
EEL 6266 
Power System Operation and Control

Chapter 3

Economic Dispatch 
Using Dynamic Programming



© 2002, 2004 Florida State University EEL 6266 Power System Operation and Control 2

Piecewise Linear Cost Functions

� Common practice
� many utilities prefer to represent their generator cost functions 

as single- or multiple-segment, linear cost functions

� Typical examples:

PmaxPmin

F(P)

PmaxPmin

dF(P)/dP

PmaxPmin

F(P)

PmaxPmin

dF(P)/dP
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Piecewise Linear Cost Functions

� Piecewise linear cost functions can not be used with gradient 
based optimization methods
� like the lambda-iteration

� such methods will always land on Pmin or Pmax

� A table-based method resolves this problem
� technique

� for all units running, begin to raise the output of the unit with the 
lowest incremental cost segment
� if this unit hits the right-hand end of a segment or hits Pmax, find 

the unit with the next lowest incremental cost segment and begin
to raise its output

� eventually, the total of all units outputs equals the total load
� the last unit is adjusted to have a generation, which is partially 

loaded for one segment
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Dynamic Programming

� A wide variety of control and dynamic optimization 
problems use dynamic programming (DP) to find solutions
� can greatly reduce the computation effort in finding optimal 

trajectories or control policies

� DP applications have been developed for
� economic dispatch

� hydro-thermal economic-scheduling

� unit commitment

� methods are based on the calculus of variations
� but, applications are not difficult to implement or program

� principles are introduced by presenting examples of one-
dimensional problems
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Dynamic Programming

� Example
� consider the cost of transporting a unit shipment from location 

A to location N
� there are many short paths that connect many stops along the 

way, which offers numerous parallel routes from getting from A 
to N

� each path has an associated cost
� e.g., distance and level of difficulty results in fuel costs

� the total cost is the sum of the path costs of the selected route 
from the originating location to the terminating location

� the problem is to find the minimum cost route
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Dynamic Programming
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Dynamic Programming

� There are various stages traversed
� starting at A, the minimum cost path to N is ACEILN

� starting at C, the least cost path to N is CEILN

� starting at E, the least cost path to N is   EILN 

� starting at I, the least cost path to N is      ILN 

� starting at L, the least cost path to N is      LN 

� Obtaining the optimal route
� the choice of the route is made in sequence

� Theory of optimality
� the optimal sequence is called the optimal policy

� any sub-sequence is called a sub-policy

� the optimal policy contains only optimal sub-policies
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Dynamic Programming
� Example (continued)

� divide up the field of paths into stages (I, II, III, IV, V)
� at the terminus of each stage, there is a set of nodes (stops), {Xi}

� at stage III, the stops are [{X3} = {H, I, J, K}]
� a set of costs can be found for crossing a stage, {VIII (X2, X3)}

� a cost is dependent on the starting and terminating nodes of a 
stage,  VIII(E, H) = 3, VIII(F, I) = 11

� the minimum cost for traversing from stage I to stage i and 
arrive at some particular node (stop), Xi, is defined as fI(Xi)
� the minimum costs from stage I to stage II for nodes {B, C, D} 

are: 
fI(B) = VI(A, B) = 5,  fI(C) = VI(A, C) = 2, fI(D) = VI(A, D) = 3 

� the minimum cost from stage I to stage III for node {E} is:
fII(E) = min [ fI(X1) + VII(X1, E) ] = min[ 5 + 11, 2 + 8, 3 + inf. ]

{ X1} X1 = B       = C     = D
fII(E) = 10  via ACE
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Dynamic Programming
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Dynamic Programming

� at each stage, the minimum cost should be recorded for all the 
terminus nodes (stops)
� use the minimum cost of the terminus of the previous stage

� identify the minimum cost path for each of the terminating nodes
of the current stage

(X1) fI(X1) path (X2) fII(X2) path (X3) fIII (X3)path (X4) fIV(X4)path (X5) fV(X5) path

B 5 A E 10 AC H 13 ACE L 15 ACEI N 19 ACEIL

C 2 A F 6 AC I 12 ACE M 18 ADGK

D 3 A G 9 AD J 11 ACF

K 13 ADG
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Dynamic Programming

� Economic dispatch
� when the heat-rate curves exhibit nonconvex characteristics

it is not possible to use an equal
incremental cost method 
� multiple values of MW output

exist for a given value of 
incremental cost

� dynamic programming finds
optimal dispatch under such 
circumstances
� the DP solution is accomplished

as an allocation problem

� the approach generates a set of outputs
for an entire set of load values

PmaxPmin

H(P)

PmaxPmin

dH(P)/dP

A nonconvex heat rate curve
and its corresponding 

incremental heat rate curve
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� Example
� consider a three-generator system serving a 310 MW demand

� the generator I/O characteristics are not smooth nor convex

� the demand does not fit the data exactly, interpolate is needed 
between the available closest values, 300 and 325 MW

Dynamic Programming

0 ∞ ∞ ∞
50 810 750 806
75 1355 1155 1108.5

100 1460 1360 1411
125 1772.5 1655 1704.5
150 2085 1950 1998
175 2427.5 ∞ 2358
200 2760 ∞ ∞
225 ∞ ∞ ∞

Power Levels (MW) Costs ($/hour)
P1 = P2 = P3 F1 F2 F3
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Dynamic Programming
� Example

� the minimum cost function for scheduling units 1 and 2:

� let P2 cover its allowable range for demands of 100 to 350 MW
( ) ( ) ( )22212 PFPDFDf +−=

50 810 ∞ ∞ ∞ ∞ ∞ ∞ -
75 1355 ∞ ∞ ∞ ∞ ∞ ∞ -

100 1460 1560 ∞ ∞ ∞ ∞ 1560 50
125 1772.5 2105 1965 ∞ ∞ ∞ 1965 75
150 2085 2210 2510 2170 ∞ ∞ 2170 100
175 2427.5 2522.5 2615 2715 2465 ∞ 2465 125
200 2760 2835 2927.5 2820 3010 2760 2760 150
225 ∞ 3177.5 3240 3132.5 3115 3305 3115 125
250 ∞ 3510 2582.5 3445 3427.5 3410 3410 150
275 ∞ ∞ 3915 3787.5 3740 3722.5 3722.5 150
300 ∞ ∞ ∞ 4120 4082.5 4035 4035 150
325 ∞ ∞ ∞ ∞ 4415 4377.5 4377.5 150
350 ∞ ∞ ∞ ∞ ∞ 4710 4710 150

D F1(D) P2 = 50 75 100 125 150 (MW) f2 P2
*

(MW) ($/h) F2(P2)= 750 1155 1360 1655 1950 ($/h) ($/h) (MW)
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Dynamic Programming
� Example

� the minimum cost function for scheduling units 1, 2 and 3:

� let P3 cover its allowable range for the demand
( ) ( ) ( )33323 PFPDfDf +−=

100 1560 ∞ ∞ ∞ ∞ ∞ ∞ ∞ -
125 1965 ∞ ∞ ∞ ∞ ∞ ∞ ∞ -
150 2070 2366 ∞ ∞ ∞ ∞ ∞ 2366 50
175 2465 2771 2668.5 ∞ ∞ ∞ ∞ 2668.5 75
200 2760 2976 3073.5 2971 ∞ ∞ ∞ 2971 100
225 3115 3271 3278.5 3376 3264.5 ∞ ∞ 3264.5 125
250 3410 3566 3573.5 3581 3669.5 3558 ∞ 3558 150
275 3722.5 3921 3868.5 3876 3874.5 3963 3918 3868.5 75
300 4035 4216 4223.5 4171 4169.5 4168 4323 4168 150
325 4377.5 4528.5 4518.5 4526 4464.5 4463 4528 4463 150
350 4710 4841 4831 4821 4819.5 4758 4823 4758 150
375 ∞ 5183.5 5143.5 5133.5 5114.5 5113 5118 5113 150
400 ∞ 5516 5486 5446 5427 5408 5473 5408 150
425 ∞ ∞ 5818.5 5788.5 5739.5 5720.5 5768 5720.5 150

D f2(D) P3 = 50 75 100 125 150 175 (MW) f3 P3
*

(MW) ($/h) F3(P3) = 806 1108.5 1411 1704.5 1998 2358 ($/h) ($/h) (MW)
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Dynamic Programming

� Example
� the results show:

� generator #2 is the marginal unit
� it picks up all of the additional demand increase between 300 MW

and 325 MW

� P1 = 50 MW, P2 = 110 MW, P3 = 150 MW, and Ptotal = 310 MW 

� the cost is easily determined using interpolation

� F1 = $ 810, F2 = $1478, F3 = $ 1998, and Ftotal = $4286

300 4168 150 100 50
325 4463 150 125 50

D Cost P 1 P2 P3

( ) 14781360100110
100125

13601655
)110(2 =+−⋅

−
−=F
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Ramp Rate Constraints

� Generators are usually under automatic generation control 
(AGC)
� a small change in load and a new dispatch causes the AGC to 

change the outputs of appropriate units

� generators must be able to move to the new generation value 
within a short period of time

� large steam units have a prescribed “maximum rate limit”,
∆P/ ∆t (MW per minute)
� the AGC must allocate the change in generation to other units, 

so that the load change can be accommodated quickly enough

� the new dispatch may be at the most economic values, but the 
control action may not be acceptable if the ramp rate for any 
of the units are violated
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Ramp Rate Constraints

� To produce an acceptable dispatch to the control system, the 
ramp rate limits are added to the economic dispatch 
formulation
� requires a short-range load forecast to determine the most 

likely load and load-ramping requirements of the units
� system load is given to be supplied at time increments 

t = 1 … tmax with loading levels of Pt
load

� the N generators on-line supply the load at each time increment

� each unit must obey a rate limit such that

t
load

N

i

t
i PP =�
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maxmax
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iii

i
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t
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PPP
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Ramp Rate Constraints

� The units are scheduled to minimize the cost to deliver the 
power over the time period

� constraints

and

� the optimization problem can be solved with dynamic 
programming

max
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