Zpeoyw = plastic bending capacity for
the cross-section of e, Zpe = [tw(hw — 2€)*] /4 = plastic section modulus for the cross-
section of e.

—Oyeq

z

Figure 2.11 Stress distribution over an arbitrary cross-section under combined bending and
axial load
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Figure 2.12 Stress distribution of a rectangular cross-section under combined bending and
axial load

Combining Equations (2.31a) and (2.31b), the plastic capacity interaction equation of
the plate—beam combination under M and P is given by

P 2
+ (E) =1 (2.32)

Figure 2.13 shows the above interaction curve for rectangular cross-sections under
combined (positive) bending and (positive) axial load. As evident from Figure 2.13, the
plastic bending capacity significantly decreases with increase in the axial load.
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Figure 2.13 The interaction curve for a rectangular cross-section under combined bending and
axial load
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Plate—beam Combination Section

The plastic stress distribution of a plate—beam combination whose cross-section is subject
to combined bending and axial load may be described in terms of the position of the plastic
neutral axis, e, which is the distance from the outer fiber of the attached plating to the
plastic neutral axis, as those shown in Figure 2.14 (Ueda & Rashed 1984).

In contrast to the symmetric rectangular cross-section, the expressions of the plastic
capacity interaction relationships of plate—beam combinations under M and P may be
different in accordance with the direction of load application.

Based on the presumed stress distribution for each state of load combination, the reduced
bending moment, M, and the associated axial load, P, can be expressed as a function of
the unknown, e. By omitting e between the two expressions, an interaction relationship
for the plastic capacity is then derived. For an elaborate description of the plastic capacity
interaction relationships, the interested reader may refer to Ueda & Rashed (1984).

In the interest of simplicity, Equation (2.32) may often be employed for the plastic
capacity interaction formula of the plate—beam combinations under M and P, but using
Pp and Mp for the plate—beam combination, the latter being defined in Equation (2.27)
depending on the section dimensions, i.e., either A,0yp, > Awoyw + Afoyr OF ApeOyp <
Ay oyw + Afoys.
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Figure 2.14 Presumed stress distributions over the plate—beam combination model cross-section
for varying states of combined bending and axial load
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2.6.5 Capacity under Combined Bending, Axial Load and Shearing Force

When combined bending, M, axial load, P, and shearing force, F, are applied, stress
distributions similar to that for combined bending and axial load may be adopted, assuming
that the shearing forces will be sustained by the stiffener web alone. In this regard, a
reduced yield strength, oyy, for the stiffener web may be introduced by the Tresca yield
criterion as follows (ENV 1993-1-1 3 1992):

Gy 2 2 0.5
Oyy =2 [<T) - (A_w) ] (2.33)

where F' = applied shearing force.

For combined bending, axial load and shearing forces, therefore, the reduced plastic
bending capacity of the plate—beam combination section can approximately be obtained
from Equation (2.32) with Pp and Mp for the plate—beam combination, but replacing the
stiffener web yield stress oyy by oy, of Equation (2.33).

2.7 Ultimate Strength of Beams

Any steel structure can collapse when it develops sufficient plastic hinges to form a plastic
mechanism. The plastic collapse strength formulas of beams with many types of loading
and end conditions can typically be derived applying rigid plastic theory (Hodge 1959,
Neal 1977).

Belenkiy & Raskin (2001) showed that the ultimate strength of beams determined by
rigid plastic theory corresponds quite well to a ‘threshold’ (ultimate) load obtained by
nonlinear finite element analysis. This threshold load is defined so as to separate the
linear elastic regime from the plastic regime. Figure 2.15 illustrates the threshold ultimate
load concept for beams. In this figure, the load—deflection curve indicated by the solid
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Figure 2.15 A schematic representation of the threshold (ultimate) load of beams
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line may be divided into three regimes, namely the linear elastic regime (Ob), transitional
regime (bc) where plastic deflection starts to grow, and large deflection regime (cd).

The true load—deflection curve was shown to be approximated by a bilinear relation, i.e.,
0Ad, where the deflections w, and wqy could be taken as w. = 0.005L and wyq = 0.01L.
The threshold ultimate load is then defined as the load, P,, at point A. Based on the
comparisons of ultimate loads of beams with various types of end conditions and load
applications as determined by rigid plastic theory with the threshold loads obtained by
the nonlinear finite element analyses, Belenkiy & Raskin (2001) also developed some
important insights: (1) the plastic deflection, wa, corresponding to the threshold loads
is normally in the range of 0.001L-0.004L; and (2) the effects of strain hardening and
membrane stress on the threshold loads are usually small.

For the use of rigid plastic theory to derive ultimate strength formulations of beams,
the basic assumptions noted below are typically assumed to be adequate:

strain-hardening effects can be ignored;

the Tresca yield criterion is applicable;

small deformations are involved, and hence the membrane effects may be neglected;
local buckling does not take place;

the localized plastic region does not expand into the longitudinal (axial) direction of
beams and hence the plastic hinge is considered to remain fixed at a particular cross-
section; and

e the cross-section of the beam remains plane, i.e., it does not distort in the axial direction.

In the following sections, the plastic strength formulas of beams neglecting the effect
of local buckling are derived for various loading and end conditions. In this case, the
plastic strength formulas are expressed as functions of the full plastic bending moment,
Mp, of the beam. The ultimate strength of beams taking into account the effect of local
buckling may then be approximately estimated from those plastic strength formulas but
replacing Mp by the ultimate bending moment, M,, which is determined by considering
the local buckling effect at the cross-section, as will be described in Chapter 7.

2.7.1 Cantilever Beams

The plastic collapse strength formulas for cantilever beams under various types of load
applications as shown in Figure 2.16 are first derived.

When a beam is subjected to point load Q at the free end as shown in Figure 2.16(a),
the bending moment along the beam span is given by

M= Q(L —x) (2.34)

As the point load increases, the plastic region around the fixed end will initiate and
expand through the thickness. The beam will collapse by formation of the plastic hinge
mechanism if the cross-section at the fixed end entirely yields; that is, when the bending
moment at the fixed end reaches the plastic bending moment, Mp.

Therefore, the plastic collapse load, Q., is in this case established as follows:

Qc=— (2.35)

where Mp = as defined in Section 2.6.3.
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Figure 2.16 Plastic collapse loads of a cantilever beam under various types of load applications

Using the same method as described above, the plastic collapse loads of the cantilever
beam under different load applications are determined as shown in Figures 2.16(b), (c)
and (d).

2.7.2 Beams Simply Supported at Both Ends

The plastic collapse strength formulas for beams simply supported at both ends, and
subject to various types of load applications such as those shown in Figure 2.17, are
now derived.
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Figure 2.17 Plastic collapse loads of a beam under various types of load applications, simply
supported at both ends



68 ULS DESIGN OF STEEL-PLATED STRUCTURES

When a beam is subjected to uniformly distributed line loads, as shown in Fig-
ure 2.17(a), it will collapse if the cross-section yields at any one location inside the
span since both ends are already pinned. Because of the symmetric load application, i.e.,
as that shown in Figure 2.17(a), the maximum bending occurs at mid-span at which the
cross-section will yield first.

The reaction forces at both ends and the bending moment distribution are in this case
given by

qL

1 1
Ry =Rp = = M = Rpx — quz = —?:qx(L —x) (2.36)

Thus the maximum bending moment at mid-span, i.e., x = L/2, is obtained as follows:

L2
M = 1=

(2.37)
By equating Equation (2.37) with the plastic bending capacity, Mp, the plastic collapse
strength, g, is obtained by replacing ¢ in Equation (2.37) with g, as follows:

8Mp
9= "7 (2.38)

The same procedure noted above can also be applied to calculate the plastic collapse
strengths of simply supported beams under different load applications, with results as
shown in Figure 2.17(b) or (c). The collapse strength formula of a beam simply supported
at both ends and under linearly varying lateral pressure but with non-zero pressure load
at ends is derived later in Section 2.7.5.

2.7.3 Beams Simply Supported at One End and Fixed at the Other End

The plastic collapse strength formulas for statically indeterminate beams, simply supported
at one end and fixed at the other end, under various types of load applications such as
those shown in Figures 2.18 and 2.19 are now considered.

When a beam is subjected to uniformly distributed line loads as shown in Figure 2.18,
the equilibrium condition gives the following equations for the reaction forces and end
moment:

qL My gL My
=_4+ 2 pRp==__2

R ’
AT T L 2 L

(2.39)

7 q ’
/HHHVHHHJ}_,

i o f o =2 Mrax}

zi L | r_/ 2L gL‘~I

Figure 2.18 Moment distribution of a beam under uniform line load, simply supported at one end
and fixed at the other end
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Figure 2.19 Plastic collapse loads of a beam under other types of load applications, simply sup-
ported at one end and fixed at the other end (Note: Q. or g, indicates the critical load when the
plastic hinge is just formed at the fixed end)

where Rj, Rp = reaction forces at points A and B, M = redundant reaction (bending
moment) at end A.

The bending moment along the span can be expressed in terms of the redundant reaction,
M,, as follows:

_ N YN COREATE I
M= —Ma+Rax = 25" = -Mp (1= ) + Tx = 2x (2.40)
The bending strain energy, U, of a beam with the effective cross-section properties is
given by
L M2
U= dx 2.41
,[) 2EI, 24D

Applying the so-called Castigliano principle, the rotation at the fixed end which may
be calculated by differentiating the strain energy with regard to the associated bending
moment must be zero because of the fixed end condition, namely

04

L'm om
ou / 0 dx =0 (2.42)
0

T 9Ms _ Jy EL M,

where 05 = rotation at end A.
By substituting Equation (2.40) into Equation (2.42), the redundant reaction, My, is
determined by
gL?

=1 (2.43)
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As the load increases, the maximum bending moment occurs at the fixed end, i.e., x = 0.
When the maximum bending moment at end A reaches the plastic bending capacity |Mp|,
the fixed end will become a plastic hinge. The critical lateral load in this state is defined
by replacing g with g.; as follows:

SMp

Iz (2.44)

gc1 =

Even after the cross-section at the fixed end has yielded, the beam may be able to sustain
further loading because a plastic hinge mechanism is not formed yet. Until ¢ = g.,, the
maximum bending moment inside the span, M. 1, Occurs at x = %L. Since end A is now
considered to be pinned, keeping the bending moment constant at —Mp, the additional
bending moment, AM, due to the additional lateral load, i.e., ¢ — g.1, is given as for a
beam simply supported at both ends, namely

AM = 5(q — ge)(Lx — x7) (2.45)

The beam will collapse if the total (accumulated) maximum bending moment inside the
span reaches the plastic bending moment since a plastic hinge mechanism is then formed
as follows:

Mupax = M} 1 + AMpax (2.46)

where M., occurs at x = (2 — +/2)L which does not correspond to the location of
Mmax1 - M, is calculated by My.c1 = M using Equations (2.40) and (2.43) at ¢ = g¢;
and x = (2 — v/2)L, and AMpax is obtained by AMp. = AM using Equation (2.45) at
x=@2-~2L.

The beam eventually collapses if the accumulated maximum bending moment inside
the span reaches the plastic bending moment, i.e., My, = Mp. In this state, the plastic

collapse strength of the beam subject to evenly distributed line loads is given by

_ 2B +2V2)Mp

4 = (2.47)

For the other types of load applications as shown in Figures 2.19(a) and (b), the first
critical and plastic collapse loads may be calculated using the same approach noted above.
The collapse strength formula of a beam simply supported at one end and fixed at the
other end, and under linearly varying lateral pressure but non-zero load at the ends, is
derived later in Section 2.7.5.

2.7.4 Beams Fixed at Both Ends

The plastic collapse load formulas for statically indeterminate beams fixed at both ends
under various types of load applications as shown in Figures 2.20 and 2.21 are now
considered. In this case, the beams will collapse if the cross-sections at both ends as well
as any one location inside the span yield.

For a beam subjected to uniformly distributed line loads as shown in Figure 2.20, the
plastic hinges will simultaneously be formed at both ends where the maximum bending
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Figure 2.21 Plastic collapse loads of a beam under other types of load applications, fixed at
both ends. (For Q. or g, refer to Figure 2.19)

moments take place because of the symmetric loading and end conditions. Even after the
occurrence of the plastic hinges at both ends, the beam will be able to withstand further
loading until the cross-section at mid-span yields, leading to the plastic hinge mechanism.

In Figure 2.20, the bending moment along the span may be given by considering the
symmetric load condition with regard to mid-span as follows:

M= M+ 2, 1y (2.48)
2 2
where Ms = Mp = bending moment at beam ends.
Since the bending strain energy, U, of the beam with the effective cross-section is calcu-
lated from Equation (2.41) and the rotation at fixed end A must be zero, Equation (2.42) is
satisfied. By solving Equation (2.42) together with Equation (2.48), M, is determined by

_qL?

A= (2.49)

Now we get a critical load, g.;, when both ends just yield; that is, the end moment at
x =0 or L reaches the plastic bending moment, —Mp, namely

12Mp
L2

9e1 = (2.50)

The maximum bending moment, M., 1, which occurs at mid-span, i.e., x = L/2 until
both ends just yield, is calculated from Equation (2.48) with Equation (2.49) since ¢ = g
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as follows:
Mmax1 = —— (2-51)

Even after both ends have yielded, the beam may sustain further loading until the
cross-section at mid-span yields. While the end moment is kept constant at —Mp, the
bending moment inside the span will increase. Since the beam can now be considered to
be simply supported at both ends, the additional bending moment, AM, inside the span
due to further loading is given by neglecting the membrane stress effects, namely

1 (L - ) (2.52)

AM =

Since the maximum additional bending moment, A M., occurs at mid-span, the total
(accumulated) maximum bending moment, My,x, at mid-span is obtained as follows:

L2 _ L2 L2
Muax = Mgt + AMpax = q°21 - 4 ‘;“) - qT —2Mp 2.53)

where AMpax = [(g — gc1)/81L2.
Since a plastic hinge mechanism is formed when the cross-section at mid-span yields,
with My = Mp, the plastic collapse load, g, of the beam is finally determined by

16 Mp
qc = 12

(2.54)

Using a method similar to that used above, the first critical or plastic collapse loads of
the beams under other load applications, such as those shown in Figures 2.21(a) and (b),
can be calculated.

2.7.5 Beams Elastically Restrained at Both Ends

When the beam is connected to adjoining structures, angular rotation at the ends can be
restrained to some degree. A beam elastically restrained at both ends is considered. The
beam is subjected to a lateral pressure distribution with a trapezoidal pattern which varies
linearly between two ends as shown in Figure 2.22(a), which is given by

_ g8 — 4D

q= —L—x + g (2.55)

where gp, pp = lateral pressures at ends B or D.

The end moments arise from the constraints against angular rotation of the beam at the
junctures of the beam and the adjoining structure, as indicated in Figure 2.22(a). They
thus depend on the torsional rigidity of the adjoining structures.

From the bending moment equilibrium condition, the constraints at the ends of the
beam can be defined as follows:

d?w Cp (dw
t th d B: —_— = — | — 2.56
at the en (dx2 )x:O T (dx )x:O (2.56a)
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Figure 2.22 A beam elastically restrained at both ends and under lateral pressure

dzw CD dw
at the end D: (——) = — (—) (2.56b
dxz x=L L dx x=L )

where w is the lateral deflection of the beam, and Cp and Cp are constraint constants at
the two ends of the beam, respectively. For simply supported or clamped ends, these two
constants will become either zero or infinity, respectively.

The elastic bending moment distribution of the beam is expressed by applying the
simple beam theory as follows:

2

d“w
M=Elew

X ) g8 — 49D x3
=Mg — —(Mg — Mp) + = - - —
B L( B D) ) (x*—=Lx)+ z (Lx 7 ) 2.57)

where I, = moment of inertia of the beam with effective section.

Figure 2.22(b) represents the elastic bending moment distribution of the corrugation
beam. It is seen from the figure that three extreme values of the bending moments are
developed, i.e., at end B, end D and inside the span. By performing the double integration
of Equation (2.57) and considering the end conditions, the lateral deflection, w, may be
expressed by

4 3 _ 5 4 3 3
wZM(L_Lxs+2)+M SN A
24FEI ., 2 2 24EI . SL 2 3 30
Mg ¥ x? Lx Mp (x* Lx
+_ [ — —— — —_—
Ele( 6L T 2 3 )+Ele <6L 6) (2.58)

The end moments at ends B and D can be calculated as a function of the constraint coef-
ficients by substituting Equation (2.58) into the equilibrium condition, Equation (2.56),
as follows:

CgL? [(gp — 2-—Cp)+(gs + 30 —5C
My = &P [ g8 — qp)( p) + (g8 + gp)( D) 2.59)
120 12+4Cg — 4Cp — CpCp
Cpl? [(gp — 2+ Cp)— (g + 30+ 5C
Mp = &P [ gs — gp)( B) — (g8 + ¢p)(30 + 5Cp) (2.59b)
120 12+ 4Cy — 4Cp — CCp
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The extreme value of the bending moment inside the span will occur at the location
where the condition of dM/dx = 0 is satisfied. When both ends and any one point inside
the span yield, a collapse hinge mechanism is formed. Depending on the end condition,
the loading and other details related to the formation of the collapse mechanism will vary.

For the ideal end conditions previously described in Section 2.7.2 or 2.7.3, the beam
will collapse if the following criteria are fulfilled.

(1) A beam simply supported at both ends:

%B(xg —Lx) + & p £ (Lx,, - fp) = Mp (2.60)

where

L
= for gp = gp

L lak + a8 + )
Xp= (‘IB - qD3 D98 | for g8 > 4D
9B — 4D

(2) A beam fixed at end B and simply supported at end D:

xp[(L? = x2)gp + 2L — 3Lx; + x2)gg] B

6L =) Mp (2.61)

where x; is the distance from end B to the plastic hinge inside the span, which is
taken so that gg or gp should be a minimum.

2.7.6 Tripping under Lateral Load

A beam under lateral load which is bent about its major axis can buckle sideways if its
compression flange does not have sufficient stiffness in the lateral direction. At a critical
load, the plate—beam combination can become unstable since the compression flange may
twist sideways.

This phenomenon is sometimes termed tripping (also called lateral—torsional buckling)
which is normally supposed to be one of the many behaviors that may lead to the ULS of
the plate—beam combination. Hence it is of importance to calculate the tripping strength
of beams under lateral loading. For this problem, Section 2.9.2 is referred to.

2.8 Ultimate Strength of Columns

Unlike plate panels as will be described in Chapter 4, columns cannot be expected to
have residual strength after the inception of buckling and thus buckling strength typically
is considered to be synonymous with the ultimate strength for column members.

In this section, ultimate strength formulations for plate—beam combinations subject to
predominantly axial compressive loads are described.

BEHAVIOR OF PLATE-STIFFENER COMBINATIONS 75

2.8.1 Large-deflection Behavior of Straight Columns

From classical large-deflection column theory, the length, dL’, of an infinitesimal element
AB of a bent column, as shown in Figure 2.23, which initially was of length dx, can be
calculated by (Shames & Dym 1993)

dL')* = (dx)2(1 + 2¢,) (2.62)
Yvhere &x =du/dx + %(du /dx)? + %(dw /dx)? = axial strain of the straight column taking
into account the large deformation effects, u = axial displacement, w = lateral deflection.

If the' colu_mn neutral axis is supposed to be incompressible during its bending from
the straight-line configuration, then dL’ = dx. Therefore, Equation (2.62) becomes

du\? dw\?
(HE) +(E> =1 (2.63)

From geometric consideration of Figure 2.23, the rotation of the segment AB can be
calculated by

sinf

_ (dw/dx)dx (dw/dx)dx dw 5
AB VI du/dx)? + (dw/do’(dx)  dx 269
since Equation (2.63) is satisfied as long as the column is incompressible.

Aftler deformation, the curvature, 1 /R, of the column is given by considering dL' =dx
namely

)

1 _d0 _d0  dFw/dx®> dPw/dx?

R dL’  dx cosé  /1— (@w/dx)?

since cos 6(df /dx) = d®w/dx? from Equation (2.64) and cos 8 = /(1 — sin2 ) — -
ince cos V(1 —sin?6) = /1

. When the column deflection is supposed to be small enough, Equation (2.65) often
simplifies to

(2.65)

== (2.66)

Figure 2.23 Large deflection of a bent column
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The total shortening of the entire column can be calculated by considering Equa-
tion (2.63) as follows:

L du L dw\? 1 L /dw\?
[ = 1 () 1 laex -2 Y ax 2.
=) a® /o y (dx) 2/0 (dx) @67

where it is important to realize that the shortening expression above accommodates only
the effect of bending deflection while the column neutral axis is incompressible.

We now calculate the strain energy of the column due to bending. Using the Euler—Ber-
noulli hypothesis for the bending of beams, the strain energy, U, can be obtained by

1 E E Z\2 El, L<1)2
U=- dVol = = 2dvol = — —) dvol = / =) dx

2 ./\/ol rfx CVO 2 Jval £x GYO 2 Jvol (R) ¢ 2 Jo \R
(2.68)

since &, = z/R, I = [[ 72 dA., and o, = axial stress. The subscript ¢ represents the

effective section.
Substituting Equation (2.66) into Equation (2.68), the strain energy, U, may approxi-

mately be calculated by
El, (% [(dw)’
== [ (22 4 (2.69)
2 Jp \dx?

On the other hand, the external potential energy, W, can be obtained using Equa-
tion (2.67) as follows:

L du P (L /dw)\?
w=prPu=p [ Paxr=-L () 4 2.70
! o dx 2/0 (dx) @70

The total potential energy, I1, can be given by a sum of the strain energy, U, and the
external potential energy, W, as follows:

N=U+W (2.71)

which results in

El. (L/1\2 L dy El, /L d2w)2 P L(dw)z
m=—¢ “Vdx—P| Zdpz=c ) - = =) dx
2 Jo (R) o dx 2 Jo (dx2 2/0 dx

for the straight column.

The large-deflection behavior of columns can then be analyzed by applying the principle
of minimum potential energy to Equation (2.71). For instance, when the lateral deflection,
w, is supposed to be a Fourier series function which satisfies the boundary condition of
the column and includes several unknown constants, C;, the function of w is substituted
into Equation (2.71). The constants C; are then determined by the principle of minimum
potential energy since dI1/9C; = 0; refer also to Equation (2.90).
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2.82 Elastic Buckling of Straight Columns

To study the ultimate gtrength of columns, of primary interest is elastic buckling. To illus-
trate the column buckling phenomenon, a simply supported straight column is considered,
as shown in Figure 2.24.

When the column deflection is considered to be small enough, the following values for
the column with effective section are obtained:

d?w
dx?
external bending moment: M = Pw (2.72b)

internal bending moment: M = —EJ,— = —EI, (2.72a)

| =

since the curvature is given by Equation (2.66).
Considering the equilibrium condition for the bending moment, the following governing
differential equation emerges:

d*w dw

where k = /(P/EL,).
The general solution of Equation (2.73) reads

w = Cysinkx + Cycoskx (2.74)

whqre C) and C, are constants to be determined in accordance with the end conditions.
Sll:l(fe b(?th ends are simply supported, w =0 atx =0 and x = L. Substituting this end
condition into Equation (2.74), the following two conditions emerge:

C,=0,C;sinkL =0 (2.75)

Considgring the' first condition of Equation (2.75), the form of the solution becomes
1{) = C} sin kx. This means that the coefficient C; should not be zero, otherwise no deflec-
tlorfl exists. Thus, the second condition of Equation (2.75) provides a non-trivial solution
as follows:

sinkL =0 or kL =, 2w, 37, ..., 07, ... (2.76)

The smallest value of the applied load, P, is given when kL = 7. Thus, the so-called
Euler buckling load, Pg, is calculated by

w2El,
Pg = 2 2.77
After buckling, the deflection pattern of the column simply supported at both ends is
therefore expressed by w = sin(wx/L).

z* L -

Figure 2.24 A straight column simply supported at both ends
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2.8.3 Effect of End Conditions

The Euler buckling load for columns was obtained above under the condition that both
ends are simply supported. In reality, the ends are usually welded to other m.embe'rs and
thus are restrained against rotation. The amount of this restraint typically varies with the
properties of the different structural members involved. N

For an infinitesimal part of the column with a certain type of end gondltlon(s) as
shown in Figure 2.25, the force equilibrium considerations lead to the basic fourth-order
differential equation for flexural buckling of columns, when dw/dx = 0, as follows:

@ (o dw) | o dw
—)+P— = 2.78
E(Eiredxz)ﬂvdxz 0 2.78)

When the cross-section is uniform along the span, Equation (2.78) can be rewritten
as follows:
d*w d*w
— — = 2.7
EIedx4+de2-—0 (2.79)

The general solution of Equation (2.79) is given by

w=Cicoskx + Cpsinkx + C3x + C4 (2.80)

where k = as defined in Equation (2.73). , ,

Considering lateral deflection w, slope dw/dx, bending moment EI, d“w/dx*, and shear
force El, d*w/dx3 + P dw/dx, in the z direction, the end conditions of the column may
be mathematically expressed by

d?w
at simply supported end: w =0, proie 0
dw
at fixed end: w =0, e =0
d*w 3w dw
at free end: F=O’ @—i- 2EJ;:O

_______ i d2w d2 d2W
" — |El,— |+ — |El,— | Ax
'odx ( ¢ dxz) dx? ( ¢ dx?

Figure 2.25 Force components acting on a column free-body element
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Figure 2.26 A cantilever column

Since two boundary conditions at each end exist, a total of the four unknown constants
in Equation (2.80) must be determined in a given case. The lateral deflection, w, will then
have solutions different from zero only if the determinant for a set of linear homogeneous
equations with regard to C;—C4 vanishes. The buckling load can be calculated as the
minimum value which satisfies the condition that the determinant becomes zero.

For instance, buckling of a column is now considered when one end is fixed and the
other end is free, such as that shown in Figure 2.26. The end conditions are in this case
given by

d*w 3w dw

atx =0 (freeend): ——=0, —— +ik— =0
dw

t x = L (fixed end): =0, — =0

at x (fixed end) w

By substituting these boundary conditions into Equation (2.80), we get
C1=C3=0,CysinkL + C4 =0, CokcoskL = 0 (2.81)
The second and third conditions of Equation (2.81) become
Ca=—CosinkL = Co(—1)",C, # 0,k £ 0

T (2.82)
CoskL =0 —> kL = (2n — I)E,n =1,2,3...

The buckling load is then obtained from the last equation of Equation (2.82) when the
smallest load is obtained with n = 1, as follows:

i1 n2El, m2El,
2 7 BT T ey

(2.83)

After buckling, the lateral deflection pattern of the cantilever column is given by
w=1—sin(wx/2L).

As rotational restraints of the adjacent members increase, the column ends may approach
fixed conditions. In this case, the buckling wave length between points of inflection
becomes shorter. For instance, the buckling wave length of the cantilever column may
become 200% of the original length as evident from Equation (2.83), see Figure 2.27(b).
For the column fixed at both ends, the buckling wave length is 50% of the original length,
see Figure 2.27(c). When one end is fixed and the other is pinned, the buckling wave
length becomes 70% of the original length, see Figure 2.27(d).
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P

P -\ 4 ~~~~~ P
Le=2L
(b) One end free, the other fixed (« = 2)
a Point of inflection %
s
L g
l |<—Le = E—"
t L
(c) Both ends fixed (« = 0.5)
a Point of inflection
P—>4 = —_”______%<— P
— 1,=07L—
| L

(d) One end pinned, the other fixed (a = 0.7)

Figure 2.27 Effective length of columns varying the end conditions

It is apparent that the buckling wave length decreases as the rotational restraints at
the column ends increase. Also, the shorter the buckling wave length the larger the
buckling load. For convenience, the term ‘effective length’ (also called ‘!)gckling length’)
is typically employed to account for the effect of the column end conditions so that' the
elastic buckling loads of columns with various types of end conditions can be detemm}ed
by the Euler formula, but replacing the original (or system) length, L, by the effective
length, L., as follows:

2 2 P g
n El _T El or op=— e (2.84)
12~ (aL)?

Py = A (aL/ro)?

where @ = constant accounting for the effect of column end condition. .
For various end conditions, the applicable theoretical values of the effective length, L.,

or constant ¢, are given as those of Figure 2.27.

2.8.4 Effect of Initial Imperfections

As previously noted in Section 1.7, the actual columns in welded steel—pla?ed structures
will have initial imperfections in the form of initial deflections (out-of—stralg_htness) and
residual stresses which affect the structural behavior and load-carrying capacity.
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Figure 2.28 An initially deflected column simply supported at both ends

An initially deflected pin-ended column as shown in Figure 2.28 is now considered.
The geometric configuration of the initial deflection, wo, may approximately be defined
by Equation (1.9) in Chapter 1, i.e., wo = o sin(wx /L), which takes the half sinusoidal
wave pattern. The total (initial plus added) deflection, w, after buckling, may also take a
similar shape to the initial deflection as follows:

ax
= §sin — 2.85
w Sin L ( )

where § = amplitude of the total deflection.
The bending moment equilibrium is in this case given by

2

EIGW + Pw=0 (2.86)

where the first term on the left hand side represents internal bending moments due to

added deflection alone since the initial deflection does not contribute to internal bending,
while the second term is the external bending moment imposed by the total deflection.

The axial strain of the column with initial deflection may be given as being similar

to that of a straight column defined in Equation (2.62), by taking into account the large-

deflection effects, but by neglecting the large axial displacement effects as follows:

du 1 (2w\> 1 /9%w\>
=4 (=) _z 2.87
b 3x+2(8x2> 2<3x2) (2.87)
where the first term on the right hand side of Equation (2.87) represents the small strain
component, while the second and third terms portray the large-deflection effects.
To determine the amplitude of total deflection in Equation (2.85), the strain-energy-

based approach is employed. The elastic strain energy, U, of the initially deflected column
may be read from Equation (2.69) as follows:

v (8 — 80)* (2.88)

_EL (f (3w 3w\ xEL
2 Jo \ax2 ax? YE

since

L L
.o X 1 2mx L
—dx = —{1—- - —
/0 T /0 2( cos L) 2
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The external potential energy, W, of the compressive load, P, related to lateral deﬁec-
tion is calculated from Equation (2.70), by neglecting the small strain component, as
follows:

P e[ /2w\* 0w\’ Pr? o o
— — _ - ) - == dx = ——(°—-§ 2.89
weru=-1 | [(3}:2) (5) Ze-5 @89

The total potential energy, I, of the initially deflected column is obtained from qua—
tion (2.71), but using the strain energy, U, of Equation (2.88) and the external potential

energy, W, of Equation (2.89). ‘
Applying the principle of minimum potential energy, the amplitude of the total deflec-

tion can be found as follows:

oIl n*El, Pn? 8o
a5 ~0= 35 @) -8 or 1= pjp - 9%

where Pg = Euler buckling load as defined in Equation (2.77), ¢ = 1/(1 — P/Pg)

= magnification factor. S
Substituting Equation (2.90) into Equation (2.85), the total deflection is given by

do . WX . Tx
= ——  §in — = ¢ sin — (2.91)
W= g S T $hesin

Figure 2.29 plots Equation (2.91) representing the applied compressive load versus the
total deflection of the column, varying the magnitude of initial deflection. As evident

000 0.02 004 006 008 0.10 0.12
s/L

Figure 2.29 The behavior of a column with initial deflection
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from Figure 2.29, the deflection increases progressively from the very beginning of com-
pressive loading when initial deflection exists and a bifurcation buckling point does not
exist in this case. Also, the load-carrying capacity decreases as the magnitude of initial
deflection increases.

On the other hand, the existence of any compressive residual stresses will further reduce
the buckling strength of columns. For practical design purposes, the effect of compressive
residual stress on the column buckling strength is sometimes included by reducing the
compressive residual stress from the computed buckling strength.

2.8.5 Collapse Strength of Columns

The elastic buckling strength formulas derived so far are valid as long as the material
remains in the elastic regime. This may be true for slender perfect columns without initial
imperfections. Since the Euler buckling stress must be less than the proportional limit of
material, op, a limit of the column slenderness ratio for use of the Euler formula may be
given from Equation (2.84) as follows:

L 172
- = z <£) (2.92)
Te o \ Op

since o < Op.

For instance, if the proportional limit of material is taken as op =200MPa, E = 2.1 x
10° MPa and @ = 1.0, the column slenderness ratio must satisfy L/r. > (210 000/200)!/2
= 101.7 so that the Euler formula result is valid to use.

For stocky or imperfect columns, however, the elastic proportional limit is often
exceeded and a certain degree of plasticity takes place before the inception of buckling.
As a result, the real buckling load will in this case be less than the Euler buckling load.

Therefore, the Euler buckling formula will not be directly available for stocky or imper-
fect columns, which are more common in actual structures. However, since the Euler
formula provides very useful insight into column buckling behavior, many researchers
have attempted to utilize it to the extent possible even for elastic—plastic buckling of
columns, with corrections applied to some of the parameters involved. For instance, some
classical theories such as double modulus theory or tangent modulus theory resembling
the original Euler formulation have been suggested to deal with elastic—plastic effects on
column buckling (Bleich 1952).

In reality, a stocky column that has a high value of computed elastic buckling strength
will not buckle in the elastic regime, but will actually reach the ULS with a certain
degree of plasticity. To account for this behavior, some approximate formulas based on
the insights developed from experiments, such as the so-called Gordon—Rankine formula,
the Tetmajer formula and the Johnson—Ostenfeld formula, are often used.

For modern practical design purposes, the various available ultimate strength formula-
tions for plate—beam combinations under predominantly axial compression are typically
based on one of the three common approaches, namely

o the Johnson—Ostenfeld (or Bleich—Ostenfeld) formulation
e the Perry—Robertson formulation
e a purely empirical formulation.
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Among these, most classification societies in marine industry employ the Johnson-
Ostenfeld formulation to take into account the effect of plasticity in the elastic bucKling
strength. The resulting ‘elastic—plastic’ buckling strength is often termed the ‘critical’
buckling strength.

The Perry—Robertson formulation considers that the plate—beam combination will col-
lapse when the maximum compressive stress at the extreme fiber reaches the yield strength
of the material. Two possible collapse modes for the Perry—Robertson formulation of a
plate—beam combination model are usually treated depending on the compressed side,
namely plate- or stiffener-induced failure, the former being initiated by compression at
the attached plating side and the latter being initiated by compression at the stiffener
flange side.

In empirical approaches, the ultimate strength formulations are developed by curve
fitting based on mechanical collapse test results or numerical solutions. These types of
empirical formulas can often be cast as simple closed-form expressions which have certain
advantages in getting first-cut estimates, while their use may be restricted to a specified
range of dimensions or be subject to other limitations.

Johnson-Ostenfeld Formula

The critical buckling strength based on the Johnson—Ostenfeld formula is given as follows:

— JOE for og < 0.50F
e {UF[I — og/(4og)] for og > 0.50F (2.93)

where o = elastic buckling stress, o = critical (elastic—plastic) buckling stress,
or = reference yield stress; or = oy for compressive stress and or = ty = oy/ V3 for
shear stress, oy = material yield stress. For the plate—stiffener combinations, oy may be
taken as the equivalent yield stress, i.e., 0y = 0yeq. In using Equation (2.93), the sign of
the compressive stress is taken as positive.

In ship rules from different sources, Equation (2.93) may appear with somewhat dif-
ferent constants depending on the structural proportional limit value assumed; the above
form assumes a structural proportional limit of 50% of the applicable yield value. Equa-
tion (2.93) is also used for steel plates as well as columns.

Perry—Robertson Formula

In the Perry—Robertson formulation, it is assumed that the column will collapse if the max-
imum compressive stress at the extreme fiber of the column cross-section reaches the yield
stress. For an initially deflected column simply supported at both ends, see Figure 2.28,
the maximum bending moment, M., can be calculated, if local buckling effects can be
neglected, using the total deflection, §, at mid-span as given by Equation (2.90) as follows:

P
Mpay = P§ = ——— 2.94
max 1 . P/PE ( )

where Equation (2.94) cannot be valid further if local buckling or tripping occurs in the
plate—beam combination. For this case, Section 2.8.6 or 2.8.7 may be referred to.
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The maximum compressive stress at the outer fiber of the cross-section can therefore
be obtained by the sum of axial stress and bending stress as follows:

Orax = £ + hze _ f zc  Péy Adpz, o

4210 2% T
A I, A I.1-P/P ‘ I. 1—o/og (2.95)

where o = P /A, z. = distance from elastic neutral axis to outer fiber of the compressed
side.

Fgllowing the Per.ry—Robertson approach, the ultimate strength of the column is then
obtained from Equation (2.95) by replacing o with o, when oy, reaches the equivalent
yield stress, oyeq, namely

U
Omax = OYeq = 1+ —
m OYeq = Oy ( 1 Uu/O'E) (2.96)

where 1 = Adozc/I, = Sozc/r?.

Tl'le real ultimate strength, o, is taken as the minimum value of the two solutions
obtained by solving Equation (2.96) with regard to o, as follows:

0.5
o 1 147 1 1+7\%* 1
_ — 1+ - —=11 R
(1 5 [4( T @)

(4

where A, = ‘(L/zrre)«/ (0¥eq/ E) = /(0veq/0E), n = as defined in Equation (2.96).

For a str.alg‘ht column, i.e., without initial deflection, the constant n becomes n = 0.
Therefore, it is evident that Equation (2.97) is reduced to the Euler formula when Ae
> 1, namely

oy 1

=3 (2.98)

o Yeq Ag

. The direction of column deflection may be primarily governed by that of initial deflec-
tion, lateral loading not being present. Since the nature of initial deflection is somewhat
uncertain, the failure mode of a plate—beam combination model may be one of the two,
namely plate-induced failure (PIF) or stiffener-induced failure (SIF). It is for this reason
thf:lt the ultimate strength for the Perry—Robertson formula may be determined as the
minimum value of the two strengths.

In a continuous stiffened plate structure, SIF is a trigger to the collapse of the entire
panel. The original idea of the Perry—Robertson formula assumes that SIF occurs if the
tip of the stiffener yields. This assumption may in some cases be too pessimistic in terms
of the collapse strength predictions. Rather, plasticity may grow into the stiffener web as
lqng as lateral—torsional buckling or stiffener web buckling does not take place, so that the
stiffener may resist the further loading even after the first yielding occurs at the extreme
fiber of the stiffener. As will be described later in Section 2.11.4 or Chapter 6, therefore,
only the PIF-based Perry—Robertson formula, i.e., excluding the SIF, is often adopted for
prediction of the ultimate strength of the plate—stiffener combination as representative of
a continuous stiffened panel.
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Empirical Formula

While a vast number of empirical formulations (sometimes called column curves) for the
ultimate strength of simple I-beams in steel-framed structures have been developed (e.g.,
Chen & Atsuta 1976, 1977, ECCS 1978, among others), relevant empirical formulas for
plate—beam combination models in steel-plated structures are also available.

As an example, Paik & Thayamballi (1997) developed an empirical formula fo‘r pre-
dicting the ultimate strength of a plate—stiffener combination under axial compression in
terms of both column and plate slenderness ratios, based on existing mechanical collapse
test data for the ultimate strength of stiffened panels under axial compression and with
initial imperfections (initial deflections and residual stresses) at an ‘average’ level, as
described in Equation (1.11d) or (1.15) of Chapter 1.

Since the ultimate strength of columns must be less than the elastic column buckling
strength, the Paik—Thayamballi empirical formula is given by

Oy 1
OYeq B v/0.995 +0.93612 4 0.17082 + 0.188228% — 0.0671*

1
< 2 (2.99)

where A, 8 =column and plate slenderness ratios for the full section, as defined in
Table 2.1. o
Equation (2.99) implicitly includes the possible effects of local buckling or tripping as
well as initial imperfections (initial deflection and welding residual stress) at an ‘average’
level. Also, both column and plate slenderness ratios used in Equation (2.99) are calculated
for the full section, i.e., without evaluating the effective width of the attached plating.
This may sometimes be of benefit when evaluation of the plate effective width is difficult.
Figure 2.30 compares the Johnson—Ostenfeld formula, the Perry—Robertson formula
and the Paik—Thayamballi empirical formula for the column ultimate strength for a
plate—beam combination model varying the column slenderness ratios, for selected initial

1.0 =g - — —- — Euler formula
Johnson-Ostenfeld formula

empirical formula

£=39 } Paik-Thayamballi
=30

O’u/O‘qu E
formula

Z z 8% } Perry-Robertson
n=0.6

Ao =\ Oveqlog = [LI(e)] \ oyeq/E

Figure 2.30 A comparison of the ultimate strength formulations for plate—stiffener combinations
under axial compression
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eccentricity and plate slenderness ratios. For convenience in the present comparisons, it
was assumed that A, = A.

2.8.6 Local Web or Flange Buckling under Axial Compression

The local buckling can in some cases take place in the web or flange of a stiffener in
a stiffened panel. Once such stiffener web or flange buckling occurs, the stiffened panel
may easily fall into the overall collapse mode since the stiffeners may not work further
as support members. The local buckling strength of stiffener web or flange is presented
later in Chapter 5.

2.8.7 Lateral-Torsional Buckling under Axial Compression

In a plate—stiffener combination under axial compression, the web can twist sideways if
the stiffener flange is not strong enough to remain straight. This phenomenon is called
lateral—torsional buckling, which occurs suddenly and results in subsequent unloading of
the support member.

Hence in those cases it may be regarded as a collapse mode of the stiffened plate
structure because once the stiffeners twist sideways the plating is left with essentially no
stiffening and as a result a global buckling mode may follow immediately.

For this problem, the reader may refer to Section 2.9.2 of this chapter and Chapter 5,
which present the lateral—torsional buckling strength for plate—stiffener combinations
under combined axial compression and lateral load.

2,9 Ultimate Strength of Beam-Columns

In this section, the ultimate strength formulations for plate—beam combinations under
combined axial compression and lateral load are derived by taking into account the effect
of initial imperfections.

2.9.1 Modified Perry-Robertson Formula

Originally, the Perry—Robertson formula was developed to calculate the collapse strength
of the plate—beam combination under predominantly axial compressive loads, when local
buckling does not take place. The original Perry—Robertson approach considers that the
column will collapse if the maximum compressive stress at the outer fiber of the cross-
section reaches the yield stress.

For plate—beam combinations under combined axial compression and lateral load, the
Perry—Robertson approach may also be applied to calculate the ultimate strength, but the
maximum compressive stress at the outer fiber of the plate—beam combination section is
now a function of lateral load as well as axial compression.

For a beam—column under combined axial compression, P, and lateral line load, q, the
internal bending moment along the span can be obtained by

M =M, + Puw (2.100)

where M, = bending moment due to lateral line load q, w = lateral deflection.
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Using Equation (2.100), the bending equilibrium of the beam~column reads

2 d*w M,
Ele%g =-M=-M;~Pw or —— + Kw = —E—I‘: (2.101)
where k = as defined in Equation (2.73).

The lateral deflection and bending moment distribution of a beam—column can be
obtained by solving Equation (2.101) under prescribed boundary and loading conditions.
For instance, the lateral deflection and bending moment of a beam—column pmnf:d at both
ends under combined axial compressive load, P, and lateral line load, g, are given by

) _ [ soter—)
] + ﬁx(L —x), M= {1 cos(kL/2)

w k2
(2.102)

7 [, cos[k(L/2 — x)]
=Wl " cos(kL/2)

Since the maximum lateral deflection, wpy, or the maximum bending moment, M.y,
occurs at mid-span, i.e., x = L/2,

Wmax = Clwq max» Mmax = C2Mq max (2103)

where

384 kL - k*L? ]
Cl = W sec 7 8 3
5qL* qL?
[1—seckL/2)], wyme =

C2 m, qmax= T

8
TR
Wgmax and My may are the maximum lateral deflection and the mz.:tximum bending moment
caused by lateral line load g alone, respectively. The coefficients C,; and-Cz portray
the magnification factors for lateral deflection and bending rpoment, rcspectl\./ely'. As is
apparent, the magnification factors may be different depending on load applications or
end conditions. ‘

Applying the Perry—Robertson approach, it is considered that the plate—beam comblpa-
tion collapses when the maximum compressive stress at the outer ﬁbef of the cross-section
reaches the yield stress. Depending on the direction of lateral loading, the compressed
side of the cross-section will be automatically determined. o

For practical design purposes, specifically when the direction of .lateral loading is
unknown beforehand, however, the maximum stress at the cross-section may be taken
as the larger value of the stresses at the two extreme fibers, namely

P M
Omax = — B = Oveq (2.104)
AL

where zmax = larger value of zj, or hy + f + # — zp, zp = as defined in Table 21

The ultimate axial compressive stress, oy, is obtained as the solution of Equat%on (2.104)
with regard to ¢ = P/A. An iterative process may be needed t'o solve Equation (2.104)
with regard to the axial load because M., is a nonlinear function of P.
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To obtain a closed-form expression of the ultimate compressive strength for a
beam—column, a simplification can herein be made. It is assumed that the maximum
bending moment of a beam—column is the sum of the bending moment due to lateral
loads plus that due to geometric eccentricity which may include lateral deflection caused
by external load as well as initial deflection, namely

Minax = My max + P (Wg max + 80) (2.105)

where M nax = maximum bending moment due to lateral load alone, w; max = maximum
deflection (amplitude) due to lateral load alone, & = initial deflection, ¢ = magnification
factor as defined in Equation (2.90).

To check the accuracy of Equation (2.105), an example is considered when a
beam—column is subjected to uniform lateral line load, g, and axial compression
P =0.5Pg. We assume that initial deflection does not exist, i.e., 8o = 0 so that the
exact solution of Equation (2.103) which is Mrmax = 2.030M s can be compared
directly to Equation (2.105). Since Wymax = SqL*/ (384EL.) and ¢ = 1/(1 — P/Pg) =2,
the maximum bending moment by Equation (2.105) results in

2

5qL* n’El, 5
Mo = M 7 i (1 + K) = 2.028M max

Imx T 3RAEL, L2

It is evident that Equation (2.105) is accurate enough in this case since the difference
between Equations (2.103) and (2.105) is less than 0.1% for this example. Since the
ultimate strength is reached when the maximum stress equals the yield stress, an equation
similar to Equation (2.104) appears, namely

P M, P
Omax = Z‘,‘ ‘;eaxzmax'*'m(wqmax'*'aw

Zmax

Ie

= Oyeq (2.106)
By introducing the following non-dimensional parameters,

lof o L Jo Az M
R=" 5 — /ﬂ:_ / Yeg = T 0 max + 80), o = g max Zmax
OYeq OF wreY E I Oveq 1o

Equation (2.106) may be expressed as a quadratic function of the axial compressive stress
and lateral load, namely

NR—(1—R—pu)(1-22R)=0 (2.107)

Regarding the lateral load as a constant dead load, the ultimate compressive strength
of the plate—beam combination under combined axial compression and lateral load is
obtained as the minimum value of the two solutions of Equation (2.107) with regard to
R, namely

0.5
1 1+n 1 147\ 1-4u
R=-{1- —={1= — 2.10
2( “+A§)[4< “+A§> 22 (2108
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Figure 2.31 Variation of the ultimate compressive strength from the Perry—Robertson formula
versus the column slenderness ratio for plate—stiffener combinations under combined axial com-
pression and lateral load

Figure 2.31 shows the variation of R so obtained, versus the column slenderness ratio,
for selected values of 1 and w. To approximately account for the effect of welding residual
stresses, Equation (2.108a) may be modified by multiplying a knock-down factor, X,
as follows:

0.5
1 147 1 1+n>2 1—u
R=kKk{=(1- S | - 2.108b
2( M+ A§> [4< u+ 32 ¥ ( )

where the knock-down factor K due to compressive residual stress, oy, may sometimes
be taken as K, = 1.03 — 0.08|0vs; /0veq| < 1.0 for built-up sections.

As previously described in Section 2.8.5, the Perry—Robertson-type SIF (i.e., at first
yielding of the stiffener tip) may not always represent the actual ULS of the entire panel.

2.9.2 Lateral-Torsional Buckling under Combined Axial Compression
and Lateral Load

The lateral—torsional buckling (also called tripping) strength, o7, for a plate—stiffener
combination under combined axial compression and lateral loads can be calculated as
will be described in Chapter 5.

To illustrate the length effect of a plate—stiffener combination under either axial com-
pression alone or combined axial compression and lateral loads, Figure 2.32 shows the
variations of the elastic tripping strengths together with the inelastic tripping strengths
predicted by using the Johnson—Ostenfeld formula, Equation (2.93). For a comparison,
the ordinary flexural Euler column buckling strengths together with the plasticity effect
are also plotted.

BEHAVIOR OF PLATE-STIFFENER COMBINATIONS 91

Elastic tripping strength with plasticity correction

\_Elastic tripping strength
\ /Elastic buckling strength

0.8 — )/Euler buckling with plasticity correction
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(a) Angle section stiffener with attached effective plating
Elastic tripping strength with plasticity correction
1.0 ~ "yElastic tripping strength
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plasticity correction
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Figur.e 2..32 Variatiqn of the tripping strength versus the column slenderness ratio for a plate—beam
combination under axial compression alone

‘ A§ is evident from Figure 2.32, the effects of lateral—torsional deformations are of
significance in relatively stocky columns. The tripping strength of stocky columns is
then much lower than the Euler column buckling strength which does not accommodate
lateral—torsional deformations of the stiffener. For slender columns, however, the tripping
effect is negligible at least as far as these examples (with an identical stiffener flange
breadth) are concerned.
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Figure 2.33  Variation of the tripping strength versus the column slenderness ratio for a plate—beam
combination under combined axial compression and lateral loads

It may also be surmised that a one-sided (unsymmetric) stiffener flange (e.g., angle
section stiffener) can have more desirable performance than a symmetric stiffener flange
(e.g., Tee section stiffener) when the column slenderness ratio is small. On the contrary, tl}e
symmetric stiffener flange can provide more desirable performance than the unsymmetric
stiffener flange when the column slenderness ratio is large. As shown in Figure 2.32(b), the
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flexural buckling may be the more dominant failure mode than tripping for the symmetric
section stiffener when the column slenderness ratio of the plate—stiffener combination
is large.

Figure 2.33 shows the effect of lateral load on the tripping strength of plate—stiffener
combinations. It is seen from Figure 2.33 that the lateral loads can significantly reduce
the tripping strength of plate—beam combinations under axial compression.

2,10 Ultimate Strength of Plate-Stiffener Combinations and
Their Design Considerations

The behavior of structural members typically depends on a variety of factors, namely
geometric/material properties, loading characteristics, initial imperfections, boundary con-
ditions and so on. Hence in the ULS design of support members, one or more different
mechanical models may be required to deal with the different factors mentioned above.
Even within a specific mechanical model, various types of failure modes may potentially
take place. As described in the previous sections, three types of failure modes, namely
column or beam—column types of collapse, lateral—torsional buckling and web buckling,
are relevant for the plate—stiffener combination model.

Calculation of the ultimate strength of a structure taking into account all of the possible
failure modes is not straightforward, because of the interplay of the various factors. As an
approximation, it may be considered that the collapse of the structure occurs at the lowest
value among the various ultimate loads calculated for potential failure patterns. This
will lead to an easier alternative approach to ultimate strength, wherein one calculates
the individual ‘ultimate’ strengths for all possible collapse modes separately and then
compares them to find the minimum value which is taken to correspond to the real
ultimate strength of the structure.

The ULS design is then undertaken so that the ultimate strength must be greater than
the design load effects with a relevant margin of safety, as indicated in Equation (1.1)
of Chapter 1.

2.11 Axial Stress-Strain Relationships of Beam-Columns

When the progressive collapse behavior of a large plated structure which is idealized as
an assembly of the plate—beam combinations and other structural models is considered
as will be described in Chapter 13, it is necessary to know the stress—strain relationship
of individual plate—beam combination models until and after the ultimate strength is
reached. The average stress—strain relationship (or axial load—end shortening formula)
can then be utilized to examine the entire history of the structural member behavior,
which can be divided into three regimes, namely the pre-ultimate strength regime, ultimate
strength regime and post-ultimate strength regime. In the following sections, the load—end
shortening formulas of beam—columns simply supported at both ends are derived.

2.11.1 Pre-ultimate Strength Regime

Under combined axial compressive load, P, and lateral line load, ¢, the total axial dis-
placement (shortening), u, of a plate—beam combination model with initial deflection 3o
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can approximately be obtained using the axial strain defined in Equation (2.87) as follows:

= /L dx = L + 7 [6% — (80 + )% (2.109)
— &y [ p— J— — .
u A E 2L 0 T Wgq max

where wy max is the deflection due to lateral load as defined in Equation (2.103), which is
treated as an additional initial deflection.

From Equation (2.90), we obtain § = (§y + Wqmax)/(1 — P/ Pg) regarding the lateral-
load-induced deflection as an initial deflection. Substituting this into Equation (2.109)
and differentiating with respect to P and u, the incremental form of the compressive
load versus end shortening of columns until the ULS is reached may approximately be
obtained, by neglecting the effect of localized plastification, as follows:

AP = kgAu (2.110)

where

L 700+ Wyme)? T
ke=|—+
EA 2L Pg(1 — P/PE)3

The prefix, A, represents an increment of the variable. For axial tension, kg = L/EA
is used with full sectional area of the member since it is in this case assumed that
50 = Wgmax = 0.

The axial stress—strain relationship of the beam—column in the pre-collapse regime can
then be given from Equation (2.110) in the incremental form as follows:

L
Aoy = —A—kEAsx (2.111)

As will be described later in Section 13.4 of Chapter 13, the stiffness matrix of a
beam~column element needs to be formulated for nonlinear finite element analyses. When
the beam—column element has two nodal points, as shown in Figure 13.4, the stiffness

equation is given by
ARy | _ (o] Ay
{ ARy } = [K] [ Auy } @.112)

where
E_ 1 -1
(K] —kﬁ[_l 1]

ARy, ARy> = nodal force increments at nodes 1 and 2, Auj, Au, = nodal displacement
increments at nodes 1 and 2.

2.11.2 Ultimate Limit State

The column or beam—column will collapse if the load reaches the ultimate load. As
described in Section 2.10, the real ultimate strength of a plate—stiffener combination
will be determined as the lowest value among the various ultimate loads calculated
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for potential failure patterns, namely column or beam—column types of collapse, lat-
eral—torsional buckling and stiffener web buckling. For predominantly axial tension, the
ultimate strength will be reached by gross yielding, e.g., at P = Pp, where Pp = as defined
in Equation (2.20).

2.11.3 Post-ultimate Strength Regime

The collapsed member undergoes much larger deformations and the load—displacement
behavior beyond the ULS is also of great interest, as long as the entire structure can still
sustain further loading. The axial load—end shortening formula for plate—beam combina-
tions is then herein derived using a similar approach to that of Murray (1983).

From Figure 2.34, the axial shortening, u, of the beam—column can approximately

be expressed as a function of its geometry and lateral deflection, W, when W « L,
as follows:

=5-(5-w)’]
[ ) -]
5 () [ B () ]

2w

N (2.113)

Under combined loads, the reduced plastic bending capacity, M,, can be predicted from
Section 2.6.4 as a function of axial load, P, and/or shearing force, F. For a beam—column
simply supported at both ends, the following equilibrium equation must be satisfied at the
central plastic hinge after the collapse mechanism is formed, namely

PW =M, (2.114)

where M; = reduced plastic bending moment accounting for the combined load effects.

2 - ’
2
_ _( j__wz_)wz - % / Initial position

< v Deflected
2 \/ \/ 2 position

Plastic hinge

Figure 2.34 Axial shortening, u, caused by lateral deflection, W, at the center of the beam—column
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By substituting Equation (2.113) into Equation (2.114), we get the axial load—end short-
ening relation in the post-ultimate regime as follows:

1/2 2 [ M\>
P (%u) =M, or u= I (?) (2.115)

The incremental relation between u and P which portrays the tangential axial stiffness
can be obtained by differentiating Equation (2.115) as follows:

_ 22M.(dM./dP)P? — 2M?P
L P*

AM, [ (M, ]}—‘
=1—=Il=—=)P-M,
w={z (57) P
The axial stress—strain relationship in the incremental form is given from Equa-
tion (2.116) as follows:

Au AP or AP =k,Au (2.116)

where

L
Aoy = ZkuAsx (2.117)

For the beam-column element shown in Figure 13.4 of Chapter 13, the stiffness
equation in the post-ultimate strength regime is given by

ARxl . U Au1
[Asz}_[K] {Auzl (2.118)

where . .
u_ _

ARy1, ARy;, Auy, Aupy = as defined in Equation (2.112).
In calculating Equation (2.118), M; depends on the geometry of the cross-section. For
rectangular cross-sections, we get

P\? dM,  2PMp 4M2 P\*
Mr=Mp|:1—(?P) :l, 3P = — PPZ and ku— {LP3 |:1 (PP) :l]
(2.119)
It is noted that P in Equation (2.119) must be decreased as the end shortening increases.
For approximation, Equation (2.119) for rectangular cross-sections may be utilized for a

plate—stiffener combination, but using Pp and Mp for the corresponding plate—beam
combination model.

-1

2.11.4 Verification Examples

The axial stress—strain formulations of the plate—stiffener combination model noted in
Sections 2.11.1 to 2.11.3 are incorporated into the ALPS/ISUM program based on the
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idealized structural unit method (ISUM) as will be presented in Chapter 13. The progres-
sive collapse behavior of a continuous stiffened plate structure under uniaxial compressive
load, as shown in Figure 2.35, is now analyzed to verify the formulations. This structure
has been selected from the bottom panels of large merchant ship structures. The panel with
three Tee-type stiffeners is supported by heavy longitudinal girders and transverse frames.

The geometric properties of the structure are: L = 7920 mm, g =2640mm, B =
3600mm, » = 900 mm, ¢t = 21 mm, #, = 12mm, bf = 100mm, # = 15 mm. Two kinds
of stiffener web height, i.e., h, = 150mm and 210 mm, are considered in the analysis.
The material yield stress for both plating and stiffeners is 352.8 MPa, Young’s modulus
is 205.8 GPa and Poisson’s ratio is 0.3. It is assumed that plating between stiffeners
has the buckling mode initial deflection of 3.3 mm which corresponds to 0.0582%¢ where
B=(b/t) (0v,/E). The column-type or sideways initial deflection of the stiffeners
between transverse frames is considered to be 0.0025a or 0.0015a, respectively. Welding
residual stresses do not exist.

To solve this problem, the theoretical method presented in this chapter and the non-
linear finite element method are used and their results are compared. For the theoretical
calculations, a plate—stiffener combination is taken as representative of the stiffened panel
between two transverse frames, as shown in Figure 2.36. Both ends of the plate—stiffener
combination model are modeled to be simply supported. The effective width, b,, of
attached plating is assumed to be 100% of the original width, i.e., b, = b. In the theoretical
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Figure 2.36 Theoretical model — one-bay PSC (plate—stiffener combination) with be=0»b
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ultimate strength calculations for the column or beam—column types of collapse pattern,
the Perry—Robertson formula is applied, but because of too pessimistic aspect of the orig-
inal Perry—Robertson concept the present calculation does not adopt the criterion that the
stiffener tip yields while the plate-induced failure is included.

For FEA (finite element analysis), three types of structural modeling are adopted in
terms of the extent of the analysis, as shown in Figures 2.37 to 2.39. Along the transverse
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Figure 2.39 FEA model — one-bay SPM (stiffened panel model)
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Figure 2.40 A schematic representation of (a) plate-induced failure (PIF) and (b) stiffener-induced
failure (SIF) patterns in the two-bay model

frames as well as at unloaded panel edges, the simply supported condition is assumed.
Uniform axial compressive displacements are applied. The two-bay modeling technique
is beneficial to automatically take into account the longitudinal rotation effect of the
longitudinal stiffeners at the transverse frames, since one panel deflects down while the
adjacent panels buckle up in the continuous plate structure supported by heavy transverse
frames. In contrast, the one-bay SPM (stiffened panel model) is a simpler modeling but
the rotation of the longitudinal stiffeners is restrained since the stiffener cross-section
remains upright at the transverse frames. The two-bay SPM is of course more refined and
appropriate than either the two-bay PSC (plate—stiffener combination) or one-bay SPM
in terms of accuracy.

The ultimate strength behavior of a stiffened panel may significantly depend on the
deflection pattern. In this regard, two types of panel deflection patterns are considered by
handling the direction of initial deflection, as shown in Figure 2.40. That is, one is that
lateral deflection develops so that the stiffener flanges are compressed and the other is
that the attached plating is compressed. The former type is termed the stiffener-induced
failure (SIF) mode and the latter is termed the plate-induced failure (PIF) mode.

Figure 2.41 compares the theoretical solutions with the finite element results. The
strain-hardening effect is not included in both the theoretical and numerical analyses.
It was observed that the structure with A, = 150 mm reached the ULS by the column-
type collapse of stiffeners, while the lateral—torsional buckling of stiffeners caused the
entire panel collapse for the case of hy, = 210mm. It is seen from Figure 2.41 that
the two-bay SPM finite element solutions are similar for both SIF and PIF cases. The
two-bay PSC finite element model based on the SIF predicts the ultimate strength pessi-
mistically.

The formulations for a plate—stiffener combination model theoretically derived in this
chapter correlate well with more refined nonlinear finite element solutions, while the
ultimate strength predictions are somewhat pessimistic.
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Figure 2.41 The axial stress—strain curves of the stiffened plate structure under axial compression:
(a) A, = 150mm (beam—column-type collapse); (b} #,, = 210mm (tripping failure)
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3 Elasti and nelastic
Buckling of Plates
under Complex
Circumstances

3.1 Fundamentals of Plate Buckling

The response of a steel-plated structure can be classified into three levels, namely the bare
plate element level, the stiffened panel level and the entire plated structure level. This
chapter is concerned with buckling for the first level, i.e., the plating between longitudinals
and transverses.

As the predominantly compressive stress reaches a critical value, the plate buckles,
resulting in a rapid increase of lateral deflection subsequent to a significant decrease of
in-plane stiffness.

The phenomenon of buckling is normally categorized (by plasticity) into three classes,
namely elastic buckling, elastic—plastic buckling and plastic buckling, the last two being
called inelastic buckling. Elastic buckling occurs solely in the elastic regime. Elas-
tic—plastic buckling occurs after a local region inside the plate deforms plastically. Plastic
buckling indicates that buckling occurs in the regime of gross yielding, i.e., after the plate
has yielded over large areas. Thin plates normally show elastic buckling, while thick
plates usually exhibit inelastic buckling.

Buckling of plates between stiffeners, which is a basic failure mode in stiffened panels,
is a good indication for the serviceability limit state (SLS) design. To understand the
ultimate limit state (ULS)-based design procedure, it is essential to have a basic knowledge
on the buckling of steel plates. The buckling behavior of steel plates normally depends on a
variety of influential factors, namely geometric/material properties, loading characteristics,
boundary conditions, initial imperfections, local damage (e.g., perforations) and so on.

In the SLS design of steel plates using Equation (1.1) in Chapter 1, the characteristic
measure of the capacity may be determined on the basis of buckling strength, while the
demand represents the extreme value of applied stresses.
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This chapter presents classical and more advanced formulations of buckling strength
for steel plates under simple and more complex circumstances. Generally in this chapter,
new or less well-known results are emphasized. Multiple load components are treated to
the most possible extent. The effects of boundary restraints other than idealized simply
supported or fixed conditions, the effect of lateral pressure, perforations and residual
stresses are also treated. The coverage in this chapter is extensive, but as may be surmised,
plate elements constitute the major portion of structural weight in complex steel-plated
structures. By extension, it also follows that there are significant benefits to be gained by
designing them in an optimal and appropriate manner.

3.2 Geometric and Material Properties

For convenience of plate buckling analysis, the coordinate system for the plate uses x in
the long direction and y in the short direction as shown in Figure 3.1. The dimensions
of the plate are a in length (i.e., in the x or longer direction), b in breadth (i.e., in the y
direction) and ¢ in thickness. The aspect ratio, a/b, is then always greater than 1. Young’s
modulus is E and Poisson’s ratio is v. The elastic shear modulus is G = E J2(1 + v)].
The yield stress of the material is oy; ty = oy/+/3. The plate bending rigidity is D =
Ef3/[12(1 — v?)].

3.3 Loads and Load Effects

Plate elements in a continuous plated structure are likely to be subjected to combined
in-plane and lateral pressure loads. For plate elements in a complex structure, the load
effects (stresses) are calculated by linear elastic finite element analysis or the classical
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Figure 3.1 A rectangular plate under combined in-plane and lateral pressure loads
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Figure 3.2 Three structural response levels: primary, secondary and tertiary

theory of structural mechanics. The individual load components have both local and
overall structural effects.

In calculating the load effects, the structure and the associated load effects are often
divided into three levels, i.e., primary, secondary and tertiary levels. Figure 3.2 illustrates
a typical example of these three levels in ship structures (Paulling 1988). In this case, the
primary level is related to the response of the entire ship’s hull as a beam under bending
or twisting moments. The secondary level is associated with the load effects of a stiffened
panel, e.g., at the outer bottom shell of the double bottom structure between two adjacent
transverse bulkheads. The boundaries of the secondary structure (i.e., stiffened panel) are
usually formed by other secondary structures (e.g., side shell or bulkheads). The tertiary
level represents the load effects of individual plating between stiffeners. The boundaries of
the tertiary structure (i.e., plating) are formed by the stiffeners of the secondary structure
(i.e., stiffened panel) of which it is a part. It is important to realize that the load effect
analysis must account for the three responses noted above.

These load components are not always applied simultaneously, but more than one
normally exist and interact. Therefore, the buckling strength formulations need to account
for such combined load effects. In the buckling strength design, the plate element is
considered to be subjected to average in-plane stresses, oy = Oyay, Oy = Oyav, Obx, Oby,
T = T,y, and lateral pressure, p, or their combinations, as shown in Figure 3.1.

For perforated plates under in-plane loads, the membrane stress distribution may be
non-uniform even before buckling, and thus average values of the applied stresses of a
perforated plate may be smaller than those of a perfect plate, i.e., without perforations.
For the practical design of perforated plates in the marine industry, the average stresses
of the plates excluding perforations are often used as the characteristic measure of the
applied stresses, while smaller, partial safety factors related to the load effects are usually
adopted in this case.

For convenience in this chapter, axial compressive stress is taken as positive in sign,
while axial tension is taken as negative in sign, unless otherwise specified.
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3.4 Boundary Conditions

Plate elements in steel-plated structures are supported by various types of members along
the edges, which have finite values of torsional rigidity. This is in contrast to the idealized
simply supported boundary conditions often assumed for design purposes.

Depending on the torsional rigidity of support members, the rotation along the plate
edges will to some extent be restrained. When the rotational restraints are zero, the edge
condition corresponds to a simply supported case, while the edge condition becomes
clamped when the rotational restraints are infinite.

Most current practical design guidelines for the buckling and ultimate strength of steel
plates are based on boundary conditions in which all (four) edges are idealized edge con-
ditions such as being simply supported or clamped. In real plates of steel-plated structures,
such idealized edge conditions rarely if ever occur because of finite rotational restraints.

For more advanced design of steel plates against buckling, it is therefore important
to better understand the buckling strength characteristics of plates as a function of the
torsional rigidity of support members along the edges.

This chapter deals with the buckling strength of steel plates with various edge conditions
which are simply supported, clamped or elastically restrained. The first two types of edge
conditions are ideal, but often adequate for practical design purposes.

3.5 Linear Elastic Behavior

The behavior of a plate either before buckling or under predominantly axial tensile loading
may be linear elastic until buckling occurs or gross yielding is formed. The linear elastic
behavior of either perfect plates before buckling or imperfect plates under predominantly
axial tensile loading can typically be represented by the relationship between average
stresses and strains in a plane stress state as follows:

Oxav . Exav
Oyay ¢ = [Dp] Eyav 3.1
Tav Yav

where &xay, £yay, Yav = average strain components corresponding to Oxay, Oyay, Tav, IESPEC-
tively,

1 v 0

v 1 0

[D,)F =
T 0 a-w)2

3.6 Elastic Buckling of Simply Supported Plates under Single
Types of Loads

The elastic buckling stress solutions for a plate under single in-plane loading and common
idealized edge conditions are widely available from classical works on the theory of
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Table 3.1 Buckling coefficients for a simply supported plate under single types of loads for
a/b > 1.

Load type OE k

oy O%E.1 ke = [a/(m,b) + m,b/al* where m, is the buckling half-wave
number for the plate in the x direction which is the minimum
integer satisfying a/b < +/[m,(m, + 1)]. For practical use, the
half-wave number m may be taken as m, = 1 for 1 < a/b < W 2,
m, =2 for v/2 < a/b < /6 and m, = 3 for v/6 < a/b <3.If
a/b > 3, the buckling coefficient can be approximated to k, = 4

o o5 ky = [1+ ®/a)*]
T T8 k. ~4(bja)* +5.34 for a/b > 1 (k, =~ 5.34(b/a)? + 4.0 for
a/b < 1)
Obx ObxE, 1 kox =~ 23.9
o b~ [239 forl<a/b<15
Oby byE1 ®» ™ 115.87 + 1.87(a/b)? + 8.6(b/a)> for a/b > 1.5

Note: The subscript ‘1’ represents buckling under a single type of load.

elasticity (e.g., Bleich 1952, Timoshenko & Gere 1982). The elastic buckling strength of
a plate with a/b > 1 is typically given in the following formula:

e E t>2 32
ET R0 - (E G2

where o = plate buckling strength under a single type of load, ¥ = buckling coefficient for
the corresponding load. o and k for various single types of loads are given in Table 3.1.

3.7 Elastic Buckling of Simply Supported Plates under Two
Load Components

3.7.1 Biaxial Compression/Tension

An analytical solution for the elastic buckling of a simply supported plate subject to
biaxial loads may be given by (Hughes 1988, Paik 1991)

2

m? n? 72D (m?* n?
;Ux+b—20'y—'t_ Z2—+b—2 =0 (33)

where m and n are the buckling half-wave numbers in the x and y directions, respectively.

One half-wave number is normally taken in either the short edge or the direction in
which the axial tensile loads are predominant. For a long plate considered in this chapter,
ie, with a/b > 1,n =1 can typically be taken. By holding the applied loading ratio
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¢ = gy/0 constant, therefore, Equation (3.3) can be rewritten as follows:
2

m? c 7D (m? 1
Oy ;74-? - ;{'l‘ﬁ =0 34

Since buckling occurs when Equation (3.4) is satisfied, the bifurcation (buckling) stress
is obtained by replacing o, with oxg as follows:

72D (1 +m22/a)’  x2D (m%/a* +1/b%)’
OyE = —
70 ¢+ m2b2/a? t  m2/a®+c/b?

(3.5)

where o, indicates the longitudinal axial buckling stress component of a long plate under
combined biaxial loading.

Since the buckling strength value should be the same at the transition of the buckling
mode, the buckling half-wave number, m, in the x direction of the plate under biaxial
loads can be predicted from Equation (3.5) as a minimum integer satisfying the following
condition:

(m*/a® + 1/b%)? o lm+ 1)*/a* +1/b°F
m2/a?+c/b®? T (m+1)?/a*+c/b?

(3.6a)

where it is evident that the buckling half-wave number is affected by the applied loading
ratio as well as the plate aspect ratio.
When ¢ = oy,/0x = 0, Equation (3.6a) is simplified to the well-known criterion as

follows:
<ym(m+1) (3.6b)

S| &

Since we hold the applied loading ratio, ¢ = oy/0y, constant, the elastic buckling axial
stress in the y direction is obtained by

0,8 = COLE 3.7)

where oyg is the component of the elastic transverse axial buckling stress of the plate
under combined biaxial loading.

By substituting the buckling half-wave number, m, to be calculated from Equation (3.6)
and n = 1 (for the long plate) into Equations (3.5) and (3.7), the elastic buckling inter-
action relationship for a simply supported long plate subject to biaxial loads is obtained.

The benefit of Equation (3.5) is that it is applicable to the plates under any combina-
tion of biaxial loading, e.g., axial compressive loading in one direction and axial tensile
loading in the other direction as well as axial compressive loading in both directions,
while an opposite sign convention must be considered for axial tension. It is evident
from Equation (3.5) that as long as ¢ = 0, /0, is greater than —m?”b?/a’, the buckling
phenomenon can occur even if axial tensile loads are applied in one direction.

For a long plate, i.e., with a/b > 1, Equation (3.3) may be rewritten as a function of
stress components normalized by the buckling stresses under the corresponding single
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load component as follows:

(m2b%/a?) (mob/a + a/meb)* oy . ®*/a2 +1)° o,
(m2b2/a2 + 1)2 OxE,1 (m2b2/a2 + 1)2 OyE,1

=1 (3.8)

where 0E,1, 0yE,1 are as defined in Equation (3.2) together with Table 3.1, m is as defined
in Equation (3.6), m, = buckling half-wave number when ¢ = 0, as defined in Table 3.1.

Figure 3.3 shows the elastic buckling strength interaction curves of a simply supported
rectangular plate under biaxial loads for a/b =3 and 5. It is seen from Figure 3.3 that

I 2].0 ]

oyl "Y|Ev‘- ab=3
15
~ |

1.0 \l\

05 \ UxE/UxE,1
) \
1.0
(a)

&° ]

oyEloyE.1 alb=5
s

m=1 m=2
R e ) [l m=s

-1.0 -0.5 0.0 0.5

(b)

Figure 3.3 Elastic buckling interaction relationship for a plate under biaxial loads, simply sup-
ported at all edges: (a) a/b =3 andn=1;(b)a/b=5andn =1
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Figure 3.4 Approximate elastic buckling interaction relationships for a plate under biaxial com-
pression with varying aspect ratio, simply supported at all edges, as obtained by Equations (3.9)

the buckling half-wave number in the long direction varies with the loading ratio as well
as the plate aspect ratio.

In practice, a numerical iteration process may be necessary to compute the half-wave
number, m, by Equation (3.6). It is desirable for structural designers to have an approx-
imate closed-form expression for the resulting plate buckling interaction relationship.
Based on a series of computations for a variety of aspect ratios and loading ratios as
indicated in Figure 3.3, an empirical buckling interaction equation for the plate subjected
to biaxial compressive loading may be derived by curve fitting as follows:

'3 oy
( OxE > + ( OyE ) =1 (3.92)
OxE,1 OyE, 1

where o« and o are constants that are a function of the plate aspect ratio. Based on the
computed results, the constants may be determined empirically as follows:

ay=ay=1 forl<a/b<+2 (3.9b)
oy = 0.0293(a/b)? — 0.3364(a/b)* + 1.5854(a/b) — 1.0596
oy = 0.0049(a/b)* — 0.1183(a/b)* + 0.6153(a/b) + 0.8522 for a/b > ~/2 (39)

Figure 3.4 shows the elastic buckling strength interaction curves for the plate under
biaxial compression with varying aspect ratio, as obtained by Equations (3.9).
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3.7.2 Longitudinal Axial Compression and Longitudinal In-plane Bending

The e}astic buctkling strength interaction relationship of a simply supported plate under
combined longitudinal axial compression and longitudinal in-plane bending is typically

given by
OxE ObxE ¢
+ =1

OxE, 1 (bel-:,l) (3-10)

where the constant, c, is often taken as ¢ = 2 (JWS 1971) or ¢ = 1.75 (Hughes 1988).

3.7.3 Transverse Axial Compression and Longitudinal In-plane Bending

The e}astic buckling strength interaction relationship of a simply supported plate under
combined transverse axial compression and longitudinal in-plane bending is typically

given by
OyE >a3 < ObxE )0‘4
—_ 4+ { — =1 3.
(UyE,l ObxE,1 ©-112)

where the constants, a3 and a4, may be estimated as follows JWS 1971):

a3 =a4= 150(a/b)—030 forl<a/b<16 (3.11b)
az = —0.625(a/b) + 3.10

wi= 625(a/b)—7.90 for 1.6 <a/b <32 3.11¢)
a= 1.10

oy = 12‘10} for 3.2 < a/b (3.11d)

3.7.4 Longitudinal Axial Compression and Transverse In-plane Bending

The e}astic buqkling strength interaction relationship of a simply supported plate under
combined longitudinal axial compression and transverse in-plane bending is typically

given by
O%E o ( ObyE )Ot6
+{— =1
(UxE,l ) ObyE, 1 G128

where the constants, as and ag, may be estimated by (Ueda et al. 1987)

zz : (1)23(3;0(51 /b)? —2.890(a/b) + 3.160} for 1 < afb <2 (3.126)
gz - (1):(2)(6)6(a/b)2 —0.246(a/b) + 1.328} for 2 <a/b <5 (3.120
e = 01670 + 3332] for 5 <a/b <8 (3.124)
o= (S)ég} for 8 <a/b (3.12¢)
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3.7.5 Transverse Axial Compression and Transverse In-plane Bending

The elastic buckling strength interaction relationship of a simply supported plate under
combined transverse axial compression and transverse in-plane bending is typically given by

ar ag
( i ) + ( ToyE ) =1 (3.13a)
OyE,1 ObyE,1

where the constants, o7 and g, may be estimated by (Kloppel & Sheer 1960)

o7 = 1.0
ag = (14.0 — a/b)/6.5] for1<a/b=<75 (3.13b)
a7 =oag = 1.0 for 75 <a/b (3.13¢)

3.7.6 Biaxial In-plane Bending

The elastic buckling strength interaction relationship of a simply supported plate under
combined biaxial in-plane bending is typically given by

(73 a0
( ek ) + ( Tk ) =1 (3.142)
ObxE,1 ObyE, 1

where the constants, a9 and a9, |ay be estimated by (Ueda et al. 1987)

o9 = 0.050(a/b) + 1.080
a0 = 0.268(a/b) — 1.248(b/a) + 2.112

g = 0.146(a/b)* — 0.533(a/b) +1.515
oo = 0.268(a/b) — 1.248(b/a) +2.112 for 3 <a/b=5 (3.14c)

} for1 <a/b <3 (3.14b)

wo = 3.20(a/b) — 13.50

wo— —0.70(asb) +6.70] S5<a/b=3 (3.14d)
oo = 12.10

a0 = 1.10} for 8 <a/b (3.14¢)

3.7.7 Longitudinal Axial Compression and Edge Shear

When a plate buckles under edge shear, the deflection pattern is quite complex compared
to that under axial compressive loading and thus a number of terms are normally needed
to more properly represent the plate deflection by a Fourier series function. Bleich (1952)
studied the buckling of a simply supported rectangular plate subject to longitudinal axial
compression and edge shear using the energy method and developed a design chart for
the plate buckling. Ueda et al. (1987) derived an empirical buckling strength interaction
equation for the plate under combined longitudinal axial compression and edge shear by

curve fitting based on the results of Bleich, as follows:

o1
IxE +(T—E> =1 (3.152)

OxE, 1 TE,1
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Figure 3.5 Approximate elastic buckling interactions of a plate under longitudinal axial com-

pression and edge shear with i io, si i
D amations (3.%5) with varying aspect ratio, simply supported at all edges, as obtained

where the constant, «;;, may be given by

an = {—0-160(a/b)2 +1.080(a/b) +1.082 for 1 <a/b <32

2.90 for a/b > 3.2 (3.15b)

Figure 3.5 shows.the elast?c buckling strength interaction curves of a simply supported
plafe under combined longitudinal axial compression and edge shear with varying aspect
ratio, as obtained by Equations (3.15).

3.7.8 Transverse Axial Compression and Edge Shear

Baseq on the theoretica'l results of the buckling strength for rectangular plates subject to
f:r(.)mbmed transverse axial compression and edge shear as obtained by Bleich (1952) and
imoshenko & Gere (1982), Ueda et al. (1987) derived the following buckling interaction

equation by curve fitting:
OyE TR 23¥]
+{— =1

OyE,1 (TE,1> G160

where the constant, a1,, may be given by

0.70(a/b) +0.70 for2 <a/b <6 (3.16b)

0.10(a/b) +1.90 forl <a/b <2
Qp =
4.90 for 6 <a/b
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Figure 3.6 Approximate elastic buckling interactions of a plate under transverse axial compression
and edge shear with varying aspect ratio, simply supported at all edges, as obtained by
Equations (3.16)

Figure 3.6 shows the elastic buckling interaction curves of a simply supported plate
under combined transverse axial compression and edge shear with varying aspect ratio,
as obtained by Equations (3.16).

3.7.9 Longitudinal In-plane Bending and Edge Shear

The elastic buckling interaction relationship of a simply supported plate under combined
longitudinal in-plane bending and edge shear is typically given by

[ c
(ﬂ’i> +(T—E> =1 3.17)
ObxE, 1 TE, 1

where the constant, ¢, is sometimes taken as ¢ = 2 (JWS 1971).

3.7.10 Transverse In-plane Bending and Edge Shear

The elastic buckling interaction relationship of a simply supported plate under combined
transverse in-plane bending and edge shear is typically given by

c (4
( TbyE ) n (fE—) =1 (3.18)
ObyE, 1 Tg,1

where the constant, c, is sometimes taken as ¢ = 2 (JWS 1971).

BUCKLING OF PLATES UNDER COMPLEX CIRCUMSTANCES 115

3.8 Elastic Buckling of Simply Supported Plates under More
than Three Load Components

The elastic buckling interaction relationship of a plate under a combination of three load
components, e.g., longitudinal axial compression, transverse axial compression and edge
shear, is now derived based on three sets of interaction relationships between two load
components, e.g., the longitudinal axial compression versus transverse axial compression
relationship, the longitudinal axial compression versus edge shear relationship and the
transverse axial compression versus edge shear relationship.

Figure 3.7 shows a schematic for developing the buckling interaction equation between
the three load components. Two sets of interaction relationships between two load
components are chosen so that one of the load components will be common to both
relationships. These relations are in turn combined to obtain a new relationship between
three load components.

Consider that the plate buckles under three load components which are denoted
by o7, oy and 7. When no transverse axial compression is applied, the interaction
between o, o, and 7§ corresponds to that of the oyg — 7g relation as indicated in
Equations (3.15). In this case, the critical value, 0., of the longitudinal axial compression,
oy, which causes the buckling together with t7 is obtained from Equations (3.15)

as follows:
. 7\
O E = OxE,1 [1 - ( ) :| (3.19)
TE,1

Similarly, when no longitudinal axial compression is applied, the critical value, oJ,
of transverse axial compression, o,, which causes the buckling will be obtained from

A

UyE/UyEJ
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Ad_ Resemble
15~ curves
] ~
~
I N
1 N
1 N
\
1 N > UXE/UXEJ
. 1 0 \ 1.0
™, \
\
tE,1 1 \
1
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Figure 3.7 A schematic representation for derivation of the buckling interaction relationship
between three load components
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I.E [43¥]
TE, 1

It is assumed that a relationship similar to that of Equations (3.9), i.e., for the case under
biaxial compression, exists between oyg and o in any plane of T*/7g,; = constant, ie.,
together with any value of edge shear. When we replace 04,1 and 0yg,1 in Equations (3.9)
with o and oy from Equations (3.19) and (3.20), respectively, the following buckling

. . Y . . .
interaction relationship between oxg, OyE and t is obtained when g = Tg:
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Equations (3.16):

(3.20)

(3.21)

TE . + e Y 1
oxg1[1— (te/76,1)%" ] oyea [1— (te/TE,1)%12]

where it is important to realize that the plate can of course buckle in edge shear alone,
i.e., if the values of [} in the denominator reach zero or become negative.

The buckling strength interaction equations under other sets of the three load
components can also be derived in a similar way to that between oy, 0y and 7. Also, all
five potential in-plane load components, namely longitudinal axial compression, transverse
axial compression, edge shear, longitudinal in-plane bending and transverse in-plane
bending, may be obtained using a similar approach as follows (Ueda et al. 1987):

T a|+ e U 1
C1Cs05g,1 [1 — (t6/(C3CetE1))*" ] C,Csoye [1 — (te/(C3C6TE,1))%7]
(3.22)

where
ObxE ObxE

one )2 asq /e 2703
Ci=1-{—"—], C=|1-|+—7 ,c=1—(——>
: (C70bxa.1) : [ (C7beE,l) ] ’ C106:8,1
ag1/as ag1/a7 2793
c=fi-(22)]" a[-(22)]7 s (2]
ObyE, 1 ObyE,1 ObyE, 1
ajp1/as
o[- (32)"]
ObyE,1

In Equation (3.22),c =2 has been used for Equations (3.10), (3.17) and (3.18). As may

be surmised from Equation (3.22), the plate can of course buckle in edge shear alone,
i.e., when the denominator becomes zero or a negative value.

3.9 Elastic Buckling of Clamped Plates

3.9.1 Single Types of Loads

The elastic bifurcation buckling stress of plates with clamped edge conditions and under
single types of loads may also be calculated from Equation (3.2), but using different
buckling coefficients. Table 3.2 indicates the buckling coefficients of clamped plates with
a/b > 1 where long edges are taken in the x direction and short edges are taken in the

y direction.
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for 0.0 < b/a <04
for 0.4 < b/a < 1.0
for 0.0 < b/a < 1.0

‘= [2.25(b/a)2 +1.95(b/a) +5.35
22.92(b/a)® — 33.0(b/a)? + 20.43(b/a) + 2.13

k. = 5.4(b/a)* +0.6(b/a) + 9.0

SCLS

AC

=all

short (y) edges simply supported and long (x) edges clamped; SCLS = short (y) edges clamped and long (x) edges simply supported; AC

Notes: SSLC

boundary condition

edges clamped; BC
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3.9.2 Combined Loads

For practical purposes, it is often assumed that the elastic buckling interaction relationship
between combined loads for a plate with the boundary condition clamped at some or all
edges is the same as that for the plate simply supported at all edges, but using the

corresponding buckling strength components under single types of loads.
Figures 3.8 and 3.9 show the elastic buckling interaction relationships of rectangular
plates clamped at all edges between biaxial compression and between uniaxial

1.0-}

0.8

o
o
|

UyE/UyE,1

eo:a/b=1
FEM {0:a/b=2

a:alb=3
0.0 1 _* 1 ' T ' 7T
0.0 0.2 0.4 0.6 0.8 1.0
oxeloxe

Figure 3.8 Elastic buckling interaction relationships of plates between biaxial compressive loads
(line: Equations (3.9) for plates simply supported at all edges; symbols: eigenvalue finite element
solutions for plates clamped at all edges)
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0.2 — e:a/b=1
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004+——F——T T " T T+ 1
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Figure 3.9 Elastic buckling interaction relationships of plates between axial compression and
edge shear (line: Equations (3.15) for plates simply supported at all edges; symbols: eigenvalue
finite element solutions for plates clamped at all edges)
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compression and edge shear, respectively, with varying aspect ratio, as those obtained by
the eigenvalue finite element analysis. The corresponding buckling interaction equations
for plates simply supported at four edges, i.e., Equations (3.9) and (3.15), are also shown
in the figures.

It is seen from Figures 3.8 and 3.9 that due to rotational restraints at the edges the
buckling interaction of clamped plates becomes more convex than that of simply supported
plates, but the buckling interaction for simply supported plates seems to represent the ‘
results fairly well, though slightly on the pessimistic side.

3.10 Elastic Buckling of Elastically Restrained Plates

In a continuous stiffened plate structure, the rotation of the plating at the edges is to some
extent restrained depending on the torsional rigidity of support members (stiffeners).
This section presents closed-form elastic plate buckling strength formulations taking into
account the effect of rotational restraints at the plate edges, originally developed by Paik
& Thayamballi (2000). Some similar expressions have of course been suggested, e.g., by
Fujikubo & Yao (1999), among others.

3.10.1 Rotational Restraint Parameters

Support members of plate elements have finite values of torsional rigidity and thus the
rotation along the plate edges is to some extent restrained. Essentially the buckling strength
of plate elements is affected by these rotational restraints.

When the dimensions of support members (stiffeners) are defined as shown in Figure 2.3
of Chapter 2, the rotational restraint parameters of the longitudinal (x) and transverse (y)
support members in a continuous plate structure may be given by

GJ. GJs

L= CLE, {s = ) (3.23)
where ¢, s = rotational restraint parameters for the longitudinal or transverse support
member, Ji = huxtd, + bectl, /6, Js = hwytv?’vy + bfytgy /6. The support members may in
some cases distort sideways due to axial compression before plate buckling so that they
will not fully contribute to the rotational restraints along the plate edges. Cr and Cs are
cpnstants to take this effect into account and are taken as the values less than 1.0. For
simplicity, the constants are assumed to be proportional to the relative torsional rigidity
of the support member to the plate part as follows:

Ji Js
CL=—<10,Csg=—<1.0
T ST ks~ (3:24)
where
b3 a3
Jo=—,ps = —.
PL 3 Ips 3

3.10.2 Longitudinal Axial Compression

The elastic bifu.rcat‘ion buckling stress of a plate with elastically restrained edge conditions
and under longitudinal axial compression may also be calculated from Equation (3.2), but
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using the different buckling coefficient, k.. In the following, empiric?l formulas f'o'r the
buckling coefficient, k., which are expressed in terms of the aspect ratio and the torsional

rigidity of support members, are presented.

Elastically Restrained at Long Edges and Simply Supported at Short Edges
0.396¢7 — 1.974¢2 +3.565¢, +4.0 forO<f <2
k, = {6.951 —0.881/(5L — 0.4) for2 <& <20 (3.25a)
7.025 for 20 < &L

The accuracy of Equation (3.25a) is verified in Figure 3.10 by c9mpaﬁson .to the e?xact
theoretical solutions as obtained by directly solving the characteristic equation (Paik &

Thayamballi 2000).

Elastically Restrained at Short Edges and Simply Supported at Long Edges

ke = di£§ + datd + d3td + dals + ds (3.25b)
where
~1.010(a/b)* + 12.827(a/b)® — 52.553(a/b)* + 67.072(a/b) — 27.585 for 0 <{s < 0.4
0.047(a/b)* — 0.586(a/b)? + 2.576(a/b)* — 4.410(a/b) + 1.748 for 0.4 <5< 0.8
h= —0.017(a/b)* + 0.099(a/b) — 0.150 for 0.8 <¢s <2
0.0 for 2 <¢s
6
_!x
4
0
o 1 2 3 4 5 6 7 8 9 10

Figure 3.10 Accuracy of Equation (3.25a) for a plate under longitudinal axial compression,
elastically restrained at the long edges and simply supported at the short edges
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0.881(a/b)* — 10.851(a/b)? + 41.688(a/b)? — 43.150(a/b) + 14.615 for 0 < s < 0.4
—0.123(a/b)* + 1.549(a/b)® — 6.788(a/b)? + 11.299(a/b) — 3.662 for 0.4 <5< 0.8

dr =
2 0.138(a/b)? — 0.793(a/b) + 1.171 for 0.8 <¢s <2
0.0 for2 <¢s
—0.190(a/b)* + 2.093(a/b)® — 5.891(a/b)? — 2.096(a/b) + 1.792 for0 < ¢s <04
J 0.114(a/b)* — 1.412(a/b)? + 5.933(a/b)*> — 8.638(a/b) + 0.224 for 0.4 < ¢s < 0.8
3 =

—0.457(a/b)? +2.571(a/b) — 3.712 for0.8 <¢s <2
0.0 for2 <¢s

0.004(a/b)* — 0.007(a/b)’ — 0.243(a/b)? + 0.630(a/b) + 3.617 for 0 < g < 0.4
—0.021(a/b)* + 0.184(a/b)® — 0.126(a/b)* — 2.625(a/b) + 6.457 for 0.4 < ¢5 < 0.8
dy=1{ 0.822(a/b)* —4.516(a/b) + 6.304 for 0.8 < &g < 2

—0.106(a/b) + 0.176 for 2 < ¢s <20
0.0 for 20 < ¢5
4.0 for0<¢s <04

—0.001(a/b)* +0.033(a/b)> — 0.241(a/b)? + 0.684(a/b) +3.539  for 0.4 < ¢s < 0.8

—0.148(a/b)? + 0.596(a/b) + 3.847 for 0.8 > ¢5 <2

—1.822(a/b) +7.850 for 2 < &5 < 20
0.041(a/b)* — 0.602(a/b)> + 3.303(a/b)? — 8.176(a/b) + 12.144  for 20 < Is

ds

In calculating k, of Equation (3.25b), the following conditions must be satisfied in
order for the approximations to hold: (1) if 4.0 < a/b < 4.5 and ¢s > 0.2 then {5 = 0.2,
(2)ifa/b > 4.5 and {5 > 0.1 then {s = 0.1, 3) if a/b > 2.2 and {s > 0.4 then {5 = 0.4,
@) if a/b> 1.5 and {5 > 1.4 then ¢5 = 1.4, (5) if 8 < a/b < 20 then &5 = 8, and (6) if
a/b >S5 then a/b = 50.

Figures 3.11(a) and (b) show the variation of the buckling coefficient, &, as a function
of the plate aspect ratio and the torsional rigidity of support members at short edges.
The accuracy of Equation (3.25b) is verified in Figure 3.11(b) by comparison to the exact
theoretical solutions as obtained by directly solving the characteristic equation (Paik &
Thayamballi 2000).

Elastically Restrained at Both Long and Short Edges

For design purposes, the elastically restrained boundary conditions at both the long and
short edges may be expressed by a relevant combination of the previous two edge
conditions as well as the simply supported edge condition. Specifically one can assume

ky = ky1 + keo—kxo (3.25¢)

where k, = buckling coefficient of the plate elastically restrained at both the long and
short edges, k,; = buckling coefficient of the plate elastically restrained at the long edges
and simply supported at the short edges as defined in Equation (3.25a), ky, = buckling
coefficient of the plate elastically restrained at the short edges and simply supported at
the long edges as defined in Equation (3.25b), and k.o = buckling coefficient of the plate
simply supported at all edges as defined in Table 3.1.
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Figure 3.11 (a) Variation of the buckling coefficient, k,, for a plate under longitudinal axial
compression, elastically restrained at the short edges and simply supported at the long edges;

(b) accuracy of Equation (3.25b) for a plate under longitudinal axial compression, elastically
restrained at the short edges and simply supported at the long edges

3.10.3 Transverse Axial Compression

The elastic bifurcation buckling stress of a plate with elastically restrained edge conditions
and under transverse axial compression can also be calculated from Equation (3.2), but
using the different buckling coefficient, ky. In the following, empirical formulas of the
buckling coefficient, ky, which are expressed in terms of the aspect ratio and the torsional
rigidity of support members, are presented.
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Elastically Restrained at Long Edges and Simply Supported at Short Edges

ky = el + el +e3 (3.262)
where
1.322(b/a)* — 1.919(b/a)’ + 0.021(b/a)? + 0.032(b/a) for0<¢ <2
e = —O.463(b/a)4 + 1.023(b/a)3 - O.649(b/a)2 —0.073(b/a) for2 < <8
0.0 for 8 < ¢
—0.179(b/a)4 - 3.098(b/a)3 + 5.648(b/a)2 —0.199(b/a) for0 <L <2
o = 5.432(b/a)4 — 11.324(b/a)3 + 6.189(b/a)2 — 0.068(b/a) for2 <¢ <8
—1.047(b/a)4 + 2.624(b/a)3 - 2.215(b/a)2 + 0.646(b/a) for 8 < ¢ <20

0.0 for 20 < ¢,

0.994(b/a)* + 0.011(b/a)} + 1.991(b/a)? + 0.003(b/a) + 1.0  forO <y <2
—3.131(b/a)* + 4.753(b/a)* + 3.587(b/a)? — 0.433(b/a) + 1.0  for2 <y <8

20.111(b/a)* — 43.697(b/a)® + 30.941(b/a)? — 1.836(b/a) + 1.0 for 8 < ¢ <20

0.751(b/a)* — 0.047(b/a)® + 2.053(b/a)? — 0.015(b/a) + 4.0  for20 <.

ez =

Figures 3.12(a) and (b) show the variation of the buckling coefficient, k,, for a plate
under transverse axial compression, elastically restrained at the long edges and simply
supported at the short edges, as a function of the plate aspect ratio and the torsional rigidity
of support members at the long edges. The accuracy of Equation (3.26a) is verified in
Figure 3.12(b) by comparison to the exact theoretical solutions as obtained by directly
solving the characteristic equation (Paik & Thayamballi 2000).

Elastically Restrained at Short Edges and Simply Supported at Long Edges

ky = fitd + fals + f3 (3.26b)
where
0.543(b/a)* — 1.297(b/a)® + 0.192(b/a)* — 0.016(b/a) for0 < ¢s <2
fi = { —0.347(b/a)* + 0.403(b/a)® — 0.147(b/a)® + 0.016(b/a) for2<¢s <6
0.0 for 6 < ¢s
—1.094(b/a)* + 4.401(b/a)® — 0.751(b/a)* + 0.068(b/a) for0 <(s<2
fo = 2.139(b/a)* — 1.761(b/a)* + 0.419(b/a)* — 0.030(b/a) for2 <¢s <6
—0.199(b/a)* + 0.308(b/a)* — 0.118(b/a)? + 0.013(b/a) for 6 < ¢s <20
0.0 for 20 < &5
0.994(b/a)* + 0.011(b/a)® + 1.991(b/a)? + 0.003(b/a) + 1.0 for0 <¢s <2
£, = | 720310/a)! +5.765(b/a)’ + 0.870(b/a)’ +0.102(b/a) +-1.0  for2<{s <6

—0.289(b/a)* +7.507(b/a)® — 1.029(b/a)* + 0.398(b/a) + 1.0  for 6 < {5 < 20
—6.278(b/a)* + 17.135(b/a)® — 5.026(b/a)? + 0.860(b/a) + 1.0 for 20 < s

Figures 3.13(a) and (b) show the variation of the buckling coefficient, k,, for a plate
under transverse axial compression, elastically restrained at the short edges and simply
supported at the long edges, as a function of the plate aspect ratio and the torsional rigidity
of support members at the short edges. The accuracy of Equation (3.26b) is verified in
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Figure 3.12 (a) Variation of the buckling coefficient, k,, for a plate under transverse axial com-

pression, elastically restrained at the long edges and simply suppoﬁqd at the short edges; (b) Accu-

racy of Equation (3.26a) for a plate under transverse axial compression, elastically restrained at the
long edges and simply supported at the short edges

Figure 3.13(b) by comparison to the exact theoretical solutions as obtained by directly
solving the characteristic equation (Paik & Thayamballi 2000).

Elastically Restrained at Both Long and Short Edges

For a plate elastically restrained at both long and short edges under transverse ax1a;
compression, the buckling coefficient, ky, can be expressed by.a relevant combmatldo‘n' o
the previous two edge conditions in addition to the all-edges simply supported condition

as follows:
ky = kyl + kyz - kyo (3.26¢)
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Figure 3.13 (a) Variation of the buckling coefficient, k,, for a plate under transverse axial com-
pression, elastically restrained at the short edges and simply supported at the long edges; (b) Accu-
racy of Equation (3.26b) for a plate under transverse axial compression, elastically restrained at the
short edges and simply supported at the long edges

where k, = buckling coefficient of the plate elastically restrained at both long and short
edges, k,; = buckling coefficient of the plate elastically restrained at the long edges
and simply supported at the short edges as defined in Equation (3.26a), k,, = buckling
coefficient of the plate elastically restrained at the short edges and simply supported at
the long edges as defined in Equation (3.26b), and k,o = buckling coefficient of the plate
simply supported at all edges as defined in Table 3.1.
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3.10.4 Combined Loads ,

It is often assumed with reasonable certainty that the elastic buckling interaction rela-
tionship between combined loads for plates elastically restrained at the edges is similar
to that for plates simply supported at all edges. Therefore, the same buckling interaction
relationships of simply supported plates under combined loads may be employed for the
plates elastically restrained at the edges, but replacing the buckling strengths under single
types of load components by those for the corresponding edge conditions.

3.41 Effect of Welding-induced Residual Stresses

The welding-induced residual stresses will affect (reduce) the plate buckling strength. For a
plate element between stiffeners, the elastic buckling stress may be given by considering
that an effective compressive residual stress reduces the buckling strength, as will be
presented later in Chapter 4.

Therefore, the elastic buckling stress of a plate under axial compression in the x direction
may be approximately calculated from Equation (3.2) considering the effect of welding
residual stress, as follows (for the symbols related to residual stresses, Section 1.7.2 in
Chapter 1 is referred to):

n’E £\?
OxE,1 = kxm (B) — Orex (327&)
where
ex = O - — 0 — — S
Or ex Ty Orix Tex t o b

is as defined in Equation (4.11) of Chapter 4.
In a similar way, the elastic buckling stress of a plate under axial compression in the y
direction may also be calculated from Equation (3.2) after including the effect of welding

residual stress, as follows:

7*E t\?
OyE,1 = k}’m (Z) — Orey (3.27b)
where
2 a . 2na
Orey = Orcy + _(Jny - Urcy) ag— —— Sin
a 21

is as defined in Equation (4.11) of Chapter 4.

Figure 3.14 shows the influence of welding-induced residual stress on the compressive
buckling stress for the simply supported plates with a yield stress of oy =352 MPa.
In the calculations indicated in Figure 3.14, the level of residual stresses and the plate
slenderness ratio (i.e., b/t ratio) are varied. It is assumed in the analysis that the magnitude
of the tensile residual stresses is 80% of the yield stress, i.€., Onx = Ony = 0.80y. It
is evident from Figure 3.14 that the welding residual stresses can significantly reduce
the compressive buckling stress of plates in some cases. The reduction tendency of the
buckling stress for thin plates is more significant than that for thick plates, as expected.
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Figure 3.14 Variation of the elastic compressive buckling stress (normalized by the elastic buck-

ling compressive stress without residual stresses) varyi i ing-i i
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3.12 Effect of Lateral Pressure

When a plate in a continuous stiffened panel is subjected to lateral pressure, the plate
edges approach the condition being clamped depending on the thickness of the plate
and the pressures involved. Also, the lateral pressure loading may beneficially disturb
the occurrence of the inherent plate buckling pattern. As a result, the buckling strength
of long plate elements making up a continuous stiffened panel under lateral pressure is
normally greater than that without lateral pressure loading.
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For practical design purposes, a correction factor may often be employed to take into
account the effect of lateral pressure on the plate buckling strength, the factor being
applied by multiplication to the buckling strength calculated for the plate without lateral
pressure loads.

In this regard, Fujikubo er al. (1998) propose plate compressive buckling strength cor-
rection factors to account for the effect of lateral pressure, by curve fitting based on the
finite element solutions for long plate elements in a continuous stiffened panel, as follows:

1.6

1 (pb* a
Cpx =1+ -5—% (E_tz) for Z >2 (3.28a)
1 b 0.95 pb4 1.75 a
=1+ — (= L for — > 2 3.2
=116 (a) (Et"') Ty = (3:28b)

where Cp, and Cp, are correction factors of the elastic compressive buckling strength in
the x and y direction, respectively, to account for the effect of lateral pressure. p is the
magnitude of net lateral pressure loads.

For nearly square plates, i.e., with a/b ~ 1, under combined axial compression and
lateral pressure, one half-wave deflection occurs from the beginning and thus the bifur-
cation buckling phenomenon may not appear as axial compressive loads increase. In this
case, it is beneficial to define an equivalent buckling strength for practical design pur-
poses. It is considered that the increase of buckling strength due to the rotational restraints
and the decrease of buckling strength due to one half-wave deflection caused by lateral
pressure may be offset. For square plates, therefore, Cpx = Cpy = 1.0 may approximately
be adopted.

The elastic compressive buckling stress of a plate taking into account the effects
of lateral pressure and welding-induced residual stresses can then be calculated from
Equations (3.27), but using the multiplicative correction factors of Equations (3.28) as

follows:
T*E £\?
oxg,1 = Cpx kxm 5) o (3.292)

n’E 1\?
OyE,1 = pr [kyl—z(i_—vz) (Z) — Orey (329b)

Figure 3.15 plots Equations (3.29) for a specific steel plate witha x b = 2400 x 800 mm
and E = 2.1 x 105 MPa as a function of the plate thickness and water head when no welding
residual stresses exist. It is seen from Figure 3.15 that the increasing tendency of buckling
strength due to lateral pressure for thin plates is larger than that for thick plates.

It may be noted that lateral pressure may not affect the buckling strength of perforated
plates. This is because the perforated plate may not be subjected to lateral pressure.

3.13 Effect of Openings

In plate elements of steel-plated structures, openings are often located to make a way of
access or to lighten the structure. These perforations will reduce the buckling strength of
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Figure 3.15 Effect of lateral pressure on the plate compressive buckling strength

plates. The openings may thus need to be included in the buckling strength formulations
as a parameter of influence where significant.

'In this section, buckling strength formulations of steel plates with a centrally located
circular opening and under combined in-plane loads as shown in Figure 3.16 are presented.
As previously noted in Section 3.3, the magnitudes of applied stresses are normally defined
for the perfect plates, i.e., without perforations, while the partial safety factors may in this
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Figure 3.16 A rectangular plate with a centrally located circular hole and under combined
in-plane loads

case be adjusted to take into account the effect of openings in applying Equation (1.1)
of Chapter 1.

It is considered that all (four) plate edges are simply supported, keeping them straight.
To take into account the effect of the opening on the plate buckling strength, a relevant
buckling strength reduction factor which is defined as the ratio of the buckling coefficient
of perforated plates to that of plates without holes can be employed. In this case, empirical
formulations may be derived for the plate buckling strength reduction factors due to
openings by curve fitting based on the results of eigenvalue finite element analyses. For
buckling of plates with rectangular types of openings, Brown et al. (1987), among others,
may be referred to. Narayanan & der Avanessian (1984) deal with elastic shear buckling
of simply supported and clamped plates with circular and rectangular holes.

3.13.1 Longitudinal Axial Compression

Figure 3.17 shows the variation of the buckling reduction factor, Ryg, of the plate under
o, varying the size of the opening and the plate aspect ratio. In this case, R,g may be
defined by a cubic equation in terms of the size of the opening and the plate aspect ratio
as follows:

a.\? d.\* d
Ry = oE1 <—b£) + g2 (—}f) + 01\33?C +1 (3.30a)

where

0.002(a/b)32%® forl <a/b<?2

agl = | —1.542(a/b)? +7.232a/b —1.666 ~ for2<a/b <3
—0.052(a/b)* +0.526a/b —0.964  for3 <a/b<6
{ 0.655 + 1/[4.123(a/b) — 8.922] forl <a/b<?2

1.767(a/b)* — 7.937a/b + 7.982 for2<a/b<3
0.071(a/b)* — 0.732a/b + 1.631 for3<a/b<6

Qg2 =
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Figure 3._17 Var.iation of .the buckling strength reduction factor of the plate under longitudinal axial
compression varying the size of the opening and the plate aspect ratio as obtained by eigenvalue
finite c':lement analysis (k,, kxo = longitudinal compressive buckling coefficients for the plate with
and without an opening)
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Figure 3.18 Accuracy of Equation (3.30a) for longitudinal axial i i :
e ot i g ial compressive loading (symbols:

—0.945 + 1/[-5.661(a/b) +-12.342] for1 <a/b <2
ag3 = | —0.248(a/b)?* + 0.796a/b — 0.565 for2<a/b<3
—0.020(a/b)? + 0.199a/b — 0.826 for3<a/b<6
Eigure 3.18 show's the accuracy of Equation (3.30a) by comparison to the eigenvalue
finite element buckling solutions. The corresponding elastic plate buckling stress of plates
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with a centrally located circular hole can then possibly be calculated as follows:

=R k ————2 (—t )2 (3 30b
Oy = .
E,1 xERx0 12(1 2) ; )

where k,o = longitudinal compressive buckling coefficient of the plate without an opening.

3.13.2 Transverse Axial Compression

Figure 3.19 shows the variation of the buckling reduction factor, Ryg, of the plate under
oy, varying the size of the opening and the plate aspect ratio. In this case, Ryg may be
defined by a cubic equation in terms of the size of the opening and the plate aspect ratio
as follows:

d\? de
Ryg = aps (—b—> + aEs—E— +1 (3.31a)

where

_ [0.034(a/b)? — 0.327a/b+0.768 for 1 <a/b <4
~ 10.004 for4 <a/b<6

ags = —0.008 — 1/[0.967(a/b) 4+ 0.302] for 1 < alb <6

Figure 3.20 shows the accuracy of Equation (3.31a) by comparison to the finite ele-
ment buckling eigenvalue solutions. The corresponding elastic plate buckling stress of the

4 FEM:
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Figure 3.19 Variation of the buckling strength reduction factor of the plate under transverse axial
compression varying the size of the opening and the plate aspect ratio as obtained by eigenvalue
finite element analysis (k,, k,o = transverse compressive buckling coefficients for the plate with
and without an opening)
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Figure 3.20 The accuracy of Equation (3.31a) for transverse axial compressive loading (symbols:
finite element analysis)

perforated plate is then calculated as follows:

n2E 1\?
OyE,1 = RyEkyOE(T——vZ) A (3.31b)
3.13.3 Edge Shear

Figu're 3.21 ghows the variation of the buckling reduction factor, R.g, of the plate under t
varying tbe size (?f the opening and the plate aspect ratio. In this case, R;g may be defined
by a cubic equation in terms of the opening size and the plate aspect ratio as follows:

de\* de\* d
R:g = ok (f) + g7 (f) + 0!138;C +1 (3.32a)

where

o = {O.O94(a/b)2 +0.035a/b+1.551 forl<a/b<3
2.502 for3<a/b<6

o {—0.039(a/b)2 —0.807a/b — 0405 forl<a/b<3
-3.177 for3<a/b<6

g = {—~0.053(a/b)2 +0.785a/b —1.875 forl <a/b <3
0.003 for3<a/b<6

Figure 3.22 shows the accuracy of Equation (3.32a) by comparison to the eigenvalue
finite element buckling solutions. The corresponding elastic plate buckling stress of the
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Figure 3.21 Variation of the buckling strength reduction factor of the plate under edge shear
varying the size of the opening and the plate aspect ratio as obtained by eigenvalue finite element
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Figure 3.22 The accuracy of Equation (3.32a) for edge shear (symbols: finite element analysis)

perforated plate is then calculated as follows:

n’E 1\2
= Regkro=——< | + 3.32b
B2 -2 (b) (3320

where k.o = shear buckling coefficient of the plate without an opening.
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3.13.4 Combined Loads

For practical design purposes, it may be assumed that the elastic buckling interaction
relationship between combined loads for a perforated plate is the same as that for the
plate without an opening, but using the corresponding buckling strength components
under single types of loads.

Figure 3.23 shows some selected elastic buckling strength interaction curves of steel
plates with a centrally located circular hole and under combined loads. The finite element
eigenvalue solutions are also compared. It is apparent that the assumption of the buckling
interaction relationship made above is relevant.

3.14 Elastic-Plastic Buckling

3.14.1 Single Types of Loads

A stocky plate that has a high elastic buckling strength will not buckle in the elastic
regime and will reach the ULS with a certain degree of plasticity. In most design guide-
lines, the Johnson—Ostenfeld formulation, Equation (2.93), is used to account for this
behavior. Under single types of loads, the elastic—plastic buckling stress is then approxi-
mately calculated by substituting the computed elastic buckling stress into Equation (2.93).
In usage of Equation (2.93), the compressive stress is converted to positive. The elas-
tic—plastic buckling strength as obtained by plasticity correction of the corresponding
elastic buckling stress using the Johnson—Ostenfeld formula is often termed the ‘critical’
buckling strength.

Plates without Openings

Figures 3.24(a)—(c) show the resulting relationship between the critical buckling strength
and the elastic buckling strength for steel plates (without perforations) with varying edge
conditions. The ultimate strength obtained by the elastic—plastic large-deflection finite
element analysis (FEA) neglecting the strain-hardening effect is also shown for compar-
ison. As is evident, regardless of the edge conditions, the Johnson—Ostenfeld formula
predicts fairly well the elastic—plastic or plastic buckling strength of relatively thick steel
plates (without openings) as a function of the elastic buckling strength, albeit on the
pessimistic side.

Perforated Plates

Figures 3.25(a)—(f) compare the critical buckling strength with the ultimate strength for
plates with a centrally located circular hole. It is emphasized from these figures that the
critical buckling strength for the perforated plates may not always provide pessimistic
predictions of the ultimate strength and it may be greater than the real plate ultimate
strength when the hole size is relatively large in thick plates. This implies that the ultimate
strength is a better and more consistent basis for design than the elastic buckling strength
approach together with simple plasticity correction.
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Figure 3.23 Elastic buckling strength interaction of a plate with a centrally located circular
hole: (a) under combined longitudinal and transverse axial compression (e, o, = as defined
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(12 = as defined in Equations (3.16))
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Figure 3.24 (a) The critical buckling stress, 0., versus the elastic bifurcation buckling stress,
oxg.1, Of plates without holes under longitudinal compression alone, a/b = 3 (symbols: ultimate
strength by FEA); (b) The critical buckling stress, oy, versus the elastic bifurcation buckling stress,
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Figure 3.24 (continued)
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3.14.2 Combined Loads

For buckling strength design of steel plates under combined longitudinal compression/ten-
sion, o,, transverse compression/tension, gy, and edge shear, 7, the critical buckling
strength interaction function, I's, is often expressed as follows:

2 2 2
= () () G G (D) e
Oxcr Oxcr Oycr Oycr Ter
where oy, 0y, T= applied stress components. Oxcr, Oyer and 1. represent the critical
buckling strength components obtained by the plasticity corrections of oyg,1, oyg,1 and
7g,; using the Johnson—Ostenfeld formula, Equation (2.93), respectively. « =0 when
both o, and o, are compressive while @ = 1 when either oy, o, or both are tensile. In
the usage of Equation (3.33) a compressive stress takes the negative sign while a tensile
stress takes the positive sign. Before buckling, the value of I's is smaller than zero, while
buckling takes place if I'g just reaches zero; buckling has occurred if I's > 0.
For the buckling design of offshore structures, DNV (1995) proposes the following
buckling function:

I'B = Oeq — Teqer (3.34)

where 0zq = /(062 + 07 = 00y + 3¢2), Oager = oy /(1 + %), with

-2 () ) ()T
Oeq L \OxE,1 OyE,1 TE, 1
and where ¢ =2 — b/a when a/b > 1.

Buckling will then occur if I'g > 0. It should be noted that Equation (3.34) is valid
when axial stress is compressive and assuming that any tensile axial stress is zero. It is
important to realize that Equations (3.33) and (3.34) do not usually represent the ULS of
relatively thin plates; they can, however, be approximately applied to predict the ultimate

strength of relatively thick plates. Also, these equations may not be valid for the design
of perforated plates as noted in Section 3.14.1.

3.15 Computer Software ALPS/BUSAP

The buckling strength formulations of plates with or without perforations presented in
this chapter are automated within the computer software ALPS/BUSAP, which stands
for nonlinear analysis of large plated structures/buckling strength analysis of panels. The
program computes the elastic buckling strength of plate panels between support members
under combined loads as well as single types of loads. The effect of torsional rigidity
at the plate edges is accounted for. The ‘critical’ buckling strength is computed by plas-
ticity correction of the elastic buckling strength using the Johnson—Ostenfeld formula,
Equation (2.93). The program together with the user’s manual can be downloaded from
the web site noted in the appendices to this book.
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4 Post-Buckling an
Ultimate Strength
Behavior of Plates

4.1 Fundamentals of Plate Collapse Behavior

While steel plates under predominantly axial tensile loads would fail by gross yielding,
the behavior of steel plates under predominantly compressive loads may be classified into
five regimes, namely pre-buckling, buckling, post-buckling, collapse (ultimate strength)
and post-collapse. Figure 4.1 shows a schematic of the plate collapse behavior under
predominantly axial compressive loads.

In the pre-buckling regime, the structural response between loads and displacements is
usually linear and the structural component will be stable. As the predominantly compres-
sive stress reaches a critical value, buckling occurs, as previously described in Chapter 3.

Unlike columns, plates buckled in the elastic regime may still be stable in the sense
that further loading can be sustained until the ultimate strength is reached, even if the in-
plane stiffness significantly decreases after the inception of buckling. In this regard, elastic
buckling of plates between stiffeners may in some design cases be allowed to reduce the
structural weight. Since the residual strength of a plate is not expected after buckling
occurs in the inelastic regime, however, inelastic buckling is sometimes considered to be
the ultimate limit state (ULS) of the plate.

As the applied loads increase, the plate eventually reaches the ULS due to expansion of
the yielded region. The in-plane stiffness of the collapsed plate takes a ‘negative’ value
in the post-ultimate regime, meaning a high degree of instability. A plate with initial
imperfections starts to deflect from the very beginning as the compressive loads increase
and so a bifurcation buckling phenomenon does not appear. The ultimate strength of
imperfect structures is smaller than that of perfect structures.

The ultimate strength behavior of steel plates normally depends on a variety of influ-
ential factors such as geometric/material properties, loading characteristics, initial imper-
fections (i.e., initial deflections and residual stresses), boundary conditions and existing
local damage related to corrosion, fatigue crack and denting.

In the ULS design of steel plates using Equation (1.1) in Chapter 1, the demand indi-
cates the extreme value of applied stresses, while the capacity represents the ultimate
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Figure 4.1 A schematic of the collapse behavior of steel plates under predominantly compres-
sive loads

strength. This chapter presents the ultimate strength formulations of steel plates under
combined in-plane and lateral pressure loads taking into account the effects of initial
imperfections in the form of initial deflection and welding residual stresses. The effects
of openings, corrosion wear and fatigue cracking damage on the plate ultimate strength
are described. The average stress—strain relationships of steel plates are also presented
until and after the ultimate strength is reached.

4.2 Geometric and Material Properties

Figure 4.2 shows a typical steel plate between stiffeners in a stiffened plate structure.
The x axis of the plate is taken in any one reference direction and the y axis is taken in
the direction normal to the x direction. Therefore, one may not always have to take the
plate length to be located along the long edges. One benefit of this type of coordinate
system is that computerization of strength calculations is much easier for a large plated
structure which is composed of a number of individual plate elements in which some
plate elements are ‘wide’ and others are ‘long’. The plate length and breadth are denoted
by a and b, respectively. The plate thickness is ¢.

The material of plates in steel-plated structures is normally either mild steel or high
tensile steel, with the yield strength, oy, being typically in the range of 230 to 450 MPa.
Young’s modulus and Poisson’s ratio are E and v, respectively. The elastic shear modulus
is G = E/[2(1 + v)]. The plate bending rigidity is denoted by D = Et3/[12(1 — v?)]. The
plate reduced slenderness ratio is defined as 8 = (b/ 1)/ (oy/E).
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Figure 4.2 A simply supported rectangular plate under biaxial loads, edge shear and lateral
pressure

4.3 Loads and Load Effects

When a continuous plated structure is subjected to external loads, the load effects (e.g.,
stress, deformation) of the plates can be computed by a linear elastic finite element
analysis (FEA) or the classical theory of structural mechanics.

The potential number of load components acting on plates is generally of four types (or
six load components), namely biaxial loads (i.¢., compression or tension), edge shear, biax-
ial in-plane bending and lateral pressure, as described in Chapter 3. When the plate size is
relatively small compared to the entire plated structure, the influence of in-plane bending
effects on the plate ultimate strength may be negligible. In contrast, the effect of in-plane
bending on the plate buckling strength may need to be accounted for, as previously noted
in Chapter 3. In this regard, this chapter deals with three types of loads (or four load com-
ponents), namely longitudinal compression/tension, o,y, transverse compression/tension,
Oyay, €dge shear, T = 7,, and lateral pressure loads, p, as shown in Figure 4.2.

In marine structures such as ships, lateral pressure loading arises from water pressure
and/or cargo weight. The still-water magnitude of water pressure depends on the ship
draft, and the still-water value of cargo pressure is determined by the amount and density
of cargo loaded. These still-water pressure values will be normally augmented by wave
action and vessel motion. Typically the larger in-plane loads are caused by longitudinal
ship hull girder bending, both in still-water and in waves at sea.

In this chapter, it is assumed that the compressive stress is negative and the tensile
stress is positive, unless otherwise specified. That is, the longitudinal axial load has a
negative value when the corresponding load is compressive, and vice versa.
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4.4 Fabrication-related Initial Imperfections

To fabricate steel-plated structures, welding is normally used and thus the post-weld ini-
tial imperfections develop in the structure, which may in some cases significantly affect
(reduce) the structural capacity. In advanced structural design, therefore, strength calcula-
tions of steel plates should accommodate welding-induced initial deflections and residuat
stresses as parameters of influence. The characteristics of the post-weld initial imper-
fections are uncertain, and an idealized model is used to represent them, as previously
described in Section 1.7 of Chapter 1. The maximum amplitude of the plate initial deflec-
tion is wop, see Figure 1.18 in Chapter 1. The compressive residual stresses in the x and
y directions are oy, and oy, respectively, while the tensile residual stresses in the x and
y directions are oy, and oyy, respectively, see Figure 1.22 in Chapter 1.

4.5 Boundary Conditions

In a continuous plated structure, the edges of the plate elements are usually supported by
beam members (e.g., stiffeners). The bending rigidities of the boundary support members
are normally quite large compared to that of the plate itself. This implies that the relative
lateral deflections of the support members to the plate itself are very small even up to plate
collapse. Therefore, it is assumed that the support members at the four plate edges remain
in the same plane. The rotational restraints along the plate edges depend on the torsional
rigidities of the support members, and these are neither zero nor infinite as previously
described in Section 3.10 of Chapter 3.

When predominantly in-plane compressive loads are applied on a continuous plated
structure supported by beam members, the buckling pattern of the plates is expected to
be asymmetrical, i.e., one plate element will tend to buckle up and the adjacent plate
element will tend to deflect down. In this case, i.e., after buckling, rotational restraints
along the plate edges can be considered to be small.

When the plated structure is subjected to combined axial compression and lateral pres-
sure loads, however, the buckling pattern of the structure can tend to be symmetrical,
at least for large enough pressures, i.e., each adjacent plate element may deflect in the
direction of lateral pressure loading. In this case, the edge rotational restraints can become
large such that they may be considered to correspond a clamped condition at the begin-
ning of loading. However, if plasticity occurs earlier along the edges where the larger
bending moments are developed, the rotational restraints at the yielded edges will then
be lessened as the applied loads increase.

In fact, slender stiffeners prone to torsional buckling may even destabilize the plate
in the sense that the overall buckling of the stiffened panel, i.e., together with stiffeners,
can then occur at a stress level that is smaller than that of a simply supported plate.
However, our treatment in this chapter is based on the normal presumption that stiffeners
and other support members have been properly designed so that their local instability
will not occur prior to failure of the plating. When the stiffeners are very weak, they can
buckle together with the plate as part of what is called overall buckling. The design and
analysis procedure for the overall buckling of stiffened panels will be treated separately,
as will be described later in Chapters 5 and 6.

In some cases, specifically under large lateral pressure loading, the plate edges may not
remain straight. This is a special case that must be treated separately. However, as long
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Figure 4.3 Effect of the straight edge condition on the collapse behavior of a simply sup-
ported steel plate (a) under longitudinal compression, and (b) under edge shear, as obtained by
elastic-plastic large deflection FEA



150 ULS DESIGN OF STEEL-PLATED STRUCTURES

as the stiffeners are strong enough so that they do not fail prior to buckling of the plate,
which is the case that this chapter is concerned with, the plate will fail locally.

In a continuous plated structure when such a hypothesis can be accepted, the edges of
individual plate elements will remain almost straight due to the relative structural response
to the adjacent plate elements until the ULS is reached.

In this chapter, therefore, it is assumed that the plate edges are simply supported, with
zero deflection and zero rotational restraints along four edges, and with all edges kept
straight. This is in contrast to our more sophisticated treatment of buckling of plates in
Chapter 3, wherein the effects of rotational restraints of support members are accommo-
dated. Part of the reason is mathematical convenience.

Figure 4.3 shows the effect of the straight edge condition on the collapse behavior of a
simply supported plate under axial compression or edge shear, as obtained by the nonlinear
finite element method. As would be expected, the ultimate strength of a plate with the
unloaded edges kept straight is larger than that with the condition that the unloaded edges
move freely in plane. For relatively thick plates with ¢ = 20 mm, the difference of ultimate
strength is very small. However, the difference becomes about 20% for relatively thin
plates with ¢+ = 10 mm.

Another illustrative example to investigate the effect of the plate boundary condition on
the collapse behavior is for a plate under combined axial compression and lateral pressure.
Two types of structural idealizations using nonlinear FEA may be relevant: one is a single
plate with the condition that all edges are simply supported as shown in Figure 4.4(a)
and the other is that a three-bay plate model is taken as the extent of the analysis as
shown in Figure 4.4(b). All plate edges are supposed to be simply supported, keeping
them straight. In the FEA, the simply supported condition is applied along the transverse
frames, while some rotational restraints will be automatically developed due to the action
of lateral pressure.

Figure 4.5 shows the progressive collapse behavior on varying the magnitude of lateral
pressure, as obtained by nonlinear FEA. It is seen from Figure 4.5 that the ultimate
strength of the three-bay plate model is larger than that of the single-bay plate model and
the strength increase tends to become larger as the magnitude of lateral pressure increases.
This is because the plate edges along the transverse frames become clamped due to the
action of lateral pressure and the three-bay plate model automatically takes this effect into
account. However, the effect of rotational restraints due to lateral pressure is small and

O i [ i o ——
------------ ' S “s

T ‘JSimply }{ E s uspj;)noprlt)é q \Trzr;\]/gs{ E
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Figure 4.4 A single-bay plate model and (b) a three-bay plate model under combined axial com-
pression and lateral pressure
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Figure 4.5 Progressive collapse behavior of a plate under combined axial compression and lateral
pressure, as obtained by elastic-plastic large deflection FEA

thus the simply supported plate edge condition may be relevant regardless of the lateral
pressure load applied.

4.6 Ultimate Strength by Gross Yielding

For plates under predominantly axial tensile loading and/or with very stocky properties,
the ULS is reached by gross yielding. In this case, the ULS criterion is typically given
by the Mises—Hencky yield condition as follows:

2 2 2
=) @)@ @
oy oy oy oy Ty
where 7y = Uy/\/3.
For any combined load application, it is also usually considered that the plate must

satisfy the following design criterion based on gross yielding which is likely to provide
an upper limit of the ULS, namely

2 2 2

(22 - () (22)+ (22) + (2) <m @
oy oy oy oy Ty

where 7, = usage factor for the ULS which may be taken as the inverse of the conven-

tional factor of safety.
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4.7 Nonlinear Governing Differential Equations of Plates

The post-buckling or large-deflection behavior of plates can be analyzed by solving the
two nonlinear governing differential equations of large-deflection plate theory, namely the
equilibrium equation and the compatibility equation (Marguerre 1938):

D *w ) 8*w + 34_w)
dx? ax29y? = 9y*
25 42 25 42 25 a2
_, ﬂa(w+wo)_ *F 9% (w + wg) Q_FE) (w+w0)+£]=0 @3a)
dy? ax2 0xdy  9xdy 9x2 ay? t
*F n 3*F 4 34_F
dx* 0x20y? = ay*
_ 92w \2 B Qz_waz_w 3wy 9w 3 azwoa_z_u_) B 32_w82w0
dxdy ax? 9y? dxdy dxdy  9x% dy?  0x% dy?

i| =0 (4.3b)

where w, wy = added and initial deflections, F = Airy’s stress function. When Airy’s
stress function, F, and the added deflection, w, are known, the stresses inside the plate
can be calculated as follows:

d%F Ez (3w  d*w
== - 28 vy 4.4a
% 9y?2  1-—? <8x2 Y 3y2) (442)
3’F Ez 8%w 8%w
A (e R 4.4b
DT T 102 ( dy? Vax2 ) (4.45)
2 2
0°F Ez 0w 4.4¢)

T T8xdy  2(1+v) oxdy

where z is the coordinate in the plate thickness direction with z = O at mid-thickness.

Equations (4.3) are often called the Marguerre equations. By solving the governing
differential equations subject to the given boundary conditions, load application and initial
imperfections, the membrane stress distribution inside the plate can be calculated and thus
it is possible to examine the elastic large-deflection behavior of the plate.

4.8 Elastic Large-deflection Behavior

The in-plane stiffness of perfect plates significantly decreases after buckling, while that
of imperfect plates decreases from the very beginning of axial compressive loading. In
this section, the effectiveness of plates either with initial imperfections or after buckling
is examined, and relevant formulations for representing the plate effective width or length
and the average stress—strain relationships are presented.
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4.8.1 Combined Longitudinal Axial Load and Lateral Pressure
Non-uniform Membrane Stresses

The elastic large-deflection behavior of a plate under longitudinal axial stress, oy,y, and
lateral pressure, p, taking into account the effect of initial imperfections, can be theoreti-
cally examined by solving the nonlinear governing differential equations, Equations (4.3),
of the plate.

To analytically solve the nonlinear governing differential equations using the energy-
principle-based approach, it is necessary to assume relevantly simplified initial and added
deflection functions. It is known that for plates under predominantly longitudinal axial
compressive loads the deflection term associated with the lowest bifurcation mode plays
a dominant role in the elastic large-deflection response, see, for example, Paik & Peder-
sen (1996), among others. For those purposes where the plate deflection itself is not of
primary interest, therefore, the initial deflection function is simplified by including only
the buckling mode initial deflection as follows:

Ty

xs'n (4.5a)
mn— .
b a

. mm
wo = Ag Sin

where m is the buckling mode half-wave number in the x direction that primarily depends
on the plate aspect ratio. Ag,, is the amplitude of the buckling mode initial deflection for
axial compressive loading, which may be taken as Aoy = BomWopl- Bow is defined in
Equation (1.10b), while By, = 1.0 is often assumed for practical design purposes. For
axial tensile loading, m = 1 and Ag,, = 0 are normally adopted.

The added deflection function for analyzing the membrane stress distribution of the
plate under predominantly longitudinal axial loads is also assumed including only the
buckling mode initial deflection as follows:

mgx .| Wy
sin —— (4.5b)
a b

w = A, sin

where A,, = unknown amplitude of the added deflection function, and m is defined
in Equation (4.5a).

The deflection functions, Equations (4.5), are used only for the purpose of the mem-
brane stress distribution analysis, while an adequate number of deflection terms should in
principle be included for calculating the shape of plate deflection itself.

Considering the idealized initial imperfections, boundary conditions and load applica-
tion, the membrane stress distribution inside the plate can be analyzed by solving the
governing differential equations. To do this, one should start by determining the unknown
amplitude of the added deflection, Equation (4.5b), under the applied loading. In the fol-
lowing, the calculation of the membrane stress distribution inside the plate is described
in detail. Substitution of Equations (4.5) into Equation (4.3b) results in

dx4 + 9x29y? + ayt 2a%b?

I*F *F *F m*n*EA,, (A, + 2Aom 2 2
R (An + 240 )(cos mazrx + cos %) 4.6)
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The particular solution, Fp, of the stress function, F, is obtained by solving Equa-
tion (4.6) as follows:

@&.7

EAp(Am +240m) ( a* 2mmrx  m2b*  2x; y)
= cos ——
P 32 <m2b2 s + a? b

The homogeneous solution, Fy, of the stress function, F, which satisfies the loading
condition is given by treating the welding-induced residual stress as an initial stress

parameter, namely
2 2
y x
Fy = (0xav + O'rx)'a + o'ryE (4.8)

where oy, 0y, = welding-induced residual stresses as defined in Equation (1.13) of

Chapter 1. ‘
The applicable stress function, F, may then be expressed as the sum of the particular

solution and the homogeneous solution as follows:

? ’ 22 2p*  2m
y x EA,, (A + 2A0m) a mnx m y
F=@atomy toyy +— 3 w2 T O

4.9)

By substituting Equations (1.13), (4.5) and (4.9) into Equation (4.3a) and applying the
Galerkin method (Fletcher 1984), the following equation is obtained:

a rb b *w +2 *w N 84w>
fo /0 x4 dax20y? oyt
t [BZF 2w +wo) , 3°F 8*(w + wo) ﬂw+£]}

9yr ax? 9xdy  9xdy axz  9y? t
mmnx

X sin

sin ”—by— dxdy =0 (4.10)

By performing the integration of Equation (4.10) over the entire plate, a third-order
equation with respect to the unknown variable, A,,, is obtained. For the integration of
Equation (4.10), it may be approximated that the contribution of lateral pressure to non-
linear membrane stresses arises only from the deflection component of m =1 and it is
linearly superposed to those by in-plane loads. This results in

C1A2 + CLA2 + C3A,, +C4 =0 4.11)

m m

where

o 72E (m*b N i)
"6 \a® B
B 372EAom <m4b a )

277 16 FERNE
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72EA2 (m*h a m?b a
C3 = 3 Om (F‘ + ﬁ) + T(Uxav + Orex) + Earey
N 72D m? [mb n a \?
t ab \ a mb
m2b a 16ab
Cs = Aoy I:_(Uxav + Orex) + _Urey:l - 5P
a b Tt

Crex = Orex + 2 (O — Grer) [ B — 2 sin 220t
rex — Urcx b rtx rcx t 2 S b

. 2mma,
sin

2
Orey = Opcy + E(Uny - Urcy) (at - Imn P
with Orcx, Orey, Ortx, Oy, @1, by as defined in Figure 1.22 of Chapter 1.
The solution of Equation (4.11) can be obtained by the so-called Cardano method
as follows (or refer to the FORTRAN computer subroutine CARDANO given in the

appendices to this book):
G,
Ap=——+k k 4.12
3¢, Tt (412)

where

1/3 1/3
P RN Y2+X3 P ¢ Y2+X3 x_. 6 _ G
T2 4 727) 0 T\ 2 Ve T2r) 0 ST e

206 GGy G
S 21C3 3¢t G

If the axial compressive stress reaches the buckling stress, the perfect plate, i.e., without
initial deflection, buckles, while no bifurcation phenomenon occurs in plates with initial
deflection. It is of interest to calculate the compressive buckling (bifurcation) strength of
plates taking into account the effect of the welding-induced residual stresses.

Using Equation (4.11) or (4.12), the buckling (bifurcation) strength equation of perfect
plates, i.e., without initial deflection but with welding-induced residual stresses, under
longitudinal compressive loads alone, i.e., without lateral pressure loading, can be derived.
When the initial deflection does not exist, i.e., Ag, = 0, Equation (4.12) will be given
since C, = C4 = 0 as follows:

C
Ap = —C—? (4.13a)
where
C_an(m4b+a C_T[ZDmZ mb+a 2+m2b( n )+a
'~ 716 a3 )T Tt ab \ 4 mb g oxav T Orex) T 7 ey

Interestingly, Equation (4.13a) can be further simplified without residual stresses, i.e.,
when both initial imperfections and lateral pressure are not involved, as follows:

12
16 m? 72D [(m? 1 2
An = {_an(m4/a4 +1/b% [a_20"“" + (a_2 + b—2> (4.135)
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Since the lateral deflection immediately before the plate buckles must in this case be
zero, i.e., A,, = 0, the following equation is obtained from Equation (4.13a):

m?b a 7’Dm? (mb  a\*
T(Uxav + Orex) + Earey =+ —~ 3 \a Tmb =0 (4.14a)
or from Equation (4.13b) when the welding residual stress does not exist,
m? 72D (m* 1Y
ﬁaxav + _t_ (? + ﬁ) =0 (414b)

Equation (4.14a) represents the elastic buckling equation for the plate under longitudinal
axial compression taking into account the effect of the welding-induced residual stresses.
Hence the elastic buckling strength of a plate under axial compressive loads in the x
direction is given from Equations (4.14a) by replacing oxay With oxg as follows:

%D (mb a\? a?
OxE = "W (7 + %) — Orex — Warey (4.15)

where the second and third terms on the right hand side of Equation (4.15) reflect the
effect of welding-induced residual stresses on the plate buckling strength.

The buckling half-wave number, m, herein depends on the welding-induced residual
stress as well as the plate dimensions. m is then determined from Equation (4.15) as
a minimum integer satisfying the following condition since the buckling load must be
identical at the transition of buckling half waves, namely

72D (mb  a \? a? 2D [(m+ b a 2 a?
— | —+—) + =50y = + Orey
b2t \a mb m2b? bt a (m+ b (m + 1)2b2
(4.162)
Without the post-weld residual stresses in the y axis normal to the loading direction,
i.e., when oy, = 0, Equation (4.16a) simplifies to the well-known condition (Timoshenko

& Woinowsky-Krieger 1981)
% < Jmm +1) (4.16b)

For interests of simplicity, the buckling half-wave number in the x direction may often
be determined from Equation (4.16b), i.e., by neglecting the effect of residual stress.

Once the added deflection amplitude, A,,, and Airy’s stress function, F, are determined,
the membrane stresses inside the plate under longitudinal axial and lateral pressure loading
can then be given from Equations (4.4). Figure 4.6 shows a typical example of the axial
membrane stress distribution inside a plate under predominantly longitudinal compressive
loading before and after buckling occurs.

It is important to realize that the membrane stress distribution in the loading (x) direction
can become non-uniform as the plate deflects, due to many causes including buckling,
initial deflection or lateral pressure loading. The membrane stress distribution in the y
direction also becomes non-uniform as long as the unloaded plate edges remain straight,
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(c) After buckling, unloaded edges remain straight

Figul.'e 4.6 Membrane stress distribution inside the plate under predominantly longitudinal com-
pressive loads

while no membrane stresses will develop in the y direction if the unloaded plate edges
move freely in plane.

As is apparent from Figure 4.6, the maximum compressive membrane stresses are
developed around the plate edges that remain straight, while the minimum membrane
stresses occur in the middle of the plate where a membrane tension field is formed by
the plate deflection since the plate edges remain straight. The location of the maximum
compressive stresses depends on the residual stresses. If there are no residual stresses the
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maximum compressive stresses will develop along the edges. On the other hand, when the
residual stresses do exist, the maximum compressive stresses are found inside thé plate
at the limits of the tensile residual stress block breadths from the plate edges as shown
in Figure 4.7.

The maximum or minimum membrane stresses of the plate under combined o,y and p
in the x and y directions are determined from Equations (4.4) as follows (for the symbols
related to the residual stresses, Figure 1.22 in Chapter 1 is referred to):

Ox max = ley:b,,b—bl (4.17a)

Ox min = Ux|y=b/2 (4.17b)
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Figure 4.7 A schematic of the total membrane stress distribution inside the plate
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Oymax = Oy lx=ag.a—a “4.17¢)
Oymin = Uy|x=0/2 4.17d)

where the subscript ‘max’ or ‘min’ indicates the maximum or minimum membrane
stresses. Equations (4.17) are given in detail as follows:

mzanAm (Am + 2A0m) 27Tbt
COs

Oxmax = Oxav — Px 822 b (4.18a)
m22EA, (A + 2Aom
Oxmin = Oxav T Px ; 2' o) (4.18b)
d
2EA (A + 2A0m 2
Oymax = —/Oxn (8b2+ Om) cos m;wt (4.18¢)
72 EAm (Am + 2Aom)
Tymin = Px A (4.18d)

where Equations (4.18) implicitly include the lateral pressure, p, as a secondary load
parameter.

In Equations (4.18), p, is a correction factor. For a square or long plate, the plate
deflection is normally quite similar to a sinusoidal pattern as given by Equations (4.5).
For a wide plate under predominantly longitudinal compressive loading, however, the
plate deflection may be somewhat different from the sinusoidal pattern as it normally
takes the so-called ‘bath tub’ (or bulb) shape around the plate edges, while the deflected
shape in the middle part of the plate is nearly flat, see Figure 4.8(a). Due to the bath-
tub-type deflection, the rotation and deflection around the plate edges are normally larger
than those of the sinusoidal pattern, resulting in larger values of the membrane stresses.

This implies that the presumed deflection functions, Equations (4.5), with one buckling
mode term may not be valid further for a wide plate under compression in the x direction,
and a more refined deflection function, i.e., with deflection terms of at least more than 2,
may be needed. However, it is in this case not straightforward to analytically solve the
nonlinear governing differential equations.

As an easier alternative, while keeping the deflection functions of Equations (4.5), the
maximum and minimum membrane stresses along the edges of the wide plate under
predominantly longitudinal axial compressive loading are approximately corrected by
introducing a factor, p,, to account for the bath tub shape deflection effects.

The correction factor, oy, of Equations (4.18) may be empirically determined by curve
fitting based on nonlinear finite element computations obtained for plates by varying the
aspect ratio and the load application. For instance, p, may be given in terms of the aspect
ratio as follows:

_|o2w/a—v2) +2.0 fora/b<1//2
Px = {1.0 for a/b > 1/+/2 (4.19)

where the large-deflection-related terms of membrane stresses are simply amplified
to account for the effect of the bath-tub-type deflection pattern. Figure 4.8(b) plots
Equation (4.19). p, jumps at a/b=1/+/2 where the bifurcation buckling mode
is changed.
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Figure 4.8 The ‘bath tub’ shape deflection of a wide plate under axial compression; The correction
factor, p,, as a function of the plate aspect ratio

The maximum and minimum membrane stress formulations may be simplified when
neither initial imperfections nor lateral pressure loads are involved, as follows:

Oxmax = A10xay *+ A2, Oxmin = b10xay + by, Oymax = C10xav + €2, Oymin = d10xay + d2

(4.20)
where
. 2m* B 2m? 7D <m2 1 )2
A=t by TP ami A iy f \2 B
2m? 2m? 7:D [ m? 1 2
by=1-p , b2=_px2 W) 1 _2+_2
a*(m*/a* + 1/b%) al(m*fa* +1/b*) ¢t a b
2m? B 2 72D <m2 N 1)2
A i 16 T Rmi 1Yt \@  »
2m? 2 7?D (m* 1\
di = —Px—5— 0 B2 = P 4 27712
a*b*(m*/a* 4+ 1/b%) b:(m*/a* +1/b%) ¢ a b

Effective Width Formula

Equations (2.19) in Chapter 2 are widely used to evaluate the post-buckling strength of
plates under uniaxial compression. As previously noted in Section 2.5.3 of Chapter 2,
however, the plate effective width for strength purposes should in general be evaluated
by taking into account the effects of both buckling and shear lag, the former arising
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from axial compression and the latter being due to lateral pressure loads when both are
concurrently involved.

The effective width of plates with initial imperfections under combined in-plane and
lateral pressure loads is typically defined as the ratio of the average stress to the maximum

stress as follows:
be Uxav

— = (4.21a)
b Ox max
where 0y max 15 the maximum compressive stress which is expressed as a function of
combined in-plane and lateral pressure loads as well as initial imperfections, as defined in
Equation (4.18a). be may also be possibly called the ‘effective breadth’ if lateral pressure,
p, exists, because the shear lag effect in that case also develops.
It is of interest to calculate the ultimate effective width, be,, at the ULS of the plate
which can be obtained from Equation (4.21a) when oy, = 0,y as follows:

b o
— = (4.21b)
b U;max

where 0/ ., = Oxmax at Oyay = Oxy, Oxy = plate ultimate strength as will be defined later

in Section 4.9.2.

Equation (4.21b) explicitly takes into account the influence of initial imperfections
and lateral pressure as parameters of influence. In contrast, the more typical approach
in this regard is exemplified by Faulkner (1975) who suggests an empirical effective
width formula for simply supported steel plates under longitudinal compression alone,
i.e., without lateral pressure, at the ULS as follows:

B T 12/B-1/8 for B> 1 (4.21c)
where Equation (4.21c) implicitly involves the influence of initial imperfections at an
‘average’ level. In some design codes, the terms 2 and 1 for 8 > 1 are changed to 1.8
and 0.9, respectively.

Figure 4.9 plots Equation (4.21a) with increasing o, varying plate slenderness
ratio, initial deflections, residual stresses and lateral pressure. The Faulkner formula,
Equation (4.21c), is also shown for comparison. The plate ultimate strength, o,,, as
obtained from Section 4.9.2, is also plotted. The Faulkner formula corresponds well
to the effective width only for relatively thick plates with an ‘average’ level of initial
imperfections. As is apparent from Figure 4.9, the plate effective width varies with the
different levels of initial imperfections as well as applied loads, and Equation (4.21a) or
(4.21b) thus embodies the nature of the plate effective width better. It is evident from
Figure 4.9(c) that the lateral pressure is a significant factor influencing (reducing) the
plate effective ‘breadth’ as would be expected.

It is often useful to derive a closed-form expression of the reduced (tangent) effective
width representing the in-plane effectiveness of the buckled plate, namely

* —1
b _ (aa""‘“) (4.22)

beu {10 for ﬂ < 1

b 30 av

where b} = reduced (tangent) effective width.
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(b) Effect of initial deflection and welding-induced residual stresses

Figure 4.9 Variation of the effective width of a simply supported plate under uniaxial compression
(o = elastic compressive buckling stress)
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Figure 4.9 (continued)

When both initial imperfections and lateral pressure are not involved, the plate effective
width formula can be expressed from Equation (4.21a) as a function of the average stress
as follows (since oy max = @102y + a; from Equation (4.20)):

b
Je Tmv (4.232)
b aouwta
or as a function of the average strain since oy max = 41052y + @2 = Eéyay,
be 1 ay 1
Lo 1= 4.23b
b a ( E 6‘xav) ( )

The reduced effective width is obtained from Equation (4.22) when both initial imper-
fections and lateral pressure are not involved, as follows:
by 1

- 4.24
b (4.24)

Average Stress—Strain Relationship

For imperfect plates under longitudinal axial compression and lateral pressure, the average
stress—strain relationship can be given as long as the unloaded edges remain straight,
as follows:

1 15 be

Exay = 'Eax max = Eb_eaxav Or  Oxay = ;Eexav (4.25a)
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The incremental form of Equation (4.25a) is given by

007 max

1 /90
A"3,\:av = ( O max

-1
— EAégyay 4.25b
E \ 90y ) Fxa ( )

> AGyay OF AOyy = (

Oxav

where the prefix, A, represents the increment of the variable (throughout this chapter).
The numerical approach is often more pertinent for the computation of 86 yax/80ay With
infinitesimal stress variations around o,,y.

When both initial imperfections and lateral pressure are not involved, substitution of
Equation (4.23b) into Equation (4.25a) results in

1
Oxay = a_(Esxav —az) (4.26a)
1
The incremental form of Equation (4.26a) is then given by
E
AOyyy = —A&yay = E*Agyay (4.26b)
ai

where
4

a m* + a*/b*

is the effective Young’s modulus (tangent modulus) after buckling.

As may be surmised from Equation (4.26b), the tangent modulus of the buckled plate
does not change with the applied loads, while it is a function of the plate aspect ratio.
Figure 4.10 shows the variation of the tangent modulus of the buckled plate as a function
of the plate aspect ratio. It is seen that the effective tangent modulus varies in a cyclic
pattern with regard to a mean equal to E*/FE = 0.5, and for shorter plates the effect of
the aspect ratio is more significant.

4.8.2 Combined Transverse Axial Load and Lateral Pressure
Non-uniform Membrane Stresses

When the plate is subjected to combined transverse axial stress, oy.y, and lateral pressure,
D, the dominant term of the initial and added deflection functions can be assumed to take
the buckling mode as follows:

wo = Ag, sin = sin 22 (4.272)
a b
w= A, sin = gin ? (4.27b)
a

where n = buckling half-wave number in the y direction, Ag, = initial deflection ampli-
tude, A, = unknown amplitude of the added deflection function, and » = 1 and Ag, = 0
are normally used for axial tensile loading.
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Figure 4.10 The average stress—strain curves of a perfect plate under uniaxial compression in
the elastic regime (¢,5 = average axial compressive strain at 0y,, = 0,g); Variation of the reduced
tangent modulus after buckling as a function of the plate aspect ratio

By solving the governing differential equations, Equations (4.3), together with
Equations (4.27), the unknown amplitude, A,, of the added deflection function of
Equation (4.27b) can be obtained by the solution of the following equation, in a similar
manner to Section 4.8.1:

C1A, + CLA2 + C34, + Cy =0 (4.28)
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C_]TZE b+n4a
' 16 \&3 " B3

3n2EAy, (b n*a
om0 (5,2
a

where

16 b’
T2EA? b n‘a b n’a
Cs = : On <_ b_3) + ;Urex + T(O’yav + O're)’)

2Dn (b +na 2
"t ab b

Cy= Ag [bd +@(0 +o0 ):l—@p
n rex b yav rey n4t
2 b . 2nmh
Orex = Opex + Z(Urt.x — Orex) (bt - % s T)

2 a . 2nq
Orey = Opcy + ;(Urty - Jrcy) ag — Z sin P

Again, it is approximated that the contribution of lateral pressure to nonlinear membrane
stresses arises only from the lateral deflection component of n = 1. Equation (4.28) can
be solved with regard to the unknown amplitude, A,, of the added deflection function by
applying Equation (4.12) or the computer subroutine CARDANO given in the appendices
to this book. For a perfect plate, i.e., without initial deflections but with welding-induced
residual stresses, the elastic buckling stress under transverse compressive loads will be
determined with Ay, = 0 immediately before buckling takes place. We thus have

72D (b  na\® b
=" (@ + 7) ~ g% T O #29

where the second and third terms on the right hand side reflect the effect of welding-
induced residual stresses.

The buckling half-wave number, n, can be determined as the minimum integer satisfying
the following condition since buckling load must be identical at the transition of buckling
half waves, namely

Orex

7D (b  na\* b2 7D b (n+ Da7? b?
— — + Orex = +

a’t n%a? a’t | (n+ Da b (n + 1)%2a?
(4.30a)

Without the welding-induced residual stresses, i.e., when Opx = 0y =0, Equa-
tion (4.30a) simplifies to the well-known condition

g < VoD (4.30b)

For interests of simplicity, the buckling half-wave number in the y direction may often
be determined from Equation (4.30b), i.e., by neglecting the effect of residual stresses.

na ' b
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Applying an approach similar to that used for the longitudinal axial loading case, we
can calculate the maximum and minimum membrane stresses, which are given by

T2EA, (A, + 2A0,) 2nm by

Oxmax = —Py ™ cos 5 (4.31a)
o anAn (An + 2AOn)
Oxmin = Py 8(12 (4.31b)
2n2FEA, (A, +2A 27r
Oymax = Oyay — Py 2(3b2 ) oo a“‘ (4.31c)

277" 2EAn (An + 2A0n)
8p2

Oymin = Oyay + Py “4.31d)

where A, is obtained by the solution of Equation (4.28). Py is a correction factor.
The correction factor, py,, in Equations (4.31) accounting for the effect of the bath
tub shape deflection may be empirically determined based on nonlinear finite element

calculations for steel plates by varying the aspect ratio and the load application. For
instance, p, may be given by an empirical expression as follows:

_ 10.2(a/b—v2) +2.0 forbja <1/v2
Py { for bja > 1//2 (4.32)

When both initial imperfections and lateral pressure are not involved, the maximum
and minimum membrane stresses can be simplified to

Oxmax = €10yay + €2, Ox min = flayav + fa, Oymax = &10yav + &2; Oymin = hlayav + hy

(4.33)
where

S e L
a’b2(1/a* + n*/b%)’ Ya2(1/a* +n*/b%) t \a? ' b2

2n? 2 72D (1 n?\*

N= b e v 5 P ey (a_2+b_2)
b*(1/a* + n*/b%) "b2(1/ag +n*/b%) t \a2 @ b2

b*(1/a* + n*/b%) B2(1/a* +n4 /b t \a? ' b2

Effective Length Formula

The plate effective ‘length’ (effective width for loading along the plate’s long direction)
is in this case defined as follows:

%o T (4.34a)
a Oy max .
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where 0y ma = maximum compressive stress which is expressed as a function of com-
bined in-plane and lateral pressure loads as well as initial imperfections, as défined
in Equation (4.31c).
It is again of interest to calculate the ultimate effective length, aey, at the ULS of the
plate which can be obtained from Equation (4.34a) when oy, = 0y, as follows:
o _ Tov (4.34b)
@ O
where a;'max = Oymax &l Oyay = Oy, Oy, = plate ultimate strength as defined in Section 4.9.3.
While Equation (4.34b) explicitly takes into account the influence of initial imperfec-
tions and lateral pressure as parameters of influence, the more typical approach is that
exemplified by Faulkner et al. (1973) who suggest an empirical effective length formula
for simply supported steel plates under transverse compression alone, i.e., without lateral
pressure, at the ULS as follows:

e 09 bH19 0.9 a
o _ 70 2272122 forE>1 434
2 ﬂ2+aﬁ< ﬂ2> 5= (434

where Equation (4.34c) implicitly involves the influence of initial imperfections at an
‘average’ level.
The reduced tangent effective length representing the in-plane effectiveness of the

buckled plate is given by
* -1
% _ (—a"yma" (4.35)

a 30 yay ’
where al = reduced (tangent) effective length.

When both the initial imperfections and lateral pressure are not involved, Equation (4.34a)
can be simplified to (since 0y max = &10yav + g2 from Equation (4.33))

Ge _ _ Oyav (4.36a)
a 810yay + &2

We can recast Equation (4.36a) as a function of the membrane strain since Oymax =
810yay + g2 = E&y,y as follows:

a 1 (1 g 1
a_gl Esyav

) (4.36b)

The reduced effective length representing the in-plane effectiveness of the buckled plate
is given from Equation (4.35) when both the initial imperfections and lateral pressure are
not involved, as follows:

- (4.37)

o |

Average Stress—Strain Relationship

For imperfect plates under transverse axial compression and lateral pressure, the average
stress—strain relationship can be given as long as the unloaded edges remain straight,
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as follows:
1 la
Eyay = E ymax = Ea_ayav (4.38a)

€

The incremental form of Equation (4.38a) is given by

1 (3o do !
Atyay = z (ﬁ) AGyay 0T Aoy = (ﬁ) EAgys (4.38b)

where the numerical approach is often more pertinent for the computation of 00y max/80yay
with infinitesimal stress variations around Oyay.

When both the initial imperfections and lateral pressure are not involved, Equa-
tion (4.38a) is simplified to

1 1
Eyay = E(glayav + 82) Or  Oyay = g_(Esyav - gZ) (4393)
1
The incremental form of Equation (4.39a) is given by

E
Aoy, = g—Aeyav (4.39b)
1

4.8.3 The Concept of the Effective Shear Modulus for a Plate Buckled
in Edge Shear

While the effective width is recognized as an efficient approach to evaluate the elastic
large-deflection behavior of a plate under predominantly axial compressive loads, the
concept of the ‘effective shear modulus’ suggested by Paik (1995) may be useful for
representing the behavior of a plate buckled in edge shear.

The basic concept of the effective shear modulus for plates buckled in edge shear is
now described. In plane stress problems, the relationship between membrane shear stress,
7, and shear strain, y, is given by

T =Gy (4.40)

where G = E/[2(1 + v)] = shear modulus.

While the shear strain distribution would be uniform inside the plate before buckling,
it is no longer uniform after shear buckling occurs. The shear strain at any point inside
the buckled plate may be calculated by taking into account the large-deflection effects

as follows:
_(3u+ﬂ)+(8w8w+8w3w0+8w03w @41
Y=\5y " ox ax dy | ox ay ' ox ay :
where u and v are axial displacements in the x and y directions, respectively. The first
bracketed term on the right hand side of the above equation represents the membrane shear
strain component and the second term indicates the additional shear strain component due
to large-deflection effects.

The basic idea of either the effective width or the effective shear modulus concepts is
to regard the deflected (buckled) plate as an equivalent ‘flat’ (undeflected) one, but with
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a reduced (effective) in-plane stiffness. Therefore, the membrane shear strain component,
¥m. Of the buckled plate must in this case be evaluated as follows: ’

(4.42)

_ Ou 4 ov T <8w ow dwowy OJdwy aw)
T3y dx G

Ym = x dy " ax ay | ax 3y

The membrane shear strain at any point inside the plate can in a real case be computed
using numerical methods such as the finite element method. The mean membrane shear
strain, y,y, may be defined as an average of shear strains thus computed over the entire

plate as follows:
1 a pb
Yav = _/ / Ymdx dy (4.43)
ab Jo Jo

Since the shear stress at the plate edges may equal the average shear stress, i.e., T = T,y,
the effective shear modulus, G, representing the effectiveness of the plate buckled in edge
shear can be defined by

T,
Ge= 2= (4.44)
Vav

An empirical expression for the effective shear modulus can be developed by curve
fitting based on numerical computations and varying influential factors such as the plate
aspect ratio and initial imperfections. For instance, the effective shear modulus formula
of simply supported rectangular plates with initial deflections may be empirically derived
based on the results of the semi-analytical method as will be presented in Chapter 11, as
follows (Paik 1995):

(4.45a)

Ge _ {CIV3+02V2+C3V+C4 for V < 1.0
G diVi+d,V +ds for V > 1.0

where
1 = ~0.309W; + 0.590WZ — 0.286W,

2 = 0.353W3 — 0.644W2 + 0.270W,
c3 = —0.072W; + 0.134WZ — 0.059W,
cs = 0.005W3 — 0.033W7 + 0.001W, + 1.0
d; = —0.007W; + 0.015W} — 0.018 W, + 0.015
dy = —0.022W3 + 0.006W2 + 0.075W, — 0.118
d; = 0.008W; + 0.025WZ2 — 0.130W, + 1.103
with V =15y /tg, Wy = wep/t, 1t = elastic shear buckling stress of the plate, as

defined in Chapter 3.
When the initial deflection is not involved, Equation (4.45a) is simplified to

% _ [1.0 for Ty /g <1 (4.45b)

G 0.015(tay/76)? — 0.1187, /7 + 1.103 for T,/ > 1
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Figure 4.11 Variation of the effective shear modulus of a plate with increase in edge shear

Figure 4.11 plots Equations (4.45). As is apparent from the figure, the effective shear
modulus of a plate decreases after buckling as the edge shear increases. Also, the initial
deflection reduces the effective shear modulus as would be expected.

4.8.4 Average Stress-Strain Relationship under Combined Loads

The membrane strain components of deflected or buckled plate elements under combined
biaxial loads, edge shear and lateral pressure can be given by

1

Exav = E(O'x max — VOyay) (4.46a)
1

Eyav = E(_Vaxav + Oy max) (446b)
T,

Yav = Gi: (4.46¢)

Where 0y max, Oy max = Maximum membrane stresses in the x or y direction, G, = effective
shear modulus as defined in Equations (4.45).

Since 0y max, Oymax and G, are nonlinear functions with regard to the correspond-
ing average stress components, Equations (4.46) indicate a set of nonlinear relation-
ships between membrane stresses and strains. The incremental form of the membrane
stress—strain relationship is relevant by differentiating Equations (4.46) with regard to
the corresponding average stress components as follows:

1 [ 0% max 00 max
Agyqy = — | —A —
xav E l: 30 vy Oxay + ( Tyay V) Ad}’av] (4.47a)
1 do hileg
A — ymax A 'y max
yav E [( a0',\:av V) Fav aGyav Aayav (447b)
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1 Tay 6Ge>
Ayyy = — |1 — =—— ] Arx, 4.47
Yav Ge ( Ge 3fav av ( C)

The differentiation of maximum membrane stresses may often be carried out nume-
rically with infinitesimal stress variations around the corresponding average stress.
Equations (4.47) can then be rewritten in matrix form as follows

ACyay Agyay
Adyay { = [DpIB { Agyay (4.48)
Aty Ayay
where
1 B, —-A; 0
[D))f=————|-B A O

is the stress—strain matrix of the plate in the post-buckling regime, with

Ay = L 9%xmax Az_l(?_"xﬂ_v>
E 90,y E aO'yav
1 /00, max ) 1 90y max
B = — 24 —v)], By=—
! E ( 00 av Y ? E aO'yav

C = i (1 - EﬂaGe)
G G 0Tay
When the interaction effect between combined in-plane loads on the maximum membrane

stresses is neglected, 0y max and oy max can be approximately calculated from Equation (4.18a)
or Equation (4.31c), respectively. In this case,

007 max _ 00y max -0

do yav 00av

Under biaxial tensile loading, the differentiations in Equation (4.48) may be simpli-
fied to

00y max _ 007y max =1 and 00y max _ 307y max _ 0Ge -0
00yay 00yay 007yay 00yay 0Tay

In this case, the stress—strain relationship results in that in the linear elastic regime, as
defined in Equation (3.1) of Chapter 3.

4.9 Ultimate Strength

This section presents the ultimate strength formulations for steel plates under combined
biaxial loads, edge shear and lateral pressure, which take into account the effect of initial
imperfections.
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4.9.1 Basic Concepts to Derive the Ultimate Strength Formulations

Existing analytical methods to calculate the ultimate strength of steel plates may be
categorized into two approaches:

o the membrane stress method; and
o the rigid—plastic theory method.

In the former approach, the membrane stresses inside the plate are computed typically
by solving the nonlinear governing differential equations of large-deflection plate theory
and it is considered that the plate will collapse if the membrane stress reaches a critical
value (e.g., the yield stress) or if any relevant criterion in terms of membrane stresses
is satisfied.

In the latter approach, the kinematically admissible collapse mechanisms of the plate at
the ULS are presumed and the ultimate strength is then determined by applying the clas-
sical energy principle so that the internal strain energy is in equilibrium with the external
potential energy (Murray 1986). To account for the large-deflection effect, the rigid—plastic
approach is typically combined with the elastic large-deflection theory of plates.

This section uses the former approach, while application examples of the latter method
to the collapse strength of plates may be found for lateral pressure (Wood 1961, Jones
1989), for axial compression (Paik & Pedersen 1996) and for combined axial compression
and lateral pressure (Fujita et al. 1979), among others.

With an increase in the plate deflection, the upper and/or lower fibers inside the middle
of the plate will initially yield by the action of bending. However, as long as it is possible
to redistribute the applied loads to the straight plate boundaries by membrane action,
the plate will not collapse. Collapse will then occur when the most stressed boundary
locations yield, since the plate can no longer keep the boundaries straight, resulting in a
rapid increase of lateral plate deflection.

Because of the nature of combined membrane axial stresses in the x and y directions,
three possible locations at edges, namely plate corners, longitudinal edges and transverse
edges, which could initially yield are generally considered as shown in Figure 4.12. The
stress status for the two edge locations, i.e., at each longitudinal or transverse edge, can
be expected to be the same as long as the longitudinal or transverse axial stresses are
uniformly applied, i.e., without in-plane bending. Depending on the predominant half-
wave mode in the long direction, the location of the possible plasticity can vary at the
long edges, because the location of the minimum membrane stresses can be different,
while it is always the mid-edges in the short direction.

The occurrence of yielding can be assessed by using the Mises—Hencky yield criterion.
The three resulting ultimate strength criteria for the most probable yield locations will be
found as follows:

(1) Yielding at corners:

(Uxmax)2 _ (Uxmax> <0ymaX) + (M)z + <Bﬁ>2 =1 (4493)
oy oy oy oy Ty

(2) Yielding at longitudinal edges:

(O’xmax)2 _ (O’xmax> (O'ymin) + (@)2 + (E)z =1 (4.49b)
oy oy oy oy Ty
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Figure 4.12 Three possible locations for the initial plastic yield at the plate edges under combined
loads: (a) plasticity at corners; (b) plasticity at longitudinal edges; (c) plasticity at transverse edges
(e, expected yielding locations; T, tension; C, compression)

(3) Yielding at transverse edges:

2 2 2
(Uxmin) _ (Ux_nu£> (Uymax) + (Uymax) + (E) =1 (4.49¢)
oy oy oy oy Ty

While the maximum or minimum membrane stresses of deflected plates under simple
types of load applications such as uniaxial compression or combined uniaxial compression
and lateral pressure loads may be calculated relatively easily as described in Section 4.8,
it is not straightforward to calculate the maximum and minimum membrane stresses of
plates under more complex load applications such as combined biaxial loads, edge shear
and lateral pressure.

As an easier alternative approach, Equations (4.49) may be utilized for developing
the plate ultimate strength formulations under simpler load applications and a relevant
combination of such strength formulations as obtained for various simpler load cases may
be adopted to derive the strength formula under all potential load applications.

4.9.2 Combined Longitudinal Axial Load and Lateral Pressure

The maximum and minimum membrane stresses are in this case calculated from Equa-
tions (4.18) in terms of g,y and p together with initial imperfections. Under the present
type of load application, the initial yield location at the plate edges may be the longitudinal
edges by the nature of the Mises—-Hencky yield condition.
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By substituting the maximum and minimum membrane stresses into Equation (4.49b),
the ultimate longitudinal axial strength, oy, is obtained as the solution of the following
equation with regard to o,,y, regarding p as a secondary constant load, namely

(U"“‘“)z - (“”““) (Gy“‘i“) + (Uy'“‘“)z —1 (4.50)

oy oy Oy Oy

where 05 max i as defined in Equation (4.18a), oy mis as defined in Equation (4.18d).
When the lateral pressure is not involved, the ultimate strength, o, is of course calcu-

lated by letting p = 0. It is interest that, when the unloaded edges move freely in plane,

no membrane stresses develop in the y direction, as shown in Figure 4.6(b). In this case,
the ultimate strength formulation, Equation (4.50a), can be simplified to

Oy max = OY (4.50b)
Alternatively, using the effective width approach, oy, is simply given by

Oxy = aybbﬂ (4.50c)
where be, = effective width at the ULS, as defined in Equation (4.21c).

When the plate is subjected to predominantly axial tensile loads, the plate ultimate
strength may approximately be taken as o, = oy, while the ultimate strength of the plate
under combined longitudinal axial tension and lateral pressure loads can also be calculated
from Equation (4.50a).

As will be described in Section 4.13, the plate ultimate strength predictions using
the formulations, e.g., Equation (4.50a), presented in this chapter are automated using
the ALPS/ULSAP computer program. Figure 4.13 compares theoretical results of
Equation (4.50a) with the mechanical collapse tests and the nonlinear FEA for long plates
with different plate aspect ratios and under longitudinal axial compressive loads. While
Equation (4.50a) deals with initial imperfections as direct parameters of influence, the
mechanical collapse tests involve various uncertain levels of both initial deflections and
residual stresses. For more details of the test data, Ellinas et al. (1984) may be referred to.
In the FEA, two types of unloaded plate edge condition are applied: (1) the unloaded plate
edges move freely in plane, and (2) they are kept straight. For the FEAs, an ‘average’ level
of initial deflections is considered, while the welding residual stresses are not included.
The finite element solutions with edge condition (1) are smaller than those with edge
condition (2), as would be expected.

4.9.3 Combined Transverse Axial Load and Lateral Pressure

The maximum and minimum membrane stresses are in this case calculated from Equa-
tions (4.31) in terms of oy, and p together with initial imperfections. For the present
type of load application, the initial yield location at the plate edges may be the transverse
edges by the nature of the Mises—Hencky yield condition.

By substituting the maximum and minimum membrane stresses into Equation (4.49c),
the ultimate transverse axial strength, o,,, is obtained as the solution of the following
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Figure 4.13 Variations of the ultimate strength of steel plates under axial compression as a func-
tion of the plate slenderness ratio (reference numbers for test data are taken from Ellinas et al.
1984)

equation with regard to oy, regarding p as a secondary constant load, namely

(Uxmjn>2 _ (thin) (Gymax> n (Uymax)2 =1

oy oy oy oy

where oy min is as defined in Equation (4.31b), 0y max as defined in Equation (4.31c).
When the lateral pressure is not involved, the ultimate strength, oy, is of course cal-

culated by letting p = 0. When the unloaded edges move freely in plane, no membrane

stresses develop in the x direction. Therefore, Equation (4.51a) can in this case be sim-
plified as follows:

(4.51a)

Oymax = OY (4.51b)
Alternatively, using the effective width approach, oy, may be given by
Oy = Oy @.51c)
a

where a, = effective length at the ULS, as defined in Equation (4.34c).

When the plate is subjected to predominantly axial tensile loads, the plate ultimate
strength may approximately be taken as oy, = oy, while the ultimate strength of the plate
under combined transverse axial tension and lateral pressure loads can also be calcu-
lated from Equation (4.51a). Figure 4.14 compares Equation (4.51a) with nonlinear finite
element results. In the FEAs, the plate edges are simply supported, keeping them straight.
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Figure 4.14 Variation of the ultimate transverse compressive strength of a long plate as a function
of the reduced slenderness ratio, a/b = 3

4.9.4 Lateral Pressure

The ultimate strength, pyo, of plates under lateral pressure alone may be calculated as the
lowest value of the three lateral pressures as obtained by satisfying the three conditions
of Equations (4.49) when 0y,y = 0yay = Ty = 0.

The static collapse load, p., of rectangular plates subject to a uniformly distributed
lateral pressure is found between the lower and upper bounds as follows (Jones 1975):

%(1+a+a2)< < %M ! 4.52
b2 P T Bre—ay (#52)
for simply supported plates, and
16M 48M 1
C(1+0%) < pe< —F (4.52b)

b? TP 3+ —a)
for clamped plates, where Mp = oyt2/4 is the plastic bending moment per unit breadth
that the plate cross-section may carry; o« = b/a.

Equations (4.52) have been derived using the upper and lower bound theorems for
plates made of rigid—plastic material, which obey the Tresca yield criterion. The effect
of shear on the yielding has been neglected assuming that the plates are thin.

It is of interest that Equations (4.52) can be simplified for a square plate with o = 1
as follows:

24MP < < 24Mp f .

2 = Pc = 2 or simply supported plates (4.53a)
32Mp - 48 Mp

= De = 2 for clamped plates (4.53b)
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Figure 4.15 Comparison of the ALPS/ULSAP method with the Yamamoto et al. collapse test
results for plating under combined longitudinal axial compression and lateral pressure loads

It may be seen from Equations (4.53) that the lower and upper limits coincide for simply
supported plates, whereas they differ significantly, i.e., 2:3, for clamped plates. In this
case, Fox (1974) has shown that the collapse load equals 42.85 MP/b?.

In this regard, an upper limit, p., of the ultimate lateral pressure load for simply
supported plates is relevant as follows:

6[20'Y 1

Do = b2 (/3+a2—(x)2

The ultimate lateral pressure load, pyo, should not be greater than the upper limit, p,. It is
noted that the rigid—plastic theory formulas noted above do not account for the membrane
effects and thus they may predict the critical lateral pressure pessimistically. Interestingly,
the so-called permanent deflection of the plate under lateral pressure may be defined as
the maximum deflection at the ultimate lateral pressure.

Figure 4.15 compares the ALPS/ULSAP results to the corresponding mechanical col-
lapse test results from Yamamoto ef al. (1970) and SPINE solutions for long plating of
a/b = 3 under combined longitudinal axial compression and lateral pressure loads. Again,
ALPS/ULSAP indicates the results of Equation (4.51a) together with Equation (4.54).
The SPINE results were obtained using the semi-analytical method as will be presented
in Chapter 11. The model uncertainties for the ALPS/ULSAP method on the basis of the
Yamamoto et al. testing are mean = 0.967 and COV = 0.064.

(4.54)

4.9.5 Edge Shear

Since the deflection pattern of the plates under edge shear in the post-buckling or large-
deflection regime is quite complex, the analytical approach may not be straightforward to
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use in evaluating the membrane stress distribution inside the plate buckled in edge shear.
In this case, a nonlinear numerical method is more convenient.

In such a case, a series of elastic—plastic large-deflection FEAs for plates under edge
shear alone were carried out by Paik ez al. (2001) varying the plate thickness, the aspect
ratio, the boundary condition and the magnitude of post-weld initial deflections. It is
assumed that the plate edges remain straight.

Figure 4.16 shows the variation of the plate ultimate edge shear strength for simply
supported plates plotted versus the elastic shear buckling stress varying the plate aspect
ratio. The dotted line represents the elastic shear buckling strength with plasticity cor-
rection using the Johnson-Ostenfeld formula, Equation (2.93). Figure 4.17 shows the
effect of the plate aspect ratio on the plate ultimate shear strength. As the plate aspect
ratio increases the plate ultimate shear strength tends to decrease. As is apparent from
Figure 4.17, however, the ultimate shear strength depends weakly on the plate aspect
ratio, especially for relatively thick plates.

By curve fitting based on the computed results, the following empirical formula for the
ultimate strength, 7,9, of a plate under edge shear alone may be used:

o 1~324(1—'E/IY)3 for 0 < /1y < 0.5
- = 10.039(7g/1y) —0.274(1.’5/‘Ey)2+0.676(‘L’E/1’y)+O.388 for 0.5 < tg/ty <2.0
Y 0.956 for tg/7y > 2.0
(4.552)

where 7 is the elastic shear buckling stress of the plate, as defined in Table 3.1 of
Chapter 3. Figure 4.16 plots Equation (4.55a).

1.2
11
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0.9 . S B
{1 e/ LT
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Figure 4.16 The ultimate strength versus the elastic buckling stress of the plate under edge shear
(For the formula of ENV 1993-1-1, Equation (7.4) of Chapter 7 is referred to)
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Figure 4.17 Effect of the aspect ratio on the plate ultimate shear strength

Equation (4.55a) has been subdivided into three equations which represent the ultimate
edge shear strength of thin plates, medium thickness plates and thick plates, respectively,
and shows a modeling error characterized by mean bias = 0.931 and COV = 0.075 when
compared to the nonlinear finite element solutions for plates by varying the aspect ratios
and initial deflections. In the treatment above, the ultimate strength of a stiffened panel
in edge shear is approximately taken as that of plating between stiffeners in edge shear.
Any strength reserve due to tension field action where a developing diagonal tension is
anchored by the adjoining stiffening is also not included. The approach is thus somewhat
pessimistic. Also, implicit in the approach is the (usually reasonable) assumption that the
stiffeners of stiffened panels are normally designed such that they will remain straight
until the panel buckles in edge shear. Corrections are necessary if this is not the case, as
will be described in Chapter 7. '

Alternatively, ENV 1993-1-1 (1992) of Eurocode 3 suggests an empirical formula for
the plate ultimate shear strength, as defined in Equation (7.4) of Chapter 7. Also, the
plate ultimate edge shear strength is often predicted by the plasticity correction of the
elastic shear buckling strength using the Johnson-Ostenfeld formula, Equation (2.93).
Nara et al. (1988) proposed an empirical closed-form expression of the ultimate shear
strength of plating obtained by curve fitting based on the nonlinear FEA as follows:

0.486

0.333
o (T) < 1.0 for 0.486 < A < 2.0 (4.55b)

Ty

where A = /ty/tE, Tg = elastic shear buckling stress.

Figure 4.16 compares Equation (4.55a) to more refined nonlinear finite element solu-
tions and other formulations noted above. It is seen from Figure 4.16 that Equation (4.55a)
covers a wider range of the plate slenderness ratio with reasonable accuracy.
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4.9.6 Combined Edge Shear and Lateral Pressure

While the effect of lateral pressure loads on the ultimate edge shear strength is typically
neglected in most current design procedures of steel-plated structures, the lateral pressure
loads may in some cases affect (reduce) the plate ultimate edge shear strength.

Figure 4.18 shows the ultimate strength interaction relationship for a plate under com-
bined edge shear and lateral pressure obtained using a semi-analytical method SPINE, as
will be described in Chapter 11. It is seen from Figure 4.18 that the ultimate strength inter-
action between edge shear and lateral pressure is significant and thus cannot be ignored.

From the limited results, it is also observed that their interacting effect tends to become
moderate with increase in the plate aspect ratio. As a pessimistic measure, the plate
ultimate strength interaction equation between edge shear and lateral pressure may be
derived by curve fitting based on the interaction curve of square plates (i.e., with a/b = 1)

as follows:
r\!S p 1.2
— + | — =1 (4.56)
Tuo Puo

where 7,9 = plate ultimate strength under edge shear alone as defined in Equation (4.55a),
DPuo = plate ultimate strength under lateral pressure alone.

The ultimate edge shear strength, 7,, of a plate under combined z,, and p is then
obtained as the solution of Equation (4.56) with regard to t,y, treating p as a secondary
constant load parameter.

4.9.7 Combined Biaxial Loads, Edge Shear and Lateral Pressure

So far, three sets of the ultimate strength formulations under a primary in-plane load com-
ponent together with secondary lateral pressure loading have been derived. The ultimate

1.0 g e W= DA sin T gin MY
} m=1n=1 a b
\\ f— a——L- f M mnx n
NG Yy b |t [wo=Z ZAomn sin T sin 1Y
0.8 Y I x l 4 m=1n=1 a b
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”EEIE!IQ’P Ao11=Aogs = 0.1 2
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o B Ao11 = 0.1 ﬁ2t
g |—: Present design formula N Agay = Agss = 0.05 g2t
a ®:a/b=1.
04- +:a/b2%0 \\ alb| Puo_| two
B= (b/t),/gY/E= 25 \ 1.0 0.6792 1341
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Figure 4.18 Ultimate strength interaction relationship for a simply supported plate subjected to
edge shear and lateral pressure
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strength formulation under all of the load components involved can now be derived by a
relevant combination of individual strength formulas. ‘

While various types of the plate ultimate strength interaction relationships between biax-
ial compression have been suggested in the literature, most of them may be generalized
to the following form:

(U"“>Cl +a (U"“> (M) + (@y =1 4.57)

Oyu Txu Oyu Oyu

where oy, Oy are as defined in Section 4.9.2 or 4.9.3 and «, ¢y, ¢; are coefficients.
Some examples of the constants used in Equation (4.57) by different investigators

are indicated in Table 4.1. Figure 4.19 plots Equation (4.57) with the various constants
indicated in Table 4.1. Figure 4.20 compares the ultimate strength interaction curve using

Table 4.1 Examples of the constants used in Equation (4.57) for biaxial compressive loading.

Reference Constants used in Equation (4.57)

BS 5400 (2000)
Valsgéard (1980)

¢) = ¢ =2, @ = 0; both 0,y and oy, are compressive

=1, =2 a=-025fra/b=3; both 0.y and

Oyay are compressive

Dier & Dowling (1980) ¢; = ¢; =2, o = 0.45; both 0, and oy, are compressive

Stonor et al. (1983) ¢ = ¢ = 1.5, « = 0 (lower bound)

¢y = ¢3 =2, & = —1 (upper bound)

Both 0.,y and oy, are compressive

¢ = ¢y =2, a = 0; both 0,4y and oy, are compressive (negative)

c1 = ¢, =2, @ = —1; either Gy OF 0y, Or both are tensile (positive)

Paik et al. (2001)

1.2 4 "yav/ayu

Cyq =C2,a=—1

T T T ™} Oxav/Oxu

-1.2 /1R -0.8 -0.6 -0.4 —0(.)22 go 02 04 06 08 /1.0 1.2

Cy=0Cp =1

Figure 4.19 Various types of the plate ultimate strength interaction curves under biaxial loads
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the constants of Paik ef al. (2001) with nonlinear finite element results for a simply
supported plate under biaxial compression or tension. '

In general, the plates making up plated structures can sometimes be subjected to axial
tension in one direction while axial compression is applied in the other direction. By the
nature of the Mises—Hencky yield condition, the biaxial compressive loading condition
is not always the most critical, but in some cases the loading condition under axial
tension in one direction and axial compression in the other direction could be more
important. This implies that the plate ultimate strength interaction relationships should in
principle be established by considering any possible combination of axial loads (tensile
or compressive), together with edge shear loads.

Based on the insights developed by a series of nonlinear numerical solutions varying the
loading ratio and the plate aspect ratio, for instance, the following ultimate strength inter-
action relationship between biaxial compression/tension, edge shear and lateral pressure
may be proposed:

(2 o (22) (22) 4 (22)  (2) o1
Oxu Oxu Oyu Oyu Tu

where 0.y, 0y, and 7, should be computed by taking into account the effect of lateral pres-
sure, from Sections 4.9.2, 4.9.3 and 4.9.6, respectively. The coefficients of Equation (4.58)

may be taken as ¢; = ¢, = ¢3 = 2, while o = 0 when both oy, and o,y are compressive
(negative) and o = —1 when either oy, Or 0y, Or both, are tensile (positive).

4.10 Post-ultimate Behavior

4.10.1 Average Stress—Strain Relationship

In the post-ultimate regime, the internal stress will decrease as long as the axial com-
pressive displacements continually increase. In this case, the average membrane stress
components may be calculated in terms of the plate effective width or length as follows:

be

Oxay = ;a;’max (4.59a)
ac
Oyav = ;aymax (4.59b)
where o, and o!, .. are the maximum membrane stresses of the plate in the x and
y directions, immediately after the ultimate strength is reached, ie., 00 ax = Oxmax at
Oyay = Oy and or;’max = Oymax 8l Oyay = Oyy.

The effective width or length of the plate in the post-ultimate strength regime may be
defined as follows:

be _ i (4.602)
b U;max .
Ge _ Oyav_ (4.60b)
a Ol '

where the asterisk represents a value of the plate in the post-ultimate regime.
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As may be surmised from variation of the effective width versus applied loads as shown
in Figure 4.9, the effect of initial imperfections and Poisson’s ratio is negligibly small
in the post-ultimate regime. While the plate effective width will of course decrease in
the post-ultimate regime as long as the axial compressive displacements increase, it is
assumed that the reduction tendency of the plate effective width or length is similar to
that in the pre-ultimate regime.

When initial imperfections are not involved, oy, in Equation (4.60a) and o,
in Equation (4.60b) can be determined from oy max in Equation (4.20) and oymax in
Equation (4.33), respectively. For more simplified expressions, the following equations
may approximately be relevant with axial compression as negative:

U;max = Eexav = 2'J,::.(av — OxE (4613)

Oy max = E€yay =207, — 0y (4.61b)

where oyg and o, are the elastic compressive buckling stresses in the x and y directions,
respectively.

By substituting Equations (4.61) into Equations (4.60), the plate effective width or
length can be expressed in terms of strain components as follows:

be 1 OxE

_— — 1

b 2( + ESxav) (4.62a)
a, 1 OVE

= =1 Y

P 2( + Esyav> (4.62b)

The average stress—strain relationships in the post-ultimate regime can then be derived
by substituting Equations (4.62) into Equations (4.59) as follows:

1 OxE
xav = = | 1 Y
Oxav 5 ( + ngav) O, max (4.63a)

1 UyE
Oyay = 5 <1 + Eé‘yav> G;max (4.63b)

The incremental form of Equations (4.63) is then given by

u

g OxE

ACray = — *;“”‘ E;a Aéay (4.64a)
xay
ol OyE

AGyy = — =2 5 Ay (4.64b)

yav

On the other hand, the shear stress—strain relationship in the post-ultimate regime is
given by
Aty = GiAyay (4.64¢)

where G} is the tangent shear modulus in the post-ultimate regime, which is often sup-
posed to be G = 0 when the unloading behavior due to shear is not very significant.
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In combined load cases, the average stress—strain relationship of the plate in the
post-ultimate regime is therefore given from all stress—strain relationship together with
Equations (4.64) as follows:

A0yay Agyay
Aoy ¢ = [Dpl" { Atyay (4.65)
Aty AYay
where
Ay 0 O
DV=]0 A 0
0 0 A;

is the stress—strain matrix of the plate in the post-ultimate regime, with

u u
A — axmax GXE — _Uymax UyE A — G*
1= 2 E 7 2= > E 7 3= Ue
Exav Syav

Table 4.2 presents a summary of the average stress—strain relationships for the plate
under combined loads until and after the ultimate strength is reached. Note that a bifurca-
tion buckling phenomenon does not occur when initial deflection exists, since the in-plane
stiffness progressively decreases from the very beginning as axial compression increases.
While the formulations of the average stress—strain relationship of a plate presented in this
chapter accommodate combined biaxial loads, edge shear and lateral pressure, some more
simplified formulations for plates under uniaxial compressive loads are also available
(e.g., Hu & Sun 1999, Rhodes 2002, among others). The average stress—strain relation-
ships of plates indicated in Table 4.2 are incorporated in the ALPS/ISUM program for
the progressive collapse analysis of steel-plated structures using the idealized structural
unit method (ISUM), as will be described in Chapter 13.

4.10.2 Verification Examples

Figure 4.21 shows the progressive collapse behavior of a steel plate under longitudinal
axial compressive loads as obtained by the average stress—strain relationships noted above.
It is seen from this figure that the post-ultimate response as well as the pre-ultimate
strength behavior significantly depend on the plate dimensions among others, as would
be expected.

Table 4.2 A summary of the average stress—strain relation-
ships for a plate under combined loads.

Status Equation
Linear elastic regime 3.1
Post-buckling or elastic large-deflection regime (4.48)
Ultimate strength (4.58)
Post-ultimate regime (4.65)
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Figul.'e 4.21 The average stress—strain curves of a simply supported steel plate under axial com-
pressive loads

4.11 Effect of Openings

The openings in plates can of course reduce the ultimate strength. In this section, the
ultimate strength characteristics of perforated plates are considered and some practical
design formulations of plate ultimate strength accounting for the effect of openings are
presented. The effect of opening shapes is also described. In all cases of this section, the
plqte ultimate strengths are computed by elastic—plastic large-deflection FEAs. In these
finite element computations, the plate edges are simply supported, keeping them straight.

While Figure 3.16 in Chapter 3 gives the nomenclature of a plate with a centrally
located circular hole, Figure 4.22 shows a typical finite element mesh for a plate with a

LT - 0 2 o T e T 0 0 9 0 . P

s
;uan a0 4

ra
TR,
Y

Par s

T
XY
Yy

AL Z XIS XX

"N

F}%ure34.22 A sample of the finite element mesh for a plate with a centrally located circular hole,
a —
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circular hole. An average level of initial deflection is considered while no residual stresses
exist. The strain-hardening effect is not accounted for.

4.11.1 Longitudinal Axial Compression

Figure 4.23 shows typical stress—strain curves of a plate with a centrally located circular
hole as shown in Figure 3.16 of Chapter 3 and under longitudinal axial compressive loads,
varying the size of hole. It is evident from Figure 4.23 that the opening significantly affects
(reduces) the plate ultimate strength.

Figure 4.24 shows the variation of the plate ultimate strength in terms of the size of
opening, the plate aspect ratio or the plate thickness. It is seen from Figure 4.24 that
both the plate aspect ratio and the plate thickness are not significant parameters affecting
the ultimate strength of a long perforated plate under longitudinal axial compression,
normalized by that of the perfect plate, i.e., without perforations.

Based on the insights noted above, we may derive an empirical formula of the ultimate

strength reduction factor, Ry, as follows:

. d\? d
Ry = 2% = —0.700 <;> — 0365 +10 (4.66)

Oxu0

where 0y, Oxyo = ultimate strengths with or without an opening.

The accuracy of Equation (4.66) is checked in Figure 4.24(c). Therefore, once the ulti-
mate strength of a plate without an opening is calculated as presented in Section 49
of this chapter, the ultimate strength of a plate with a centrally located circular hole

250
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©
o
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>
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I oy=352.8 MPa
Wop = 0.1 B2t (buckling mode})
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Figure 4.23 Typical stress—strain curves of a plate with a centrally located circular hole and
under longitudinal axial compression, varying the size of hole, as obtained by nonlinear FEA,

a/b=3,B=22
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4.11.2 Transverse Axial Compression

:ﬁ:r:néé.ii c?hm;vs typical stress—strain curves of a plate with a centrally located circular

er transverse axial compressive loads, varying the si i

e End under transverse : , varying the size of hole. Figure 4.26

' plate ultimate strength for transverse axial i

o ' ‘ : compression, vary-
g the size of opening, the plate aspect ratio or the plate thickness. It is seen f:gn



190 ULS DESIGN OF STEEL-PLATED STRUCTURES

120 1
& 80
£
g
40
ax bx t=2400 x 800 x 15 mm
oy =352.8 MPa
o | Mon= 0.14%t (buckling mode)
T T T 1 T T T T ! 1

0 2 4 6 8 10
Exav (X1 0%

Figure 4.25 Typical stress—strain curves of a plate with a centrally located circular hole and
under transverse axial compression, varying the size of hole, as obtained by nonlinear FEA,

afb=3,8=22

Figure 4.26 that the effect of plate aspect ratio on the ultimate strength of perforated
plates under transverse axial compression is significant, while the plate thickness is not a
significant parameter.

Based on the insights noted above, the plate ultimate reduction factor, R,,, for transverse
axial compression may be empirically derived by curve fitting of the finite element results

as follows:

d.\? d
Ry =2 = (f) + czf +1.0 (4.67)

where oyy, yy0 = ultimate strength of a plate with or without an opening and under
transverse axial compression,

c. = [-0177(a/b)* + 1.088a/b — 1671 for1<a/b <3
71 00 for3<a/b<6

c, — |—0.048(a/b)* +0.252a/b - 0386  for1<a/b =<3
27 1-0.062 for3<a/b<6

The accuracy of Equation (4.67) is checked in Figures 4.27(a) and (b).

4.11.3 Edge Shear

Figure 4.28 shows typical stress—strain curves of a plate with a centrally located circu-
lar hole and under edge shear, varying the size of hole. Figure 4.29 shows the vari-
ation of the plate ultimate strength for edge shear, varying the size of opening, the
plate aspect ratio or the plate thickness. It is seen from Figure 4.29 that the ultimate
shear strength of perforated plates with holding the size of opening constant tends to
increase as the plate aspect ratio increases, while the plate thickness is not a significant
parameter.
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Based on the insights noted above, the plate ultimate reduction factor, R,,, for edge
shear may be empirically derived by curve fitting of the finite element results as follows:

T, d:.\* d.
Ru=—2=¢ (= C == 1.
- 1<b)+ 2b+10 (4.68)
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Figure 4.26 Variation of the ultimate strength of plates with a centrally located circular hole and

under transverse axial compression as a function of the plate aspect ratio and the size of hole:
(@) B =3.3; (b) B = 1.7; and (c) as a function of the plate thickness and the size of hole, a /b=3
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Figure 4.26 (continued)

where 1, 1,0 = ultimate shear strength of a plate with or without an opening, with

a

b)z +0.309 (%) —0.787

Cy = —0.009 (%)2 — 0.068 (%) —0.415, C, = —0.025 (

The accuracy of Equation (4.68) is checked in Figure 4.30.

4.11.4 Combined Loads
Combined Biaxial Compression

Figure 4.31 shows typical stress—strain curves of a plate with a centrally located circular
hole and under biaxial compression. Figure 4.32 shows the ultimate strength interaction
relationships of the perforated plate under biaxial compression as a function of the plate
thickness. The curves in Figure 4.32 are the results obtained by the plate ultimate strength
formulations presented in this chapter.

Combined Longitudinal Axial Compression and Edge Shear

Figure 4.33 shows typical stress versus central deflection curves of a plate with a centrally
located circular hole and under combined longitudinal axial compression and edge shear.
Figure 4.34 shows the ultimate strength interaction relationships of the perforated plate
under combined longitudinal axial compression and edge shear as a function of the plate
thickness. The curves in Figure 4.34 are the results obtained by the plate ultimate strength
formulations presented in this chapter.
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Figure 4.28 Typical stress—strain curves of a plate with a centrally located circular hole and under
edge shear, varying the size of hole, as obtained by nonlinear FEA, a/b=3,8=22
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Figure 4.29 Variation of the ultimate strength of plates with a centrally located circular hole

and under edge shear as a function of the plate aspect ratio and the size of hole: (a) B =3.3;
(b) B = 1.7; and (c) as a function of the plate thickness and the size of hole, a/b =3
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Figure 4.30 Accuracy of Equation (4.68)
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Figur.e 4.31. Typical stress—strain curves of a plate with a centrally located circular hole and under
combined biaxial compressive loads, as obtained by nonlinear FEA, a/b =3, 8 =2.2,d./b = 0.4

Combined Transverse Axial Compression and Edge Shear

Figure 4.35 shows typical stress versus central deflection curves of a plate with a centrally
lqcated circular hole and under combined transverse axial compression and edge shear.
Figure 4.36 shows the ultimate strength interaction relationships of the perforated plate
uqder combined transverse axial compression and edge shear as a function of the plate
thickness. The curves in Figure 4.36 are the results obtained by the plate ultimate strength
formulations presented in this chapter.
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Figure 4.32 Ultimate strength interaction relationship of a plate with a centrally located circular
hole and under combined biaxial compressive loads as a function of the plate thickness
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Figure 4.33 Typical stress versus central deflection curves of a plate with a centrally located
circular hole and under combined longitudinal axial compression and edge shear, as obtained by
nonlinear FEA, a/b =3, $ =22,d./b =04

4.11.5 Effect of Opening Shapes

In the previous sections, the ultimate strength of plates with circular holes has been
considered. This section deals with the effect of opening shapes. Figure 4.37 shows two
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Figure 4.36 Ultimate strength interaction relationship of a plate with a centrally located circu-
lar hole and under combined transverse axial compression and edge shear as a function of the
plate thickness

o

Figure 4.37 Elliptical and rectangular types of opening

types of hole, i.e., with elliptical and rectangular shapes. Figure 4.38 represents samples
of the finite element mesh for the plate with elliptical or rectangular holes.

The insights developed by a series of nonlinear FEA for plates with elliptical or
rectangular holes, varying the size of holes, the plate aspect ratio or the plate thick-
ness, suggest that the ultimate strength reduction factor formulas derived in the previous
sections for plates with a circular hole can also be valid for elliptical or rectangular types
of hole, but replacing the parameters in the formulas (Jun 2002). In calculating the plate
ultimate strength for longitudinal axial compression, the value of b./b is inserted into
the parameter d./b, while the value of a./a is regarded as d./b for transverse axial
compression. The accuracy of this approximate treatment is checked in Figures 4.39
and 4.40.

POST-BUCKLING BEHAVIOR OF PLATES 199
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Figure 4.38 A sample of the finite element mesh for the plate with (a) a centrally located elliptical
hole, a/b = 3, and (b) a centrally located rectangular hole, a/b = 3
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Figure 4'.39 A comparison of the theoretical ultimate strength formula with FEA for perforated
plates with various shapes of opening and under longitudinal axial compression



200 ULS DESIGN OF STEEL-PLATED STRUCTURES

ax bxt=2400x 800 x 15 mm
oy = 352.8 MPa
wopi = 0.16%t (buckling mode)

]
0.8
E 8
g \Hr+\lr+++\lr++rf
p=]
ES
5
I Ibc b
2 P P i
T AR A A XA KR AR
0.4 a
Ellipse (FEM): Rectangle (FEM):
o a/b,=15 + a,/b;=1.0
O a/b.=2.0 * a/b;=15
o a,/b,=3.0 ® a/b=20
°e ® a,/b,=30
0.0 -— Formulation for circular hole
0.0 0.2 0.4 0.6 0.8 1.0

a./a

Figure 4.40 A comparison of the theoretical ultimate strength formula with FEA for perforated
plates with various shapes of opening and under transverse axial compression

4.12 Effect of Age-related Structural Degradation

4.12.1 Corrosion Damage

Two primary parameters of age-related structural degradation are corrosion and fatigue
cracks. As previously described in Section 1.8.1 of Chapter 1, corrosion wear can reduce
the ultimate strength of plates. For general (uniform) corrosion which unifomly reduces
the plate thickness, the plate ultimate strength calculations are typic‘ally carried 01.1t.by
excluding the thickness loss due to corrosion. For localized corrosion such as plttmg
or grooving, the strength calculation procedure can be more complex, 'but for a §1mp11-
fied pessimistic treatment, the corroded plates may also be idealized using an equivalent
general corrosion. ‘

This section investigates the effect of corrosion on the plate ultimate strength using
nonlinear FEA. Two types of corrosion, namely pitting and general (uniform) corrosion,
are considered. Figure 4.41(a) shows a schematic of a plate with localized corrosion of
rectangular profile, a, x by X t;, in size, and Figure 4.41(b) represents a sample of the
finite element model. All four edges of the plates are assumed to be simply supported,
keeping them straight. While an average level of initial deflection is assumed, no welding
residual stresses exist.

In the FEA modeling, the plate thickness is subdivided into several layers and the
material properties (e.g., Young’s modulus) of the pitting corrosion region are supposed
to be zero for reasons of computational efficiency. The validity of this modeling procedgre
is confirmed for the simpler case of a plate with symmetric pit corrosion by comparing
it to another method of modeling which directly cuts out the pitting corrosion regions.
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Figure 441 (a) A schematic of a plate with localized (unsymmetric) pit corrosion; (b) A sample
of the FEA model of a plate with localized (unsymmetric) pit corrosion

The center of the corroded region is located at the coordinates (x;, y;). For general
corrosion, it is assumed that the depth (diminution) of corrosion, #, is uniformly reduced
over the entire plate element. Figure 4.42 presents typical average stress—strain curves
of the corroded plates under axial compressive loads, varying the location of a small
single pitting corrosion or the depth of corrosion, as those obtained by nonlinear FEA. As
expected from Figure 4.42, one isolated small corrosion pit located anywhere in the plate
may not reduce the plate ultimate compressive strength to any significant extent. However,
such a pit does affect the post-ultimate strength behavior of the plate. Specifically, the
unloading path of the plate with a through thickness pit in the post-ultimate regime
becomes more rapid than that of the general corrosion plate, implying more unstable
behavior. This is because of the important role the out-of-plane bending due to eccentric
loading around the localized corrosion plays in such a case. The results also suggest that
the use of an ‘equivalent’ general corrosion-based approximation to represent a case of
low-intensity pitting may be somewhat pessimistic in terms of the ultimate strength, but
it is not always pessimistic in terms of the post-ultimate strength behavior.

Next, the effect of pitting corrosion intensity on the plate ultimate strength in com-
pression is considered. It is known that the shape of pitting corrosion is typically circular
and the maximum diameter of one area of localized corrosion may be in the range of
25-80mm for marine immersion corrosion of steel (Daidola et al. 1997), with the lower
values being more likely. The calculations here assume that the shape of pitting corrosion
is rectangular, and of dimensions a; x b, = 80 x 80 mm, primarily for reasons of compu-
tational efficiency. Figure 4.43 shows a schematic distribution of localized corrosion with
30% intensity.
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Figure 4.42 Effect of (a) the localized corrosion location.and (b) the localized corrosion depth
on the plate ultimate strength behavior, as obtained by nonlinear FEA
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Figure 4.44 Effect of the degree of pitting corrosion intensity on the plate ultimate strength
behavior, as obtained by nonlinear FEA (DOP = degree of pitting corrosion intensity)

Figure 4.44 shows the effect of the degree of pitting corrosion on the plate ultimate
strength behavior. As the degree of pitting corrosion increases, the plate ultimate strength
decreases significantly as would be expected. For the case considered in Figure 4.44,
a general corrosion-based prediction of the plate ultimate strength correlates well with
that of about 30% degree of pitting corrosion keeping the pit depth the same. Pit-

ting over 30% of the plate surface area would normally be considered unacceptable in
practice.
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4.12.2 Fatigue Cracks

In aging steel structures, fatigue crack damage is often found and can in some cases signif-
icantly affect (reduce) the load-carrying capacity. For the analysis of structural members
with existing cracks and under monotonically increasing loads, the theory of fracture
mechanics may be used to predict the ULS capacity, as will be described in Chapter 10.
However, it is not straightforward to carry out such an analysis for a large structure
involving many pre-existing cracks.

As an easier alternative within the current framework of ultimate strength calculation
for a complex structural system, the ultimate strength of plates with existing cracks may
be predicted on the basis of the reduced cross-sectional area, accounting for the loss
of load-carrying material due to the crack damage, as will be described in Section 10.6
of Chapter 10.

4.13 Computer Software ALPS/ULSAP

Ultimate strength formulations of plates presented in this chapter are automated using
a computer program called ALPS/ULSAP, which stands for nonlinear analysis of large
plated structures/ultimate strength analysis of panels. The ALPS/ULSAP program together
with the user’s manual can be downloaded from the web site by following the instructions
noted in the appendices to this book.
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