




Contents
Cover
Dedication
Title Page
Copyright
Preface
Acknowledgments
1 Interpreting Physical Theories

1.1 Does the World Need Philosophers of Physics ?
1.2 Why No Ancient Philosophy of Physics?
1.3 The Interpretation Game
1.4 Why Does Physics Work?
1.5 Further Readings
Notes

2 General Concepts of Physics
2.1 The ‘Three Pillars’
2.2 Kinematics and Dynamics
2.3 Reference Frames, Invariance, and Covariance
2.4 Further Readings

3 Symmetries in Physics
3.1 Symmetry, Invariance, and Equivalence
3.2 Symmetries, Laws, and Worlds
3.3 Some Important Distinctions
3.4 Further Readings
Notes

4 Getting Philosophy from Symmetry
4.1 Leibniz Shifts and the Reality of Space and Time
4.2 A Handy Argument for the Substantivalist?
4.3 Special Relativity: From Twins to the Block Universe
4.4 General Relativity and the Hole Argument



4.5 Further Readings
Notes

5 Further Adventures in Space and Time
5.1 Can We Know the World’s Geometry?
5.2 Measuring Time
5.3 Determinism and Indeterminism in Physics
5.4 Further Readings
Notes

6 Linking Micro to Macro
6.1 Thermodynamics, Statistical Mechanics, and Reduction
6.2 Approaching Equilibrium
6.3 The Laws of Thermodynamics
6.4 Coarse Graining and Configuration Counting
6.5 Entropy, Time, and Statistics
6.6 Maxwell’s Demon
6.7 The Past Hypothesis
6.8 Typing Monkeys and Boltzmann Brains
6.9 Why Don’t We Know about the Future?
6.10 Further Readings
Notes

7 Quantum Philosophy
7.1 Why is Quantum Mechanics Weird?
7.2 Uncertainty and Quantum Probability
7.3 EPR, Odd Socks, and No-Go Theorems
7.4 The Quantum Mechanics of Cats
7.5 Identity Crisis
7.6 Further Readings
Notes

8 On the Edge: A Snapshot of Advanced Topics
8.1 Time Travel and Time Machines
8.2 Physical Theory and Computability
8.3 Gauge Pressure



8.4 Quantum Fields
8.5 Frozen Time in Quantum Gravity
8.6 Fact, Fiction, and Finance
8.7 Anthrobatics and the Multiverse
Notes

Glossary
References
Index
End User License Agreement



To poor little Nora (who always gets left out …)



The Philosophy of Physics
DEAN RICKLES

polity



Copyright © Dean Rickles 2016

The right of Dean Rickles to be identified as Author of this Work has been
asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

First published in 2016 by Polity Press

Polity Press
65 Bridge Street
Cambridge CB2 1UR, UK

Polity Press
350 Main Street
Malden, MA 02148, USA

All rights reserved. Except for the quotation of short passages for the purpose of
criticism and review, no part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publisher.

ISBN-13: 978-1-5095-0940-9

A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Rickles, Dean.
Title: The philosophy of physics / Dean Rickles.
Description: Cambridge : Polity Press, 2016. | Includes bibliographical
references and index.
Identifiers: LCCN 2015043550 (print) | LCCN 2015047675 (ebook) | ISBN
9780745669816 (hardback) | ISBN 9780745669823 (pbk.) | ISBN
9781509509393 (Mobi) | ISBN 9781509509409 (Epub)
Subjects: LCSH: Physics--Philosophy.
Classification: LCC QC6 .R4635 2016 (print) | LCC QC6 (ebook) | DDC
530.01--dc23
LC record available at http://lccn.loc.gov/2015043550

The publisher has used its best endeavours to ensure that the URLs for external
websites referred to in this book are correct and active at the time of going to
press. However, the publisher has no responsibility for the websites and can
make no guarantee that a site will remain live or that the content is or will
remain appropriate.

Every effort has been made to trace all copyright holders, but if any have been
inadvertently overlooked the publisher will be pleased to include any necessary
credits in any subsequent reprint or edition.

For further information on Polity, visit our website: politybooks.com

http://lccn.loc.gov/2015043550
http://www.politybooks.com


Preface
Philosophical thinking brings with it a heathy dose of skepticism
about many things that are often taken for granted. This is generally
a good thing and can lead to greater clarity. It can also lead to ideas
that look downright bizarre to the general population: the idea that
you might be a brain-in-a-vat; the idea that the universe could have
come into being five seconds ago; the idea that you are really a
spacetime worm stretching from your birth to your death!

In this book we apply the principles of philosophy to theories of
physics – it is important to emphasize that we are dealing with
theories of physics in philosophy of physics: these are the entities
that link us to the world and are that which we must interpret.
Again, this involves clarity through skepticism, but also leads to
views that strike many as odd: the idea that it takes a mind to
‘collapse a quantum state;’ the idea that there are many worlds (one
for each choice in quantum mechanical experiment); the idea that
the future can causally influence the present. The good news is that
these latter examples are grounded in our best physical theories:
odd or not, they seem to offer possible interpretations of these
theories (i.e. they are ‘ways the world could be given the truth of the
theory’). Modern physics can even throw some light on what might
be considered ‘purely philosophical’ issues, such as ‘what is the
relationship between an object and its properties?’, ‘can two objects
share exactly the same properties?’, ‘is the future open or fixed?’,
‘does time flow?’, and ‘are you really a four-dimensional spacetime
worm?’

There are several books on philosophy of physics that do a very
good job at introducing the reader to the basic issues, with varying
levels of difficulty. The present book aims to provide a snapshot of
the central topics, methods, and problems of modern philosophy of
physics in a very elementary manner. The audience for this book is
the absolute beginner, albeit one with a modicum of mathematical
ability (or an ability to at least not glaze over at the mere sight of
some mathematical formulae). But it nonetheless aims to be a
complete course, in that it covers all the main areas (classical and
quantum, relativistic and non-relativistic, statistical and non-



statistical) and provides supplementary readings across a range of
skill levels, so indicating the work that needs to be accomplished to
reach research-level philosophy of physics.

The book is written for both early stage philosophers and physicists:

Physicists who want more than rules and algorithms for
churning out numbers to compare with experiment, and want to
know ‘what it all means.’

Philosophers who want more than watered-down, quasi-
journalistic physics, and who are not satisfied with philosophical
discussions of the nature of the physical world that do not
engage with physics.

I’m not going to tell you to shut up and calculate; but I’m not going
to tell you not to calculate either! A little bit of computational skill is
vital in good philosophy of physics, though one could probably be a
good physicist without having a philosophical bone in one’s body. I
would argue, however, that one could not be a great physicist
without a good head for philosophical thinking. Despite the
necessity of having a good grasp of the mathematical details of
physical theories in order to be a proficient philosopher of physics,
this book makes do with the bare minimum: it is a stepping stone to
the many books of a rather more mathematically involved nature.
Where matters get a little technical (or where there are interesting
diversions, historical or otherwise), I have relegated these to
endnotes – these often contain suggestions for interesting, usually
more advanced readings.

The book begins, in Chapter 1, with some general considerations
about philosophy of physics itself, as a discipline. Central to this is
the idea that philosophy of physics concerns itself primarily with
interpreting the representations of physical systems that can be
found in physics (usually the best available physics, couched in
mathematical representations). We also consider the question of
why these mathematical representations seem to be so good at
gripping onto the world.

Chapter 2 introduces some basic concepts from physics: the states,
observables, and dynamics that form the bricks and mortar of the
world-pictures (or ‘ontologies’) according to our theories. This
machinery is then used to introduce symmetries in physics in



Chapter 3, in which we also begin to see how philosophical issues
emerge from symmetry – symmetry will play a central role in the
chapters that follow.

Chapters 4 to 7 apply all of this foregoing discussion to specific
examples, starting with spacetime theories in Chapters 4 and 5
(including the theories of relativity), then statistical physics (in
Chapter 6), and quantum mechanics (Chapter 7). Chapter 8
provides ‘tasters’ of seven more cutting edge issues in philosophy of
physics, which might provide more scope for future research
projects for budding philosophers of physics.

Each chapter includes a handful of further readings, organized
according to difficulty: ‘fun,’ ‘serious,’ and ‘connoisseur’ level. This
book should be supplemented with at least the fun readings (or
suitable extracts) in order to provide a rounded picture. Together
with these, and perhaps several of the readings from the endnotes,
this would provide material enough for a semester-long course in
introductory philosophy of physics.

I should perhaps end with a brief note on the endnotes in this book:
there are lots of them! P. G. Wodehouse mercilessly slammed
footnotes in his autobiography Over Seventy: An Autobiography
with Digressions (Herbert Jenkins, 1957):

When I read a book I am like someone strolling across a level
lawn thinking how jolly it all is, and when I am suddenly
confronted with a (1) or a (2) it is as though I had stepped on the
teeth of a rake and had the handle spring up and hit me on the
bridge of the nose. I stop dead and my eyes flicker and swivel. I
tell myself that this time I will not be fooled into looking at the
beastly thing, but I always am, and it nearly always maddens
me by beginning with the word ‘see.’

However, endnotes, while ameliorating some of Wodehouse’s
complaints, also face his wrath:

Slightly, but not much, better than the footnotes which jerk
your eye to the bottom of the page are those which are lumped
together somewhere in the back of the book. These allow of
continuous reading, or at any rate are supposed to, but it is only
a man of iron will who, coming on a (6) or a (7), can keep from
dropping everything and bounding off after it like a basset



hound after a basset.

Some explanation is therefore in order for filling a book with almost
ninety endnotes. These notes serve two functions:

1. to cope with the inevitable difference in skill sets and diverse
backgrounds of the likely readers of this book: some of you will
be at ease with philosophical concepts, but perhaps confused by
certain aspects of mathematics and physics; and some of you will
have the opposite problem. Endnotes provide some opportunity
for filling out such concepts.

2. to enable readers’ specific special interests to be attended to
(mostly via suggestions for further readings) in an unobtrusive
way (Wodehouse’s remarks notwithstanding): some of you
would be keen to know where they can learn more about
conventionalist principles in science, for example, while others
find that incredibly boring and will want to focus on the more
mind-boggling, metaphysical issues, or some more technical
issues.

A reader with no inclination to bounce around the book can rest
assured that (again, Wodehouse’s remarks notwithstanding) the
entire book can be read without ever turning to the back, or perhaps
browsing through them separately at their leisure.

Sydney, October, 2015    DPR
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1
Interpreting Physical Theories
In this chapter we get to grips with what philosophy of physics is all
about and what kinds of questions it deals with. We also introduce
some basic general concepts and terminology from philosophy:
ontology, epistemology, etc. And also introduce such essential
philosophy of science concepts as ‘theory,’ ‘model’ and so on – the
concepts on which our later discussions will be based (the tools of
the trade, so to speak). A key point that will be emphasized here is
that there is often a difficulty in understanding how some
(empirically) successful theory (formulated in ‘the language of
mathematics’) can map on to physical reality – there is an
additional question discussed of how mathematics can perform its
feat of allowing the formulation of precise, successful physical laws.
There is often, for example, a multiplicity of possible ‘ways the
world could be’ according to the mathematical structure, while still
preserving the theory’s empirical success. We indicate that
symmetries often lie at the root of (the most interesting of) these
situations – a fact that will form the basis of much of this book.

1.1 Does the World Need Philosophers of
Physics?
Does the world really have any need for philosophers of physics and
the odd trade they ply? If we were to put them all on a spacecraft, in
the style of the Hitchhiker’s Guide to the Galaxy, say, on the
Golgafrincham Ark Fleet’s ‘Ship B,’ occupied by telephone
sanitizers, public relations executives, advertising account
executives, and other such ‘worthy’ tradespeople, would the human
race be worse off or all the better for it?

Of course “need” can mean many things, each depending on the
purpose or use. If we believe that there is a need to think especially
deeply about physical theories, about why they work so well, and
what they can tell us about the nature of reality: then there is a need
for philosophers of physics. If we mean is there a practical use for



philosophy of physics, then it is less clear that they have anything to
contribute to the world, though that is not a clear-cut matter. But
the main problem we face in answering this question is knowing
where to draw the line between physics and philosophy of physics.
If we were to end up throwing David Bohm, Niels Bohr, Albert
Einstein, Werner Heisenberg, Erwin Schrödinger, and Hermann
Weyl onto Ship B then you would agree, I hope, that the world
would be all the worse for it. Yet each of these physicists was a
‘philosopher-physicist’: they even wrote books on the philosophy of
physics. In days gone past they would have been called ‘natural
philosophers,’ like Newton. I think natural philosophy is still a very
useful term to use to describe one who studies the natural sciences
philosophically, and if I had my way it would be back in operation to
describe philosophers of physics and philosopher-physicists. I can
think of several living (as of 2015, and long may they continue)
physicists that fit the traditional mold of natural philosopher,
among them Julian Barbour, Rudolph Haag, Roger Penrose, Carlo
Rovelli, Lee Smolin, Max Tegmark, Gerard’t Hooft, and Dieter Zeh.
What characterizes them is that they think deeply about the
foundations of their subject, and especially about the nature of
space, time, and matter: our primary subject matter (or rather, the
subject matter of our subject matter: theories of space, time, and
matter).

And yet the philosophy of physics is often frowned upon by
physicists. When physicists lapse into discussing philosophy it is
seen to be just that: a lapse. Richard Feynman is famously reported
to have said that “Philosophy of science is about as useful to
scientists as ornithology is to birds” – there is a fairly sizeable
catalogue of Feynman’s anti-philosophy quotes to draw from and I
think much of today’s anti-philosophical spirit has a lot to do with
Feynman worship (though there are many worse people to
worship…). Again, as above, this might well be true, of course,
depending on how one interprets ‘useful.’ ‘Use’ is just like ‘need’
again. When it comes to computing values of physical quantities to
be compared with experiment, admittedly philosophers might not
be of much use. They won’t be too upset that they aren’t of use in
this sense: it’s not what they live for. But if one is facing some
problem in the foundations of physics, then the more generalist
approach of a philosopher (or a philosophical approach) might be
of some use after all – likewise, ornithology might well be useful to



birds, in terms of conservation of a species for example!

Need and usefulness need to be more carefully circumscribed. One
can easily make a case for a need for a philosophical approach to
physics, and for the usefulness of such an approach. Given this, one
can make a case for having a specific discipline, a dedicated
community of scholars, devoted to such an approach, putting aside
as secondary those core aspects of physics itself. Hence, becoming a
philosopher of physics rather than a physicist involves a trade-off:
you put the computing-intensive aspects aside in favor of the
critical, interpretive aspects. Some people can do both, but they are
the exception.

A philosophical approach to physics will direct attention to aspects
of physics that are usually deemed sacred by the average practicing
physicist. This can lead to advances by opening up new lines of
enquiry, suggesting hypotheses that would be unthinkable at the
everyday level of physics. In this book we will meet several examples
in which this has occurred, mostly based on the work of
philosopher-physicists. One often finds that thought experiments
(or gedanken experiments) lie at the root of the really major
advances in physics, the revolutions. Such thought experiments
usually probe some foundational assumption, concerning space,
time, locality, causality, determinism, matter, force, and so on. This
kind of approach amounts to philosophical thinking (in the sense of
conceptual analysis).

In this sense, then, philosophy is a fundamental part of the
development of physics. One can’t really do physics without making
certain assumptions, however minimal, about how the theories one
is using map onto reality (even if it is only mapping onto observable
reality, as some believe [anti-realists, such as instrumentalists or
constructive empiricists, who give unobservables the ‘silent
treatment’], though even this is not so benign a claim as they
think).1 One needs to take a stance on what the components of the
theories refer to, what they are about (this is the meaning of the
philosophical term ‘ontology’: what there is).

This is one of the primary functions of philosophers of physics:
interpretation of physical theories (on which, see §1.3 below).
Mapping between theory and world. It is almost never a trivial
matter; especially since physical theories often make use of all sorts



of idealizations, approximations, and indirect methods of
representing their ‘target’ systems. A key assumption underlying
philosophy of physics, then, is that the job of physics is to say
something about the structure of reality, about what the universe is
really like: what objects there are, what properties they have, how
they behave, how they relate to one another, and so on. Much of this
book will be devoted to specific examples of this type and will
highlight the ways in which interpretive controversies emerge. The
interpretive controversies point to the existence of ‘epistemological’
considerations: what we can know. If there are multiple possible
interpretations of some theory, then it seems we are limited in what
a theory can tell us about the world. We will meet this in a very stark
way in §5.1, in which an argument is presented that claims to show
that our choice of world-geometry is largely conventional (that is,
there is no fact of the matter that can decide, so we use other
considerations to choose). We consider what interpretation
amounts to in §1.3. First, let’s take a look at a historical feature of
philosophy of physics: the issue of its relative recency.

1.2 Why No Ancient Philosophy of Physics?
Philosophy of physics is a fairly modern discipline, emerging from
various specializations that occurred at the close of the nineteenth
century. Why didn’t philosophy of physics exist earlier? Why wasn’t
there such a thing in the days of Democritus and Parmenides? We
are happy to still discuss Newtonian mechanics as philosophers of
physics, but it seems that stretching further back doesn’t quite work
in the same way (even with Plato and Aristotle): why is this? One
important factor is that the pre-Socratics, and those working before
the Medieval period, relied on naked eye observations. There were
no amplifications of vision as there have been since Galileo
modified the looking glass (until then a simple gypsy toy) into a
telescope for scientific usage. There was, in fact, no real
experimental method. Some kinds of experiments could no doubt be
said to have occurred, but this was not viewed as the royal road to
worldly knowledge as it is today. This meant that theoretical
structures were far more heavily based on what was delivered
through the senses. However, as we will see in a moment, this
wasn’t always the case, and unobservables invoked to explain
observables can be found in theories in the earliest fragments of



writing.

Modern philosophy of physics would be unimaginable without
theories that can be put into a fairly standard mathematical form.
For example, spacetime theories are presented through ‘models’ of
the form , consisting of some basic set of point-elements ℳ (a
set of points with a certain size or cardinality) on which is imposed
various levels of additional structure  that let one talk about, e.g.
the dimension of the space, the nearness of points, the distance of
points, volumes, parallelism, and so on. This then provides the basic
object whose mapping onto the world (or a world) we must, wearing
our philosophy of physics hats, consider – that is, we must provide
an interpretation. This will involve setting up a correspondence
between mathematical entities, 〈the set of mathematical points and
mathematical relationships between such points〉, and 〈things and
their properties in the world〉.
This provides a second factor for the relative recency of philosophy
of physics: earlier work was less mathematical, or entirely non-
mathematical. The development of calculus in particular was pivotal
in the development of a physics that was able to make precise
predictions and allow thinking in terms of present (initial)
conditions generating future states. Also, more conceptually, the
notion of a ‘law of nature’ (understood as an expression of
invariance or constancy) was fairly slow to emerge, and can be seen
to receive its enunciation with Galileo – though, even here, it is
expressed in the form of a dialogue rather than in formal
terminology.2

In fact, inasmuch as there were theories proposed by Democritus
and Parmenides, there is something that might very loosely be
called ‘philosophy of ancient physics’ (i.e. rather than ancient
philosophy of physics). Those theories tended to focus on
cosmological issues and were largely a priori (that is, based on
reason and logic rather than experience). What we have from these
philosophers are mere fragments. In the case of Parmenides we only
have a fragment of a poem (160 lines of a supposed 800-line work).
However, we can find strikingly similar dichotomies to those found
in modern theories: discrete versus continuous space; infinite
versus finite space; real time versus illusory time; eternal time
versus beginning of time; plenum versus void; many worlds versus
one world; and so on. There are also discussions of motion and its



relationship with space and time, along with the ramifications a
denial of the former has on the latter, and vice versa. Let us mention
some of these views, since they provide a nice route into some of the
more modern debates we discuss later.

Though I downplayed the mathematical nature of early theories,
Zeno can with some justification be said to have considered a
mathematical account of space, time, and motion, if only to dismiss
its applicability to the real world, on pain of generating paradoxes.
Take, for example, the so-called ‘paradox of plurality.’ Here we are
asked to consider an extended object: a 5 cm long line, say. We can
envisage splitting this into two pieces, and then splitting those two
pieces each into two more pieces, and so on. How will this process
end if space is infinitely divisible? Zeno suggests two possibilities:
(1) with points of some finite (though minuscule) size, or (2) with
points of zero size. But neither is acceptable, says Zeno: if the points
have some size, then given we have made infinite divisions, there
will be infinitely many, which will certainly not generate a 5 cm line
when aggregated. But if the points have zero size, then not even an
infinity of them will aggregate to form a 5 cm line. Or consider ‘the
arrow paradox.’ Here the punchline is that an arrow in flight can
never be in motion at any instant, since it will be at rest at an
instant; if it weren’t, the instant must have parts, and so not be
indivisible. And yet it somehow gets from one instant to the next. In
some ways this is a motion-based analogue of the plurality paradox:
how can we add up lots of stationary pieces to get an extended
motion? The stimulating effect on future physics (and mathematics)
cannot be overestimated.3

If a mathematical account of space, time, and motion (in terms of
continuous, infinitely divisible entities and processes) is to be
carried out, then Zeno’s challenges would have to be met. If they
could not be met, then at the very least there would be a gap
between model and reality. Atomism was one early response to the
challenge: if space (and perhaps time) could not be infinitely
divided, then Zeno’s division paradoxes don’t hold water. In any
case, they shift attention to the possible structure of space and time:
what kind of things they are. And motion is implicated in this
structural exploration.

We can also fit earlier theories, such as Aristotle or Plato’s
cosmology, into the mold of the model-based approach mentioned



above. In these cosmologies there is a preferred location in the
universe corresponding to the Earth’s position in space, which is
assumed to be at absolute rest (which makes intuitive sense, of
course, since we don’t seem to be moving when we ourselves remain
at rest relative to the Earth). The universe is, in this scheme,
spherical, with the Earth at the dead center, stationary and not
rotating, and the Moon, Mercury, Venus, the Sun, Mars, Jupiter,
and Saturn occupying (in this order outwards from the Earth)
concentric spheres – beyond this lies ‘the firmament,’ an outmost
layer of fixed stars providing an ‘edge’ to the universe (an idea
mocked by Archytas who asked what would happen if we poke a
stick or a hand outwards from this layer – see fig. 1.1). This allows
for talk of absolute distances (and absolute notions of ‘up’ and
‘down’) by using the Earth’s perspective as the origin. Of course, the
Copernican revolution would dislodge this special perspective by
dislodging the specialness of the location of the Earth and its
relationship to the other planets and stars.



Fig. 1.1 A woodcut by Camille Flammarion showing Archytas’
thought experiment in action, breaking through Aristotle’s closed
universe with his stick and his hand, to reveal more space.

[Source: C. Flammarion, L'Atmosphere: Météorologie Populaire (Paris,
1888: p. 163)].

In the Aristotelian universe there are five elements (Aether, Fire,
Air, Water, and Earth) that have ‘natural places’ that determine
their behaviors (natural motions) relative to the Earth’s frame. This
is a teleological world in which things are guided by where they
should be: fire wants to rise; earth wants to fall. This is a law of
sorts, and it is based to some extent on observations. But it certainly
doesn’t have same level of rigor of modern physical laws, nor does it
strike one as particularly explanatory, nor does it seem capable of
generating very interesting predictions. Rather, the fact that, e.g.
the stars are found to move in a circular fashion, is made a
necessary part of the world: this is what stars must do, and such
things constrained to move in circles should be given a special name
(this circular motion is the essential quality of aether from which
the heavenly bodies are made). This circularity property was a key
part of Plato’s Timaeus, in which his cosmology was laid out. Later,
in his Almagest, Ptolemy converted this idea (of circular, uniform
planetary motion) into a mathematical model (based on nothing but
circular regular motions) capable of delivering predictions of our
apparently rather messy, irregular world. ‘Model’ in this sense is
meant in terms of an approximate representation, not an exact one-
to-one correspondence with ‘the way things are.’ Philosophers since
Plato have spoken of this kind of modeling as ‘saving the
phenomena’: the recovery (by means of a theory or model) of the
way the world appears to us.

But, more importantly, there is a detailed discussion of the notion of
space in Aristotle and Plato. This was identified with ‘place’ in their
schemes. Aristotle’s account is more detailed. His view is ‘plenistic,’
meaning that space (the universe) is viewed as always full (with no
genuinely empty spaces): if some portion of space is not occupied by
water or matter it is occupied by air, each displacing one or the
other as they are moved. As mentioned above, this was combined
with a theory of ‘natural place’ whereby each kind of thing is
transported to its own specific category of place (hence, the
teleological notion of a ‘final’ or ‘future cause’ in this case). The



notion of a natural motion (in which a body finds its ‘proper place’)
and a ‘forced (or “violent”) motion’ (in which a body is taken off its
proper course by some intervention) is the origin of the modern
concepts of kinematics and dynamics respectively, which we will
meet again.

In his Timaeus, Plato also defends the view that the world is a
plenum: matter and space are, in fact, identified. Aristotle, however,
introduces place as a kind of entity independent from matter, since
while matter (and the form the matter takes) are essential to a body,
place is not: different objects can occupy the same space, and the
same object can occupy different places. Place itself is defined in
terms of objects, however. It is the two-dimensional boundary of the
body it contains, which it is in contact with. It is presented by
Aristotle (in his Physics, Book IV) using the analogy of a
(motionless) container, in fact. This metaphor persists into the
modern debate between so-called ‘substantivalists’ (who view space
as a real container) and ‘relationists’ (who view space as nothing
over and above the relations between things) – see §4.1. However,
Aristotle doesn’t sit completely comfortably in either camp, though
he is usually aligned with relationism since places are defined by the
boundaries of objects: no objects, no boundaries, no places.

Time was, in Aristotle’s picture, similarly related to physical
entities, in this case changes (of places or properties of things): no
change = no time. The measure of time was linked, then, to
(uniform) motion – though it is not identified with motion and
change: how could it be? (1) motion is attached to the thing moving,
while time stretches out everywhere, and (2) motions vary in speed,
but time does not. Indeed, Aristotle speaks of time’s being a
‘measure of motion’ in the same way as the cubit measures lengths.
In the case of time the unit (analogous to the cubit) is provided by
the revolution of the outermost sphere of the heavens. But Aristotle
can be found intellectually struggling with the status of time, as with
space: are they ‘real’ or not (i.e. in the world or in the mind)? If they
are real, how closely linked are they to their measures (cubits,
revolutions, and the like)? For Aristotle, motion is ontologically
(and logically) prior to time: the latter is defined in terms of the
former. Such probing is at the heart of philosophy of physics, and
the same questions (and often similar responses) arise again and
again over the two millennia connecting Aristotle with us.



1.3 The Interpretation Game
If the primary task of the physicist is to construct models and
theories of the world, the primary task of a philosopher of physics is
to interpret these products of physics, be they theories, models,
simulations, or experiments (including so-called ‘thought
experiments’). That is, suppose that we believe one of these
constructions: what must the world be like to ground the belief? We
needn’t trouble ourselves with questions of truth and realism;
though connected, that’s strictly a separate matter. We can think
about ‘model worlds’ (possible worlds) that ground the belief
instead. Our own, actual world might be among this class of
possible worlds, but it is not necessary in order to provide an
interpretation (and an associated ontological picture).

In this book we shall focus on theories, models, and thought
experiments and the possible relationship they bear to physical
reality. Understanding what a theory or model says about reality is
to offer an interpretation. As mentioned above, it involves ‘mapping
the theory to the world.’ Usually it is no simple matter, and many
possibilities are available. Hence we often face a problem of
interpretation (for some theory or model) in that there can be many
interpretations compatible both with the same theory or model and
with what we observe with the naked senses or experiment. Of
course, this demands a thorough discussion of what we mean by
‘theory’ and ‘model’ (the targets of our interpretations) – we gave a
very brief description above, but the issue forms an entire project in
philosophy of science.4

One can understand this situation as somewhat similar to the
interpretation of a Rorschach test in psychoanalysis (see fig. 1.2).
Here a variety of inkblots are shown to a subject who is then asked
to comment on what he sees. The inkblots look random, but are
(supposedly) well-chosen and presented in a sequence of ten ever
more complex (and [supposedly] more revealing) blots. The subject
will interpret the print in such a way as, so the idea goes, to give
some clues as to the nature of their personality, including any
disorders or past traumas they may have suffered and buried in
their subconscious. If someone sees a fluffy bunny in the image,
then we are led to think that they will not be an axe murderer,
though they may be a little soft in the head. However, if a scene of



human sacrifice is seen in the same image by someone else, then it’s
time to call in the men in white coats!

Fig. 1.2 A Rorschach inkblot test used to test for various personality
disorders (originally a diagnostic tool for schizophrenia) and
uncovering past, repressed traumas. What do you see? Most people
see a bat in this example. But a variety of ‘interpretations’ are
possible. Models and theories in science tend to be similarly
multiply interpretable. [Image in the public domain]

What we are faced with in physics is not inkblots but mathematical
structures of some kind. Just as with the Rorschach test different
subjects will interpret the self-same blot in many and varied ways,
so one and the same mathematical formalism can (very often) be
understood in many different ways. But this isn’t a free for all: the
ways one can interpret the formalism are highly constrained by the
world (experience and experimental evidence) and by logical and
mathematical consistency. However, even these tight constraints
leave much elbow room, resulting in world-pictures entirely at odds
with one another in all but empirical matters.

Given this feature, we see that ‘interpretation’ is a well-chosen term:
in art we speak of “interpreting the painting” (usually when it is an
abstract work). In music we speak of the performer as “interpreting



the works of the great masters.” Implicit in this is the idea of a
multiplicity of interpretive options. Also related to the ordinary-
language sense of interpretation is that there must be some
‘closeness’ to the painting or musical score. You can’t very well give
an interpretation of a Beethoven sonata without actually rendering
sounds that are ‘isomorphic’ (that is, in one-to-one correspondence,
or thereabouts) with the score (even if there are some wrong notes
so that the isomorphism is partial, rather than a perfect
correspondence). Different interpretations of a score will differ in
some ways, but will have the same basic structure as supplied by the
score, which supplies a kind of musical syntax akin to a
mathematical formalism of a physical theory. Interpretations of
physical theories can (must) be the same in some ways, while
differing in other ways, just like musical interpretations.

Interpretation is also closely linked to ontology: to interpret is often
just to provide an ontology. Bas van Fraassen describes the link as
follows: “The question of interpretation [asks:] what would it be like
for this theory to be true, and how could the world possibly be the
way this theory says it is?” ([52], p. 242). The interpreter will then
answer by specifying the class of possible worlds that make the
theory true in the sense of satisfying the basic theoretical postulates
(laws or axioms) – the musical performance analogy would state
that interpretations of a piece of music (musical possible worlds)
are those that satisfy the score. What we end up with, then, is a set
of possible worlds that make the theory true; or, a set of possible
worlds according to the theory (or at which the theory is true).

There are, then, two parts to an interpretation: a syntactic part (in
which the formal structures and central axioms are laid out) and a
semantic part providing the formal structures with ‘meaning’ (and
in which the ‘possible worlds’ are specified, where these worlds are
taken to be ‘models’ of the syntactic part). We would also have to
consider some kind of ‘relevance condition’ as being involved in
interpretation, since one could in principle interpret a formalism (or
a score) in some way not intended: e.g. having a representation
relation that maps musical scores to colors rather than sounds (or
the wrong kinds of sounds: penny whistle rather than full
orchestra), or a relation that maps a mathematical formalism to
states of an abstract computer programme rather than a (real or
possible) universe, or one of its subsystems. Once we have the



interpretation, we can to a large extent ignore the physical world
and focus on the interpreted theory itself, making discoveries in it
that one would expect to find in the world – to test the theory will
obviously require a comparison with observation and experiment,
but it is likely true that most theoretical and mathematical
physicists spend more time looking at a whiteboard or pad of paper
(on which they construct and ‘explore’ some representation) than
the very world that is their real target.

The multiplicity of interpretations is a blessing in the musical
context: imagine how dull life would be if all performances sounded
the same! But in the case of a mathematical formulation of a theory
that admits multiple interpretations (different ways of filling in the
semantics), we face a problem if we view our theories as telling us
how the world is: these interpretations are supposed to be telling us
how the world is, and yet they are usually incompatible. One
interpretation might be local, so that there is no action-at-a-
distance, while another interpretation (of the same theory) might be
nonlocal. One might be deterministic, another indeterministic, and
so on. They can’t all be viewed as gripping onto our world since
there are contradictions involved. So here we have a striking dis-
analogy with the musical case: we might prefer one performance
over another, but we aren’t forced into believing in ‘the one true
performance’ as we are with a theory that aims to provide a picture
of reality. This possibility of several incompatible ontologies
constitutes one of the thorniest epistemological problems faced by
philosophers of science: the problem of underdetermination.

There is an additional level to the interpretation game that we have
not yet mentioned. This is that the interpreted formalism can also
be subject to further interpretation (and further multiplicity in
interpretation). In other words, we view our object-to-be-
interpreted not as a ‘bare formalism,’ but as an already-interpreted
structure. For example, we might be studying the ‘many worlds’
interpretation of quantum mechanics (itself one of many
observationally equivalent interpretations of the basic principles of
quantum mechanics). We can ask of this interpreted formalism:
what can the world be like for this to be true? Again, there might be
multiplicity at this higher level, where supplying a semantics to the
basic formalism is not enough to fix a world-picture (or all of its
details). Are the many-worlds really to be viewed as separate



universes that literally branch off from one another, or as something
else not involving a literal branching of worlds? Likewise, with
general relativity (Einstein’s theory of gravitation) where we
understand it to be a theory of spacetime geometry, the question
arises again: given this interpreted formalism (in terms of
spacetime curvature), what is the world like? Is there a literal
spacetime geometry in the world, as substantial as tables and
chairs? Or is it somehow built up from tables and chairs, and other
forms of mass-energy. How much of the spacetime geometry picture
do we suppose maps onto the world: just the geometrical structure
or the extensionless points underlying this structure too?

Sometimes we simply call the initially interpreted formalism the
theory, rather than an interpretation. For example, to most people
(physicists included) general relativity is just a theory about the
curvature of spacetime geometry and the way the curvature depends
on the goings on of matter and energy in the spacetime. But this is
only one possible approach. A flat spacetime picture with gravity
mediated by an ‘exchange particle’ (the graviton) can also rightly be
called general relativity. Here, the dynamically varying metric
tensor (representing the geometry of spacetime in the orthodox
picture) is treated as ‘just another field in flat spacetime’ – there are
technical details involved in recovering the same predictions and
symmetry properties, but we need not concern ourselves with these.
The point is, we can treat the theory as involving curved space or
flat space; that we tend to work with one approach does nothing to
detract from the fact that the curved space picture is also an
interpretation of sorts.

1.4 Why Does Physics Work?
One of the most puzzling facts about physics is that it works! How
do theories perform this amazing feat. Easy, you might say: they
work because they’re true. But given the issue of multiplicity in
interpretations of a theory (mentioned in the previous section),
which picture is true? One often has very different ontologies (e.g.
one with fields and one with particles instead; one with flat space,
one with curved space instead, and so on). What concerns us here is
why mathematics (an abstract thing, according to most) is able to
predict and describe physical events. Why don’t crystal balls, tea
leaves, or any number of other things work? At least they are



physical entities!

This problem was famously posed by Eugene Wigner in 1960 in a
paper called “The Unreasonable Effectiveness of Mathematics in the
Natural Sciences.” He put the puzzle in strong terms: “the enormous
usefulness of mathematics in the natural sciences is something
bordering on the mysterious and that there is no rational
explanation for it” ([56], 2). For example, there are branches of
mathematics that allow us to predict the behaviors of planets,
comets, missiles, and even certain elements of social systems, such
as traffic flow patterns and queuing behavior. Why are the laws of
physics so well-couched in the language of mathematics? Why do
mathematical structures find such fruitful application in physics?

There are two kinds of application we can think of here, one more
‘unreasonable’ than the other: (1) a ‘physics-dependent’ kind, and
(2) a ‘physics-independent’ kind. For example, there are cases
where mathematics has been developed hand-in-hand with some
piece of physics: the calculus was constructed with a physical
problem in mind, namely how can we solve equations of motion
(how do we know how a system will evolve in time). John von
Neumann’s creation of Hilbert space (in which quantum states are
represented) was also of this kind: a case of finding appropriate
mathematical tools for the job. The effectiveness of mathematics is
clearly not so unreasonable in such cases: it is a criterion of
successful tool-finding that it be an effective one. There were many
tools not fit for purpose that were discarded.

The unreasonable kind is that application of mathematics in science
(Wigner has in mind physics, primarily, but it generalizes to any
mathematically modeled subject matter) that was created
independently of physics and yet later found application in physics.
Hence, the mathematicians were busying themselves with some
purely mathematical problem, not caring a jot about the world of
physics, and yet lo and behold this piece of mathematics is found to
be a perfect fit for (some aspect of) the physical world. For example,
complex numbers find a perfect home in quantum mechanics, as we
will see, despite the fact that complex numbers were developed
hundreds of years before quantum mechanics was conceived. Non-
Euclidean geometries were found to provide the perfect framework
for general relativity. The so-called ‘spinors’ of Henri Cartan, from
1913, were found to fit perfectly the intrinsic spin of electrons



discovered in 1926 (and were pivotal in the theoretical prediction of
anti-matter by Paul Dirac, who combined spinors with the
mathematics of quantum mechanics). Wigner’s own example
involved a pair of old friends discussing one friend’s job as a
statistician. The other friend is incredulous to see that π (something
to do with the ratio of circumference of the circle to its diameter) is
appearing in a discussion of the population (humans!) via the
Gaussian distribution. How can this be?

There are various responses one could give. One possible response
is that even the ‘purest’ (most physics-independent) mathematics
comes from worldly investigations at some level, as Stanislaw Ulam
points out:

Even the most idealistic point of view of mathematics as a pure
creation of the human mind must be reconciled with the fact
that the choice of definitions and axioms of geometry – in fact
of most mathematical concepts – is the result of impressions
obtained through our senses from external stimuli and
inherently from observations and experiments in the ‘external
world.’ ([51], p. 284)

This doesn’t really explain how mathematics can extend physics to
go beyond what we can obtain through the senses: our senses are
often wrong, and certainly can’t put us directly in touch with atoms
and quarks.

Better, one might deflate the puzzle by showing how it is no more
miraculous than finding, e.g. a piece of furniture that fits ‘just so’
into some space in a room – and to think, the manufacturer had no
idea about my room! I don’t wish to suggest that mathematical
physics is on a par with interior design, of course, but in terms of
the basic principle behind the deployment of mathematics in
physics, I think there are parallels here. But there is a crucial aspect
left untreated: the furniture fits because the space has a structure
with the right dimensions. It is a matching of (aspects of) their
structures that grounds the fit. What about the case of mathematics
and physics?

To answer this we might adopt the view that since mathematics is a
science of patterns and structure and the world is patterned and
structured, there is no mystery about their relationship: they simply
have the same structure. Quite naturally, some structures will match



up and others won’t: the unreasonable effectiveness then just
amounts to finding isomorphic structures, and why should it matter
that the mathematical structure was discovered before the physical
structure? Further, in physics, one is often dealing with a very
limited list of physical features to be represented mathematically, so
a matching between them is not so far fetched.

On this view, when one has a match between some piece of
mathematics and some aspect of physical reality, then one has made
a discovery that the world has this mathematical structure. One can
then perhaps explain why the mathematics can lead to surprising
physical discoveries – situations where we appear to get more out of
the mathematics than we put in, to use Wigner’s expression. A
problem with this view is that sometimes mathematics is effective
without us wanting to say that there is some structural isomorphism
between the mathematics and the world. For example, we might
have a model that would be physically inconsistent (such as the
early model of the orbit of the electron around the nucleus, which
predicted a rapid collapse of the atom) and so couldn’t possibly be
matched by reality. There are also all sorts of ‘idealizations’ in
physics in which the mathematical model and the world can’t be
seen to correspond in terms of actual structure.

It is a good idea to keep in mind that we are dealing with scientific
representations – most often (if not always) mathematical in the
context of physics. The aim, as mentioned in the previous section, is
to ‘mimic’ (or capture) in the representation the key (relevant,
important) features of the system you are interested in (the target
system). One can try to visualize what is going on in such modeling
in fig. 1.3.

Here we start with a real-world system, and construct some model
(which will neglect many of the details of our intended target in the
world: transforming a real cow into a ‘spherical cow’ for simplicity,
for example). We then deal with the model system and develop a
theory of its behavior. The question is whether the theoretical
representation describing the model also describes the worldly
system – in terms of fig. 1.3, we ask whether the diagram commutes:
must we go via the paired down model system, or can we use the
representation directly for the worldly system? In terms of the
success of mathematical representations, the miraculous quality
concerns the fact that such representations often allow us to



perform this ‘bypass operation,’ using the representation to describe
and predict the behavior of various systems of interest, when the
mathematics was developed in an entirely different context.5

Fig. 1.3 A diagram making the problems of success (and failure) of
the application of mathematics in the scientific enterprise a little
more transparent. A real-world system is turned into a ‘model’
system (by abstracting away complex, unnecessary details), which is
then involved in the theoretical description. If this phase is
successful then we can view the theory as describing the real-world
system. If not, then there may have been some problem in the
model-building/ representation stage (perhaps an over-
idealization), so that ‘Model’ and ‘World’ are too dissimilar (in some
relevant way) for a theory about the model to apply to the real-
world target.

1.5 Further Readings
There are several philosophy of physics textbooks that I warmly
recommend, though some are pitched many levels up from the



present book. Those that are pitched at roughly the same level,
adopt different approaches, tackle different kinds of question, or are
less general.

Fun
Nick Huggett (2010) Everywhere and Everywhen: Adventures
in Physics and Philosophy. Oxford University Press.
– This is a particularly sparkling treatment of several interesting
themes in philosophy of physics, mostly focusing on space and
time.

Serious
Lawrence Sklar (2010) Philosophy of Physics. Oxford University
Press.
– Still a very good philosophy of physics introduction, though
starting to show its age a little.

James Cushing (1998) Philosophical Concepts in Physics: The
Historical Relation Between Philosophy and Scientific Theories.
Cambridge University Press.
– Wonderfully wide-ranging discussion of the intersection of
philosophy and physics (stretching back to ancient physics and
advancing all the way to general relativity and quantum theory).
A great way to get some history, physics, and philosophy in one
place.

Connoisseurs
Jeremy Butterfield and John Earman, eds. (2007) Handbook on
the Philosophy of Physics. Elsevier.
– This represents a professional-level treatment of various
subjects in philosophy of physics, written by a team of authors
that includes physicists. Mastering the chapters of this volume
should be something you aspire to!

Robert Batterman, ed. (2013) The Oxford Handbook of
Philosophy of Physics. Oxford University Press.
– This collection of new essays provides introductory treatments
of more modern debates in philosophy of physics, including
especially condensed matter and statistical physics. However, it



includes very good chapters on quantum mechanics, spacetime,
and other more standard topics.

Notes
1 There have been some interesting developments in the physics–

philosophy ‘dialogue’ recently, showing that the question over
the legitimacy of thinking philosophically about physics (and
science in general) is still alive. Stephen Hawking declared (at
Google’s ‘Zeitgeist’ Conference in 2011) that “philosophy is dead”
on account of its detachment from actual, current science:
philosophers just haven’t kept up with the science. A read
through journals such as, e.g. Studies in the History and
Philosophy of Modern Physics, will quickly reveal a very different
story, with philosophers writing on subjects at the cutting edge
(often in collaboration with physicists). A further problem with
Hawking’s view is that he ignores the fact that a great many
philosophical assumptions are buried in the work he (and other
theoretical physicists) do, especially in terms of how
mathematical structure is understood to map onto the world.
Likewise, in his book A Universe from Nothing: Why there is
Something Rather than Nothing (Atria Books, 2013), physicist
Lawrence Krauss argued, following Feynman’s path, that
philosophy is inert when it comes to physics: it doesn’t influence
how physics works, nor does it progress like physics. In
answering (he thinks) the most fundamental problem of
philosophy (why there is something rather than nothing) using
physics alone, he doesn’t see any elbow room left for philosophy
to do its thing: even the deepest questions can be dealt with by
physics. Philosopher of physics David Albert responded (in the
New York Times, March 23, 2012) with a critique outlining how
Krauss hadn’t answered this deep question at all, but an entirely
differerent one: how can you get something from not quite
nothing (i.e. something)! For example, it leaves completely
untouched the question of where the laws of physics come from,
and requires a quantum vacuum (very much a something). Read
Krauss’ book, and see if you think he has answered the question
satisfactorily.

2 I’m sure historians of science would quibble with much that I have



said here, finding earlier examples of laws of nature of sorts (e.g.
Aristotle’s notion of ‘natural place’ guiding fire, water, and so
on), or examples of early uses of instrumentation (e.g. the use of
gnomons to chart the progression of the sun’s path) – see Daniel
Graham’s Science Before Socrates (Oxford University Press,
2013) for just such a history. This might well be so, but the point
I’m making is that the detachment of scientific knowledge from
our unaided sense organs combined (or going hand in hand) with
the increased mathematization of scientific knowledge provides
fertile ground essential for doing modern philosophy of physics.

3 I point the reader toward Wesley Salmon’s excellent collection
Zeno’s Paradoxes (Hackett Publishing Company, 1970) for more
examples and discussions.

4 Readers interested in more details should consult Roman Frigg
and Stephan Hartmann’s “Models in Science”:
http://plato.stanford.edu/entries/models-science/.

5 These are difficult issues, which we won’t pursue further in this
book. However, Christopher Pincock provides an admirable
overview and attempt at an explanation of the role played by
mathematics in science in his book Mathematics and Scientific
Representation (Oxford University Press, 2012). This is
especially useful from the point of view of Wigner’s question
since it also deals with failures of mathematical modeling in
which there is too much distance between the model and reality
(e.g. omitting or idealizing in such a way as to generate
unphysical predictions in the theoretical description).

http://plato.stanford.edu/entries/models-science/


2
General Concepts of Physics
This chapter introduces, very briefly, several core concepts of
physics from a bird’s-eye view, rather than up close in the context of
specific theories (something we do in later chapters, for classical
and quantum, statistical and non-statistical, and relativistic and
non-relativistic physics). Here we find out about states (a full
specification of a system’s properties, or values of all variables, at
some instant), observables (those variables in a theory that can be
measured and given a physical interpretation), and dynamics (the
rules governing the behavior of a system, e.g. under the action of
forces): the three core features that go into the construction of a
physical theory and that form the raw materials for our
interpretations. One finds these same basic concepts replicated
across the theoretical frameworks above, where their specific
realizations will differ according to the nature of the systems the
theory is supposed to describe. These concepts are, then, at the root
of the mathematical representations that we wish to make physical
sense of. In particular, differences (of interpretation) can be seen to
emerge within a theory about what kind of stuff the states and
observables refer to. The dynamics enters this same interpretative
debate in a variety of ways, especially in virtue of its link to
symmetries – the next chapter puts these three basic concepts
(states, observables, dynamics) to work in unpacking the concept of
symmetry that will figure heavily in the remainder of the book.

2.1 The ‘Three Pillars’
Philosophers of physics often like to speak of the ‘pillars of modern
physics,’ by which they have in mind the theories of relativity,
quantum mechanics, and statistical physics. What they mean is that
these three together provide frameworks for the rest of physics –
whether they are directly employed or not, they are seen to underlie
all other phenomena (see fig. 2.1). However, one shouldn’t take the
‘pillars’ metaphor too literally: they do not stand in isolation like
architectural pillars, linked only by what they support or rest upon.



Rather, as we will see, they overlap considerably. Perhaps a better
metaphor is to think of them as distinct strands of fabric woven
together to make up a single sweater (a very nice one, not like your
granny might knit). The three pillars are all examples of spacetime
theories: they include spacetime (or space and time) as one of the
fundamental elements of reality. Spacetime (or space and time) is
part of most representations employed in physics: if they are
supposed to model the world, then they should contain space and
time because this is how the world seems to be configured, at least
at some level of approximation – some theories of ‘quantum gravity’
suggest spacetime is not a fundamental feature of reality, so that
spacetime ‘emerges’ from some deeper non-spatiotemporal theory:
we briefly discuss quantum gravity in §§8.4 and 8.5.



Fig. 2.1 The three pillars of modern physics: all phenomena of
nature are viewed as reducible to three basic frameworks: statistical
physics (often called ‘stat mech’), the theories of relativity (special
and general), and quantum theory – a common, though rather
inaccurate picture of modern physics.

Spacetime theories tend to match up with respect to their basic
(deepest) structure: a set of points taken to represent the basic
events of reality (or locations where events, such as colliding point



particles, can take place) – however, some have argued that
independently of further structure such ‘bare’ points can’t represent
real physical stuff. Distinct theories then diverge according to what
further structure is applied to this foundation, depending on what
they wish the theory to represent. Onto this set of points we can lay
‘charts’ or coordinates, labeling them and allowing us to speak of
the points’ relationships to one another – this set of points has the
structure of a ‘manifold,’ namely something that ‘looks locally’ (i.e.
at short distances) like ordinary flat space, but can vary in all sorts
of ways globally (think of a newspaper laid flat versus rolled up: the
way they differ is said to be a ‘global’ difference, but viewed up close
enough there is no way to see such differences). We can map these
points or regions of a manifold to itself (via transformations) to
represent all sorts of possible changes (spatial movements,
rotations, time evolutions, etc.) that might occur in the universe
thus modeled (or in our observations of that universe) – or, more
importantly (as we see in the next chapter), we can see what stays
the same (is invariant) as certain such changes of the manifold are
made. Such invariances are the stuff of laws of nature.

Mathematical structures, capable of living on this manifold (or a
more complexly structured space, with a metric enabling talk of
distances perhaps) are chosen with care to match features of the
properties and behaviors of objects being described. We need to
establish a matching (an isomorphism) between the way the chosen
mathematical objects transform and the way we think the systems
represented transform. For example, the ‘physical things’ (systems)
of a theory (particles, fields, strings, etc.) are defined on this
manifold structure and are represented by ‘geometrical objects’
(scalars, vectors, tensors, spinors, etc.). These correspond to the
objects that we would think of as ‘occupying’ space and time (but
this is really a matter of interpretation, as we will see). The objects
are characterized by their behavior under mappings of the manifold,
such as changes of the coordinates (corresponding to motion or
rotation), as mentioned above. That such objects are defined
relative to a spacetime manifold brings with it all sorts of nice
mathematical tools and concepts from calculus and elsewhere,
making the business of modern physics possible.

A point particle will occupy a single manifold (spacetime) point,
fields infinitely many points (with a field-value located at each



manifold point), and strings a one-dimensional manifold’s worth of
spacetime points (see fig. 2.2). This (manifold plus entity) gives us a
preliminary set of elements for world-building: a set of objects
locatable in space and time that might be relatable in various ways
and that might have various possible trajectories through the space.
Note that we don’t have to have our basic objects exactly equivalent
to what we wish to model: there will always be approximations
depending on the task. For example, it is perfectly possible to treat
the Earth as a point in some model if all we need to think about is its
position, say.

Fig. 2.2 A worldtube, worldsheet, and worldline, as generated by the
time evolution of a disc, line (or open string), and point-particle
respectively. Time goes up the page, and space across.

Still, much is missing in terms of representing a world like ours: we
need to know more about what properties the basic objects have,
how they combine and interact, and how (and why) they change and
move. These require specifying the states and observables (roughly
corresponding to kinematics) and their evolution over time (roughly
corresponding to dynamics). This will supply us with a formal
representation of a physical system (or possibly many systems, or
even a whole universe or ensemble of such!). Referring back to the
previous chapter, however, we find that this interpretative package
(kinematics + dynamics) is rarely if ever uniquely determined by
what we experience. For example, quantum theories can be supplied
with radically different dynamics – e.g. ones in which measurement



is central to the dynamics (causing the states to collapse to a definite
value), and others in which measurement plays no such special role.

With such a representation to hand, we can ask all sorts of
philosophical questions about the representation relation between
model/theory and the world. For example, although it looks from
the mathematical construction as though the spacetime points come
first in ontological order, we should be careful in making such
interpretive leaps. We can ask whether matter and spacetime are
‘equally fundamental,’ or if one is ‘more fundamental’ than the
other. That is, if if we think our ultimate mathematical
representation faithfully maps onto the world, we should be careful
about confusing the order (or hierarchy) of construction of the
representation with a corresponding order in reality, or in believing
that every aspect of the mathematical structure has a corresponding
target in the world.

There are other traps lying in wait that might be generated by the
mathematical representation, yet without corresponding elements
in reality. The modern version of the old pre-Socratic debate about
the reality of space and time (and its relationship with matter)
arises here. We can ask how symmetries of space and time act on
physical situations and whether the new states they generate are
physically real in this sense. We can ask whether spacetime points
are real (despite the appearance of what are taken to be spacetime
manifold points in the mathematical model). And so on. The point
should be clear by now: mathematical representations of physical
systems do not wear their interpretations on their sleeves – it will
be even clearer by the end of this book …

In the next section we lay out the above-mentioned basic elements
of a physical theory: <K>states, observables, dynamics<L>. This
triple essentially packages together the ‘kinematics’ (states +
observables: also relating to space, time, and motion) and the
‘dynamics’ (the physical forces and interactions constraining the
kinematically possible motions), viewing a theory as the
combination of these, thus making an interpreter’s life easier by
giving us the systems and their properties along with a rule (the
dynamics) for how they change and vary over time and space.

2.2 Kinematics and Dynamics



Space, time, and motion (of some basic objects) are the central
elements in the kinematics of a physical theory. Usually, this basic
background must be decided upon first, and then the laws
(dynamics) will be introduced to constrain what motions are
‘actually possible’ relative to such a background. The division into
kinematics and dynamics comes to us from Aristotle who viewed
kinesis as a kind of ‘potential’ state of being while dynamics was an
‘actual’ state of being. Historians have wracked their brains over this
distinction of Aristotle’s for many centuries, but translated into our
terms we can see that kinematics concerns possible motions when
we ignore the action of any forces and laws of nature in the
spatiotemporal background, while dynamics concerns what motions
can be actual once the laws (such as Newton’s laws of motion) are
introduced. Mechanics is classically understood to be a fairly
straightforward combination of these two components: kinematics
+ dynamics. All features of a world are understood to flow from a
specification of both elements.

The kinematically possible trajectories will of course include the
dynamically possible trajectories: the former space of possibilities is
far larger than the latter. The modern distinction can be linked
fairly closely to Aristotle’s (from the previous chapter) by focusing
on what is possible in the two scenarios: kinematics is about which
motions are possible given the constraints of the spacetime itself
along with the barest features of the basic objects (so that, for
example, in a world with three dimensions, motions requiring more
dimensions will not be kinematically possible). We can think of
these as metaphysically possible worlds, but not necessarily
physically possible worlds: worlds that are conceivable, but are
perhaps not compatible with our laws. Physical reasonableness is
the province of dynamics, which narrows down the space of
metaphysically possible worlds to a family of physically possible
worlds: worlds that are compatible with our laws. We can think of
the introduction of dynamics as a demand for explanation
concerning why things change their motions (or stop): this demands
forces (and we have the law of inertia, embodying the tendency of
bodies to stay in motion unless forced to do otherwise). Hence, we
have the standard conception of kinematics as the study of the
motions of bodies in the absence of forces, and dynamics as the
study of the effects of forces on those motions.



Though we utilize mathematics in this representation of trajectories
(motions), especially using geometrical notions, there is a radical
disconnect in how the physically applied concepts relate to the pure
(mathematical) concepts. For example, a motion in the geometrical
sense simply involves associating one point to another point, with
no sense of a continuous trajectory linking them (at least not of
necessity: one could imagine the point being carried along in a
continuous path, but it is not essential). In the case of physical
motions, however, the smooth paths between initial and final points
are crucial, and form part of our picture of how the world works –
not least because we often need to know the duration of the time
interval during which some continuous path was traversed. But
deeper than this (though not undeniable) is the belief that in order
to get from a point A to a point B, the points in between must be
traversed, during which the object that moves retains its identity in
some sense (and so is the same object at B as it was at A – a relation
sometimes called ‘genidentity’).

In modern approaches to physics, we do in fact shift to a more
abstract representation: we speak of ‘states’ and ‘observables’ in
place of kinematics (with its associated space, time, and motion).
But we don’t fully dispense with space and motion; rather, a
different kind of space and motion is employed, in the form of a
state space and trajectories in this space. Just as we might build up
a space from all possible combinations of some parameters, such as
x, y, z measurements for ordinary space, we can also view the so-
called ‘canonical variables’ as ‘generalized coordinates’ for this new
kind of space (known as phase space: the state space of classical
mechanics). Each point represents a different assignment of
position and momentum to a system. This lets us do things we can’t
do in ordinary physical space. For example, when we are dealing
with a complex system of many particles (with a large number of
particles, N), it would be a complicated task to deal individually
with each of their paths through three-dimensional space. But with
state spaces we can bundle all of this information into a new space
of 6N-dimensions, in which a single point represents the positions
(a ‘configuration’) and momenta of all N particles (taking into
account each particle’s three spatial coordinates in ordinary space
and their momenta in three spatial directions) taken at an instant of
time.
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Let us fill in some of the missing details from the above account.
The state of a system, as the name suggests, is a snapshot of a
system, containing complete information about it at an instant of
time – the system itself is understood to be well represented by this
state, which is essentially built from its properties. In classical
mechanics this state is simply the position q (in ‘physical space’) of a
particle together with its momentum p (the ‘canonical variables’
from above). The idea is that from such a specification of a state, we
can run it through the laws of the theory to get to the system’s state
at any other time (the dynamics in this new scheme). The state is, in
this sense, the input (the programme) for the laws (the processor: a
certain set of equations of motion known as Hamilton’s equations –
basically, Newton’s laws of motion rewritten in fancier
mathematics!), which separate the physically possible evolutions
from the impossible ones.

Physics, at its most general, is concerned with physical quantities
(in ordinary language we would call them ‘properties’), the
interactions between quantities of the same and different kinds, and
the rate of change of such quantities. Once we have our set of
quantities, which we’ll label  (i.e. the observables: the things we
can measure), that will define the instantaneous state of the object
that interests us (and, in a sense, is how an object is defined in
physics), we can think about how these quantities (and so the state,
and so the object) might change over time. We can set up equations
of motion of the general form:

Finding how a system will evolve then simply amounts to finding
the particular function, which results from the investigations of
physicists. Integrating both sides of the equation, we can find future
(and past) values of  from its present value. (However, as we will
see in Chapter 7, in quantum mechanics, as standardly interpreted,
this framework only holds while the system is unobserved (between
observations); measurement instead delivers a random value from a
distribution of possible values, known as eigenvalues. In other
words, there are two kinds of dynamics. Naturally, it would be
better to make do with one, in terms of the number of elements in
one’s world-picture, and such interpretations exist, as we will see.)

The position and momentum above are observables of the system,



and we find that specifying all of the values of a system’s
observables will uniquely determine its state – likewise, knowing
the state means knowing the values of the observables. We measure
observables to gain knowledge about the state. Hence, we have a
perfect correlation between states and (complete sets) of
observables at an instant t—(q(t), p(t)) are complete in classical
mechanics in the sense that all other observables can be constructed
from them using some mathematical operations. Such observables
provide the core link between theory and world in the context of
physics: they are the things we measure and whose values we
predict. As such, they ground the qualitative character of a world:
two worlds that are exact duplicates in terms of all of their
observables will thereby be qualitatively indistinguishable (a feature
that will be important in later examples). (The observables of
classical mechanics have a dual role: on the one hand they are
measurable quantities, allowing us to latch the theory onto the
world, providing information about a state of the world. On the
other hand they generate specific transitions of the state of a system
from one to another: for example, the energy observable (aka the
Hamiltonian function), when viewed in phase space terms,
generates time-translations.)

Fig. 2.3 Representation of an observable  in classical physics,
mediating between an abstract state space  and some numerical
value that is associated with an experimental outcome n ∊ .

The observables in the classical case are functions from the phase
space to (real) numbers: this is the link between the abstract
representation, given by the state space, and reality, as given in
measurements that can be associated with real number values. Take
as an extremely simple example (a standard case study for physics
introductions): a coin. This is a two-state system, and so it has a
state space with just two points: Heads and Tails. An observable 
would have to be a function on this space, so that it spits out some
numerical value depending on what state it is fed. We can write 



(Heads) = 1 and  (Tails) = 0 – now we have made this association,
if we want to be formal we can write the state space as  = {0, 1}.
Far more complicated examples occur in physics, such as energy
observables that spit out a number representing the total energy of a
system (that can deliver a continuum of possible values, rather than
{0, 1}) when fed a point from the phase space. But still, this simple
setup gets the basic point: classical observables are functions from
the state space to numbers:  :  →  (see fig. 2.3).

Quite naturally, the system’s state space will depend on the kind of
system it is. Quantum mechanical systems are so radically different
(e.g. not generally possessing sharp values for their observables, but
instead a ‘spread’ of possible values called eigenvalues, which have
probabilities assigned to them, or to their being found on
measurement), however, that a different setup is required. The
position and momentum observables that have real number values
in the classical context are understood to be operators (‘Hermitian
matrices’ in the jargon) on states in the quantum context. However,
the eigenvalues of the operator (representing measurement
outcomes) do have real number values, and these are what we
measure in experiments (see fig. 2.4). These operators, as with the
classical observables, also serve to create new states from old by
their action.

As we will see later, much of this difference has to do with the fact
that quantum particles have both wave and particle aspects. For this
reason, the state of a system is represented by a function ψ(x, t) (a
‘wavefunction’) that represents the amplitude of the wave aspect of
the system at the location x (given by three spatial coordinates) at
time t. This wavefunction must be a complex number in order to
represent the interference effects usually associated with wave
phenomena and so is not itself an observable quantity. But one can
construct a real-valued quantity that is observable by taking its
squared modulus (the wave’s ‘intensity’): |ψ|2 – this is the ‘complex
square’ involving multiplication of the complex number by its
complex conjugate: |ψ|2 = ψ*(x, t)ψ(x, t). If you want to know the
probability of finding a particle at some particular location x at time
t, Prob(x, t), it is this squared modulus that you need to invoke. If
we make the identification Prob(x, t) = |ψ|2, then if all the possible
outcomes for the location are integrated together (i.e. integrate over
an interval, say from a to b), then, since probabilities must always
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sum to 1, we have:

Fig. 2.4 Representation of an observable  in quantum physics,
mediating between an abstract state space  and a range of
numerical values (eigenvalues), each associated with a possible
experimental outcome ni ∊ 

For the dynamics, given in schematic form in eq. 2.1, in the case of
quantum mechanics, we need an equation for the behavior of this
wave-function ψ that is written as a function of ψ: this is the
Schrödinger equation. The state space in which the various ψ are
represented is known as ‘Hilbert space’ (a kind of vector space) in
which states are represented by ‘rays’ (basically, vectors with some
redundancy removed) in the space. This has the appropriate
properties to represent the observed wavelike features of quantum
systems. The observables (operators) are then understood to be
objects that act on this space (simply: matrices acting on vectors) to
produce numbers (the eigenvalues) comparable with experiment –
these matrices must be Hermitian (self-adjoint, or equal to their
own conjugates) precisely to get experimentally measurable real
numbers out.

Hence, though there are very significant differences in the specific
mathematical objects used to represent the states, observables, and
dynamics, the same basic structures (harking back to the distinction
between kinematics and dynamics) for representing the world and
our engagement with it are utilized – ditto in statistical physics
(which can be classical or quantum). However, we will find in later
parts of this book that some pressure is placed on the ordering of
the triple, 〈(states, observables), dynamics〉, since in general
relativity the dynamics need to be solved first before sense can be
made of the kinematics: spacetime geometry (needed for the



definition of kinematics) comes out of solutions to the equations of
motion (the dynamics) of general relativity – the slogan is ‘no
kinematics without dynamics’.

2.3 Reference Frames, Invariance, and
Covariance
In a great many cases, we can determine the basic features of a
theory by invoking certain ‘principles’ on which the theory is based.
Principles of physical theory are supposed to be claims about the
world that are somehow more robust than most other such claims
about the natural world. They say things about the world that are
very hard to imagine not being true. In other words, they are as
close to universal (empirical) truths as one can get in physical
theories. Such principles are really ‘meta-laws’ (laws about laws).
Special relativity, for example, involves two core principles:

SR1 All inertial frames are equal (from the point of view of
mechanical and electromagnetic physical quantities and laws).

SR2 The speed of light is constant (in any and all inertial frames).

Or we have the single principle of Galilean relativity satisfied by
non-relativistic laws:

G The laws of motion have the same form in all inertial frames
(from the point of view of mechanical physical quantities and laws).

In the case of thermodynamics, one has:

T The laws should not allow the creation of perpetual motion
machines.

These laws govern laws: if a theory is to describe specially
relativistic systems then it must contain only laws that satisfy the
two principles, SR1 and SR2, above. In a sense, the principles
constitute what it is to be a specially relativistic (or Galilean
relativistic or thermodynamic, and so on) system. While the
‘normal’ laws of a theory might involve a reference to some specific
type of system (particular particles or fields, for example), these
meta-laws float above such details: they are far more general, and
therefore also more robust (i.e. to changes in the specific details of
the theories that implement the principles). For example, special
relativity was devised before quantum mechanics came about, yet it



applies just as well in quantum mechanics as it does in classical
physics.

Often, as seen above, these principles and laws concern the extent to
which the reference frame, from which observations are made, is
arbitrary. A reference frame can simply be understood to be a set of
coordinates (x, y, z), which we can think of as a spatial frame in
which measurements will be ‘recorded,’ and a time coordinate t,
which we can think of as the reading of ‘clock time’ for these
measurements. This is the laboratory of physics, though here it is
presented rather abstractly.

Laboratories will usually vary between observers. For example,
experiments performed on the international space station will
occupy a different frame of reference to yours in your office or
wherever you are reading this book. One can imagine other
experiments taking place in a laboratory that is rotating (i.e.
spinning on its own axis), which would involve a different reference
frame. In order to make sense of these differences we need some
way of relating them to one another, so that arbitrary features of the
reference frame are not mistaken for features of reality.
Transformation laws link the various reference frames, and allow us
to see that the physical quantities that we measure do not depend
on the frame in which they are measured: we extract the physical
structure as that which is left invariant between the frames. As we
see in the next chapter, these amount to symmetry principles.

These high-level laws are then defined by invariance with respect to
some class of transformations (some way of shifting, rotating,
evolving, twisting, or otherwise morphing the system), in which case
we say that the laws in question are covariant with respect to those
transformations – with the systems themselves then said to be
invariant rather than covariant (the relevant quantities of the
systems, such as energy or momentum, are then said to be
conserved). In the case of special relativity above, the task was to
find a set of transformation laws that preserve the principles (given
that those principles seem to have a solid status in reality, as
revealed by experiment). These are known as the Lorentz
transformations, which Einstein encoded into the structure of
spacetime (thus providing an entirely new kinematic framework for
considering the motion of bodies in space and time). In the case of
Newton’s equations of motion one has to find transformation laws



that preserve those equations – these are the so-called Galilean
transformations (discussed in the next chapter: for now, think of
these, and the Lorentz transformations, simply as ways of moving a
system around in space and time). We can, given this, rewrite the
principles from above as:

G Galilean relativity → The covariance of the equations of motion
(laws) under Galilean transformations.

SR Special relativity → The covariance of the equations of motion
(laws) under Lorentz transformations.

These relativity principles bring into center stage the specific
reference frames as characterized by their invariance under some
specific set of transformations. It is the invariance that is really key.
We turn to these invariances (symmetries) in the next chapter.

2.4 Further Readings
There are several books that I wish I’d known about when I really
started becoming keen on physics. I hope these will prove useful for
those wishing to build a solid background in mathematics and
physics.

Fun
Robert Mills (1994) Space, Time and Quanta. W. H. Freeman.
– Brilliant exposition of the basics of contemporary physics. For
beginners, but manages to introduce many important
mathematical concepts.

John Taylor (2001) Hidden Unity in Nature’s Laws. Cambridge
University Press.
– As above, elementary but written with a master’s touch.

Serious
Leonard Susskind (2014) The Theoretical Minimum: What You
Need to Know to Start Doing Physics. Basic Books.
– The perfect book for readers wishing to gain some facility in
doing computations in physics.

Lawrence Sklar (2013) Philosophy and the Foundations of



Dynamics. Cambridge University Press.
– Textbook considering in depth philosophical aspects of many
of the issues considered in this chapter – historical details are
nicely interwoven with the philosophy.

Connoisseurs
Roger Penrose (2007) The Road to Reality: A Complete Guide to
the Laws of the Universe. Vintage.
– Do-it-yourself guide to becoming a theoretical physicist. It’s a
fairly bumpy road, but full of philosophical insights and superb,
readable introductions to even extremely difficult concepts.



3
Symmetries in Physics

She said, “You’re wearing two different coloured socks.” I said,
“Yes, but to me they’re the same because I go by thickness.”

Steven Wright

Modern physics is simply inconceivable without symmetry. As the
previous chapter hinted at, symmetries are deeply entangled with
the physical laws and conservation principles forming the roots of
our best theories. In many ways these theories (and the entities and
structures they describe) are defined by their symmetries. As we will
see in the chapters that follow, symmetry also lies at the roots of
many of the philosophical problems faced by physics: the
interpretation game is made much more difficult (or more
interesting) by the presence of symmetries.

“Symmetry” in days gone by (and present days by your average
‘person on the street’) had more of an aesthetic meaning: to do with
being harmonious, balanced, or well-proportioned – this is the
original meaning of the Greek word συμμετρια (‘same measure’).
This is a rather static sense: a figure, face, or building can be
symmetric without our doing anything to it. But in more modern
terms, a symmetry involves observing something before and after
some action has been performed on it. It is a kind of ‘change
without change’: transformations (or operations) that leave
something (or everything) about an object the same as before. They
point to an ‘insensitivity’ or ‘blindness’ of some (in cases that
interest us, physically) relevant properties or relations (including
laws of nature) to some transformation/s that might rotate, shuffle,
move, twist, push, or otherwise modify a system in some way. In
such a case, the transformations that this holds true for are
symmetries, and the object (possibly a physical theory) is said to be
invariant (or symmetric) under the transformation.

To pick up Steven Wright’s joke about the socks above: clearly
switching a blue for a red sock (a possible operation) will not be a
symmetry in terms of how they look, but if we don’t care about



color, by focussing on thickness, then, assuming they are the same
thickness, switching the socks will be a symmetry in terms of
thickness: thickness is preserved or is left invariant with respect to
the operation of switching them. Going by thickness determines a
different equivalence class of ‘the same things’ (defined by their
‘switchability’ without altering some specific property of interest)
than if we go by color.

This brings out an important feature of symmetries: they involve
‘ignoring’ some aspects of a situation and focusing on some relevant
structure that is preserved during some operation. That is, when we
speak of a transformed object’s being indistinguishable from the
original, we usually mean that it is indistinguishable in some
relevant respects. In many cases that interest us in this book, it is
the laws of nature (and the associated states and observables) that
are left invariant with respect to some operation, even though some
other aspects might be changed. Sometimes, however, we find that
the indistinguishability concerns all relevant respects that would
seem to make a physical difference. Such scenarios underlie many
philosophical debates since there are both arguments for viewing
the transformed states as physically distinct (despite their
indistinguishability) and for viewing the transformed states as
physically one and the same possibility (that is simply being
represented in different ways).

3.1 Symmetry, Invariance, and Equivalence
Symmetries involve equivalence of some sort or another; this is
their defining characteristic: two distinct things are equivalent with
respect to some feature or features. Given that these things are
usually seen to be physically distinct, the equivalence means that for
the purposes of physics, ‘either will do’ for formulating some
problem: they have the same information content. This translates
into a claim about distinguishability, as suggested above: given an
equivalence, one will not be able to distinguish (internally: without
reference to some other features) which of a pair of symmetric
scenarios one is faced with. For example, when sitting on a train at
rest on a platform with another train sitting alongside also at rest,
when there is some relative motion it is often difficult to tell
whether it is your train or the neighboring train that is in motion.
Externally, by looking at your position relative to the reference



frame provided by the fixed buildings around the train, you can
then distinguish rest from motion.

The following (rather lengthy) passage from Galileo’s Dialogues on
the Two Chief World Systems – certainly among the most famous
pieces of writing in the history of physics – rests on a similar
phenomenon:

Shut yourself up with some friend in the main cabin below
decks on some large ship, and have with you there some flies,
butterflies, and other small flying animals. Have a large bowl of
water with some fish in it; hang up a bottle that empties drop
by drop into a wide vessel beneath it. With the ship standing
still, observe carefully how the little animals fly with equal
speed to all sides of the cabin. The fish swim indifferently in all
directions; the drops fall into the vessel beneath; and, in
throwing something to your friend, you need throw it no more
strongly in one direction than another, the distances being
equal; jumping with your feet together, you pass equal spaces
in every direction.

When you have observed all these things carefully (though
doubtless when the ship is standing still everything must
happen in this way), have the ship proceed with any speed you
like, so long as the motion is uniform and not fluctuating this
way and that. You will discover not the least change in all the
effects named, nor could you tell from any of them whether the
ship was moving or standing still. In jumping, you will pass on
the floor the same spaces as before, nor will you make larger
jumps toward the stern than toward the prow even though the
ship is moving quite rapidly, despite the fact that during the
time that you are in the air the floor under you will be going in
a direction opposite to your jump. In throwing something to
your companion, you will need no more force to get it to him
whether he is in the direction of the bow or the stern, with
yourself situated opposite. The droplets will fall as before into
the vessel beneath without dropping toward the stern, although
while the drops are in the air the ship runs many spans. The
fish in their water will swim toward the front of their bowl with
no more effort than toward the back, and will go with equal
ease to bait placed anywhere around the edges of the bowl.
Finally the butterflies and flies will continue their flights



indifferently toward every side, nor will it ever happen that they
are concentrated toward the stern, as if tired out from keeping
up with the course of the ship, from which they will have been
separated during long intervals by keeping themselves in the
air. And if smoke is made by burning some incense, it will be
seen going up in the form of a little cloud, remaining still and
moving no more toward one side than the other. The cause of
all these correspondences of effects is the fact that the ship’s
motion is common to all the things contained in it, and to the
air also. That is why I said you should be below decks; for if this
took place above in the open air, which would not follow the
course of the ship, more or less noticeable differences would be
seen in some of the effects noted.

In refreshingly simple language, this passage destroys the intuitive
reasoning for thinking that we live on a stationary Earth: why don’t
we feel the wind in our faces, and why aren’t we thrown off the
surface?! Surely, the critics said, we should see and feel that it
moves? By linking the Earth whizzing through space to a ship
cutting unhindered through the water, Galileo is able to show how
we would notice none of the effects we might naively expect to see
and feel: the two situations would be internally indistinguishable,
and so we could not detect which were true without using some kind
of external check. Indeed, for the most part, the objects external to
the earth with respect to which we might notice the existence of
motion, are so far away that our motion is undetectable – if they
were much closer (and/or our speed much (much!) faster) we would
indeed notice the motion, and the ship–Earth analogy would break
down (though with the experimental outcomes Galileo suggests
none the wiser for it).

However, the passage also contains a symmetry principle (Galilean
relativity) that expresses the idea that uniform motion is
undetectable: the laws of motion are insensitive to transformations
that involve switching a pair of uniformly moving reference frames.
As Galileo puts it, there would be “not the least change” in the
behaviors of objects in the ship. That is, the laws of mechanics (and
any experiments you might conduct using them) are invariant with
respect to changes of reference frame (in this case the ship) that
differ by their (uniform) velocities and positions (and times). This is
much easier to experience on an aeroplane (once it has reached a
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cruising altitude) or a train journey. So long as the going is smooth
(and you don’t sneak a peek out of the window), there is no way of
telling that you are moving by observing the motion of objects in
your vicinity. The air crew merrily stroll down the aisles with drinks,
with no spillages – unless turbulence hits (which tends to occur
precisely when the drinks are being served, but never mind that …),
in which case the motion is non-uniform (this plays a significant
role in issues of spacetime ontology, as we see in the next chapter).
Hence, we have a change without change: an equivalence (of
motions of objects below deck) coupled with a known physical
difference (the different states of motion of the ship).

Galilean relativity amounts to the claim that the laws of motion are
independent of location, time, orientation, or state of uniform
motion at constant velocity (as in the ship example). Changing such
features does not change the laws of nature (the same experimental
results will emerge regardless of the state of uniform motion), and
so these are symmetries of nature. The laws cannot be used to detect
absolute locations, times, orientations, or states of uniform motion
or rest. Any systems described by such laws are invariant with
respect to those transformations that generate changes of location,
time, orientation, or state of uniform motion (at constant velocity).
This family of transformation-types gives us ten parameters
describing ways a system can be altered while leaving the laws
undisturbed (Nature’s symmetry group in a classical mechanical
world): three parameters to describe spatial translations, a single
parameter for temporal translation, reorientations about the three
axes of space (three more parameters), and velocity ‘boosts’ in each
of the three directions of space (another three parameters). These
are known as the Galilean transformations, and they satisfy the
mathematical properties of being a group (basically a set of
elements – in this case the various transformations – that must
satisfy certain conditions on the way the elements combine).1

In more technical terms, for some initial state, represented by
coordinates (x, t), we can consider transformations of coordinates
of a system of the form:

The meaning of this is that we can act on some point (object) by:
rotating it (represented by the matrix A, which is formally an



element of the rotation group SO(3)); by shifting it forward
(evolving it) in time (represented by t + s, which, mathematically, is
a simple shift along the real number line ); by translating the point
by b (where b is a vector in space 3); or by changing the velocity by
some ‘boost’ vt (where v is a velocity vector in space). This gives us
our ten-parameter group, the Galilean group, Gal for short. A theory
that is invariant under these transformations is said to be Galilean
invariant. What this means is simply that such transformations
(singly, or in combination) ‘make no difference’ from the point of
view of physical laws: if x(t) is some solution of the equations of a
theory (that is, some trajectory of a system such as a particle) then
so is the alteration (x(t)), with  ∊ Gal. You can’t use such
transformations to ‘test’ what your absolute (i.e. relative to space
and time, rather than other external objects) state of motion is. Note
that (x(t)) and x(t) represent physically distinct solutions: they are
different (as physical states: different positions, velocities, etc.) and
yet they are also the same in terms of their intrinsic properties. In
terms of the possible-world-talk from earlier, we can say that
Galilean transformations leave a theory’s space of physically
possible worlds the same so that applying one of the
transformations to a state (i.e. of a physically possible world) leads
to another physically possible world (see §3.2 for more on the
connection between laws and possible worlds).

Newton’s laws of motion are independent of location, time,
orientation, or state of uniform motion at constant velocity. Hence,
they are Galilean invariant: they take the same form in reference
frames related by the corresponding transformations. This implies
that we can’t detect position and velocity by any process governed
by Newton’s laws: a kind of ‘conspiracy of nature’ hides any such
transformations from our gaze. As we shall see, this conspiracy lies
at the center of a justly famous debate between Newton and
Gottfried Leibniz. In situations where the solution concerns the
entire material content of the universe, performing a Galilean
transformation appears to generate something that doesn’t differ
physically: yet if we think of space and time as giant containers in
which the transformations are carried out then they must be
physically distinct regardless.

At the root of the debate is the fact that for each set of such
parameters there is some piece of physical structure that is rendered



unobservable. In the case of the translation piece of the Galilean
group (the bit that shifts objects in space), one cannot observe
absolute locations (i.e. positions relative to space itself). Invariance
under time shifts renders absolute time location unobservable (you
can’t tell when you are relative to time itself). Invariance under
rotations renders absolute orientation unobservable (you can’t tell
which way you are pointing relative to space itself). And, finally,
invariance under changes in velocity renders absolute velocity (or
absolute rest) unobservable (you can’t tell how fast you are moving
relative to space itself). That’s a lot of unobservable structure. In
general, the more symmetries one has the more unobservable
structure one introduces since such symmetries destroy our ability
to discern differences between certain physical situations, and so we
can’t tell which of some set of possibilities we are in fact observing
(assuming there is indeed a fact of the matter).

There is a standard method of removing this unobservable structure
(formally at least), if we decide that keeping it is not to our taste, by
‘quotienting’ (or ‘modding’) out the symmetry. What this amounts
to, in simple terms, is identifying all of the symmetric possibilities
(those directly related by some symmetry operation), forming (and
subsequently working with) an ‘equivalence class’ – an equivalence
class of possibilities can simply be understood to contain elements
any of which would be ‘up to the task’ of representing some physical
situation so that there are many possible mathematical descriptions
of the same situation. The symmetry transformations can then be
seen to take us from one possible description to another possible
description. The quotienting procedure then reduces this
multiplicity of indistinguishable possibilities to a single possibility:
the space of physically possible worlds is thus reduced in size. In a
sense, as we see in the next chapter, the battle between Leibniz and
Newton centered on just this feature: how big is the space of
possibilities? Should we include indistinguishable possibilities or
eliminate them?

Finally, just for completeness, we should point out that (in certain
special important cases involving continuous symmetries) each of
the sets of parameters is associated with a conserved quantity as
well as some unobservable structure. Translation symmetry leads to
conservation of momentum; time translation symmetry to
conservation of energy; and rotation symmetry to conservation of



angular momentum. If there weren’t these stable features under the
various operations, then one could use the alterations to detect
location, time, velocity, and orientation. That we cannot do this also
points to features of the spatiotemporal system itself: it must be
isotropic (with no preferred direction) and homogeneous (look the
same everywhere and everywhen). This is a general feature of
symmetries: what kinds of transformation leave the laws unchanged
are indicative of the underlying physical structures in or on which
the operations are carried out. Naturally, the kinds of objects that
are left most unperturbed under various operations (those that are
most insensitive to a barrage of transformations that attempt to
change them) are going to be homogeneous among themselves – we
find this even with quantum particles, which are identical in terms
of their intrinsic properties, so that switching them leaves the laws
of quantum mechanics none the wiser. Likewise, what is observable
according to the theory is equally unimpressed by such switchings –
in which case the permutation of particles constitutes what is called
an automorphism of the set of observables, mapping it back to itself
(if the equivalence mapping is to another object distinct from the
first then it is generically known as an ‘isomorphism’). We discuss
this curious ‘permutation symmetry’ of quantum objects in §7.5.

3.2 Symmetries, Laws, and Worlds
Jennan Ismael and Bas van Fraassen [27] claim that a physical
theory can usefully be split into two main ingredients: ‘theoretical
ontology’ and ‘laws of nature.’ The ontology is to be thought of in
terms of a metaphysical possibility space (a space embodying what
kinds of entities, properties, and relations are allowed by the
theory). These possible worlds (being ‘entire world histories’)
correspond to state space trajectories. Neither of these spaces is yet
physical, in the sense of satisfying the dynamical equations of some
theory (the laws, that is). The role of the laws is to then restrict this
rather liberal metaphysical possibility space (or the associated
mathematical state space) to a smaller family of physically (or, as
philosophers of science say, nomologically) possible worlds (those
in which the entities, properties, and relations satisfy the laws).
Hence, only some of the possible worlds (a subset of the space of
possible worlds) is associated with the physically possible
trajectories.



This notion of (physical) possibility space is deeply entangled with
both the definition of a theory, then, but also with interpretation:
the provision of the ontology (the worlds) is equivalent to giving an
interpretation (a way the world could be according to the theory).
The idea is that a theory presents us with a mathematical space,
with a certain geometrical structure appropriate to the system it is
invoked to model, where the points of this space represent
physically possible states of affairs for a system modeled by the
theory. Symmetries can easily be realized in terms of these such
spaces. If a theory admits symmetries then: (1) distinct points of the
space will be related by symmetries; (2) these points will form an
equivalence class (an orbit in the jargon); and (3) elements of this
equivalence class will represent qualitatively identical possibilities:
the symmetries simply map a set of individuals (in a domain) onto
other individuals in such a way as to preserve the relevant relations
and properties (this is the meaning of the term ‘automorphism’
from earlier).

This framework lets us now distinguish between two types of
symmetry, which is important from the point of view of possible
worlds (i.e. distinct physical possibilities): symmetry proper and
gauge symmetry. According to the former, the distinct points
related by the symmetry transformation are taken to represent
physically distinct possibilities – that is, the representation relation
is one-to-one between elements of the space (trajectories) and
physically possible worlds. But in the case of gauge symmetries this
direct link breaks down so that many trajectories correspond to one
and the same physically possible world – the representation relation
is therefore many-to-one (we discuss this curious symmetry further
in §8.3). The idea is that we would have some equations of motion
defining some theory, which will admit some symmetric solutions.
This has important interpretative consequences since the latter
gauge symmetries open up the possibility of treating the
equivalence class itself as the object that we should be committed to
(as mentioned earlier). This is how symmetries begin to complicate
the interpretation game.

3.3 Some Important Distinctions
The study of symmetries in physics (and elsewhere) is buried in
jargon. This is no bad thing: in this case it means that they are well



understood, and so involve lots of fine distinctions in classifying
them. In this section we briefly introduce some of the most
important distinctions that will be invoked in the remainder of the
book.

Geometric and Dynamical
A very special class of symmetries relates to the properties of space,
time, and spacetime. These are known as ‘geometric (or universal)
symmetries’ and they are the basis of the laws of many theories.
Indeed, one can work backwards (from certain laws to certain
features of the space and time) or forwards (from features of space
and time to the laws). What is special about geometric laws is that
since every system exists within spacetime every system is thereby
subject to symmetries pertaining to spacetime: hence, they are
universal.

There are other symmetries that apply to some particularities of the
system that is invariant under them. For example, there is a
symmetry according to which the laws of quantum mechanics are
invariant under changes of absolute phase of particles (where the
phase comes from the strange wavelike aspects of particles in
quantum mechanics). Quite naturally, this is grounded in the nature
of the particles and in the existence of their phases, which is a
feature not universally shared by all things. These are known as
dynamical symmetries since they refer to specific physical theories
(or rather the forces or interactions these theories describe –
usually post-classical ones).

Eugene Wigner (who named this distinction: see his book
mentioned in the Further Readings at the end of this chapter)
grounds it in a distinction based on events: the geometric
symmetries don’t change the events (by which he clearly means
observable, qualitative stuff: ‘phenomena’), but just their
spatiotemporal locations, orientations, and motions. Moreover, the
formulation of the invariances makes reference only to events and
their correlations, independently of the laws or the specific
constitution of the physical systems: all that matters is the
independence of the events from locations (regardless of what the
events are made up of) and so on. The dynamical symmetries on the
other hand involve the laws of physics directly in their formulation,
explicitly referring to the specifics of the objects and interactions.



This distinction can usually be mapped onto a further distinction
between ‘internal’ and ‘external’ symmetries, where the former
refers to the fact that the transformations are not spatiotemporal
but instead refer to some ‘abstract’ internal space. Many properties
of quantum particles show this independence from spacetime. Such
symmetries are further from experience, of course, because
experience demands at least some semblance of a spatiotemporal
framework to be experienced. As such internal symmetries are
inferred from data about the forces, where the process of inference
is more elaborate than for geometric symmetries.

Continuous and Discrete
The spacetime symmetries are said to be continuous symmetries
since each transformation can be built (or reached) by repeatedly
applying an infinitesimal transformation. Hence, a rotation from
some original position to a 40-degree turn does not involve a jump,
but must involve an infinite sequence of intermediate tiny rotations.
Such symmetries, involving the addition of infinitesimal in-between
stages, are sometimes known as ‘proper’ symmetries, since they
involve physically realistic transformations that we could imagine
doing with real objects in real space. By contrast we have discrete
symmetries that do not involve intermediate steps through the
points of space connecting one state (the original) with another (the
end point of the transformation). An example is reflection about
some axis, which no continuous sequence of rigid (infinitesimal)
motions can bring about. A reflection can turn a left hand into a
right hand (look at your hand in a mirror!). This means that
reflection symmetry involves a left–right symmetry – a mirror
doesn’t actually transform your right hand into a left hand of
course, it just shows what it would look like if you somehow
managed it. Time reflection is another example: what it means is
that if a process in one temporal direction is ‘allowed’ (i.e. a solution
of some equations of motion), then so is its time-reverse (where the
‘movie’ of the process is played backwards).

These are, unsurprisingly, known as ‘improper’ since it is hard to
envisage such jumps occurring in physical spacetime. In other
words, we can’t transform a left hand to a right hand by performing
smooth, rigid, continuous motions. (Clearly the ‘rigidity’ is required
here since otherwise we could just ‘squish’ a left hand like plasticine



to such a degree that it looks like a right hand.)

As with the symmetries appearing in the Galilean group, such
symmetries are nonetheless expected to be obeyed by the laws and
quantities of physics given assumptions about the isotropy and
homogeneity of space and time. However, we will see that
philosophical novelties appear in the case of discrete symmetry
groups.

Local and Global
As the name suggests, a global symmetry is one that involves
transformations that act in the same way at every point of space, so
that in, e.g. the case of a translation performing it globally would
mean shifting everything in the same way. This might be taken to
mean that they only ever apply to everything (i.e. the universe), but
that’s a mistake: Galileo’s ship argument involves a global
symmetry, namely a uniform velocity boost. Problems emerge, as
we see in the next chapter, when we apply such global symmetry
transformations to the universe as a whole. It appears that while
Galileo’s transformed ships will clearly be physically distinct
scenarios (e.g. only one’s moving away from the shore while the
other is anchored), in the case of shifted universes as a whole, it’s
hard to see that there is any difference at all: there is no comparable
sea shore from which to judge the differences.

A local symmetry, by contrast, involves transformations that can be
applied at spacetime points independently of the other points. If the
space-time has infinitely many points then this implies that the
symmetry group is infinite-dimensional (has infinitely many
parameters, compared to the ten of the Galilean group), since it can
act differently at each one of those points. These local symmetries
are associated with internal symmetries since they cannot be
couched in terms of conserved quantities observable through the
various correlations of events (as with the time-interval between
events being observable rather than the absolute temporal location,
pointing to time-translation invariance). General relativity has such
a local spacetime symmetry based on Diff(ℳ), the group of
diffeomorphisms of a manifold (spacetime, that is) – these
diffeomorphisms essentially just turn one manifold into another by
moving the points of the spacetime manifold around. What this



means, very roughly, is that the laws of general relativity (Einstein’s
field equations for the gravitational field) are invariant with respect
to any smooth transformation of the points of spacetime that keeps
the structure of the spacetime manifold intact (which means, again
very roughly, that the transformation does not end up ‘tearing’ the
spacetime manifold or putting holes in it). To connect up to the
discussion about laws, symmetries, and possible worlds: if we have
some solution of the Einstein equations (which represents a
possible world), then if we transform it by applying one of these
diffeomorphisms we have ourselves another possible world that
satisfies the laws of general relativity. In this sense, the group of
diffeomorphisms is the symmetry group of the theory.2

Local symmetry is rather more surprising: clearly if we shift
everything in the same way by the same amount (moving everything
we can see, including ourselves, by the same amount) then we won’t
be surprised to see that things look the same. But if we shifted
everything in different ways at all the different points (so that the
transformation is dependent on the particular spacetime point),
then we’d surely be very surprised if things (observables and laws)
stayed the same! Local symmetries have just this property. Since
they lead to no observable changes, they are usually considered to
be a feature of the mathematical representation used to model
reality, rather than part of reality itself, as with the symmetries used
in Galileo’s ship – though there is controversy over this point, some
of which we return to. Such symmetries are also called gauge
symmetries – a topic we return to in §8.3.

Passive and Active
Transformations (otherwise known as ‘mappings’ or just ‘maps’) in
the sense used in this book simply refer to an association of one
object (e.g. a point in spacetime) to another (e.g. another point in
spacetime) – the new point that results from the transformation is
the image under the mapping. Importantly, whatever is sitting at
such a point is ‘carried along’ as if on a wave to the image. Because
of this joint effect, we will generally be loose when talking about
what gets mapped around. Symmetries are quite clearly mappings
in this sense and can transform solutions of a theory’s equations
into other solutions (e.g. carrying a ship in one region of space to
another region of space).



We can consider these transformations in either a ‘passive’ or an
‘active’ sense. The former means that it is the reference frame of the
observer that is transformed – for example, I might stand on my
head to see if some property (or all properties) of an object are left
‘looking the same.’ The latter means that I save my poor head and
turn the object on its head instead, still checking to see if the
properties are left unchanged or not. When we are dealing with a
symmetry then the active and passive interpretations are
equivalent: what the active transformation does is exactly
compensated for by an equal and opposite (i.e. inversely related)
passive transformation: doing an active followed by a passive
transformation cancels out so that nothing ends up being done.

The simplest way to see that this is so involves looking at a
transformation through a coordinate system. Let’s consider simply
rotating a ball, with starting coordinates (Fx, Fy), by θ (some
number of degrees of rotation) relative to an origin. On the active
interpretation, this would involve a literal moving of the ball, from F
to F′ (by an amount θ) in fig. 3.1, all taking place in a fixed
background coordinate system (x, y).



Fig. 3.1 Active transformation of the ball, about the origin, keeping
the coordinate system fixed.



Fig. 3.2 Passive transformation of the ball, keeping the ball fixed but
now shifting the coordinate system.

On a passive approach, the ball stays firmly where it is, but now we
move our axes by the same amount θ, seen in fig. 3.2.

Being inverses of one another, combining the two transformations
leaves us where we started (fig. 3.3).

Hence, it is a simple case of shifting the measured system versus
shifting the coordinate system (the system of measurement). The
next chapter puts the results from this and the earlier chapter to
work in specific examples.



Fig. 3.3 Combining the active and passive transformations in the
case of a symmetry leaves the original situation ‘untouched.’

3.4 Further Readings
The philosophical discussion of symmetries naturally involves the
usage of mathematics. The readings below give excellent guides to
both the technical and conceptual elements.

Fun
Hermann Weyl (1952) Symmetry. Princeton University Press.
– Classic discussion of symmetry, which covers examples of
symmetry in art, nature, and science and introduces with
brilliant clarity the technical notions involved.

Kristopher Tapp (2010) Symmetry: A Mathematical
Exploration. Springer.
– Though the title states that this is a “Mathematical
Exploration,” it is exceptionally easy to read, and will lead the



reader to a good intuitive grasp of the relationship between
group theory and symmetry.

Serious
Elena Castellani and Katherine Brading, eds. (2003) Symmetry
in Physics: Philosophical Reflections. Cambridge University
Press.
– Superb collection of readings, old and new, on philosophical
aspects of symmetry.

Connoisseurs
Eugene Wigner (1967) Symmetries and Reflections. Indiana
University Press.
– Much of our terminology and concepts come from this book.
Written in crystal clear prose.

Notes
1 Any book on group theory will explain this basic idea – a good

choice for those interested in physics applications is Chris
Isham’s Lectures on Groups and Vector Spaces for Physicists
(World Scientific, 1989). The Galilean group is strictly speaking a
‘Lie group’ since the various parameters are continuous. A finite
rotation, of a planet for example, would be generated (or ‘built
up’) by the accumulation of lots of infinitesimal rotations. A
useful book on Lie groups, for those already acquainted with
vectors and matrices, is Harriet Pollatsek’s, Lie Groups: A
Problem-Oriented Introduction via Matrix Groups
(Mathematical Association of America, 2009).

2 This is very over-simplified and there are many more subtle issues
surrounding the proper interpretation of the symmetry group of
general relativity, but these are too technical to go into here. The
interested reader should consult §4 of C. Rovelli and M. Gaul,
“Loop Quantum Gravity and the Meaning of Diffeomorphism
Invariance” (in J. Kowalski-Glikman (ed.) Towards Quantum
Gravity, Springer: pp. 277–324).



4
Getting Philosophy from Symmetry
Many of the central debates in the history of philosophy of physics
concern the nature of space, time, and motion (kinematics) and
geometric symmetries (symmetries of space, time, and motion).
Lessons from these debates flow readily into a host of other areas,
not directly related to spacetime. Space and time are, quite
independently of tricky issues to do with motion and symmetry,
rather strange. As Frank Arntzenius points out, we can’t see them,
nor smell them, hear them, taste them or touch them.1 For this
reason there is much overlapping between debates about space and
time in the philosophy of physics and in philosophy more generally
– more so than, e.g. the quantum theory of fields, for obvious
reasons. We have a kind of direct access (Arntzenius’ point aside) to
space and time, that makes us feel like we know what we are talking
about: space seems empty; time seems ‘flowy.’ But physics radically
modifies our everyday views of space and time and so impacts on
the more general philosophical debates.

This chapter builds on some of the core aspects of physics
(kinematics, dynamics, states, observables, symmetries, etc.),
developed in the previous chapters. We begin with the justly famous
debate between Newton and Leibniz in which they agree about the
world’s overall geometry, but disagree over the ontological status of
space and time: Newton will say that the world has its geometry
because there is a space and time with that geometry; Leibniz will
say that the geometry comes about from the laws linking material
objects and events so that space and time emerge from this. Next
comes a similar argument that links ‘handedness’ with the reality
(or not) of space and time. After this we switch to relativistic
physics: firstly, in special relativity, we focus on the twins paradox
and a related argument about the reality of past, present, and future
events; and then finally comes general relativity and the so-called
‘hole argument.’

4.1 Leibniz Shifts and the Reality of Space and



Time
I expect that for most people space is understood to be much like a
really big room. Just as your bedroom contains your bed and
wardrobe and so on, so space contains your bedroom, the Earth,
galaxies, and all of the particles making up the universe’s objects.
Time is more difficult, perhaps, but again it is most likely to also be
understood along ‘container’ lines in which events occupy specific
instants and intervals of time, much as objects occupy the parts of
space. As with ordinary containers, it seems easy to imagine space
being emptied of its contents, and time emptied of its contents. But
is this correct? Does a space emptied of all objects make sense? Is it
a genuinely possible situation? What might an alternative look like?
This is the debate over the ontological nature of space and time: are
they real like chairs and hares and other material objects, or are
they some kind of construct from chairs, hares, and such; or
perhaps they are purely mind-dependent aspects of reality?

Absolute and Relative Motion
Space and time for Newton were certainly real. They were viewed to
be quite independent from material objects, which they could
indeed be said to contain. The motion of objects in this space then
happened within this container, which is understood to have the
same structure as Euclidean three-dimensional space. There is an
‘absolute Cartesian reference frame’ (x, y, z) in this space in which
measurements must be made to formulate properly the laws of
Newtonian mechanics – this analogy between a Cartesian
coordinate system for Euclidean space and an (inertial) frame goes
very deep, as we shall see. There would of course be motion of the
objects relative to one another too, but real motion is understood to
be motion relative to the special frame picked out by the absolute
container. As we will see, this kind of motion was required in order
to account for certain otherwise inexplicable ‘inertial effects’ (in
which one must invoke a non-inertial frame). After all, in otherwise
empty space, if we pass one another at uniform velocity in our
cosmic armchairs we wouldn’t be able to say which of us was truly
moving and which at rest (or whether we were both in motion). But
if you felt a force pushing you into your armchair, then we would
know that you are truly in motion. For Newton, true motion simply



meant absolute motion.

There is a problem, however: the special absolute frame is not
unique. Rather, there is a special class of frames: the inertial ones.
The laws (and the possible motions that satisfy them) do not depend
on position, orientation, or velocity, which implies that given one
‘special’ frame, any other frame (axes: (x′, y′, z′)) that differs from it
by some rotation, displacement (translation in space), or even by
some uniform velocity (a Galilean boost) will do just as well as far as
the laws are concerned. This freedom in the choice of frame stems
from a set of symmetries of Newtonian mechanics. The
transformations that map some frame to another, in such a way that
one still has a frame that is suitable for formulating the laws (i.e. an
inertial frame), are symmetries of the theory: if some motion is a
solution of the equations in one frame, then it will be in any frame
that is related to it by applying one of these transformations. Of
course, this means that one cannot use the laws to determine
whether one is at rest relative to absolute space, or gliding against it
at some uniform velocity.

This is all readily understandable if one assumes that space really is
just like a Euclidean container. After all, the points and regions of
the latter look the same regardless of the orientation or position of
the axes. One is simply transferring the symmetries of Euclidean
space (i.e. the distance preserving transformations of space, or
isometries) to a physical context. But why believe in this absolute
structure? Why believe in the reality of something that leads to such
unobservable quantities as absolute position, orientation, and
velocity?

Globes and Buckets
Newton believed he had proven the existence of absolute space by
reference to certain physical examples in which relational structure
would not be sufficient to account for some so-called inertial effects
(or forces). These involve rotations (and accelerated motion in
general, such as the cosmic armchair example above), but not
understood as frames at different but stationary orientations:
actively rotating systems. Rotations, he thought, must involve
absolute motion. One of these examples involved a pair of identical
globes connected by some cord, such that the entire system is



rotating about a central axis. The rotation would, of course, result in
tension in the cord so that it is pulled tight by the centrifugal force
(see fig. 4.1).

How is the relationist supposed to deal with this apparently
perfectly possible situation? The globes themselves are postulated to
be identical. Given that they are the only things in an otherwise
empty world, they also share all of their relational properties. So if
there is tension in the cord the relationist has no purely relational
resources to account for it. There must be rotation given the
tension: the tension will give a means of measuring the rotation,
and thus distinguishes the state of motion from one of uniform
motion. Newton argues that the only way to account for it is to
suppose that they are rotating relative to the frame of reference
provided by absolute space. In other words, motion cannot be
merely relative in this case.

Fig. 4.1 Newton’s globes in an otherwise empty universe. The
tension in the cord connecting them is an indicator of absolute
rotation and a non-inertial frame.

Another thought experiment, more famous than the globes, is
‘Newton’s bucket’ from the Scholium to his Principia Mathematica.
Here we are asked to consider a bucket filled with water suspended
from some hanging point by rope. The idea is to consider what
happens when we let the bucket spin. There are several stages
through which the bucket/water system proceeds: first one
imagines that the bucket has been twisted around many times so
that there is potential energy in the rope that will spin the bucket
when let go. What would we see? First the water would be flat and at
rest, and the bucket would also be at rest. Then, as we let go of the
bucket so that it can spin, the bucket will spin, but the water will
remain flat and at rest. Then the bucket will be rotating and the



water will be rotating, and will edge up the side of the bucket as it
does so: again, giving an indication of absolute motion. Why
absolute motion rather than merely relative motion? Because the
bucket and the water are supposed to rotate at the same rate, and so
will be at rest relative to one another. As Samuel Clarke (an ardent
Newtonian put it, in his correspondence with Leibniz):

[Newton] shows from real effects that there may be real motion
in the absence of relative motion, and relative motion in the
absence of real motion.

But there is a strategy for denying Newton’s conclusion starting with
Bishop Berkeley. Berkeley pointed out that if the spinning bucket,
with water, were all that existed then it simply wouldn’t make sense
to speak of it as rotating: relative to what? The same point can be
applied to the globes. The positivist physicist Ernst Mach, in his The
Science of Mechanics, leveled a similar attack in the nineteenth
century, pointing out that in the case of the bucket experiment,
rotation relative to the mass of the Earth and the other celestial
objects might be responsible for the non-flatness of the water’s
surface: the water is flat relative to these masses, and curved
relative to these masses, rather than absolute space. In order to
provide a decisive argument for absolute motion using the bucket
(or the globes) we would have to empty the universe of all other
matter. Though we might think we can do this in thought
experiments, we can’t rely on our intuitions in such cases: our
intuitions might differ, but how are we to decide between them in
such cases? The globes might expand or contract for all we know.
However, Mach’s response has its own difficulties: how, for
example, do the masses of the various celestial objects in the
universe act on our little bucket? They are very far away (some
extremely far away), so does it take some time for the effect to
occur? If not (if the effect is instantaneous, and so nonlocal), then
surely this explanation is not as good as one that depends on local
features of absolute space?

Ultimately, however, Mach was pointing out that since there is no
way of distinguishing between a rotating bucket and the rotating
heavens, the question of which is true is meaningless. That is, we
have no way of assessing whether such inertial effects are the result
of absolute motion or relative motion unless we could hold
Newton’s bucket still while spinning the rest of the universe around



it, to see if that generated the same curvature in the water’s surface
by centrifugal forces. As Mach himself put it:

The Universe is not twice given, with an Earth at rest and an
Earth in motion; but only once, with its relative motions, alone
determinable.

Whether one sides with the Mach–Berkeley strategy or not, it
cannot be doubted that Newton does have an empirical argument
on his side that needs to be responded to by the relationist.

In the age of airplane travel we can add another effect (that does not
require rotation) observed during take off: the force felt that pushes
you back in your seat is an inertial effect (this time generated by a
linear acceleration, rather than the rotations of the bucket and
globes experiments). You are at rest relative to the plane, and yet
there is some force – here your body is much like the water sloshing
in the bucket. Accelerated motion can be noticed: one can tell an
accelerated frame from one at rest or in uniform motion. Just try
and drink a cup of tea in an accelerated frame (a car taking a sharp
corner), compared to a uniformly moving frame (a peaceful train
journey). Whether it comes about through motion against an
absolute container (i.e. departure from inertial, straight-line motion
in that container) is the issue, however. The problem for the
relationalist is that only one reference frame feels the effects: the
runway accelerating from your plane at the same rate feels nothing!
Mach would, of course, point out that it is acceleration relative to
the rest of the mass in the universe such that if we could hold you
and the airplane still and whoosh the rest of this mass away you
might still feel the same force. Hence, there is absolute motion, only
it is relative to this ‘cosmic frame’ rather than absolute space. What
is missing, however, is a theory embodying this idea.

So-called Barbour–Bertotti (after Julian Barbour and Bruno
Bertotti) models constitute a genuine attempt at a relationalist
mechanics where the action takes place in a relative configuration
space (essentially a space of all possible shapes, with no
redundancy). One of its key Machian features is a constraint
outlawing the rotation of the universe – or rather postulating a
symmetry between the universe undergoing rotation, while an
object (subsystem) stays fixed, and that subsystem rotating instead,
with the rest of the universe as a whole remaining fixed. This is



(4.1)

needed to secure a relationalist dynamics, so that fixing some initial
relative configuration (just specifying the relative distances of the
objects) will be enough to fix the relative motions forever after
(since the whole system is in inertial motion) – without this we
would need to supply more data (an axis and rate of rotation) to get
the subsequent evolution.2

Leibniz’s Principles
Leibniz wanted nothing of this absolute container, which he
believed allowed for a multiplicity of indistinguishable yet physically
distinct possible worlds. To understand why Leibniz thought this
was a bad thing, we need to quickly say something about his general
philosophical principles: the principle of the identity of
indiscernibles [PII] and the principle of sufficient reason [PSR]. The
former principle has become an integral part of many issues in the
philosophy of physics relating to symmetries. It simply says that
objects sharing all of their properties in common are really just one
and the same object, perhaps given different names or labels, which
merely serve to (over-) represent the object. We can write this using
logical notation as follows:

In words, this says ‘for any properties F, and objects x and y; if x has
property F if and only if y has the property F, then x and y are
identical.’ Or, to put it another (converse) way: there is no
distinction without a difference. One can also understand this
principle to mean that there cannot exist two things that differ only
in number, i.e. only in that there are two of them.

This sounds simple enough, but there are several subtleties involved
in making sense of the principle. Firstly, there is an issue over what
properties are to be included here: just qualitative ones? Spatial and
temporal locations? There have even been proposed certain special
non-qualitative properties known as ‘haecceities’ (primitive
thisnesses). In ordinary language, a primitive thisness says that
something is what it is because it just is, so there! ‘Haecciety’ is just
a fancy word for this-ness. We can understand it as a certain kind of
non-qualitative property (qualitative properties are ‘suchnesses’),
which involves being identical with a certain individual (obviously



only possessed by a unique individual). Denying that such things
exist, as a PII-wielding Leibnizian naturally would, commits one to
a ‘bundle’ theory of individuals, according to which an individual’s
identity is just given by the various properties it has: there is no
ultimate ‘pincushion’ sitting under all of the properties that gives
each object its distinctive identity, so that even objects sharing every
other property will differ in at least some way. Another issue is over
what kinds of things are being compared: objects or possibilities?
Or even entire worlds?

The PSR simply says that “for anything that is the case, there’s a
reason why it should be so rather than otherwise.” If you have blue
eyes, there has to be a reason for that: it can’t be a whim of nature.
Same goes for every single element and aspect of our world:
including the way the material universe is configured and, if
absolute space should exist, this also includes location within it.

The Shift Argument(s)
Leibniz used these principles to great effect in an argument that
philosophers like to label the ‘shift argument.’ There are really
several types: static, kinematic, and dynamical (depending on
whether we use translations and rotations, boosts, or accelerations).
Recall that the symmetries of Newtonian space mean that the laws
cannot be used to distinguish between frames related by Galilean
transformations. There is no mechanical experiment one could
perform to tell which situation was the ‘real’ one – accelerations are
a different kettle of fish, of course, as we will return to.

The Static Shift
Now, let us suppose that this Newtonian space is real, and the
theory correctly describes our universe. Let’s suppose that in this
universe the tip of your nose is sitting at point x at some instant t.
That means, given the symmetries of the theory, there is an
infinitude of alternative possibilities (consistent with the theory)
differing by some translation, or rotation, or boost, or some
combination of them, leaving the tip of your nose at an entirely
different (though no less real) point.

The problem (absurdity) that Leibniz draws out is that these
possibilities would be qualitatively identical (indiscernible). The



world in which the tip of your nose is at x and that in which it is at x
+ 2 feet westward (generated by rigidly shifting all of the matter in
the universe by x + 2 feet westward: an element of the group Gal
from the previous chapter) cannot be distinguished since all
measuring devices have been shifted by the same amount: all
relational material structure is preserved by the transformation
(this is the meaning of isometry) – let’s call these shifted worlds
‘Galileomorphs.’ We could alternatively leave your nose at x and
shift the time at which your nose sits there, from t to t + 2 seconds
(generated by another element of Gal). Again, there is no way to
distinguish between t and t + 2 (remember, they smell, sound, taste,
feel, and look the same!), so the worlds are strictly
indistinguishable. Yet for Newton (and the believer in absolute
space and time) they are physically distinct.

For Leibniz this is a massive violation of his principles. One can’t
have indistinguishable yet distinct entities. But, worse (as far as
Leibniz was concerned), if it were true then it would mean that God
created the universe when and where he did without having a good
reason for doing so: not cool, says Leibniz. The argument can be ‘de-
theologized’ quite straightforwardly. The fundamental point is that
Newton’s theory generates a bunch of solutions that cannot be
physically distinguished in any way – we don’t need these to fall
under God’s gaze for this to be the case. This is epistemologically
unsatisfactory, since it means we cannot ever tell which of these
solutions is the ‘true’ solution. If we think of possibilities as in some
sense real things (possible worlds), then we have a further problem,
which is that it is difficult to see in what sense these are genuinely
distinct possible worlds. Leibniz’s move, now called ‘relationism,’
was to cut out these indiscernible possibilities, collapsing them to
one using his PII.3 As he put it himself: “two states indiscernible
from each other are the same state” and the idea that one could shift
the entire contents of the universe is a mere “fiction.”

All of the indiscernible worlds match up with respect to the material
relations they embody: they are relationally identical. If one has an
ontology of relations, then the worlds are viewed as one and the
same: the apparent differences are not really physical. This is
relationism: space and time are viewed as kinds of ‘secondary
qualities’ that depend on distance and direction relations between
material bodies and/or events. One also shrinks down the kinds of



‘fundamental stuff’ that exists in this way: there is only matter
standing in various relationships, not matter and space and time
(understood as equally fundamental) as in Newton’s universe. Of
course, if the multiplicity of indiscernible possibilities are not seen
to be real, then absolute space cannot be real either. QED!

This pair of positions forms the basis of the modern debate over the
ontological status of space and time, and has spread into other
debates in which some symmetry is at the root of possibility
generation: wherever there is a physical symmetry, there is the
potential to generate indiscernible possibilities, which translate, in
terms of physics, into empirically inaccessible structure. Whenever
one has indiscernible possibilities one has an interpretive fork: treat
the possibilities as distinct or as identical (so that, e.g. the
differences are merely arbitrary features of the mathematical
representation used). The former is generally termed a
substantivalist approach and the latter a relationist approach –
these terms stretch beyond positions concerning space and time.

There are problems with Leibniz’s strategy of response. For
example, Sklar ([46], p. 180) points out a way that the
substantivalist might respond in a way that offers a sufficient
reason: the material content is where it was yesterday and no force
interfered with this during that time, so here it remains sitting
perfectly consistent with Newton’s laws. To be otherwise would
violate the principle of sufficient reason. The problem with this is
that it misunderstands Leibniz’s point. Even given that it was in the
same location yesterday and no forces shifted it, the question
remains “why wasn’t it at some other point yesterday and, given the
absence of forces, today?” That is, why should it have spent its
entire existence (even for all eternity) at some undistinguished
point, given that all others would be just as suitable? Pointing to
prior causes does not yield an answer to the issue of the
contingency of the specific points at which the matter sits. Might
there be another possible world, also in which we can say the same
thing about its location (it’s always been there, with no forces to
disturb it), yet this location is distinct from the other in absolute
space?

Or there might just be some irreducible randomness involved in the
fact that since all points are the same any will do as well as another.
Perhaps God threw a cosmic dart to find the central point, or did the



trick where one closes one’s eyes and simply drops a fingertip on a
map to decide where to go, only here the decision was where to
place the universe’s contents. We are used to symmetries being
broken ‘spontaneously’ in modern physics (though it is not without
controversy); but the point is that we are less likely to be swayed by
Leibniz’s talk of ‘God’s sufficient reasons’ for action.

The Kinematic Shift
Absolute locations might be passed off as detectable in a way
(though not literally observable): objects are where they are in
absolute space, period. We can’t get a high-powered microscope and
look at the spatial points, but if they are there then the body will be
stationed over some particular points at any instant. Absolute
velocities are more difficult since they require motion in a direction.
Though we can say where we are in absolute space at any instant
(namely right here!), we can’t say where we are going and at what
speed. The kinematic shift, involving Galilean boosts, causes similar
problems to the static case, but there is a difference then: although
there will indeed be infinitely many possible indiscernible solutions
(being isometries), each with a different uniform velocity through
absolute space, there is, in terms of the PSR at least, a reason to pick
one as ‘privileged’ in some sense: the state of absolute rest has
certain features that make it special and worth realizing if you are a
creator that likes to act rationally. Because it does not involve any
motion it has no direction that needs to be selected and so the
isotropy of space needn’t be a cause for concern. So while there is
not a distinguished origin in terms of location, there is a kind of
distinguished origin for velocity. But this leads to another shift
problem.

The shift problems all spring from the independence of Newton’s
laws of motion (his equations) from time, position, velocity, and
orientation, all of which spring themselves from the homogeneity
and isotopy of space and time. Instead the equations depend on
relative properties: configurations and velocities. But they do
depend on accelerations. What we need is a way to distinguish
accelerated motion from unaccelerated motion. One way to do this
is with spacetime diagrams, in which lines (worldlines) represent
trajectories of particles (see fig. 4.2): covering some spatial distance
in some interval of time. The faster an object moves the smaller the



angle between the worldline and the spatial axis: infinite speed
would correspond to the worldline’s being parallel with the spatial
axis and rest corresponds to the worldline’s being parallel to the
time axis. Straight lines represent constant velocity. Therefore bent
lines will indicate departure from constant velocity: acceleration!

Fig. 4.2 Trajectory of two particles in absolute space (restricted to
one spatial dimension and time): the straight line represents a
particle with uniform speed while the curved line represents an
accelerating particle.

The Galilean symmetry of Newton’s laws translates into this
spacetime diagram picture into an equivalence of tilted, yet still
parallel worldlines generated by a Galilean boost. Hence, in fig. 4.3
(now with an additional dimension shown to reveal the different
instants of time) the straight trajectories are indistinguishable yet
distinct if absolute spacetime exists.

Hence, we have an awful lot of redundant structure in this
representation. We have a unique way of splitting time into three-
dimensional snapshots (Nows), corresponding to the unique,



privileged inertial frame (with zero velocity), but the laws cannot
determine which points of space the particles travel through on each
slice. The kinematic shift simply employs the various families of
parallel lines in place of the worlds shifted in terms of their absolute
locations in the static case and Leibniz’s two-pronged attacked,
using his two principles, can get a purchase.

But all we really need to do justice to Newton’s laws is a notion of
when a line is straight and when it’s bent (in the technical jargon,
we need an ‘affine structure’) to distinguish inertial from non-
inertial motion. This requires absolute acceleration and
simultaneity, but reference frames (families of lines above) that
differ by Galilean boosts are relative. So-called Galilean spacetime
encodes this reduced structure, preventing the shift arguments from
gaining a foothold. In effect, PII is being imposed on the spacetime
but in a very restricted way (to absolute rest and velocity).

This eliminates a serious epistemological defect in Newton’s
version. In order to get a foothold there needs to be a notion of
sameness of points from slice to slice (so that we can speak of
different constant velocities), which Newton assumes, but this goes
beyond the notion of straightness of lines across slices. Our ability
to detect absolute accelerations does not depend on this additional
structure. Removing this renders the world and its boosted
counterpart utterly indistinguishable (not just undetectable, as it is
for Newton’s spacetime). Galilean spacetime only cares about
relative velocities, in keeping with the symmetry of Newton’s laws,
so that infinitely many states in Newton’s framework correspond to
a single state in this new and improved framework.4



Fig. 4.3 Indistinguishable motions (straight lines) of particles in
Newtonian spacetime representing physically distinct velocities,
with the untilted lines in the middle representing particles at rest.
The curved dotted line shows an accelerated particle once again.

The ‘dynamical shift’ is a different matter entirely, since it involves
perfectly detectable forces. These give Newton’s system its power.
We turn to these issues next, but strictly speaking the notion of a
shift argument in this sense threatens relationalism (along
Leibnizian lines): a world and an accelerated counterpart are not
indiscernible, so none of the usual tools for ridiculing absolute space
(PII and PSR) are available. However, in purely relational terms
they are indiscernible: accelerations are only relative motions. In
the shifted world version of this, one world is at rest, say, and the
other receives a global acceleration. Given the global nature of the



transformation nothing relational would change, yet we might
expect to feel a force in the accelerated case. It is possible to dig
one’s heels in and point out that we can’t say what would happen in
the global situation. Still, the law of inertia remains a problem for
relationists.

Real Motion
We started with a discussion of motion, rather than the reality of
space and time. It turns out that Leibniz agreed with Newton that
certain states of motion (the non-inertial ones) are ‘true (i.e. non-
relative) motions,’ but seemingly he doesn’t see this as significant
for the ontology of spacetime debate:

I find nothing … that proves, or can prove, the reality of space
in itself. However, I grant there is a difference between an
absolute true motion of a body, and a mere relative change of
its situation with respect to another body. For when the
immediate cause of the change is in the body, that body is truly
in motion; and then the situation of other bodies, with respect
to it, will be changed consequently, though the cause of that
change not be in them. (LV.53)

But how can this be squared with his overarching relationism about
space and time (which must surely infect his view of motion, given
that motion is couched in terms of space and time)? Newton had a
response, of course. Indeed, his very reason for postulating absolute
space and time was to provide a response to the reality of inertial
effects (in which real forces are felt because of motion): absolute
space is needed to make sense of inertial motion (undisturbed
motion in a straight line); absolute time is needed to make sense of
constant (i.e. unaccelerated) speed. If we can’t ground inertial
motion then how do we ground non-inertial motion? Leibniz
grounds it in the bodies themselves, independently of relations to
space and time, but also of other bodies. Real motion is that caused
by force, and this, for Leibniz, is grounded in what he calls “vis
viva” (‘living force’ or that which is responsible for force and so for
real motion). This suggests that if we want to know which object is
in true motion (and don’t want to rely on the inertial effects
themselves: looking for an explanation instead) then we must
search for the causal origin of the motion – in the case of the



airplane and the runway, we can see that the engines caused the
motion. No mention of absolute space or time here. But there is no
real story of how the idea works, and what it means to contain vis
viva.

Similarly, Lawrence Sklar ([46], pp. 229–234) has argued that
relationalism and inertial effects can in fact be squared (and the
debate about motion separated from the debate about the existence
of space and time) if we take absolute states of motion to be brute,
‘intrinsic’ features of the objects that have them (not in need of
deeper explanation), rather than being extrinsically related to
absolute space and time (or even other objects, à la Berkeley and
Mach) – monadic properties of objects rather than relations to
spacetime. Hence, the relationist can believe that space and time are
constructs from material objects, but add absolute acceleration as
one of the possible intrinsic properties to be had by these objects.5

Mach’s response is simply not to take the bait of these ‘real motion’
examples. They all rest on unverifiable thought experiments, as we
saw above. But, as mentioned earlier, finding an actual theoretical
scheme that can do everything Newton’s absolutist scheme can do is
a difficult challenge, the Barbour–Bertotti models
notwithstanding.6

4.2 A Handy Argument for the Substantivalist?
The shift arguments in the preceding section made use of the
isometries of Euclidean space (as well as Galilean boosts) to
generate indiscernible possibilities. Another isometry is that of
reflection. This cannot be achieved by a rigid motion (it is a discrete
symmetry), so it is distinguished from the other motions
accordingly. However, we can still draw similar philosophical
consequences from it.

We tend to take the phenomenon of handedness (sometimes called
‘enantiomorphy’) for granted, since most of us are born with a pair
of hands and feet. Our very DNA too comes in both left and right-
handed flavours. Some fundamental processes in physics appear to
favor a particular orientation: “God is a weak left-hander” as
Wolfgang Pauli once said. But how is it the case that there are left
and right hands? It seems to have something to do with space, but



what precisely, if anything, does it tell us about the nature of space?
Also, is the switching of the handedness of something a
fundamental symmetry? How do we explain the difference between
left and right? The situation poses formidable problems for those
that wish to be relationists about space, for if handedness really is a
spatial feature, then presumably, in principle, by their lights left and
right hands are identical. After all, they can share all of their
internal relational properties (same distance from base of thumb to
knuckle of forefinger and so on) and yet they are evidently not quite
the same, as can quickly be seen by trying to put a left-handed glove
on right hand, to use an example due to Immanuel Kant.

Incongruent Counterparts
Kant repeatedly returned to the problem of left and right –
‘incongruent counterparts’ as he called left and right-handed
entities: “[a]n object which is completely like and similar to another,
although it cannot be included exactly within the same limits” –
over several papers spanning more than a decade. So formidable
was the problem, that Kant used it (initially) to argue for
(Newtonian) absolute space (and against Leibnizian relationism) –
he later viewed the same phenomenon as pointing toward a more
relational view, as we will see. To see why the problem of
incongruent counterparts is so tricky, let’s consider a thought
experiment.

Firstly, suppose that God (or the Flying Spaghetti Monster, if you
are ‘Pastafarianly’ inclined) wanted to create a catalogue of all
possible (instantaneous) relative configurations (relative distances)
for the various objects (and their parts) in the world. This would say
such things as d(apple, orange) = 2 cm, d(Earth, Mars) =
401,000,000 km, and so on. Now imagine that the full catalogue is
made: essentially it should be able to function as a construction
manual for (the spatial facts of) the world. Is that really enough to
pin down all of the spatial facts of the world, such that any other
world that was built following the specifications of this catalogue
would be identical? Kant says No, because one has failed to specify
how the various objects (the apples and oranges) are oriented
relative to a global (worldwide) system of handedness.7 One could
imagine two of the Flying Spaghetti Monster’s colleagues, each
given a copy of the catalogue, constructing non-identical worlds



from the same relative configurations that are mirror images of one
another, in the sense that the one cannot be superimposed on the
other. They would be what Kant called ‘incongruent counterparts’
(see fig. 4.4).

Fig. 4.4 Two possibilities constructed by following the ‘relative-
distance instruction manual.’ Clearly distinct, since incongruent by
any rigid motion, yet identical by the relationalist’s lights.

[Image source: 'Immanuel Kant. Aquatint silhouette.' The Wellcome Library
and The European Library, CC BY-NC]

This example clearly has a flavour of the Leibniz shift argument
about it. We have a pair of worlds, that share all of their relational
properties (under the reflection operation) and yet, there seems to
be something genuinely different about them in this case (and
unlike the case of the static shifts generated by translations). Yet
Leibniz writes directly of this scenario that to ask why God created
the cosmos as it is, rather than its mirror image, is to ask “a quite



inadmissible question.” He views the operations of (global)
reflection and (global) translation as much the same: neither
generates a discernible difference. We have been a little unfair on
Leibniz since he would consider the entire universe reflected so that
we don’t have the luxury of comparing it with another, with both
embedded in some larger space. Yet the relationalist is nonetheless
left with the challenge of explaining in virtue of what a right hand is
different from a left hand. So we have two issues: one concerning
handedness in the context of whole possible worlds and one
concerning handed objects within a world.

The Lone Hand
Kant presents the following thought experiment that appears to
demonstrate that contrary to Leibniz, even the possible world
version is an admissible question:

Let it be imagined that the first created thing were a human
hand, then it must necessarily be either a right hand or a left
hand. In order to produce the one a different action of the
creative cause is necessary from that, by means of which its
counterpart could be produced. ([28], p. 42)

Hence, Leibniz had assumed that nothing could hang on simply
reflecting everything in the same way: it would generate the same
physical possibility and therefore is redundant. This redundancy
would land God into a predicament in which there was no rational
reason for actualizing one or the other. But Kant points out that
handedness has a peculiar feature: there does seem to be an
observable difference. If, for example, we assume that another
entity is introduced into such a ‘lone hand’ world then it must break
any Leibnizian-assumed symmetry. A hand would be shown to have
been left or right all along, and hence there is a real difference
between the left and right worlds. The alternative, for the
relationalist, would have been that before the introduction of other
handed objects, the handedness of the hand would have been
indeterminate so that it would fit equally well on either side of a
human body, which Kant views as absurd (it would surely only be
congruent with one of the body’s hands). Facts about the orientation
of things must go beyond purely relative facts. Kant claims that
there is some “inner difference” between objects of different



handedness. Kant put this difference down to their absolute spatial
properties. Hence, Kant argued that handedness reveals the
existence of absolute space:

[T]he determinations of space are not consequences of the
situations of the parts of matter relative to each other; rather
are the latter consequences of the former. It is also clear that in
the constitution of bodies, differences, and real differences at
that, can be found; and these differences are connected purely
with absolute and original space, for it is only through it that
the relation of physical things is possible. ([28], p. 43)

We are left with explaining in virtue of what left and right hands
differ. Is it some internal, intrinsic feature they possess, or
something external to them? Kant himself suggests that it involves
reference to the space as a whole. If we have absolute space at our
disposal then we can use the points of absolute space to point to
some real difference between incongruent counterparts, even
though it is a non-qualitative grounding.8 But a simple passing of
the buck to absolute space must do more than have a set of points
underlying left and right hands; after all, the configuration of points
will face the same problem: why are they left and right-handed?
Hence Kant’s reference to global properties of a space: it is a
relation between the hand and (some structure of) absolute space
that is supposed to do the work. This structure should allow for two
ways to embed objects in the space – this is precisely why Hoefer
believes that primitive identities are needed for the points in
considering the two embeddings as two embeddings (see note 8).

Can Relationalists Handle Hands?
Is the situation for the relationalist as dire as Kant makes out? Or
does the relationalist have some way of accounting for handedness
in the world, and the role it plays? Recall that Kant’s argument says
that incongruent counterparts can’t be explained relationally
because there is simply no relational difference to be found in them.
His lone hand scenario was supposed to clinch this. Yet the
relationalist is capable of pointing out that handedness is an
extrinsic property of objects: a lone hand has no external relations
yet. In introducing, say, an opposite hand, then we have a pair of
hands, but neither has its handedness intrinsically. Indeed,



incongruent counterparts are intrinsically identical, but the reason
for their incongruence comes from relations holding between them.

So a lone hand simply isn’t left or right when alone in the universe:
it has no handedness. Left picks out the class of things that have a
family resemblance (‘fits’) with whatever was (conventionally) the
first left. Nick Huggett ([26], §16.2) calls this the ‘fitting account.’
The idea is that ‘congruence’ is really an equivalence relation on the
universe that partitions all of the objects it contains into equivalence
classes {Leftys} and {Rightys} with ‘left-handed’ and ‘right-handed’
simply designating the members of these respective classes. One
checks for the handedness of some particular object by checking the
fit between it and the classes. Clearly we need more than a lone
hand to do this, so Kant’s premise is evaded. The problem was in
supposing that handedness was an intrinsic property. Incongruence
is then explained in terms of the spatial relation holding between
them as material objects. (In the case of the Möbius strip world, in
such a case the fitting account would be perfectly consistent with
the idea that left and right handedness is a local property of the
world, so that the partition into lefts and rights cannot be extended
throughout the space. The substantivalist account might not fare as
well in explaining left and right handedness in such a non-
orientable world.)

Broken Mirrors
This highfalutin metaphysics can be linked rather directly with ‘real
physics’ by simply asking whether the kinds of mirror reflections
considered above are symmetries of physical processes and laws in
the same way that, e.g. translations are. What this would mean is
that there is no preference given by the laws of physics for some
orientation. The laws would operate obliviously to switchings of left
and right-handed versions of processes if this were so. It seems like
a reasonable assumption, given the isotropy and homogeneity of
space: why would physics care if we switched left to right? This was
certainly the default position of most scientists in the first half of the
twentieth century (until 1957: see below). For example, in his
popular book on symmetry, the great mathematician-physicist-
philosopher Hermann Weyl wrote:

The net result is that in all physics nothing has shown up



indicating an intrinsic difference of left and right. Just as all
points and all directions in space are equivalent, so are left and
right. Position, direction, left, and right are relative concepts.
([54], p. 20)

Weyl, by his own admission in later paragraphs, was following in
the footsteps of Leibniz in saying this. Martin Gardner writing more
forcefully (with reference to the Ozma problem of note 7) states:

We are forced, therefore, to concede that our original problem
is insoluble. There is neither a formal nor operational definition
of left; no means by which it could be communicated to our
sister planet. Another way of formulating this surprising
conclusion is as follows: Every known inorganic asymmetric
structure or phenomenon exists in two mirror image forms
identical in all respects except left-right orientations. Mother
Nature is ambidextrous. Apart from living organisms, she has
no right or left-handed habits; whatever she does
asymmetrically, she does in mirror image forms. ([17], p. 210)

He rather presciently adds that “[t]here is no a priori reason why
science might not tomorrow discover some type of structure or
natural law which throughout the cosmos would invariably possess
a left-handed twist” (ibid.).

Counterintuitively, this symmetry (parity symmetry) is indeed
violated, for certain lawlike processes (namely, those involving the
so-called weak interaction). What we find is that electrons (or beta
particles) in a beta decay process will preferentially be shot out of
the South side (relative to a strong magnetic field) than the North
side. The original experiment was carried out with Cobalt-60 atoms.
When such atoms are cooled close to absolute zero, the usually
random scattering of electrons from the nucleus is focused into
North and South channels. This setup clearly allows one to look at
the rates of electrons going in both directions. A world with mirror
symmetry would see no difference: why should the world prefer one
direction in space than another? Surely the atom is much like Jean
Buridan’s donkey between a pair of identical bales of hay? But the
electrons did prefer a direction in space allowing for a physical
definition of a South Pole (that in which electron rates are highest).

To return to the ‘Ozma problem,’ we can now see how it might be
possible to communicate what we mean by left and right, thus



enabling any technologically advanced civilization to reproduce any
pictures we might send in the right orientation. In six ‘easy’ steps:
(1) get some Cobalt-60 atoms, (2) cool them near to absolute zero,
(3) align the nuclei spins with a strong magnetic field, (4) count the
emitted electrons, (5) call “south” the end with the most electrons
emitted, (6) label the ends of the applied field accordingly, transfer
these labels to the ends of a magnetic needle, position the needle
over a wire in which current flows away from you: left is then where
the north pole of the needle points.

John Earman argues that the existence of such a lawlike left–right
(or parity) asymmetry (i.e. as opposed to the mere contingent
existence of lefts and rights) makes life far more difficult for the
relationalist interpretation of handedness. Indeed, he views the
failure of mirror symmetry for the laws of physics as “an
embarrassment for the relationist account”! As he explains:

Putting some 20th century words into Kant’s mouth, let it be
imagined that the first created process is π− − + p → Λ0 +K0,
Λ0 → π− − + p. The absolutist has no problem in writing laws in
which [one process] is more probable than [its mirror process],
but the relationist … certainly does, since for him [they] are
supposed to be merely different modes of presentation of the
same relational model. Evidently, to accommodate the new
physics, relational models must be more variegated that
initially thought. ([9], p. 148)

That is, the usual ‘Leibniz equivalence’ manoeuvre (i.e. viewing
situations with no intrinsic differences as physically identical)
simply fails here since there are non-trivial differences. But there is
nothing preventing the application of the ‘fitting account’ here. The
“first process” of which Earman speaks is no different to the lone
hand of course, and we can say that without comparative processes
it has no orientation. The relationalist can, then, describe parity
violating phenomena (a spatial asymmetry in the ejection of
electrons), and so encompass the laws of such processes, yet they do
not explain the asymmetry, treating it as a brute fact about reality.
We might have lingering ‘principle of sufficient reasons’-based
doubts about whether this is good enough. As Carl Hoefer quite
rightly points out, the hidden assumption that makes the
relationalist’s response seem underwhelming is that the processes



are taken to happen against a background space that allows for
multiple possibilities so that the nagging question “how do those
subsequent decaying pions know which direction is supposed to be
the more-probable one?” is faced (ibid., p. 252). It seems like a
mystery (pre-established harmony) how all of those electrons know
to go south given they don’t have any intrinsic quality within them
that makes it so. But ultimate explanation is not on the table.9

4.3 Special Relativity: From Twins to the Block
Universe

There was a young lady named Bright,

Whose speed was far faster than light;

She started one day

In a relative way,

And returned on the previous night.

[A. H. Reginald Buller in Punch Magazine, 1923].

The Classic Twins Paradox
The twins paradox of special relativity is one of the classic thought
experiments in philosophy of physics. It appears to show that
according to special relativity, for a pair of twins, one of which
undergoes a round-trip into space at high speed, they will both
appear to have aged less relative to the other when they meet again.
Hence the initial paradox: one cannot be both older and younger
simultaneously! The problem is, of course, that according to special
relativity (in which only relative motions matter) either twin can be
considered to be the one that remains at rest (in the ‘rest frame’)
while the other dashes off. Though it might seem unnatural to
suppose that the spacebound twin is at rest while the other twin
(along with the Earth!) whooshes away, from the point of view of
the physics, there is no absolute rest frame to ground the truth of
one description over the other: all inertial reference frames
(roughly, those in which Newton’s first law holds) are equivalent
from the point of view of describing physical processes.

But this apparent paradox is easily dissolved: relativistic time



dilation will occur, because of the high speed of the journey, one
needs to figure out what feature is responsible for the decreased
ageing of the space-traveling twin rather than her Earthbound
counterpart: what is the nature of the asymmetry? The solution lies
in the fact that only one twin will complete a journey in which there
is a ‘turnaround’ to make the return journey. Perhaps they slingshot
around a star or hit the reverse thrusters. This simple fact means
that the spacebound twin must occupy multiple frames of reference
(i.e. they will not be in an inertial frame, characterized by constant
velocity, for the entire journey), while the Earthbound twin stays in
a single inertial frame (since the Earth is in free fall). In which case
the spacebound twin indeed ages less. The symmetry that would
otherwise allow us freely to use either description (spacebound twin
at rest or in motion) is therefore broken, since that only holds for
inertial frames. But we still need to say exactly why the traveller
ages less, and what changing frames has to do with it.

This solution makes the problem look rather trivial, and you’re
perhaps wondering why I referred to it as “a classic.” However,
there are still interesting features to probe, including some that
have only recently emerged in which the turnaround manoeuvre is
removed by a clever topological trick. This ‘topological twins’
scenario allows us to dispose of a common answer to the question of
what causes the difference in ageing: accelerations (or the physical
nature of the turnaround process itself) during the switch from an
outbound to an inbound trajectory – the latter is closer to the truth,
but still isn’t quite the proper explanation. Let us develop some of
the details of the twin paradox setup.

Firstly, note that the choice of identical twins is simply done to
make the example more colorful: all that matters is the differential
ageing that results from the high-speed (relativistic) travel. Let’s
name our travellers Angelina (Jolie) and Brad (Pitt). We can simply
have them wear twin watches if we wish to, to inspect the difference
in seconds of proper time passed. (The time shown on their watches
(or in their biological processes, which also function as a clock of
sorts) is known as the ‘proper time’ and depends on the state of
motion of the clock.) These watches will be synchronized before
they split at t = 0 and compared when they meet again. Let us
suppose that Angelina travels 4.22 light years away, to Proxima
Centauri, at relativistic speed (forget about the biological



(4.2)

implications of a human traveling at close to the speed of light).
Their respective spacetime trajectories (viewed from Brad’s frame)
would look as in figure 4.5. According to this diagram, of course, it
looks like Angelina’s journey is by far the longer. However, we need
to remember that this is simply a representation of the Lorentzian
spacetime interval on a Euclidean page: the longer the spacetime
interval, the shorter the journey in special relativity. The crucial
element in the twins paradox is the dilation (or ‘gamma’) factor:

Fig. 4.5 Brad (light gray) and Angelina’s (dark) trajectories in
spacetime. The motion is plotted from Brad’s perspective who
simply ‘stands still’ traveling up the time axis, while Angelina
whizzes off to the nearest star, and immediately returns (that is, we
have assumed an instantaneous turnaround: we could smooth this
vertex off adding additional time to the journey). Note that the 45-
degree angle for light implies that it travels one unit of distance per
unit of time (formally, we say that c = 1, where c is the velocity of
light, since velocity is simply distance divided by time).

This factor gives the ratio for the relative rates of Brad and
Angelina’s wristwatches (according to which Angelina’s watch
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(4.4)

appears to run slow relative to Brad’s). Note that it is entirely
velocity dependent, with no sign of rates of change of velocity: the
faster one travels, the greater the dilation of one twin’s tick rate
relative to the other – but note, in relation to the ‘acceleration
solution’ above, that no mention is made in this factor of
accelerations: dilations do not care about accelerations! Or they do
only inasmuch as accelerations are implicated in speed changes.
Note also, that special relativity is perfectly equipped to deal with
accelerations, which would simply be represented using curved
worldlines on a spacetime diagram.

Suppose we have mastered spaceflight to such an extent that we can
instantaneously accelerate Angelina to 80% of the speed of light c: v
= 0.80c. Let’s round the distance d to 4 light years for simplicity.
Brad would calculate Angelina’s roundtrip to be just twice the
distance to Proxima Centauri divided by her speed:

This simply means that Brad will be ten years older when Angelina
returns home than when she set off. But taking into account the
relativistic speed of Angelina, we need to include the γ-factor, 
. Recall that v = 0.8c and c itself is just 1 (the speed limit). So we
have:

So to find Angelina’s age, Brad’s ten years will be dilated by this
specific γ-factor yielding γ × 10 = 0.6 × 10. Angelina will have only
aged six years compared to Brad’s ten (or, there are almost two ticks
of Brad’s watch for each tick of Angelina’s). Remember, also, that
since Angelina is in motion at high speed, her spaceship will be
contracted in the direction of motion by the γ-factor, so that from
her frame (in which she is at rest, of course) she will have covered
only 0.6 × 4 = 2.4 light years, which explains the six-year-long
round trip: 2.4/0.8 = 3 (using d/v = t) for each leg – note that
during the outward leg, the symmetry of their perspectives is
preserved: either could speak of the other as the twin that moved.
The 6:10 year ratio is a direct consequence of the dilation factor of
0.6 – as an exercise, try playing around with different values of the



dilation factor in order to see how big an age difference one can
engineer. This is not just a case of Angelina’s watch showing that six
years have elapsed rather than ten: she will have biologically aged
six years, unlike Brad and the rest of Earth’s inhabitants who have
aged ten.

The impact of frame changing on the age difference can be seen
with the aid of a spacetime diagram this time highlighting
Angelina’s simultaneity slices (see fig. 4.6):

One can see that the instantaneous switch in Angelina’s direction of
motion results in a chunk of Brad’s time (four years’ worth) being
leapt over in terms of Angelina’s notion of what is happening now.
She will compute startlingly different results for Brad’s age
immediately before and immediately after her turnaround because
of this frame-change. It should be clear than this is not based in the
acceleration felt during the turnaround, and we have mentioned
nothing other than plain vanilla special relativity. There is also
nothing particularly mysterious about the time being leapt over: it is
not ‘missing time,’ and is more of an artefact of the way Angelina’s
frame (and so her measurements) must alter with respect to her
motion.



Fig. 4.6 As Angelina travels away from Brad, her simultaneity slices
(what she considers to be happening right now) tilt relative to
Brad’s (which are simply the slices orthogonal to his wordline) in
order to preserve the constancy of the speed of light (which, you will
recall, we think of as covering one unit of distance in one unit of
time) – Angelina’s slices are also orthogonal to her worldline, as
determined by the (Lorentzian) inner product associated with
Minkowski spacetime. She turns around at the star, there is a
sudden switch from one inertial frame to another, which results in
the simultaneity slices tilting the other way.

There is a sense in which Angelina has performed a certain kind of
time travel into the future: she has slowed down her own ageing (a
kind of motion based cryogenics) so that she is out of phase with the



ageing of those on Earth. Had she traveled faster and longer she
could have returned tens of thousands of years into the Earth’s
future (relative to when she left) without ageing much at all –
perhaps she finds the Earth scorched thanks to global warming? Of
course, this is a one-way journey: there’s no going back to Brad to
let him and the rest of Earth know their fate. Any other round trips
will only send her further into the Earth’s future.

Topological Twins
Recent work on the twins paradox, and the question of what it is
actually showing us about spacetime and relativistic motion, has
focused on ingenious topological versions, for closed, non-simply
connected spaces (i.e. in which parts of the space are identified,
such as gluing the ends of a strip together to create a closed loop).
For example, by confining Brad and Angelina to a closed cylindrical
universe we can have Angelina complete her round trip without
having to accelerate or turn around by simply completing a circuit
around the cylinder. (We are assuming that it is only the surfaces
that are relevant here, so that the setup would be something like the
old-fashioned Asteroids computer game in which one leaves one
side of the screen only to emerge on the opposite side. But the
example can be generalized to a three-dimensional version, which
would simply amount to walking through, e.g. your living room wall
and coming out on the opposite side of the interior wall. Identifying
one side of the screen with the other results in a non-simply
connected topology.) Bear in mind firstly that there is no ‘real’
(intrinsic) curvature in this space: it is locally flat and can be
constructed by taking a rectangular section of ordinary flat
spacetime (the ‘fundamental domain’) and rolling it into a tube by
identifying two sides, just as one can make a pea shooter by rolling
up a page of paper. If we identify the remaining open ends then we
will have made a torus (see fig. 4.7): simply imagine first creating
the cylinder and then gluing the two ends of the cylinder together.



Fig. 4.7 A torus (or ‘doughnut’) characterized by a multiply
connected topology. A perfect world for considering the twins
scenario without the bother of the traveling twin having to turn
around.

Poincaré-disc considerations aside (on which, see the next chapter),
one could only verify that one lived in a cylindrical or toroidal
universe by determining the global structure of the space, for
example by sticking a marker into the ground and traveling in a
straight line for long enough until one intersected it again. In this
way one finds the ‘loops’ in the space. We can imagine a surveyor
letting out a reel of string as they go, eventually coming back to their
starting point, and we can imagine them tying a knot in the loop and
pulling it tight. This would correspond to one of the ‘cycles’ of the
space, of which there are two in this case: one around the handle
and one around the hole.10 The question is: will there be the
symmetry in this space that led to the original twins paradox, so
that each twin views the other’s journey as longer?



Fig. 4.8 The possible motions of quadruplets in a toroidal universe
in which they must travel. The left side shows the paths they will
take around the space (with 1 staying put), while the right side show
their worldlines, beginning and ending at the same spatial location.
The worldline 1 represents the stay-at-home quad. Image source:
[31], p. 540.

There are various ways one could travel on the surface of this
doughnut some of which have no counterpart in flat space. The
crucial feature is the hole, responsible for a multiply connected
topology involving a pair of non-contractible loops: there are two
directions (around the hole and around the handle) in which one is
prevented from shrinking loops down to points, as with the reel of
string above. This is highly significant in the topological twins
scenario. In fact, in a very clear presentation of this example, Jean-
Pierre Luminet [31] considers a ‘quadruplet paradox’ instead, with
each quad performing a different kind of motion in the space (fig.
4.8).

The quad that travels along the second worldline is simply doing the
classic twins journey discussed above: a round trip with turnaround.
We know that they will have a longer proper time than the stay-at-
home quad and the symmetry between their perspectives about
‘who was really in motion’ will be broken because of the second
quad’s switching between different inertial frames. But what of the
other two quads: they travel in perfectly straight lines (inertial
frames) and at no point do they turnaround or initiate thrusters,
availing themselves instead of the wraparound topology. If the



symmetry is broken in this case, what breaks it? It cannot be a
change of frames since they move inertially throughout their
journeys. While not a change of frames as such, there is a difference
in their frames caused by the non-simply connected topology.

The difference emerges when we inspect the so-called homotopy
classes of the various journeys in the space which encode features of
the space’s global topology. We say that a pair of loops belongs to
the same homotopy class (or are homotopic) if one can be morphed
into the other by continuous deformation (i.e. without snapping or
gluing either of them). The first and second quads’ journeys are
homotopic since the second quad loop can simply be shrunk to a
point without meeting an obstruction (such as a hole or a rolled up
dimension, again as happened with the reel of string) – they share
the same winding index (0, 0). Their symmetry is broken (and the
paradox resolved) in the standard way, by the existence of frame
changes. The trajectories of quads 3 and 4, however, do involve the
handle and hole of the torus and this means that their loops are
mutually non-homotopic: they cannot be morphed into quad 1 and
quad 2’s trajectories, nor can they be morphed into each other –
they lie in entirely different homotopy classes respectively
characterized by the winding numbers (0, 1) and (1, 0).

So here is an asymmetry: there are non-trivial (topological)
differences in the quads’ trajectories. This causes differences in their
frames and is already enough to dissolve the paradox. However, we
are unable to see information about proper time. These windings
can be visualized in what is called the universal covering space of
the fundamental group, which has the effect of ‘unwrapping’ the
loops wrapping around the torus. This simply means that we take
the rectangle of flat space that we started with when we built our
torus, and rather than rolling it up we simply tile the plane with it,
but remembering where the original copy was positioned since this
will correspond to our (0, 0) case in which no wrapping around
occurs (see fig. 4.9).

One can now use the covering space to retrieve information about
the proper times elapsed for each quad since this description
includes metrical information. As before, the length of the worldline
and the proper time are in inverse proportion: the longer the
worldline the shorter the journey. In which case, quad 4 (with
winding number (1, 0)) ages the least, followed by quad 3 (with



winding number (0, 1)), quad 2 (with winding number (0, 0), but
with accelerations), and then the poor stay-at-home quad 1 (also (0,
0), but occupying the same inertial frame throughout).

Fig. 4.9 Unwrapping the loops using the universal covering space
for the torus, showing our quads’ paths. Neighboring horizontal and
vertical cells correspond to one winding, around the hole and
handle respectively. Diagonal cells (1, 1) correspond to single
windings around both handle and hole. The starting point and the
end point correspond to the same point in space. To consider
several windings one would have to move further out to other cells.
One can see by direct inspection that the worldlines have different
lengths.

Relativistic Reality and the Open Future
The twins paradox was found to be no such thing, no paradox at all:
simply a feature of special relativity. It exposes a peculiar yet
physically verified aspect of our universe: the faster you move the
more slowly you age. Before we leave special relativity, let us
consider how the relativity of simultaneity (found to be at the root
of the twins paradox) has also been invoked to argue for some very
deep metaphysical theses about the nature of reality. Time dilation



and spatial contraction play no direct role here, and only the
velocity-dependent tilting of worldlines is needed (though of course
this implies dilation and contraction).

Recall that the relativity of simultaneity is the idea that the present
moment (‘the Now’) is relativized to the state of motion of an
observer, so that there is no unique such Now and observers that
are in motion relative to one another will identify a different set of
events as constituting their present moment – this is a three-
dimensional spatial snapshot of the universe (the universe at an
instant: a notion that will differ depending on an observer’s state of
motion) known in the literature as a spatial hypersurface. In a
paper that sparked many responses, philosopher Hilary Putnam
[38] argued that since it is possible to find pairs of observers such
that present events for one, say Angelina, are to the future of the set
of present events for the other, Brad, it must follow that those future
events are real for Brad and so pre-determined (given that Brad is
real to Angelina). In other words: according to special relativity the
future is not open.

With the machinery of spacetime diagrams to hand it is simple to
see how this ‘fatalist’ conclusion is supposed to come about –
fatalism is the view that all events are predetermined: there is no
contingency in what will happen. Consider the following diagram
(fig. 4.10), modified from the twins paradox diagram above to show
the planes of simultaneity for the observers. Thanks to the relativity
of simultaneity, the great spatial distance between Brad and
Angelina allows for the possibility of differences in their
determinations of temporal separations between events (i.e. what
they deem ‘simultaneous,’ ‘before,’ and ‘after’). We don’t need
spatial separation to get differences in what events are considered to
be simultaneous: one can simply have Brad and Angelina pass each
other in opposite directions, perhaps as they manage a quick
fleeting kiss, so that their simultaneity surfaces are not parallel. In
this case, we can say at the instant of the kiss that they are both real
(i.e. both exist in a determinate sense) for each other.

All of this thus far simply reveals just how different spacetime in
special relativity is from earlier Newtonian physics. There we had a
single Now dividing the events up neatly into past, present, and
future. Here we have a more complicated affair, but we can still
partition the events in the world according to how they can (or



cannot) be causally connected by light signals or signals traveling
slower than light. This classification of all of the world’s events
involves the spacetime interval built from the separate temporal and
spatial intervals using the rule:

Fig. 4.10 As Angelina starts her return journey, her surface of
simultaneity can be seen to contain events that are in Brad’s future,
as well as events to her past that are also to his future, shown here
by the shaded area. This might include such events as Brad’s
winning the lottery. Likewise, there are some events on and to the
past of Brad’s surface of simultaneity that lie to the future of
Angelina’s surface of simultaneity. This will still be the case at the
moment of contact if Brad and Angelina intersect as they travel in



opposite directions. (Note that the same can be said of Angelina’s
outward journey, though with a different set of events that are to the
future of Brad’s surface of simultaneity so that what is to the future
for Brad on Angelina’s outward journey are to the past for Brad on
her return journey (and vice versa).)

(spacetime interval)2 = (time separation)2 − (space separation)2

In Euclidean space, like that used in Newtonian physics, one can
only ever speak of positive or zero intervals, since we only ever use
sums rather than differences. The revolutionary aspect of special
relativity is that we must introduce a third possibility: negative
intervals. Hence, we get the following three ways that events can be
related:

Timelike:   (time separation) > (space separation)

Spacelike:  (space separation) > (time separation)

Lightlike:   (time separation) = (space separation)

Again, in Euclidean space a zero interval would suggest something
uninteresting, pointing to the fact that two events are at the same
place. In the context of special relativity we find that vast spatial
distances can be linked by null spacetime separation so long as they
are linked by light rays. The trick is to modify temporal
measurements accordingly so that there is no time interval
whatsoever for anything moving at light speed! In terms of the
spacetime diagrams, consider how the simultaneity surface must tilt
if one travels at light speed: it must lie parallel with the worldline
(something enforced by the inner product). A beam of light does not
experience events as separated in spacetime since its time and space
separation will cancel each other out, hence the expression “null”
interval. If it were possible to accelerate a spaceship up to the speed
of light and run the twin paradox scenario again, then Angelina’s
watch would show that zero seconds have passed – i.e. her proper
time would be zero and she would not have aged at all.

One can link this to Putnam’s argument by noting that the events
that are ‘simultaneously’ both past and future (past for Angelina;
future for Brad) cannot be linked to Angelina by light rays nor any
signal traveling more slowly than light: they are spacelike separated
from Angelina (though timeline separated for Brad). Let us lay out
Putnam’s argument more explicitly, before considering the



responses.

The argument invokes a link between what is real and what is in
one’s ‘present snapshot’ and also an assumption that this reality is
transitive: if we are both real, then what is real to you is also real to
me – this latter claim he calls the principle of “no privileged
observers.” With this in mind, we have (switching to our characters,
Brad and Angelina):

1. Angelina-now is real.

2. At least one other observer is real and can be in motion relative
to Angelina (that’s Brad, of course).

3. If all and only things that stand in relation R [simultaneity] to
Angelina-now are real, and Brad-now is also real, then all and
only things that stand in relation R to Brad-now are real.

From this simple set of premises, Putnam concludes that according
to special relativity “future things are already real!” That is, even
though Angelina cannot communicate or interact with such events
about Brad’s future, the fact that Brad is another member of reality,
combined with facts about relative surfaces of simultaneity of those
in relative motion (combined with a philosophical assumption
about simultaneity grounding what is real), it follows that Brad’s
future has ‘already happened’ for Angelina, and so for Brad too (by
transitivity).

The ultimate conclusion of this kind of thinking is that the notion of
a special three-dimensional surface (a Newtonian Now) carving out
and constantly reshaping the past and future11 to generate a four-
dimensional universe cannot be sustained given special relativity
with its multiplicity of Nows. Instead, it must be replaced with a
single spatiotemporal ‘block’ (see fig. 4.11).12 Thinking in terms of
space and time as separate entities trips us up, and must be
replaced with a fully spatiotemporal picture. But, the argument
goes, this must mean that ‘becoming’ (in which reality has a
dynamical character) has no place in modern physics.



Fig. 4.11 The block universe picture of the world. All events in the
block (the universe as a four-dimensional entity) are taken to have
the same ontological status. At the instant of your birth your death
is already etched into the block – and indeed, your birth too is
etched into the block for all eternity!

The long and short of it is this: if there is no home for a present
moment in special relativity, then there is no home for ‘becoming’
(nor becoming real) since that requires a division into ‘past,’
‘present,’ and ‘future’ and any such division is frame-dependent in
special relativity. Reality can’t be frame-dependent: who’s frame?
All frames? So becoming must go and, many argue, the block must
replace it, and the open future is closed up.

In the case of special relativity the disagreement in measurements
only occurs if we take time and space as separate entities. If the
focus is on the spacetime interval, there is no disagreement about
‘physical facts.’13 As Minkowski famously said in a public lecture of
1906:

Space by itself and time by itself are doomed to fade away into
mere shadows, and only some kind of union between the two
can preserve their independent reality.



However, we must handle Putnam’s argument with some care. We
already saw that the events in question lie outside of Angelina’s light
cone and, therefore, can be made ‘future’ or ‘past’ by finding the
right inertial reference frame moving relative to her (where we are
now defining her by the separation point between her future and
past light cones). If we have Brad and Angelina intersect as they
move in opposite directions, then the events in question are outside
the light cones of both, and so could never have anything to do with
either. That such events exterior to the light cone are often bundled
together and called “the absolute elsewhere” is no accident. There is
much conceptual confusion over how to interpret the status of such
events. For example, Howard Stein [49] has argued that such events
cannot be said to be real with any justification in special relativity;
rather, what is real (e.g. when Angelina turns around at Proxima
Centauri) is what lies “at points in the topological closure of [her]
past [light cone]” and this will be dependent on the origin of the
spacetime point in question.14 Stein puts it as follows:

in Einstein-Minkowski space-time an event’s present is
constituted by itself alone. In this theory, therefore, the present
tense can never be applied correctly to “foreign” objects. This is
at bottom a consequence (and a fairly obvious one) of our
adopting relativistically invariant language – since, as we know,
there is no relativistically invariant notion of simultaneity.
([48], p. 15)

But Putnam considers this to constitute a kind of solipsism: only
what has happened in Angelina’s past light cone is real! What about
the rest of reality? She was OK in Tomb Raider, but to claim that
she is in charge of reality is going a bit far. Stein agrees that it is
solipsistic, but it is so in a “pluralistic” way (ibid., p. 18), applying to
any point: we must view what events have ‘become’ from the
standpoint of some particular event rather than in a global fashion.

Again, and this is part of Stein’s message, special relativity is a
theory of space-time, rather than space and time. It is a theory of
light cones constraining causal influence.15 The whole setup of
Putnam’s argument involves an older way of thinking, in terms of
shared present moments. Stein’s ultimate target is with the view
that special relativity necessarily involves a conflict with what
philosophers call ‘becoming,’ where events are not to be treated as



possessing equivalent ontological status, but depend for their reality
on whether they are past, present, or future – becoming is, then, the
idea that events ‘become more and more past.’ But time is
multifaceted in special relativity. As Steven Savitt [42] clearly notes,
there is coordinate time and proper (worldline) time, and the latter
is perfectly well-suited for linking to a notion of becoming – this
view was developed by Rob Clifton and Mark Hogarth [5]. What
alters, however, is that becoming is localized to individual
worldlines (observers), rather than to a global Newtonian Now. This
might be hard to swallow: is this what we mean by the notion of
becoming, of a dynamical conception of time? In a different way,
Stein also argues that so long as we are willing to make some
revisions appropriate to the shift brought about in the transition
from Newtonian to relativistic physics, one can make some (limited)
sense of becoming in the world. We were perfectly content to align
our notions of reality with the notion of a Newtonian present, and
we usually (though often reluctantly) let our philosophical views
about reality march in step with advances in physics. So, why not let
relativity guide us here? If the present moment ceases to be an
invariant notion, then, if we are realists about our scientific
theories, our conception of reality must shift accordingly.

Though this is really a special relativity section, there is an
interesting supplement to this issue that involves the theory of
general relativity. An argument due to the great logician (and
Einstein’s friend in his later years) Kurt Gödel claims to show that
there is (in at least one world that is possible in general relativity)
no objective lapse of time [20]. In other words, no becoming: no
situation in the world in which it would be true to say “the future is
not yet determinate.” What Gödel showed was that there could be
physically possible situations in which there was no way to establish
a global Now that definitively split the universe up into past,
present, and future events. Without such a notion, he argued, one
could not speak of objective change either, since change requires
the lapse of time (one thing becoming another thing, changing color
and so on). For this reason Gödel viewed time (and its related
concepts) as entirely subjective or ‘ideal.’ We return to Gödel’s
universe again in the final chapter, where we consider its bearing on
the possibility of time travel and time machines.

What we should draw from all of this is that the question of whether



there is a present (and so becoming) is dependent on the physical
conditions of the world: it is a matter for physics rather than
philosophy alone to decide. Future advances in quantum gravity, for
example, will no doubt serve to refashion (and perhaps
reinvigorate) the debate.

4.4 General Relativity and the Hole Argument
Just as special relativity’s symmetry of Lorentz invariance was at the
root of the twins paradox, so the characteristic symmetry of general
relativity, diffeomorphism invariance, lies at the heart of our next
philosophical problem, known as the hole argument. Just as the
twins were not really necessary for the twins paradox, so holes are
not really necessary for the hole argument (at least not in its
modern guise)! Rather surprisingly, the argument was originally
developed by Einstein as a way of showing that one could not have a
generally covariant theory of gravity since it would clash with
Mach’s principle. The details are a little convoluted, but basically
the idea is this: Einstein believed that the matter distribution (i.e.
the configuration of mass-energy in the universe) should determine
a unique metric for spacetime. However, with generally covariant
equations we have the freedom to alter the metric in various ways
(using diffeomorphisms, which alter the metric smoothly, leaving
‘deeper’ aspects known as topological structure fixed) without
leading ourselves from a possible solution (i.e. a matter distribution
with a spacetime geometry: 〈ℳ, g, 〉) to an impossible solution.
That means that we can generate multiple (infinitely many in fact)
solutions for the same matter distribution, in violation of Einstein’s
understanding of Mach’s principle (as a broadly relational principle
involving the idea that the rest of the matter in the universe
determines the motion of bodies in even small regions: distant
matter has an effect on local motions: inertial motion is governed by
the aggregate of masses in the universe as opposed to a Newtonian
container). The hole appears since the way the argument was
originally set up involved altering the metric only inside a small hole
in spacetime (where the hole is defined by the vanishing of matter
within it: i.e. T = 0), around which the metric was fixed to a specific
value. In this scenario, we can have knowledge of the geometry and
matter outside of the hole (and on its boundary), but even with this
complete knowledge, we cannot determine uniquely how the metric



will develop into the hole: a failure of determination or causality
since we can construct a coordinate transformation (a
diffeomorphism) that only acts non-trivially within the hole – the
modern version of the hole argument to be discussed in a moment
simply turns Einstein’s argument violating causality into a temporal
one violating determinism, by essentially making the ‘hole’ the
entire future to a slice through spacetime and adding the
metaphysical component of belief in the reality of spacetime points
(substantivalism).16

What Einstein wanted from his theory was that the geometrical
features of spacetime were uniquely determined by the distribution
of matter and energy. Before we get to this, and the hole argument
itself, we should first briefly explain what general relativity is and
how it works. The theory is rooted in the idea that spacetime (the
history of the universe) is modeled by a four-dimensional manifold
(think of this as a space that can be labeled by coordinates)
equipped with a (Lorentzian) metric that specifies distances and
angles between points of spacetime (i.e. events). The crucial
difference with respect to all other spacetime theories that came
before is that this metric obeys equations of motion (Einstein’s field
equations): it is a dynamical actor in the theory that couples to the
state of matter and energy. The metric in general relativity
multitasks, representing both gravitational as well as the above
spatiotemporal features. This means that if mass and energy can act
as a source of gravity (which they can of course), then they can also
act as a source of warping of the geometry of spacetime – this was
Einstein’s understanding of the equivalence principle, which sits at
the heart of general relativity: in terms of observable properties, a
gravitational field applied to a reference frame is identical to an
acceleration of the reference frame in the opposite direction. This
was argued for using the famous ‘elevator experiment’ (a thought
experiment, very similar to Galileo’s ship example: I expect that
Einstein had this in mind). Suppose you are confined in an elevator
(with no way of seeing out) on the surface of the Earth, which has a
mass that induces a gravitational acceleration on objects of 9.81
meters per second squared. Now suppose that an evil scientist
floods the elevator with a gas that sends you to sleep, and then shifts
the elevator into deep space, but straps a rocket onto the underside
that accelerates you at 9.81 meters per second squared: you would



not be able to tell by performing experiments located within the
elevator that you had been moved at all. But, light beams allowed to
stream through the elevator would appear to have a slight curve due
to the motion of the elevator through space. This feature allowed
Einstein to make the prediction that the gravitational field of a
massive body must cause the light to curve in an identical way: this
was tested (and confirmed) by Sir Arthur Eddington, who measured
the deflection of light by the Sun during an eclipse. Since light
travels along geodesics (shortest time/energy paths), it must be the
spacetime geometry that is being ‘bent’ by the Sun (the gravitational
source).

General relativity demanded a very high degree of symmetry
(diffeomorphism symmetry) to perform its function.17 In a Galilean
invariant theory one mustn’t be able to detect operations that
translate, rotate, or give uniform boosts to the reference frame you
are conducting your experiments in. Confined to your ship’s cabin,
with only Newton’s laws, you shouldn’t be able to figure out how the
boat is moving and where and when it is. In the case of general
relativity, the operations are generalized to any motions, including
accelerated ones: in your spaceship’s cabin, armed with the laws of
general relativity, you can’t tell whether you are accelerating or
sitting on a planet by measurements using rods and clocks – in
other words: there is no way of telling that an isometry (a spacetime
distance preserving map) has been applied.

In more visual terms, this is the meaning of diffeomorphism
invariance: warp your spacetime geometry from a perfect sphere
into a teddy bear shape and the laws of the theory won’t bat an
eyelid. They won’t notice since from their perspective all that
matters are the topological properties (the invariants) and these
don’t care about stretching and squishing, so long as one doesn’t
tear the spacetime or glue pieces together (as with the cylinder
becoming a torus above). It is this same feature that leads
mathematicians to identify coffee cups with doughnuts: they are
topologically identical, each having only one hole or handle. So the
predictions of general relativity in a coffee cup universe are identical
to those in a doughnut universe so long as the metric field is
transformed in the same way as any matter fields by the
diffeomorphism that brings about this shape shifting. Likewise, the
predictions will be identical regardless of whether the world is



shaped like a ball or a bowl.

The Einstein Shift
This idea in general relativity that if one replaces the spacetime
manifold with a topologically equivalent (i.e. homeomorphic)
manifold, then the physics ‘stays the same’ is at the root of the hole
argument – originally, it was the ability to use any coordinate
system to describe some physical situation (i.e. the passive
understanding of the symmetry). Since homeomorphic manifolds
do not differ in their topological properties, and these are what
matters, the observable content of the theory is unaltered by the
action of a diffeomorphism. This feature has forced many to give up
on the idea of a spacetime ‘sitting under’ physical events, and the
hole argument plays a large part in this. So let’s present a simplified
version.

We can run something like the Galileo ship argument in this case
too. Now imagine again that a rather more powerful being, such as
the Flying Spaghetti Monster, wants to fool you. First, you make a
bunch of measurements using all the machinery we have, to
determine a model of the universe, with some spreading of the fields
onto the manifold. The Spaghetti Monster then puts you to sleep,
does some reshuffling of the points of the manifold (or smearing of
the fields over those points) and then wakes you up. If the points are
real then the Spaghetti Monster has generated a physically distinct
situation. But you won’t be able to tell what has happened, since all
observables (those physical quantities that satisfy the laws of
general relativity) will be the same, since all the monster did was
apply an operation relative to which the laws are insensitive –
shifting matter and metric by the same transformation – in which
case so are the observables. The formal foundation of this lies in the
fact that we are now moving structure that was fixed in the context
of the Leibniz shift argument (the metrical structure) together with
the matter fields. This means that what look like very significant
changes, that warp and bend things out of shape, are not detectable,
much as doubling the rate of everything (includings one’s means for
checking on the rates of change of processes: clocks, pulses, orbits,
etc.) would leave things looking just as they did before.

A little more technically now: we like to think of spacetime in



relativistic theories as a four-dimensional block, but if we want to
look at dynamical features, it’s useful to carve this block up into
three-dimensional slices. We can do this in general relativity, so
long as we realize that our slicing has no real physical significance
and many such slicings (which would lead to the same four-
dimensional block) are possible – this is known as ‘foliation
invariance.’ Suppose that we know the matter distribution and the
geometry with absolute precision up to and including some slice .
The freedom to perform a diffeomorphism means that even though
we have specified everything up to and on our slice (roughly
representing our ‘Now’), infinitely many possible developments of
the fields off that slice are possible.

As we will see in §5.3, having multiple possible futures from some
initial conditions amounts to indeterminism, and so it appears as
though general relativity itself is indeterministic. For example, by
running the initial state through the equations of general relativity
(the laws), we might generate the world represented by the model
〈ℳ, g, T〉 or we might generate the world 〈ℳ, *g, *T〉 (where  is a
diffeomorphism, of which we have infinitely many to choose from,
and * an operation that drags fields, such as g and T, around over
the points of the manifold).

The catch is that the various apparently possible futures only differ
with respect to which points are sitting under which field-values. So
we want to know whether g = x or *g = y sits at some specific point
p. As mentioned, no observable facts are affected by this
indeterminism. So why on Earth should we be concerned? In the
philosopher’s version of the hole argument, due to John Earman
and John Norton [8], spacetime substantivalists ought to be
concerned, since they believe in the reality of the spacetime
manifold and its points. If we follow this view then there should be a
fact of the matter as to which point the Spaghetti Monster shifted
some field value to, even though it is opaque to experiments. This is,
of course, extremely close to the Leibniz shift argument, only with
the more general diffeomorphism group taking the place of the
Galilean group. Just as Leibniz thought that the proliferation of
possibilities that realism about space and time generated in
Newton’s world amounted to a demonstration of its absurdity, so
Earman and Norton argue that substantivalism must be rejected,
for reasons of physics: general relativity is not indeterministic in



any sense that matters, and an interpretation that says it is should
be rejected. In their own words:

Determinism may fail, but if it fails, it should fail for a reason of
physics, not because of commitment to substantival properties
which can be eradicated without affecting the empirical
consequences of the theory. ([8], p. 524)

The alternative is associated with Leibnizian relationalism: view all
of the diffeomorphic futures as representing one and the same
physical possibility – they call this “Leibniz equivalence.” The
Spaghetti Monster was fooled into thinking she was doing some
non-trivial operation by the mathematical machinery we use to talk
about the world according to general relativity! In reality, so this
Leibniz equivalence option goes, the mathematics of such
transformations is a piece of representation that, while helpful in
many ways, does not map onto the world: the world is best
represented by the (intrinsic) structure that is invariant under such
transformations – this equivalence class of diffeomorphic metrics is
called the geometry by physicists, by contrast with the metric.

Earman and Norton wrote their paper in 1987, and it sparked an
explosion of papers and alternative views, some seeking to defend
substantivalism, some accepting the relationalist thrust. We will
sample a few of these here, but I leave it to you to decide which
makes best sense.

Getting out of the Hole
Firstly, we need to say something about the extent to which
endorsing Leibniz equivalence (i.e. the idea that general relativity is
about diffeomorphism equivalence classes of metrics) is in fact
relationalist. Historically, of course, accepting the idea that a bunch
of symmetric possibilities represent the same state is associated
with relationalism, as we saw in the Leibniz–Newton debate. But
one immediate problem with this view is that general relativity in
fact allows for so-called ‘vacuum solutions’ to the field equations,
meaning that there is just pure gravity in such worlds (nothing we
would ordinarily call matter). So we must ask ourselves, how can
there be a relationalist interpretation of entirely empty space?
Indeed, how do we contend with the fact that general relativity is a
theory of spacetime, and so is presumably committed to its



existence?

The catch here is that, as we suggested earlier, spacetime in general
relativity (the metric field) is a rather different beast to spacetime in
all prior theories, and this has to do with the multitasking feature
(spacetime doubles as the gravitational field), and as the quantum
gravity theorist Carlo Rovelli likes to put it, with a strong enough
gravitational wave, you could smash a rock to pieces. Since the
metric field is everywhere defined, if it is as substantial as it seems,
then the relationalist has something defined all over and needn’t
worry about empty space. But, the substantial entity is spacetime, so
why is this the property of the relationist rather than the
substantivalist? This confusion (among others) has led the
philosopher Robert Rynasiewicz [41] to dismiss the substantivalist
versus relationalist debate as “outmoded” in the context of general
relativity since the categories used in the original formulation no
longer make sense. This makes sense: if both sides are claiming that
the self-same object is real then what are they fighting about?

However, it is possible to restructure the debate in the light of the
new developments so that we can still have a meaningful debate
about how general relativity maps to the world. Carl Hoefer [24] has
argued that a version of substantivalism fit for general relativity can
be constructed and, given that relationalism is just the denial of
substantivalism, so can an account of relationalism in general
relativity: it is just the rejection of the idea that spacetime is part of
the theory’s fundamental ontology – though, he argues, the latter is
not necessarily as well supported as the former and it might well be
that the debate is more or less settled in favor of substantivalism.
The idea is simply that the metric field plays the same role in this
new context that the Newtonian container played in the classical
debate: the difference is that this new spacetime is not inert, but
influences matter and is backreacted on by that matter.18 This
change does not affect the fact that the metric provides us with our
basic spatiotemporal facts. Either these spatiotemporal facts are
grounded in a real substantival spacetime as modeled by the metric
field, or they are grounded in something else.

However, we must not forget that this can be no direct mapping
from metric field to spacetime: a lesson of the hole argument is that
the metric at a point is itself not physical, since we can smear it
arbitrarily over the manifold without changing the physical



possibility described. What is physical is, instead, the equivalence
class of such smeared metrics (the geometry). But this move as we
saw was associated with relationalism. A reaction from
substantivalists has been that since such an equivalence class would
simply encode the intrinsic physical structure of spacetime, there is
no reason why they too shouldn’t help themselves to it – this is
known as ‘sophisticated substantivalism’! But, if both relationalists
and substantivalists are invoking the same structure then where
does the difference lie? Hasn’t the distinction between relationalism
and substantivalism simply collapsed? Not quite. On the surface,
the substantivalist has more of a case for claiming that the structure
corresponds to a truly existing spacetime than the relationalist has
for saying that it is in some sense generated by relations. But it is
not clear cut. New work, originating in research on quantum
gravity, argues that the observables (invariants) of general relativity
are necessarily relational (taking the form of correlations between
field values).

Earlier responses to the hole argument attempted to prop up
substantivalism by consideration of modal metaphysics (having to
do with possibilities and possible worlds), some of it quite arcane.
To see how these work, bear in mind that the distinct models (or
worlds, if you prefer) that are generated by diffeomorphisms differ
only with respect to which (invisible) manifold point plays host to
which (visible) feature. In one world the point p might be host to the
location of maximum curvature, while in a diffeomorphic version
that role is played by the point q. This kind of non-qualitative
difference (amounting to an invisible role-swapping) is known as a
‘haecceitistic’ difference: the same individuals (points and fields)
are present in both worlds, and exactly the same observable
relations are realized, but by different individuals in each case. One
approach, due to Tim Maudlin [32], to saving substantivalism
suggested that points might wear their metric field values as
essential properties, so that a world in which they don’t have those
selfsame properties is simply not a genuine physical possibility –
this only works in situations where the diffeomorphisms do not
preserve the points’ metric properties (i.e. where they are not
‘isometries’), so that a world with symmetries is excluded. There is a
simple and cogent objection to this view, which is that, while we
might agree that metrical properties of some kind are essential to
spacetime points, to rigidly attach just those metrical properties a



point happens to have as a matter of fact (in our world) seems to be
too strong. For example, we can’t talk about fairly innocuous
counterfactuals that involve the point having different properties,
such as ‘if I hadn’t made a cup of tea five minutes ago, the curvature
around my desk would have been different’ – this seems to commit
us to the necessity of my teacup being on the desk since the points
within the desk and cup would take on different metrical properties!

Maudlin’s response is that we can help ourselves to modal talk of
this kind, but without invoking the same points clothed in different
properties, by using a tool associated with modal logic, known as
counterpart theory (due to David Lewis). This says that the
statement ‘if I hadn’t made a cup of tea five minutes ago, the
curvature around my desk would have been different’ is true
because there is a counterpart desk, cup, and point with these
properties. Jeremy Butterfield [3] simply bypasses the metrical
essentialist component and uses counterpart alone to motivate a
defence of substantivalism: there is only one world with my desk,
cup, and the points they occupy. Again, we can consider modal facts
about them, but this need not involve those objects being the same
in the possible worlds considered: the points in a spacetime and a
diffeomorphic version are not the same since the counterpart
relation is different from the identity relation. Indeed, choosing a
good counterpart relation would involve choosing the closest match
for some point in the other scenario, and that would be the one to
which the fields were dragged by the diffeomorphism.

Other responses work by similarly denying that there is ‘transworld
identity’ linking the points in the different solutions (in a non-
qualitative way), but without the additional modal gymnastics. If we
simply deny that points have some kind of primitive identity that
transcends their qualitative properties, then we end up achieving
Leibniz equivalence through the back door. The points of the
manifold aren’t transported from world to world, forming an
absolute background: if we want to know what points are the same
across worlds we look at their qualitative properties. This is the
basis for the sophisticated substantivalism mentioned above.
Simply put: haecceitism need not be viewed as part and parcel of
substantivalism as Earman and Norton had suggested. The problem
is, however, that this leaves us very little room to distinguish
relationalism and substantivalism, as before. It is possible that a



view that simply merges these positions might be more favorable.

4.5 Further Readings
There are a great many books on both the physics and the
philosophy of space, time, and spacetime. Many of the latter can
often depart from the physics, and lie more within metaphysics than
philosophy of physics.

Fun
Edwin Taylor and John Wheeler (1992) Spacetime Physics:
Introduction to Special Relativity (2nd edn). W. H. Freeman
and Company.
–This remains one of the best textbooks for beginners to gain
some actual computational feeling for special relativity in a light-
hearted way – it helps that John Wheeler was one of the great
physicists.

Nick Huggett, ed. (1999) Space from Zeno to Einstein: Classic
Readings with a Contemporary Commentary. MIT Press.
–Very useful collection of many of the ancestral voices of
contemporary philosophy of spacetime physics, including some
of the original papers corresponding to topics discussed in this
(and the next) chapter (by Leibniz, Newton, and Kant, for
example).

Serious
John Earman (1989) World Enough and Space-Time Absolute
vs. Relational Theories of Space and Time. MIT Press.
– The classic treatment of the debate between substantivalists
and relationalists. Exceptionally clear, full of good sense, and
still relevant.

Connoisseurs
Jeremy Butterfield, Mark Hogarth, and Gordon Belot, eds.
(1996) Spacetime. Dartmouth.
– It will cost you an arm and a leg to buy, but this is truly a
dream collection of pivotal papers on themes discussed in this



(and the next) chapter. One can gain a very good feel for the field
of philosophy of spacetime physics from this one text.

Notes
1 See §5.1 of his Space, Time, and Stuff(Oxford University Press,

2012).

2 The details are a little complicated, but philosophically very
interesting. The theory is, in a sense, timeless, making do with
the instantaneous configurations and intrinsic differences
between them. Space and time are given over to configuration
space (usually viewed as an abstract framework for talking about
things in space and time), though with the usual symmetries
inherited from Newtonian space and time removed, so that each
point in the configuration space represents all of the
configurations of Newtonian space and time that are isometric. A
relationalist theory would then take place relative to this space
instead. I refer the reader to Julian Barbour’s popular book on
the subject, The End of Time (Oxford University Press, 2000).

3 This is very much a ‘Leibniz for dummies’ approach. His true
position is extraordinarily complex, and amounts to a non-
relationist position involving fundamentally spaceless objects
known as monads. We will not delve into these issues, but, for a
good place to start, the interested reader is directed to John
Earman’s article “Was Leibniz a Relationist?” (in P. A. French et
al. (eds.) Studies in Metaphysics, Volume 4, University of
Minnesota Press, 1979: pp. 263–276).

4 Readers wanting more detail here are advised to consult chapter
17 of Roger Penrose’s Road to Reality (Alfred A. Knopf, 2004).

5 This strategy, of making what naively seems to be a relational
property a monadic one (internal to the object possessing it) is
known as Sklar’s Manoeuvre. On the surface it sounds like a
workable proposal, however, it has been rather controversial: see
Brad Skow’s “Sklar’s Maneuver” (The British Journal for the
Philosophy of Science 58(4), 2007: 777–786) for a contrary voice.

6 For a clear-headed philosophical analysis of these issues and



more, see Sklar’s Philosophy and the Foundations of Dynamics
(Cambridge University Press, 2013).

7 Martin Gardner describes a ‘real world’ version of this thought
experiment in “The Ozma Problem and the Fall of Parity” (in J.
Van Cleve and R. E. Frederick (eds.), The Philosophy of Right
and Left: Incongruent Counterparts and the Nature of Space,
Springer, 1991: pp. 76–77). The Ozma project was an early
attempt to communicate with other planets – ‘Ozma’ refers to the
ruler of Oz in the Wizard of Oz. The problem was to design a
language that could operate across cosmic boundaries (which
would, of course, be characterized by their own idiosyncratic
conventions). One such attempt involved a method of
transmitting pictures by using a kind of ‘data matrix’ method in
which binary code is sent to indicate whether a cell is dark or
light. One might send instructions on how to build a piece of
technology for example – recall how in the movie Contact aliens
sent us instructions for building a wormhole generator. The
problem is: how do we transmit information about whether to
use, e.g. left or right-handed screws? They might well print their
matrix with the instructions entirely the wrong way around
relative to the instructions we sent. A possible solution is
provided by having them utilize universal laws of physics that
violate mirror symmetry.

8 Carl Hoefer (2000) has reconstructed Kant’s argument in terms of
ascribing ‘primitive identities’ (i.e. brute, non-qualitative facts
that allow for comparisons across counterfactual situations:
different possible worlds) to the points of space. This is needed to
make sense of performing a reflection on the ‘lone hand’ world in
such a way that it would generate a new, different possibility – he
takes primitive identities to be too great a price to pay given that,
he argues, ultimately the relationalist can also explain any facts
that need to be explained (“Kant’s Hands and Earman’s Pions:
Chirality Arguments for Substantival Space,” International
Studies in the Philosophy of Science 14(3): 237–256).

9 I refer the reader wishing to have a more technical account of this
problem to Oliver Pooley’s “Handedness, Parity Violation, and
the Reality of Space” (in K. Brading and E. Castellani (eds.),
Symmetries in Physics: Philosophical Reflections (pp. 250–



280). Cambridge University Press.).

10 We can classify these topological invariants by invoking winding
numbers that count the number of times a loop (in this case a
trajectory of one of our travellers) wraps around the rolled up
dimension. So in the case of the torus (m, n) refers to m windings
around the hole and n windings around the handle. No winding
at all around either would simply be represented by (0, 0). If you
have a taste for interesting mathematics like this, then I urge you
to read Richard Evan Schwartz’s Mostly Surfaces (AMS, 2011).

11 This reshaping can be understood in a variety of ways. For
example, we might think of the Now as advancing forward as part
of a ‘growing block,’ so that the future is not yet fixed though the
past is. Or we might think of this in reverse as a ‘shrinking block’
so that future is ‘eaten away’ by the ever-advancing present. Or,
as presentists argue, we might deny reality to anything but the
distinguished present moment. Even independently of special
relativistic considerations, it has been argued that the notions of
‘Now’ and ‘present’ are anthropocentric, amounting to nothing
more than “simultaneous with this utterance” – see, e.g. J. J. C.
Smart, Philosophy and Scientific Realism (Routledge and Kegan
Paul, 1963: p. 137). Special relativity provides a means of
extending this kind of reasoning, linking the Now to a frame of
reference rather than anything specifically anthropcentric.

12 Nicholas Maxwell has argued that this conclusion (that the
world’s events are ontologically fixed) should lead us to reject
special relativity because it conflicts with the ‘probabilism’ of
quantum mechanics – “Are Probabilism and Special Relativity
Incompatible?” (Philosophy of Science 52, 1985: 23–43). This
would make a good paper to ‘cut your critical teeth on’ in the
light of the discussion in this section and Chapter 7. David Albert
also argued that Minkowski spacetime is a hard place to become
(or “unfold”) if you’re a quantum mechanical state, though he
invokes more aspects than the probabilistic evolution of Maxwell
– “Special Relativity as an Open Question” (in H.-P. Breuer and
F. Petruccione (eds.), Relativistic Quantum Measurement and
Decoherence, Springer, 1999: pp. 1–13).

13 Interestingly, since the (three-dimensional) shapes of ordinary



objects involve spatial extension (parts separated by space), they
too are relativized to frames of reference. It has been argued,
therefore, that intrinsic shapes, if they are to exist, should be
transfigured into four-dimensional, relativistically invariant
properties – for more on this point, see Yuri Balahov’s
Persistence and Spacetime (Oxford University Press, 2010).

14 Mark Hinchliff has defended the view (called ‘cone presentism’)
that identifies the present moment with the surface of the past
light cone, so that any light signals that have reached a point
constitute that event’s present – “A Defense of Presentism in a
Relativistic Setting” (Philosophy of Science 67, Supplement,
2000: S575–S586). This is very hard to swallow for all sorts of
reasons. Firstly, it relativizes things to points, so that there are as
many presents as spacetime points. Secondly, if we manage to
capture light from the first photon created after the Big Bang,
then that qualifies as present. Revisions are necessary, but this
might be a step too far.

15 Stein prefers to call events that related outside of the light cone of
a point “causally alien.” This perhaps better captures the issues
Stein has with Putnam’s argument, and strikes me as more
appropriate than any of the alternatives, but alas the terminology
never took hold – “A Note on Time and Relativity Theory” (The
Journal of Philosophy 67(9), 1970: 289–294).

16 For an excellent philosophical-historical discussion of this
episode, see John Stachel’s “The Hole Argument and Some
Physical and Philosophical Implications” (Living Reviews in
Relativity 17 (2014):
http://relativity.livingreviews.org/Articles/lrr-2014-
1/download/lrr-2014-1BW.pdf).

17 Diffeomorphisms are somewhat difficult to explain properly in an
elementary manner, but fortunately we don’t really need the
details for this example. They are, more or less, transformations
(isomorphisms) along the same lines as translations mapping
one point or region to another (i.e. they are maps  from the
manifold to itself or to some other manifold, : ℳ → ℳ′), but that
satisfy properties having to do with continuity. In the case of the
hole argument we use the action of such maps on fields, so that

http://relativity.livingreviews.org/Articles/lrr-2014-1/download/lrr-2014-1BW.pdf


they have the effect of dragging, e.g. the metric field from one
point of the manifold onto another (this action is distinguished
by an asterisk, *). So given a field  (with a physical
interpretation), which might be defined at a point p, say, the
diffeomorphism gives us *  defined at another point q. The value
of *  at q is the same as the value of  at p (because q = (p)), but
the value of *  at p is not the same as the value of  at p. This
highlights the way in which the points p and q of the manifold
play an important role in comparing the diffeomorphic fields: if
the points are real then the field that we have dragged around is
truly different in the two cases. If we have some dynamical
equations that cannot tell us which is realized in the world, for
some complete specification of initial facts, then we will have a
case of indeterminism.

18 A fuller statement of the view Hoefer calls “metric field
substantivalism” can be found in his “The Metaphysics of Space-
Time Substantivalism” (Journal of Philosophy 93(1), 1996: 5–
27). In this paper he eliminates much of the metaphysical
baggage that bloated earlier responses to the hole argument
(specifically, the notion of ‘primitive identity’ for spacetime
points, that we discuss below).



5
Further Adventures in Space and
Time
This chapter steps away from philosophical issues stemming from
symmetries but stays firmly focused on space and time. The three
topics we cover tend to be of a more epistemological flavour than
the previous chapter’s ontological problems: we begin with a look at
the idea of the ‘true geometry of the world’ and consider whether we
could ever discover such a thing. We then consider a similar
problem involved in the idea of measuring time and finding a ‘true
time.’ Finally, by way of also limbering up to the next chapter on
statistical physics, we consider the status of determinism in physics.

5.1 Can We Know the World’s Geometry?
We tend to think of the world as having some definite geometry, and
we might also tend to think that this geometry is one of those things
that scientific work can help us discover. For example, depending
on what the geometry of space is, the internal angles of a triangle
will be more, less, or equal to 180 degrees. If only we could make a
big enough triangle, we could test this. (In fact, Carl Friedrich Gauss
is reported to have performed such an experiment in the 1820s by
measuring the angles of light beamed between three peaks in
Hanover – whether this experiment was really supposed to
constitute a test of the deviation of the world’s geometry from
Euclidean geometry is a matter of debate among historians of
mathematics.) Likewise, for other plane figures such as squares and
circles, with the measured properties altered accordingly. It is just a
matter of measurement. Or is it?

Poincaré’s Parable of the Surveyors
Henri Poincaré famously invoked a kind of ‘discworld’ (long before
Terry Pratchett, and also before general relativity came along with
its curved spacetime) that any number of (mutually inconsistent)
world geometries could be made consistent with our observations of



the world, including our direct sensory experience.1 A team of
flatland surveyors is confined to a closed Euclidean disc (i.e. with an
edge at radius R), armed with rigid rods and light rays to make their
measurements. He then adds a temperature dependent rod length
and light refraction in this world and makes the temperature fall off
as one strays from the disc’s center, with distance ρ. (Note that he
actually encloses them in a large sphere, but his discussion suggests
taking a cross-section of the disc through the center, with a radius R
in which the distance of one of the inhabitants ρ is measured from
the center. The temperature is then proportional to R2 − ρ2.) All
objects in this world dilate and contract by the same amount (R2 −
ρ2) and the thermal equilibrating effect happens at an instant. As
one probes further out from the origin the rods contract more and
more, becoming smaller and smaller (as well as colder, though the
flatlanders wouldn’t be able to measure this since their
thermometers suffer the same distortions). The surveyors know
nothing of this distorting force, naturally assuming their bodies and
instruments were rigid on account of feeling and observing no such
effects. A similar force afflicts light rays, which have an index of
refraction inversely proportional to R2 − ρ2. In modern discussions,
we speak more generally of ‘universal forces’ rather than
temperature: all we need is to postulate a force that dilates objects
uniformly in the same way so that it goes completely unnoticed.

Of course, in a flat Euclidean world, the ratio of the circumference
to the radius is simply 2π. However, with the distorting forces of the
temperature or whatever universal field one postulates generating
the same behavior, our surveyors, in figuring out the intrinsic
geometry of their world (using whatever tools we might use to do
the same: string, rulers, lasers, etc.), will find values greater than
2π characteristic of a hyperbolic (Lobachevskian) geometry (i.e. one
with negative curvature). Likewise, measured triangles will have
internal angles adding up to less than 180 degrees. The effect will be
more dramatic as one measures larger and larger radii,
circumferences, and triangles. Moreover, since their measuring
instruments would shrink as they approached the boundary, they
would never reach it (see fig. 5.1). From their results they would
(wrongly, by construction: we know it is a finite Euclidean disk)
infer that they live in an infinite non-Euclidean world – if distance
is defined in terms of what is measured with rulers and the like,



then the space is infinite in extent! They have, of course, wrongly it
transpires, a (perfectly rational) ‘rigid body hypothesis,’ which
ensures that merely moving about in space will not distort shapes
and sizes.

But now suppose that maverick physicist Albert Fleinstein (the
flatland counterpart of Einstein) points out that all of the surveyors’
results are compatible with the presence of precisely the forces
introduced above in a flat, closed Euclidean world. So we have two
theories:

T1 The world is infinite and non-Euclidean (hyperbolic).

T2 The world is finite and Euclidean, though with universal forces.



Fig. 5.1 Poincaré’s surveyors are enclosed in a sphere of radius R. As
they move a distance ρ from the center, objects that were, e.g. 1
meter long at the center will be just (R2 − ρ2)/R2 meters long – the
boundary is unreachable since then ρ = R, so that (R2 − ρ2) = 0.
Hence, the space would be deemed infinite by beings confined
within its borders.

The problem Poincaré poses is, how can Fleinstein’s fellow discfolk
decide from within their world which theory is correct? There is no
‘stepping out’ of their two-dimensional standpoint, to our God’s eye
view, to check. According to Poincaré the question is simply
undecidable by experience or reason, and must simply be stipulated
as a matter of convention. The problem is that any experience or
experiment that makes one theory true will also make the other
theory true. We have what philosophers of science call
‘underdetermination of theory by evidence’: the evidence can’t
decide the matter. But it isn’t a case of simply not having gathered
enough data: no possible data, consistent with the construction of
the simplified world, can settle the controversy since it will be
derivable from either theory.

The conventional choice could be made for various reasons
(simplicity, coherence with their other theories, closeness to ‘the
experienced world,’ etc.). But there is no absolute correctness to
either choice since there is no absolute criterion on which to base it.
A convention is just another name for an ‘implicit definition’ (an
arbitrary choice of the language employed). For Poincaré facts of
geometry are conventions in this sense: free and bounded only by
the avoidance of contradiction. Poincaré himself believed that the
flatlanders would be best served by choosing the ‘Euclidean space +
forces’ option, invoking its superior simplicity and closeness to our
everyday intuitions about space.2

Our choice is not .. imposed by experience. It is simply guided
by experience. But it remains free; we choose this geometry
rather than that geometry, not because it is more true, but
because it is more convenient. ([36], p. 145)

Of course, we can easily quibble with this, pointing out that these
curious forces are rather messy, while using the geometry of space
(to ‘embody’ or ‘geometrize’ the force) is somehow more elegant and
unified. This is not really relevant, however: the key point is that



one can apparently gerrymander a finite flat space picture with
some curious distorting forces to capture all of the empirical facts
that a geometrical picture with an effectively infinite negatively
curved space might generate. In which case, we cannot be said to
know the world’s true geometry. In each case, we define the terms
of the theory in such a way that the laws or axioms (e.g. of
geometry) come out true.3

A Topological Parable
Hans Reichenbach ([39], pp. 63–66) considers a similar example
involving beings that live on the surface of a sphere. One can, he
argues, once again generate a parallel story, concerning topological
features of a space, by this time redefining aspects concerning the
reidentification of objects in the space. One might think it is
perfectly easy to tell what the shape of space is in this case by simply
planting a flag in the ground and traveling far enough to return to
the starting point and finding your flag. Reichenbach points out,
however, that this depends on a convention about objects ‘being the
same.’ One might have a situation in which one is in a flat space but
as one moves out certain features (such as the flag you planted) are
mysteriously duplicated so that it only looks as though you are back
where you started. There would need to be some principle of ‘pre-
established harmony’ in the overall space, where the other stretches
of space ‘know’ that the flag was placed a certain distance away so
that it could be duplicated accordingly. This example is harder to
uphold if we imagine stretching a very long rope around the space
so that one could tie a knot in it. The sphere’s surface would provide
an obstruction when pulled tight, which should be missing in the
flat infinite space with duplication. However, this is too quick:
presumably one must have tethered the rope to something (a tree
say), which essentially is no different from leaving a flag. All one
would see, as one completes the journey, is an end of a rope tied to a
tree: there is no certainty that it is the other end of your rope! It
might simply lead off in a straight line again, onto the next clone of
your world.4

It is clear that this kind of thinking can be ramped up a dimension
so that we imagine the same scenario occurring in a universe just
like ours – of course, Poincaré was using his case as a possible



analogue for our world.

We can ask: is the world open or closed (by analogy with the surface
of a sphere)? If it is closed one could imagine setting off from the
Earth keeping a straight line course and eventually returning to
Earth. We face the same reidentification dilemma: is this the same
Earth you left or an identical one some great distance from the ‘real’
Earth? If you think that it is a different Earth then you have to
accept all of the strange coincidences (your cup was left in the same
place on the desk in your office as the cup here on this imposter
desk in this twin Earth’s version of your office). You can try to
‘catch’ the twin Earth (or some other copy) out by leaving a special
message locked in a safe where only you have the combination. But
you travel once again and come to find the safe opens with your
code and the same message is in there: it is an assumption (though
perfectly reasonable) that this is the same safe and message; the
pre-established harmony story would have the same observational
consequences. The more acceptable alternative is, of course, that
you live in a universe with ‘Asteroids-geometry’ (a toroidal
structure, so that going far enough in one direction brings you back
to your starting point). In other words, the kind of topological
structure (whether a space is open or closed for example) depends
to a certain extent on our preference for a good causal story, with no
spooky influences, such as the curious duplicating of one world in
another location.

Reichenbach ([39], §17) has also extended this to other scientific
facts at the basis of our theories, such as the uniformity of time
(relating to the metric of time), which is based on the idea that we
stipulate (by a ‘coordinative definition’) that, e.g. a pendulum’s
swings cover equal periods of time – this is based on the fact that we
can’t compare successive durations, there is simply no way to test
such a thing:

We cannot carry back the later time interval and place it next to
the earlier one. It is possible to make empirical statements
about clocks, but such statements would concern something
else. Two clocks stand next to each other, and we observe that
the beginning as well as the end of their periods coincide.
Further observation may show that the ends of their periods
always coincide. This experience teaches us that two clocks
standing next to each other and having equal periods once will



always have equal periods. But this is all. Whether both clocks
require more time for later periods cannot be determined.
(ibid., p. 116)

This leads to a curiosity in physics (one that we return to in §5.2):
the laws of physics themselves suggest that such periods will be
equal, but those very laws were the result of experience with clocks
“calibrated according to the principle of the equality of their
periods” (ibid.). This is a very tight logical circle! To break out of it,
says Reichenbach, requires an acceptance of conventional elements
in the measure of time. Again, according to Reichenbach, any such
definitions are chosen for the way they simplify description. This
does not point to their truth, but identifying such conventional
elements (given that they are contributions from the mind) is an
essential part of separating out subjective from objective structure
in our descriptions of physical reality.

Realism versus Conventionalism
This brings crashing home the point that conventionalism has a
tendency to align with anti-realism about whatever is subject to the
conventionalist stance. To say that something is conventional is to
remove it from the objective world. However, what it also reveals, if
we accept it, is that scientific theory-choice goes beyond empirical
evidence in such cases.5

More recent work within the area of philosophy of cosmology has
tended to focus on the epistemological opacity of various features of
spacetimes (in general relativistic universes), which implies that we
can never be fully sure of the structure of the universe: there are
multiple consistent (but unobservable) developments of the
observable part. The issue arises from the existence of causal
horizons beyond which we can’t have knowledge. This is rather
different to the kind of conventionalism mentioned above: there
might be a fact of the matter, but it is simply our empirical
limitations (i.e. restrictions on what we are able to experience,
observe, and measure) that prevent us from finding them out.
Unless we consider not being able to probe higher dimensions as an
‘empirical limitation’ (which seems wrongheaded in any case), the
cases discussed by Poincaré and Reichenbach transcend empirical
matters.



But what picture of the world are we left with then? One with an
‘indeterminate’ geometry and topology? Or a world with a definite
geometry and topology, but that will lie forever from our view? Why
should we care in any case? There are many other conventions
(driving on the left side of the road in Australia) that we do not fret
about: is it ‘really true’! The difference is that we can witness other
conventions, and imagine changing them and doing otherwise with
visible effects. Changing the convention would make a difference to
the world. But that might cause us to be even less impressed by
these geometrical examples: if the choice has no observational
impact whatsoever then is it a difference worth worrying about?
Perhaps a better example, used by Poincaré, is that of different
coordinates (Cartesian versus polar) or the choice of units in the
making of measurements. We often have to switch from pounds to
kilograms, or stone, because of the different conventions for weight
measurement in different countries. We don’t think that one is
‘more correct’ and yet these do not make a difference to the
measured quantity. We also have the element of convenience of a
unit relative to purpose, or providing a better fit with other units,
and so on. Likewise there are all sorts of ways of measuring
temperature (Fahrenheit, Celsius, etc.), but though there might be a
disagreement about the numerical value given, there will be no
disagreement about the qualitative aspects: the chicken in the oven
will cook in the same amount of time regardless of whether we have
the setting at 350 degrees Fahrenheit or 176.6 degrees Celsius. We
simply fix some set of units to know what we’re talking about and to
be able to specify what to do in a recipe. They give us, as beings that
interact with the world and each other, a grip on temperature.
Nobody imbues the units with any physical significance beyond
their convenience. Again, we seem to be back to anti-realism about
conventional elements.

Clark Glymour [18] has argued that even when there are
conventionalist choices to be made we need not be forced into anti-
realism. There are often reasons to say that while we cannot decide
the matter, there is nonetheless a fact of the matter – these
situations occur more in the kinds of cases where we are empirically
constrained from finding certain things out. He also suggests that
the deadlock can be broken with solid methodological
considerations beyond empirical factors [19]: empirical equivalence
does not mean equivalence in all scientifically relevant respects.



General relativity (Einstein’s theory of gravity) also causes some
problems for the “free to choose” idea where geometry is concerned
(topology is a different matter) since there the field equations
involve a dynamical interplay between the geometry and the matter
distribution such that they are bound together with the latter
seemingly uniquely selecting the former – in §4.4 we saw that this
isn’t quite so straightforward as is often supposed.

Another escape from anti-realism is to argue that, as with units, we
know that there aren’t really two separate ‘theories of the world’
being offered: one and the same physical content is represented by
both systems. This suggests treating a theory as a kind of
equivalence class of its observationally identical presentations:
theories are systems that tell us what we will observe and explain
what we have observed. This is associated with the ‘positivist’ school
in philosophy of science according to which what is not observable
(such as the difference between the conventionalist scenarios
presented by Poincaré) is strictly speaking meaningless. If we don’t
want to go down this path then we have to say something about the
ontological nature of whatever it is that the two theories are
redundantly representing, about which positivism remains silent.
One realist option, due to Adolf Grünbaum [21], argues that what is
shown by the geometric underdetermination cases is simply that
space is ‘metrically amorphous’ (lacking in intrinsic metrical
structure) so that Poincaré is seen to be right that geometry is
conventional, but this needn’t lead us into anti-realism itself.

‘Structuralist’ positions will point out that the structure revealed by
the equivalence class (i.e. whatever is common to both descriptions)
exhausts what we can know (epistemic structuralism) or, in more
extreme versions of structuralism, exhausts what there is (ontic
structuralism). Another option that fits well with such cases in
which there doesn’t seem to be a fact of the matter about which is
correct is ‘constructive empiricism’ (due to Bas van Fraassen). This
is realist about observables (on which the two theories match) but
agnostic about the unobservables (on which the two theories do not
match). However, to be pushed into such extreme (and global:
applying to all theories) positions by a cluster of theories might be
going too far. One can potentially rescue realism from some
conventionalist dilemmas so long as there is a ‘dictionary’ linking
the respective theoretical structures, as well as the matching of the



structure of observables. This is hard to deny, but there might be
some problem cases that slip through the net, in which the
theoretical structures are simply too heterogeneous to be mapped
onto one another in the required way.

More recent work, especially that occurring in string theory, has
raised the spectre of conventional aspects in physics once again.
Transformations known as dualities between (what appear to be)
physically different string theories lead to the same observable
content. One simple yet striking example is ‘T-duality.’ Here a string
theory defined on a space with a large radius r is indistinguishable
(using strings and the laws they obey) from a string theory defined
on a space with a small radius, 1/r – the details needn’t concern us
here. One possible response is that the radius is conventional just as
in the geometrical structure of discworld. However, there are other
options here, matching those above: we might remain agnostic
about the issue, though perhaps still accepting that one of the radii
correctly describes the space. Or we might take the theories as
simply different ways of talking about the same physical possibility?
6 If we follow this latter route then it seems hard to retain the naive
picture of the world as strings living in spacetime.

5.2 Measuring Time
If you wear a wristwatch, then as its battery approaches expiry you
will notice that it ‘slows down.’ If you’re like me, then this slowing
down is gauged relative to your laptop, which has its time set (I’m
told) by an atomic clock: we assume that this atomic clock is more
reliable and so if there is any drift between watch-time and the
laptop-time, we can usually safely assume the problem is the
former.

Without this kind of comparison (and assumption), how do we
judge whether a clock is slowing down or speeding up? How do we
tell whether a pair of time intervals are the same or different, which
is what is required? After all, we only experience the world as it
unfolds. We can’t measure Newton’s (invisible) absolute time, and
even using ‘sensible measures’ (clocks of various kinds) we can’t
archive the intervals that have passed (tick-tocked) in order to
compare them. Unlike spatial distances, in which we can place
objects side by side, intervals are one-off entities. To return to the



watch versus laptop example again, how do we know that it wasn’t a
case of the laptop clock speeding up because of some fault? The two
scenarios would be identical: the relative separation between the
times shown doesn’t care what scenario causes it, the slowing down
of one or the speeding up of the other.

A Convenient Time
Poincaré identified this as a key problem with time measurement,
one that is both practical and philosophical – it is in many ways the
temporal analogue of his geometrical conventionalism.7 The
problem is that while we can with confidence state when events are
before, after, or simultaneous with one another (topological
ordering), it is not so easy to state when two intervals of time are
identical (the metric properties: the how much): we can’t just ‘sense’
such a thing. He didn’t have the luxury of a laptop set by an atomic
clock, but he uses a similar example:

Of two watches we have no right to say that one goes true, the
other wrong: we can only say that it is advantageous to conform
to the indications of the first. ([37], p. 228)

We might use a pendulum, for example, and assume that its beats
are all of equal duration, but we know that there are all sorts of
irregularities caused by temperature, air pressure, and so on.
Correcting from these (and subtracting them somehow) would still
leave the equality approximate, since there are electromagnetic
influences and even tiny gravitational perturbances from other
astronomical objects beyond the Earth. The pendulum clock is so
prone to disturbance that the Earth’s rotation itself was used as a
watch instead, so that each full rotation is a tick assumed to have
the same duration.

But this new watch has its own problems. There is a slowing down
of the Earth’s rotation due to the tides (and other influences), which
results in a measured speeding up of the Moon’s (and other bodies’)
motion relative to the Earth’s ‘ticks’ (when combined with Newton’s
laws of motion). The Earth’s slowing down, however, is measured
from the Moon’s apparent speeding up! The observed acceleration
of the Moon would be in conflict with Newton’s law and
conservation of energy if the Earth’s rotation were taken to be
uniform, so an appropriate correction is made, attributing a



deceleration to the Earth.

But, as Poincaré points out, this puts the weight on Newton’s laws,
which are also approximate, as empirical facts. Moreover, with this
definition of time based on Newton’s laws, we could pick any
periodic phenomenon as our watch, and so long as we made the
appropriate corrections, so that any observed feature remains
consistent with Newton’s laws and the conservation of energy, we
have much the same principles at work. Some such watch might,
however, result in very complex corrections and a messy statement
of Newton’s laws. This is the key for Poincaré; as with his discworld,
he argues we tend to adopt the more convenient standard of time
measurement, rather than the ‘most true’:

Time should be so defined that the equations of mechanics may
be as simple as possible. ([37], pp. 227–228)

The similarity to the discworld case should now be clear: we have
options for either sticking to one set of laws (or, in Poincaré’s terms,
one “enunciation” of the laws) or choosing some other more
complex statement. We can say that the Earth is perfectly uniform
(modulo corrections for tidal friction and other influences, knocking
it off its true course) and makes a fine t for Newton’s equally fine
equations, which leads to accelerated motions in systems referred to
it, or find a more suitable (more uniform, without corrections)
periodic phenomenon.

There is something strangely circular about all this: we can choose
to take any one of the planetary objects as a clock, and imposing
Newton’s laws (and solid principles of physics, such as the
conservation of energy), by assuming those laws and making
observations, we make whatever corrections to our clock as are
needed to get the whole system consistent. A choice of object is
made purely to achieve the greatest simplicity of the form in which
the laws are expressed. The time t, then, that features in Newton’s
equations, is defined by those very laws (together with observations
that are supposed to be used to confirm the laws)! This has much in
common with pulling yourself up by your own bootstraps.8

New Standards
A more robust watch is the atomic clock, which is far less



susceptible to external perturbations – theoretical calculations show
that its various beats are uniform (identical in duration) that it will
lose only a second in tens of millions of years.9 But, a second is still
an irregularity, and the same procedure must be adopted in our
scientific practice: assume some laws of physics (not necessarily
Newton’s), add our observations, and then figure out how the
system realizing the t in the equations will need to be adjusted to
make the observations and the theory consistent.

There are two opposing interpretations of this procedure (i.e. in
terms of what clocks are measuring and how t maps to the world):
realism and anti-realism (conventionalism) about time. We have
already seen the latter: Poincaré’s claim that there is just no fact of
the matter about what the ‘true time’ is, only choices that result in
simpler and more complex formulations of the laws. But much of
the terminology of ‘corrections’ to the time variable at least suggest
an underlying true time that our advancing, ever more precise
choices of clock are approximating: better clocks in this sense are
those that map more faithfully onto Newton’s true time.10 John
Lucas explicitly adopts this viewpoint:

The fact that we have a rational theory of clocks vindicates
Newton’s doctrine of absolute time. If we really regarded time
simply as the measure of process, we should have no warrant
for regarding some processes as regular and others as irregular.
([30], p. 91)

However, precision (to a greater or lesser degree) does not
necessarily mean more accurate (in terms of mapping onto some
quantity in the world: absolute duration). Sklar considers the
relation as a causal one, rather than mapping (though only to dispel
such a notion):

Of course, deviation of any clock from its ideal rate is
something to be explained by causal interaction in the material
world. But there is no “causal” explanation as to why clocks in
general record time intervals more or less accurately. What we
mean by time intervals is just this numerical abstraction and
idealization from the uniformity more or less of relative rates of
clocks of various kinds of construction. It is, of course, still an
important observation of Newton’s that only when we date
events by the ideal time metric will our dynamical laws of



nature take on their familiar simple form. But that does not
seem to call for absolute time as a “cause” either. ([47], p. 74)

Precision can also refer to an ability to control the various errors
and perturbations, at least with theoretical knowledge on how to
remove them from calculations. Moreover, we have seen that the
conventionalist is perfectly capable of biting the bullet and
accepting that we really do not have any such (absolute) warrant for
distinguishing regular from irregular.

There have been several important advances in time measurement
since the turn of the twentieth century. Firstly, there was ‘ephemeris
time,’ which essentially followed the idea that since the solar system
could be viewed as a kind of clockwork machine, it should be used
to define time – ‘ephemeris’ refers to the catalogue (an ‘almanac’) of
positions of some astronomical object over time. The ‘hands’ of this
clock are the positions of the Moon and planets (relative to the
‘fixed stars’), as determined by Newton’s laws. Ephemeris time is
then just the rate at which these ‘tick.’ The unit in this case was the
sidereal year (as of 1900: to avoid inevitable fluctuations), or
whatever time it took that year for the Earth to perform a complete
orbit around the Sun.

The next step was the creation of atomic time. A clock, of course, is
simply something that oscillates (preferably in a uniform fashion,
modulo the problems raised above), along with a register of the
number of cycles that have occurred. The specific oscillator provides
the ‘frequency standard’ (e.g. a pendulum, a pulse, the Earth’s
rotation, the solar orbit, etc.). Atomic time is based on the
recognition that atoms vibrate at specific frequencies, and so it
involves an atomic frequency standard. This nicely fits the natural
criterion of a standard, that it be ‘universal’ (freely recreatable
wherever and whenever one wishes). Atoms of the same kind are
identical, unlike pendulums. The atomic second is, however,
defined in terms of the second of Ephemeris time: a second of solar
time is correlated with 9192631830 ±10 cycles of a caesium atom.

The study of standards is a fascinating one, and hasn’t received
nearly enough attention from philosophers of physics.11 However, I
raise it here to simply point out that the same philosophical issues
are raised regardless of the standard we use. There is the same
question of what is being measured: a ‘real time’ or simply physical



processes that are linked to the clocks via correlations. However, a
future advance (still a ‘work in progress’) will attempt to base a set
of standards (for time, space, and mass) purely on the fundamental
(universal) constants of nature: Planck’s constant ħ, the constant of
gravitation G, and the speed of light, c. I leave it as an interesting
exercise for you to figure out what difference (if any) this change in
standards would make.

5.3 Determinism and Indeterminism in Physics
The most famous characterization of determinism (indeed,
amounting to the very definition of the claim for most, and quoted
whenever the word ‘determinism’ is mentioned) is due to Pierre
Simon de Laplace:

We ought to regard the present state of the universe as the
effect of its antecedent state and as the cause of the state that is
to follow. An intelligence knowing all the forces acting in nature
at a given instant, as well as the momentary positions of all
things in the universe, would be able to comprehend in one
single formula the motions of the largest bodies as well as the
lightest atoms in the world [so that] to it nothing would be
uncertain, the future as well as the past would be present to its
eyes. (In [33], pp. 281–282)

Hence, the present state of the world is understood to have been
‘brought into existence’ by a unique prior state together with the
laws of nature (Laplace’s ‘forces’). We have in here, then, laws of
nature and the relation of cause and effect. We also have the notion
of predictability (in principle), as based on these other elements. It
is not surprising that this vision of a deterministic universe was
couched in the framework of the clockwork-conceived Newtonian
solar system, with the planets, Sun, and Moon linked by gravitation.
For example, given the initial positions and velocities of all particles
together with Newton’s second law F = ma, then so long as we know
all forces F, given some mass, we will be like Laplace’s ‘intelligence’
(or ‘Demon’) in terms of computing motion. Because of the
interlocking nature of the forces between all of the objects in the
system, one has the potential to know its state at any instant one
could care to choose.

In more modern terms, then, determinism simply means that for



some initial condition, given the laws (and any boundary
conditions), there is one and only one possible outcome (relative to
those laws). We can represent this diagrammatically as follows:

Note that here x(t) might be either to the past or future of x(0) (the
initial state): hence, the idea is that the laws and an initial state will
determine a unique history. This can be further transformed into a
statement about replicating initial conditions, since it follows that
whenever some state is reproduced, it will duplicate the behavior of
the original: like causes will have like effects, in other words (like
replaying a videotape). The phenomenon of chaos often fools people
into thinking that it implies a failure of determinism since we lose
the ability to predict future states (over certain timescales).
However, determinism (in the above sense) is preserved, only the
ability to replicate initial conditions is lost, and the laws are such
that even small errors in this replication will be pushed into large
divergences in later states by the laws. Indeed, in general, if we
don’t have a perfect grip on the initial conditions, we will pick up
some uncertainty in how the system will evolve.

Indeterminism, by contrast, means that for some initial condition,
given the laws, there is more than one possible outcome (though
only an individual outcome might be found).12 In this case, we can
see that the ‘like causes will have like effects’ principle is violated:
we can duplicate the law and the initial conditions, and yet get
different behavior. This can be represented by a branching structure
as follows:



We saw in the previous chapter (in the context of the hole
argument) how the laws of general relativity have some freedom so
that the same initial state could lead to what looked like distinct
future states, but those states formed an equivalence class under the
theory’s central symmetry, which would collapse the branching
structure. However, this should lead us to suspect that deciding
whether a theory is deterministic or not isn’t quite as simple as one
might believe: in that case it was a matter of interpretation whether
one collapsed the branching possibilities (that is, whether one
viewed them as representing physically distinct possibilities).

Uncertainties and Probabilities
Of course, this branching situation might also reflect uncertainty in
terms of our knowledge of the outcome rather than any uncertainty
on the part of Nature. A toss of a die is an obvious case in which the
uncertainty is in our heads, and if only we knew “all the forces
acting in nature at a given instant” on the die, we would be able to
compute its outcome. There, of course, we have a branching into six
possible outcomes. Of course, though we cannot predict with
certainty which of the six outcomes will be realized following a
throw, we can in this case have some say over the distribution of
events in a large sequence of throws. Likewise, in the above case in
which we don’t have perfect knowledge of the initial conditions we
will be faced with uncertainty of this epistemic type: there will be a
statistical spread of possible outcomes. This links the discussion to
probabilities and their interpretation.

There are three broad categories of interpretation regarding
probabilities:

Objectivist. Probabilities pick out ‘real’ features in the world,
independently of the existence of humans. The relative



frequency interpretation according to which probabilities are
ratios of repeated events views probabilities objectively in terms
of a correspondence between the probability and the number of
times (or percentage) an outcome is found in the repeated run
(strictly speaking an infinite run). It is possible to think of
objective probabilities in terms of ‘propensities,’ which are
dispositions13 to produce the kinds of outcomes that would be
able to ground the kinds of relative frequency just mentioned.

Subjectivist. Probabilities refer to the degree of belief (a value
between 0 and 1) that an agent has. It is, of course, dependent on
the agent’s beliefs and is sometimes called the ‘personalist’
approach since each agent determines their own interpretation
of probabilities. This is tamed (made more ‘objective’) by adding
various kinds of constraints so that agents are forced to at least
be consistent in their assignments of probabilities. Note that
probabilities for single events can be dealt with on this approach
(e.g. where we do not have the luxury of an ensemble of copies of
the event).

Evidentialist. Probabilities are objective facts about the levels
of support between empirical claims. This is a inductive logic
approach analyzing relations between statements: it locates
probability neither in the world nor in the head, but in a kind of
abstract formal space.

These categories split apart into sub-categories; however, we need
not concern ourselves with the details here. What matters is that
some treat probability as a feature of the world (‘ontic’: the world
itself is ‘chancy’) while others treat it as a mental contribution
(‘epistemic’: the world may or may not be chancy, but our
knowledge of it is uncertain). To return to the case of the toss of a
die above, it might be that there is a fact of the matter, determined
by physical law, about which side of the die will be face up, the
subjectivist can still assign a probability based on incomplete
knowledge of the situation.

In the case of quantum mechanics, the orthodox interpretation is
that there is ‘ontic uncertainty’ (objective probability) since the laws
are themselves only capable of generating probabilities for
outcomes. As we see in Chapter 7, quantum mechanics caused many
to give up on the notion of determinism, and the related notion of



cause and effect. This reflects the ‘standard viewpoint,’ one
replicated across countless popular TV programmes on physics (but
also more serious academic literature), that classical physics is
deterministic and quantum mechanics came along and destroyed
this neat deterministic picture, underwritten by the uncertainty
principle (sometimes called ‘the principle of indeterminacy’).
However, we need to be far more careful in our assessments of
whether a theory is or is not deterministic – and after all, we are
concerned with physical theories here (and their interpretation),
and whether we think that our world is actually deterministic will
depend on what our best theories say, and how faithfully we take
them to map to our world.

Defining Determinism
We also need to be careful in how determinism is defined: what
exactly are the necessary components of this thesis? We saw that it
is usually bundled together with causality and prediction, but this
has recently come under fire. When we pull apart these elements,
we are left with a formulation that forces us to revise the standard
view. Causality faces the troubles identified by David Hume long
ago, and solidified by Bertrand Russell: causation does not appear
in our theories; rather, all we have are functional relationships of
various kinds. Causation faces too many philosophical problems of
its own to make it reasonable to base a definition of determinism on
it. Likewise prediction, which also fails to secure an ontological
notion of determinism since to predict is to perform a mental act,
and this is highly dependent on what skills we attribute to whatever
is performing such acts. True, if we can make accurate predictions
using some theory then it perhaps offers up some evidence toward
that theory’s status in terms of determinism, but strictly speaking it
belongs in the realm of epistemology. Moreover, the existence of
chaos, which involves a lack of predictability yet still, we want to
say, is deterministic, should also lead us to wish to tease these two
concepts apart. Again, since theories are our guideposts to reality,
we ought to couch our definition of determinism is terms of theories
and their interpretations.

The preferred formulation of modern philosophers of physics can be
discerned from some of what we already said above. Let’s assume
that a theory is defined by the states and laws governing its systems



of interest. The trick is then to consider pairs of systems that are
‘prepared’ in the same way (i.e. in the same state) at some instant of
time. Given such preparation, determinism is the claim that the
systems will share the same state at all future times, so long as they
are subject to the same laws:

This makes no mention of predictability and causality, though they
can easily be incorporated. What’s more, this account can easily be
extended to the consideration of entire histories (i.e. universes or
worlds): determinism just means that worlds that agree up to some
time agree at all times. The hole argument can be considered in just
this way by thinking about the state of an entire (instantaneous)
slice through the spacetime (the universe) and all of spacetime
before that slice and asking whether the future behavior of the fields
defined on the slice (from which the state is constructed) are
uniquely determined. Couched in our preferred way of thinking
about determinism, we then ask whether it is possible to have a
second universe identical to the first up to this same slice but
differing thereafter. Of course, we found that it was indeed possible
to have a second universe provided we treated the spaces’ points as
real entities independently of the fields defined with respect to
them: the symmetry of the theory means that we can deform the
fields to the future of the slice while still producing a legal solution
of the equations (i.e. while remaining consistent with the laws). But
this same freedom means that the very slicing we used, to set up the
test of determinism, is itself unphysical. (If we are thinking in terms
of worlds – or rather models of worlds – instead, then the identities
between initial and final states above would be instead
isomorphisms between [portions of] the worlds.)

Denying Determinism
Several notable violations of determinism occur as a result of
‘interference’ or a breakdown of the theory (so that a solution
cannot be extended to later times). For example, a major problem
that threatens determinism in a Newtonian universe (the natural



environment for Laplace’s demon’s party-trick) is the absence of
any speed limit. Causal influences can propagate at whatever speed
you like. Interactions can be infinitely rapid: indeed gravitation is a
perfect example of such an influence, though not one mediated by a
propagating particle of course. This implies that particles are able to
shoot off to or in from ‘spatial infinity’ in a finite interval of time, so
that they don’t show up asymptotically in the space, or show up
without being in the space at the start of the interval – the inward
particles have been dubbed ‘space invaders’! This allows for future
states to be meddled with in a way not determined by an initial
state. Perhaps surprisingly, special relativity makes the world safer
for determinism, since the speed limit (involving a transformation
of causal structure of spacetime) prohibits such space invaders and
their reversals. Another option for outlawing space invaders and
defectors is to enforce (global) conservation of energy: after all,
particles coming in and out of the world will be bringing (creating)
and taking (destroying) energy as they do so – this also raises the
point that the number of particles in the world is not invariant,
which might be a cause for concern.

Another failure of determinism in Newtonian mechanics concerns
the simple breakdown of the applicability of the theory as a result of
a (collision) singularity that occurs because of the form of the
inverse-square law. This of course contains a 1/r2 term, where the r
is the distance between a pair of particles. If we consider the mutual
gravitational attraction of a pair of particles, a collision will
obviously mean that the distance is zero. The laws of the theory
simply cannot determine what will occur after such a singularity has
occurred.

An example of Newtonian indeterminism, that puts us in mind of
Zeno’s paradoxes, was devised by Jon Pérez Laraudogoitia [35].
Known as a ‘supertask’ (performing infinitely many steps in a finite
time), it goes as follows. Firstly, we need infinitely many point
masses, arranged along a meter-long line spaced according to the
infinite geometric series  The first particle, at the start, is
taken to be moving toward the second particle at , which is then
pushed onto the remaining particles, one after another, all at a rate
of one meter per second – obviously, since this is laid out in a 1-
meter line, the whole thing will be over in a second. During each
(elastic) collision a particle pn will transfer its momentum to pn + 1,



thereupon coming to a state of complete rest where pn + 1 was
previously at rest – one can envisage a version of the toy known as
‘Newton’s cradle’ with infinitely many balls. After a second all the
collisions will have completed, and the entire system will be at rest.
But, and this is where the indeterminism springs from, if this is a
possible Newtonian process (as it appears to be), then so is its time
reverse (since Newtonian mechanics does not have a preferred
direction of time). If we play the tape backwards in this case we
have what appears to be a spontaneous self-excitation of the
particles’ motion at t > 0, which of course conflicts with
determinism. What is curious about this example is that the
momentum (in this case the energy  mv2) that we imparted at the
start has been gobbled up by an infinite sequence. This again points
to non-conservation of momentum (at least at a global level).14

General relativity is far more complex to deal with, and we see
clearly the context-dependence of determinism in the fact that the
particular spacetime structure is based on the particular solution to
the field equations of the theory. There is simply too much freedom
in creating universes – though this provides a theme-park
experience for philosophers of physics. Virtually all of the troubles
stem from the fact that general relativity’s equations are ‘local’ in
that they link curvature and energy at a point. While locally things
look quite simple (approximating Minkowski spacetime), globally
things can become unhinged in a variety of ways: the global
structure is something to be fixed by hand rather than by the theory.
Some of these choices (i.e. for some choices of energy distribution)
are better suited to determinism than others; some don’t even allow
for the setting up of the initial value problem in which determinism
is couched (i.e. data on an instantaneous slice that is ‘pushed along’
by the laws, thus generating the spacetime: a solution to Einstein’s
equations). Spaces with ‘closed timelike curves’ (theoretically, those
permitting time travel) are of this kind. In general relativity, given
the dynamical nature of spacetime (coupled to mass and energy), an
infinitely dense mass creates infinite curvature, which effectively
creates an ‘edge’ to spacetime: a singularity.15 This is a generic
feature of the worlds of general relativity. The existence of
singularities in general relativity leads to the problem that one will
have situations in which the theory cannot predict what will occur at
such singularities (as with the Newtonian singularities above). One



way of viewing this breakdown of determinism is in terms of a limit
of the theory’s applicability, pointing to some successor theory able
to deal with the singular behavior, or able to smear it out somehow.

There are more arbitrary ways in which determinism can be made
to break down in general relativity, for example by simply ‘deleting’
that part to the future of some slice through spacetime (and that
slice itself) in which case we have an abrupt end to the spacetime.
This, strange though it may seem, is a physically possible world
according to general relativity. While not very satisfying, we can
clearly see that handling the issue of determinism in general
relativity is fraught with difficulties and exotic potential
counterexamples.16

As we will see in Chapter 7, quantum mechanics is not necessarily
indeterministic: so long as a kind of nonlocality is preserved in the
quantum theory it is perfectly possible to have a deterministic
version (known as de Broglie–Bohm theory). The infamous many-
worlds interpretation is also deterministic in that the total state
(represented by a wavefunction for the entire universe – or, rather,
‘multiverse’) at any time suffices to determine it for all times – what
is problematic, however, is making sense of outcomes and their
probabilities for realization in a world in which ‘everything
happens.’

5.4 Further Readings
As with the previous chapter, many of the discussions of the topics
in the present chapter lie more within metaphysics and other areas
(such as the philosophy of time, chance, and probability) than
philosophy of physics.

Fun
Craig Callender and Ralph Edney (2001) Introducing Time: A
Graphic Guide. Icon Books.
– An excellent overview, in brief cartoons, of many of the major
philosophical topics in philosophy of time (dealing mostly with
physics-based issues).

Serious



Barry Dainton (2010) Time and Space (2nd edn). Acumen
Publishing.
– A very clear and comprehensive treatment of issues in the
philosophy of space and time, including both philosophy of
physics and more metaphysical issues.

Lawrence Sklar (1974) Space, Time, and Spacetime. University
of California Press.
– Slightly older, but still comprehensive introduction to issues in
the philosophy of spacetime physics. It covers the epistemology
of geometry in great depth, and also covers the relationship
between causal ordering and time (not covered in this chapter).

Connoisseurs
John Earman (1986) A Primer on Determinism. Dordrecht:
Reidel.
– The classic text that did much to modify the simplistic
discussions of determinism in classical and quantum theories.
Its ‘connoisseur’ level placement is not an indicator of its reading
difficulty: it is a sparkling read, as with his book World Enough
and Space-Time.

Notes
1 Actually, Hermann von Helmholtz has the distinction of the

creation of a discworld with two-dimensional beings confined to
it (with no knowledge of higher dimensions): “On the Origin and
Meaning of Geometrical Axioms” (in P. Pesic (ed.) Beyond
Geometry: Classic Papers from Riemann to Einstein, Dover
Publications, 2007: pp. 53–68). In any case, Poincaré himself
uses beings confined to the interior of a sphere (see next note),
but it has become ‘conventional’ to speak of Poincaré’s disk!

2 John Norton expresses this very clearly by noting that the
observational consequences O follow from the conjunction of a
geometry G and some physical theory P about the bodies
traversing the geometry. That is: G + P = O. Of course, we can
preserve O by tweaking either the geometry or the physical
theories so long as we perform a compensatory adjustment on
the other – this example can be found in Norton’s exceptionally



clear guide “Philosophy of Space and Time” (in M. Salmon (ed.),
Introduction to the Philosophy of Science, Prentice-Hall, 1992:
pp. 179–232).

3 For Poincaré, all we have to go on are the observed motions of
objects. From these observations we make inferences to a spatial
reality underlying this. But Poincare’s response was that it is the
group of possible transformations of objects that matters: this is
invariant in the cases since the objects are observed to move in
the same way in the two scenarios (the whole point of the
example being that the same body of evidence is compatible with
two conflicting visions of an underlying spatial reality). This is
closely related to Felix Klein’s Erlangen Programme in which
spatial geometry is characterized by its group of motions. The
motions are initially derived from our visual and tactual-motor
experience of the world, in bringing about displacements and
alterations of objects. The convention of Euclidean space is
selected, according to Poincaré, precisely because its group of
transformations is the closest match to the coarse (physical)
group of displacements we experience in our encounters with the
world. It is fascinating to see how what we consider to be ‘pure’
subjects of mathematics like group theory originate in such
observations – for more on these origins, see P. Pesic’s collection
of the original papers: Beyond Geometry: Classic Papers from
Riemann to Einstein, Dover Publications, 2007.

4 It is a fun exercise to try and come up with a counterexample that
would lead one to definitively tell whether one lived on the
surface of a sphere (such as the Earth: though only its surface,
with no access to higher dimensions) or not. If you manage this
feat, drop a line to the ‘Flat Earth Society’: http://www.tfes.org.

5 There are a number of famous cases in which what were thought
to be conventional choices were no such thing. For example,
David Malament demonstrated that simultaneity in special
relativity (a standard example wheeled out by conventionalists)
can be shown to be non-conventional (and can be uniquely
defined) given certain undeniable assumptions – see his “Causal
Theories of Time and the Conventionality of Simultaneity” (Noûs
11, 1977: 293–300).

http://www.tfes.org


6 I prefer to distinguish such dualities from the standard
conventionalist cases. For the reasons why, and a general
overview of dualities, see, e.g. my “A Philosopher Looks at String
Dualities” (Studies in History and Philosophy of Modern Physics
42(1): 54–67).

7 Newton was no slouch, and identified the basis of the problem in
his Principia:

In astronomy, absolute time is distinguished from relative
time by the equation of common time. For natural days,
which are commonly considered equal for the purpose of
measuring time, are actually unequal. Astronomers correct
this inequality in order to measure celestial motions on the
basis of a truer time. It is possible that there is no uniform
motion by which time may have an exact measure. All
motions can be accelerated and retarded, but the flow of
absolute time cannot be changed. The duration or
perseverance of the existence of things is the same,
whether their motions are rapid or slow or null;
accordingly, duration is rightly distinguished from its
sensible measures and is gathered from them by means of
an astronomical equation. Moreover, the need for using
this equation in determining when phenomena occur is
proved by experience with a pendulum clock and also by
ellipses of the satellites of Jupiter. ([34], p. 410)

Poincaré simply disagrees that duration is distinct from the
various relative measures of duration: the measures are not
‘measures of’ some real underlying quantity – see Harvey
Brown’s Physical Relativity (Oxford University Press, 2005,
§2.2.3) for more on this, including, in later chapters, the story
followed into general relativity.

8 Hans Reichenbach expresses this point (that the metric of time, or
duration, is a conventional element) nicely, as follows: “It is
impossible in an absolute sense to compare two consecutive units
of a clock; if we nonetheless wish to call them equal, this
assertion has the nature of a definition” (“Methods of Physical
Knowledge” [1929]; reprinted in H. Reichenbach et al. (eds.)
Hans Reichenbach: Selected Writings 1909–1953, Volume Two,
Springer, 1978: p. 184). To establish sameness of duration



requires what Reichenbach (and the logical empiricists) call a
“coordinative definition”: it is defined by definitional lineage to
some observable phenomenon (yet not by experience itself); but
as Reichenbach goes onto argue (similarly to Poincaré) any such
coordinations (e.g. with the Earth’s rotation, with atoms, with
light rays, and so on) involve arbitrary elements (such as a notion
of simultaneity, which is a spatial notion that suffers similarly
from its own ‘problem of congruence’).

9 An excellent semi-popular treatment of atomic clocks can be
found in Tony Jones’ Splitting the Second: The Story of Atomic
Time (IOP Publishing, 2000). A more advanced, though still very
readable treatment of modern time measurement (including
discussions of some of the issues raised here) is Claude Audin
and Bernard Guinot’s The Measurement of Time: Time,
Frequency and the Atomic Clock (Cambridge University Press,
2001).

10 Note that while Newton’s laws of motion do not by themselves
imply absolute space (since the laws are the same in all uniformly
moving frames): we are unable to determine whether events
separated in time are spatially coincident – this is, of course, just
the content of Galilean relativity. But temporal relationships
between spatially separated events have a different status: here
we can say whether two spatially distant events are simultaneous
or not (according to Newton’s theory). According to Sklar [46],
Newton was aware of this difference, which is why he utilizes
practical (physical) arguments from astronomy to argue for the
reality of absolute time, but thought experiments (the bucket and
the globes arguments) to argue for absolute space and motion.

11 However, Eran Tal has made a good start in exposing many
interesting features of time standards. See e.g. his “Making Time:
A Study in the Epistemology of Measurement” (The British
Journal for the Philosophy of Science, forthcoming) for a
philosophical investigation of time standardization.

12 This does not mean that there is only one branch realized. In
‘branching time’ models the world literally (i.e. topologically)
takes multiple courses, so that it is the tree that is realized, rather
than a single branch – for a discussion of branching in relation to



indeterminism, see (though note that it is rather logic-heavy): T.
Placek, N. Belnap, and K. Kishida’s “On Topological Issues of
Indeterminism” (Erkenntnis 79, 2014: 403–436).

13 Of course, it does not help us much by defining propensities in
terms of dispositions, since they are just as slippery! The basic
idea is best explained by simply thinking of propensities as brute
chancy features in the world. Karl Popper famously based such a
view on radioactive decay (half life), which seemed to be an
irreducibly chancy business – see his “The Propensity
Interpretation of Probability” (The British Journal for the
Philosophy of Science 10(37), 1959: 25–42).

14 Pérez Laraudogoitia offers an excellent summary of a range of
supertasks, including more that are relevant to the issue of
determinism, in his online encyclopaedia article:
http://plato.stanford.edu/entries/spacetime-supertasks/.

15 The definition of a singularity in general relativity is much
broader than this, and the association with infinite curvature is
rather outmoded (though it does capture much of the physical
interpretation). The more mathematical treatment involves the
idea that a singularity is a kind of ‘boundary’ on which the curves
in the spacetime (that might represent motions of observers)
end. (For a technical account of singularities relevant to the
concerns of this section, see Robert Geroch’s “What is a
Singularity in General Relativity?” Annals of Physics 48,1968:
526–540.)

16 There is far more to the story than this. A notable addition is
provided by the notion of a ‘naked singularity,’ which is a
singularity not clothed in the usual event horizon blocking any
undetermined surprises from view. But without such a horizon to
mask the goings on it is possible for something like the space
invaders mentioned earlier to appear! It is a serious piece of
physics to try and find ways to forbid such naked singularities
(cosmic censorship hypotheses) from finding a home in our
world. I refer the interested reader to the brilliant, though
technically demanding, Bangs, Crunches, Whimpers, and
Shrieks: Singularities and Acausalities in Relativistic
Spacetimes, by John Earman (Oxford University Press, 1995).

http://plato.stanford.edu/entries/spacetime-supertasks/


This includes a discussion of supertasks in a range of generally
relativistic spacetimes (especially so-called ‘Malament–Hogarth’
spacetimes containing both infinite and finite length worldlines)
that appear to be exploitable to test what appear to be
unprovable mathematical conjectures that would require infinite
time to complete (e.g. Goldbach’s conjecture that every even
number is the sum of two primes). The observer with the infinite
worldline could simply crank through all even numbers testing
whether the conjecture holds while the observer with the finite
length worldline sits in waiting for the result to be relayed to
them. Whether or not these are just quirky mathematical games
or point to something deep about computability in the world
remains a matter of debate.



6
Linking Micro to Macro
Thermal physics has had a tendency to leave philosophers of physics
rather … cold. Not quite as mind bending as quantum mechanics
and relativity, it has been somewhat neglected. Perhaps this is
because thermodynamics began life as part of an engineering
problem concerned with extracting the maximum amount of work
from fuel, and thus with the efficiency of engines? Statistical
mechanics ‘grounded’ these engineering results in a theoretical
framework describing the constituents of complex systems
exhibiting thermodynamic behavior. However, at the same time,
statistical mechanics sits at a ‘higher level’ than, e.g. classical or
quantum mechanics, since, to a large extent, it transcends the
constitution of the matter involved: any system with macro-
properties generated by micro-properties is potentially an object of
study for the statistical mechanic. In this sense it resembles a
principle (like evolution by natural selection) rather more than your
typical theory of physics.

However, as a challenge for philosophers of physics, and a rich
source of unresolved problems, it can hold its head up high – and
fortunately, more recent years have seen a dramatic rise of
‘philosophy of statistical physics.’ The kinds of issues one finds are
arguably the most interesting from a philosophy of science point of
view: questions of emergence and reduction, and causality and
explanation are a central part of the interpretive enterprise.
However, though born in the study of heat, thermodynamics and
statistical physics has also provided one of the most perplexing
puzzles about time that we know of: a time-asymmetric law at the
heart of physics!

This chapter begins with a brief account of thermodynamics, based
around the study of heat engines, to express the basic laws of
thermodynamics, and introduces some basic concepts (efficiency,
entropy, randomness, reversibility, etc.). Standard topics involving
reduction (to statistical mechanics), interpretations of probability,
Maxwell’s Demon, and time asymmetry also are then introduced.



Discussed too are topics that have only recently made it into the
mainstream philosophical literature, such as the links to
cosmological issues. The puzzle of organization in our universe
(given the second law) is discussed in considerable detail, including
the puzzle of the low-entropy past, and Boltzmann brains (and the
notions of selection bias and ‘Anthropics’ in physics).

6.1 Thermodynamics, Statistical Mechanics, and
Reduction
Thermodynamics, as the name suggests, is the study of the thermal
properties of matter (‘the scientific study of heat’). Statistical
mechanics is a study of complex systems – i.e. reasonably sized
objects with many parts. But rather than studying such objects by
decomposing them into their simpler parts, and studying those in
order to learn about the complex system, the subject deals with
more coarse grained (‘equilibrium’ or simply ‘thermodynamic’)
variables. Common examples are temperature, mass, pressure,
volume, and entropy. In a sense, these variables bundle together the
properties of the constituent parts (whatever they may be) into a
single number characterizing the whole system. But we don’t worry
about what the simpler parts are doing, or what they are made of.
Thermodynamic processes link pairs of states (initial and final),
characterized by distinct thermodynamic variables (e.g. hot to cold),
and satisfying boundary conditions (describing constraints on how
the process may unfold so that not all formal possibilities represent
physical possibilities).

In the earliest days of thermodynamics, the properties and laws
governing systems were viewed from a fairly high
‘phenomenological’ level, without much concern for the underlying
constitution and mechanics. As mentioned in the introduction, the
aim was to study the relationships between various thermodynamic
quantities and processes that utilize them with a view to getting the
most work from the least energy (i.e. maximum efficiency so that as
little useable energy as possible is wasted). Yet most of the central
concepts and laws of thermodynamics were discovered without the
benefit of a microscopic explanation of why they hold. The key idea
of statistical mechanics is that the coarse thermodynamic properties
and laws can be reduced to laws concerning the behavior of micro-



particles. As we will see, however, this reduction is bristling with
conceptual curiosities.

Statistical mechanics is a set of tools that enables us to discuss the
‘macroscopic’ thermal features of the world by looking at the
mechanics of the ‘microscopic’ constituent parts – generally,
“micro-” and “macro-” do not pick out definite scales, but levels of
analysis, so that the microscopic parts might well be visible to the
naked eye (in which case, the macro-system would be significantly
larger). Think of a large musical ensemble playing in concert. There
is a ‘global’ sound, which is built from the behavior of the ‘local’
degrees of freedom (the various musicians). In the case of statistical
mechanics, the musical output is like the temperature or pressure of
some gas and the musicians are like the molecules comprising the
gas – this is of course just a rough illustration: I’m not suggesting
that statistical mechanics is applicable to systems with so few
constituents. One can analyze the music from this global level,
looking at the broad contours of the music: its melodic structure,
musical form, and so on. Or, alternatively, one can focus in on what
the individual musicians are doing to generate this well-coordinated
global output. It is this ‘zooming in and out,’ from the whole system
to its parts, that characterizes the relationship between statistical
mechanics and thermodynamics (and, more generally, the
relationship between statistical physics and the more coarse-
grained, observable features of systems): you won’t see harmonies
in a single bassoon; likewise, you won’t see pressure or temperature
in an individual molecule. (Though we won’t say so much about it,
there is often something novel that comes with ‘collectives,’ new
kinds of order and laws that are not shared by the parts: “more is
different” as the physicist Philip Anderson expressed it.)

The central task facing the statistical mechanic is, then, to try and
recover known thermodynamic (and other) macro-properties from
the behavior of individual parts. Of course, there are very many
parts to analyze in the case of the molecular structure of gases and
other macroscopic objects, so a direct enumerative approach, in
which one simply figures out what each individual is doing (e.g. by
integrating the equations of motion one by one), will not work. One
needs to employ a statistical approach (and therefore probabilities)
because of this enormous complexity in organization. The
macroscopic thermal properties emerge as statistical phenomena:



averages over properties of the individual micro-constituents –
these particles are understood to be perfectly well-behaved, but
there might be 1023 or 1024 of them, each with their own trajectory
to be solved for. In this case, the postulates of the theory of gases
and heat become theorems of the statistical approach. However, as
the label ‘statistical’ suggests, the theorems have the status of truths
only ‘on the average’: for all practical purposes, they can be taken to
be true since exceptions are incredibly improbable.

Already in the very act of defining statistical mechanics and
thermodynamics we have introduced two deep issues:

1. How are the probabilities in this approach to be understood?

2. What is the precise nature of the relationship between the
micro- and macro-levels?

With regard to the first matter, there is an oddity in the fact that
probabilities are appearing at all: after all, classical physics does not
include any in-built indeterminacy (of the kind found in quantum
mechanics). As the example of Laplace’s demon makes perfectly
clear, given a specification of the positions and momenta of a
system of particles, the laws of classical mechanics enable one to
generate, by integration, the unique future evolution of the system.
Yet statistical mechanics renders the statements of classical
thermodynamics into probabilistic ones. At the most basic level, as
with most situations where statistics must be resorted to, it is the
sheer computational complexity (and therefore impracticality) that
forces the introduction of probabilities.

In response to this puzzle of how such probabilities ought to be
interpreted, one usually finds adopted a frequentist stance based on
the mathematical result known as ‘the law of large numbers’ (or,
more commonly, the law of averages). The idea involves first
defining a probability as the value of a distribution function for
some random variable that we view as representing the experiment
we’re interested in (e.g. a simple toss of an unbiased coin, with
outcomes ‘H’ and ‘T’). Here one is interested in the random variable
Hn/N (the average value telling us the fraction of outcomes that are
heads), where N is the number of coin tosses in the trial, and Hn is
the number of times the outcome lands heads. This will clearly take
values between 0 and 1, and as N gets larger, Hn/N gets closer to



0.5, such that 

The reasoning is quite intuitive: the frequencies here involve various
possible arrangements of things (microstates) such that the number
of these various arrangements (some of which will be effectively
identical) become probabilities. Moreover, if we don’t have some
‘inside knowledge’ about these microstates, then it makes sense to
assign equal probabilities to each distinct possibility. Hence, we give
the probabilities an ignorance interpretation.

We will see that this is quite unlike the probabilities we find in
quantum mechanics. There is nothing inherently probabilistic about
the motions of any of the particles: given a specification of the initial
values of the positions and momenta of the particles, their future
trajectories are uniquely determined: Laplace’s demon would have
no need of statistical mechanics. We do need it because of our
ignorance of these instantaneous values, so we average over their
values – this notion of an average value was the original meaning of
a ‘statistic,’ of course. We face a problem here in that there are no
probabilities as far as the parts are concerned, but probabilistic
notions characterize the complex systems they form when bundled
together.

The second issue also has a similar oddity in that along with the
probabilistic features that occur, despite the deterministic
components, there are also other features that point to a mismatch
between the levels: the macro-level, for example, involves time-
asymmetric phenomena while the microlevel does not. Hence, the
reversibility of the particles appears to be washed away by the
statistical description. This is one of the key puzzles we discuss in
what follows.

6.2 Approaching Equilibrium
One of the worst things to face in one’s life is when someone (or
yourself) breaks wind in a confined space, such as an elevator. We
know what the dreaded outcome will be. Though the nasty
molecules will commence their life in a well localized area (you
know where…), they quickly spread to wreak havoc elsewhere, until
eventually they occupy the entire elevator and, thank heavens, are
diluted enough not too cause anymore bother. This is wholly
unsurprising behavior for a gas, and is well described by



thermodynamics – though I expect that this particular example
might not come up in many thermodynamics exams. We will meet
this idea again, in §6.3, when discussing Clausius’ treatment of
entropy and the second law.

We can represent the general process of the transition from an
initial equilibrium (where there are constant values for various
properties like heat, pressure, and so on) to a breaking of
equilibrium (an introduction of heat, pressure, or some other
disturbance to the system) to a restoration of equilibrium once
again as follows using the standard example of a box with a
partition wall through the center, with the gas initially confined to
one side. The gas is initially in equilibrium, but then we remove the
partition wall (an intervention), which, of course, results in
dissipation. Eventually the spreading and mixing with other
molecules is maximal (i.e. random) and the gas settles into its new
equilibrium state (see fig. 6.1).

The example of breaking wind in an elevator has some surprising
philosophical implications. Crucially, it constitutes an apparently
irreversible process: a process with an arrow of time. Alas, one will
never witness a time-reversed situation in which the odour clusters
together once again near the culprit (as in the the process
represented in fig. 6.2). In the case of our more orthodox, generic
box of gas, once we have reached the new equilibrium, then, without
some disturbance (such as some restoring force pushing the
molecules back over to their starting point on the left side), the
reverse process restoring the initial state won’t spontaneously occur
without intervention – thus ‘opening’ a ‘closed system.’

Fig. 6.1 The approach to equilibrium: a gas started in an
asymmetrical (low-entropy) state will tend toward a state of
maximal equilibrium.



Fig. 6.2 The reverse of the process in fig. 6.1 – from equilibrium to
low-entropy – does not seem to occur in nature.

Perhaps looking at boxes of various shades of grey doesn’t look so
amazing. But this same irreversibility is everywhere. Many’s the
time I’ve left a cup of tea to brew too long and go cold. How nice it
would be to be able to reverse the entire process and start again. But
think what it would involve. The tea, water, and milk must be
unmixed. The milk and tea must be cooled down, and the water
heated up. Any evaporated water and milk must be recaptured. It is
perfectly conceivable that one could do some clever manipulation
(say with centrifuges, heating coils, refrigerators, and the like) to
perform such a feat. But one cannot readily conceive of the time-
reverse trajectory of the actual process occurring spontaneously. It’s
a nice ‘exercise for the reader’ to look around and see how many
other such irreversible processes you can find (that is, processes
that we never seem to experience happening in reverse temporal
order): melting ice; steam from a kettle; cracking eggs into a pan;
wood burning away in the fireplace; the sound coming out of your
speakers or headphones; light from a lamp; jumping from a diving
board into a swimming pool … (Remember that it is crucial that the
reversed trajectory must be driven by the natural dynamics of the
system as it is in the usual ‘forward direction’: it must ‘just happen.’

This irreversibility is part and parcel of the second law of
thermodynamics: the natural order of things (i.e. without
intervening) sees order (low entropy) go to disorder (high entropy),
rather than the other way around. In order to find an explanation
for a law or property, one usually looks to lower levels: here the level
of microscopic constituents. In the case of the gas in the box, these
are molecules. This is the realm of statistical mechanics of course.
But, and here’s the rub: the laws (e.g. Newton’s laws, or possibly the
laws of quantum mechanics) governing the microscopic
constituents do not experience any arrow of time. For any



microscopic process going in one direction of time, there is a
possible process (not in violation of the laws of physics) going in the
other, reverse direction of time – this simply corresponds to the
mapping, t ↦ −t. In other words, the laws of the particles are time-
symmetric (something that applies to both classical and quantum
mechanics) and therefore insensitive to the observable arrow of
time at the macroscopic level. (I should perhaps mention that
weakly interacting particles, e.g. B mesons, do appear to violate time
symmetry, though the combined TCP operation of time reversal T,
along with parity inversion P [mapping a particle to its mirror
image] and charge conjugation C [mapping a particle to its anti-
particle] see symmetry restored. However, this violation of time
symmetry does not point to any kind of arrow of time, in the sense
of irreversibility, since the reverse process is a possible process: it
simply exhibits slightly different properties from the original
temporal orientation, such as distinct decay rates.)

Fig. 6.3 Worldlines of two particles in relative motion where (b) is
the time-reverse of (a).

The simplest way to explain this time symmetry is to invoke a movie
of a bunch of atoms colliding like billiard balls. Watch such a movie
for ten seconds, with the atoms going in their various directions.
Then play the movie backwards. Both would be perfectly acceptable
time evolutions for such a system (i.e. they are possible solutions of
the equations of motion). For example, in figure 6.3 we see two
movies with the same two particles. In the first movie (a), the dark
particle moves up and to the right, just a small distance, while the
light particle moves down and to the right, more quickly (covering
more distance). In the second movie (b), the particles begin in the
final position from movie (a) and end in the initial position of movie
(a). In terms of laws, this amounts to inputting (a)’s final state as an
‘initial condition’ into the mechanical laws and generating (a)’s
initial state as an output (this can be achieved by changing the signs



of the particles’ velocities).

If we were to focus entirely on the particle worldlines for this ten
second period, we would see that they were identical – see fig. 6.4.
The form of Newton’s third law of motion,  , makes this
self-evident since the second time derivative doesn’t care whether
we use t or −t – note that dependence on the second time derivative
is not a necessary condition for time-reversal invariance; it just
happens to be responsible in this Newtonian example. This means
that if x(t) is a solution (corresponding to the trajectory shown in
movie (a), then so is x(−t) (corresponding to the trajectory shown in
movie (b), with the physical solution given by the equivalence class
of time-symmetric solutions, as sketched in fig. 6.4.

Fig. 6.4 Worldlines of the two particles from the previous movies,
which you can think of as a photographs with a ten-second exposure
time. Naturally, this picture would be the same for t and −t cases.

So the challenge for the theory is to find a way of getting time-
asymmetric processes out of the time-symmetric laws, the former
somehow emerging from the latter. Putting it in terms from above:
how do we get time-asymmetric macromovies from time-symmetric
micromovies? If it is possible (in terms of the microlaws) for all of
the particles in a gas to undergo inverse motions (e.g. by flipping the
signs of particle velocities), of a kind corresponding to the time-
reverse of the gas in the box (or elevator!), then why do we not
observe such things happening? From whence the arrow of time?



Ludwig Boltzmann attempted to resolve these problems after they
were raised by Josef Loschmidt – the point is known as
“Loschmidt’s Objection.” The crux of it is that given the time-
symmetric nature of the laws governing the particles making up
macroscopic systems, we ought not to see time asymmetric
behavior. Entropy decreasing jumps, such as spontaneous
coffee/milk unstirring should be observable. As philosopher Huw
Price puts it: symmetry in, symmetry out. Conversely, to get an
asymmetry out demands an asymmetry in the input. This input
asymmetry, as discovered by barrister-turned-physicist Samuel
Burbury, is the assumption of molecular chaos: pre-collision
particles (i.e. their velocities and positions) are uncorrelated
(probabilistically independent: random), but not so post-collision.
In other words, the collisions of the particles are responsible for the
observed entropy increase such that for any given distribution of
states of the particles, it will inevitably evolve into an equilibrium
state (the maximally random Maxwell state). Of course this leaves a
problem that we will turn to in §6.7: if the system is already in a
high entropy state, then it has nowhere to go. One needs some
asymmetry in the dynamical evolution, but also an asymmetry in
the boundary conditions: one needs lower entropy in the past so
that the dynamical asymmetry can generate its effect.

6.3 The Laws of Thermodynamics
I hope you’re drinking a nice cup of tea while reading this book.
When you pick up that cup (if you don’t have one, perhaps make
yourself one), you are doing work of course – battling against the
forces of gravity. The work converts kinetic to potential energy as
you hold it up, which if (don’t try this bit) you should let go of the
cup, will be converted into kinetic energy as the cup falls to the
floor, shattering and spilling the lovely tea everywhere. Where does
the energy go once it is lying in a mess on the floor? It went into
thermal energy of the pieces and tea, and the floor and the air – of
course, some of the energy already went toward heating up the air
molecules in the cup’s path on the way down, subjecting it to air
resistance. This is an example of the so-called first law of
thermodynamics: total energy is conserved in a closed system
(roughly, the room in which the cup was dropped immediately after
it was dropped). The energy in this case was transformed between



various forms: potential → kinetic → thermal – where the latter is,
once analyzed, simply another form of kinetic energy (namely, that
of the particles). Pre- and post-process (cup dropping) energy is a
conserved (invariant) quantity.

There are certainly some interesting issues surrounding the first
law, not least connected to the issue of ‘open’ versus ‘closed’
systems, which it involves. However, the real philosophical meat is
to be found in the second law.

The second law can be seen in the same example: whereas initially
the energy could do work – e.g. imagine a pulley system in which
one end of the rope is attached to the cup and the other to a small
mass (sitting on the floor perhaps) weighing less than the cup, so
that dropping the cup from the table would see the mass rise –
afterwards, when there is only thermal (random) energy, one cannot
do useful work anymore, despite no loss of total energy in the whole
system. Initially, there was a cooperation on the part of the
molecules making up the cup and tea within it; a team effort of
motion toward the floor. In other words: order. Afterwards, once it
has come to rest, randomness prevails, with the molecules whizzing
in all directions. This would be an equilibrium state – of course,
equilibrium here does not mean some kind of zen-like ‘still point.’

The concept of entropy is at the root of the second law. Rudolf
Clausius, building on Sadi Carnot’s work on the efficiency of steam
engines, introduced this concept and with it the law to which it is
associated. Clausius was interested in the movement of heat
(thermodynamics), and noticed that it has a curious uni-
directionality: objects initially at different temperatures when
placed together so they are touching, will approach the same
temperature. But this process of balancing has an endpoint at which
there is no more flowing of heat across from the hot body (or gas) to
the cold one: the heat gradient that existed earlier is no longer
there. This never happens in reverse: hence, the second law – in this
case, a matter of finding a balance so that the temperature is
uniform (that is, at equilibrium). ‘Entropy’ was Clausius’ term for
this tendency.

As with the first law, we need to include a statement about ‘closed’
versus ‘open’ systems, since clearly we can sometimes heat things
up (the tea in your cup, for example) and cool things down (the milk



for your tea from the refrigerator). Both require the input of energy,
and the energy must exist in a low-entropy form (or lower than the
system to which it is introduced) in order to perform work.

This takes us back to the first law, which, though it demands
conservation of energy, does not forbid it from taking different
forms. Some of these forms are more capable of doing work than
others, and these are precisely those with the lowest entropy. Going
back to the pre- and post-broken teacup, we can see that the pre-
broken cup was in a lower entropy state than the post-broken cup
since we could do some work with it (e.g. lift some object, as
mentioned earlier, or use its more concentrated warmth to heat
something).

These laws are of a similar kind in that they involve comparing
quantities before and after some process has occurred. However, in
the case of the first law, there is an invariance of a quantity before
and after, in the case of the second law there is an inequality (always
involving a quantity being larger than before). The quantity in the
latter case is entropy S, to which we turn next. We also find that the
second law, though it appears exact, was later understood to be
probabilistic (i.e. true in the vast majority of situations). The
concept of entropy is modified accordingly, and becomes a
statistical concept (roughly having to do with the number of ways a
state can be realized by its parts).

6.4 Coarse Graining and Configuration Counting
Our modern notion of entropy comes from Ludwig Boltzmann
(superseding the more phenomenological version due to Clausius,
relating entropy to energy and work). In a nutshell, Boltzmann’s
idea is that entropy has to do with counting possible states for a
system. However, we must split the types of possible state into two
families, depending on whether they refer to the level of particles or
the level of the systems made up of lots of particles. High entropy
then simply means there are lots of ways for some state to occur (at
the level of individual particles), and low entropy means that there
are very few ways for some state to occur (at the level of individual
particles).

The definition involves a mathematical procedure known as ‘coarse
graining,’ which, as the name suggests, neglects certain fine but
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observationally irrelevant details of macroscopic properties.
Starting with a system’s phase space, one divides it into cells, such
that all of the phase points within a cell (henceforth: ‘microstates’)
correspond to one and the same macroscopic state (henceforth:
‘macrostate’). In other words, the cells are equivalence classes
where the relation of equivalence is ‘has the same macrostate as,’
which just means that one would not be able to distinguish between
those microstates by observing the macrostate. An assumption of
equiprobability is then made, such that each microstate is just as
likely as any other. Crucially, this does not mean that each
macrostate is equally as likely to be realized as any other: those
macrostates that are associated with more microstates clearly have
an advantage.

Let’s bring in a few technical details here, which aren’t so difficult –
some of which we encountered in earlier chapters. Firstly, recall
that the phase space (i.e. the state space) is understood to represent
the space of possibilities for a system, here of n (indistinguishable)
particles – indistinguishable, but still distinct and countable (giving
the so-called Maxwell–Boltzmann distribution). Since it includes
information on both the positions q and momenta p (for each
particle) it will be a 6n dimensional space, which we call Γ. The idea
of partitioning the space into cells is that while all points x = (q, p)
represent physical possibilities, some points are to be seen as
representing, many-to-one, the same possibility (in terms of
macroscopically observable quantities): the physically measurable
quantities one is interested in will be insensitive to differences
amounting to swapping any such points. One can then think of the
cells as themselves being the mathematical entities that correspond
one-to-one with macrostates, so that each cell corresponds to a
macroscopically distinguishable feature of the world. We can label
each cell by coordinates wi, and let us also represent the volume of
each cell by Wi (see fig. 6.5).

This small amount of apparatus allows us to now introduce
Boltzmann’s famous equation for the entropy S of system in state x,
where x ∈ w (that is, the state x of the system lies within the cell w).
It simply tells us that the entropy is the natural logarithm of the
volume of the phase cell in which it sits:

S = klog W



It is then easy to see that the larger the volume W of the cell w that
the system’s state x lies within, the more ways there are to ‘get’ that
state; the higher the entropy will be; and (Boltzmann argued), the
more likely it will be to occur.

Putting it back in terms of micro- and macrostates: macrostates
realizable in more ways have a higher entropy and are more likely.
For example, W tells us how often we can expect some temperature
(of say 30° Celsius) to be realized. (Note that the number k is
Boltzmann’s (conversion) constant used simply to get the two sides
to agree in terms of units: k = 1.38 × 10−23J(oules)K(elvin)−1. It can
be viewed as a bridge, linking microscopic properties of individual
particles (energies) with macroscopic parameters, such as
temperature. The logarithm is used to get a grip on the huge
numbers of microstates that some macrostates will be realizable
by.) The largest cell will be that corresponding to the (thermal)
equilibrium state, with the most microstates. This has the largest
entropy. Hence, in much the same way as it is overwhelmingly likely
to pick a red ball from an urn with 99 red balls and one black ball,
so it is overwhelmingly likely to find the above system in a larger-
volumed cell (assuming, as indicated above, that all of the
microstates have an equal chance of being realized). The probability
of some state is simply given by its volume (viz. the extension in
phase space). The most probable state is then that realizable in 1,
the most ways – this was called the Maxwell state by Boltzmann,
since it conforms to a distribution discovered by James Clark
Maxwell. This is the state that will found to occur most frequently
and allows one to recover the (previously mechanically inexplicable)
second law:



(6.2)

Fig. 6.5 An exaggerated example of a coarse graining of phase space 
 into cells wi of volume Wi. The phase points (microstates) x1, x2,

and x3 in cell w1 are indistinguishable (correspond to the same
macrostate), while these points and x4 in cell w2 are
distinguishable. Cell w3 has the largest volume (i.e. the greatest
number of microstates capable of realizing it). It can be seen that
W3 > W1 > W2. The geometry of phase space tends to make it
overwhelmingly likely that the system will be in the cell w3 where it
will spend most of its time.

But it is, of course, a statistical explanation: it is probabilistically
extremely likely to see the second law satisfied by the kinds of
processes we are capable of observing because we are dealing with
such large numbers of particles, which makes it vastly more likely
that they don’t spend time in macrostates with less microstates.

Now, though this is rather elegant and easy to understand, there are
all sorts of assumptions made, and there is an inescapable
vagueness in the notion of “macroscopic indistinguishability.” One
might easily be disturbed by the apparent looseness in doing the



coarse graining: how is the carving up of the space carried out? How
do we know that my carving will be the same as yours? Much
depends on pragmatics: what level of precision is required? If you
need to distinguish states more precisely than me, then you will use
a finer ‘mesh’ size to cast into phase space, trawling for classes of
indistinguishable states at that grain. Moreover, given that the
entropy involves the logarithm of the cell volume, our distinct
carvings would have to differ radically to get appreciable differences
for S.

However, this understanding of entropy also has important
consequences for some of the puzzles about asymmetry in time. The
basic idea is that the number of ways to be in a ‘disordered’ (high
entropy) state is greater than the number of ways to be in an
‘ordered’ (low-entropy) state (the volumes of the former will be
greater than the latter), so we should expect an increase in
randomness. Indeed, Boltzmann argues that a closed system driven
by random collisions of particles should tend to maximum entropy
(such as occurs when our initially localized fart from above spreads
maximally throughout the elevator). This result, known as ‘the H-
theorem,’ accounts for the derivation of temporally asymmetric
behavior from temporally symmetric microscopic behavior – ‘H’
itself is a measure of deviation from maximal entropy, or the
‘Maxwell state’ (so that H is only found to get smaller over time).
The probability for deviations away from the random Maxwell state
will be smaller as the deviations become larger (by ever greater
amounts). And, indeed, if one begins in a state that deviates
significantly from maximal entropy, then it will have a large
likelihood for approaching the higher entropy state. According to a
common view, this is significant from the point of view of explaining
the arrow of time: if the universe started off in a very improbable
state (exceedingly far from maximum entropy), then it will have an
exceedingly large likelihood of ‘making its way back’ to maximum
entropy (via a sequence of higher-entropy states).

Let us now turn to the connection to such temporal matters.

6.5 Entropy, Time, and Statistics
The second law is probably the most well-known (and seemingly
solid) law of nature. It says, quite simply, that entropy (for closed



systems) never decreases – of course, one could ‘open up’ such a
system and pump energy in, thus lowering the entropy (as happens
when we clear the messy dishes and place them in the dish rack, for
example). Much of the fun stuff in the philosophy of
thermodynamics comes out of Ludwig Boltzmann’s statistical
(microscopic) explanations of thermodynamical behavior. Prior to
the microscopic understanding he provided, the laws were
understood in terms of the ability of systems to do work (such as
powering a piston) or not. Entropy was then understood in terms of
degrees of irreversibility.

Take my daughter Gaia’s room, for example (see fig. 6.6). It is
seemingly always in a state of near-maximal disorder. To impose
order requires me to input energy (cleaning it: in which case it isn’t
a closed system): hence, it becomes an ‘open system’ and does not
‘naturally’ tend to an orderly state. There are very few ways for it to
be clean and orderly (with books organized alphabetically, and so
on), and very (very) many ways for it to be disorganized. In terms
of ‘energy cost,’ it is far cheaper to bundle books and clothes
haphazardly than to have them arranged neatly – something Gaia
knows all too well… Hence, there is a nice intuitive way of
understanding entropy in terms of possibilities: it provides a
measure of the number of possibilities for realizing some system
state or configuration. Messy rooms can be realized in more ways
than tidy rooms. It would not be a good strategy to randomly throw
objects into positions: the number of tries it would take to ‘fluke’ the
tidy configuration would be of the order of very many googolplexes
(which, in temporal terms would be very many times the age of the
universe)!



Fig. 6.6 A messy bedroom: by far the likelier configuration. Relating
this back to the coarse graining diagram, we could expect this to be
represented by w3, or one of the larger cells. Tidying the room
‘pushes it’ into one of the smaller cells. The second law then results
in a motion toward the largest cell once again, so long as external
energies (e.g. cleaning) are not put in.

Aside: The ‘intelligent design’ brigade like to abuse this kind of
reasoning to argue that the magnitude of order in the universe
(particularly in the biosphere) can’t be accidental since it’s too
improbable – like fluking the tidy bedroom configuration by
randomly throwing objects about. So, they say, it must have been
designed this way by a superior intelligence.

The problem (one of many…) with this argument is that the steps
leading to ‘the accident’ would have to be uncorrelated (random) for
this to work. But they are not random: evolution by natural
selection is a law-based cumulative process involving vast
timescales.

To repeat: Boltzmann’s neat formula expresses this relationship



between the degree of disorder (entropy, S) and the number of
ways that the system can be organized (or disorganized).1

This brings us back neatly to what is probably the most studied (by
philosophers) aspect of thermodynamics: the appearance of an
asymmetry of time, often called time’s arrow. Our memories are of
the past: the future is out of bounds. Yet, it appears that we have
some degree of influence over the future, but not the past.

A common explanation for this asymmetry ties it to another
asymmetry: that embodied in the second law. Since there seems to
be an in-built irreversibility to the universe (entropy only increases
and is irreversible for all practical purposes, with an unflinching
march of order into disorder), the explanation for time asymmetry
can ‘piggy back’ on this ‘master arrow.’

Firstly, let’s recall what is meant by “temporal asymmetry.” What it
indicates is that the laws (or phenomena described by some laws)
are not time-reversal invariant. That is, the laws distinguish
between a video of some process played forwards and backwards.

Think of the universe as rather like a grand version of my daughter’s
bedroom. We ought to expect, given Boltzmann’s reasoning, that we
should find it in a state of disorder (one of the larger cells). But,
puzzlingly, we don’t. We see an awful lot of order. Hence, from this
perspective, our universe is very unlikely. Of course, we always
knew there was something strange about it, but we can now
quantify how odd it is.

Indeed, given our ordered state, we ought certainly to expect that
the entropy goes up in the past, since there are more ways to be in
high entropy states. This was the case according to Boltzmann’s
theory (which, according to him, ‘boldly transcended experience’),
who believed that the order we find is indeed highly improbable, but
is bound to happen given unlimited time.

This explanation of time’s arrow (by attaching it to the direction of
increasing entropy) suggests that entropy-increase should be more
probable both to the future and the past: there should still be a
time-symmetry. The problem is, for some ordered state, it is more
likely to have come from a less well-ordered state simply because
those less ordered states far outweigh the ordered ones. Hence,
Loschmidt’s reversibility objection strikes again. We turn to



Boltzmann’s ingenious solution (invoking cosmology and the
Anthropic principle) in a moment, but first let’s consider another
problem that faces the statistical account.

6.6 Maxwell’s Demon
Recall that the second law states that entropy (in closed systems) is
(for all practical purposes) unidirectional. In the second half of the
nineteenth century the law was well known, and had already been
tied to dire predictions about the fate of humanity: if useful
mechanical energy steadily dissipates, then there’ll be no power to
run the world (and nature), with all energy eventually becoming
thermal, random energy – you can’t power anything with the ash
from a fire. But recall also that the laws governing the particles’
behavior are not necessarily unidirectional. Since the entropy
changes are a result of the motion of the particles (i.e. it supervenes
on the particles’ properties), there seems to be no reason why the
second law should hold (this is Loschmidt’s objection again). By
focusing in on the individual particle level, James Clerk Maxwell
proposed a way of beating the second law (and the unhappy fate for
humanity). It’s a very simple setup, and really it doesn’t
demonstrate the falsity of the second law as such, but rather reveals
its statistical nature – mentioned already, of course, but which
found its earliest well-posed formulation in Maxwell’s argument.

One imagines a box of gas, at some given uniform temperature, with
the individual gas molecules buzzing around at different speeds (the
average giving the temperature of the whole). Then one imagines
placing a wall down the middle, dividing the box into two smaller
boxes, and with a smaller hole in the partition that can be opened
and closed at high speed (see fig. 6.7). We suppose that the two
sides have the same number of molecules, and that they are at the
same constant temperature. The two sides are at equilibrium
relative to one another and in themselves. Though they are at
equilibrium (so their mean temperatures are identical), the particles
within will differ in speed at an individual level: some will be faster
than others.

Next comes the demon, clearly based around Laplace’s (in that it
has access to the positions and momenta of all of the individual
molecules in a system). It is really just a very high-speed sorting



device that can keep track of the various particles whizzing around
in a gas. The demon is able to allow fast moving particles through
the hole into the left-hand side, say (quickly opening it as they
approach), and keep the slow moving particles in the right (by
quickly closing the hole). This sorts the two sides of the box into
hotter and cooler gases, thus generating a temperature difference
capable of doing work (such as driving a piston), yet apparently
without doing much work to create it. The idea is that the demon
apparently violates no laws of molecular physics with its actions,
and yet has the effect of decreasing the entropy in the box. If this is
a possible scenario, then it amounts to a perpetual motion device,
since one is generating the energy version of a free lunch!

Fig. 6.7 Simple representation of Maxwell’s Demon: by judiciously
opening and shutting a door, a demon would be able to sort the
particles so that hotter and colder regions are formed from a system
initially in or close to equilibrium, in violation of the second law.

We all know there is no such thing as a free lunch, so to preserve the
second law (statistical or not), we need to explain the apparent



violation away. One way in which it could be preserved is if the
missing entropy showed up somewhere else, such as the opening
and closing of the shutter or the demon’s own actions. Rolf
Landauer famously argued that provided the demon recorded the
measurements (with perfect precision) then the process he carried
out would be perfectly reversible and therefore not entropy-
increasing: if a record of some process exists, then the process is
reversible; if not, then it is irreversible, and such irreversibility is
the hallmark of entropy. The problem is, it would require a vast
amount of memory resources to keep track of all those processes. In
order to keep track, it would have to wipe its memory now and
again. But this would make the process irreversible (leaving no
record with which it could restore the earlier state), thus
safeguarding the second law. Hence, Maxwell’s demon needs to be
absent-minded for the example to perform its function. However,
wiping a memory creates entropy since the states held in the
‘memory register’ are shrunk down to one (0, say).

Other versions of Maxwell’s demon come in the form of gravity, and
more specifically via aspects of black holes. Black holes are defined
by just three numbers: their mass, charge, and angular momentum.
This enables a certain amount of ‘forgetful’ behavior that appears to
offer a way to violate the second law. Simply throw a highly entropic
object (such as the broken teacup) into the black hole and voila: the
breakage never happened and the entropy is erased from our
universe! However, this situation is avoided (and the second law
saved) in virtue of a correspondence between entropy as usually
conceived and the area of a black hole’s event horizon: the latter
only ever grows, by analogy with the former. So when we toss in our
broken teacup the horizon increases by a tiny amount, increasing
the overall entropy in the universe – analogous versions of all of the
laws of thermodynamics can be found.

Zermelo had objected to Boltzmann’s statistical account of heat by
invoking Poincaré’s ‘recurrence theorem.’ He points out that given
infinite time, there will be a perpetual cycling through all possible
states, so that motion is periodic rather than settling into some fixed
Maxwellian distribution. In other words, the distribution of states
should be flat (with no preferred equilibrium value) since they will
all be realized infinitely often. Again, at the root of the confusion
appears to have been a breakdown of intuitions where very large



numbers are concerned. When one compares the states that deviate
from maximum entropy states with the maximum entropy state,
one finds that there are vastly more ways of realizing the latter than
the former. The problem Zermelo had is in understanding the fact
that though the Maxwellian macrostates appear to be few, they
preside over the greatest volume of microstates. By pointing to the
statistical nature of the laws, Boltzmann brings statistical mechanics
within the recurrence theorems. It is quite simply that any such
recurrences are so improbable as to be rendered unobservable
within any reasonable amount of time (what Boltzmann himself
called a “comfortingly large” time). That is, the magnitude of the
improbabilities means that they are ignorable for all practical
purposes.

Of course, philosophers are not known for their adherence to
practicalities, so we might still be rightly concerned by the
conceptual implications of Boltzmann’s view, for it indicates that we
are simply around because of an improbable fluctuation in a vast
bath of thermal energy that has existed for a very long time. Besides,
Zermelo responded by pointing to a glaring hole (noted by
Boltzmann himself) that we have no physical explanation for why
the initial state (our ordered universe for example) has such a low
entropy. Boltzmann thought this was akin to explaining why the
laws of nature are as they are, and as such transcended physical
explanation: one would be explaining the grounds of explanation.

6.7 The Past Hypothesis
Entropy is, to a rough approximation, disorder. It increases with
time. That is a puzzle: why should it do that? But entropy was lower
in the past than it is now. That is also a puzzle: why exactly is that?
This is a quite different problem then. We have discussed the issue
of why entropy increases to the future. But now: why does it
decrease into the past? If there are more ways for our universe to be
disordered rather than highly ordered, then why is it more highly
ordered now? Why isn’t the entropy much higher in the past as we
move away from our present low-entropy condition (a question
Boltzmann asked himself, prompted by Loschmidt’s complaints
mentioned above)? This points to a serious conflict between our
knowledge of the world and our experience of that world: our
memory records (of, e.g. cups of tea that were not shattered on the



floor) are more likely to be false than true, since the events they
seem to concern are improbable (thanks to their lower entropy than
the present condition).

Boltzmann indeed surmised that followed far enough into a distant
past, we would find maximal entropy there too (molecular chaos),
just as in the future. The asymmetry smears out over long enough
temporal journeys. This is truly a mind-bending proposition, every
bit as radical as the idea that the Earth is not at a distinguished
point of the universe. It might seem that if we know why it goes up
in the future (using Boltzmann’s idea that the increase would be
perfectly natural if the past contained a local fluctuation of very low
entropy) then we have explained the arrow. But we are left with a
puzzle about the past in this case.

One explanation, that we have already met in connection with time’s
arrow, is to simply postulate a low-entropy past (the ‘past
hypothesis’: a label due to David Albert). This is usually attributed
to special conditions of the Big Bang in our universe’s past. Hence,
the idea is that if our universe began in an immensely low-entropy
condition, then it can’t help but to increase in entropy, such as we
find (as mentioned above).

To attempt to explain the increase of entropy by postulating a low-
entropy past simply introduces another problem (or, in some ways,
recapitulates the same problem): how do we then explain the low-
entropy past? It is not enough to point to the Big Bang and utilize
the apparent low entropy found there, since that very order is what
is in need of explanation. Passing the buck onto something so
incredibly improbable as the Big Bang leaves us no better off.
However, the past hypothesis does have the considerable virtue of
defusing the Loschmidt reversibility objection: our time asymmetry
(linked to the entropy-asymmetry) rests on the existence of
asymmetric boundary conditions. The unlikely configuration at the
absolute zero of time as we know it (the Big Bang event) means that
whatever patch of order we find, we know that preceding it will be a
patch of lower entropy, tracing all the way back to the initial
temporal boundary that the Big Bang provides (and at which we
impose our boundary condition).

But even supposing we could resolve this issue, how plausible an
account of time’s arrow is it anyway? How plausible is it that all of



those many irreversible features – including the asymmetries of our
memory records, the non-unmixing of our tea, our unfortunate
ageing – are due to something that happened around fourteen
billion years ago?!

One way to think about this is to imagine what the world would look
like if we had reached a state of maximal entropy, an equilibrium
state in which there is one temperature for all. Would there be a
direction of time in such a world? It’s hard to see how asymmetric
processes could be taking place. To use the standard metaphor of
running the video of such a world backwards, we would find no
distinction, and hence there would be no physically observable
arrow of time. Though we could still speak of a second law in
operation in such a universe, there would be nothing for it to ‘act on’
as it were. There would therefore be no temperature gradient, no
entropy gradient. So we can see how having an entropy gradient is
necessary in some sense to allow the sorts of time-invariant changes
we experience, and if the gradient ‘flows’ to a state of maximum
entropy, then we can see how the story is supposed to work. But a
necessary condition is not quite the same thing as an explanation.

In one sense, it is good to ground universal behavior in a common
origin. However, again, the way this is done in the present case
simply pushes the mystery of time’s arrow one step back. We
immediately want to ask: why those initial conditions?
Unfortunately, our present physical theories don’t enable us to
provide an answer – though plenty are trying!

There are two options: explain the present improbability, or don’t.
Boltzmann was in the latter camp, not thinking it plausible to
deduce our improbable past and present from fundamentals. For
Boltzmann the universe at a large scale is in thermal equilibrium (as
the most probable of all states), and our existence is due to a local
deviation (a quirk of probability) – see fig. 6.8.

To wax lyrical for a moment: we are born of random fluctuations,
and will return to random fluctuations. Hence, he denied any
fundamental status to the arrow of time, viewing it as a purely local
phenomenon, much as the convention of ‘up’ and ‘down’ on the
Earth is local (see fig. 6.9). The arrow of time stems from an
Anthropic coincidence, that there happen to be sentient creatures
(us) supported by the local fluctuation. Given our circumstances, of



finding ourselves in an ordered world (how could it be otherwise if
we are to exist?), we will see an arrow of time in which the
improbable order moves to disorder. And the crucial point is this
applies to both directions of time if one looks far enough back (i.e.
to before the low-entropy blip). Boltzmann predicted, from his
analysis, the existence of a kind of multiverse picture, in which
scattered about the universe, which, remember, is in thermal
equilibrium (essentially dead, with no elbow room to increase in
entropy), there are worlds like ours (fluctuations about
equilibrium), which depart from equilibrium for short times
compared to the timescale of the entire universe (see fig. 6.8). Just
as in modern multiverse theories one needs an enormous amount of
worlds to explain the existence of our apparently fine-tuned
universe, so for Boltzmann one needed an immensely vast universe
in thermal equilibrium to explain our world – see §8.7 for more on
Anthropic reasoning. Were we not seeing an arrow of time, the
entropy would be too high for an arrow to emerge (not enough
gradient), and so we wouldn’t be here to consider it. In other words:
wherever there be observers, there be an arrow of time. It couldn’t
be otherwise. Moreover, the local conditions would dictate which
direction would be considered ‘future’ and which ‘past’ (see fig.
6.10).

Fig. 6.8 Boltzmann’s diagram showing the local deviations from
thermal equilibrium. Reproduced in S. Brush, ed. The Kind of
Motion We Call Heat (North Holland, 1986: p. 418). Here H is a
quantity that Boltzmann himself used, inversely related to entropy:
when it is low, entropy is high and vice versa. The curve represents
the history of the universe, where the highest peaks (or “summits”)



correspond to phases potentially containing life (such as our own
world): the larger the peaks, the more improbable the state. (Here γ
is the ‘extension’ of the state giving its probability of occurrence and
x is the temporal direction.)

Fig. 6.9 ‘Up’ and ‘down’ orientations are locally defined relative to
reference frames. In (a) and (c) a person’s conventions for
orientation will be distinct depending on whether they live on the
surface of a sphere (such as the Earth) or in the interior of a sphere
(such as aboard a rotating spaceship). With no such reference
systems to fix a convenient orientation convention (as in (b)), ‘up’
and ‘down’ are meaningless.

Other attempts at an explanation focus on aspects of early universe
physics in an attempt to fill in the details of the ‘special initial
conditions.’ One famous example of this, due to Roger Penrose,
invokes the ‘Weyl curvature hypothesis’ – where the Weyl curvature
tensor tracks aspects of the curvature of spacetime that would be
found in space emptied of all but gravitational field (matter is
ignored here since it is believed to be at maximal equilibrium in the
earliest phases). Penrose’s hypothesis is that this entity vanishes
near the Big Bang singularity and implies a low entropy there. But
this won’t do as an explanation of the past hypothesis (the special
initial state); instead it reformulates the past hypothesis in terms of
the Weyl tensor. Why do we have the vanishing Weyl tensor is
simply a way of re-expressing the original puzzle. Indeed, Penrose
passes the buck to a future theory of quantum gravity that would be
able to deal with situations in which gravitational fields are
incredibly large, and quantum effects must come into play.



Fig. 6.10 By analogy with the ‘up’ versus ‘down’ scenario, here we
see three possibilities with respect to time’s arrow: in (a) the past
runs toward the right (and the future to the left), since that
represents a decrease in entropy (a larger deviation from the
thermal equilibrium); in (c) the past runs toward the left (and the
future to the right), since that represents a decrease in entropy
relative to its location; in (b) there is no entropy gradient to
determine an arrow of time.

We saw earlier that Zermelo was in the former camp (explain the
improbable state) – or at least, he viewed the bruteness of the
improbability as a problem for the statistical-mechanical approach.
Boltzmann thought this was unprovable and had to be assumed.

In terms of explanation of the low entropy, one might extract an
Anthropic explanation from Boltzmann’s own arguments as above.
After all, he believed in what is essentially a vast ensemble of
worlds, and what kind of world would we find ourselves in but one
with a low entropy past? Of course, as an explanation it is weak,
since we aren’t deriving our world from the scheme, only showing
how they are compatible (which was all Boltzmann was concerned
with). When we push Boltzmann’s idea, however, we find it faces a
curious problem (perhaps a reductio ad absurdum), which we turn
to next. The problem, simply put, is that if it’s consistency with
observable results that we’re after, then it can be achieved on a
tighter entropy-budget than generating an entire universe that has
persisted for billions of years: what a waste of effort! If one could get
the same effect (a universe, that appears to have existed for billions
of years, with star formation, the evolution of life, etc.) from a much
smaller fluctuation – say a single Cartesian-style disembodied brain
configured with the correct memories, believing it has had the
‘correct’ experiences, and so on – then, given the inverse
relationship between the magnitude of the fluctuation away from
thermal equilibrium and the probability of such a fluctuation



occurring, this brain scenario would be vastly more likely. This is, of
course (I hope!), absurd. If we are bothered by the problem of other
minds (so that we cannot countenance solipsistic single-mind views
of the universe), then there are still many more likely scenarios than
having the universe actually be as old as it seems (which is a
persistent fluctuation, and so less likely than a shorter-lived one):
the theory that the universe came into existence five minutes ago
(fully formed) is far more likely in terms of the likelihood of such a
fluctuation relative to an extended one trailing billions of years into
the past.

6.8 Typing Monkeys and Boltzmann Brains
Fans of The Simpsons might recall the episode ‘Last Exit to
Springfield,’ in which a kidnapped Homer is shown a room in
Burns’ mansion in which a thousand monkeys are typing away, with
one typing the almost correct “It was the best of times, it was blurst
of times,” from Charles Dickens’ A Tale of Two Cities. The so-called
‘monkey theorem’ tells us that given enough patience (and time for
that patience to manifest itself), and some monkeys randomly
thwacking keys on a computer, we can expect to see generated the
complete plays of William Shakespeare. One would, in fact, require
a lot of time: far more than the present estimates for the age of the
universe (about fourteen billion years). Amusingly, a computer
programmer, Jesse Anderson, attempted to approximate this by
simulating millions of monkeys (‘virtual monkeys’), which churn out
random ASCII characters between A to Z, which are then fed to a
filter to test for fit with actual lines of Shakespeare (as found on
Project Gutenberg) – the results are as expected: one can randomly
generate such apparently meaningful segments given time enough
and monkeys or monkeys enough and time (i.e. processing power
capable of generating the appropriate output strings). Of course,
each string is as random as the other (by construction), but we see
order in certain strings. To get a handle for how approximate such a
simulation would be, just consider that for a work with 500,000
characters (a reasonably sized novel), the probability of getting the
novel churned out in this random way would be 2.6 × 10−500000

(3.7 × 10−500000 if we add numbers 0 to 9 and blank spaces). By the
same token, one can see that if time were no obstacle, it would
happen sooner or later – hence, this is often labeled the ‘infinite



monkey theorem’: one monkey with infinite time, or infinitely many
monkeys with finite time, either will do the job.

We can play a similar game (known as Boltzmann’s brains) with
atoms, time, and space, only this time constructing (now via
fluctuations from the vacuum) any physical structure we could care
to name, including ourselves and the entire observable universe.
Indeed, given a universe with infinite time, you will be
‘reincarnated’ infinitely often: eternal recurrence! There are vastly
more possible configurations than constrained by the choice of
ASCII characters in this case, so the probabilities will be vastly
smaller. But the point remains, given unlimited time, it would
happen – the ‘principle of plenitude’ (that anything that can happen
will happen) likes infinite time. (Interestingly, one can find a
strikingly similar scenario painted in Friedrich Nietzsche’s
combinatorial notion of eternal recurrence. Simply expressed, he
points out that given some definite constant energy distributed over
a finite number of particles, in infinite time every combination must
already have happened, and infinitely many times, repeating in
cycles as each initial state recurs. In Nietzsche’s mind this was
supposed to be a victory against the materialistic physics that
pointed to a winding down of the universe, in a final equilibrium
state known as the ‘heat death.’ Yet what such recurrence objections
reveal is that the second law does not apply universally, and that
Boltzmann’s statistical, yet still mechanical, viewpoint is to be
preferred.)

The implications here are similar to the classic ‘brain in a vat’
scenarios that epistemologists like to chew on. From the perspective
of us, ‘inside our own skulls’ as it were, we can’t tell whether we
have genuinely lived the lives we appear to have lived, having the
various experiences that formed the memories we appear to have,
caused by a universe that appears to be very old, and so on. We
might be a disembodied brain in a laboratory undergoing
stimulation and reconfiguration to generate such appearances. Our
memories would not be records of real events; rather, they would be
implants. As David Albert emphasizes, looking in history books for
evidence is no good: they too are more likely to have fluctuated into
existence without any causal link to the events (e.g. the rise and fall
of the Roman Empire) they appear to describe – this is analogous to
Dr Johnson kicking a rock to refute George Berkeley’s brand of



skepticism about the external world.

Likewise, in the case of Boltzmann’s brains. In a universe that
persists for long enough, there is a tiny but non-vanishing
probability that a brain with all of your thoughts and memories,
thinking it has lived a life having read books about physics and so
on, will spontaneously generate. Given that the energy cost of
generating such a region of order (the disembodied brain) is
considerably smaller than generating an entire universe whose
development over fourteen billion years led to it, it is more likely
that we are such a Boltzmann brain than not! Boltzmann brains
ought to be more typical than the long-haul brains we think we
have. To put it another way: If you happened to be a god looking to
create sentient beings, you would save a lot by just bypassing
galactic and biological evolution, and having them pop into
existence fully formed.

We have seen that Boltzmann’s explanation for the
thermodynamical arrow of time (entropic increase) says that
regions of time asymmetry are unusual: the usual state is one of
molecular chaos. Hence, we are in a special state: time-symmetry is
the norm. From this thermal bath, all manner of odd fluctuations
can arise, with the size of their deviations from equilibrium linked
to their likelihood of occurrence. Sean Carroll puts the point rather
nicely:

[A] universe with a cosmological constant is like a box of gas
(the size of the horizon) which lasts forever with a fixed
temperature. Which means there are random fluctuations. If
we wait long enough, some region of the universe will fluctuate
into absolutely any configuration of matter compatible with the
local laws of physics. Atoms, viruses, people, dragons, what
have you. And, let’s admit it, the very idea of orderly
configurations of matter spontaneously fluctuating out of chaos
sounds a bit loopy, as critics have noted. But everything I’ve
just said is based on physics we think we understand: quantum
field theory, general relativity, and the cosmological constant.
This is the real world, baby. (“The Higgs Boson vs. Boltzmann
Brains”:
http://www.preposterousuniverse.com/blog/2013/08/22/the-
higgs-boson-vs-boltzmann-brains/)

http://www.preposterousuniverse.com/blog/2013/08/22/the-higgs-boson-vs-boltzmann-brains


If this is the implication of our best physics (as it seems to be), then
I submit that it needs the urgent attention of philosophers (in
addition to physicists)!

6.9 Why Don’t We Know about the Future?
This might sound like a silly question (the future hasn’t yet
happened, stupid), but it clearly has to do with the arrow of time
and, as we have seen, statistical mechanics and entropy are bound
up with that. Perhaps, then, one can explain the ‘epistemic arrow of
time’ (involving the past–future asymmetry of knowledge) by
making use of some of these concepts? Since entropy increases from
past to future, we need to make sense of how it can be that our
present observations tell us more about the past than the future.

The classic example involves the notion of a memory trace. A trace
is a low-entropy state. A memory record, for example, must be
sufficiently distinctive to ‘make a mark’ on the host. Something that
wasn’t there previously. One can think of this process (and the link
to an experience of a flow of time: a subjective feeling of a sequence
of events seemingly coming into being) in terms of the difference
between randomness and order. A uniform, random experience or
event (say of a perfectly flat featureless sandy beach) will not be
distinguishable in itself (assuming all other conditions are kept
fixed) from a snapshot of the same beach at a later time. However, if
a wind stirs up a sand dune (especially if that dune takes on the
appearance of some object or person, say) then it leaves a mark. It is
a departure from randomness.

This (marks, traces, etc.) is really all we have to go on evidentially
speaking, and so we make inferences about the past (retrodictions)
just as much as the future (predictions). But we seem to have a
stronger basis for past inferences: though I might be mistaken about
the exact way in which some past event occurred (inferring from a
memory or some other trace), I know that something happened; yet
with the future we don’t seem to have such certainty – I might think
‘next Monday there’s a research seminar,’ yet some calamity could
cause the speaker to cancel so that it doesn’t occur. So how does a
notion of trace help here? Hans Reichenbach’s case of a footprint
found on a sandy shore is a good example of a kind of trace. One can
also readily see the link to entropic considerations. The footprint



(trace) provides present evidence about what happened in the past.
The idea is that the footprint ‘does not belong there,’ entropically
speaking, relative to its surroundings, enabling one to infer that
there was some kind of intervention (an outside influence) leading
to its existence. In other words, the sandy shore is not a closed
system, and an entropy-reducing process caused the local reduction
in entropy characterizing the footprint in the sand. The shore’s
entropy was lowered by something external: it can’t have been a
closed system.

But just how relevant is entropy to such retrodictions from traces?
John Earman argues that it is not at all relevant: one can just as well
make past inferences on the basis of very high entropy. Low entropy
is not necessary for traces, and one can imagine such things as
catastrophes wreaking havoc on some orderly town, increasing the
entropy there. Yet one could still make an inference, from the
damage, that there was an intervention ‘from outside.’ Given the
nature of the damage caused, one can even describe features of the
causal influence (e.g. using the Saffir-Simpson wind scale and other
such instruments). However, as Barrett and Sober point out, though
the low-to-high transition of entropy is not at work, one should not
rule out the importance of entropy in inference. One can say that,
given the system (town, beach, etc.), there are certain expected
entropies that if disturbed (in either direction) point to outside
influences. But in such cases, background knowledge of the system
(providing history and standard behaviors) is needed. Hence, the
crucial aspect is that there is some departure from expected
properties (such as entropy).

Note also that the marks seemingly provide evidence for our
inferences about the past only if we accept the past hypothesis. It is
the past hypothesis that provides us with the explanatory edge that
we seem to have with the past over the future. Otherwise, we might
infer that the fluctuation from molecular chaos story was the correct
one (since it would be the most statistically likely). Some inferences
about the past and future are balanced: those that come from the
information about the current state combined with the laws, which
allow us to propagate states in both directions. But we can do more
into the past. Suppose, for example, that your mother walks in and
sees the broken cup on the floor. She doesn’t assume it’s a random
fluctuation, but that it was the result of an ordered causal sequence



of progressively lower entropy states – unless she’s a physicist, she’s
unlikely to think of it this way, but her thought-processes will be
along just such lines all the same: ‘the cup was together in one piece,
and contained hot tea, which involved it being contained within a
kettle …’. (You might compare this additional way of reasoning with
Laplace’s demon armed only with the laws and the initial state of all
the matter in a system.)

Bizarrely then, the asymmetry of knowledge (and the function of
memory) depends on the conditions many billions of years ago. If
we didn’t utilize it (however implicitly) our reasoning about the past
would be no better than about the future. Our reasoning about the
future is uncertain about many things, but we know that molecular
chaos will be the likely event of most present (well-ordered)
conditions. The past hypothesis means that the same is not true of
the past (and so the conditions that led up to the well-ordered
present event). You might, as mentioned earlier, find the linking of
memories (which are also clouded with all sorts of emotions) with
the low-entropy past as too flimsy to really provide an adequate
explanation. Still, it would then remain as a challenge to explain
how memories give us information about the past.

To finish up this fascinating issue, I leave the reader to ponder what
other areas of our inferential machinery are dependent on the past
hypothesis.

6.10 Further Readings
Some excellent recent textbooks on the philosophy of statistical
mechanics have emerged recently. Also, thanks to the links to such
issues as arrows of time and knowledge there are also some fun,
popular books.

Fun
David Albert (2001) Time and Chance. Harvard University
Press.
– Short and sweet! Essential reading for any philosopher of
physics, and anyone wishing to understand the deeper
implications of statistical mechanics.

Sean Carroll (2010) From Eternity to Here: The Quest for the



Ultimate Theory of Time. Dutton.
– Popular, and with sparkling examples, but the issues are
presented with real depth of understanding.

Serious
Huw Price (1997) Time’s Arrow and Archimedes’ Point: New
Directions for the Physics of Time. Oxford University Press.
– Comprehensive treatment of time asymmetries covering some
very difficult terrain in an easy to understand way.

• Lawrence Sklar (1995) Physics and Chance: Philosophical
Issues in the Foundations of Statistical Mechanics. Cambridge
University Press.
– Solid text covering virtually all the central topics in philosophy
of statistical mechanics.

Connoisseurs
Meir Hemmo and Orly Shenker (2012) The Road to Maxwell’s
Demon: Conceptual Foundations of Statistical Mechanics.
Cambridge University Press
– The focus is on issues of time asymmetry, but this book covers
a very wide range of issues in the foundations of statistical
mechanics in great depth and in an exceptionally clear way.

Gerhard Ernst and Andreas Hüttemann, eds. (2010) Time,
Chance, and Reduction: Philosophical Aspects of Statistical
Mechanics. Cambridge University Press.
– State of the art treatment of time’s arrow, the meaning of
probabilities, and reduction.

Notes
1 Though the association of entropy with disorder is problematic it

provides a useful mental foothold from which one can view the
more precise combinatorial landscape. Physicist Arieh Ben-Naim
has gone to great lengths to correct various misunderstandings of
entropy (including the disorder interpretation!). See his book
Entropy and the Second Law: Interpretation and Misss-
Interpretations (World Scientific, 2012) for a very useful



treatment. For a more elementary exposition, see his Discover
Entropy and the Second Law of Thermodynamics: A Playful
Way of Discovering a Law of Nature (World Scientific, 2010).



7
Quantum Philosophy
Quantum mechanics is our best theory of the material world. It has
been applied successfully to three of the four interactions of nature
(electromagnetic, strong, and weak), and work continues apace to
apply it to gravitation. Scott Aaronson ([1], p. 110) describes
quantum mechanics as not so much a physical theory, but as
something falling halfway between a physical theory and a piece of
pure mathematics. He uses the analogy of an operating system [OS],
where the procedure of making a theory quantum mechanical (i.e.
quantizing) amounts to ‘porting’ the application (e.g. Maxwell’s
classical theory of electromagnetism) to the OS. One might extend
his analogy by thinking of quantum mechanics itself as a significant
‘upgrade’ from classical (Newtonian) mechanics, which proved
unable to ‘run’ certain programs. All of our quantum theories are
achieved through this porting procedure: one starts off with a
known classical theory and then performs some specific
modifications to it.1

Porting an application into the quantum OS brings along with it a
whole bunch of curious features that did not appear on the older
OS: indeterminacy, matter waves, contextuality, non-individuality,
decoherence, entanglement, and more. These features still account
for the vast majority of work done within the philosophy of physics,
though recent work done on ‘quantum computation’ has altered
their flavour somewhat. Other recent work on quantum theory has
tended to focus on specific issues of quantum fields, especially the
issue of the extent to which the theory contains particles. These
more advanced issues must wait until the next, final chapter. For
now we focus on the ‘classic’ philosophical problems of quantum
mechanics, and get to grips with its basic features. The four core
problems we focus on are: the interpretation of probability and
uncertainty; the measurement problem; the problem of nonlocality;
and the problem of identity. These overlap and splinter in a great
variety of ways, as we will see. Firstly, let us motivate some of the
basic oddities of quantum mechanics.



7.1 Why is Quantum Mechanics Weird?
I’m sure that anyone reading this book will have heard all of the
sayings about how strange quantum mechanics is. The quotes from
famous physicists are legion: ‘if you think you understand quantum
mechanics, then you don’t understand quantum mechanics.’ In his
popular book on quantum electrodynamics, Richard Feynman puts
it like this:

What I am going to tell you about is what we teach our physics
students in the third or fourth year of graduate school – and
you think I’m going to explain it to you so you can understand
it? No, you’re not going to be able to understand it. Why, then,
am I going to bother you with all this? Why are you going to sit
here all this time, when you won’t be able to understand what I
am going to say? It is my task to convince you not to turn away
because you don’t understand it. You see, my physics students
don’t understand it either. That is because I don’t understand
it. Nobody does. ([14], p. 9)

Often, amongst physicists of a certain stripe, thinking about the
meaning of quantum mechanics is a violation of some unwritten
rule of what physicists are supposed to do. Or worse, it might lead
one into philosophy talk! The slogan is: ‘shut up and calculate!’

But quantum mechanics is a physical theory. Experiments
demonstrate quite clearly that it applies (even if it is ultimately only
an approximation) to the world (the actual world): our world!
Surely it ought to be understandable? We ought to be able to say
something about how the theory latches (with such impressive
empirical success) onto the systems in this world. That is, there
ought to be some interpretation of the theoretical formalism that
enables us to see how the theory ‘works its magic.’ There is no such
thing as magic, so there must be some rational, physical account.
And indeed there is, or rather are.

There exist very many ways to ‘make sense’ of quantum mechanics:
Copenhagen, modal, relative-state, many-worlds, many-minds,
Bayesian, Bohmian, Qbist, spontaneous collapse, etc. However,
what one person considers to be a perfectly rational account,
another might consider to be outright lunacy. There is an almost
religious fervour concerning the holding of a particular stance on



quantum mechanics: ‘the church of Everett’ versus ‘the church of
Bohm’! Let us make a start on finding out what it is people are
disagreeing about – it sure isn’t anything experimentally testable,
which is why many physicists dismiss the whole business of
interpretation as completely irrelevant. However, whatever position
one adopts, it is undeniably true that there are elements of quantum
mechanics that are genuinely weird, as we will see – but in many
ways, no less weird than time dilating and spacetime warping in the
context of the theories of relativity. Perhaps the weirdest is the
quantum version of the two slit experiment.

As Feynman maintains in his Lectures on Physics, much of the
strangeness of quantum mechanics can be seen in the so-called
double slit experiment, which he argues is “impossible, absolutely
impossible, to explain in any classical way” ([12], p. 1) – indeed, he
believes this contains “the only mystery” in quantum mechanics,
and one that cannot be gotten rid of by explaining how it works
(ibid.): there is no explanation, only (extraordinarily precise, though
still probabilistic) prediction. This experiment reveals the
interference (wavelike) properties of quantum particles. It is this
interference that’s responsible for most of the other curiosities of
quantum mechanics – including the speed gains that quantum
computers make over classical ones. A similar experiment was used
earlier, in 1802, by Thomas Young to demonstrate the wave nature
of light (and thus disconfirm Newton’s corpuscular theory) – see fig.
7.1. Quite simply, as the light travels from the two slits, A and B, to
the detection screen it will have sometimes shorter and sometimes
longer distances to reach the various parts of the screen. There will
be cases where light following a short path from one slit coincides
with light following a long path from the other slit, and so the light
is likely to be out of phase at such points. One can then have either
constructive or destructive interference, which will give rise to
lighter bands (when the phases add) and darker bands (when the
phases subtract) on the screen, at C, D, E, F.



Fig. 7.1 The interference pattern as drawn by Thomas Young for a
wave passing through a screen with two slits.

It is one thing for a beam of light to behave in this watery way, but
the startling feature of quantum mechanics, known as ‘wave-particle
duality,’ is that it also applies to ‘material particles’ too. Inversely,
thanks to the duality, particle-like behavior can be found in
phenomena more commonly thought to be wavelike (such as light).
With modern technology, one can perform these experiments so
that only single particles are leaving the source and traveling to the
screen, leaving a single click or scintillation where they are detected
(see fig. 7.2).

After a small number of detection events the clicks appear to be
random. However, on performing many such runs one finds the
most startling result: even though the particles are hitting the
screen as individual events, over time the old classical wave pattern
(as sketched by Young) is built up much as a pointillist painter
discretely renders a continuous scene (see fig. 7.3).



Fig. 7.2 The interference pattern after 65 photons have been
detected at the screen. This simulation was carried out in
Mathematica with a slit separation of 1 cm and a wavelength of light
of 560 nm. [Code by S. M. Binder:
http://demonstrations.wolfram.com/WaveParticleDualityInTheDoubleSlitExperiment/

We have used light in this example, but as mentioned above, the
same results can be found with electrons and other particles.
Indeed, one can even find this kind of behavior for complex
structures such as molecules (including organic molecules)
consisting of almost 1,000 atoms. The difficulty in ‘supersizing’ the
double slit experiment lies in upholding the ‘quantumness’
(quantum coherence) of the objects in the face of decoherence,
which destroys the interesting phase (interference) effects through
interacting with the environment and its many degrees of freedom.

To add to the oddness of this experiment, when one performs the
experiment with just one slit open the strange wave-like pattern
vanishes and is replaced by the boring classical buildup one would
expect. Yet why does the particle care whether one or two slits are

http://demonstrations.wolfram.com/WaveParticleDualityInTheDoubleSlitExperiment/


open: surely it goes through one or the other, not both? However, it
seems to in some sense go through both – even a single particle –
constructively and destructively interfering with itself, and then
becoming a point-like particle once again when it reaches some
measurement device (such as the detection screen). This apparent
measurement-dependence of wave (continuous, linear) versus
particle (discrete, non-linear) behavior is part of the quantum
measurement problem, and it, rather than superposition itself,
standardly supplies the proving-ground of interpretations of
quantum mechanics.

Fig. 7.3 The interference pattern after 3,500 photons have been
detected at the screen (for the same slit separation and wavelength
settings – note that altering these can alter the spacings between the
bands). Is it a particle? Is it a wave? No, it’s neither (or both)!

Let us apply the language of wavefunctions to this setup. Remember
from Chapter 2 that to each state of a system there is associated a
wave-function ψ. From this we draw a probability P for being found
to possess some particular property (e.g. to be at a particular
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location x on a screen). Let ψ(x) be the probability amplitude (a
complex number) for the probability (which as an amplitude can be
either positive or negative) of a particle in the two slit setup to hit
the screen at a distance x from the center of the screen (where the
center is the point lying equidistantly between the two slits). |ψ(x)|2

is then the probability density whose integral over some interval
gives the probability for finding the particle in that interval. In the
case of the two slit experiment we clearly have two options (two
mutually exclusive routes): ‘the particle goes through slit 1 to get to
a point x on the screen,’ or ‘the particle goes through slit 2 to get to a
point x on the screen.’ Represent these two possibilities by the
amplitudes ψ1(x) and ψ2(x) respectively (associated with
probabilities P1 and P2 respectively). The probability density for the
particle to make a click at x is then:

P12(x) = |ψ1(x) + ψ2(x)|2.

The density function will be peaked on x = 0 (directly between the
two slits on the screen) and also on integer multiples of x = ±λD/s
(where s is the slit separation, D is the distance between the slits
and the detection screen, and λ is the wavelength of the beam).

Feynman’s remark about there being no classical explanation for
this stems from the fact that a classical explanation would involve
the simple additivity of probabilities of a particle going through slit
1 and a particle going through slit 2. In other words, for a classical
particle theory we would have the sum:

P12(x) = P1 + P2.

That is, there is no interference between the alternative possible
outcomes (represented by ψ1(x) ψ2(x)): we just have to add together
the (classical) probabilities for the separate events, here P1 and P2,
which would give a distribution peaked at x = 0 again, but decaying
more or less uniformly as |x| > 0 (and we move away from the
center) rather than displaying the peaks and troughs characteristic
of wavelike phenomena and interference, as we see in Young’s
diagram. By contrast the non-additivity of events for quantum
particles is precisely what one expects of a wave. We must
‘supplement’ the classical probabilities with additional interference
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terms:

P12(x) = P1(x) + P2(x) + I12(x)

As we saw in §5.3, there is a variety of options when it comes to
interpreting probabilities, so there remains a question mark over
how we should interpret these quantum probabilities: are they
objective or subjective – i.e. about the state of the world or the state
of our knowledge of the world? Are they about a whole bunch of
similarly prepared events (relative frequencies) or are they about
individual events (propensities or something of that sort)?
Depending on how one thinks about these probabilities (objective
versus subjective, or ontological versus epistemic to use an
alternative terminology) one is faced with the view that quantum
mechanics is either complete (so there is a fundamental limit to
what we can know about the world: it is fundamentally
probabilistic) or it is incomplete (so that there is perhaps some
deeper theory that can explain and predict the funny behavior in the
two slit scenario: there are ‘hidden variables’ that quantum
mechanics misses). The same applies to the quantum states
themselves, of course: since this is our central object of
interpretation, either quantum theory is about world-stuff or
knowledge-stuff.

So: the double slit experiment is closely related to one of the first
conceptual questions to be asked about quantum mechanics:
whether the wave-function gives a complete picture of reality or
whether it is a step on the way to a deeper theory not subject to
irreducible probabilities. If this is so, then what is the
representation relation between ψ and the world? According to
Einstein’s ‘ensemble interpretation’ it doesn’t in fact refer directly to
the actual world at all, but rather to a non-existent distribution of
many systems of the same kind. This is in order to make sense of the
quantum statistics. We turn to Einstein’s famous argument in which
he attempts to establish the incompleteness of quantum mechanics
in §7.3. First we turn to the nature of probability and uncertainty in
quantum mechanics.

7.2 Uncertainty and Quantum Probability
We have already met probabilities in physics in the previous



chapter. However, in that case they were understood in an epistemic
sense: probability was simply ignorance of the true facts. In
situations in which the “true facts” are hard to determine, because
of the extreme complexity of the system, for example, a statistical
approach is a natural step. But the usage of probability is a matter of
convenience. If only we had enough computing power to track and
predict the movements of the parts of a complex system, and the
resolving power to figure out their instantaneous states, then we
could, in principle, eliminate probabilities and speak purely in
terms of certainties. Weather prediction, for example, is (as you well
know) fraught with uncertainty. But we do not think of this
uncertainty as a brute fact about the world. Rather, we think that we
simply don’t know (1) the initial conditions well enough to make
certain inferences from them; (2) the laws well enough to feel
confident about plugging in initial conditions (even if we did have
them, since they are highly non-linear); and (3) we don’t have
computers capable of running the evolution to make precise
(unique) predictions. Again, probability here reflects our ignorance,
rather than the world’s inherent indefiniteness. A 65 percent chance
of rain tomorrow does not mean that the world is in a fuzzy state:
we are in a fuzzy state!

In terms of the modeling of probabilities in such cases, we would
think of them as measures over a state space in which those states
are assumed to be uniquely mapped to definite physical states. The
uncertainty is a measure of ignorance, rather than a measure of an
objective feature of the world. In the case of quantum mechanics the
‘uncertainty principle’ is taken to express a more fundamental kind
of uncertainty: there is a limit, integral to the laws of physics,
according to which, for certain pairs of properties, we cannot know
the values of both simultaneously with perfect precision.

A useful way of thinking about the uncertainty relations is in terms
of the properties of the wavefunction as one switches between a
well-localized position on the one hand and a definite momentum
on the other. In the former case, the wavefunction is peaked at some
point of space, with the momentum spread out. In the latter case,
the wavefunction becomes a plane wave spread over the whole of
space (in theory, out to infinity). Moreover, we can see that trying to
localize a particle restricts its motion, which in quantum theory
involves more energy: probing smaller scales demands greater
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energies, which is why ever larger particle accelerators are required
to go to ‘deeper’ levels of reality.

However, the problem is that this switching is a function of whether
a measurement is performed to determine the particular property.
Born’s statistical interpretation, designed to make some sense of
this switching, contains this same intrusion of measurement. The
squares of the amplitudes were taken to correspond to the
probability of observing some value of the relevant physical quantity
given some measurement designed to determine it. The apparently
bizarre wave packet, spread out over space, is not ‘really’ a physical
entity, but instead represents probabilities for localized, observable
events. However, as we saw in our discussion of the double slit
experiment, these probabilities are rather unusual in that they
involve interference between the various localized alternatives.

Mathematically speaking, the uncertainty relations rest on the fact
that position x and momentum p provide dual (physically
equivalent though formally inequivalent) representations of a
quantum system’s state. They are related by a Fourier transform,
which involves a reciprocal (inverse) relationship between the two
representations: as the position amplitude (x isnarrowed down,
the momentum amplitude  (p) is spread (and vice versa). The
uncertainty principle converts this mathematical result into a
statement about our ability to gain information about a system’s
‘complementary’ observables (i.e. observables standing in just such
reciprocal relations: those that are canonically conjugate):

∆x·∆p ≥ ħ/2

Here ∆x and ∆p are simply the standard deviations (i.e. root mean
squared) for particle position and momentum. In terms of joint
knowledge then, if our grip on x is given by ∆x, then our grip on ∆p
cannot be less uncertain than h/2 ∆x. In the extreme case ∆x = 0,
our knowledge of ∆p is infinitesimally small (infinitely large
uncertainty).

As mentioned, in quantum mechanics, if you want to know what is
happening at smaller and smaller distances, then you have to
increase the energy of the probe. Again, this is why the current
generation of particle accelerators are so much larger than previous
generations. Thinking in terms of using light to see smaller and
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smaller objects, this would simply mean that one needs shorter
wavelength λ (higher frequency ν) light to uncover ever smaller
objects. We can relate this wavelength to the momentum p as
follows:

This inverse relationship (larger momentum implies shorter
wavelength) parallels the uncertainty principle. To pin down an
electron’s position with light we would have to use a short-
wavelength/high-momentum beam. Of course, wavelength
determines a natural limit on what can be resolved: no features
smaller than the wavelength can be discerned. The problem is, if we
use high-momentum photons, as we must to find out the position
with a high degree of accuracy, then we kick the electron with those
photons, imparting an uncertainty in its momentum. But if we were
to use photons with lower momenta, then one faces the problem
that the position is not pinned down closely enough.

Thus, this reciprocal relationship between distance and energy
scales parallels the famous uncertainty relations in quantum
mechanics, and indeed Heisenberg attempted to prove the
uncertainty relations using ‘physical’ arguments based on such
reasoning – he envisaged a fictional microscope that fired gamma
rays at the particle. Quite simply, to localize a particle requires
bouncing something off it. Finer localization requires higher
energies so that the bounce will be stronger. However, this bounce
will cause the particle to be uncertain in its momentum values,
essentially being nudged to new values from the imparted
momentum.

According to Heisenberg, then, a physically motivated
interpretation of the relations could be given, based on the notion of
a disturbance effect caused by measurement interactions. In order
to determine the value of some quantity, one has to do something to
it, and this changes its state. For example, to determine the position
of an object we might naturally try to localize it using sound, light,
or some other form of radiation. Heisenberg himself originally used
this argument to prop up an epistemic view of uncertainty: it is our
limitations that forbid us from finding precise values of conjugate
pairs, but this does not imply that such pairs do not have precise



values. However, swept up in Bohr’s interpretation, he succumbed
to an ontological reading according to which there is no fact of the
matter about the precise values: the values don’t exist. Indeed,
without some interactions between the system of interest and a
measurement device, one must remain silent about that system.
Hence, the uncertainty relations in Heisenberg’s hands grew out of
a wider philosophical stance concerning the meaning of physical
statements: such statements must be associated with their means of
being measured or bringing them about.

Einstein sought to produce counterexamples to this radical position
(which he viewed as a denial of objectivity) by devising scenarios in
which both quantities of a conjugate pair could have their values
simultaneously pinned down in a way that defeated the uncertainty
relations, much as Maxwell had attempted to beat the second law
with his demon. However, Bohr is widely agreed to have gotten the
upper hand. Another serious problem here is how to square the view
that the wavefunction is a representation of knowledge with the very
real phenomena that one finds in the slit and interferometry
experiments.

Note that Bohmian mechanics faces no such issues over particle
uncertainty since it essentially ‘buys’ definite positions for the
particle using a nonlocal field, which ‘guides’ them (this approach is
sometimes known as ‘the pilot-wave’ interpretation): hence, we
have a hidden variables approach here, but a nonlocal one. Wave-
particle duality is thus split apart into a particle, that is a particle at
all times, and a wave, that is a wave at all times. Given this, the
uncertainty relations are captured entirely by a ‘disturbance view’
rather than the uncertainty being a fundamental feature of the
world.

There have been some recent experimental attacks on the
measurement disturbance view of the uncertainty relations using
‘weak measurement’ (i.e. measurements that don’t collapse the state
onto its eigenvectors, so that an initial state is kept intact: an
interference pattern would still be observed on a screen following a
weak measurement, for example).2 The idea is to measure some
individual system state (such as the polarization of a single photon)
but also measure how much the measurement disturbs the state. By
doing a weak measurement prior to another measurement, the
effect of measurement’s kick can be determined (by making a third



strong measurement of the first property weakly measured). The
results in the experiments conducted so far have found less impact
than Heisenberg predicted: measurement disturbance, according to
these results, does not add much to the inbuilt uncertainty of
quantum mechanics. Whether loopholes can be found or not (e.g. in
the assumptions of weak measurements, and whether they in fact
constitute measurement in a strong enough sense), it does show
that what seemed to be a purely interpretative distinction (the
extent to which uncertainty is an artefact of measurement or a
feature of the world) can, in principle, be linked to experiment,
thanks to a new tool.

7.3 EPR, Odd Socks, and No-Go Theorems
In terms of philosophy of physics, 1935 was a good year: the famous
EPR experiment (where E = Einstein, P = Podolsky, and R = Rosen)
was presented, along with Bohr’s rebuttal, and also Schrödinger’s
discussion, which involved the first proper discussion of quantum
entanglement. EPR was Einstein’s grand challenge to Bohr’s
Copenhagen (‘tranquilizing’) philosophy. The core of the debate was
over whether quantum mechanics could be viewed as a complete
theory (Bohr’s view), or whether it was fundamentally incomplete
(Einstein’s view).

At the root of the historical argument between Bohr (and others)
and Einstein was the issue of realism (or, better, ‘objectivity’): do
the properties of objects have values independently of our observing
them? In the early days, as seen in the previous section, it was
supposed that there was a ‘disturbance’ triggered by a measurement
that ‘brought the value into being.’ In other words, the very act of
observation was something special. That is, observation generates
or produces the values we observe in measurements: those values
weren’t realized in the system (were ‘indefinite’) before the
measurement (unless the system had been expressly prepared in
such a value by prior measurement). It was this feature that so
disturbed Einstein – and not the statistical nature of the theory, as
is often supposed (encapsulated in his ‘God does not play dice’
remark). One might quite reasonably side with Einstein on this: it
does seem rather strange to think that the world does not have its
properties given independently of our interactions (that ‘the Moon
is not there when nobody looks,’ as he once put it to Bohr).



What also concerned Einstein was the apparent ‘spookiness’ of the
interactions that would happen in distantly separated regions of
space if quantum mechanics was supposed to provide a complete
representation of reality. Locality was paramount: after all, it had
been the central principle of both of his relativity theories in that
action at a distance was explicitly ruled out. The notion of an
objective reality is linked to this: the values an object has should not
be linked to values had by another causally isolated system.

A real state (commonly called ‘an ontic state’ in modern
discussions) is simply one that exists independently of our
measuring it or knowing about it (an ‘element of reality’ in
Einstein’s terminology): it is objectively given in the sense that
there is a fact of the matter about which values are exemplified at all
times. If we measure such a state then we will be finding out what
its state was (assuming there is no disturbance) beforehand. The
states of a classical mechanical system can clearly be thought of in
this way, as revealed by measurement. For example, in a
Hamiltonian setting (the classical mechanics in phase space, from
§2.2) our (instantaneous) states will be phase points x = (q(t), p(t)),
which will determine unique trajectories. Any intrusion of
probability here is associated with ignorance, in principle eradicable
by supplying the additional information: let’s do the same with
quantum probabilities, says Einstein. Assume that the states of
quantum mechanics could be filled in by hidden variables.

The so-called Kochen–Specker theorem already causes serious
problems for the idea that quantum objects possess their properties
in a simple ‘common-sense’ way, as suggested by such Einstein-style
incompleteness claims. This conception of quantum properties is
known as ‘value definiteness’: observables on quantum mechanical
systems have definite values at all times, not just when measured.
However, given an assumption of non-contextuality (that properties
are possessed independently of which measurement we decide to
perform), the Kochen–Specker theorem shows that the job of
definite value assignments to all properties simply cannot be carried
out. This is essentially a formal result having to do with the way
observables are represented by Hilbert space operators in quantum
mechanics. However, let’s put the Kochen–Specker theorem aside
and focus on the famous ‘EPR experiment,’ since this leads us to
matters of entanglement and nonlocality.
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Einstein famously defended ‘local realism’ (against quantum
mechanics) in his debate with Bohr. This consists of two distinct
components:

1. Physical systems have properties independently of our observing
them [they have objective reality]

2. Physical systems that are ‘spacelike separated’ (with one lying
outside of the other’s light cone) cannot causally influence one
another so that measurements on one affect measurements on
the other [= principle of locality]

EPR tended to focus on position and momentum values, given the
historical context fixed by Heisenberg’s uncertainty relations. But
let’s see how their argument is supposed to work by looking at
David Bohm’s simpler version involving spin measurements (known
as an EPRB experiment). Here we have a central source that
generates a pair of particles, A and B, in what is called a spin-0
(singlet) state (where  means that particle A is spin up and
particle B is spin down, so that the total spin cancels to zero: the
symbol ⊗ refers to the tensor product used to combine several
subsystems in quantum mechanics). Formally, we can write the
resulting state for the experiment as follows:

This is an entangled state: we can’t express the state in terms of
separate, well-localized  states at the detectors, since the
singlet state doesn’t ‘factorize’ in the sense that the total
wavefunction (representing the state of the system as a whole)
cannot be expressed as a combination (tensor product) of the states
of the parts. The particles are sent out to the left and right, to have
their spin-components measured at detectors that lie at spacelike
separation to one another (see fig. 7.4) – this is, of course, to
implement the locality condition. The measured spins will always be
perfectly anti-correlated because of the conservation of angular
momentum: if the left particle is measured to have +ħ/2 then the
right will always be measured to have −ħ/2 (and vice versa). Indeed,
the choice of which direction to orient the detector is made once the
particles are sufficiently separated to let the locality principle really
get a foothold – since these orientations are chosen ‘at a whim’ (a



‘free will’ assumption), the particles cannot have conspired to set
their values so as to establish their perfect correlations.

Fig. 7.4 A pair of particles in an ‘EPR state’ (a spin-0, singlet) is sent
out to spacelike separation to be measured by a pair of reorientable
spin-measurement devices (for the z component of spin). The
direction of spin measured is chosen at each detector only once the
particles are separated sufficiently to avoid any ‘conspiring’ to
generate correlated results through direct communication (i.e. by
local action or signaling).

The idea of EPR is then to compare ‘common-sense’ (as given by the
locality and realism assumptions above, leading us to think that any
measured correlations must be due to states had before
measurements were made) with quantum mechanical predictions
concerning the correlations we would find if we generated data on
many such spin measurements. EPR claim that quantum mechanics
fails the common-sense test by requiring nonlocal action
(entanglement across spacelike separated distances). The common-
sense view would simply point to the common origin in which the
spin was zero, and so must be conserved. There would be perfect
anticorrelation even when a free choice is made to alter the
direction of the detector, rotating it by some amount – the spin-0
state has rotational symmetry, so it is impervious to such changes. A
measurement will ‘project’ the state  onto either 

 depending on whether particle A is measured to
be spin up or down respectively. The problem raised by EPR is: how
on Earth do the particles know what the other particle will ‘reveal’
on measurement so that it can coordinate itself accordingly? We
can’t run the classical ‘common source’ scenario in this case because
that requires that the state would have been in an ‘eigenstate’ (think
of this as a definite value for the measured property) all along from
the source to the measurement so that it determines the measured



result: but our singlet state is not of this kind. Worse, we have the
freedom to choose our measurement direction (e.g. x-component
instead of z) in mid-flight, while still preserving the perfect anti-
correlated results – classically this would require that the
information is built-in to the particles at the birth for all possible
spin-measurements (including those that don’t commute and so
face the Heisenberg uncertainty relations). Again: how do the
particles know what to do?

According to EPR there are just two possible explanations: (1)
superluminal messaging allowing measured states to be
communicated at an instant between particles, or (2) there is
something missing from the quantum description of state, and this
extra something is what determines the (anti-)correlations. Since
the first option involves spacelike separated events, however, it
seems that the measurement and subsegment distant effect could be
switched by choosing an appropriate frame of reference, so that the
link is not a Lorentz invariant notion.

As John Bell showed many years later (and as we see in a moment),
it is possible to generate an experimentally testable difference
between the common-sense (hidden variables) and quantum
explanations: quantum mechanics will make different predictions to
such a locally realistic theory. Let us just step back for a moment to
consider an example of Bell’s that makes the common-sense
(classical) idea seem especially appealing.

The Irish physicist John Bell is often looked upon as an oracle by
philosophers of physics, and not without justification: he is
responsible for transforming the foundations of physics in such a
way that philosophers of physics are likely never to be short of tasks.
It is widely acknowledged that Bell’s theorem, from his paper on the
EPR paradox, was a much needed shot in the arm for foundational
research on physics. It has been labeled ‘experimental metaphysics’
since it seems to rule out a metaphysical stance (Einstein’s notion of
‘local realism’) – it was Alain Aspect who first realized that Bell’s
thought experiment could be made flesh, devoting his PhD thesis to
the subject (though he performed it with photons and polarizers,
with calcium atoms as the source).

Bell distinguished between observables, which we have met, and
‘beables’ (that is be-ables). The latter are supposed to be distinct



from matters of observation and measurement: a system’s beables
constitute the values that it has rather than what it will have when
it is observed. The old orthodox interpretation of quantum
mechanics had it that the theory was all about what would be
observed upon measurement, not about what was before
measurement. In other words, measurements are not taken to
reveal the pre-existing values of the measured particles, but in some
curious way they ‘bring about’ such values. The famous EPR
argument rests on just this distinction, with EPR taking the view
that a sensible theory must be about beables, and Bohr (and
followers) arguing that quantum theory, sensible or not, is about
observables: things whose raison d’etre is to be measured.

In the case of EPR correlations, as we have seen, a natural response
is that they are no more surprising than everyday correlations in
which there is a past preparation making it the case that if one
outcome is observed at one end of the experiment, another known
outcome must be observed at the other regardless of the spatial
distance that separates them at the time of measurement of either.
Bell makes this intuition very clear with his story of Reinhold
Bertlmann and his eccentric practice of always wearing odd socks:

Dr. Bertlmann likes to wear two socks of different colors.
Which color he will have on a given foot on a given day is quite
unpredictable. But when you see that the first sock is pink you
can be already sure that the second sock will not be pink.
Observation of the first, and experience of Bertlmann, gives
immediate information about the second. There is no
accounting for tastes, but apart from that there is no mystery
here.

We can even suppose that Bertlmann bundles together socks of
distinct colors in his sock drawer at home, randomly grabbing a pair
each day. The analogy with quantum particles and their properties
looks fairly direct. In this case we suppose that a pair of particles is
prepared in a singlet spin state, in which they are described by a
single wavefunction in which the particles’ spin-values are opposed
to one another: if one is definitely spin-up the other is definitely
spin-down. They are sent apart to enter a pair of widely separated
Stern–Gerlach experiments (used to determine their spins along
some given axis) whose magnets will either result either in the
particle’s going upwards or downwards (the Bohm version of EPR



just mentioned).3 Which will happen for any given individual
experiment is only known with a certain probability, but one can say
with certainty that if one value is found at one experiment then the
opposite will be found at the other. One could, if so inclined,
describe Bertlmann’s socks by a wavefunction, and even speak of it
as ‘collapsing’ when we notice the color of one of his socks (so that
the composite state featuring both socks is fully known).

Of course, in the case of Bertlmann’s socks one does not say that
observing a pink sock on one of his feet causes the other sock to
dramatically alter its ontological status to non-pink. We do not
collapse his sock from a fuzzy to a definite state. The only thing that
was fuzzy was our knowledge. Any assignment of uncertainty about
sock color (represented in the wavefunction) is entirely epistemic.

The question is: what of the situation with quantum particles? Can
we adopt this same epistemic strategy with them, so that the
experiments are simply detecting (or revealing) the properties of the
particles that they had all along? After all, isn’t that what
experiments are for: finding out what value some system had?

This is where Bell’s famous no-go theorem enters.4 It provides a
criterion for deciding whether the correlations in your theory are
like Bertlmann’s socks or not. It also provides a route for testing
whether our world is a Bertlmann-world or something more
puzzling. Or, to put it Bell’s way, we need to find a way of deciding
whether quantum mechanics is local or nonlocal, and then we can
figure out whether the world itself is home to nonlocal influences or
not.

Firstly, we need to get a clearer grip on the central terms of the
debate.

Einstein Locality: this applies to multi-part systems in which
the system’s parts are spacelike separated. Then for some joint
operator that is built as a product of the parts’ individual
operators (a superposition of the separate parts’ states), its value
will be built from the individual parts’ values in the same way.
The values of the individual components are independent from
one another in the sense that a measurement of one does not
interfere with the other.

The notion of a ‘correlation’ too should perhaps be spelled out. We



know from the news that there are often stories pointing out a newly
discovered link between some substance and a health condition.
These provide us with various pairings: ‘smoking and lung cancer;’
‘coffee and Parkinson’s disease;’ ‘marijuana and schizophrenia;’ and
so on. These are correlations rather than causation because the
exact mechanism is not known: it is a statistical link. One might
have found from some study that a large proportion of people who
smoked a certain amount of marijuana also developed
schizophrenia – more so than the general ‘background rate’ of
schizophrenia in the population. So we could then assert that the
probability of having schizophrenia given that you smoke marijuana
is greater than if you didn’t. But, so the saying goes, correlation does
not equal causation. For example, it is possible that people who
develop schizophrenia are more likely to self-medicate to alleviate
the anxiety of stigmatization, so that the direction of influence is
reversed (schizophrenia causes smoking, rather than the other way
around).

A correlation once discovered is often a first step in filling in a
deeper causal story, or in showing how some statistical error is
confounding the true results. Hence, there is a task of explaining or
explaining away a correlation once one has been found to occur in
nature. There might be a variety of things leading to the presence of
a correlation. There might be genuine causation going on, replete
with a mechanism linking the two variables. For example, one might
discover a gene that some people have that is ‘switched on’ by the
some specific component contained in marijuana smoke. Unless one
does lots of studies to reveal the generality of the correlation it
might have been a simple coincidence that in this population
studied there happened to have been more schizophrenics than
would ordinarily be expected. I already mentioned above the idea
that the schizophrenia might be leading to smoking as a form of
self-medication. In this case we could seek some deeper brain
disorder that would be responsible for both variables, thus
providing a common cause. (The standard example of the notion of
a common cause is in explaining the correlation between yellowing
of the fingers and lung cancer. There is such a correlation, but
neither causes the other: smoking cigarettes causes both.
Philosophers speak of the common cause as ‘screening off’ the
original correlation: smoking causally screens yellow fingers from
lung cancer.) What we had initially would then be a ‘causally



spurious correlation.’

A final option is that the correlation is simply ‘brute’: an
inexplicable feature of the world that cannot be further analyzed.
This is, scientifically speaking, not the kind of thing we would wish
for. However, as we will see, the correlations of certain quantum
mechanical experiments are seen to be just like this according to
many interpretations. The word ‘correlations’ should immediately
indicate that we are dealing with statistics here: results of many
experimental runs.

The correlations here are remarkably simple: if a particle is found to
be spin-up on one side, then it will be found to be spin-down on the
other side regardless of how we establish the magnets’ orientations
(so long as these orientations are set the same on both sides,
anywhere between 0 and 360 degrees, the θ value: generally chosen
to be a multiple of 120 degrees, so that there are three possible
settings).

As mentioned already, a natural (common sense = Bertlmann’s
socks) response is that the particles were forged at the same source,
and ‘simply carry their instructions around with them.’ These
instructions (hidden variables) reveal themselves when measured
and are responsible for what is measured. If we performed lots of
experiments to determine this, we would find a distinctive set of
results appearing: if there were no correlations, as we would expect
given the large spatial separation forbidding direct causal
interaction, then we would find that the joint probability
distribution would factorize into a pair of individual probabilities
for the experimental variables.

Take some general pair of outcomes A and B (which might be our
spin up and down results), and take some adjustable setting values,
a and b, that will determine what measurement is carried out on A
and B respectively. Our concern is with the joint conditional
probability distribution: P(A, B|a, b) – the probability of getting
outcomes A and B given (i.e. conditional upon) the settings a and b.
If this does not factorize into independent probabilities, then we
have a correlation: P(A, B|a, b) ≠ P1(A|a)P2(B|b). Common sense
tells us to look for some causal reason for correlations. Think of
yellowing fingers and lung cancer (a standard example). We find
that P(A, B) ≠ P1(A)P2(B). Why? It doesn’t seem that one can



(7.7)

directly cause the other: no mechanism seems to link them. The
trick is to add additional causal factors, a and b, so that we
condition on whether those with lung cancer and those with
yellowing fingers are also smokers. There might well be a few other
factors, λ, such as genetic disposition to smoke, that further
‘causally unlink’ the yellowing and the lung cancer, tracing both
back to some common origins. When we take these into
consideration, we will find a joint probability distribution that
factorizes:

P(A, B|a, b, λ) = P1(A|a, λ)P2(B|b, λ)

The ‘settings’ a and b are assumed to be independent: Bob’s
smoking in Kansas is not a likely cause of Vic’s smoking in
Kazakstan. So the EPR/hidden variables idea goes. The λ in this
case will be some, as yet undetermined, causal factors (the hidden
variables) that when supplemented into our model of the EPRB
experiment will explain the correlations without utilizing any
spooky influences – they can potentially take many forms. The a
and b are the freely chosen settings for the detector orientation; as
with the Vic and Bob’s smoking, these must be assumed
independent (known as ‘parameter’ or ‘setting independence’) lest
action-at-a-distance type influences enter the picture. This is in
stark violation of special relativity. The similar independence of the
outcomes (outcome independence), however, is not thought to be in
violation of relativity. The difference is in the ability to control the
parameters a and b (e.g. to signal), but not in the case of A and B
(note that I am speaking of the outcomes and the experimental
wings by A and B here). To sum up: a hidden variables model will
say that the outcomes A must only depend on a and λ, not on the
goings on with the b-settings. Fiddling with b should alter nothing
about A, and at A we have no knowledge of these fiddlings due to
parameter independence (implementing locality). Bell’s theorem
tells us that one of these independence conditions must be false.

We know also that if we consider −z (or a 180-degree) rotation of
the detector, then the two outcomes will then be perfectly
correlated: anti-correlated for 0; correlated for 180. That leaves a
whole lot of orientation settings that can be utilized independently
at the two sides of the experiment. Hence, if we only focus on
measurements made with the same a and b settings then we expect



the outcomes to be (anti-)correlated, and there is no scope for
distinguishing quantum and hidden variable models: we know that
the probability of getting the same outcome is zero since we have a
singlet state with opposite spins demanded. The interesting
divergences come from considering general settings. Indeed, it is
found that divergences in predictions occur when the relative angle
between the settings differ from 0 and 180 (and also 90 and 270).
The respective predicted correlations for hidden variables and
quantum models are shown in fig. 7.5.

These correlations can be used to generate inequalities for the
degree of correlation such that if the world has hidden variables,
then the degree of correlation will be greater than or equal to some
value, for example.

This graph (in fig. 7.5) also reveals that the predictions of a
quantum model cannot be replicated by a (local) hidden variables
model. The incompatibility provides the basis for an experimental
test: each model will make a set of distinct predictions that will
enable us to test whether our own world is quantum (non-local) or
not. Quantum models will violate a feature (Bell’s inequality) that a
local, classical model will satisfy.

Fig. 7.5 The degree of correlation predicted by a hidden variables
model (solid line) and a quantum mechanical model (dotted line)
for various relatively rotated detector settings. Though there is



agreement at multiples of 90 degrees, there is divergence elsewhere.

Experiments performed by Alain Aspect and others have since
confirmed quantum mechanics over Einstein’s hidden variables
view of how the world should be. This leaves either or both of the
two components of local realism at odds with the world. Either
could in principle be denied. In the case of objectivity, one would
have to give up on the idea that physics is about ‘the way the world
really is’ (Bohr’s view). In the latter case, one must accept the
existence of superluminal connections: nonlocality. However,
nonlocality in this case is rather different from nonlocal signaling,
and the concept must be treated with care. Certain prohibitions
elsewhere in quantum mechanics forbid the use of nonlocality as a
means of superluminal communication.

There is some controversy over the validity of the results, and these
work by finding flaws in some assumption of Bell’s proof. One
possibility, considered by Bell himself, is that the free choice of the
experimenter is an illusion, so that the universe determines which
settings will be selected. The universe thus orchestrates the
correlations by determining what the experimenters decide to do
(superdeterminism!). Here one must weigh up the relative
implausibilities of nonlocality versus superdeterminism…

There is a related philosophical puzzle of how we are to interpret
entangled systems ontologically speaking: what kind of world is a
world containing entanglement. Lenny Susskind calls entanglement
“the essential fact of quantum mechanics” (see p. xi of his book
listed in Further Readings): it’s what separates quantum from
classical phenomena. Schrödinger, who coined the term in a 1935
paper, agreed:

When two systems, of which we know the states by their
respective representatives, enter into temporary physical
interaction due to known forces between them, and when after
a time of mutual influence the systems separate again, then
they can no longer be described in the same way as before, viz.
by endowing each of them with a representative of its own. I
would not call that one but rather the characteristic trait of
quantum mechanics, the one that enforces its entire departure
from classical lines of thought. By the interaction the two
representatives [the quantum states] have become entangled.



([44], p. 555)

Entangled states, remember, refer to many particles (a composite
system) that are in an eigenstate of some observable in a joint sense
(as a pair), but not individually. For example, in the case of a spin
observable, we might know that the total, joint system has spin 0,
but not be any the wiser about the spins of the particles themselves,
which can be measured up or down (+ or −ħ/2). However, as we
have already seen, we can say that if a measurement yields spin up
on one particle (for some measurement orientation), then the other
particle is spin down (for the same measurement orientation). The
non-factorizability appears to lead to a kind of ‘holism’ since
ontological independence of the systems can’t be established –
though a measurement will ‘disentangle’ them according to many
interpretations. Here’s Schrödinger again:

Another way of expressing the peculiar situation is: the best
possible knowledge of a whole does not necessarily include the
best possible knowledge of all its parts, even though they may
be entirely separate and therefore virtually capable of being the
‘best possibly known,’ i.e. of possessing, each of them, a
representative of its own. The lack of knowledge is by no means
due to the interaction being insufficiently known – at least not
in the way that it could possibly be known more completely – it
is due to the interaction itself. Attention has recently been
called to the obvious but very disconcerting fact that even
though we restrict the disentangling measurements to one
system, the representative obtained for the other system is by
no means independent of the particular choice of observations
which we select for that purpose and which by the way are
entirely arbitrary. It is rather discomforting that the theory
should allow a system to be steered or piloted into one or the
other type of state at the experimenter’s mercy in spite of his
having no access to it. ([44], p. 555)

In other words, we are free to choose, arbitrarily, which
measurement to perform on one of the separated particles, but the
disentangling will still occur for both particles regardless of their
spatial separation. One spanner in the works for large spatial
separations is that special relativity becomes relevant: this impacts
on the total wavefunction for the system, which becomes non-
factorizable (thus deepening the appearance of holism). However, at



the same time the macroscopic distances involved in situations in
which relativistic effects play a role make it hard to retain the
coherence of the quantum state.

Though we see Schrödinger grappling with entanglement, and some
of its odder implications (such as quantum steering and holism), it
was left largely untouched until John Bell’s work on the subject
three decades later. Schrödinger himself thought that the
nonlocality was unphysical. The past two decades or so have seen a
radical transformation in the way entanglement is understood. Once
viewed as a mysterious ‘spooky’ phenomenon, it now forms the
basis of experiments and quantum mechanics. In more recent
times, entanglement is so commonplace that computer scientists
speak of it as a ‘resource’ to be manipulated and optimized.

Given the existence of genuinely entangled states, an interpretive
task emerges for philosophers of physics: what kinds of things are
they? This has proven to be highly controversial territory, with some
arguing that entangled states call for entirely new ways of thinking
about the world’s ontology. Formally, remember, an entangled state
(for an N-dimensional system) is ‘non-factorizable’ in the sense that
a joint wavefunction for many particles cannot be written as
separate wavefunctions for the subsystems: .
Hence, there is a suggestion even in standard quantum mechanics
that the world might not submit to being carved up in terms of
‘individual things.’ Entanglement involves the notion that the total
quantum system is not reducible to the intrinsic properties of its
subsystems, thus exhibiting a kind of ‘holism.’ Paul Teller developed
a position known as ‘relational holism’ to capture this ‘whole is
more than the sum of its parts’ aspect of quantum mechanics: the
relations cannot be reduced to the non-relational properties of the
relata (that is, they do not supervene on the non-relational
properties on the relata). This aspect is known as ‘non-separability’:
the inability to view the state of the world as reducible to local
matters of fact.5 This amounts to a kind of emergence too, since the
emergent properties are not definable in terms of the non-relational
properties of the subsystem parts. Likewise, Michael Esfeld and
Vincent Lam [11] have argued that such relations in entangled
systems can be understood as simply unreducible to the intrinsic
subsystem properties. Ultimately, they propose that the ‘object-
property’ distinction (where ‘property’ includes relations and



structure) is not a fundamental ontological one, but a conceptual
one. Hence, the phenomenon of entanglement links directly to deep
matters of ontology and metaphysics.

7.4 The Quantum Mechanics of Cats
In a very tiny nutshell, the quantum measurement problem can be
summed up as: quantum mechanics seems to allow superpositions
to be amplified up to the macroscopic level. We don’t see such
superpositions of macroscopic alternatives. Therefore, we either
need to find a way of burying them where they cannot be
experienced or explain why they are not experienced in some way
consistent with quantum theory (and thereby solve the
measurement problem), or else reject the theory.

One might easily be forgiven for thinking, on the basis of much of
the literature, that the quantum measurement problem is the only
philosophical problem facing quantum mechanics. Its tendrils
spread into many other areas in the conceptual foundations of
quantum mechanics. The measurement problem follows quite
simply from apparent facts of experience (the ‘definiteness’ of
measured or observed properties) together with the assumptions of:

Linearity: time evolution under the Schrödinger equation is linear
so that superpositions can ‘spread’ through interactions, so that if
one system is in a superposition of its possible states, any system it
interacts with will also evolve into a superposition of states;

Universality: the wavefunction ψ is able to describe any and all
dynamical systems in nature.

With these two properties given we can infer that macroscopic
objects will, like their microscopic cousins, be governed by quantum
mechanics. This means that they too must have a linear state space,
and so behave in a wave-like manner. This, in turn, means that we
can have states such as (here we go!) a cat that is a linear
superposition of both alive and dead (or neither alive nor dead)
states. Such (macroscopic) states are, of course, never observed in
nature. Rather, we observe outcomes: specific, unique, individual
events: one or the other. Hence, we have a dilemma: (1) either our
ideas about macroscopic objects are wrong; or (2) QM is false;
breaks down at the level of macroscopic objects (such as a system



capable of observing); or needs modifying in some way. This has
some resemblance between the problems faced by the statistical
view of entropy, with the conflict between theory and observation
there: theory predicted a high entropy to the past as well as the
future, but we observe this feature only in one direction. Similar
mind-stretching (to Boltzmann’s cosmological/ Anthropic ideas)
results in the context of the measurement problem in the attempt to
resolve it.

This duality (wave behavior versus particulate behavior) is at the
root of the measurement problem. The wave behavior is described
by Schrödinger’s equation. This is perfectly adequate for situations
in which the system is not being observed or measured. However,
seemingly, when it is measured a different kind of evolution occurs:
a disruption of the linear, wave behavior. To give a simple example:
suppose that we have some radioactive element that has a half-life
of ten minutes. If we have a bunch of these atoms then after ten
minutes have elapsed we can expect half to have decayed (into
various decay products: radiation). If we consider a single such
atom then after ten minutes if we don’t measure it (e.g. with a
geiger counter), then the quantum mechanical behavior will see it
evolve into a linear superposition of decayed and undecayed: 50/50.
The geiger counter, however, will register a definite event: click or
no click. This transition from superposition to individual event
constitutes a second form of evolution in quantum dynamics –
though not all agree that it is a genuine feature of reality. This
50/50, ‘blended’ behavior so far is applied to the world of the very
small, and so, though conceptually problematic, poses no direct
observational problems – note that the 50/50 distribution is not
necessary for the argument, which requires that a superposition be
formed in which it is not the case that one state has probability 1
while the other states have probability 0: this latter is the
characteristic of a measured state (which is another way of stating
the problem).

The infamous Schrödinger’s cat example makes use of this simple
split in the kinds of evolution. The radioactive substance is coupled
to some poisonous gas, both of which are within a closed box, such
that if the substance decays then an unfortunate cat (also confined
to the box) will perish. If it does not decay, then the cat is safe.
However, we have seen that if a quantum system is not measured, it



will enter a superposition of states, here: |decayed〉 + |not decayed〉.
But the fact that the behavior of the atom is coupled to the poison
implies that there will be an associated superposition of poison
(prussic acid in Schrödinger’s original example!) | emitted) + |not
emitted〉. And, finally, since the cat’s continued existence depends
on the poison, and in turn the atom, it too will enter a superposition
of |perish〉 + |safe〉. In other words, a superposition at the
microscopic level (not directly observable) is amplified (through the
evolution of the basic dynamical law of quantum mechanics) into a
macroscopic superposition (with no definite component realized).

This obviously contrasts with the fact that we know our experience
when opening the box to see what happened will reveal an
individual event (one or the other component of the superposition).
There seems to be, then, a conflict between quantum mechanics and
experience! Macroscopic superpositions are predicted by quantum
mechanics; but our experience reveals no such thing. This is the
quantum measurement paradox. It is also another kind of
incompleteness result since quantum mechanics seems not to be
able to tell us about the state in the box.

What is bizarre about this is that it is most often assumed that our
experience (of macroscopic definiteness) is veridical (true to the
facts of the world) so that if quantum mechanics is also true, then
we are somehow affecting quantum states when we perform
measurements. This is known as reduction of the wave packet by
observation or measurement, or more formally as ‘the projection
postulate.’ It is a solution alright, but requires filling in by some
kind of mechanism to be satisfying. We mention a few of these here.
The most famous (the one that ‘stuck’) is the Copenhagen
interpretation.

According to the Copenhagen interpretation, the quantum state’s
function is to provide information about measurement outcomes.
Given some preparation of the system in some state, one can then
plug this state into the dynamical equations of quantum mechanics
to make (probabilistic) predictions about outcomes at later times.

At the root of Bohr’s understanding of quantum mechanics was the
notion of complementarity. This refers to a pair of features or
quantities that are both required to understand a system, yet cannot
be measured or determined simultaneously. The best known



complementary pair are position and momentum of one and the
same particle. We saw this earlier: the more we try to pin down one,
the less we are able to pin down the other. One could place a screen
to detect the interference fringes (and so the wave-like aspects) in a
double slit experiment (with no attempt to detect which slit a
particle travels through); or one could position detectors at the slits,
thus revealing the particle-like aspects. Doing either of these
experiments rules out the other: they are mutually exclusive. One
can go bonkers trying to figure out ways to evade this embargo and
achieve precise determinations of both aspects – but that does not
mean it is not a good exercise! The point is that although wave and
particle aspects appear to be flatly contradictory, the embargo on
simultaneous measurement means that it doesn’t cause us trouble:
it’s wavy when we detect for wavy aspects and particulate when we
detect for particulate aspects.

This latter feature points to a kind of relationism in Bohr’s
interpretation. The exhibition of a property by a system is relative to
a measurement designed to reveal it. What Bohr does not want to
countenance is the notion that systems ‘just have’ properties
regardless. This relativization is precisely what was behind
Einstein’s refusal to accept Bohr’s approach, remarking that he
believed the Moon was there even when nobody was looking (i.e.
doing a position measurement). In the case of the cat, it does not
have a definite state until a measurement is performed. A ‘classical’
measurement apparatus is needed to do this: a human eyeball, or a
Geiger counter. It doesn’t matter so much about the size, but that it
can provide an observable output is important.

Hence, in between measurements (when not aligned with some
experimental arrangement), the system is described by a quantum
state that represents a kind of disposition or potential to generate
outcomes. To get the classical world out of quantum mechanics, one
needs classical equipment to register the results. A meaningful
situation, then, demands a system and an apparatus.

One of the most problematic aspects of the Copenhagen
interpretation is the special status it assigns to measurement (and
the classicality demanded to make sense of it). It almost looks as
though the demand for classical measurement devices pulls the rug
out from under quantum mechanics, rendering it non-fundamental
and non-universal. Just what is so special about those processes we



call measurements? This amounts to another form of the
measurement problem, though one not grounded in the clash
between theory and experience.

Eugene Wigner raised the following problem (known as ‘Wigner’s
friend’) for the Copenhagen approach to the Schrödinger cat
paradox: what happens if you put the scientist (initially observing
the cat in the box) inside an even bigger box, which can be observed
by another (exterior) scientist? Now the first scientist is part of the
system rather than the measurement device. In this case, the
scientist in the box is described by a quantum state, a superposition
state (atom + poison + cat + scientist) until a measurement is made.
The exterior scientist now has the power to collapse the
wavefunction by peeking inside. In principle, of course, this boxing
procedure could be carried out ad infinitum, producing a sequence
of boxes each with their own scientist, like nested Matryoshka dolls,
with the most exterior scientist always having the ultimate power to
collapse the wavefunctions of those within, which are in an
indefinite state until observed.

Wigner found this implication absurd, but proposed instead what
strikes many as far more absurd: the mind causes quantum states to
collapse. So whenever there is a mind, there will be the ability to
collapse. Hence, contra Bohr, there is a limit (far smaller than the
universe) to the ‘system versus apparatus’ split enforced by
consciousness (awareness). A measurement result would seem,
after all, to demand awareness of the meaning of the result. Perhaps
the cat itself is aware enough to collapse wavefunctions? Such
‘mental’ intrusions (also espoused by von Neumann) were
mercilessly mocked by Bell, who inquired as to what level of mind is
needed to collapse a wavefunction: an amoeba or only someone
with a PhD?! The problem with this solution, though it is intuitively
obvious in a certain sense, is that it introduces another (perhaps
deeper) puzzle: what is this mind stuff? How does it work its magic?
Wigner has no account, and the solution dissolves into a
supernatural speculation. It also leaves the difficult problem of all of
that ‘pre-mind’ time out of which minds themselves must have
emerged.

The reasoning in the Wigner’s friend example here is, however,
perfectly correct, and it basically replays the original Schrödinger
cat scenario at a meta-level. If the cat is dragged into the quantum



superposition of the poison, which is itself dragged into the
superposition of the radioactive substance, then any system that
subsequently interacts with the cat (or some of its properties that it
can become correlated with) will likewise be dragged into the
superposition. This is a simple consequence of the linearity of the
dynamics (the evolution described by the Schrödinger equation):
superpositions ‘infect’ systems they come in contact with, like a
superposition virus, forcing them into superpositions too. Except
they clearly don’t, since we know perfectly well we would only ever
see a definitely dead or definitely alive cat. Hence, Wigner’s
(difficult) decision to let the buck stop at the observing mind.

Though clearly very distinct from the Copenhagen approach,
Wigner’s proposal too relies on the notion of a primitive
measurement process, capable of collapsing the wavefunction (and
so destroying any interference that would allow us to see quantum
superpositons of distinguishable alternatives). But measurement
involves a coupling of physical systems and, unless you’re Wigner
and believe in a dualist scheme (with mind and matter distinct),
must also be governed by the same laws as any other physical
interaction. So why does measurement play a special role? Surely
it’s just physical systems interacting? Why isn’t it subject to a
quantum description too?

A fairly standard view these days is that measurement is indeed ‘just
another physical process,’ but in real cases of measurement there
are some features that make it at least a little special. For one thing,
measurement apparatuses are big: the detection events in the
various experiments we’ve been discussing (the clicks on a
scintillation screen in the two slit experiment; the large spatial
separation between the beams of a Stern–Gerlach experiment, etc.)
are decidedly macroscopic: they involve large numbers of particles
that serve to amplify some microscopic event. We know that it is
difficult to make large things exhibit quantum interference effects:
one can hardly throw a team of scientists through a double slit
experiment to build up a wavy interference pattern on a screen (you
could never get the ethics approval anyway in these politically
correct days)! We find that the large results that our detection
equipment indicates are macroscopically distinguishable correlates
of the micro-systems they are calibrated to measure.

The backbone of this ‘size matters’ idea leads us into what has



become a standard part of modern quantum mechanics:
decoherence. Decoherence has been viewed by some as a sort of
magic bullet for the measurement problem, capable of explaining
away the absence of interference effects in our observations, while
being perfectly within the realm of the physical, and just an
application of ordinary quantum mechanics (without projection or
any of that funny mind stuff). Recall that the curious interference
effects at the root of the double slit experiment and the
measurement problem (and entanglement) come about from the
existence of the quantum phase θ. If this can be reduced to zero
somehow, then the curious phenomena disappear and the behavior
looks classical. Decoherence is often touted as one route to the
zeroing out of phase, and therefore interference, and therefore the
measurement problem.

But it is not a complete miracle cure. The idea is that when
interactions occur between a microscopic system (with very few
degrees of freedom) and a measuring device (lots of degrees of
freedom), we also need to take into account the fact that both are
situated in a wider environment with a vast number of degrees of
freedom, and evolving according to the (linear) Schrödinger
equation with respect to this environment. This environment thus
has the effect of ‘absorbing’ the quantum interference through
correlations with these degrees of freedom. The measured system
thus engages in a multitude of other interactions with air molecules,
photons, and what not, in such a way that in focusing on the
apparatus alone one would be forgiven for thinking that it is in a
mixed state (i.e. with good old classical probabilities for the
alternatives), with no interference (between the alternatives)
present at all. In other words, ‘for all practical purposes’ one has
gotten rid of the problem.

Measurement, in this case, can be viewed as converting a genuine
superposition into what looks like a mixture (i.e. something that can
be dealt with using classical probabilities). In different terms, it
looks like an example of an irreversible process, where we have lost
information about the superposition into the environment Φenv.
But, as the above suggests, the superposition is still lurking in the
world, spread throughout all of the degrees of freedom that are
involved in any real physical measurement. The interference is still
in the total state (Φenv ⊗ ψsys) but not in either of the ‘reduced’



states: Φenv or ψsys. To extract the information needed to exhibit
the interference would perhaps require a Maxwellian demon,
tracking all of the interactions, thus enabling reversibility. But in
principle, the process is reversible.

This split between quantum and classical is very different from the
shifty split of the Copenhagen school, where one moves it
depending on context (i.e. on what the system is and what the
apparatus is). The effect involved in decoherence is one that occurs
by degrees, dependent on the number of degrees of freedom of the
environment, rather than on a decision about what the
measurement apparatus and the measured system will be. As
regards the actual mechanism, it is most frequently expressed as a
kind of scattering phenomenon. The environment itself ‘measures’
the system through scattering. But, as mentioned, given linearity we
face a measurement problem (Schrödinger’s cat scenario) with
decoherence. We might also put pressure on the distinction between
‘system’ and ‘environment’ that has a flavor of a Copenhagen-style
split about it.

However, having said this, decoherence (or rather its avoidance) it
is of great importance in quantum computation. Quantum
computation is effective when there is coherence between the
eigenstates of a system (the |0〉s and |1〉s). Hence, it is the
interference (in addition to the superpositions, of course) that leads
to the exponential (or at least, super-polynomial) speed-up of
quantum computation. If this interference is lost then the speed is
dampened accordingly. So whether decoherence is able to assist
with the conceptual problems of quantum mechanics or not it is
nonetheless an important component of the theory.

Hence, we are left with a serious problem: what kind of world do we
live in, given decoherence? After all, what it is telling us, if we take it
literally, is that superpositions always persist, and strictly speaking
the appearance of classical outcomes is an illusion. We are, in other
words, left with the problem of interpretation of the wavefunction:
measurements don’t give us definite events, but only the appearance
of such. What becomes of the objects and properties that we seem to
encounter in everyday life? Are they somehow not the solid, definite
entities we thought they were? Many feel that decoherence alone
can’t work magic, but combined with Hugh Everett’s relative-state
interpretation, it can resolve the measurement problem, and offer a



cogent world picture.

The Everett interpretation was named the ‘relative state’
interpretation by its original architect, Hugh Everett. It is often
presented in terms of ‘many worlds,’ which involves a curious
splitting of the world per measurement made. This was certainly not
Everett’s intention, which simply involved the self-sufficiency of
Schrödinger evolution (in recovering the world, at an observable
and unobservable level). Recent work, especially by philosophers,
has tended to revert back to a non-splitting conception. However,
the reason for the splitting cannot be ignored: it was invoked to
introduce a notion of ‘happenings’ in a quantum world (that is,
concrete occurrences rather than superpositions). A purely
quantum world governed by nothing other than Schrödinger’s
equation, with its linearity, would not contain definite events or
outcomes. Each branch of a superposition is equally real. According
to a re-interpretation of the Everett interpretation, the ‘many
worlds’ interpretation, each branch is a world in itself, so that
whenever a superposition occurs (and so branches appear) a real
physical branching of the universe occurs. In this way it seeks to
square our phenomenal experiences of a single reality of events with
the ‘bare’ formalism of QM with its evident lack of such: since we
only experience one world (that branch along which we are thrust,
we cannot possibly experience what occurs at the other branches.
Staunch defenders of the interpretation, such as David Wallace,
don’t view Everett’s approach as an interpretation at all. Rather,
they see it as a more or less direct realist reading of the formalism:
part of the theory itself.

Aside from the seemingly bizarre nature of the Everett
interpretation, there have traditionally been two key problems: (1)
the preferred-basis problem; (2) the probability problem. The
former problem refers to the fact that we only ever seem to
experience well-defined branches (or worlds), not fuzzy worlds
corresponding to the interference terms (I12 in eq.7.3) involving two
well-defined branches simultaneously realized: quantum linearity
over the time the universe has existed should surely have generated
a blooming, buzzing confusion? So why do we get the nice, classical-
looking branches we get? Why do you seem to have such a well-
defined location, for example? This is where decoherence theory
enters the scene since it effectively eliminates (or, rather, ‘buries’)



the phases responsible for interference of this kind – it doesn’t
entirely eliminate the interference and so doesn’t eliminate the
preferred-basis problem in anything but a ‘practical’ sense; the
appearance of definite, classical states is only that: an appearance.
However, if decoherence is viewed as a scattering phenomenon,
then it faces a preferred-basis problem of its own: in one ‘effective
branch’ the scattering will go one way and it will go in other ways in
other effective branches. Again, why do we find those nice branches
all the time, rather than strange combinations of the macroscopic
alternatives?

The latter refers to the problem of making sense of probabilities
(which surely involves outcomes) in a world in which, in a
sense,‘everything happens.’ It is a little like rather than throwing a
dice, we throw the six faces written down on pieces of paper that all
land together: probability 1 every time! This is to be expected, of
course, since Everettians essentially believe that the Schrödinger
equation is pretty much all there is to quantum mechanics, and that
equation is a perfectly deterministic wave equation. Therefore, the
notion of the probability of some event’s happening loses its
standard meaning. But we still need to match experimental life.
Recent approaches (the Deutsch-Wallace approach) involve
decision-theoretic derivations of the Born rule linking the
wavefunction to experiment. The idea is that since we don’t know
where we are in the Everettian multiverse, with its many branches,
or even how many branches there are, we can derive the
probabilities in terms of rational behavior of agents in such a
situation of uncertainty. The probabilities are, in this case, not in
the world but are subjective degrees of belief.

Other issues that are currently being investigated are the extent to
which our world (with its local events and ordinary objects) can be
seen to emerge from the wavefunction – it is generally assumed that
there is really just one universal wavefunction from which
everything emerges.

Another approach is the Bohmian interpretation, which is also
deterministic, like the Everett approach. Bohmian mechanics
supplies particles with definite positions at all times, but, as
mentioned earlier, the interference phenomena come from the
addition of a kind of nonlocal field (the wavefunction) that ‘guides’
the particles trajectories. Indeed, some many-worlders claim that



since the wave-function is part of Bohm’s approach (together with
the particles in their nice definite configurations) it contains
Everett’s approach: all the branching structure is built-in. So why
bother with the particles if you can make do with the wavefunction
alone? Of course, a Bohmian will also face the problem of explaining
the quantum probabilities. In this case it is epistemic, but refers to
an ignorance of a particle’s initial configuration.

I think it’s fair to say that the Bohmian and Everettian approaches
are the most popular among philosophers in the present day,
though there have been other recent attempts to solve the quantum
problems. One notable attempt to ground the projection postulate
in a physical mechanism are the ‘objective collapse’ proposals: the
GRW (Ghirardi-Rimini-Weber: the surnames of the interpretation’s
architects) spontaneous localization approach and the similar
gravitationally induced collapse approach of Roger Penrose. They
are wavefunction realist, and accept the existence of macroscopic
superpositions but show that they are collapsed, by physical
mechanisms (a random collapse linked to the number of particles of
a system in GRW and gravitational instability caused by
superpositions of masses), so quickly that we don’t have a chance to
observe them. But they don’t resolve the measurement problem due
to the problem of ‘wavefunction tails’: they don’t completely
eliminate the superposition (similarly to decoherence), and so we
always face an interpretative problem of explaining what these
correspond to in the world.

The measurement problem highlights more than any other
conceptual problem in physics how diverse the views of the physical
implications of a theory can be. Though most of the experimental
and formal details are agreed on, what these mean is still all over
the place. To return to a point raised in the opening chapter, I say:
what is the point of having these theories and performing these
experiments if we don’t know what they are telling us about the
world? To see quite how diverse the interpretative views of
physicists (rather than philosophers, though I’m sure we’d find a
similar phenomenon), read the recent survey (“A Snapshot of
Foundational Attitudes Toward Quantum Mechanics” [43]) carried
out by Max Schlosshauer, Johannes Kofler, and Anton Zeilinger, in
which a variety of questions about the philosophical implications of
quantum mechanics are asked. This should show you that, despite



the age of the problem, there is still much to be done to clarify what
is going on, let alone in solving the problems.

7.5 Identity Crisis
Recall that the basic feature of statistical mechanics was that states
of wholes are given by a kind of averaging over the states of parts.
So we must know something about the parts in order to make sense
of this. We must know how to count the states of the parts. The
crucial question is: given a complex system of particles, how many
microstates are there for some macrostate? Here we need to think in
terms of physically distinct microstates, since we don’t want to find
ourselves over-counting, and therefore assigning the wrong
probability to the macrostate. It turns out that the way we count,
and therefore the probabilities for macrostates, depend on whether
we are dealing with classical or quantum particles, and with bosons
or fermions. Quantum particles have fewer possibilities open to
them, and fermions have still fewer possibilities than bosons.
Quantum statistics is different to classical statistics: not surprising
perhaps, but it is a result that has potentially revisionary
implications as regards the metaphysics of objects in the two
theories.

There are several features that we quickly need to lay out. Firstly,
particles (of the same kind: e.g. electrons) in quantum mechanics
have the same ‘state-independent’ properties: mass, charge, spin,
and so on. Such particles are often said to be ‘identical’ by
physicists, but philosophers prefer to call them ‘indistinguishable.’
They are real identical twins – a puzzling parallelism most probably
due to the fact that particles are really excitations of one and the
same basic underlying field. They look on the face if it like
immediate violations of Leibniz’s principle of identity of
indiscernibles – something we return to below.

Encountering genuinely identical twins can be confusing, especially
when they also dress identically: it is impossible to tell which is
which (at least on the basis of appearance alone). This can be used
to create mischief of course, since they can be switched without
those around realizing – a feature often used as a plot device in
films! Elementary particles of the same type are an extreme case of
this same phenomenon leading (on a common view) to what is



called permutation invariance of the laws of quantum mechanics.
These twins are so closely matched that not even the laws of physics
can tell them apart: no observable quantity can be called upon to tell
them apart – in symmetry talk we say that the permutation
operation that brings about the switching ‘commutes’ with all
observables, including the Hamiltonian responsible for generating
the dynamics. This permutation invariance, itself an implication of
the genuine indistinguishability of the permuted systems, is taken to
explain the difference between classical and quantum statistics.
Another explanation is that since quantum particles do not possess
definite trajectories (according to some interpretations) they cannot
be re-identified at different stages, and so switchings can’t be
possible.

In terms of plot devices, then, the switching of quantum particles is
rather more like the storyline in the film Freaky Friday (the Tom
Hanks movie Big uses the same idea). Here non-qualitative
‘personal identities’ (memories and souls!) are switched between a
pair of bodies, leaving everything qualitative intact – a manoeuvre
that clearly involves mind–body dualism. Of course, we might still
view ‘the soul’ as a qualitative feature since it generates actions. If
we switched everything, including souls (a ‘maximal property
swap’), then it seems very hard to speak of any real change being
effected at all: we’ve truly left things as they were.

We can put these ideas quite simply in terms of simple worlds; this
will enable us to link up to the notion of haecceities discussed
earlier in §4.1. Consider a world with just two individuals a and b,
and two properties F and G (not mutually exclusive). There are
seven ‘worlds’ (possibilities) that can be constructed from these few
building blocks:

1. Fa ⋀ Gb

2. Ga ⋀ Fb

3. Fa ⋀ Gb ⋀ Fb

4. Fa ⋀ Fb ⋀ Gb

5. Fa ⋀ Ga ⋀ Gb

6. Ga ⋀ Fb ⋀ Gb

7. Fa ⋀ Ga ⋀ Fb ⋀ Gb



An haecceitist (armed with their ‘primitive identities’) will hold that
1 & 2, 3 & 4, and 5 & 6 are distinct worlds, while the anti-haecceitist
(armed with primitive non-identity or qualitative identity) denies
this, seeing just three worlds. The world 7 (a conjunction of 1 & 2)
appears to involve a duplicated possibility for the anti-haecceitist,
but is kosher for the haecceitist. The haecceitist believes that
possibility space is larger than the anti-haecceitist’s. The different
ways of counting possibilities in classical and quantum statistics
corresponds to this way of thinking.

As we have seen, worlds of just this type, differing in what
individuals there are and what they are doing, are at the center of
many philosophical debates in physics – those based on
symmetries. Paul Teller [50] calls these maximal property swaps
“counterfactual switching.” The scenario requires that the identities
of the objects undergoing such swaps is constant under
permutations of their properties.

In discussing the connections between the Leibniz shift argument
and the permutation argument, Teller writes that

Both problems can be put in terms of a claimed excess of at
least apparently possible cases, suggested by the applicability of
the tools of reference. These unwanted cases arise by what I will
call counterfactual switching. In both problems we have names
– number-labels of “quantum coins” [binary quantum systems]
and number-coordinates of space-time points. In both
problems we suppose that there are identity bearing things, the
coins or the space-time points, to which these names refer, and
that reference is constant across possible cases by supposing
shifts of ALL the properties and relations pertaining to one
object of reference from that referent to another, so that the
new case is utterly indiscernible from the original. The only
difference in the cases is taken to be the identity of the
underlying bearers of properties and relations. ([50], p. 366)

Teller argues that the peculiarities of quantum statistics force us to
abandon the idea that “labels [are] genuinely referring expressions”
(ibid., p. 375) – this is an old habit from a classical way of thinking
about objects. Instead, Teller adopts a ‘quanta’ approach. Bosons
should be thought of as ‘dollars in a checking account’ rather than
‘coins in a piggy bank’: they can be aggregated but not counted and



distinguished. This can account for the differing probabilities in
classical and quantum statistics.

Paul Dirac sums up the basic situation rather nicely:

If a system in atomic physics contains a number of particles of
the same kind, e.g. a number of electrons, the particles are
absolutely indistinguishable from one another. No observable
change is made when two of them are interchanged. […] A
satisfactory theory ought, of course, to count any two
observationally indistinguishable states as the same state and
to deny that any transition does occur when two similar
particles exchange places. ([7], p. 207)

Let’s unpack this a little. Firstly, a permutation (an ‘interchange’ in
Dirac’s terminology)  here is simply an automorphism: a
reshuffling of the labels of objects without introducing new labels
(or an active mapping of the object to another object using some
transformation that permutes them – e.g. a rotation). Suppose we
have three particles a, b, c. A possible permutation is simply to
switch a and c: (a → c) ⋀ (c → a). Hence, (a,b,c) = (c,b,a). The
permutation symmetry of quantum mechanics simply means that
the laws are insensitive to such operations: the permutation group
(containing such switching operations) is a (discrete) symmetry
group of quantum mechanics. In the context of quantum mechanics,
these maps act as linear operators on a vector space representing
the space of possible states of a quantum system.

Now consider the distribution of a system of two indistinguishable
particles, 1 and 2, over two distinct one-particle states,  and ψ
(states that can be occupied by one particle at a time, where (1)
means particle 1 is in the state ). Statistical mechanics is then, very
loosely, concerned with the number of ways we can get a
distribution of systems (particles) over states: possibility counting.
According to Maxwell–Boltzmann counting we get four possibilities
(four possible worlds):

(1) · ψ(2)

(2) · ψ(1)

(1) · (2)

ψ(1) · ψ(2)



This set of possibilities with the assumption of indifference
(equiprobability) yields the Maxwell–Bolzmann distribution: each
of the four possible states is equally weighted by 1/4. There are two
ways of counting in quantum statistics mechanics: Bose–Einstein
and Fermi–Dirac. The former gives the following possibilities:

The first possibility here is a superposition state in which the
particles are entangled, so that the permuted states possible in the
Maxwell–Boltzmann worlds are bundled into a single possibility.
We have three possibilities instead of two, each with a probability of
1/3. The latter gives just one possibility (with probability 1):

Again, this is a superposition, but with a difference in sign. There
are, then, two ways in which a wavefunction for a pair of particles
can change under their permutation: (1) it can remain the same
(symmetric); (2) it can change sign (anti-symmetric). This
difference, symmetric (or ‘+’) and anti-symmetric (or ‘−’), is
responsible for the dramatically different aggregative behavior of
bosons and fermions. Whereas bringing together fermions in the
same state at the same location is impossible, there is no problem
with bosons. This feature is responsible for the Bose–Einstein
condensate phenomena, in which one creates a ‘superstate’ from
many bosons. The identity issues become especially rampant in this
context since it seems that, in as much as the whole aggregate is
built up from individual bosons, those bosons now share even their
relational properties.

We haven’t yet said anything about one of the great principles of
quantum mechanics implicit in the above: the Pauli-exclusion
principle (no two particles can share the same state in a quantum
system). This can be seen to be a fairly simple consequence of the
anti-symmetry property under the interchange of electrons: when
two electrons switch place, the wavefunction changes sign. Recall
that in quantum mechanics, what matters is the squared
amplitudes, so that changes in sign (positive or negative) will not



(7.8)

show up in a physically significant way: the physics will be
insensitive to such differences. Now consider a system with two
electrons, separated from one another by the distance x1 − x2. The
wavefunction will depend on this separation.

ψ(x1 − x2) = −ψ(x2 − x1)

If we then consider the electrons to be at the same point, so that x1 =
x2, then the probability for such a state, as derived from the joint
wavefunction for the two electrons, is ψ(0) = 0 = −ψ(0). If an
amplitude cancels like this, then it simply means that the state is not
possible: it is assigned zero probability. Here we have the apparent
‘loss’ of classically possible states and the additional loss of
‘bosonically’ possible states. What is the connection between this
difference in possibility counting and the nature and existence of
the classical and quantum particle?

The received view is that this signifies a deep difference between
classical and quantum particles: roughly, the fact that we count
permutations distinct in Maxwell–Bolzmann systems even though
the possibilities are (qualitatively) indistinguishable implies that
the particles have some form of individuality that transcends their
properties while quantum particles lack this property (these are the
‘haecceities’ of course). As Schrödinger puts it:

[T]he elementary particle is not an individual; it cannot be
identified, it lacks “sameness.” In technical language it is
covered by saying that the particles “obey” a newfangled
statistics, either Einstein–Bose or Fermi–Dirac statistics. ([45],
p. 197)

I think that some consensus has now been reached that the
argument is too quick: the quantum counting can be understood
even on the assumption that particles do possess non-qualitative
haecceities provided one imposes a ‘symmetrization postulate’ as an
‘initial condition’ on the quantum state of the composite system
formed from the particles. This means that any state will either be
symmetric or anti-symmetric, and once in either of these classes it
must stay there. Nick Huggett [25] has argued that the argument
works in the other direction too: classical mechanics does not imply
that classical particles have haecceities, but is just compatible with



it. His argument demonstrates that the haecceitistic (unreduced or
‘full’) phase space (generally associated with classical statistical
mechanics and Maxwell–Boltzmann’s distribution, with its four
element possibility set), leads to a statistical theory that is
empirically equivalent to the anti-haecceitistic (reduced) phase
space, with its three element possibility set (generally associated to
quantum statistical mechanics). He’s quite correct; the result simply
follows from the equivalence (at the classical level) of the reduced
and unreduced phase space descriptions. We simply modify the
relative probabilities of the possible states so that a possibility with
one particle occupying a distinct state each are twice as likely as
those in which two particles occupy the same state. Quantum
statistics then simply differs by making the three alternatives
equiprobable.

Schrödinger devised some simple examples for making sense of the
differences in statistics. Firstly, the difference between Maxwell–
Boltzmann counting and so-called Bose–Einstein counting (i.e. the
rules for bosons, such as photons), and then on to Fermi–Dirac
counting. In each case, rewards are to represent the particles. These
come in the form of memorial coins, shillings, and memberships,
which are chosen to share some key characteristic with the particles
they represent. Then ‘Tom,’ ‘Dick,’ and ‘Harry’ represent possible
states of the particles: ‘two shillings given to Tom’ ≡ ‘the two
particles occupy the same state.’

The specific distribution is determined by the nature of the objects
in the examples:

Memorial coins are distinguishable (fig. 7.6): one is numerically
distinct from the other, and a new configuration is generated by
exchanging them.

Shillings are not (fig. 7.7): numerical distinctness, but no new
configuration is generated by exchanging them.

Memberships are singular (fig. 7.8): not possible for two people
to share membership or have two identical memberships.

As Schrödinger explains:

Notice that the counting is natural, logical, and indisputable in
every case. […] Memorial coins are individuals distinguished
from one another. Shillings, for all intents and purposes, are



not, but they are still capable of being owned in the plural. […]
There is no point in two boys exchanging their shillings. It does
change the situation, however, if one boy gives up his shillings
to another. With memberships, neither has a meaning. You can
either belong … or not. You cannot belong … twice over. ([45],
p. 206)

Experiment rather than theory points to the different statistics:
particles do not seem to behave like memorial coins. This is quite
naturally seen to be linked to the nature of the objects themselves:
there is ‘something funny’ about quantum particles that means that
they cannot be switched in a meaningful way. This way of thinking –
switching or permuting without altering physical states and
observables – should put you in mind of the Leibniz shift argument
and symmetries. However, as we saw above, multiple options
regarding the nature of the objects are possible.

Before closing, let us return to the status of the exclusion principle
and the difference between bosons and fermions. Hermann Weyl
argued that only the latter particles satisfied Leibniz’s principle of
identity of indiscernibles, and so counted as individuals in the
proper sense:

The upshot of it all is that the electrons satisfy Leibniz’s
principum identitatis indiscernibilium, or that the electron gas
is a monomial aggregate [Fermi–Dirac statistics]. In a
profound and precise sense physics corroborates the
Mutakallimun: neither to the photon nor to the (positive and
negative) electron can one ascribe individuality. As to the
Leibniz-Pauli Exclusion Principle, it is found to hold for
electrons but not for photons. ([53], p. 247)

The problem Weyl is referring to is, of course, the very different
ways that bosons and fermions can form complex systems: the
former can be made to share all of their intrinsic and extrinsic
properties, but the latter cannot. This seems to have some genuinely
deep impacts on their status as objects if we are using Leibniz’s
principle. Remember that PII treats an individual as a kind of
catalogue of qualitative properties (a bundle view). This won’t work
here: there are no uniquely distinguishing properties for bosons –
even given a strong view of the identity of indiscernibles that
includes relational as well as monadic (intrinsic) properties.



Fig. 7.6 A representation of the distribution of distinguishable
particles (Shakespeare and Newton memorial coins) over a set of
states: Tom, Dick, and Harry. There are nine possible permutations
of the particles over the states when the particles are
distinguishable, as with these coins: situations in which the two
particles are shuffled (‘Newton is Tom and Shakespeare is Harry’
→ ‘Shakespeare is Tom and Newton is Harry’) are clearly counted



as distinct. Note also that both particles can occupy the same state.

We can then understand Weyl’s claim from this perspective. Firstly,
we cannot distinguish fermions (electrons for example) by their
monadic qualitative properties, so the ordinary PII wont work here:
fermions are qualitatively identical in terms of their monadic
properties (they all have the same state independent properties, as
mentioned). But recall that a pair of fermions will be represented by
an anti-symmetric wavefunction:  . This is spatially
symmetric in its parts: any spatial relation that one electron bears,
the other will also bear. But this state implies that fermions will
always have opposite components of spin in such a system
(measurements, say of the z-components of their spins, always find
them anti-correlated). We can in such a case say that fermions are
‘weakly discernible,’ namely by the existence of an irreflexive
relation: R(x, y) but not R(x, x) (‘has opposite component of spin
to’). If we allow the PII to range over these kinds of relational
properties then electrons (and other fermions) can be viewed as
individuals.



Fig. 7.7 A representation of the distribution of indistinguishable
particles (shilling coins) over a set of states: Tom, Dick, and Harry.
There are now six possible permutations of the particles over the
states since situations in which the two particles are shuffled
(‘shilling is Tom and shilling is Harry’ → ‘shilling is Tom and
shilling is Harry’) are no longer counted. However, both particles
can still occupy the same state.

Symmetrized, bosonic states have no such luxury, and the best bet
seems to be the kind of view Teller mentions, involving viewing
them as quanta. Indeed, Teller suggests that a ‘Fock space’
description (associated with quantum field theory), which simply
tells us ‘how many’ particles we have in each state resolves the
problem. We can also describe fermions in this representation, but
each possible state can only be occupied by one or no particles. That



they are more ‘individual-like’ can serve to ground this distinction.

Fig. 7.8 A representation of the distribution of indistinguishable
particles (membership – here of the Cambridge Natural Sciences
Club) over a set of states: Tom, Dick, and Harry. There are now just
three possible arrangements of the particles over the states since
situations in which the two particles are shuffled (‘shilling is Tom
and shilling is Harry’ → ‘shilling is Tom and shilling is Harry’) are
still no longer counted. However, we no longer have the property
that multiple particles can occupy the same state (i.e. the exclusion
principle is obeyed). [Image source: ‘Group portrait of the
Cambridge University Natural Science Club, 1898,’ The Wellcome
Library and The European Library, CC BY-NC (image modified
from original.)]

7.6 Further Readings
Our brief discussion has not even scratched the surface of a rich and
mature literature on philosophical aspects of quantum mechanics.
The suggested readings below offer a reasonably safe and easy path
into this literature.

Fun



Max Schlosshauer, ed. (2011) Elegance and Enigma: The
Quantum Interviews. Springer.
– Nice collection of responses to a series of foundational (and
not so foundational: e.g. personal) questions about quantum
mechanics by some of the central figures in the field.

David Albert (1994) Quantum Mechanics and Experience.
Harvard University Press.
– This treatment of the philosophy of quantum mechanics is
about as elementary as it can get while still remaining true to the
subject (and not simplifying away too many details). Highly
recommended to those struggling with basic mathematical
aspects.

Serious
Rick Hughes (1992) The Structure and Interpretation of
Quantum Mechanics. Harvard University Press.
– Solid interweaving of the interpretative issues with the core
technical concepts of quantum mechanics. Includes worked
examples done in a ‘hand-holding’ way.

Chris Isham (1995) Lectures on Quantum Theory:
Mathematical and Structural Foundations. World Scientific
Pub Co Inc.
– One of the best textbooks in terms of making difficult concepts
easy and entertaining. Totally unique in style and approach.

Leonard Susskind and Art Friedman (2014) Quantum
Mechanics: The Theoretical Minimum. Basic Books.
– The perfect book for gaining practical skills in quantum
mechanics – a good complement to the two preceding (more
conceptually oriented) books.

Connoisseurs
Michael Redhead (1989) Incompleteness, Nonlocality, and
Realism: A Prolegomenon to the Philosophy of Quantum
Mechanics. Oxford: Clarendon Press.
– In many ways this is the book that heralded the birth of a more
rigorous, technical approach to philosophy of physics. Still a
mustread for all philosophers of physics.



Jeff Bub (1999) Interpreting the Quantum World. Cambridge
University Press.
– Very systematic discussion of the interpretation of quantum
mechanics, focusing on the underlying logical structure of the
theory.

Tim Maudlin (2011) Quantum Non-Locality and Relativity:
Metaphysical Intimations of Modern Physics. Cambridge
University Press.
– Classic examination of nonlocality in quantum mechanics and
its apparent conflict with special relativity.

Notes
1 It is rather curious that we don’t construct quantum theories from

the ground up, but always in this parasitic way using the well-
established formal frameworks for classical theories
(Hamiltonian and Lagrangian mechanics) as a host (see Alexei
Grinbaum’s “Reconstruction of Quantum Theory,” British
Journal for the Philosophy of Science 58(3), 2007: 387–408) –
this is not to say that there are classical analogs for all things
quantum, of course: the spin observable is distinctively quantum
since it is related to Planck’s constant. Some brave souls have
tried to build a quantum OS from the ground up (known as
‘reconstructing quantum theory’), rather than porting. The idea
here is to find a set of ‘principles’ (or axioms) from which one can
derive the framework of quantum mechanics, in much the same
way that Einstein deduced the Lorentz transformations from the
principles of constant light velocity and of relativity. These are
very interesting, and they point toward a deeper understanding
of quantum mechanics, but in this book we stick with the more
orthodox approaches and issues. Neither, in this chapter, will we
be much concerned with the porting process itself, but instead
with the OS and the ported applications. However, there are
interesting philosophical issues associated with quantization
(porting), especially concerning its role as an ‘inter-theory
relation’ stitching together quantum and classical, and also as a
case study for looking at taking limits in physical theories (see A.
Bokulich’s Reexamining the Quantum-Classical Relation,
Cambridge University Press, 2008).



2 See, for example, Lee Rozema et al. “Violation of Heisenberg’s
Measurement-Disturbance Relationship by Weak
Measurements” (Physical Review Letters 109, 2012: 100404).

3 The Stern–Gerlach apparatus, in the cases that interest us,
performs much the same function as a half-silvered mirror,
splitting a population of particles into two: in this case, spin up
and spin down. There are also similar curiosities to the double
slit experiment. For example, if we were to initially split a beam
into spin-up and spin-down, and then feed only those that are
spin-down into another Stern–Gerlach machine that has its field
oriented at right angles to the first (so that it measures spin-left
and spin-right), then we would find a 50/50 mixture of lefties
and righties. But the odd thing is that if we then feed just the
lefties into the original apparatus (measuring up/down again),
we also find a 50/50 splitting! However, if we recombine the
lefties and righties, and then feed it into the original, we find that
all the particles are spin-up.

4 You can see John Bell explaining the theorem that bears his name
in a video from a lecture in 1990:
http://cds.cern.ch/record/1049544.

5 For more details, see §6 of Healey’s entry on “Holism and
Nonseparability in Physics”:
http://plato.stanford.edu/entries/physics-holism.

http://cds.cern.ch/record/1049544
http://plato.stanford.edu/entries/physics-holism


8
On the Edge: A Snapshot of
Advanced Topics
This final chapter deals with a range of topics at the forefront of
research in physics and philosophy of physics: topics you might find
yourself dabbling in if you decide to continue in the field. Rather
than providing detailed expositions, they are intended to provoke
readers into further independent research – indeed, it is impossible
to give detailed expositions for some of the examples presented
since they are still very new and, in many cases, highly technical.
Think of these brief snapshots as mental espresso shots.

The topics chosen are special in a certain sense since they each
involve a closing of the gap between philosophy of physics and
physics proper (some more than others), often with ‘physics-
philosopher’ collaborations springing up to better understand the
nature of the problems. In each case, at the root of the problems is
some foundational concept (probability, time, space, causality,
computability, etc.) that is up for grabs. They are, then, beyond the
mere performing of experiments or churning out of numbers to
compare with experiments.

Topics include the possibility of time travel and time machines; the
problem of how the structure of the universe can impact on what
kind of computations are allowable (including quantum
computation); aspects of gauge theories (including the various
formulations [with their own ontologies] of electromagnetism and
the related Aharonov–Bohm effect); the question of what ontology
(particles or fields) is appropriate for quantum field theory; the
apparent ‘timelessness’ of quantum gravity; the application of
physics to the ‘human sciences’; and the question of why the
universe appears to be ‘finely tuned’ for life (and the related notions
of the Anthropic principle and multiverse).

Since these are intended to whet the reader’s appetite for future
research in the field, suggestions for further readings and also
potential research projects are provided at the end of each section.



8.1 Time Travel and Time Machines
Philosophers often distinguish various grades of possibility. The
two that concern us here are logical possibility and physical
possibility. First we need to ask whether time travel is logically
possible (or consistent). If it involves no situation in which
something both occurs and doesn’t occur then we are good to go to
the next level: physical possibility. Here we are concerned with
whether our laws of physics permit time travel, to see if we might
actually be able to construct a time machine.

The standard objections to the consistency of time travel concern
the kind of temporal-logical tangles one can get into with a time
machine. The grandfather paradox is the most famous of these. But
there are also causal loops that appear to allow an effect to be its
own cause, ‘bootstrapping’ itself into existence:

Bootstrap Paradox: this is best seen in the basic timeline in the
movie Predestination (spoiler follows!) in which a female with
both genitalia has a female-to-male sex change, travels back in
time as the male and conceives a child with the female version,
then takes the child back in time to a point at which the child
grows into the female version and so into him: hence, we have a
case of auto-genesis! Though often baffling, there is no logical
contradiction involved in these stories, and so they are logically
possible scenarios.

Grandfather Paradox: This involves a situation where you travel
back in time to kill your grandfather (on your mother’s side,
say), but of course if there’s no grandfather then there’s no
mother and so there’s no you to go back in time to kill him: auto-
infanticide! The film Back to the Future involves this kind of
timeline, in which Marty travels back to his past and while not
killing his mother, almost causes her not to conceive him with
his father – with Marty fading from reality as the paradox
threatens. But all ends well and Marty returns to his own natural
time to happier, wealthier parents. But this kind of story
involves a logical contradiction: you (or some fact) both exist
and don’t exist in this scenario. This kind of thing simply can’t
happen for the most fundamental of reasons (reality wouldn’t
make sense if they could), so it looks like time travel and time
machines are impossible – no need to assess physical possibility



since that depends on logical possibility.

The problem is, the laws of general relativity do seem to permit time
machines! So what can be going on? At the root of the modern work
on time machines (and time travel) are the Einstein equations for
gravitation. It was noticed very early on in the history of general
relativity that space could be finite but unbounded (closed). Since
spacetime is a unified entity in relativistic physics, it prompts the
question of whether time can be similarly structured. If space is
closed on itself, like on the surface of a sphere, then we can imagine
going off in one direction of the space and coming back to the place
we set off from without having to turn around. If time can be closed
like this, it would mean that we could travel in time and also ‘come
back’ to the place we set off from. But that would correspond to the
past! In modern physics having a time machine simply means
having a spacetime that has such ‘closed timelike curves.’ If we had
access to such a machine then (assuming we could operate it in such
a way that humans can travel along these curves) we could time
travel into our pasts in the full-blown science fiction sense.1

It is the squishiness of spacetime in general relativity that allows for
time machine solutions. While the field of light cones is fixed in
special relativity, they can tilt depending on the way energy is
distributed in general relativity. Just as one can work from a matter
distribution to a spacetime, so one can fix a desirable spacetime
(with time-travel-friendly features, such as wormholes) and then
figure out what the energy distribution must be like to make it so.2
A generally relativistic time machine is, then, a spacetime. There is
not necessarily a special machine that would take you to the past
(though strong gravitational shielding might be needed in some
cases). You travel in the spacetime in the usual way, only the
spacetime itself has special properties (light cones tilting around in
a loop) making it such that your normal travel is taking you into
your past. No lightspeed travel is needed and there is no funny
dematerialization as with the Doctor Who’s TARDIS or H. G. Wells’
time machine.

The logician Kurt Gödel discovered a solution (world) of general
relativity with the required properties. The solution involves a world
with vacuum energy and matter, in which the matter is rotating
(and rotating from the standpoint of each location). This causes the



light cones to tip so that every single point of the world has a closed
timelike curve through it (i.e. starting from any point you could
travel into your own past). Gödel linked the physical possibility of
universes with closed timelike curves with the idea of a block
universe that we discussed in §4.3. His thought is that if one can
travel from any point into a region that is past, for any way of slicing
the spacetime up into time slices, then the notion of an objective
becoming into existence (“objective lapse”) makes no sense. Thus he
writes, in closing:

The mere compatibility with the laws of nature of worlds in
which there is no distinguished absolute time and in which,
therefore, no objective lapse of time can exist, throws some
light on the meaning of time also in those worlds in which an
absolute can be defined. For, if someone asserts that this
absolute time is lapsing, he accepts as a consequence that
whether or not an objective lapse of time exists (i.e. whether or
not a time in the ordinary sense of the word exists) depends on
the particular way in which matter and its motion are arranged
in the world1. This is not a straightforward contradiction;
nevertheless, a philosophical view leading to such
consequences can hardly be considered as satisfactory. ([20], p.
562)

This seems a curious generalization, from some solutions not having
an objective lapse to a statement about time in general, including
our own world. However, since the same laws apply to the time
machine world and our world the possibility is open, in principle,
for implementing those laws to generate the closed curves that
would destroy the notion of objective lapse: this possibility is
sufficient according to Gödel. To reject his point would involve a
direct demonstration showing that our world has features that
forbid the generation of such curves.

However, since Gödel’s discovery there have been others showing
how closed timelike curves can be generated in different ways. All
are exotic in some way, though, and unlikely to be realizable in our
world.

A serious question remains: how can they be physically possible at
all if time travel is logically impossible, as the grandfather-style
paradoxes suggest? Stephen Hawking [22] set to work on this



problem, and developed what he calls ‘chronology protection
conjectures’ to preserve the logical consistency of the timeline
(banning auto-infanticide and the like): the laws of physics always
conspire to prevent anything from traveling backward in time,
thereby keeping the universe safe for historians.

The philosopher David Lewis [29] suggests a simpler resolution of
the grandfather paradox and those like it: since your grandfather
did not die, because you are here to prove it, there is no question
(given the laws of logic) of your going back in time to kill him. But
this might be no better in terms of the possibility of time travel since
surely any backwards in time travel will knock variables about
leading to contradictions (even if they’re unintentional, as in the
Back to the Future story). That can’t happen, so time travel is a
precarious business: only contradiction (causal paradox) avoiding
trips are possible.3

The logical consistency and broad physical possibility of time travel
are relatively secure. What remains to be proven is whether our
universe could permit time travel. We don’t think that there are
closed timelike curves in it, but whether they might somehow be
created artificially in the future is an open problem, though most
known methods of creating spacetimes with time machine
properties don’t seem to be possible for our world.

What to read next
1. Kip Thorne (1995) Black Holes and Time Warps, Einstein’s

Outrageous Legacy. W.W. Norton.

2. Frank Arntzenius and Tim Maudlin (2009) Time Travel and
Modern Physics. Stanford Encyclopedia of Philosophy:
http://plato.stanford.edu/entries/time-travel-phys.

3. John Earman (1995) Bangs, Crunches, Whimpers, and Shrieks.
Oxford University Press. [A very similar treatment of the
relevant Chapter 6 can be found in “Recent Work on Time
Travel.” In S. Savitt, ed., Time’s Arrows Today (pp. 268–310).
Cambridge University Press, 1995.]

Research projects
1. Have a time travel movie marathon (when you have the time!),

http://plato.stanford.edu/entries/time-travel-phys


and make notes of the timelines employed (using David Lewis’
personal and external time idea in [29]), assessing each for both
logical and physical consistency: are they bootstrap or
grandfather paradox scenarios, or something different?

2. If time travel is possible why haven’t we seen time travelers or
any evidence of them having visited? Does this provide evidence
that time travel is not possible?4

3. Do we really need chronology protection theorems?

8.2 Physical Theory and Computability
One might naively think that computation and physics are like chalk
and cheese: one (computability) involves abstract stuff (such as
computer programs), while the other (physics) is based on
physically realized stuff (systems in the world). However, there are a
variety of links that can be forged. The Church–Turing Thesis states
that a universal Turing machine can compute any function that is
computeable.5 Or in other words to be computable is to be
computable by a universal Turing machine. The physical Church–
Turing Thesis is essentially a no-go statement: there is no physically
constructible machine (i.e. consistent with physical laws) that can
do what an ordinary universal Turing machine (for simplicity, think
of a device running an ordinary programming language such as
FORTRAN or Python) cannot.6 Phrased as a no-go claim, the
natural instinct of a philosopher-scientist is to look for
counterexamples. As such, Hyper-Computation is a denial of the
physical Church–Turing Thesis: it finds physical scenarios that
would allow the computation of functions beyond a universal
Turing machine’s capabilities: there are some physically possible
processes that cannot be simulated on a (classical = ordinary)
universal Turing machine.

There are two strands to this theme that we shall look at, both
concerning the link between physical laws and computability:
firstly, the impact of quantum computers (with their apparent speed
up relative to classical machines); secondly, the role of spacetime
structure (relating back to the supertask-permitting spacetimes
briefly mentioned in §5.3).

We briefly mentioned quantum computers in the previous chapter.



In 1994, Peter Shor showed how a quantum computer could do in
‘polynomial time’7 what a classical computer could only do in
‘exponential time,’ namely factoring large integers built by
multiplying together pairs of primes (on which is based the RSA
encryption keeping your credit card transactions safe). If this is
true, then quantum computation (physics, that is) leads to a bigger
class of (practically) solvable problems.8

This is a slightly distinct claim, certainly related to the physical
Church–Turing Thesis, but focussing on efficiency instead of the
possibility of simulation by Turing machines. This states that a
Turing machine can compute any function of any physical machine
in the same time (give or take a polynomial factor). Here, of course,
it looks like a quantum computer violates this time-complexity
version of the thesis. As Richard Feynman noted [13], a quantum
process can’t be realized in a system obeying classical rules without
requiring exponential time. To simulate these processes, quantum
devices are required. In this sense the thesis does indeed appear to
be deniable. Physics matters to computation.

For David Deutsch, computation (and the range of solvable
problems) also matters to physics and interpretation:

To those who still cling to a single-universe world-view, I issue
this challenge: explain how Shor’s algorithm works. I do not
merely mean predict that it will work, which is merely a matter
of solving a few uncontroversial equations. I mean provide an
explanation. When Shor’s algorithm has factorized a number,
using 10500 or so times the computational resources that can
be seen to be present, where was the number factorized? There
are only about 1080 atoms in the entire visible universe, an
utterly minuscule number compared with 10500. So if the
visible universe were the extent of physical reality, physical
reality would not even remotely contain the resources required
to factorize such a large number. Who did factorize it, then?
How, and where, was the computation performed? ([6], p. 217)

This depends on knowing that there are no ‘classical algorithms’
capable of matching Shor’s algorithm lurking in the periphery, and
also knowing that the quantum algorithm is realizable in practice –
perhaps reasonable assumptions. Also, there are countless



interpretations that ‘make sense’ of quantum mechanics without
many worlds, and so also make sense of its computational
implications.9 Christopher Timpson (see ‘What to read next,’ below)
charges Deutsch with committing what he calls a “simulation
fallacy”: a classical simulation of the factoring algorithm would
require many worlds, therefore there are many worlds to perform
that computation in the simulated system. As Timpson rightly
points out, there is no reason to think that a quantum computer
faces the same challenges in terms of required resources.

Deutsch is suggesting that quantum computation’s speed-up might
play a role in selecting a preferred interpretation from a class of
what looked like empirically equivalent pictures. While they are
empirically equivalent, they are not, according to Deutsch,
explanatorily equivalent. Since a job of an interpretation is
precisely to explain such things as the Shor algorithm there is
perhaps more to be said for Deutsch’s argument. However, the
burden of proof is on Deutsch to demonstrate that the other single-
world approaches (given that they are perfectly quantum
mechanical) cannot explain the speed-up just as well – this would
require, among other things, an account of what is meant by
‘explanation,’ showing that the account favors many worlds and that
we should favor the account of explanation (or that his result is
robust across all accounts of explanation). That will be a difficult
task since the result is a result of quantum mechanics and would
therefore be a consequence of any interpretation.

In an interesting development based around ‘supertasks’
(performing an infinite number of tasks in a finite amount of time),
global spacetime structure (according to general relativity) has been
linked to the kinds of computation that are possible within a
universe. In other words, aspects of spacetime structure impose
(and remove) limits on what kinds of computation can be carried
out.10 In a similar way, one can simply point to the microstructure
of spacetime: if it has the structure of a continuum, then there is, so
to speak, a bottomless well of potential information that could be
utilized to perform a computation in a way that would defeat a
Turing machine. A discrete spacetime automatically reduces what is
possible.

The simplest way to see how general relativity might enable



computational speed-ups is via gravitational time dilation. This can
be seen experimentally in the Hafele and Keating experiment. One
can imagine a kind of twins paradox using this setup in which one
twin (Angelina) performs a computation in a region of stronger
gravity than the other (Brad), who will wait patiently for some
computation to be performed. What is needed, specifically, is a
spacetime in which Angelina’s worldline with infinite proper length
(i.e. with infinitely many tick-tocks on her wristwatch) lies in or on
Brad’s past light cone. Angelina can then perform the computation
(in infinite time) and transmit the result to Brad (who receives it in
finite time) – one can try to get similar ‘hypercomputation’ results
with radical accelerations of the computer, which would undergo a
round trip journey.

Such spacetimes sound odd, but they do exist as possible solutions
(worlds) of general relativity – they are called “Malament–Hogarth
spacetimes.” Just as with the time travel scenario above, the
computer that Angelina uses doesn’t need to be special in any way;
it is the spacetime structure that is special, allowing supertasks (or
hypercomputations) to be performed: the spacetime ‘slows down,’
rather than the device speeding up.

As with the case of quantum computers, there is a question of
actually physically realizing these theoretical devices as computers
(with memory registers and the like). One can’t access the
superpositions of quantum computers directly, and it seems even
more difficult to see how the spacetime continuum could be
channeled into computer construction (of physical computers).
However, it is hard to come up with definitive objections to the
physical possibility of such hypercomputations, and so it remains a
controversial subject.11

The above ideas exploited the structure of the universe to tell us
something about computation. But we can also consider the other
direction: exploiting computation to tell us something deep about
the structure and nature of the universe. This has been a more
recent strategy, with claims that the world ‘is made of information’
becoming fairly common. The buzz phrase is John Wheeler’s ‘It
from Bit’: the furniture of the universe is fundamentally
informational. However, the obvious problem with trying to make
ontological sense of this is that information is abstract, something
that depends on realization in a physical system. Hence, how can it



possibly be considered physically fundamental? However, in
Wheeler’s scheme things were not quite so simple, and there was an
interplay between ontology and epistemology (the latter playing a
role in the former) grounded in a notion of a ‘participatory
universe.’ This is itself grounded in a special status accorded to
observation (in terms of creating phenomena) and the choices
involved in what to observe. For Wheeler, in order to bring about
physical reality, one needs an observer to make a measurement –
this is understood in terms of asking Nature a ‘yes/no’ question
(hence ‘bit’). In other words, ‘bit’ for Wheeler was not abstract, but
was certainly subjective – see [55]. So the standard objection to
theses about reality being in some sense information doesn’t quite
apply to such a scheme. However, at the same time, this alternative
approach doesn’t quite mesh with what we ordinarily mean by
information. In any case, such proposals, given that they link
epistemology and fundamental ontology, offer ripe pickings for
philosophers of physics.

What to read next
1. Scott Aaronson (2013) Why Philosophers Should Care about

Computational Complexity. In B. Jack Copeland, Carl J. Posy,
and Oron Shagrir, eds., Computability: Turing, Gödel, Church,
and Beyond (pp. 261–327). MIT Press.

2. John Earman and John Norton (1993) Forever is A Day:
Supertasks in Pitowsky and Malament–Hogarth Spacetimes.
Philosophy of Science 60: 22–42.

3. Chris Timpson (2008) Philosophical Aspects of Quantum
Information Theory. In D. Rickles, ed., The Ashgate Companion
to Philosophy of Physics (pp. 197–261). Ashgate.

Research projects
1. Can one satisfactorily respond to Deutsch’s challenge to explain

Shor’s factoring algorithm without invoking many worlds?

2. How much information is in a qubit?

3. How serious is the threat to the physical Church–Turing thesis
posed by Malament–Hogarth spacetimes?



8.3 Gauge Pressure
We saw in §4.4 that coordinates in general relativity do not have
quite the same meaning as in pre-GR theories. They can serve to
label points, but not in a way that latches onto ‘real spacetime
points.’ Gauge is a more general way of speaking of coordinates in
this sense. One can label other things than bits of space, and in the
same way these labels are often devices set up for a more convenient
description.

Let’s give an easy example to get us going. Suppose I’m running a
‘biggest vegetable’ competition and need to determine the winner
from a pair of marrows. Clearly what we need are the differences
between the starting points and endpoints of the marrows: we
measure differences, not any absolute values. This means that even
if I only had a broken tape measure, which started at 15 cm, I could
still take a perfectly good measurement with this. What matters is
end – origin (where end > origin). Hence, the numerical values we
might assign don’t have any physical significance: we could each use
a distinct set of numbers (e.g. inches rather than centimetres), and
agree on the winning marrow. The numbers on a tape measure are a
standard example of a gauge. There is quite clearly also a
conventional element involved: we could use miles if we so desired,
but it would be cumbersome to deploy for such a small object as a
marrow (even for a prize-winning marrow).

The notion that we can speak freely of the same physical quantity
(having the magnitude of length) using many different labeling
conventions is a kind of gauge-invariance. This is clearly a rather
trivial example, but more interesting examples can be found in
which the laws (and quantities) of a physical theory are invariant
under more interesting transformations than conversions between
units of length measurement. The hole argument featured one
example, in which diffeomorphisms (a very general topological
transformation) take the place of the changes of units and the laws
and observables of the theory take the place of marrow
measurements. The group of such transformations is known as the
‘gauge group’ of the theory. The invariance of some items relative to
elements of this group is known as ‘gauge symmetry’ – and the
ability to arbitrarily use any member from an equivalence class of
states related by a gauge symmetry is known as ‘gauge freedom.’



For example, one could develop an electromagnetic potential’s value
in many ways off an initial hypersurface, but without any empirical
differences in the evolved states. To see this, note that the electric
and magnetic fields are related to the ‘scalar’ and ‘vector’ potentials
as follows:

Writing the fields in this form makes certain calculations easier. But
in this form we face an underdetermination of the vector potential A
by the magnetic field. Since A = A + gradf (for smooth functions of
spacetime coordinates, f), it follows that curlA = curl(A + gradf) =
B, and so many (formally) distinct vector potentials will represent
the same magnetic field (since the curl of a gradient is zero).12 The
transformation from one vector potential to another, A → A + gradf,
is an example of a gauge transformation, where A is known as the
gauge field. Physical quantities will be independent of this field
(and dependent only on the magnetic field, or the vector potential
‘up to an arbitrary gradient’; that is, ‘up to a gauge transformation’)
and the laws will be covariant with respect to transformations
between gauge-related vector potentials. Physical quantities and
laws are simply blind to such transformations.

Eugene Wigner describes the introduction of these (seemingly
impotent) potentials to represent the states of the electromagnetic
field as follows:

In order to describe the interaction of charges with the
electromagnetic field, one first introduces new quantities to
describe the electromagnetic field, the so-called
electromagnetic potentials. From these, the components of the
electromagnetic field can be easily calculated, but not
conversely. Furthermore, the potentials are not uniquely
determined by the field; several potentials (those differing by
gradient) give the same field. It follows that the potentials
cannot be measurable, and, in fact, only such quantities can be
measurable which are invariant under the transformations
which are arbitrary in the potential. This invariance is, of
course, an artificial one, similar to that which we could obtain
by introducing into our equations the location of a ghost. The



equations then must be invariant with respect to changes of the
coordinate of the ghost. One does not see, in fact, what good the
introduction of the coordinate of the ghost does. ([56], p. 22)

When we have a theory with a gauge group, like electromagnetism,
we find that our initial (Cauchy) data made at some instant, no
matter how complete, will not serve to fix the physical situation if
we understand the gauge variables (or frame) to be responsible for
representing our physical frame. This distinguishes gauge freedom
from the kind of situation we found in the Leibniz shift examples.
That also involved an underdetermination of the physical state by
the laws, but was not sufficient for indeterminism of the kind found
here. Indeterminism, in the gauge theory sense, requires that no
amount of specification of initial data can secure unique future
values for some physical quantity or object. The gauge
transformations can be performed locally, so that we can choose to
do it after some initial specification of values has been made. In the
case of Newtonian mechanics, there are enough evolution equations
to allow us to evolve (or ‘propagate’) all of the physical magnitudes
once a labeling of the particles and localizations and velocities have
been settled on since the symmetries there are globally defined:
once we ‘break’ them, so to speak, everything is fixed thereafter
(even if the choice was arbitrary to begin with).13 The
indeterminism that lies at the core of gauge theories is an
underdetermination of solutions of the equations of motion given
an initial data set: no amount of specifying in this sense will enable
the laws to develop the data into a unique solution. It is, then, rather
a more serious epistemological defect than the absolute velocities in
Newton’s theory.

You might wonder why physicists play around with gauge freedom
if it’s both damaging and inconsequential. That’s worth wondering
about, there’s still much work to be done in fully figuring this out.
But we can say that gauge symmetries play a crucial role in
identifying the physical content of theories; namely, as that which
remains invariant under the gauge transformations. This sounds
similar to symmetries, of course, and they are related, but note that
gauge symmetries are often referred to as ‘redundancies,’ which
indicates a crucial difference. Simply put, symmetries in general are
structure-preserving transformations. Usually, symmetries relate
one solution of the equations of motion of some theory (or a



physical system described by the theory) to another physically
distinct solution, albeit in a way that preserves some features (such
as the laws or observables). In other words, symmetries are
transformations that keep the system’s state within the set of
physically possible states. The orbit under the action of a symmetry
group consists of points representing distinct situations related by
the symmetry transformation. With gauge symmetries, however,
though the transformations do still map between physically possible
states, they are viewed as representations of one and the same
physical state (this protects physical determinism, of course, since
there are no physically distinct alternate possibilities). The orbit of
the gauge group consists of points that are not just identical in
certain physical respects (i.e. in terms of what they represent): they
are physically identical, period. In fact, ‘physical state,’ in this
context, is really just shorthand for ‘equivalence class of states
under gauge symmetries,’ so that physical states are represented by
entire gauge orbits rather than their elements.

While symmetries can result in physically distinguishable scenarios,
gauge redundancies (as the name suggests) result in no physically
observable differences, and so, to get at the ‘real structure,’ are
usually removed by a ‘quotienting’ procedure that leaves one with a
(reduced) space of orbits of the gauge group. Hence, various
representations of a theory’s content can be given, but they will be
considered to lie in an equivalence class such that each represents
the same physical state of the world. For this reason, Richard
Healey adopts the stance that gauge symmetries are cases of
‘multiple realizability’: many ways of realizing some physical state
(albeit with redundancy involved in the representation). But the
realizations are generated by surplus formal structure (part of the
mathematical representation of a theory that should not be given
any ontological weight as it stands): “Understood realistically, the
[gauge] theory is epistemologically defective, because it postulates a
theoretical structure that is not measurable even if the theory is
true” ([23], p. 158). As Healey points out, and as we saw above, the
natural course of action is to treat the realizations as
representations of the same physical situation. Indeed, this
‘mathematical surplus’ approach is the default.

I’m belaboring the point here since one might be led to think that
the obvious ontological option in the case of electromagnetism is to



commit to the reality of the electric and magnetic fields only: these
are what we measure (potentials are unmeasurable), and these are
what remain invariant under the gauge transformations (potentials
are shifted: gauge-variant). This gauge-invariant interpretation is
indeed an obvious choice: we get a one-to-one mapping between the
fields and the world (modulo the usual idealizations involved in any
physical theory). We simply take the vector potential to be
unphysical. However, when we include quantum mechanics the
situation appears to radically change, with the vector potential
playing a role in the dynamics – the potential figures in the
Schrödinger equation and so despite its ‘gaugey’ nature, might need
to be given a physical reading. But the problem is that the gauge
field is as (directly) unobservable as ever it was: it is determined by
the equations of motion only up to the addition of the arbitrary
gradient of a function of spacetime.

An experiment devised by Yakir Aharonov and David Bohm
(describing the Aharonov–Bohm effect, often just called the ‘AB-
effect’) appears to breathe life into the vector potential. The
experiment is much like the double slit experiment, only a solenoid
(a coil in which a magnetic field can be turned on and off) stands
behind the slits. A beam of electrons is fired at a detection screen,
and one finds the familiar interference pattern. The novelty is that
one can cause the interference pattern to shift (i.e. there is a phase
shift), in a predictable way, by turning the current in the solenoid
(and so the magnetic field) on and off. That might not strike you as
particularly groundbreaking – switching a field on and off is clearly
causing it: what’s the problem? The curious aspect is that the
magnetic field is zero in the path of the electrons (outside of the
solenoid), so this should not be happening. The proposed reality of
the vector potential then turns on the fact that this is non-zero in
the path of the electrons – due to the fact that integrating the vector
potential around a closed loop is equal to the magnetic flux the loop
encloses.14

We could stick with the magnetic field as fundamental, but to do so
would now involve viewing it as acting-at-a-distance on the
electrons. We invoke the potential because we have a desire for local
action in physics. However, with the vector potential interpretation
we face the problem of underdetermination in which we cannot say
which of an infinity of potentials is responsible for the phase shift:



the dynamics can only determine the evolution of potentials up to a
gauge transformation. Hence, we have to trade local action for
indeterminism. How to decide?

Note that the vector potential is still not measured in the
experiment (how could it be?), but the loop integral mentioned
above (∮A · dx, known as an ‘holonomy’: carrying the vector
potential around a loop) is, and this will give the same value for any
of the gauge-related potentials: it is gauge-invariant, like the
magnetic field. This suggests using such holonomies as an
alternative interpretation, which both avoids the problem of action-
at-a-distance and the indeterminism/non-measurability: the best of
both worlds! The holonomy embodies the invariant structure of the
vector potentials since many vector potentials are subsumed in one
and the same holonomy: vector potentials give the same holonomies
when they are gauge related. However, it is a little hard to see these
loopy entities as the stuff of physical reality. Although determinism
and local action are restored, another kind of nonlocality re-enters,
though of a rather curious kind. The nonlocality concerns the
‘spread outness’ of the variables: they are not localized at points but
rather are represented in a ‘space of loops.’15 But must we be
committed to this space in an ontological space? If we are so forced,
then the problems of action-at-a-distance and indeterminism look
rather less bizarre by comparison. But there are always choices that
can be made about which parts of a mathematical structure should
be mapped to the world.

To sum up: it turns out that there are several distinct ways to
formulate gauge theories, each pointing to a distinct interpretation
(a different kind of world, with different fundamental furniture),
and having distinct virtues and vices. In the electromagnetic case
(though it generalizes easily to other gauge theories), you can use
local quantities, such as potentials Ai, to represent what’s going on;
or you can use nonlocal entities such as magnetic fields; or you can
use holistic entities such as the integral of Ai around a path
enclosing the region with the magnetic field. The problem with
using potentials is that, though they allow a nice local-action
account of the Aharonov–Bohm effect, they are ‘unphysical’
variables: not measurable or predictable by the laws. The problem
with using magnetic fields is that though they are measurable and
predictable, they must act at a distance in order to explain the



Aharonov–Bohm effect (well tested and shown to occur). The
problem with using holonomies is that, though they are also gauge
invariant, they appear ontologically suspect since they are ‘spread
out’ (a different kind of nonlocality). Given that this set of options is
pretty much generic for gauge theories, it is a pressing task for
philosophers of physics to figure out which is to be recommended,
or say why the choice doesn’t matter. Crucial to the pros and cons of
these interpretive options is the Aharonov–Bohm effect, but it
doesn’t necessitate that we believe in the reality of gauge potentials
(aka ‘the traditional physicist’s view’).16

What to read next
1. Michael Redhead (2003) The Interpretation of Gauge

Symmetry. In K. Brading and E. Castellani, eds., Symmetries in
Physics: Philosophical Reflections (pp. 124–39). Cambridge
University Press.

2. Gordon Belot (1998) Understanding Electromagnetism. British
Journal for the Philosophy of Science 49(4): 531–555.

3. Dean Rickles (2008) Symmetry, Structure, and Spacetime.
Elsevier.

Research projects
1. Work out what in your opinion is the best ontology for

electromagnetism: fields, potentials, holonomies, or something
else. Answer with reference to ‘locality (separability) versus
holism (non-separability)’; ‘locality versus action-at-a-distance’;
and ‘determinism versus indeterminism.’

2. Should the behavior of the electromagnetic field with quantum
particles have any significance for our interpretation of the
purely classical theory?

3. Why do we set theories up with gauge freedom? Why not do
everything without adding redundant, unphysical elements?

8.4 Quantum Fields
Quantum field theory is the natural home for describing the
interaction of charged point particles via the electromagnetic,



strong, and weak fields: three of the four forces of nature (gravity
not included). In this approach the discrete, particlelike ‘excitations’
(photons, gluons, etc.) of the various (continuous) fields mediate
the various interactions – photons, for example, mediate the
electromagnetic interaction between charged particles in the
context of quantum electrodynamics, providing a nice local account
of how such interactions happen. Given that three interactions have
succumbed to the quantum field approach, it makes sense to try to
accommodate gravity in the same formal framework: here the
gravitational interaction would be mediated by the ‘graviton’
(technically: a mass-less, spin-2 quantum particle of the
gravitational field). Before we turn to gravity, let us first say
something about quantum field theory itself.

As with gauge theories, much of the philosophical work on quantum
field theory has tended to focus on what the basic ontology is. We
face a difficult problem here, as with gauge theories, since there are
many formulations of quantum field theories too, which
recommend distinct ontologies. For example, if we use what is
called the ‘occupation number’ representation (using Fock space:
Hilbert spaces tensor-producted together), then we can make some
sense of there being particles (or rather ‘quanta’) in the theory,
though, as our earlier discussion of particle statistics implies, they
are not quite what we usually mean by particle: though we can say
how many we have, they cannot be individually labeled. But, from
what we have said above, if there can be physical states with no
particles present (the vacuum), then it is hard to view particles as
fundamental. There are also problems in upholding a particle
picture in other quantum field theoretic contexts, such as curved
spaces in which the notion of particle is seemingly impossible to
establish (in the absence of the symmetries supplied by the usual
spacetime metric) – to speak of particle number as an observable
quantity requires that there be a particle number operator, but this
seems to be specific to flat, Minkowski spacetime.

A field approach (i.e. in which fields are the basic entities in the
world) is the natural alternative to a particle interpretation. But
there are issues here too. Not least the problem of mapping
quantum fields to the world. Particles can at least be directly
associated with objects in the world, but fields in a quantum theory
are operator-valued, so we have an inherent indirectness in the



mapping. Attempts have been made to reconnect fields and world
by employing expectation values of the field instead, which provides
a numerical value. But such approaches still involve an indirectness
since ‘expectation’ is a statistical concept invoking the average value
given many measurements. Moreover, in most practical
applications of quantum field theory it is the particles that are
center stage – in scattering experiments at CERN, for example.17

Note that these ontological considerations go deeper than the usual
interpretative options for quantum mechanics (many worlds,
Copenhagen, etc.): whatever basic ontology we settle on will then
face this next level of interpretation. Likewise, if we find that the
world is described by quantum strings or branes, then these too will
face the usual interpretive suspects for quantum theories.

Ordinary quantum mechanics and quantum field theory are brought
closer together if the wavefunction is considered the primary thing.
In the case of quantum field theory this is more properly a
wavefunctional, or a function that takes another function (in this
case the field associating field values to spacetime points) to some
number (the probability for finding some classical field
configuration). The usual measurement problem arises given this
wavefunctional approach since we can have superpositions of
classical field configurations (just as we could have superpositions
of, e.g. spin states of a single particle). This also faces problems.
Again, it’s hard to square with the apparent ‘practical primacy’ of
particles. Moreover, the interpretive problems associated with the
measurement problem take center stage. And, perhaps worse, the
wavefunctional is hard to make sense of given that it maps entities
defined on spacetime, but itself is defined with respect to a very
complicated field-configuration space.18

There are very many more philosophically interesting issues facing
quantum field theory. To delve into these would require too much
by way of preparation.19 Instead, let us simply focus on one aspect
that stems from the relative treatments of vacuum in quantum field
theory and general relativity, and then segue into a discussion of
quantum gravity, which involves an apparent failure of the usual
techniques of quantum field theory when applied to gravity. Many
of the problems have to do with the treatment of space and time in
the two contexts.



For example, in the good old days ‘vacuum’ meant complete
emptiness: no energy, no matter, no particles, no fields. Just
pristine empty space. Both quantum field theory and general
relativity spoil this clean division into empty space and matter. In
our discussion of the hole argument, we saw how space becomes
more ‘matterlike’ in general relativity, obeying its own equations of
motion, allowing ‘ripples of spacetime’ (gravitational wave
solutions) to be used to do work. Mixing quantum mechanics and
special relativity (to give quantum field theory) spoils things in a
different way since the vacuum state is no longer a state with zero
energy, but merely a state with the ‘lowest’ (non-zero) energy. As
such it is distinguished in being the ground state, but not really so
different from non-vacuum states ontologically speaking.

This framework leads to a serious conflict between general relativity
and quantum theory known as the ‘cosmological constant problem.’
The energy spectrum for an harmonic oscillator, EN = (N + 1/2)ω,
has a non-vanishing ground state in quantum mechanics (the ‘zero-
point energy’) resulting from the uncertainty principle (so that it is
impossible to fully ‘freeze’ a particle so that it has no motion at all,
no oscillations). In quantum field theory the field is viewed as an
infinite family of these harmonic oscillators (one at each point of
space, and each with a little bit of zero point energy), so that the
total energy density of the quantum vacuum must be infinite. Of
course, general relativity couples spacetime geometry to energy, but
if this energy is infinite in any spacetime region then that region will
have an infinite curvature. But it clearly doesn’t: so what is wrong?

There are ways to tame this infinity. For example, just as there is no
absolute voltage in classical electromagnetism (because there is no
zero point, only potential differences between points), so one can
say the same about the quantum vacuum. If only energy differences
between the vacuum and energy states make any sense we can
simply rescale the energy of the vacuum down to zero. The absolute
value of the energy density of the quantum vacuum is unobservable;
the value one gives is largely a matter of convention.20

But, the clash between general relativity and quantum field theory
strikes back since this rescaling is not possible in cosmology. The
cosmological constant, or vacuum energy, is taken to just be a
measure of the energy density of empty space. This allows an



experimental approach to be adopted to determine the correct value
using general relativity’s link between mass-energy and spacetime
curvature. The energy density ρ, as actually observed in curvature
measurements, comes out at around 10−30g cm−3: very close to
zero, which is a long way from the naive (enormous) expectations
suggested by quantum field theory – that is, once we perform
various other infinity-taming procedures, that we needn’t go into
here. Resolving this problem is one of the challenges for a quantum
theory of gravity. A straightforward application of the usual rules of
quantum field theory does not work with gravity – though it has
taken many decades of struggle to figure this out.21

This is just one example of the conflict between our two best
theories of the universe, general relativity and quantum field theory.
There are others, most often stemming from the different ways
space and time are treated in these frameworks: in quantum field
theories, space and time function as fixed structures, seemingly
essential for making sense of the core components of the theory (the
inner product, the symmetries, the probability interpretation, etc.);
in general relativity, spacetime is a dynamical entity.

As in the other examples of quantum field theories (especially for
the strong interaction, which has certain important features in
common with gravity), quantum gravity along these lines runs into
formal difficulties: when one tries to compute probability
amplitudes for processes involving graviton exchange (and, indeed,
involving the exchange of other particles in quantum field theory)
we get infinities out. Since we cannot readily make sense of
measuring infinite quantities, something has clearly gone wrong. In
standard quantum field theories, quantum electrodynamics for
example, these infinities can be ‘absorbed’ in a procedure called
renormalization (similar to the rescaling of the zero point energy as
mentioned above). The problems occur when the region that is
being integrated over involves extremely short distances (or,
equivalently, very high momenta, and so energies, for the ‘virtual
particles’).22 In quantum gravity, as the momenta increase (or the
distances decrease) the strength of the interactions grow without
limit, so that the divergences get progressively worse – the problem
is: gravity gravitates, so that the gravitons will interact with other
gravitons (including themselves!). The usual trick, in quantum field
theory, of calculating physical quantities (that one might measure in



experiments) by expanding them as power series (in the coupling
constant giving the interaction’s strength) fails in this case, since the
early terms in such a series will not provide a good approximation
to the whole series.

This gives us one way of understanding quantum gravity: a
microtheory of gravity. Or, since gravity is understood via the
geometry of spacetime, the microstructure of spacetime geometry.
(Hence, quantum gravity is often understood as a theory of
quantum spacetime. But there are approaches that do not involve
quantum properties of the gravitational field (and so spacetime);
they do not quantize gravity at all, but might, for example, have
gravity (and spacetime) emerge in a classical limit.) At large scales
we know general relativity works well, but it buckles at short
distances (with singularities being one symptom of this). The scales
at which infinities appear like this signal the limit of applicability of
general relativity, and point to the need for a quantum theory of
gravity (or some other theory that can reproduce the predictions of
general relativity at those scales in which it does work – superstring
theory is an example of this approach). In other words, the picture
of a smooth spacetime that we are used to in physics might fail at a
certain energy. (This limit of applicability of the general theory of
relativity is known as the Planck scale. Quantum gravity is, for this
reason, also sometimes understood as whatever physics eventually
describes the world at the Planck scale.) This in itself points to a
more skeptical attitude towards the techniques of (orthodox)
quantum field theory since they assume a spacetime that is smooth
and continuous ‘all the way down.’ There are recent approaches that
distance themselves from this assumption, either putting
discreteness in as a basic postulate (as in ‘causal set theory’) or else
deriving discreteness as a consequence of the theory (as in ‘loop
quantum gravity’).23 Without the assumption of smoothness, many
of the divergence (i.e. infinity) problems evaporate since there is an
end point to the scales one can probe (that is, there is a smallest
length, area, and volume).24

Much of the discussion, philosophical and technical, tends to deal
with free quantum fields, in which interactions are ‘turned off.’
Dealing with interactions is notoriously difficult and, indeed, faces
something known as ‘Haag’s Theorem,’ which indicates that
interacting quantum field theory cannot be established within a



consistent mathematical framework. This is suggestive of the
difficulty of quantum field theory, which is justified in many ways.
To discuss its conceptual issues properly requires deep and lengthy
investigation: there’s no way around it. I can do no better than to
point readers at the beginning of this journey to Paul Teller’s book
in the ‘What to read next’ section below.

What to read next
1. Paul Teller (1995) An Interpretive Introduction to Quantum

Field Theory. Princeton: Princeton University Press.

2. Sunny Auyang (1995) How is Quantum Field Theory Possible?
Oxford University Press.

3. Meinard Kuhlmann, Holger Lyre, and Andrew Wayne, eds.
(2002) Ontological Aspects of Quantum Field Theory. World
Scientific Pub Co Inc.

Research projects
1. Is quantum field theory, fundamentally, a theory of particles or

fields (or neither)?

2. What exactly is it about curved spacetime that causes problems
for a particle interpretation of quantum theory? Can particles be
included at all in such curved backgrounds? Where does this
leave particles in a quantum theory of general relativity?

3. Describe and evaluate wavefunction realism in the context of
quantum field theory.

8.5 Frozen Time in Quantum Gravity
There are very many points of contact between physics and
philosophy in the case of quantum gravity. Here, to keep the length
manageable, we focus on an issue that has received the most
attention from philosophers, achieving a degree of notoriety: the
problem of time – it helps that this has much in common with the
hole argument discussed in §4.4.

The response to the hole argument according to which
diffeomorphism invariance points to gauge freedom in the theory



(understood relationally or otherwise), so that diffeomorphisms do
not correspond to physical changes, has some curious
consequences: since time evolution is an example of such a
diffeomorphism transformation (e.g. mapping some point (1,0,0,0)
into (0,0,0,0)), the observables of the theory – the gauge-invariant
(diffeomorphism-invariant) content – are insensitive to such
changes. Indeed, the ‘temporal’ evolution takes place along a gauge
orbit so understood since each temporal diffeomorphism counts as
a gauge transformation. But surely a theory’s observables are the
kinds of thing that change over time, from one instant to the next?
If not, then general relativity appears to be frozen, with observables
that look the same on each time slice through the spacetime. This
doesn’t correspond to our experimental and experiential life, so
mustn’t we reject the theory?

Note that there is an interesting link to relationalist and
substantivalist conceptions of spacetime here. According to the logic
of Earman and Norton’s presentation of the hole argument, the
latter will view each of the temporal advances as generating
physically distinct scenarios (since the observables are located on
different time slices in each case), but there will nonetheless be no
observable change: all invariants are preserved, just as the formally
distinct futures in the hole argument preserved invariants (and
observable content). Thus, the substantivalist faces the problem of
the hole argument in this temporal case: possibilities that differ only
in which points (now characterizing a time slice) play which role.
But the relationalist’s standard Leibnizian trick of collapsing all the
substantivalist’s indiscernible possibilities into one physical
possibility doesn’t help us here, since it leaves us with data on a
single three-dimensional slice. Any attempt to push the data
forward will generate an unphysical possibility, so we appear to be
stuck on this slice, unable to generate change! It doesn’t matter
whether we are substantivalists or relationalists here: there will be
no change in observables if those observables are defined relative to
spacetime (manifold) points.

The problem takes on its clearest form in the canonical formulation
of general relativity, in which the dynamics (time evolution) of the
geometry of space is generated by a Hamiltonian function: we find
that it vanishes (as is expected given its gaugey nature: it can’t push
the data forward in a non-unphysical way). Being a gauge theory,



the Hamiltonian is really to be understood as a family of
constraints: three spatial (or ‘diffeomorphism’ or ‘vector’)
constraints and a temporal one (known officially as the
‘Hamiltonian’ or ‘scalar’ constraint). We can think of the spatial
constraints as simply transformations that bring about ordinary
coordinate changes on a spatial slice (the kind found in the hole
argument). These can be dealt with in the usual ‘equivalence class’
manner: the transformations are unphysical → the physical stuff is
the equivalence class → all is well. The Hamiltonian constraint
generates displacements of data off the spatial slice. The overall
Hamiltonian, responsible for generating the time evolution of states
in the theory, is simply a linear combination of these two kinds of
constraint. Taken together, they generate (infinitesimal) spacetime
diffeomorphisms – this explains why physical observables
(sometimes called ‘Dirac observables’) can’t evolve with respect to
the Hamiltonian, since such observables are gauge-invariant
entities and diffeomorphisms are gauge transformations.

This problem infects quantum gravity in a fairly direct way: since
the Hamiltonian and the observables are quantized by turning them
into operators (and imposing commutation conditions), the
problem sticks around.25 But it takes an even worse form: whereas
the Schrödinger equation usually involves a t against which
quantum states evolve (i.e. as , we have a truly timeless
theory now: the t doesn’t even make an appearance in the theory
since the classical Hamiltonian, to be quantized and converted into
the Schrödinger equation (or rather its gravitational analogue, ‘the
Wheeler–DeWitt equation’), vanishes: . It is a sum of
constraints (on initial data) rather than a true dynamical equation.
But without a time, how do things change and evolve? How is there
motion?

We can choose to deal with this problem at either the classical
(prequantization) level or the quantum level. In either case, we have
two broad options: either find a time buried in the formalism or else
bite the bullet (that reality is timeless and changeless), leaving the
task of explaining away the appearance of time and change in the
world (as a kind of illusion). The physicist Karel Kuchar˘ suggested
the terminology of ‘Parmenidean’ and ‘Heraclitean’ to describe
these fundamentally ‘time-full’ and ‘timeless’ responses.

Kuchar˘ himself is Heraclitean, and sees as the only way out of the



frozen formalism (and the quantum version) a conceptual
distinction between the constraints so that only the diffeomorphism
(spatial) constraints are to be viewed as generators of gauge
transformations. This leaves the problem of finding a hidden
‘internal’ time (and so a physical, genuine Hamiltonian) buried
among the phase space variables against which real observable
change happens. This is a difficult issue that we can’t go into here,
but we can point out that some responses along these use the
distribution of matter to ‘fix’ some coordinate system, eliminating
the gauge symmetry in the process. The usage of physical degrees of
freedom to resolve the problem is, in general, the most promising
way to go.

Perhaps the most philosophically shocking approach is Julian
Barbour’s Parmenidean proposal. Barbour argues that we should
accept the frozen formalism: time really doesn’t exist! What exists is
a space of Nows (spatial, three-dimensional geometries) that he
calls ‘Platonia.’ In the context of quantum gravity we would then
have a probability distribution over this configuration space (as
determined by the Hamiltonian constraint or Wheeler–DeWitt
equation) that delivers an amplitude for each possible Now – where
each three-geometry is taken to correspond to a ‘possible instant of
experienced time.’

But unlike the Heraclitean proposals, which strive to get out real
change (and so can account for our experience of a changing world),
on Parmenidean proposals there remains the problem of accounting
for the appearance of change. Barbour attempts to resolve this
puzzle by appealing to what he calls ‘time capsules,’ patterns that
encode an appearance of the motion, change, or history of a system
– he conjectures that the probability distribution determined by the
Wheeler–DeWitt equation is peaked on time capsules, making their
realization more probable (this makes it more likely we will
experience a world that looks as though it has evolved through time,
and so has generated a history, or a past).

Barbour’s approach is certainly timeless in that it contains no
background temporal metric in either the classical or quantum
theory: the metric is defined by the dynamics. His view looks a little
like presentism – the view that only presently existing things
actually exist – but clearly differs since there are a bunch of other
Nows that exist, only not in the same spacetime (but ‘timelessly’ in



‘superspace’ instead). This space of Nows might in fact be employed
to ground a reduction of time in the same way David Lewis’
‘plurality of worlds’ provides a reduction of modal notions.26 The
space of Nows is given once and for all and does not alter, nor does
the quantum state function defined over this space, and therefore
the probability distribution is fixed too. But just as modality lives on
in the structure of Lewis’ plurality, so time can be taken to live on in
the structure of Platonia.

The jury is still out on the coherence of Barbour’s vision
(philosophical and otherwise), but it makes a fun and worthwhile
case study for philosophers of physics who like to think about time,
change, and persistence. Not quite as radical as Barbour’s are those
timeless views that accept the fundamental timelessness of general
relativity and quantum gravity that follows from the gauge-invariant
conception of observables, but attempt to introduce a thin notion of
time and change into this picture – these fall uncomfortably
between the Heraclitean and Parmenidean notions.

A standard approach along these lines is to account for time and
change in terms of time-independent correlations between gauge-
dependent quantities. The idea is that one never measures a gauge-
dependent quantity, such as position of a particle; rather, one
measures ‘position at a time,’ where the time is defined by some
physical clock. Carlo Rovelli’s ‘evolving constants of motion’
proposal is made within the framework of a gauge-invariant
interpretation. As the oxymoronic name suggests, Rovelli accepts
the conclusion that quantum gravity describes a fundamentally
timeless reality (so that there are only unchanging, time-invariant,
constants of motion), but argues that sense can be made of change
within such a framework by ‘stringing them together.’ Take as a
simplified example of an observable m = ‘the mass of the rocket.’ As
it stands, this cannot be a genuine (gauge-invariant) observable of
the theory since it changes over (coordinate) time (it does not take
on the same value on each time slice since it will be losing fuel as it
travels, for example). Rovelli’s idea is to construct a one-parameter
family of observables (constants of the motion) that can represent
the sorts of changing magnitudes we observe. Again simplifying,
instead of speaking of, e.g. ‘the mass of the rocket’ or ‘the mass of
the rocket at t,’ which are both gauge-dependent quantities (unless t
is physically defined: i.e. the hand of an actual clock), we should



speak of ‘the mass of the rocket when it entered the asteroid belt,’
m(0), ‘the mass of the rocket when it reached Mars,’ m(1), ‘the mass
of the rocket when it reached the human colony,’ m(2), and so on up
until m(n). These quantities are each gauge invariant (taking the
same value in any system of coordinates), and, hence, are constants
of the motion. But, by stitching them together in the right way, we
can explain the appearance of change in a property of the rocket
(understood as a persisting individual). The obstacles to making
sense of this proposal are primarily technical, but philosophically
we can probe the fate of persisting individuals given such a view,
among other issues of perennial interest to philosophers.

A large portion of the philosophical debate on the problem of time
tends to view it as a result of eradicating indeterminism via the
‘quotienting procedure’ for dealing with gauge freedom – as
mentioned in the previous section, and as found in the hole
argument literature: treating the physical structure as encoded in a
reduced space involving as points the equivalence classes of gauge-
related states. This point of view can be seen quite clearly in a 2002
debate between John Earman and Tim Maudlin,27 where both
authors see the restoration of determinism via hole argument type
considerations as playing a vital role in generating the problem –
but whereas Earman sees the problem as something that needs to
be accepted and explained, Maudlin views the problem as an
indication of a pathology in the (Hamiltonian) formalism that
generated it.

The idea is that when the quotienting process is performed in a
theory in which motion corresponds to a gauge transformation,
time is thereby eliminated. But the world is frozen regardless so
long as we deal with physical observables (those that are insensitive
to the gauge-changes brought about by the constraints, and so the
Hamiltonian). Hence, we could forget the quotienting, and let time
merrily advance, but nothing observable will register this difference.

Earman and Maudlin couch their debate in terms of an argument
against the existence of time due John McTaggart. In a classic 1908
paper, “The Unreality of Time,” McTaggart argued that we can think
of positions in time in two ways: first, each position is earlier than
some and later than others (known as the B-series); and secondly,
each position is either past, present, or future relative to the present
moment (known as the A-series). The first involves a permanent



ordering of events, while the second does not: if an event E1 is ever
earlier than event E2, it is always earlier. But an event, which is now
present, was future, and will be past. We met this kind of alteration
in the ontological status of events (under the umbrella of
‘becoming’) in §4.3. This corresponds to the ‘flow of time’ (common
to our experience of the world), consisting of later events becoming
present and then past: time passes in this way. McTaggart had
argued that both series are needed to account for time. To make
sense of flow, we can think either of sliding the B-series ‘backwards’
over a fixed A-series or sliding the A-series ‘forwards’ over a fixed B-
series.

The B-series is seen to depend on the A-series since the only way
that events can change is with respect to their A-properties, not
their B-relations (which are eternally fixed): the event ‘the death of
Alan Turing’ does not change in and of itself, but, given the A-series,
it changes by becoming ‘ever more past,’ having been future, relative
to the Now. So ‘Alan Turing is dead’ changes its truth-value: during
all of those B-series positions in which Turing is alive (or not yet
born) the proposition is not true, but is true thereafter. But B-series
versions do not have this time-varying feature: ‘Alan Turing’s death
is earlier than this judgment’ is either always true or always false.
But this ordering isn’t enough for time since there is no change.

So McTaggart concludes that time needs an A-series to ground the
notion of change. But then he argues that the A-series, and
therefore time, is contradictory. A-properties (‘is past,’ ‘is present,’
and ‘is future’) are mutually exclusive (they conflict), but events
must posses all of them: a single event like ‘Turing’s death’ is
present, will be past, and has been future. The problem looks like it
can be evaded by pointing out that no event has all three properties
‘at the same time’ (simultaneously), but this leads to a regress: is
present, will be past, and has been future all involve some
additional ‘meta-moments,’ which will also face the problem of
being all of past, present, and future – the obvious save now is to
invoke ‘meta-meta-moments,’ and we are on the road to an infinity
of such meta-levels. So McTaggart claims that time does not exist:
the B-series can’t cope with the demands of time on its own and the
A-series, which it requires, is incoherent.

So much for the A- and B-series: what is left to put in their place?



McTaggart suggests that an ordering of events remains, a C-series,
but this cannot be temporal, for it does not involve change, being a
serial ordering of events themselves – that we have a string of
events, E1, E2, E3, implies that there is any change no more than the
ordering of the letters of the alphabet implies change. Modern
philosophers of time are divided over whether an A-series (or
something similar) in needed to make sense of time and change: the
nay-sayers are grouped into the category of B-theorists or
‘detensers’ and the yea-sayers are grouped into the category of A-
theorists or ‘tensers.’ The A-theorists will say that the B-theorists
cannot properly accommodate the notion of the passage of time and
can, at best, allow that it is an illusion. The B-theorist denies that
‘passage’ is necessary for time and change, and is happy to see it
done away with. Both sides claim support from physics: B-theorists
generally wield spacetime theories (such as special relativity) and
the A-theorists wield mechanical theories such as quantum
mechanics.

What is interesting about the problem of time in quantum gravity is
that neither the A- nor the B-series seems to make sense anymore.
To link up these old-fashioned philosophical concepts to quantum
gravity, Earman introduces a character called ‘Modern McTaggart,’
who attempts to revive the conclusions of old McTaggart by utilizing
a gauge-theoretic interpretation of general relativity. Earman is
dismissive of A-theories, which he claims are not part of “the
scientific image.” But it is important to note that the debate here is
not directly connected to the old debate in the philosophy of time
between ‘A-theorists’ and ‘B-theorists’ (or ‘tensers’ and ‘detensers’).
Both of these latter camps agree that time exists in a sense (they are
committed to some t in the physical world), but disagree as to its
nature. By contrast, the division between Parmenidean and
Heraclitean interpretations concerns whether or not time (at a
fundamental level) exists, period!

Earman’s response is to argue that general relativity is nonetheless
compatible with change, though in neither the B- nor the A-series
(nor the C-series) senses. Instead he introduces a ‘D-series’ ontology
consisting of a time-ordered sequence of ‘occurrences’ or ‘events’ in
which different occurrences or events simply occupy different
positions in the series. This sounds like the C-series, but the
occurrences here are the gauge-invariant quantities involving



relationships between physical degrees of freedom (like Rovelli’s
evolving constants of motion, which Earman’s strategy gives a
philosophical expression of). There is no flow here, but there is
change embedded in the different events laid out in different D-
series positions. The only difference between the C-series and the D-
series then is in the nature of the events that are strung together. In
the case of a D-series picture one of the elements of a gauge-
invariant quantity can be a physical clock (a wristwatch), against
which is considered some other element (such as your position
relative to your front door) so that we can see how something
mirroring experience might be elicited from this picture. But strictly
speaking, nothing is changing here.

For Maudlin, any such interpretation is absurd. The absence of
change should be a reason to reject whatever framework led to that
conclusion. Maudlin sees the problem to be taking a ‘surface
reading’ of general relativity too literally, where such a reading
cannot explain why a bizarre frozen-world conclusion is emerging.
But, as we have seen, it can explain the changelessness and the
appearance of change. The answer is related to the gauge-invariant
response to the hole argument: change with respect to the manifold
is ruled out; if we focus on those quantities that are independent of
the manifold we can restore change by considering the ‘evolving’
relationships between these quantities. That is: change is to be
found in things other than the manifold, namely in the relationships
between physical degrees of freedom. That is, the crazy sounding
results only come about by considering the wrong types of
observable: gauge-dependent, unphysical ones. But this is to adopt
a substantive response that buys into the gauge-theoretical
interpretation!

Finally, if we agree with the Parmenideans that we don’t have space
and time at the level of quantum gravity, then where does the
classical spacetime we appear to be immersed in come from? This
leads to the problem of ‘spacetime emergence.’ In other words,
saying that quantum gravity is timeless (and spaceless) leaves a
challenge in squaring it with the low-energy physics that appears to
involve such entities – not to mention the evidence of our senses.
This is a difficult problem, but steps have been taken in doing
exactly this.

In the author’s view, quantum gravity offers the biggest open



problem for philosophers of physics and it really ought to be a bread
and butter topic: it is, with its novel views on time, change, space,
persistence, and so on, a playground for philosophers.

What to read next
1. Craig Callender and Nick Huggett, eds. (2001) Physics Meets

Philosophy at the Planck Scale. Cambridge University Press.

2. Jeremy Butterfield and Chris Isham (1999) On the Emergence of
Time in Quantum Gravity. In J. Butterfield, ed., The Arguments
of Time (pp. 111–168). Oxford University Press.

3. Dean Rickles (2008) Quantum Gravity: A Primer for
Philosophers. In D. Rickles, ed., The Ashgate Companion to
Contemporary Philosophy of Physics (pp. 262–382). Ashgate.

Research projects
1. Consider which (if any) philosophical account of persistence (of

individuals) fits with Rovelli’s evolving constants of motion
approach.

2. Read Julian Barbour’s book The End of Time (Oxford University
Press, 2001) and decide whether his theory is really timeless.

3. Figure out whose side you’re on (if any) in the debate between
Tim Maudlin and John Earman over the use and interpretation
of the constrained Hamiltonian formalism in general relativity.

8.6 Fact, Fiction, and Finance
Physics is powerful. It is often seen to be a universal science,
providing the ontological roots of all of the other sciences. But just
how powerful? Where does the domain of physics end and, say, the
social sciences or psychology begin? Of course, most of us wouldn’t
hesitate in agreeing that any social system and human mind are
essentially ‘built from’ components obeying physical laws: if they
violated the laws of physics then so much the worse for those
systems and minds. These days at least, the ‘physics versus
everything else’ separation is attributed to the complexity of the
systems, sometimes with a nod to a future in which physics can
crack the problems of society and consciousness too: such features



(including ‘higher-level laws’) will be ‘emergent’ properties of the
physical systems realizing them.28

If we agree that economic systems are complex systems, then a
natural policy for a physicist is to try to adapt the techniques of
statistical physics (the complex system theory par excellence) to the
description and prediction of economic phenomena. ‘Econophysics’
then describes a cluster of methods and models designed to capture
the (statistical) properties and behavior of economic systems
(usually just restricted to financial markets) using theories of
physics (primarily statistical physics).29 It sits, in terms of
disciplines, more in physics than economics (a social science), and
one can now find econophysics papers appearing in physics
journals, side by side with papers on dark matter and quark-gluon
plasmas.

But the simple ‘econophysics = statistical physics of finance’ link is
an approximation. We can in fact discern several layers to this
proposed physics-economics link:

Econophysics involves a kind of statistical mechanics of
financial markets.

Econophysics is a proper empirical study of financial data: a
data-first approach (rather than model-first), in which economic
assumptions are not made at the outset.

Econophysics involves viewing financial/economic systems as
complex systems with interacting economic agents as parts.

Econophysics is the general application of the models, theories,
and concepts of physics (not just statistical physics) to financial
markets.

Econophysics is the idea that financial markets (and economic
systems more generally) follow similar laws (or the same kind of
laws) as ‘natural’ systems.

Econophysics involves finding analogies between
financial/socioeconomic and physical (natural) systems.

The motivation behind each separate conception is the potential for
prediction (and control) and explanation of some market quantities
(price, volume, or volatility of some ‘financial instrument’) or events
(notably, bubbles and crashes – i.e. large fluctuations or ‘extreme’



events – and more general market trends), through the formulation
either of equations of motion derived, in this case, through the
recognition of patterns and signatures in the data or the formulation
of statistical laws that the quantities or events obey. How does this
look in practice? At the core is a postulated mapping between a
general model from physics (a model of cooperative phenomena)
and the behaviors of economic agents – note that “cooperative” in
this context does not mean the nice, social idea of working together
for the greater good, but simply the degree of imitation involved
among a system’s parts.

The global financial crisis that began around 2007 is commonly
believed to be traceable to the relative ease with which borrowing
for home loans could be done before that time – fueled by the
widespread belief that property was as ‘safe as houses’ and so
allowing for the creation of ‘subprime mortgages’ given to those
with low credit ratings (i.e. not enough money to handle dips in the
value of whatever the loan was for, or rises in external living values).
But the banks weren’t stupid (just highly unethical!): they charged
more (in interest) to those able to afford less, in order to cover their
own increased risk. This led to a boom in house buying, with prices
increasing and the expectation that they would continue to increase
– some used the value stored in their existing homes to fund other
homes. But such a situation is naturally very fragile to ‘shocks.’ The
complexity features come from this aspect: there is an
interdependency between the various economic agents in that they
require that the prices keep going up (with low interest rates) so
that they can keep up with their payments – seeing buying
occurring brings in yet more buyers (driving the prices up) troubled
by the ‘fear of missing out’ (FOMO: which results in a kind of
human-herding behavior). This naturally leads to a greater chance
of slipping behind in mortgage payments and ultimately ‘defaulting’
on their loan (losing their home) if anything should alter the rising
price trajectory – even small dips could result in significant losses of
property for those with subprime mortgages. As soon as the
foreclosures start, supply increases, and prices reduce, causing more
selling in a bid to avoid large losses, which triggers more selling at a
faster rate (driving prices down) – and so on in a snowball effect
until the financial equivalent of an avalanche occurs.

Hence, we have the economic notions of boom and bust, or bubbles



and crashes. This can be linked quite naturally to aspects of
cooperative phenomena in statistical physics. The trick involves
viewing economic agents along the lines of a ‘spin model’ of
ferromagnetism. Each agent has a set of states that they can occupy,
switching between them according to certain intrinsic properties
(e.g. such as how risk-averse they are), but also, crucially, able to
become dependent on the structural properties of the economic
system as a whole by ‘nearest neighbor interactions,’ which can
spread over a system in certain contexts. Hence, just as magnetism
occurs when the spins of atoms in the material point in the same
way (demagnetizing otherwise, when they point in random
directions), so economic agents can ‘point the same way’ (all buying
or all selling at the same time, thus generating bubbles and crashes).
In the case of magnetism one needs a parameter, such as
temperature, that can be tuned to generate the cooperative behavior
of the atoms: heating causes randomness, but cooling causes an
orderly structure to emerge. In between these two phases (order and
disorder) is a ‘critical point’ relative to the tuning of the parameter,
characterized by very specific statistical properties involving events
of all sizes distributed according to a power law (roughly: many
small events, not so many mid-sized events, and very few large
events, as with the distribution of earthquake magnitudes). Such
distributions signify complexity in the system, with parts heavily
interdependent.

Economic bubbles are then modeled as systems in a critical phase.
The cooperative tendency here is simply the herding instinct as
above and is modeled by long-range correlations that spread over
the system. In such critical, highly cooperative scenarios even tiny
shocks to the system can trigger calamitous effects, such as crashes
(i.e. spontaneous switches to some value). In these cases it doesn’t
make sense to say that some individual event caused the crash: the
system was led into an unstable state over time by internal
processes. Crashes are systemic (endogenous) making ‘causal
postmortems’ very difficult.

The most common model of this type is the Ising model. This
models the cooperative coupling between elements by a parameter
K, and the tendency to disorder by a noise term (or rather its
amplitude) σ. There will be order if K dominates and disorder if σ
dominates. Crucial is the existence of a ‘critical value’ Kc of K, which



separates these phases: when K < Kc there is disorder and little
cooperation or herding (because the elements are effectively
disconnected there is no threat of bubble-type behavior emerging).
As K tends toward Kc clusters of order form, in which the elements
are aligning their values in such a way that alignment in one region
can spread, causing alignment in other areas, meaning that the
elements are now interconnected. This means that a small shock,
which would otherwise be insignificant, can cause an entire system
to shift. At the critical point one finds that the system is ‘scale
invariant’ in the sense that zooming in and out one finds the same
statistical features (relative to the temporal or spatial resolution): it
is a fractal. The interconnectedness is, according to econophysics,
behind the crashes: they are collective effects or emergent features.
Poised at a critical point Kc (in which there is symmetry in the
possible states), small influences can break the symmetry
(corresponding to K > Kc) and self-organization occurs.

There are other aspects that suggest a statistical physics approach,
and that are similarly described. In financial economics there is a
group of features known as ‘stylized facts,’ which are properties that
are common across many financial objects (stocks, bonds, etc.),
markets (money, gold, property etc.), and time periods. For
example, prices and their changes appear to be random; returns
appear not to be random since their statistical distributions possess
so-called ‘fat tails’ associated with the power-laws mentioned above
(showing a greater likelihood for extreme values than a simple
random, Gaussian distribution would allow); and finally, volatility
(fluctuations) is not uniformly distributed, but clusters so that there
are highly volatile and non-volatile periods (big price changes, of
either sign, follow big price changes and little ones, of either sign,
follow little ones). This suggests that the standard model of
economics (based on the randomness assumption) is not mapping
onto economic reality: stock market crashes of the magnitude of,
say, the 1929 Wall Street or 1987 (‘Black Monday’) crashes, should
not be occurring as often as they do. Econophysicists claim to be
closer to reality in this respect.

Very often in systems with interacting parts, and whose interacting
parts generate properties of the unit system, one finds that the thus
generated properties obey scaling laws. Scaling laws tell us about



statistical relationships in a system that are invariant with respect to
transformations of scale. In statistical physics these scaling laws are
viewed as emergent properties generated by the interactions of the
microscopic subunits. Scaling laws are explained, then, via
collective behavior among a large number of mutually interacting
components. The components in this financial case would simply be
the market’s ‘agents’ (traders, speculators, hedgers, etc.). These laws
are ‘universal laws,’ independent of microscopic details, and
dependent on just a few macroscopic parameters (e.g. symmetries
and spatial dimensions). Econophysicists surmise that since
economic systems consist of large numbers of interacting parts too,
perhaps scaling theory can be applied to financial markets; perhaps
the stylized facts can be represented by the universal laws arising in
scaling theory. This analogy is the motivation behind a considerable
chunk of work in econophysics; it is through this analogy, then, that
the stylized facts receive their explanation – though presumably not
their ‘ultimate explanation,’ which will involve such things as the
agents’ psychology, the institutions in which the agents operate, and
so on.

This ‘scaling’ (or scale invariance) is, then, at the root of the
transference of statistical physics to finance. Notably, from the point
of view of complexity research, the power law distributions are scale
invariant (like fractals): events (or phenomena) of all magnitudes
can occur, with no characteristic scale. What this means is that the
(relative) probability of observing an event of magnitude |x| = 1,000
and observing one of |x′| = 100 does not depend on the standard of
measurement (i.e. on the reference units). The ratio between these
probabilities will be the same as that for |x| = 1,000 and |x″| =
10,000. Hence, there is no fundamental difference between extreme
events and events of small magnitude: they are described by the
same law. Specifically: near a critical point, fluctuations of the
(macroscopic) order parameter will appear at all possible scales. In
the case of the more common liquid-gas phase transition one will
have liquid drops and gas bubbles ranging from the molecular level
to the volume of the entire system. Hence, at the critical point these
fluctuations become (theoretically) infinite. The analogous situation
in the financial context would be, for example, fluctuations in asset
returns at all possible scales.30

What distinguishes econophysics from other approaches in



economics is the interpretation of the stylized facts. In addition to
viewing them as emergent properties of a complex system, it also
includes a greater commitment to the stylized facts, treating them
not only as a central guide to the nature of economic reality, but also
as genuine laws rather than ‘mere’ local regularities. Part and parcel
of this view of the stylized facts as genuine laws is that it simply
doesn’t matter whether we view the variables of a statistical physics
model as spins of atoms or economic agents since the laws
themselves are emergent in precisely the sense that they don’t
depend on the microscopic details of the system.

However, this stance is, on the face of it, rather hard to square with
the addition of decision-making agents (with free will): such agents
are surely incompatible with the possibility of invariances, and
without invariances there are no symmetries, and without
symmetries there are no laws. We might think that, on this basis,
like economics, econophysics can at best be a descriptive historical
science, analyzing what already happened in some particular
economic situation. Other econophysicists (most, in fact) believe
that they can find some laws for market dynamics, albeit statistical
ones, of course. But, it might be objected, whereas laws of nature
are independent of initial conditions and don’t make reference to
specific, particular systems, socioeconomic laws seem not to be of
this sort, varying from country to country and institution to
institution: markets just embody what economic agents do, and
since these agents have free will, they can change at a whim. This
could affect the more general statistical laws too since the
distributions are determined by the collective behavior of the
economic agents. But the econophysics argument insists that these
collective properties and laws are sufficiently robust that they can
ignore the human nature of the agents.31 After all, if humans are not
viewed as supernatural ‘magical beings’ then they must surely be
governed by physical law. The proof is no doubt in the pudding, and
we must await the construction of statistical models that enable
reliable predictions about (distributions of) financial properties and
their fluctuations. Moreover, a thorough analysis must proceed by
carefully unpacking exactly what is meant by ‘law,’ ‘free will,’ and
the other central (and difficult) concepts relevant to the debate – in
other words: lots of interesting work for philosophy!



What to read next
1. Didier Sornette (2003) Why Stock Markets Crash: Critical

Events in Complex Financial Systems. Princeton University
Press.

2. Neil Johnson et al. (2003) Financial Market Complexity: What
Physicists can tell us about Market Behavior. Oxford University
Press.

3. Dean Rickles (2011) Econophysics and the Complexity Of
Financial Markets. In C. Hooker, ed., Handbook of the
Philosophy of Science. Volume 10: Philosophy of Complex
Systems (pp. 531–565). Elsevier.

Research projects
1. Can econophysical models really be said to explain economic

phenomena?

2. Are ‘stylized facts’ examples of emergent properties?

3. How do we get around the problem of ‘free will’ in econophysics’
modeling? What becomes of invariances?

8.7 Anthrobatics and the Multiverse
Anthropic reasoning, as the name suggests, involves using the
existence of human beings (or rather observers) as ‘data’ from
which to make (usually rather deep) inferences about the nature of
reality and most often when other data is hard to come by (for
example, in the case of why the fundamental constants have their
values or why we live in a space of three dimensions). The world
must be compatible with our existence as observers, so our
existence might furnish us with a useful scientific tool.

It is widely believed that Anthropic reasoning is bad ‘unscientific’
reasoning. A passage from Douglas Adams makes the shortfalls
clear:

Imagine a puddle waking up one morning and thinking, ‘This is
an interesting world I find myself in, an interesting hole I find
myself in, fits me rather neatly, doesn’t it? In fact, it fits me
staggeringly well, must have been made to have me in it!’ This



is such a powerful idea that as the sun rises in the sky and the
air heats up and as, gradually, the puddle gets smaller and
smaller, it’s still frantically hanging on to the notion that
everything’s going to be all right, because this World was meant
to have him in it, was built to have him in it. (D. Adams (2002)
The Salmon of Doubt: Hitchhiking the Galaxy One Last Time.
Harmony Books, p. 131.)

Such ‘Puddlethropics’ makes very clear the ludicrous nature of a
certain kind of Anthropic reasoning, involving the ‘fine tuning’ of
parameters (here the shape and depth of a hole). Many aspects of
the world look ‘purposebuilt’ for human existence, leading some to
believe, like the poor puddle, that the world is made for them.

The standard example of Anthropic reasoning is that going against
Kepler’s theory of the Earth’s orbit. Kepler believed that a
fundamental principle should pick out uniquely the orbits of the
planets around the Sun, and he based this in a system of nested
Platonic solids. The Anthropic explanation simply points out that if
the Earth were not at this orbit, the chemical composition of the
planet wouldn’t have given rise to creatures capable of making
observations about the orbits! Hence, here the mystery is taken out
of some phenomenon. But we need to be careful not to lapse from
this uncontroversial claim into puddlethropics. We might rightly
feel shortchanged with the explanation as it stands: surely there is
still a deeper explanation based on fundamental laws or something
beyond? Pointing to our existence doesn’t really explain why the
orbits are as they are at all. We want to derive the orbits from some
initial conditions and laws or some ‘principle.’

But there is a different kind of Anthropic approach (or an additional
component to the above Anthropic explanation), which also
removes some of the mystery: we can point out that the Earth is one
of countless billions of planets, some of which will naturally be in
the right configuration relative to their stars to support life. Our
situation might look finely tuned, but it is simply what we should
expect to find given our constitution. Any other worlds containing
observers will have the same conditions, and worlds with these
conditions form a small segment of possible conditions in a larger
space: nothing is ‘tuned’ here at all. The problem with the other
form of Anthropic explanation assumed some kind of uniqueness of
the Earth’s position, which makes it seem like the Earth’s



convenient position is for our benefit (thus pointing to Flying
Spaghetti Monsters directing the show!). Remove this and we
remove the tuning idea, and along with it many standard objections.
However, there is no known theory that can do this. String theory
once hoped to achieve this kind of unique prediction of apparently
finely tuned parameter values, but was found to generate an
ensemble of solutions instead (known as ‘the Landscape’).32 But
one must be careful in using ensemble-based forms: the ensemble
must be known to exist or be well-motivated, otherwise it will have
an ad hoc, Deus ex machina character.33

As with possibilities, then, there are several grades of Anthropic
principle and associated reasoning, linking to this arbitrary versus
motivated usage of ensembles, to the interpretation of fine-tuning,
and to the way the Anthropic data is used: the ‘weak’ [WAP] and
‘strong’ [SAP] are the two most important:

WAP: this corresponds to the mystery-reducing response to
Kepler’s orbit problem above. Brandon Carter (who coined the
term ‘Anthropic principle’) states it as: “What we can expect to
observe must be restricted by the conditions necessary for our
presence as observers” ([4], p. 291). This seems to have the
status (almost) of a tautology: of course a necessary condition
for X must be in place for X! ‘Almost’ because it is really
pointing out a selection-bias that can infect our scientific
inferences, namely that what we see is much the same as what
there is everywhere and everywhen.

SAP: the strong principle essentially generalizes WAP by
imposing it as a universe-wide Copernican principle (rather
than WAP, which invokes a kind of localized version): we are
typical of the universe, rather than just a small patch – it
involves the idea that the universe must be such so as to allow
our existence as observers. It is the generality of the inferences
made that are much stronger. To make sense of SAP an
ensemble of universes is required, in which our universe is
typical.

In either case, to be scientifically useful, the reasoning needs to
make it that our scientific observations are made more likely given
the addition of the Anthropic premise. If we have an ensemble of
worlds at our disposal then sense can be made of this in simple



relative-frequency terms: most observers will be like us in the
ensemble (or in the restricted subset allowing observers); some will
not, and will have very different conditions (maybe existing in
wormholes, six-dimensional spacetime, or who knows what). Those
observers need to be unlikely, since we don’t see worm-holes about
us, and we seem to be in four-dimensional spacetime. If it were
found that observers were far more likely to spring up from
wormholes than our kind of universe, then we would have a bad
explanation of our world since it would be hard to see ourselves
coming out as a conclusion. Any theory we give about the makeup of
the world must make us typical. That is the key point.

As mentioned, the standard alternative to Anthropic-style
explanations is law-based explanations, where the laws, interactions
(forces of nature), and constants of nature are invoked instead. But
what if we want to explain these very laws, interactions, and
constants? We can’t very well invoke them to explain themselves
without circular reasoning. This is, then, a common problem to
which Anthropic reasoning is applied: explaining the seemingly
arbitrary values of the fundamental parameters featuring in our
laws of nature. If we were to plot in an abstract space, all possible
parameter values, we would find that only a tiny region of this space
would possess values fit for observers like us. But in order to make
Anthropic reasoning work, you need a lot of worlds. Enough worlds
to make ours a likely prospect. Why might we think there are
multiple universes? Aside from the many-worlds interpretation the
strongest reasons come from string theory and inflationary
cosmology – the latter suggests that our Big Bang was not a unique
event. The ensemble needs to be highly variegated too, so that once
again ours isn’t privileged in some way. This also gets around a
hidden assumption (buried in any ‘explanation-seeking why
question’), which we have seen in the Leibniz shift arguments,
concerning contrasting possibilities: why is the world here rather
than there (in absolute space). In order to ask such a question, then,
there are usually alternatives. Having a varied ensemble gives us a
contrast class: why these laws rather than those.

A more serious problem, in terms of starting from our existence and
figuring out the conditions necessary for this existence is: how do
we know what those conditions are? Any uncertainty here trickles
down into uncertainty about inferences made from them. That is,



we need to know what kind of observers we are, what would need to
be in place in the world to allow for observers of that kind, and only
then can deductions be made about what we can expect to observe
(with those conditions hopefully increasing those expectations in
cases of puzzling phenomena such as the three-dimensionality of
space). To know what conditions are required for our presence as
observers, we need to know what kinds of observers we are, then.
That’s not a trivial matter. Is carbon a necessity? If so, then certain
cosmic conditions must be in place, putting observers at a certain
phase of the universe’s evolution. So our temporal position is an
important consideration. So the observations we make are not
typical in an unrestricted sense, for the universe as a whole, because
we are not typical in this sense. But, the Anthropic reasoner will say,
what we observe is typical for observers because observers require
what is observed for their very existence.34 This is precisely what
links Anthropic reasoning to the issue of ‘fine-tuning’: the finely
tuned values will also be those that are typical in that subset of
worlds fit for observers.

But again: what is an observer? Or in other words, fine-tuning for
what exactly? It should be clear that ‘Anthropic’ is something of a
misnomer: the observer-principle would perhaps be a better name,
since the same reasoning applies to anything capable of making
observations, whether from Earth or from the nearest habitable star
system. But here the problems take better focus, since depending on
what these observers are like, we will find different conditions
necessary to support their existence.35 The Anthropic principle lets
us impose restrictions on the number of ways the world could be
that would otherwise be hard to come by: it is a possibility carving
tool. Any physics that conflicts with our presence can be put on the
scrapheap and our presence should be expected given whatever
physics we come up with.

A common objection to the Anthropic multiverse approach to
explanation of the nature of things is that it trivializes the answers
we give. It’s rather like the person that answers some question
about ‘which state of the USA is the largest’ by listing all 50: they’ll
be right at some point! Burton Richter (who directed SLAC) calls
the Anthropic multiverse a “metaphysical wonderland” ([40], p. 8)
and complains that “much of what currently passes as the most
advanced theory looks to be more theological speculation.” But it’s



clear however, that Richter misunderstands what is really going on
when he says:

The Anthropic principle is an observation, not an explanation.
To believe otherwise is to believe that our emergence at a late
date in the universe is what forced the constants to be set as
they are at the beginning. If you believe that, you are a
creationist. We talk about the Big Bang, string theory, the
number of dimensions of spacetime, dark energy, and more. All
the Anthropic principle says about those ideas is that as you
make your theories you had better make sure that α [the fine
structure constant] can come out to be 1/137; that constraint
has to be obeyed to allow theory to agree with experiment. I
have a very hard time accepting the fact that some of our
distinguished theorists do not understand the difference
between observation and explanation, but it seems to be so.
([40], p. 9)

This presupposes that we don’t have independent reasons for
believing in an ensemble. With an ensemble to hand, we can focus
in on the worlds with α = 1/137 and try to show that it is expected
when conditioned on our existence as observers. But he does point
to a problem, which is that showing that a probability distribution is
peaked on our world (and not on worlds with other values) is no
simple matter: how do we calculate probabilities of these worlds? In
terms of direct experience, we only have one universe to play with,
so it isn’t like pulling balls out of an urn or throwing dice. A
principle of ‘mediocrity’ (or the Copernican principle) is imposed by
default as one way to handle probabilities in this context; it says
that no world in the ensemble is inherently more probable than any
other.

Part of the problem is that there is an underdetermination of theory
by data here, much like the one facing the flatlanders in §5.1, only
here between ensemble and non-ensemble interpretations: the
ensemble of worlds is not observable, so we can only make
inferences about it. If we aren’t just adding ghosts by adding an
ensemble, then we need to see what it can do (as with Newton’s
absolute space and time required for making sense of inertia).

Another part of the root of the debate is a different mindset as
regards what counts as a good explanation: a unique one, so that



our world drops out as the sole solution (a ‘theory of everything’),
versus a non-unique one, in which our world is part of a space of
solutions. This translates into thinking that our world is privileged
or special versus unprivileged and non-special. Curiously, critics of
Anthropic reasoning often claim that Anthropic reasoning violates
the spirit of the Copernican revolution: it removes the specialness of
our planet’s place in the world (as the center of everything). Yet in
wishing for uniqueness they make the same mistake, only at the
level of the universe rather than the Earth.

What to read next
1. John Peacock and Alasdair Richmond (2014) The Anthropic

Principle and Multiverse Cosmology. In M. Massimi, ed.,
Philosophy and the Sciences for Everyone (pp. 52–66).
Routledge.

2. Nick Bostrom (2002) Anthropic Bias: Observation Selection
Effects in Science and Philosophy. Routledge.

3. Bernard Carr, ed. (2007) Universe or Multiverse? Cambridge
University Press.

Research projects
1. Actively seek everyday examples of Anthropic-type reasoning to

build your capacity for identifying them. In each case, figure out
why Anthropic reasoning (rather than a more orthodox form) is
being used?

2. Does the fact the several different theories in modern physics
involve an ensemble of other worlds better the hopes of
Anthropic explanations of deep facts about our world?

3. Is it more reasonable to think that our world (including its laws
and parameter values) might be explained by some unique
equations or by showing how it is one among many other
worlds?

Notes
1 Recall also that the twins paradox, discussed in §4.3, provides a



kind of weak time travel, in which you can travel into the future
by traveling at high speeds, thereby ageing less than the ‘external
time’ back home. It is time travel in the sense that your journey
will take fewer years than those poor homebound folk will
experience. Done correctly, you could ‘travel’ far into Earth’s
future by simply completing a roundtrip at a high enough speed
for long enough.

2 Usually this will involve unphysical matter-energy types, such as
negative energy (i.e. anti-gravity) or infinitely large objects. Chris
Smeenk and Chris Wüthrich refer to this method of making
universes “designer spacetimes,” which gives the right idea (see
their “Time Travel and Time Machines” in C. Callender ed., The
Oxford Handbook of Philosophy of Time, Oxford University
Press, 2011: p. 378).

3 There are a variety of largely technical results that exhibit such
paradox-avoidant behavior due to Kip Thorne and others looking
at classical billiard ball models in the presence of wormholes –
see e.g. Fernando Echeverria, Gunnar Klinkhammer, and Kip
Thorne’s “Billiard Balls in Wormhole Spacetimes with Closed
Timelike Curves: Classical Theory,” Physical Review D 44(4),
1991: 1077–1099.

4 The related Fermi paradox concerns the probable existence of
other more advanced civilizations: why haven’t we seen them yet,
he asks? The universe should be teeming with them. See
philosopher Nick Bostrom discuss this paradox on Closer to
Truth: http://www.closertotruth.com/series/where-are-all-
those-aliens#video-3988.

5 A Turing machine is simply an idealized (abstract) ‘device’ that
completes some task by running an algorithm in discrete steps
that will take the machine through a series of states, with each
subsequent state depending on the current state, some transition
rules (essentially, the computer’s program functioning as
‘evolutionary laws’), and a particular symbol that is being read by
the device – an infinite tape functions as a ‘memory’ register for
the machine that can be read from and written to. The key idea is
that this defines a notion of ‘computability’: a function is
computable just in case there exists a set of instructions (an

http://www.closertotruth.com/series/where-are-all-those-aliens#video-3988


algorithm) that will result in the Turing machine completing the
computation (thereby halting), given its infinite tape and infinite
time. A Universal Turing machine is then a machine that can do
any tasks that any other Turing machine can do – it is perhaps
easiest to understand by viewing the abstract Turing machine as
a software programme that runs on the universal Turing machine
(the hardware). For more detail, see David Barker-Plummer’s
“Turing Machines”: http://plato.stanford.edu/entries/turing-
machine/.

6 Oxford physicist David Deutsch introduced this idea as the
following physical principle: “Every physical system can be
perfectly simulated by a universal model computing machine
operating by finite means” (“‘Law Without Law’ in Physics,”
Foundations of Physics 16(6): p. 589) – Christopher Timpson
argues against Deutsch’s claim in “Quantum Computers: The
Church–Turing Hypothesis Versus the Turing Principle” (in C.
Teuscher (ed.) Alan Turing: Life and Legacy of a Great Thinker,
Springer, 2004: pp. 213–240).

7 Computational complexity theorists divide problems into ‘(time)
complexity classes’ according to how fast the algorithm can be
solved for a given input length – those that can’t be solved (for
which no algorithm exists) are ‘undecidable.’ Polynomial time
simply means that given an input string of length n the time to
compute it for some algorithm is given as a polynominal in n (e.g.
n3 + 3n). It is safe to think of this as being a ‘doable’ (or ‘feasible’)
problem in an ordinary sense. The link between this notion of
efficient computability and being doable in polynomial time is
known as ‘Cobham’s Thesis.’ Exponential time problems are not
doable given that the n figures as an exponent. (A further
interesting aspect of time complexity is the idea of an  (non-
deterministic polynomial) problem. This can be ‘checked,’ rather
than solved, in polynomial time if an ‘oracle’ gives you a clue [or
given a random search process: hence “non-deterministic”]: a
million dollar prize (and mathematical immortality) awaits the
person that can prove whether these [checking versus solving]
really belong in the same complexity-class or not – for the official
problem-statement from the Clay Mathematics Institute funding
the prize, see:
http://www.claymath.org/sites/default/files/pvsnp.pdf.)

http://plato.stanford.edu/entries/turing-machine/
http://www.claymath.org/sites/default/files/pvsnp.pdf.


8 The speed-up comes from two sources: firstly, from the
parallelism of superpositions (which allows one to ‘store’ 2n

numbers compared to some single number n in the classical case)
and are such that the operators of quantum mechanics will act on
all components at once; and secondly, the interference between
branches of such superpositions (i.e. entanglement). This opens
the door to using constructive and destructive interference (with
a well-chosen operator) to reduce the number of steps needed to
compute algorithms. The former parallelism might be
approximated by a classical device, but the entanglement is a
distinctly quantum affair. The full details of how this operates in
the case of the Shor algorithm are too complex to go into here,
but for a good discussion, see Chapter 15 of Christopher Moore
and Stephan Mertens’ The Nature of Computation (Oxford
University Press, 2011).

9 Andrew Steane attempts to demolish the idea that quantum
computers demand a many-worlds view in his “A Quantum
Computer Only Needs one Universe” (Studies in History and
Philosophy of Modern Physics 34(3), 2003: 469–478) – note,
however, that Steane bases his views on the so-called “Holevo
bound” limiting the amount of (roughly, human readable)
classical information that can be transmitted in a quantum
channel; something a little distinct from computation itself, in
the sense we are assuming.

10 In fact, P. D. Welch (2008) proved that the upper limit on
computational power appears as a universal constant in the
relevant world – “The Extent of Computation in Malament–
Hogarth Spacetimes,” British Journal for the Philosophy of
Science 59: 659.

11 For a good review, see Christian Wüthrich’s “A quantum-
information-theoretic complement to a general-relativistic
implementation of a beyond-Turing computer” (Synthese 192(7):
1989–2008) – here he suggests that quantum gravity might
ultimately hold the key to unraveling the physical form of the
Church–Turing thesis.

12 If these concepts aren’t familiar, consult chapter 15 of the second
volume of Richard Feynman’s Lectures on Physics (Addison



Wesley, 1971).

13 David Wallace gives a very readable explanation of these issues in
his “Time-Dependent Symmetries: The Link Between Gauge
Symmetries and Indeterminism” (in K. Brading and E. Castellani
(eds.) Symmetries in Physics: Philosophical Reflections,
Cambridge University Press, 2003: p. 163). Note that one key
reason for dealing with local symmetries is to enforce the
specially relativistic requirement of ‘local action’ (that is,
outlawing action-at-a-distance): what transformations are
performed at a point x should not be of concern to a point y
spacelike separated from x.

14 There is a sense in which this can be given a topological
explanation. The presence of the solenoid effectively removes a
region of space so that the path traced by the beam of electrons
(surrounding the solenoid) cannot be shrunk to a point – or, in
other words, the path going through one slit cannot be deformed
into the path going through the other slit, so that the space is
non-simply connected. In the classical case the motion of the
particles (a charge, q) is fully determined by the electric and
magnetic fields only (via the Lorentz force law F = q(E + v × B)),
so we don’t face this kind of feature. For more on this approach,
see Antigone Nounou’s “A fourth way to the Aharonov–Bohm
effect” (in K. Brading and E. Castellani (eds.) Symmetries in
Physics: Philosophical Reflections, 2003: 174–200).

15 This kind of nonlocality (viewed as a kind of ‘non-separability’
along the same lines as quantum entanglement) is discussed in
Richard Healey’s, “Gauge theory and Holisms” (Studies in the
History and Philosophy of Modern Physics 35(4), 2004: 619–
642).

16 Note that distinct gauge theories might recommend distinct
interpretations. For example, whether there is a gravitational
version of the Aharonov–Bohm effect that will allow us to run the
same ‘virtues’ and ‘vices’ options is not yet settled: see R. Chiao et
al., “A Gravitational Aharonov–Bohm Effect, and Its Connection
to Parametric Oscillators and Gravitational Radiation” (in D. C.
Struppa and J. M. Tollaksen (eds.) Quantum Theory: A Two-
Time Success Story, Springer, 2014, pp. 213–246).



17 The physicist Rudolf Haag takes the centrality of particle-
detections as the basis for his own interpretation based on
events. Objects as continuants (things that continue to exist over
dense intervals of time: that persist) are largely inferential on this
account: they constitute what he calls “causal ties” linking the
discrete events that form the real data of our experience and that
breathe life into the quantum world. Theory, according to Haag,
simply consists in finding models for predicting the properties of
such events (in the future) from the properties of other events (in
the past). In this sense, fields are inferences just as much as
particles – see his “Fundamental Irreversibility and the Concept
of Events” (Communications in Mathematical Physics 132, 1990:
245–251) and also his “Quantum Theory and the Division of the
World” (Mind and Matter 2(2), 2004: 53–66).

18 Christopher Timpson and David Wallace have tried to counter
some of these objections with a view they label ‘spacetime state
realism’ – see their paper “Quantum Mechanics on Spacetime I:
Spacetime State Realism” (British Journal for the Philosophy of
Science 61, 2010: 697–727).

19 If you are interested in digging deeper, Meinard Kuhlmann’s very
readable entry on philosophical aspects of quantum field theory
would make a good starting point:
http://plato.stanford.edu/entries/quantum-field-theory/.

20 For a philosophical discussion of zero-point energy, see Simon
Saunders’ “Is the Zero-Point Energy Real?” (in M. Kuhlmann, H.
Lyre, and A. Wayne (eds.) Ontological Aspects of Quantum Field
Theory, World Scientific: pp. 313–343). Also worth a look is
Rugh and Zinkernagel’s “The Quantum Vacuum and the
Cosmological Constant Problem” (Studies in History and
Philosophy of Modern Physics 33(4), 2001: 663–705) – this
paper also contains a nice historical discussion of the
cosmological constant problem (that is, the conflict between the
general relativistic and quantum field theoretic calculations of
the vacuum energy).

21 A thorough treatment of the first fifty years of quantum gravity
research, during which emerged the ‘special features’ of general
relativity (that cause problems for quantization), can be found in

http://plato.stanford.edu/entries/quantum-field-theory/


D. Rickles, Covered in Deep Mist: The Development of Quantum
Gravity, 1916–1956 (Oxford University Press, forthcoming).

22 Virtual particles are field quanta that are allowed to ‘live’ within
some process (such as a transition from one quantum state to
another, as one finds in particle accelerators) thanks to the time-
energy uncertainty relations: ∆E · ∆t ≥ ħ. So long as energy is
conserved at the level of the process as a whole, the internal
goings on can seemingly violate energy conservation (in a way
satisfying the relations). Such ‘intermediate processes’ are not
directly observable, however. But they are an essential part of the
calculation of the probability of going from some input state (e.g.
particles in an input beam to an accelerator) to those coming out
(after a collision). The virtual processes, involving virtual
particles, have to be summed over, with each possible way of
going from input to output playing a role. For a philosophical
examination of virtual particles, see Tobias Fox’s “Haunted by
the Spectre of Virtual Particles: A Philosophical Reconsideration”
(Journal for General Philosophy of Science 39(1), 2008: 35–51).

23 A brief outline of the various approaches to quantum gravity,
along with their particular quirks and conceptual problems, can
be found in D. Rickles and S. Weinstein’s “Quantum Gravity”:
http://plato.stanford.edu/entries/quantum-gravity/.

24 The usual quantum field theories are all local (yes, it’s an
overused word…) in the sense that the field interactions occur at
individual points of spacetime. Making the interactions local
allows for the peaceful coexistence of special relativity and
quantum theory, thus preserving causality (ruling out action-at-
a-distance), as mentioned above. But, this locality (involving the
stacking up of field interactions at the same spacetime point)
leads to singularities, which in turn lead to divergences. The
‘renormalization programme’ led to a finite version of quantum
field theory for electromagnetic interactions, known as
renormalized QED. The path to this theory involves the
introduction of a cutoff so that wavelengths (respectively
energies) shorter (respectively higher) than the cutoff are ignored
(making the divergent terms finite). Depending on the cutoff
chosen, we get different values predicted for the physical
quantities. In order to get rid of this unwanted dependence on

http://plato.stanford.edu/entries/quantum-gravity/


what is only an arbitrary cutoff, and get the theory predictively
back on track, a readjustment called renormalization is
performed. The parameter values of this modified theory are
inserted from their experimentally observed (‘clothed’) values –
clothed, that is, by the swarm of virtual particles that are
produced in line with the time-energy uncertainty relations.
However, the theory and the parameters at this stage are
dependent on the cutoff scale, which, again, is arbitrary, so we
need to take the continuum limit, letting it go to zero (or the
momentum go to infinity). When we do this we get renormalized
QED, with quantities that are independent of the cutoff. Broadly
speaking, if one needs to redefine only a finite number of
parameters to absorb the infinities then the theory is
renormalizable. Otherwise it is non-renormalizable. This used to
be considered fatal, but nowadays a more pragmatic
interpretation is adopted according to which a theory is
‘sensitive’ to scale, so that as the energy is varied the theory may
or may not continue to be useful (applicable). This domain
dependent approach is known as effective field theory: a theory
will be effective only within a certain range of energies. The
reason that theories can be effective in a certain range is that they
are ‘insensitive’ to what is going on at other scales (especially at
higher energies = shorter distances) and so are rendered
relatively free from ‘interference’ from elsewhere, depending on
only a few global properties of the higher energies (smaller
distances). It is possible that quantum gravity is an effective field
theory in just this sense. (Note that renormalization has received
a fair amount of interest from philosophers: see, for example,
Huggett and Weingard’s “The Renormalization Group and
Effective Field Theories” (Synthese 102(1), 1995: 171–194); or, for
an exceptionally clear, elementary guide to the way
renormalization is actually done, see John Baez’s entry at:
http://math.ucr.edu/home/baez/renormalization.html.

25 The best introduction to this problem, in my view, is to be found
in Gordon Belot and John Earman’s paper “Presocratic Quantum
Gravity” (in C. Callender and N. Huggett (eds.) Physics Meets
Philosophy at the Planck Scale, Cambridge University Press,
2001: 213–255).

26 Here possible worlds are viewed as being just as real as the

http://math.ucr.edu/home/baez/renormalization.html


actual world (our world). Possibility and necessity are then
reduced to the space of such worlds by thinking of possibility as
truth at a world and necessity as truth at all worlds. So,
‘possibly X’ simply means that there is a world at which X. See
David Lewis’ book On the Plurality of Worlds (Blackwell, 1986)
for the canonical exposition.

27 Earman, “Thoroughly Modern McTaggart: Or, What McTaggart
Would Have Said if He Had Read the General Theory of
Relativity” (Philosophers’ Imprint 2(3), 2002: 1–28) and
Maudlin, “Throughly Muddled McTaggart: Or how to abuse
Gauge Freedom to Generate Metaphysical Monstrosities”
(Philosophers’ Imprint 2(4), 2002: 1–19).

28 There is a fairly rich history of interactions between physics and
the human sciences. Economics especially has a close connection,
and a great many of its concepts and tools are taken directly from
physics (and, in some cases vice versa). The classic treatment of
this history is Philip Mirowski’s More Heat than Light:
Economics as Social Physics, Physics as Nature’s Economics
(Cambridge University Press, 1989). A more recent account that I
can heartily recommend is James Owen Weatherall’s The Physics
of Wall Street (Mariner Books, 2014).

29 The neologism “econophysics” was coined by the statistical
physicist (of critical phenomena) H. E. Stanley: see Stanley et al.,
“Anomalous Fluctuations in the Dynamics of Complex Systems:
From DNA and Physiology to Econophysics” (Physica A 224,
1996: 302–321).

30 Benoit Mandelbrot has identified various examples of such
fractal, scale-invariant financial data – see his The (Mis)behavior
of Markets: A Fractal View of Financial Turbulence (Basic
Books, 2006).

31 In his paper, “Explaining Financial Markets in Terms of Complex
Systems” (Philosophy of Science 81(5), 2014: 1117–1130),
Meinard Kuhlmann has argued that “Phase transitions in
ferromagnets and financial markets can be studied in a common
framework because the same structural mechanisms can be
invoked in both cases” (p. 1222). This, he argues, renders
econophysics “explanatorily fruitful.” However, a mechanical



account usually relies on the existence of lawlike behavior
integral to the mechanism; but the non-stationarity might seem
to cause problems in this respect: the spins in a magnet will have
their statistical properties fixed for all time, but not so for the
statistical properties of financial systems. However, the area
known as ‘renormalization group theory’ shows that there are
universal properties in such many-body systems (systems in the
same universality class), meaning that diverse systems share the
same critical exponents (and scaling behavior) and so display
qualitatively identical macroscopic properties (when approaching
criticality), for a certain class of ‘fluctuation-based’ properties.
This might therefore be a useful tool with which to defend
Kuhlmann’s idea.

32 Leonard Susskind, who coined this name, discusses the nature of
this ensemble, and the role of the Anthropic principle in string
theory, in his book The Cosmic Landscape: String Theory and
the Illusion of Intelligent Design (Back Bay Books, 2006).

33 For a defence of this point see John Earman’s “The SAP also
Rises: A Critical Examination of the Anthropic Principle”
(Philosophical Quarterly 24(4), 1987: p. 316).

34 James Hartle and Mark Srednicki consider this ambiguity in the
definition of observers, arguing that we don’t have grounds for
assuming that we are typical: “We have data that we exist in the
Universe, but we have no evidence that we have been selected by
some random process. We should not calculate as though we
were” (“Are we Typical?” Physical Review D 75, 2007: 123523-1–
123523-6). But every scrap of data should be included in our
calculations.

35 Steven Weinstein (“Anthropic Reasoning and Typicality in
Multiverse Cosmology and String Theory”, Classical and
Quantum Gravity 23, 2006: 4231–4236) argues that WAP
should really be divided into two sub-types:

WAP1 : “What we can expect to observe must be restricted by
the conditions necessary for our presence” (p. 4234).

WAP2 : “What we can expect to observe must be restricted by
the conditions necessary for the presence of observers” (p.



4234).

Depending on which of these we choose there will be a large
reference class in which we are not going to be typical. But if we
choose ourselves as the reference class then we are trivially
typical. However, it isn’t completely clear that we know what
“us” means in this case. For example, what if future humankind
figures out how to ‘upload’ brains to silicon-based computing
equipment: do we change our ideas of what a typical observer
is? For a useful discussion of this point, see Feraz Azhar’s
“Prediction and Typicality in Multiverse Cosmology” (Classical
and Quantum Gravity 31, 2014: 2–11).



Glossary
There are many central concepts in this book that will be unfamiliar
to most readers. Here we provide simplified
definitions/explanations of some likely candidates. These are not
intended to be complete or fully accurate, and there are in almost
every entry complications and qualifications.

Copenhagen interpretation:
an interpretation of quantum mechanics built on ‘the principle
of complementarity,’ namely the idea that quantum objects
exhibit a duality according to which they can sometimes behave
like a particle and sometimes like a wave, but never both
simultaneously. Whether or not we measure the system
determines which way it behaves, with the continuous wave
‘collapsing’ upon measurement to some discrete value. The
particle and wave aspects are related by the uncertainty principle
whereby measurement of the wave aspects (e.g. momentum)
renders position uncertain.

Decoherence:
the suppression of quantum interference effects through the
interaction of a measured quantum system first with the
measurer and then with the environment (or the universe) in
which both the measured and measuring system are embedded.

Degree of freedom:
the number of degrees of freedom correspond to the number of
variables required to uniquely specify a state. In classical
physics, a single particle has six degrees of freedom (three
position and three momentum coordinates).

Diffeomorphism invariance:
a diffeomorphism is a transformation that maps one manifold
onto another by mapping points to one another. Such manifolds
and their points are used to represent spacetime and its
spacetime point-events. A diffeomorphism can be used to ‘drag
around’ mathematical structures that represent physical objects
(e.g. fields and particles) living at such points. General relativity
is invariant with respect to such transformations in the sense



that the laws of the theory are insensitive as to whether one has
been performed: shifting everything by a diffeomorphism does
not alter the observable physical state of the world.

Dynamics:
the behavior of a system under the action of forces and
constraints.

Entropy:
a measure of order/disorder nowadays understood
probabilistically in terms of the number of ways some
configuration can be realized – the fewer ways to realize a
configuration (i.e. the less likely it is), the lower the entropy.

Eigenstates and eigenvalues:
in quantum mechanics observables O are represented by
matrices, the eigenvalues λ (of the matrix) represent the
measured value of O when the system is in a state ψ and when
the following equation (the ‘eigenvalue-eigenstate’ link) holds:
Oψ = λψ (in which case, ψ is said to be an eigenstate).

Epistemology:
at its most general, epistemology is the study of knowledge and
what constitutes true belief. We are primarily concerned with
scientific knowledge and the extent to which our physical
theories allow us to gain knowledge about the world (along with
the shape of that knowledge).

Equilibrium:
a state characterized by the invariance (i.e. constancy) of some
important feature of a system.

Equivalence class:
the result of dividing up a collection of objects according to some
‘sameness’ relation (e.g. same shape, size, etc.). The members of
an equivalence class are ‘the same’ in the sense that matters, so
that any element will do to represent the entire class.

Equivalence principle:
the statement that gravitational and inertial forces (such as
those accelerations that push you back in your seat during
takeoff in an airplane) are indistinguishable from the point of
view of local experiments (i.e. those made in small regions).

Euclidean space:
simply, the space in which one can do Euclidean geometry. It is a



flat (i.e. uncurved) space of this kind that is used in Newtonian
physics.

Expectation value:
the expectation value of a quantum state is a real number (i.e.
that can correspond to some measured value) – this number
corresponds to the average value that you would get after
performing measurements on a very large quantity of identically
prepared quantum systems.

Galilean invariance:
the sameness of (non-relativistic) physical events with respect to
a switch (a Galilean transformation) that turns one inertial
frame into another (e.g. by reorienting, moving, waiting some
amount of time, or changing the velocity).

Group theory:
the branch of mathematics that lets us represent symmetry by
showing how properties and relations of some set of objects (the
group elements) stay the same with respect to some
transformation on them.

Haecceity:
also known as a ‘primitive identity’ or ‘thisness’ (‘haec’ is Latin
for ‘this’), a haecceity is a non-qualitative property that makes an
object the unique thing that it is. If a pair of objects differ only in
that there are two (i.e. they are qualitatively identical), then the
two are said to differ solely haecceitistically. Haecceitism is the
view that there can be possibilities that differ in this way (its
denial is anti-haecceitism).

Hidden variables:
deterministic (non-random) variables postulated to explain the
curious probabilities of quantum mechanics. The variables are
not observable by us, and so the world appears random.

Identity of indiscernibles:
the principle, due to Leibniz, that there can be no two objects
that differ solely in that there are two of them (i.e. that are
identical in every way). In slogan form: there is no distinction
without a difference.

Inertia:
resistance of an object to accelerations of changes in direction of
motion. The forces that are felt during such changes are known



as inertial forces (or inertial effects). An inertial reference frame
is one in which there are no such forces (i.e. motion is constant).

Initial conditions:
these are details about a system’s state that are fed into the
equations of motion describing some system to yield its past,
present, and future behaviors.

Interference:
an overlapping of two or more waves caused by a difference in
their phases. When the waves are in phase they reinforce one
another (constructive interference); when they are out of phase
they cancel one another out (destructive interference).

Isometry:
an isometry is a mapping that preserves all lengths. Such
mappings include rotations, translations, and reflections.

Isomorphism:
a one-to-one correspondence between a pair of objects implying
that they are structurally identical (preserving properties and
relations). When the isomorphism relates an object to itself it is
called an automorphism.

Kinematics:
The physical description of motion in spacetime in the absence
of forces and constraints (i.e. objects in free motion).

Manifold:
a manifold is one that looks like good old flat Euclidean space
‘close up’ (locally, that is, or in a point’s ‘neighborhood’) but
looks different when one ‘zooms out’ (globally): the apparent
flatness of the Earth in our vicinity as compared to the view of
the Earth from space gives a good approximation of this idea.
Manifolds can be patched together, smoothly, from such small
flat parts.

Metric:
a function (on spacetime) for determining the distance (and
angle) between a pair of points (or vectors) in space, time, or
spacetime. In prerelativistic physics the distance in spacetime
could only ever be positive. In relativistic physics the distance
can be negative.

Model:
a simplified representation of a system. In this book we are



interested in mathematical models in which a correspondence is
set up between a mathematical structure and some physical
phenomenon of interest.

Observable:
a measurable quantity in the context of physical theory (e.g.
position, temperature, etc.). In classical (i.e. non-quantum)
physics it is a real-valued function on phase space (the space of
classical states). In quantum physics it is an operator on Hilbert
space (the space of quantum states).

Ontology:
the aim of ontology is to classify and catalogue reality (what
entities there are, what properties they have, and so on) in such
a way that anything that happens in the world can be given an
explanation by referring to the entries in this catalogue (e.g. by
pointing to some particles and laws that they obey).

Phase:
a number (ordinarily between 0 and 360) describing the wave
aspect of some system (specifically the ‘distance,’ in the cycle, to
the wave’s next peak or trough).

Phase space:
the space of all possible states for a system such that each point
represents a distinct possible assignment of values to the
system’s variables.

Planck’s constant:
the fundamental constant that describes the relationship
between frequency and energy of a wave and, loosely,
determines the degree of ‘quantumness.’ This can be seen most
easily in the Planck–Einstein relation E(nergy) = h × frequency.
These days physicists use the ‘reduced Planck’s constant’ (or
Dirac constant), which divides Planck’s constant by 2π, on
account of the quantization of angular momentum (or spin).

Possible world:
a ‘way the world could be.’ Possible worlds are objects that make
true modal talk (having to do with necessity and possible). There
are grades of possibility involved: physically or nomologically
possible worlds are those worlds (e.g. objects in spacetime, with
various properties, entering various relations) that are
consistent with the laws of physics. Metaphysically and logically



possible worlds must simply be either conceivable or else
logically consistent.

Probability amplitude:
the complex number whose modulus squared (or absolute
square) yields the probability for some event to occur.

Proper time:
the time on a clock (or wristwatch) that would move along at rest
with some object or particle. This is distinct from coordinate
time and relies purely on coordinate-independent, objective
physical processes (such as the number of revolutions of the
clock hands).

Quantization:
the process of converting some classical theory to a quantum
theory. The details involve promoting classical variables from
the classical theory to operators that must satisfy certain
relationships governed by Planck’s constant.

Quantum operator:
mathematical representation (involving a special kind of matrix)
of an observable magnitude in quantum mechanics. Among
other things, matrices are needed because of their ‘many
valuedness,’ which matches the fact that quantum mechanics
deals with probabilities for outcomes rather than definite
outcomes.

Reference frame:
a system for locating events in space and time using, e.g. rods
and clocks.

Relationism:
the belief that space, time, or spacetime are not fundamental
entities in the world, but are instead somehow emerge from
relations between objects. Usually defined as the denial of
substantivalism.

Relativity principle:
a statement that the laws of physics are invariant with respect to
some (group of) transformations so that they stay the same in
any reference frame related by such transformations (which then
form the theory’s symmetry group).

Schrödinger equation:
equation describing the evolution of the wavefunction in



quantum mechanics (and so the evolution of the quantum state).
Simultaneity slice:

(aka ‘spacelike hypersurface’) this provides a way of building an
instant from the set of events that occur at the same time. In
effect, space (extension) is used to define time. We can imagine
then building up a spacetime from these spatial slices by
stacking them up where the slices are said to be a ‘foliation’ of
spacetime.

Singlet state:
two particles (usually electrons) prepared together in such a way
that they have zero total angular momentum (or spin) – “singlet”
refers to the fact that there is only one such two-particle state
with this feature of zero spin.

Spin:
a kind of quantized angular momentum that characterizes some
quantum systems. An electron can have only one of two values
(up or down).

State:
the information summarizing the instantaneous condition of an
object. In classical physics the state is represented by a point in
phase space. In quantum mechanics the state is represented by a
wavefunction. The state is plugged into equations of motion to
make predictions about observed outcomes (or probabilities of
such in the case of quantum mechanics).

Substantivalism:
the view that space, time, or spacetime exist over and above the
objects contained within it. In other words, if you were to
magically remove all matter and energy in the world, space
would remain.

Superposition principle:
in quantum mechanics this is the property that if there are a pair
of possible wavefunctions then their combination is also a
possible wavefunction, where interference between these two
other states can be exhibited.

Symmetry:
an operation (such as a rotation or reflection) that leaves some
(or all) features of an object or structure unchanged. The group
of transformations that leaves the object unchanged (or



invariant) is known as the symmetry group.
Topology:

a kind of generalization of geometry to ‘deeper’ properties of a
space or surface (namely, those that remain unaffected by
transformations that don’t put holes in the space, including
stretches, twists, etc.). This leads to more general ways of
distinguishing, identifying, and classifying manifolds –
famously, for example, a coffee cup is topologically the same as a
doughnut (since it has the same number of holes).

Wavefunction:
a mathematical representation of the state of a system, usually
denoted by ψ, the absolute square of which corresponds to a
probability to find a particular value for some observable (e.g.
location of a particle in space). The wavefunction evolves
according to Schrödinger’s equation and lives in a kind of vector
space known as Hilbert space.

Worldline:
the path traced by an object (usually a particle) through
spacetime. Each point of the worldline represents the particle at
a particular time and point of space. The shape of the worldline
indicates the kind of motion the object undergoes: curved lines
correspond to accelerated motion; straight lines to constant
motion.
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